

MPE REPORT

FCC ID:ZUXIBB-IM2

Date of issue: May 27, 2020

Report number:	MTi20042206-4E2					
Sample description:	iBaby Monitor M2C					
Model(s):	M2C, M2C plus, i2C, i2 Pro, i2 Plus, iM2, iM2 C, H2, H2C, H2 Pro, i2					
Applicant:	iBaby Labs, Inc.					
Address:	Room 601, 6/F, Block T2-B, Software Park, No.22, S. Gaoxin7th Ave., Nanshan District, Shenzhen, Guangdong, China					
Date of test:	May 11, 2020 to May 27, 2020					

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

This test report is valid for the tested samples only. It cannot be reproduced except in full without prior written consent of Shenzhen Microtest Co., Ltd.

TEST RESULT CERTIFICATION					
Applicant's name:	iBaby Labs, Inc.				
Address:	Room 601, 6/F, Block T2-B, Software Park, No.22, S. Gaoxin7th Ave., Nanshan District, Shenzhen, Guangdong, China				
Manufacture's name:	iBaby Labs, Inc.				
Address:	Room 601, 6/F, Block T2-B, Software Park, No.22, S. Gaoxin7th Ave., Nanshan District, Shenzhen, Guangdong, China				
Product name:	iBaby Monitor M2C				
Trademark:	iBaby				
Model and/or type reference:	M2C				
Serial model:	M2C plus, i2C, i2 Pro, i2 Plus, iM2, iM2 C, H2, H2C, H2 Pro, i2				
RF exposure procedures:	KDB 447498 D01 v06				

This device described above has been tested by Shenzhen Microtest Co., Ltd and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

Tested by:

any An

May 27, 2020

Reviewed by:

Jeo su

Leo Su

Danny Xu

May 27, 2020

Approved by:

Tom Lue

Tom Xue

May 27, 2020

RF EXPOSURE EVALUATION

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) Radiation as specified in §1.1307(b)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)						
(A) Limits for Occupational/Controlled Exposure										
0.3-3.0	614	1.63	*100	6						
3.0-30	1842/1	4.89/1	*900/f ²	6						
30-300	61.4	0.163	1.0	6						
300-1,500			f/300	6						
1,500-100,000			5	6						
(B) Limits for General Population/Uncontrolled Exposure										
0.3-1.34	614	1.63	*100	30						
1.34-30	824/1	2.19/1	*180/f ²	30						
30-300	27.5	0.073	0.2	30						
300-1,500			f/1500	30						
1,500-100,000			1.0	30						

Limits for Maximum Permissible Exposure (MPE)

f = frequency in MHz * = Plane-wave equivalent power density

MPE Calculation Method

Friis transmission formula: $Pd=(Pout^{*}G) \setminus (4^{*}pi^{*}R^{2})$

Where

Pd= Power density in mW/cm2

Pout=output power to antenna in mW

G= Numeric gain of the antenna relative to isotropic antenna

Pi=3.1415926

R= distance between observation point and center of the radiator in cm(20cm)

Pd the limit of MPE, 1mW/cm2. If we know the maximum gain of the antenna and total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

Measurement Result

WIFI:

Operation Frequency: WIFI 802.11b/g/n HT20: 2412-2462MHz,

802.11n HT40: 2422-2452MHz,

Power density limited: 1mW/ cm²

Antenna Type: WiFi Antenna: FPC Antenna; WIFI antenna gain: 3dBi

R=20cm

mW=10^(dBm/10)

antenna gain Numeric=10^(dBi/10)= 10^(3/10)=2

Chann el Freq. (MHz) n	conducte d power	Tune -up powe r	Мах		Ante nna	Evaluation result at 20cm	Power density Limits	
	n	(dBm)	(dBm)	tune (dBm)	-up power (mW)	Gain Num eric	Power density(mW/cm2)	(mW/cm2)
		Ant A	Ant A	Ant A	Ant A	Ant A	Ant A	
2412	802.11b	16.95	17±1	18	63.095734	2	0.02510	1
2437		16.38	17±1	18	63.095734	2	0.02510	1
2462		17.47	17±1	18	63.095734	2	0.02510	1
2412	802.11g	13.32	14±1	15	31.622777	2	0.01258	1
2437		14.10	14±1	15	31.622777	2	0.01258	1
2462		14.69	14±1	15	31.622777	2	0.01258	1
2412	802.11n H20	13.61	14±1	15	31.622777	2	0.01258	1
2437		14.12	14±1	15	31.622777	2	0.01258	1
2462		14.69	14±1	15	31.622777	2	0.01258	1
2422	- 802.11n - H40	12.62	12±1	13	19.952623	2	0.00794	1
2437		12.77	12±1	13	19.952623	2	0.00794	1
2452		12.96	12±1	13	19.952623	2	0.00794	1

Conclusion:

For the max result: $0.02510 \le 1.0$ for 1g SAR, No SAR is required.

----END OF REPORT----