

FCC 47 CFR PART 15 SUBPART C TEST REPORT

For

Applicant : Ambitio LLC, The Owner of unnecto

Address: 1315 N.W 98th ct Unit 11 United States

- Product Name : 3G Mobile Phone
 - Model Name : U-710-2
 - Brand Name : unnecto ™

FCC ID : ZU3UNNECTOQUA

Report No. : STS120308F3

- Date of Issue : May. 15, 2012
 - Issued by : Shenzhen Super Test Service Technology Co., Ltd.
 - Address : No.5, Langshan 2nd Rd., North Hi-Tech Industrial park, Nanshan, Shenzhen, Guangdong, China
 - Tel: 86-755-2795 8522
 - Fax : 86-755-2795 8022

The report consists 64 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by STS. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver.

TABLE OF CONTENTS

1.	VERIFICATION OF CONFORMITY	. 3
2.	GENERAL INFORMATION	. 4
2.1	Product Information	. 4
2.2	Objective	. 5
2.3	Test Standards and Results	. 5
2.4	Environmental Conditions	. 5
3.	TEST FACILITY	. 6
4.	TEST EQUIPMENT LIST	. 8
5.	47 CFR Part 15 C 15.247 Requirements	.9
5.1	6dB Bandwidth	. 9
5.2	Peak Output Power	14
5.3	Conducted Spurious Emission	18
5.4	Band Edge	22
5.5	Power Spectral Density (PSD)	27
5.6	Conducted Emission	32
5.7	Radiated Emission	35
APF	PENDIX 1	47
PHO	DTOGRAPHS OF TEST SETUP	47
APF	PENDIX 2	52
PHO	DTOGRAPHS OF EUT	52

1. VERIFICATION OF CONFORMITY

Equipment Under Test:	3G Mobile Phone
Brand Name:	unnecto M
Model Number:	U-710-2
Series Model Name:	N/A
Difference description:	N/A
FCC ID:	ZU3UNNECTOQUA
Applicant:	Ambitio LLC, The Owner of unnecto
	1315 N.W 98th ct Unit 11 United States
Manufacturer:	Shenzhen Xiangyue Perfect Digital Science & Technology Co.,Ltd
	Building A1, Jiujiutongxin Industrial Zone 11, Xinbu, Tongle, Longgang, Shenzhen
Technical Standards:	47 CFR Part 15 Subpart C
File Number:	STS120308F3
Date of test:	May. 4 ~ May. 12, 2012
Deviation:	None
Condition of Test Sample:	Normal
Test Result:	PASS

The above equipment was tested by *Shenzhen Super Test Service Technology Co., Ltd.* for compliance with the requirements set forth in FCC rules and the Technical Standards mentioned above. This said equipment in the configuration described in this report shows the maximum emission levels emanating from equipment and the level of the immunity endurance of the equipment are within the compliance requirements.

The test results of this report relate only to the tested sample identified in this report.

Tested by (+ signature):	Zhang Long		
	Zhang Ling	May. 15, 2012	
Review by (+ signature):	Ffr		
	July Wen	May. 15, 2012	
Approved by (+ signature):	Te	o Yong	
	Terry Yang	May. 15, 2012	

2. GENERAL INFORMATION

2.1 Product Information

EUT- GSM Mobile Phone	EUT- GSM Mobile Phone				
Description:	3G Mobile Phone				
Model Name:	U-710-2				
Series Number:	N/A				
Model Difference description:	N/A				
Power Supply:	DC 5V by AC/DC adapter 100~240V 50/60Hz DC 3.7V by Lithium-ion Battery				
Frequency Range:	2412MHz – 2462MHz				
Number of Channels:	IEEE 802.11b/g mode: 11 Channels				
Transmit Power	IEEE 802.11b mode: 16.0+/-1.5 dBm IEEE 802.11g mode: 14.5+/-2 dBm				
Modulation Technique:	IEEE 802.11b mode: DSSS (1, 2, 5.5 and 11 Mpbs) IEEE 802.11g mode: OFDM (6, 9, 12, 18, 24, 36, 48 and 54 Mpbs)				
Antenna Gain:	0dBi				
Temperature Range:	-20°C ~ +50°C				

NOTE:

1. For a more detailed features description about the EUT, please refer to User's Manual.

2.2 Objective

The objective of the report is to perform tests according to 47 CFR Part 15 Subpart C for the EUT FCC ID Certification:

No.	Identity	Document Title
1	47 CFR Part 15(10-1-05 Edition)	Radio Frequency Devices

2.3 Test Standards and Results

Test items and the results are as bellow:

No.	Section	Description	Result	Date of Test
1	15.247(a)(2)	6dB Bandwidth	PASS	2012-5-12
2	15.247(b)(3)	Peak Output Power	PASS	2012-5-12
3	15.247(d)	conducted spurious emission	PASS	2012-5-12
4	15.247(d)	Band Edge	PASS	2012-5-12
5	15.247(e)	Power Spectral Density	PASS	2012-5-12
6	15.207	Conducted Emission	PASS	2012-5-11
7	15.247(d) 15.205 15.209	Radiated Emission	PASS	2012-5-11

Note: 1. The test result judgment is decided by the limit of measurement standard 2. The information of measurement uncertainty is available upon the customer's request.

2.4 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

- Temperature: 15-35°C
- Humidity: 30-60 %
- Atmospheric pressure: 86-106 kPa

3. TEST FACILITY

3.1TEST FACILITY

Most Technology Service Co., Ltd.
No.5, Langshan 2nd Rd., North Hi-Tech Industrial park, Nanshan, Shenzhen, Guangdong, China
There is one 3m semi-anechoic an area test sites and two line conducted labs for final
test. The Open Area Test Sites and the Line Conducted labs are constructed and
calibrated to meet the FCC requirements in documents ANSI C63.4:2009 and CISPR
16 requirements.
The FCC Registration Number is 490827.
The site description is on file with the Federal Communications
Commission, 7435 Oakland Mills Road, Columbia, MD 21046.
All measuring equipment is in accord with ANSI C63.4:2009 and CISPR 16
requirements that meet industry regulatory agency and accreditation agency
requirement.
Two conductive reference ground planes were used during the Line Conducted
Emission, one in vertical and the other in horizontal. The dimensions of these ground
planes are as below. The vertical ground plane was placed distancing 40 cm to the
rear of the wooden test table on where the EUT and the support equipment were
placed during test. The horizontal ground plane projected 50 cm beyond the footprint
of the EUT system and distanced 80 cm to the wooden test table. For Radiated
Emission Test, one horizontal conductive ground plane extended at least 1m beyond
the periphery of the EUT and the largest measuring antenna, and covered the entire
area between the EUT and the antenna.

3.2 GENERAL TEST PROCEDURES

EUT Function and Test Mode

The EUT has been tested under normal operating (TX) and standby (RX) condition.

The field strength of radiation emission was measured in the following position: EUT stand-up position (Y axis), lie-down position (X, Z axis).

The following data show only with the worst case setup.

The worst case of Y axis was reported.

Based on client request, all normal using modes of the normal function were tested but only the worst test data of the worst mode is reported by this report.

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4:2009, Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4:2009.

3.3 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110 10.495 - 0.505 2.1735 - 2.1905 4.125 - 4.128 4.17725 - 4.17775 4.20725 - 4.20775 6.215 - 6.218 6.26775 - 6.26825	16.42 - 16.423 16.69475 - 16.69525 16.80425 - 16.80475 25.5 - 25.67 37.5 - 38.25 73 - 74.6 74.8 - 75.2 108 - 121.94	399.9 - 410 608 - 614 960 - 1240 1300 - 1427 1435 - 1626.5 1645.5 - 1646.5 1660 - 1710 1718.8 - 1722.2	4.5 - 5.15 5.35 - 5.46 7.25 - 7.75 8.025 - 8.5 9.0 - 9.2 9.3 - 9.5 10.6 - 12.7 13.25 - 13.4
$\begin{array}{r} 6.26775 + 0.20025\\ 6.31175 + 6.31225\\ 8.291 + 8.294\\ 8.362 + 8.366\\ 8.37625 + 8.38675\\ 8.41425 + 8.41475\\ 12.29 + 12.293\\ 12.51975 + 12.52025\\ 12.57675 + 12.57725\\ 13.36 + 13.41\end{array}$	123 - 138 149.9 - 150.05 156.52475 - 156.52525 156.7 - 156.9 162.0125 - 167.17 167.72 - 173.2 240 - 285 322 - 335.4	2200 - 2300 2310 - 2390 2483.5 - 2500 2655 - 2900 3260 - 3267 3332 - 3339 3345.8 - 3358 3600 - 4400	$\begin{array}{c} 13.23 \\ 14.47 \\ 14.47 \\ 15.35 \\ 15.35 \\ 16.2 \\ 17.7 \\ 21.4 \\ 22.01 \\ 23.6 \\ 24.0 \\ 31.2 \\ 31.2 \\ 31.8 \\ 36.43 \\ 36.5 \\ (^2) \end{array}$

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi- peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

4. TEST EQUIPMENT LIST

Instrumentation: The following list contains equipment used at MOST for testing. The equipment conforms to the CISPR 16-1/ANSI C63.2 Specifications for Electromagnetic Interference and Field Strength Instrumentation from 10 kHz to 1.0 GHz or above.

No.	Equipment	Manufacturer	Model No.	S/N	Calibration date	Calibration due date
1	Test Receiver	Rohde & Schwarz	ESCI	100492	2012/03/14	2013/03/14
2	L.I.S.N.	Rohde & Schwarz	ENV216	100093	2012/03/14	2013/03/14
3	Coaxial Switch	Anritsu Corp	MP59B	6200283933	2012/03/14	2013/03/14
4	Terminator	Hubersuhner	50Ω	No.1	2012/03/14	2013/03/14
5	RF Cable	SchwarzBeck	N/A	No.1	2012/03/14	2013/03/14
6	Test Receiver	Rohde & Schwarz	ESPI	101202	2012/03/14	2013/03/14
7	Bilog Antenna	Sunol	JB3	A121206	2012/03/14	2013/03/14
8	Test Antenna - Horn	Schwarzbeck	BBHA 9120C		2012/03/14	2013/03/14
9	Test Antenna - LOOP	Schwarzbeck	VULB 9163		2012/03/14	2013/03/14
10	Cable	Resenberger	N/A	NO.1	2012/03/14	2013/03/14
11	Cable	SchwarzBeck	N/A	NO.2	2012/03/14	2013/03/14
12	Cable	SchwarzBeck	N/A	NO.3	2012/03/14	2013/03/14
13	DC Power Filter	DuoJi	DL2×30B	N/A	2012/03/14	2013/03/14
14	Single Phase Power Line Filter	DuoJi	FNF 202B30	N/A	2012/03/14	2013/03/14
15	3 Phase Power Line Filter	DuoJi	FNF 402B30	N/A	2012/03/14	2013/03/14
16	Spectrum Analyzer	Agilent	4408B	MY41440460	2012/03/14	2013/03/14
17	Absorbing Clamp	Luthi	MDS21	3635	2012/03/14	2013/03/14
18	Coaxial Switch	Anritsu Corp	MP59B	6200283933	2012/03/14	2013/03/14
19	AC Power Source	Kikusui	AC40MA	LM003232	2012/03/14	2013/03/14
20	Test Analyzer	Kikusui	KHA1000	LM003720	2012/03/14	2013/03/14
21	Line Impendence Network	Kikusui	LIN40MA- PCR-L	LM002352	2012/03/14	2013/03/14
22	ESD Tester	Kikusui	KES4021	LM003537	2012/03/14	2013/03/14
23	EMCPRO System	EM Test	UCS-500-M4	V064810202 6	2012/03/14	2013/03/14
24	Signal Generator	IFR	2032	203002/100	2012/03/14	2013/03/14
25	Amplifier	A&R	150W1000	301584	2012/03/14	2013/03/14
26	CDN	FCC	FCC-801-M2-25	47	2012/03/14	2013/03/14
27	CDN	FCC	FCC-801-M3-25	107	2012/03/14	2013/03/14
28	EM Injection Clamp	FCC	F-203I-23mm	403	2012/03/14	2013/03/14
29	RF Cable	MIYAZAKI	N/A	No.1/No.2	2012/03/14	2013/03/14
30	Universal Radio Communication Tester	ROHDE&SCHWARZ	CMU200	0304789	2012/03/14	2013/03/14
31	Telecommunication Antenna	European Antennas	PSA 75301R/170	0304213	2012/03/14	2013/03/14
32	Temperature Chamber	Guangzhou Gongwen	GDS-250	N/A	2012/03/14	2013/03/14

NOTE: Equipments listed above have been calibrated and are in the period of validation.

5. 47 CFR Part 15 C 15.247 Requirements

5.1 6dB Bandwidth

5.1.1 Definition

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.1.2 Test Description

The EUT is powered by the Battery, is coupled to the Spectrum Analyzer (SA) through the Attenuator/DC Block. The path loss as the factor is calibrated to correct the reading. During the measurement, the EUT is activated and is set to operate at maximum power. The RF load attached to the EUT antenna terminal is 500hm.

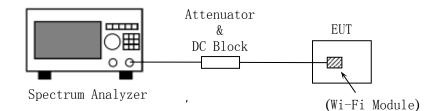
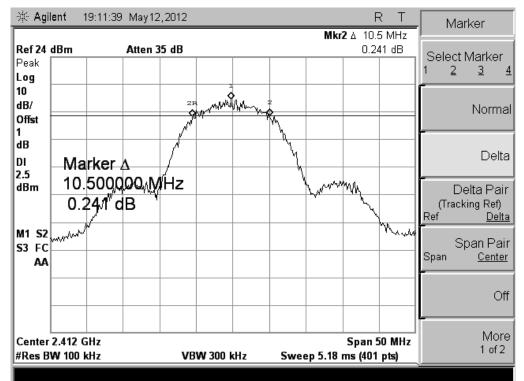


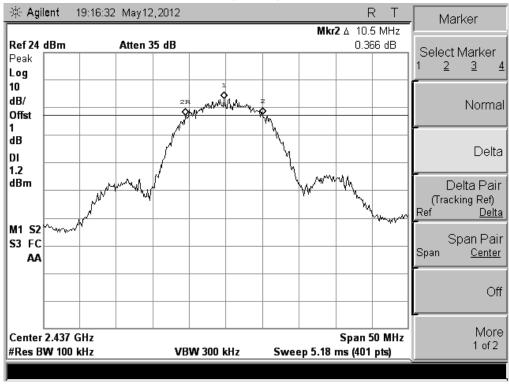
Figure 1: RF Test Setup

5.1.3 Test Result

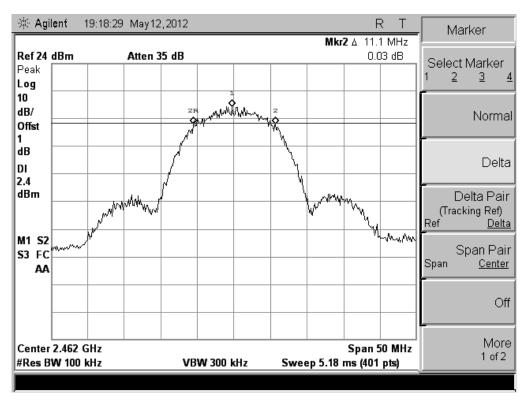
The lowest, middle and highest channels are selected to perform testing to record the 6 dB bandwidth of the Module.


5.1.3.1 802.11b Test Mode

The minimum occupied bandwidth for the fundamental frequency 2412MHz is 10.5MHz. This occupied bandwidth complies with the FCC requirement.


A. Test Verdict:

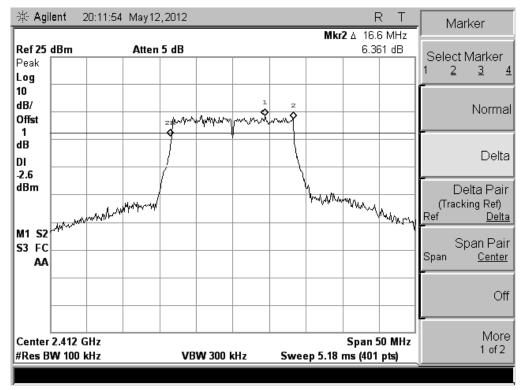
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits (kHz)	Result
1	2412	10.5	≥500	PASS
6	2437	10.5	≥500	PASS
11	2462	11.1	≥500	PASS


B. Test Plot:

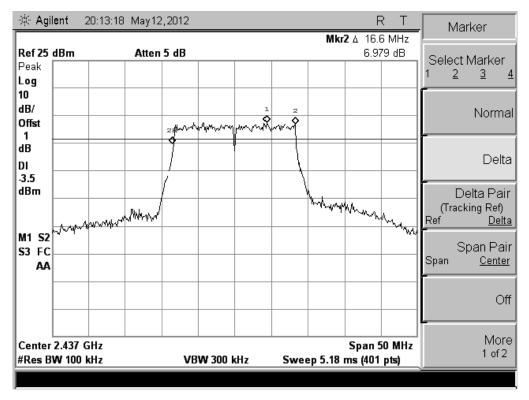
(CH Low)

(CH Mid)

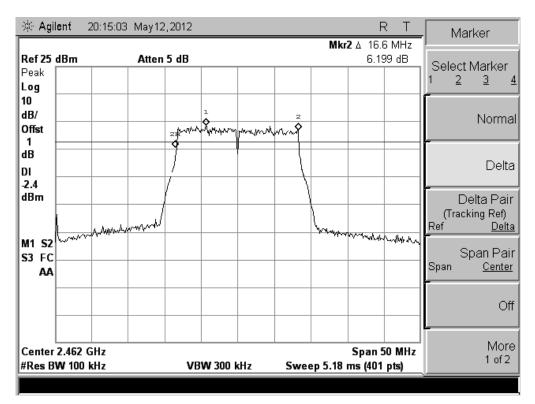
(CH High)


5.1.3.2 802.11g Test Mode

The minimum occupied bandwidth for the fundamental frequency 2412MHz is 16.6MHz. This occupied bandwidth complies with the FCC requirement.


A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits (kHz)	Result
1	2412	16.6	≥500	PASS
6	2437	16.6	≥500	PASS
11	2462	16.6	≥500	PASS


B. Test Plot:

(CH Low)

(CH Mid)

(CH High)

5.2 Peak Output Power

5.2.1 Definition

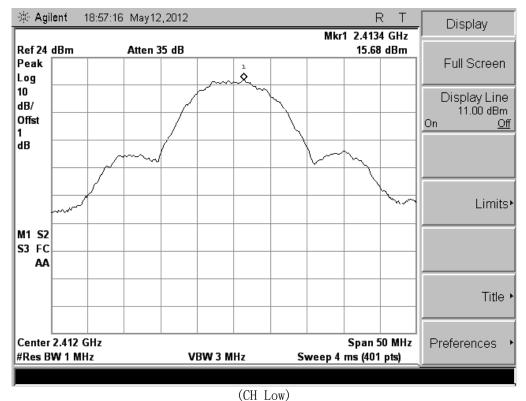
For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power.

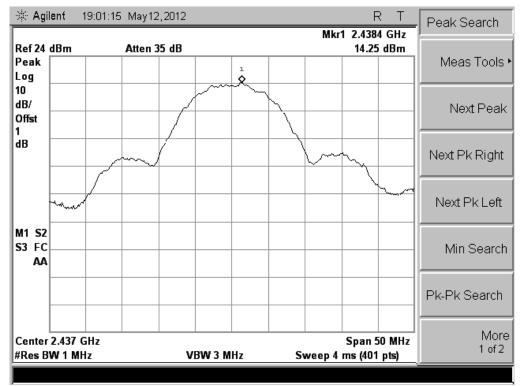
5.2.2 Test Description

See section 5.1.2 of this report.

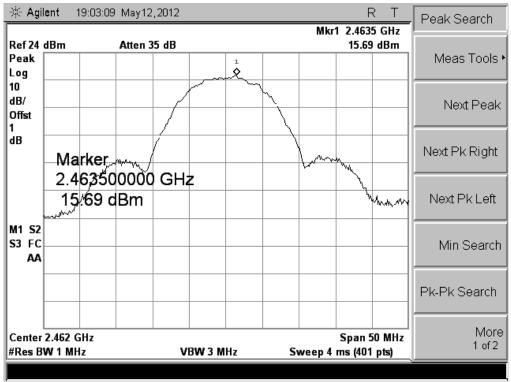
5.2.3 Test Result

The EUT operates at maximum output power mode. The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the Module.


5.2.3.1 802.11b Test Mode


The maximum output power for the fundamental frequency 2462MHz is 15.69dBm. This power complies with the FCC requirement.

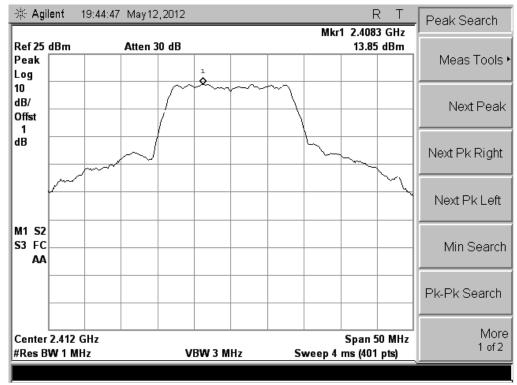
A. Test Verdict:


Channel	Eraguanay (MIIz)	Measured Output Peak Power		Limit		Vandiat
Channel	Frequency (MHz)	dBm	W	dBm	W	Verdict
1	2412	15.68	0.037			PASS
6	2437	14.25	0.027	30	1	PASS
11	2462	15.69	0.037			PASS

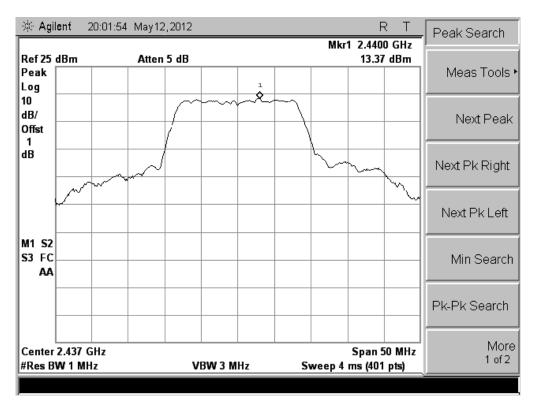
B. Test Plot:

(CH Mid)

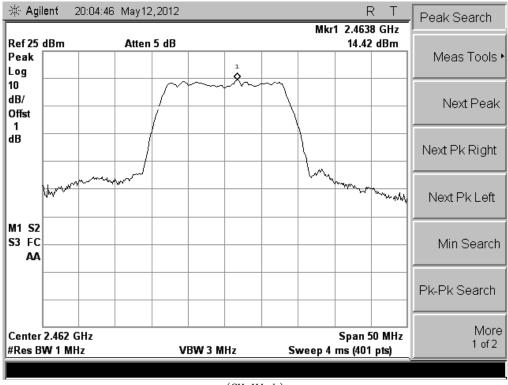
(CH High)


5.2.3.2 802.11g Test Mode

The maximum output power for the fundamental frequency 2462 MHz is 14.42dBm. This power complies with the FCC requirement.


A. Test Verdict:

Channel	Eraguanay (MIIz)	Measured Output I	Peak Power	Lin	Verdict	
Channel	Frequency (MHz)	dBm	W	dBm	W	verdict
1	2412	13.85	0.024			PASS
6	2437	13.37	0.022	30	1	PASS
11	2462	14.42	0.028			PASS


B. Test Plot:

(CH Low)

(CH Mid)

(CH High)

5.3 Conducted Spurious Emission

5.3.1 Definition

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

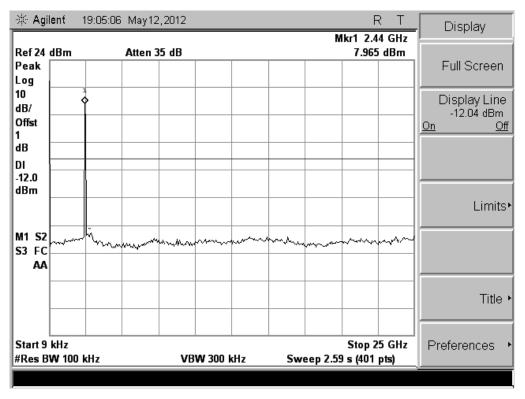
5.3.2 Test Description

See section 5.1.2 of this report.

5.3.3 Test Result

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions.

5.3.3.1 802.11b Test Mode


Test Plot:

🔆 Agil	lent	19:10:26	i May12	,2012				M	F kr1 2.4	₹Т 4 GHz	. D	isplay
Ref 24 Peak Log	dBm		Atten 3	5 dB						dBm	Fu	III Screen
10 dB/ Offst 1 dB DI												splay Line 13.51 dBm <u>Off</u>
-13.5 dBm												Limits∙
M1 S2 S3 FC AA	- Marian	II. 	www.www	him	~~~~	umme		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www.ww		
												Title •
Start 9 #Res B		kHz		VB	W 300 I	ĸHz	Sw	eep 2.59		25 GHz pts)	Prefe	erences 🔸

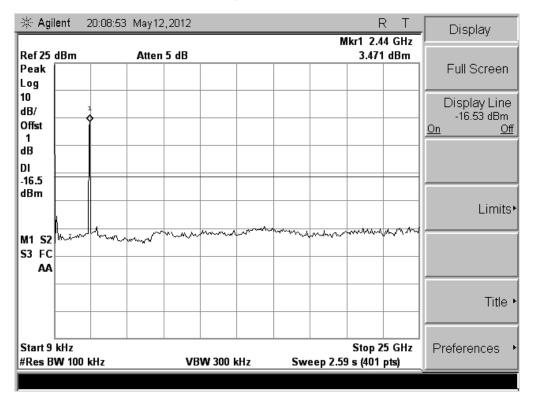
(CH Low, 9kHz to 25GHz)

🔆 Agil	lent 1	19:06:21	May12	,2012					F		Display	
Ref 24	dBm		Atten 3	5 40				M	kr1 2.4	4 GHz dBm	, 	
Peak Log			Allen						5.65		Full Screer	n
10 dB/ Offst 1		}									Display Lin -16.28 dBn <u>On G</u>	
dB DI -16.3			Line									
dBm	-16	.28 c	Bm								Limit	ts►
M1 S2 S3 FC AA	mm	la maria	ann the	~~~~~	~~~~	uma -	www.	www.iw	w~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www		
											Title	∍ ►
Start 9 #Res B		kHz		VB	W 300 I	kHz	Swe	eep 2.59	-	5 GHz pts)	Preferences	F

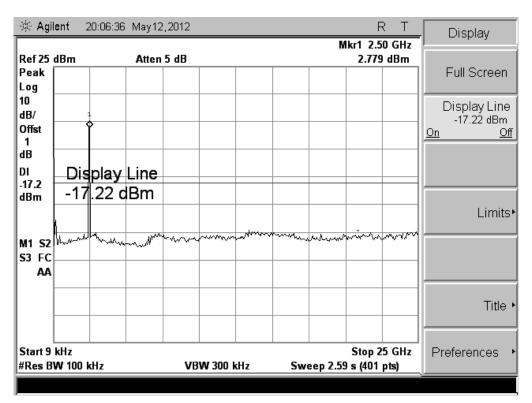
(CH Mid, 9kHz to 25GHz)

(CH High, 9kMHz to 25GHz)

Note:


1. The power of the Module transmitting frequency should be ignored.

5.3.3.2 802.11g Test Mode


Test Plot:

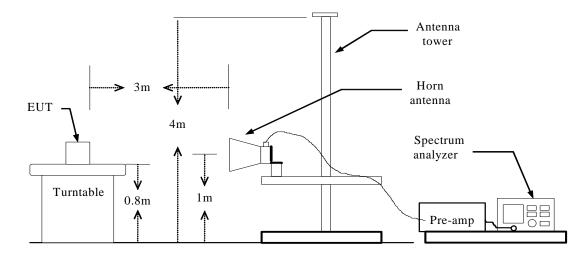
🔆 Agilent 20:07:42 May12,2012 R T Display Mkr1 2.44 GHz Ref 25 dBm 2.363 dBm Atten 5 dB Peak Full Screen Log 10 Display Line dB/ -17.64 dBm Offst <u>Off</u> <u>On</u> 1 dB Display Line DI -17.6 -17.64 dBm dBm Limits• mu una hand all the M1 S2 **S3** FC AA Title • Stop 25 GHz Start 9 kHz Preferences #Res BW 100 kHz VBW 300 kHz Sweep 2.59 s (401 pts)

(CH Low, 9kHz to 25GHz)

(CH Mid, 9kHz to 25GHz)

(CH High, 9kHz to 25GHz)

Note:

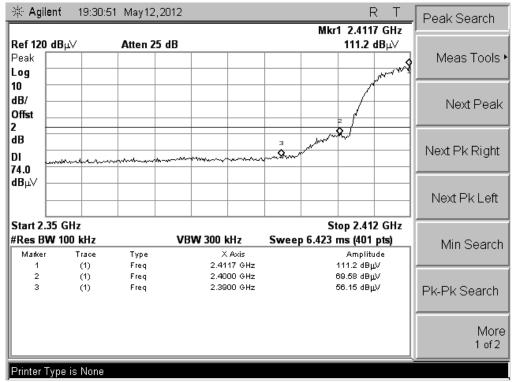

1. The power of the Module transmitting frequency should be ignored.

5.4 Band Edge

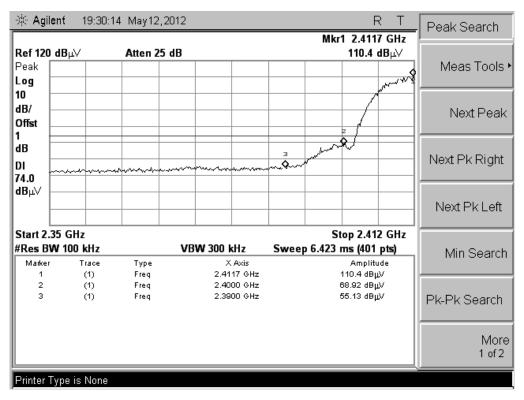
5.4.1 Definition

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

5.4.2 Test Description

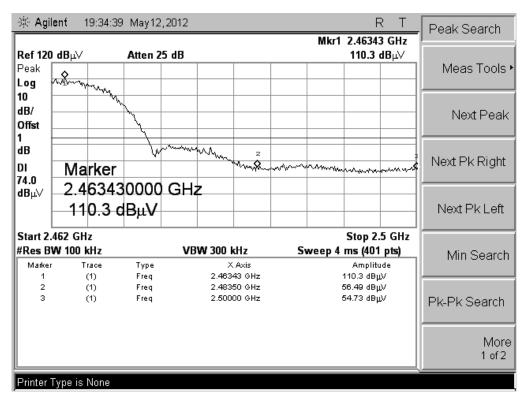

5.4.3 Test Result

The EUT operates at continuous transmit test mode. The lowest and highest channels are tested to verify the band edge emissions.


5.4.3.1 802.11b Test Mode

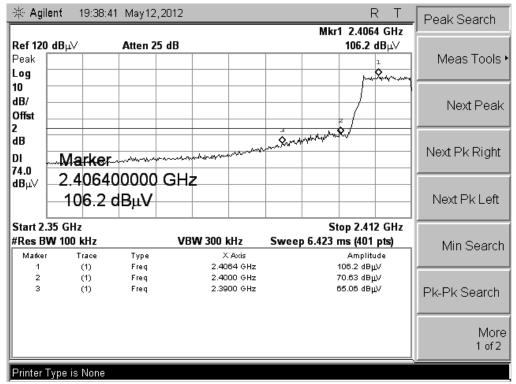
				Test Result Highest Emission (dBuv/m)					
Test Mode		Channel Marked Frequency	Limit (dBuv/m)	Ver	tical	Horizontal			
				Peak	Average	Peak	Average		
	Low	2390MHz		56.15	36.78.	55.13	36.13		
WIFI	Channel	2400MHz	74(Peak)	69.58	45.59	68.92	45.07		
	High	2483.5MHz	54(Average)	54.03	35. 37	56.49	37.14		
	Channel	2500MHz		53.74	33.61	54.73	33.97		

Test Plot:

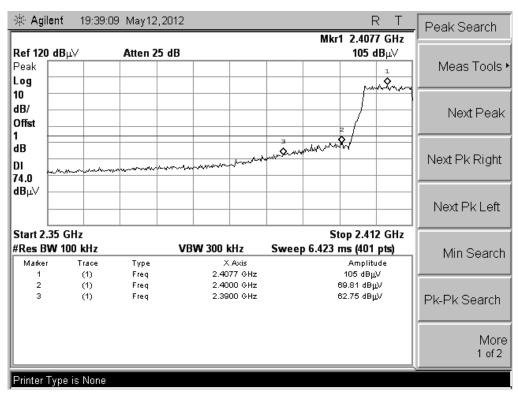

(CH Low, Vertical, Peak)

🔆 Agilent	19:33:54	May12	,2012					F	к т	Peak Search
D-6420 JD	.,	Au	E 10				Mkr1	2.4621		
Ref 120 dB Peak Log	μν ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Atten 2	3 ab					108.8		Meas Tools •
10 dB/ Offst										Next Peak
dB DI 74.0		hore and the second sec	www.ternet.	and the state of t	Z Mar Que	s-shere		mant	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Next Pk Right
dBµ∨										Next Pk Left
Start 2.462						-		Stop 2		
#Res BW 1 Marker	Trace	Type Freq	VB		KHZ Axis 10 GHz	S	weep 4	Amplitı ۱08.8 dB	ude	Min Search
2	(1) (1) (1)	Freq Freq Freq		2.483	10 GHZ 50 GHZ 00 GHZ			108.8 авр 54.03 авр 53.74 авр	N I	Pk-Pk Search
										More 1 of 2
Printer Type	is None									

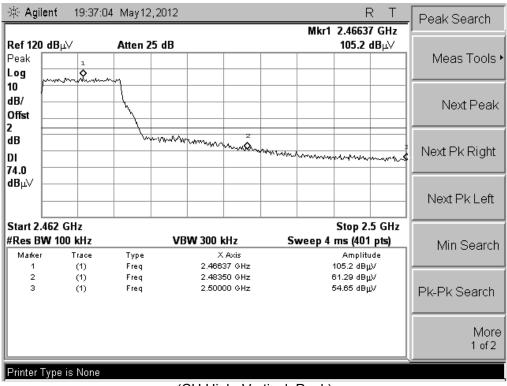
(CH High, Vertical, Peak)



(CH High, Horizontal, Peak)


5.4.3.2 802.11g Test Mode

				Test Result Highest Emission (dBuv/m)					
Test Mode		Channel Marked Frequency	Limit (dBuv/m)	Ver	tical	Horizontal			
				Peak	Average	Peak	Average		
	Low	2390MHz		65.06	43.92	62.75	40.86		
WIFI	Channel	2400MHz	74(Peak)	70.63	51.84	69.81	49.63		
	High	2483.5MHz	54(Average)	61.29	42.87	60.98	41.54		
	Channel	2500MHz		54.65	38.77	54.05	39.02		


Test Plot:

(CH Low, Vertical, Peak)

(CH Low, Horizontal, Peak)

(CH High, Vertical, Peak)

🔆 Agil	ent 1	9:36:37	May12	,2012				Mkr1	R 2.46637		Peak Search
Ref 120 Peak Log		1	Atten 2	5 dB					104.1 d		Meas Tools •
10 dB/ Offst	ren fra	S	1								Next Peak
dB DI 74.0		rker				vm	www.www	wahara	www.		Next Pk Right
dBµ∨			0000 BµV	GH	2						Next Pk Left
Start 2.		-							Stop 2.5		
#Res BI Marker	T	cHz race (1)	Type Freg	VB		KHZ Axis 37 GHz	Sv		ms (401 Amplitud 104.1 dByJV	e	Min Search
23	((1) (1)	Freq Freq		2.483	50 GHz 50 GHz		1	60.98 dBµV 54.05 dBµV		Pk-Pk Search
											More 1 of 2
Printer 1	lype is l	None									

(CH High, Horizontal, Peak)

5.5 Power Spectral Density (PSD)

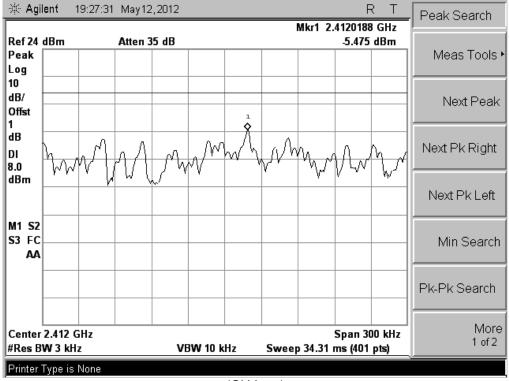
5.5.1 Definition

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

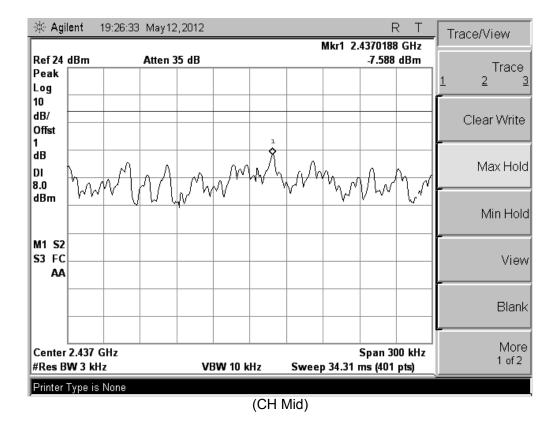
5.5.2 Test Description

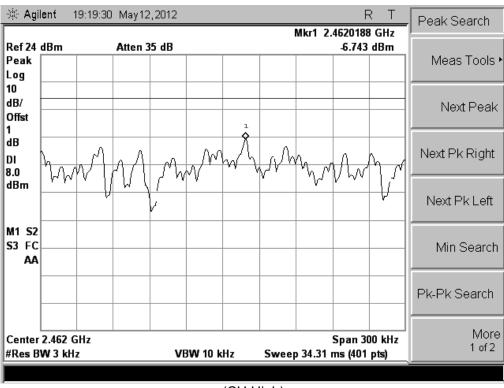
See section 5.1.2 of this report.

5.5.3 Test Result


The lowest, middle and highest channels are tested to verify the power spectral density.

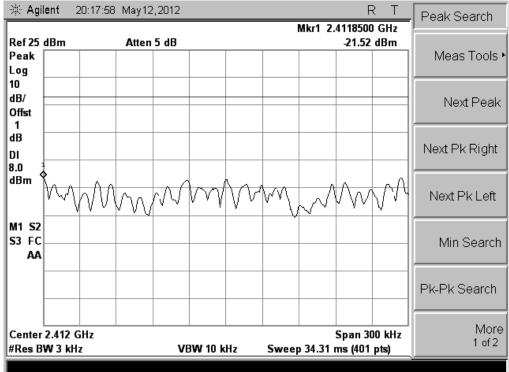
5.5.3.1 802.11b Test Mode


A. Test Verdict:

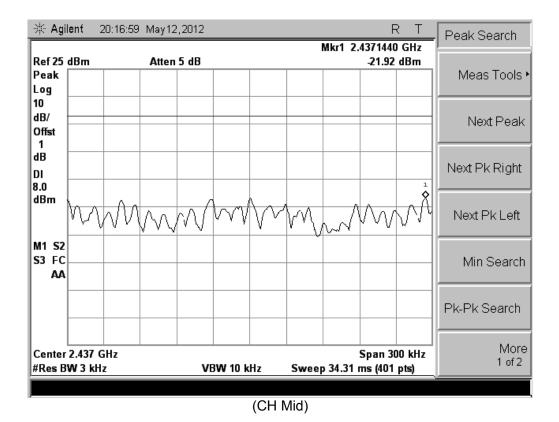

Channel	Frequency (MHz)	PSD (dBm)	Limits(dBm)	Result
1	2412	-5.475	$\leqslant 8$	PASS
6	2437	-7.588	$\leqslant 8$	PASS
11	2462	-6.743	$\leqslant 8$	PASS

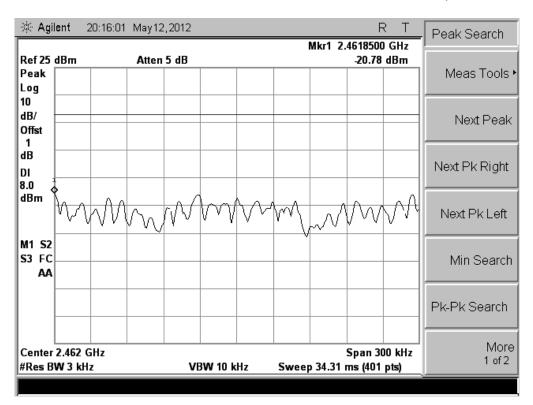
B. Test Plot:

(CH Lo)w
--------	----


(CH High)

5.5.3.2 802.11g Test Mode


A. Test Verdict:


Channel	Frequency (MHz)	PSD (dBm)	Limits(dBm)	Result
1	2412	-21.52	≪8	PASS
6	2437	-21.92	≪8	PASS
11	2462	-20.78	≪8	PASS

B. Test Plot:

(CH Low)

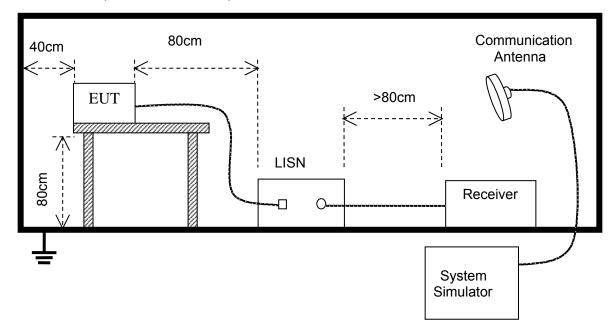
(CH High)

5.6 Conducted Emission

5.6.1 Definition

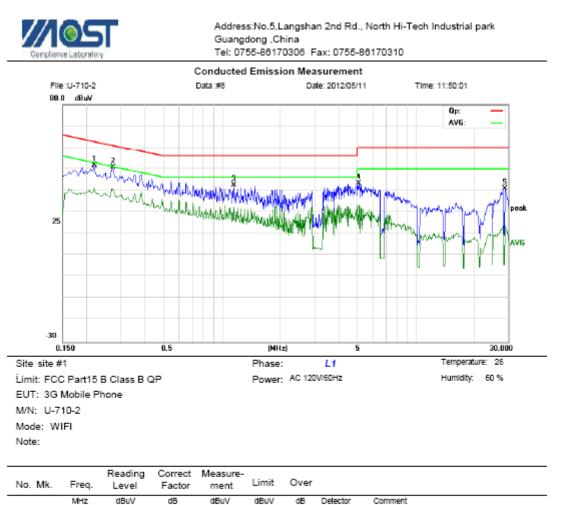
According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

Eroguopov	Maximum RF Line Voltage						
Frequency	Q.P.(dBuV)	Average(dBuV)					
150kHz-500kHz	66-56	56-46					
500kHz-5MHz	56	46					
5MHz-30MHz	60	50					

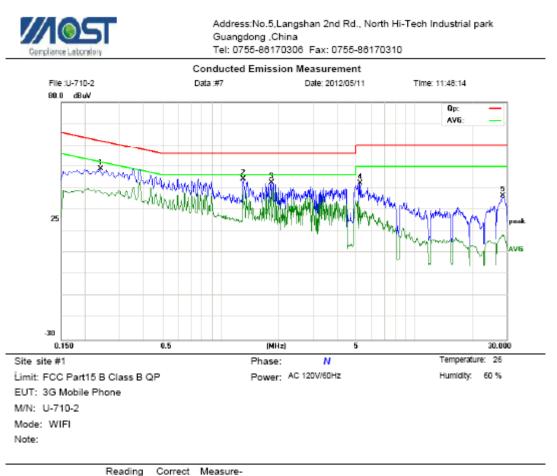

Note:

1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz


5.6.2 Test Description

The EUT is powered by the Battery charged with the AC Adapter which is powered by 120V, 60Hz AC mains supply. The path loss as the factor is calibrated to correct the reading. During the measurement, the EUT is activated and is set to operate at maximum power.


5.6.3 Test Result

A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.

	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.2180	39.73	11.88	51.61	62.89	-11.28	peak	
2 *	0.2740	39.28	11.51	50.79	61.00	-10.21	peak	
3	1.1460	32.53	9.85	42.38	56.00	-13.62	peak	
4	5.0660	31.38	11.96	43.34	60.00	-16.66	peak	
5	28.8140	31.68	9.00	40.68	60.00	-19.32	peak	

*:Maximum data x:Over limit !:over margin

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2380	37.16	11.75	48.91	62.17	-13.26	peak	
2	×	1.3060	34.53	9.69	44.22	56.00	-11.78	peak	
3		1.8220	33.30	9.18	42.48	56.00	-13.52	peak	
4		5.2300	30.28	11.86	42.14	60.00	-17.86	peak	
5		28.5220	27.47	9.00	36.47	60.00	-23.53	peak	

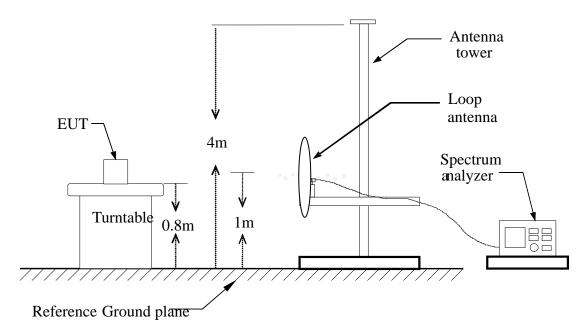
*:Maximum data x:Over limit !:over margin

Page 34 of 64

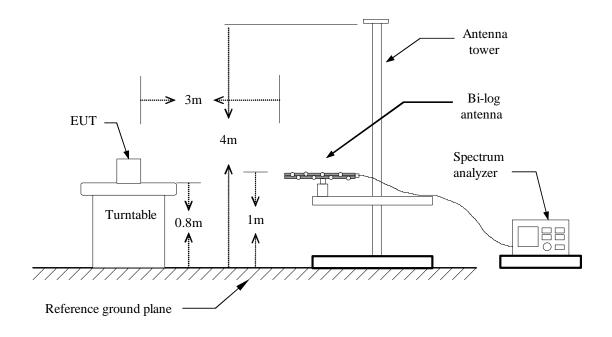
5.7 Radiated Emission

5.7.1 Definition

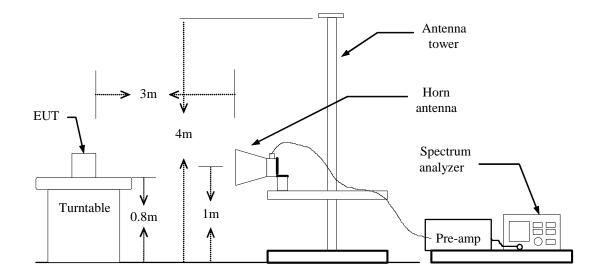
According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).


According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3


As shown in FCC section 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector. When average radiated emission measurements are specified in this part, including emission measurements below 1000MHz, there also is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit for the frequency being investigated unless a different peak emission limit is otherwise specified in the rules.

5.7.2 Test Description


A. Test Setup:

Blow 1GHz:

Above 1GHz:

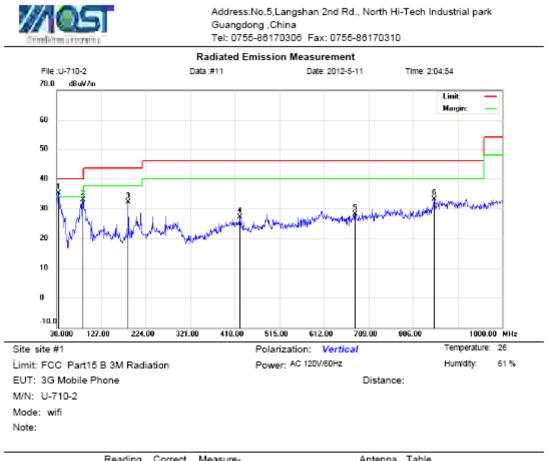
B. Test procedures

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz: RBW=100 kHz / VBW=300 kHz / Sweep=AUTO

Above 1GHz : (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO

(b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO


7. Repeat above procedures until the measurements for all frequencies are complete.

5.7.3 Test Result

Form 9 KHz to 30MHz:

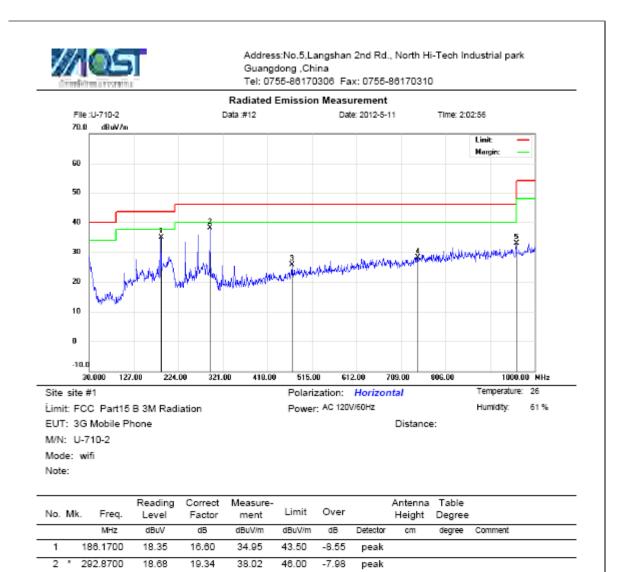
Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	AV Margin
		(dBuV)	(dBuV)	(dB)	Peak	AV	(dBuV/m)	(dBuV/m)	(dB)
					(dBuV/m)	(dBuV/m)			
N/A	Н								>20
								-	
N/A	V								>20

Note: No test data was detected in below 30MHz.

		MHz					Over		Height	Degree	
			dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	×	34.8500	14.14	21.06	35.20	40.00	-4.80	peak			
2		87.2300	21.58	11.34	32.92	40.00	-7.08	peak			
3		186.1699	15.54	16.60	32.14	43.50	-11.36	peak			
4	4	428.6700	6.71	20.30	27.01	46.00	-18.99	peak			
5	6	379.8999	3.59	24.50	28.09	46.00	-17.91	peak			
6	8	851.5900	6.07	27.11	33.18	46.00	-12.82	peak			

*:Maximum data x:Over limit !:over margin

3


4

5

471.3500

744.8900

959.2600

*:Maximum data x:Over limit !:over margin

4.44

2.28

4.83

21.25

25.79

28.00

25.69

28.07

32.83

46.00

46.00

46.00

-20.31

-17.93

-13.17

peak

peak

peak

Notes:

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using peak/quasi-peak detector mode.
- 3. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Margin (dB) = Result (dBuV/m) Limit (dBuV/m).

5.7.3.2 Above 1 GHz

Operation Mode:	TX/ IEEE 802.11b/CH Low	Test Date:	May. 11, 2012
Temperature:	20°C	Tested by:	Habby Guo
Humidity:	70 % RH	Polarity:	Ver. / Hor.

Freq.	Ant. Pol	Peak	AV	Ant. / CL	Actu	al Ec	Peak	AV	AV
(MHz)	H/V	Reading	Reading	CF	Actual Fs		Limit	Limit	Margin
		(dBuV)	(dBuV)	(dB)	Peak	AV	(dBuV/m)	(dBuV/m)	(dB)
					(dBuV/m)	(dBuV/m)			
4824.5	V (44.98	25.69	23.05	68.03	48.74	74.00	54.00	-5.26
N/A	V								
4824.5	Н	45.37	26.38	23.05	68.42	49.43	74.00	54.00	-4.57
N/A	н								

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie:
 - margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Operation Mode:	TX/ IEEE 802.11b/CH Mid	Test Date:	May. 11, 2012
Temperature:	20°C	Tested by:	Habby Guo
Humidity:	70 % RH	Polarity:	Ver. / Hor.

Freq.	Ant. Pol	Peak	AV	Ant. / CL	Actual Fs		Peak	AV	AV
(MHz)	H/V	Reading	Reading	CF			Limit	Limit	Margin
		(dBuV)	(dBuV)	(dB)	Peak	AV	(dBuV/m)	(dBuV/m)	(dB)
					(dBuV/m)	(dBuV/m)			
4874.5	V	43.52	23.83	23.31	66.83	47.14	74.00	54.00	-6.86
N/A	V								

4874.5	Н	44.60	24.42	23.31	67.91	47.73	74.00	54.00	-6.27
N/A	Н								

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie:

margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode:	TX/ IEEE 802.11b/CH High	Test Date:	May. 11, 2012
Temperature:	20°C	Tested by:	Habby Guo
Humidity:	70 % RH	Polarity:	Ver. / Hor.

Freq.	Ant. Pol	Peak	AV	Ant. / CL	Actu	al Ec	Peak	AV	AV
(MHz)	H/V	Reading	Reading	CF	Actual Fs		Limit	Limit	Margin
		(dBuV)	(dBuV)	(dB)	Peak	AV	(dBuV/m)	(dBuV/m)	(dB)
					(dBuV/m)	(dBuV/m)			
4924.5	V	46.08	25.19	23.53	69.61	48.72	74.00	54.00	-5.28
N/A	V								
4924.5	Н	45.65	24.08	23.53	69.18	47.61	74.00	54.00	-6.39
N/A	Н								

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie:

margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode:	TX/ IEEE 802.11g/CH Low	Test Date:	May. 11, 2012
Temperature:	20°C	Tested by:	Habby Guo
Humidity:	70 % RH	Polarity:	Ver. / Hor.

Freq.	Ant. Pol	Peak	AV	Ant. / CL	Actu	Actual Fs		AV	AV
(MHz)	H/V	Reading	Reading	CF	Actual FS		Limit	Limit	Margin
		(dBuV)	(dBuV)	(dB)	Peak	AV	(dBuV/m)	(dBuV/m)	(dB)
					(dBuV/m)	(dBuV/m)			
4824.5	V	43.71	23.61	23.05	66.76	46.66	74.00	54.00	-7.34
N/A	V								
4824.5	Н	44.97	25.08	23.05	68.02	48.13	74.00	54.00	-5.87
N/A	Н								

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie:

margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode:	TX/ IEEE 802.11g/CH Mid	Test Date:	May. 11, 2012
Temperature:	20°C	Tested by:	Habby Guo
Humidity:	70 % RH	Polarity:	Ver. / Hor.

Freq.	Ant. Pol	Peak	AV	Ant. / CL	Actual Fs		Peak	AV	AV
(MHz)	H/V	Reading	Reading	CF			Limit	Limit	Margin
		(dBuV)	(dBuV)	(dB)	Peak	AV	(dBuV/m)	(dBuV/m)	(dB)
					(dBuV/m)	(dBuV/m)			
4874.5	V (45.84	24.23	23.31	69.15	47.54	74.00	54.00	-6.46
N/A	V (
4874.5	Н	44.17	25.79	23.31	67.48	49.10	74.00	54.00	-4.90
N/A	Н								
Vataa									

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie:

margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Operation Mode:	TX/ IEEE 802.11g/CH High	Test Date:	May. 11, 2012	
Temperature:	20°C	Tested by:	Habby Guo	
Humidity:	70 % RH	Polarity:	Ver. / Hor.	

Freq.	Ant. Pol	Peak	AV	Ant. / CL	Actual Fs		Peak	AV	AV
(MHz)	H/V	Reading	Reading	CF			Limit	Limit	Margin
		(dBuV)	(dBuV)	(dB)	Peak	AV	(dBuV/m)	(dBuV/m)	(dB)
					(dBuV/m)	(dBuV/m)			
4924.5	V	46.29	25.34	23.53	69.82	48.87	74.00	54.00	-5.13
N/A	V								
	•								
4924.5	Н	44.35	24.20	23.53	67.88	47.73	74.00	54.00	-6.27
N/A	Н								
Notoo									

Notes:

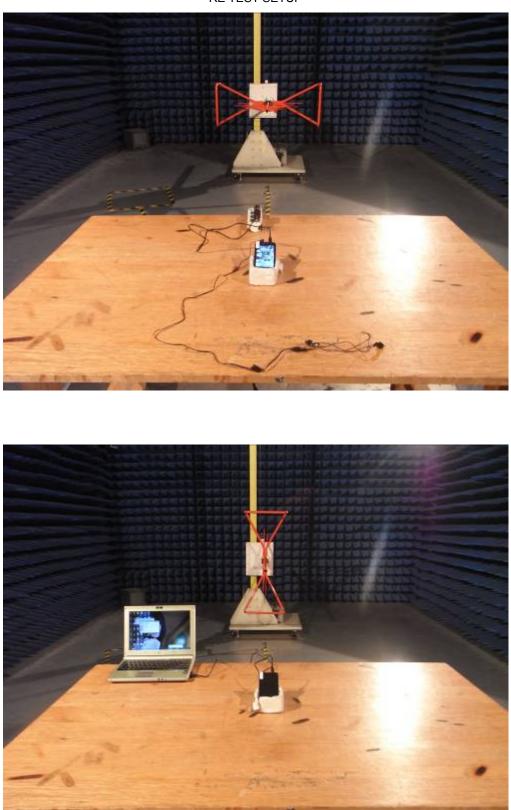
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie:

margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

APPENDIX 1

PHOTOGRAPHS OF TEST SETUP

Page 47 of 64

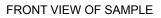

Report No.:STS120308F3


Page 48 of 64

RE TEST SETUP

Page 49 of 64

Report No.: STS120308F3



CONDUCTED SPURIOUS EMISSION TEST SETUP

APPENDIX 2

PHOTOGRAPHS OF EUT

Page 52 of 64

BACK VIEW OF SAMPLE

LEFT VIEW OF SAMPLE

RIGHT VIEW OF SAMPLE

Page 54 of 64

BOTTOM VIEW OF SAMPLE

TOP VIEW OF SAMPLE

Report No.: STS120308F3

PHOTO OF USB LINE

PHOTO OF EARPHONE

Page 56 of 64

PHOTO OF POWER SUPPLY

PHOTO OF BATTERY

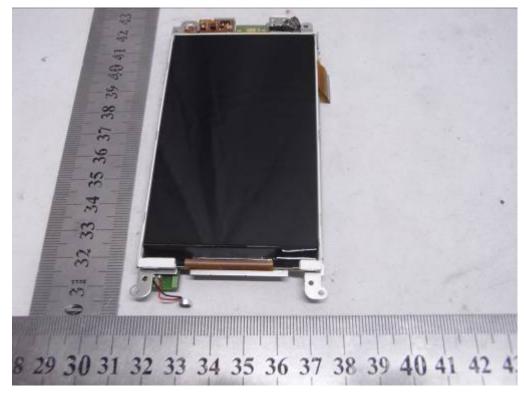


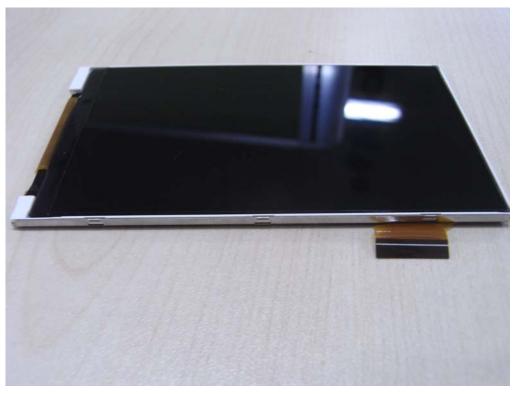
PHOTO OF THE ENTIRE SAMPLE

INTERNAL PHOTO OF SAMPLE - 1

Page 58 of 64

INTERNAL PHOTO OF SAMPLE -2

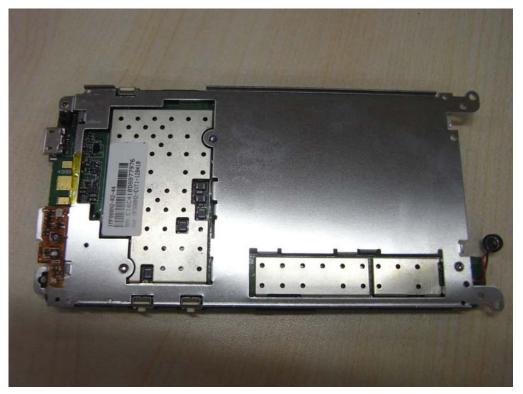
INTERNAL PHOTO OF SAMPLE -3



Page 59 of 64

INTERNAL PHOTO OF SAMPLE -4

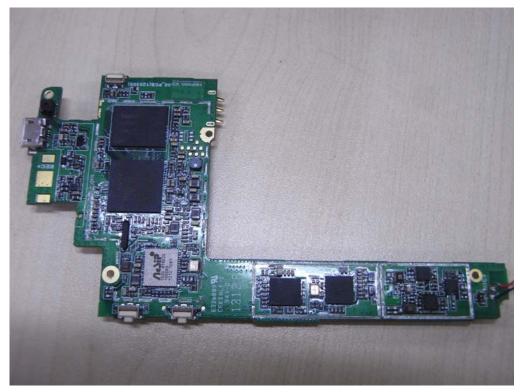
INTERNAL PHOTO OF SAMPLE -5



Page 60 of 64

INTERNAL PHOTO OF SAMPLE -6

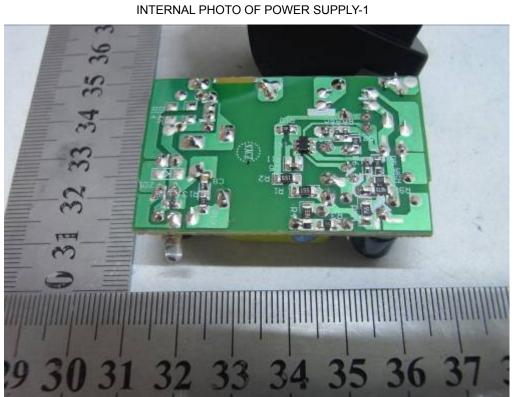
INTERNAL PHOTO OF SAMPLE -7



INTERNAL PHOTO OF SAMPLE -8

INTERNAL PHOTO OF SAMPLE -9


INTERNAL PHOTO OF SAMPLE -10



INTERNAL PHOTO OF SAMPLE -11

-----END OF REPORT-----

