

#### **Maximum Permissible Exposure (MPE)** 1

#### 1.1 **Standard Applicable**

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

This is a Mobile device, the MPE is required.

According to §1.1310 and §2.1093 RF exposure is calculated.

Limits for Maximum Permissive Exposure (MPE)

| Frequency Range | Electric Field                                      | Magnetic Field | Power Density          | Averaging Time |  |
|-----------------|-----------------------------------------------------|----------------|------------------------|----------------|--|
| (MHz)           | Strength (V/m)                                      | Strength (A/m) | $(mW/cm^2)$            | (minute)       |  |
|                 | Limits for General Population/Uncontrolled Exposure |                |                        |                |  |
| 0.3-1.34        | 614                                                 | 1.63           | *(100)                 | 30             |  |
| 1.34-30         | 824/f                                               | 2.19/f         | *(180/f <sup>2</sup> ) | 30             |  |
| 30-300          | 27.5                                                | 0.073          | 0.2                    | 30             |  |
| 300-1500        | /                                                   | /              | F/1500                 | 30             |  |
| 1500-15000      | /                                                   | /              | 1.0                    | 30             |  |

F = frequency in MHz

Report Number: ISL-11LR078FC-MA

<sup>\* =</sup> Plane-wave equipment power density



# 1.2 Maximum Permissible Exposure (MPE) Evaluation

802.11b

| Cable loss = 0 Output Power |           | Power    | limit |         |
|-----------------------------|-----------|----------|-------|---------|
| СН                          | Frequency | Detector |       | 1111111 |
|                             | (MHz)     | PK       | AV    | (dDm)   |
|                             |           | (dBm)    | (dBm) | (dBm)   |
| 1                           | 2412      | 15.27    | 12.57 | 25      |
| 6                           | 2437      | 15.14    | 12.87 | 25      |
| 11                          | 2462      | 15.54    | 12.18 | 25      |

## MPE Prediction (802.11b)

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S=PG/4 \pi R^2$ 

Where: S = Power density

P = Power input to antenna

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

R = Distance to the center of radiation of the antenna

| Maximum peak output power at antenna input terminal: | 15.54       | (dBm)     |
|------------------------------------------------------|-------------|-----------|
| Maximum peak output power at antenna input terminal: | 35.80964371 | (mW)      |
| Duty cycle:                                          | 100         | (%)       |
| Maximum Pav :                                        | 35.80964371 | (mW)      |
| Antenna gain (typical):                              | 10.76       | (dBi)     |
| Maximum antenna gain:                                | 11.91242008 | (numeric) |
| Prediction distance:                                 | 20          | (cm)      |
| Prediction frequency:                                | 2462        | (MHz)     |
|                                                      |             |           |
| MPE limit for uncontrolled exposure at prediction    | 1           | (mW/cm2)  |
| Power density at predication frequency at 20 (cm)    | 0.0849083   | (mW/cm^2) |

#### **Measurement Result**

The predicted power density level at 20 cm is 0.084908 mW/cm<sup>2</sup>. This is below the uncontrolled exposure limit of 1 mW/cm<sup>2</sup> at 2462MHz.

International Standards Laboratory Report Number: ISL-11LR078FC-MA



802.11g

| Cable loss = 0 |           | Output Power |       | limit  |
|----------------|-----------|--------------|-------|--------|
| СН             | Frequency | Detector     |       | IIIIII |
|                | (MHz)     | PK           | AV    | (dDm)  |
|                |           | (dBm)        | (dBm) | (dBm)  |
| 1              | 2412      | 17.48        | 7.54  | 25     |
| 6              | 2437      | 17.85        | 8.01  | 25     |
| 11             | 2462      | 18.41        | 8.66  | 25     |

## MPE Prediction (802.11g)

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S=PG/4 \pi R^2$ 

Where: S = Power density

P = Power input to antenna

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

R = Distance to the center of radiation of the antenna

| Maximum peak output power at antenna input terminal: | 18.41       | (dBm)     |
|------------------------------------------------------|-------------|-----------|
| Maximum peak output power at antenna input terminal: | 69.3425806  | (mW)      |
| Duty cycle:                                          | 100         | (%)       |
| Maximum Pav :                                        | 69.3425806  | (mW)      |
| Antenna gain (typical):                              | 10.76       | (dBi)     |
| Maximum antenna gain:                                | 11.91242008 | (numeric) |
| Prediction distance:                                 | 20          | (cm)      |
| Prediction frequency:                                | 2462        | (MHz)     |
|                                                      |             |           |
| MPE limit for uncontrolled exposure at prediction    | 1           | (mW/cm2)  |
| Power density at predication frequency at 20 (cm)    | 0.1644184   | (mW/cm^2) |

### **Measurement Result**

The predicted power density level at 20 cm is 0.164418 mW/cm2. This is below the uncontrolled exposure limit of 1 mW/cm2 at 2462.



802.11N 20MHz

| Cable loss = 0 |           | Output Power |       | 1::4  |
|----------------|-----------|--------------|-------|-------|
| СН             | Frequency | Detector     |       | limit |
|                | (MHz)     | PK           | AV    | (dDm) |
|                |           | (dBm)        | (dBm) | (dBm) |
| 1              | 2412      | 17.06        | 7.70  | 25    |
| 6              | 2437      | 17.40        | 8.16  | 25    |
| 11             | 2462      | 17.97        | 8.82  | 25    |

## MPE Prediction (802.11n(2.4GHz) 20M)

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S=PG/4 \pi R^2$ 

Where: S = Power density

P = Power input to antenna

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

R = Distance to the center of radiation of the antenna

| Maximum peak output power at antenna input terminal: | 17.97       | (dBm)     |
|------------------------------------------------------|-------------|-----------|
| Maximum peak output power at antenna input terminal: | 62.66138647 | (mW)      |
| Duty cycle:                                          | 100         | (%)       |
| Maximum Pav :                                        | 62.66138647 | (mW)      |
| Antenna gain (typical):                              | 10.76       | (dBi)     |
| Maximum antenna gain:                                | 11.91242008 | (numeric) |
| Prediction distance:                                 | 20          | (cm)      |
| Prediction frequency:                                | 2462        | (MHz)     |
|                                                      |             |           |
| MPE limit for uncontrolled exposure at prediction    | 1           | (mW/cm2)  |
| Power density at predication frequency at 20 (cm)    | 0.1485766   | (mW/cm^2) |

### **Measurement Result**

The predicted power density level at 20 cm is 0.148577 mW/cm2. This is below the uncontrolled exposure limit of 1 mW/cm2 at 2462.



802.11N 40MHz

| Cable loss = 0 |           | Output Power |       | limit   |
|----------------|-----------|--------------|-------|---------|
| СН             | Frequency | Detector     |       | 1111111 |
|                | (MHz)     | PK           | AV    | (dDm)   |
|                |           | (dBm)        | (dBm) | (dBm)   |
| 3              | 2422      | 17.40        | 7.50  | 25      |
| 6              | 2437      | 17.53        | 7.79  | 25      |
| 9              | 2452      | 17.84        | 8.12  | 25      |

## MPE Prediction (802.11n(2.4GHz) 40M)

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S=PG/4 \pi R^2$ 

Where: S = Power density

P = Power input to antenna

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

R = Distance to the center of radiation of the antenna

| Maximum peak output power at antenna input terminal: | 17.84       | (dBm)     |
|------------------------------------------------------|-------------|-----------|
| Maximum peak output power at antenna input terminal: | 60.81350013 | (mW)      |
| Duty cycle:                                          | 100         | (%)       |
| Maximum Pav :                                        | 60.81350013 | (mW)      |
| Antenna gain (typical):                              | 10.76       | (dBi)     |
| Maximum antenna gain:                                | 11.91242008 | (numeric) |
| Prediction distance:                                 | 20          | (cm)      |
| Prediction frequency:                                | 2452        | (MHz)     |
|                                                      |             |           |
| MPE limit for uncontrolled exposure at prediction    | 1           | (mW/cm2)  |
| Power density at predication frequency at 20 (cm)    | 0.1441951   | (mW/cm^2) |

### **Measurement Result**

The predicted power density level at 20 cm is 0144195 mW/cm2. This is below the uncontrolled exposure limit of 1 mW/cm2 at 2452.