

FCC Test Report

Equipment	:	ProSeries High Power AC1750 Wi-Fi Access Poin / Router / Range Extender / Bridge			
Brand Name	:	Amped Wireless			
Model No.	:	APR175P / REB175P			
FCC ID	:	ZTT-APR175P			
Standard	:	47 CFR FCC Part 15.247			
Operating Band	:	5725 MHz – 5850 MHz			
Equipment Class	:	DTS			
Applicant	:	Amped Wireless 13089 Peyton Dr. #C307, Chino Hills CA 91709			
Manufacturer	:	EDIMAX TECHNOLOGY CO., LTD. No.3,Wu-Chuan 3rd Road,Wu-Ku Industrial Park, New Taipei City, Taiwan			

The product sample received on Feb. 11, 2014 and completely tested on Sep. 25, 2014. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Vic Hsiao / Supervisor

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories And Support Equipment	8
1.3	Testing Applied Standards	8
1.4	Testing Location Information	9
1.5	Measurement Uncertainty	10
2	TEST CONFIGURATION OF EUT	11
2.1	The Worst Case Modulation Configuration	11
2.2	The Worst Case Power Setting Parameter	11
2.3	The Worst Case Measurement Configuration	12
2.4	Test Setup Diagram	13
3	TRANSMITTER TEST RESULT	15
3.1	AC Power-line Conducted Emissions	15
3.2	6dB Bandwidth	18
3.3	RF Output Power	20
3.4	Power Spectral Density	24
3.5	Transmitter Bandedge Emissions	26
3.6	Transmitter Unwanted Emissions	29
4	TEST EQUIPMENT AND CALIBRATION DATA	62

APPENDIX A. TEST PHOTOS

APPENDIX B. PHOTOGRAPHS OF EUT

Summary of Test Result

	Conformance Test Specifications							
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result			
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied			
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]: 16.211 MHz 40.35 (Margin 9.65dB) - AV 42.12 (Margin 17.88dB) - QP	FCC 15.207	Complied			
3.2	15.247(a)	Bandwidth	6dB Bandwidth [MHz] a:16.44 n(HT20):17.67 n(HT40):36.28 ac(VHT20):17.58 ac(VHT40):36.32 ac(VHT80): 73.60	≥500kHz	Complied			
3.3	15.247(b)	RF Output Power (Maximum Peak Conducted Output Power)	Power [dBm]:29.84	Power [dBm]:30	Complied			
3.4	15.247(d)	Power Spectral Density	PSD [dBm/100kHz]: -4.27	PSD [dBm/MHz]:17 replace 8dBm/3kHz	Complied			
3.5	15.247(c)	Transmitter Bandedge Emissions	Non-Restricted Bands: 5720.91MHz: 22.49 dB	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied			
3.6	15.247(c)	Transmitter Radiated Unwanted Emissions	Restricted Bands [dBuV/m at 3m]: 11490MHz 64.18 (Margin 9.82dB) - PK 52.93 (Margin 1.07dB) - AV	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied			

Revision History

Report No.	Version	Description	Issued Date
FR411403-07AI	Rev. 01	Initial issue of report	Nov. 19, 2014
FR411403-07AI	Rev. 02	Update RF Conducted	Dec. 22, 2014

1 General Description

1.1 Information

1.1.1 RF General Information

RF General Information						
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (Ν _{Tx})	RF Output Power (dBm)	Co-location
5725-5850	а	5745-5825	149-165 [5]	1	28.93	Yes
5725-5850	n(HT20)	5745-5825	149-165 [5]	3	29.44	Yes
5725-5850	n(HT40)	5755-5795	151-159 [2]	3	29.84	Yes
5725-5850	ac(VHT20)	5745-5825	149-165 [5]	3	29.71	Yes
5725-5850	ac(VHT40)	5755-5795	151-159 [2]	3	29.78	Yes
5725-5850	ac(VHT80)	5775	155 [1]	3	29.77	Yes
Note 1: RE out	nut nower sneci	fies that Maxim	um Peak Cond	ucted Output Pr	wer	

Note 1: RF output power specifies that Maximum Peak Conducted Output Power.

Note 2: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

Note 3: 802.11ac uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM modulation. Note 4: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting) antennas within 20 cm of each other. (i.e., EUT has simultaneously co-transmitting that operating 2.4GHz and 5GHz.)

1.1.2 Antenna Information

	Antenna Category					
	Integral antenna (antenna permanently attached)					
	Temporary RF connector provided					
	No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.					
\square	External antenna (dedicated antennas)					
	Single power level with corresponding antenna(s).					
	Multiple power level and corresponding antenna(s).					

	Antenna General Information						
No.	Ant. Cat.	Ant. Type	Gain _(dBi)				
1	1 2.58						
2	External	DIPOLE	2.58				
3			2.58				
Remark: 1. 802.11a only include 1TX and Port1 for emission. 2. 802.11n/ac only include 3TX and CDD function.							

1.1.3 Type of EUT

	Identify EUT					
EUT	Serial Number	N/A				
Pres	sentation of Equipment	Production ; Pre-Production ; Prototype				
	Type of EUT					
\boxtimes	Stand-alone					
	Combined (EUT where the radio part is fully integrated within another device)					
	Combined Equipment - Brand Name / Model No.:					
	Plug-in radio (EUT intended for a variety of host systems)					
	Host System - Brand Name / Model No.:					
	Other:					

1.1.4 Test Signal Duty Cycle

Operated Mode for Worst Duty Cycle						
Operated normally mode for worst duty cyc	Operated normally mode for worst duty cycle					
Operated test mode for worst duty cycle						
Test Signal Duty Cycle (x)NTXPower Duty Factor [dB] – (10 log 1/x)						
⊠ 100.00% - IEEE 802.11a	1	0.00				
☑ 100.00% - IEEE 802.11n (HT20) 3 0.00						
☑ 100.00% - IEEE 802.11n (HT40) 3 0.00						
☑ 100.00% - IEEE 802.11ac (VHT20) 3 0.00						
☑ 100.00% - IEEE 802.11ac (VHT40) 3 0.00						
☑ 100.00% - IEEE 802.11ac (VHT80)	3	0.00				

1.1.5 EUT Operational Condition

Supply Voltage	AC mains	DC	System
Type of DC Source	Internal DC supply	External DC from PoE	External DC adapter

1.2 Accessories And Support Equipment

Accessories					
	Brand Name	APD	Model Name	WA30B12	
AC Adapter 1	Power Rating	I/P: 100-240Vac 0.8A ; O/P: 12V 2.5A			
	Power cord	1.8m, non-shielded cable, w/o ferrite core			
	Brand Name	APD	Model Name	DA-48T12	
AC Adapter 2	Power Rating	I/P: 100-240Vac 1.2A ; O/P: 12V 4A			
AC Adapter 2	Power Cord	AC: 1.4m, non-shielded cable, w/o ferrite core DC: 1.5m, non-shielded cable, with one ferrite core			

Note: Regarding to more detail and other information, please refer to user manual.

	Support Equipment - AC Conduction and Radiated Emission						
Remo	Remote						
No.	Equipment	Brand Name	Model Name	FCC ID			
1	PoE	Acelink	PI-1000PT	DoC			

	Support Equipment - RF Conducted							
No.	No. Equipment Brand Name Model Name FCC ID							
1	1 Notebook Dell E5520 -							

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 558074
- FCC KDB 789033
- FCC KDB 644545 D01
- FCC KDB 644545 D02
- FCC KDB 662911

1.4 Testing Location Information

	Testing Location								
	HWA YA ADD : No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.								
	TEL : 886-3-327-3456 FAX : 886-3-327-0973								
	Test Condition Test Site No. Test Engineer Test Environment								
	AC Condu	ction	CO04-HY	Zeus	25°C / 43%				
	RF Condu	icted	TH01-HY	Candy	24.2°C / 63%				
	Radiated Emission (Below 1GHz)		03CH03-HY	Allen	24.5°C / 54%				
	Radiated En (Above 10		03CH03-HY	Leo	24.4°C / 53%				

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

IV	leasurement Uncertainty	
Test Item		Uncertainty
AC power-line conducted emissions		±2.2 dB
Emission bandwidth, 6dB bandwidth		±1.4 %
RF output power, conducted	±0.6 dB	
Power density, conducted		±0.8 dB
Unwanted emissions, conducted	9 – 150 kHz	±0.3 dB
	0.15 – 30 MHz	±0.4 dB
	30 – 1000 MHz	±0.5 dB
	1 – 18 GHz	±0.6 dB
	18 – 40 GHz	±0.8 dB
	40 – 200 GHz	N/A
All emissions, radiated	9 – 150 kHz	±2.4 dB
	0.15 – 30 MHz	±2.2 dB
	30 – 1000 MHz	±2.5 dB
	1 – 18 GHz	±3.5 dB
	18 – 40 GHz	±3.8 dB
	40 – 200 GHz	N/A
Temperature		±0.8 °C
Humidity		±3 %
DC and low frequency voltages		±3 %
Time		±1.4 %
Duty Cycle		±1.4 %

2 Test Configuration of EUT

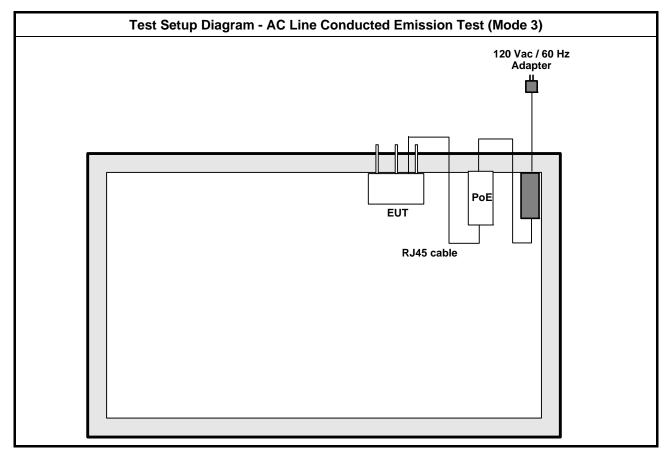
2.1 The Worst Case Modulation Configuration

	Worst Modulation Used for Conformance Testing								
Modulation Mode Transmit Chains (N _{TX}) Data Rate / MCS Worst Data Rate / M									
11a	1	6-54Mbps	6 Mbps						
HT20	3	MCS 0-23	MCS 0						
HT40	3	MCS 0-23	MCS 0						
VHT20	3	MCS 0-8	MCS 0						
VHT40	3	MCS 0-9	MCS 0						
VHT80	3	MCS 0-9	MCS 0						

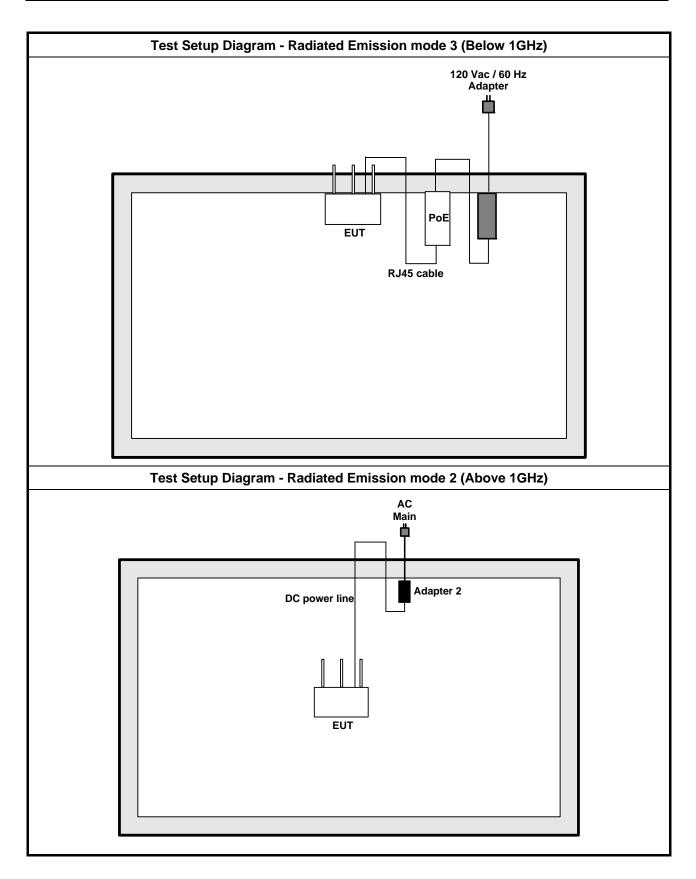
2.2 The Worst Case Power Setting Parameter

The \	The Worst Case Power Setting Parameter (5725-5850MHz band)									
Test Software		DOS								
		Test Frequency (MHz)								
Modulation Mode	Ντχ	NCB: 20MHz			NCB:	40MHz	NCB: 80MHz			
		5745	5785	5825	5755	5795	5775			
11a	1	28	28	29	-	-	-			
HT20	3	18	17.5	17	-	-	-			
HT40	3	-	-	-	17.5	17	-			
VHT20	3	18	17	16.5	-	-	-			
VHT40	3	-	-	-	17.5	17	-			
VHT80	3	-	-	-	-	-	17			

2.3 The Worst Case Measurement Configuration


Th	e Worst Case Mode for Following Conformance Tests
Tests Item	AC power-line conducted emissions
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz
Operating Mode	Operating Mode Description
1	EUT with adatper 1 (Model Name:WA30B12)
2	EUT with adatper 2 (Model Name:DA-48T12)
3	EUT with PoE
Operating mode 3 was the	worst case and it was recorded in this test report.

Th	The Worst Case Mode for Following Conformance Tests				
Tests Item	RF Output Power, Power Spectral Density, 6 dB Bandwidth				
Test Condition	Conducted measurement at transmit chains				
Modulation Mode	11a, HT20, HT40, VHT20, VHT40, VHT80				


Th	e Worst Case Mode for Following Cont	formance Tests			
Tests Item	Transmitter Radiated Unwanted Emissions Transmitter Radiated Bandedge Emissions				
Test Condition	Radiated measurement				
	EUT will be placed in fixed position.				
User Position	EUT will be placed in mobile position shall be performed two orthogonal p	n and operating multiple positions. EUT blanes. The worst plane is Z.			
	EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed three orthogonal planes.				
	1. EUT with adatper 1 (Model Name:WA30B12)				
Operating Made (104)	2. EUT with adatper 2 (Model Name:DA-48T12)				
Operating Mode < 1GHz	3. EUT with PoE				
	Operating mode 3 was the worst case and it was recorded in this test report.				
Operating Mode > 1GHz	2. EUT with adapter 2 (Model Name:DA-48T12)				
Modulation Mode	11a, HT20, HT40, VHT20, VHT40, VHT8	30			
	X Plane	Z Plane			
Orthogonal Planes of EUT					

2.4 Test Setup Diagram

Transmitter Test Result 3

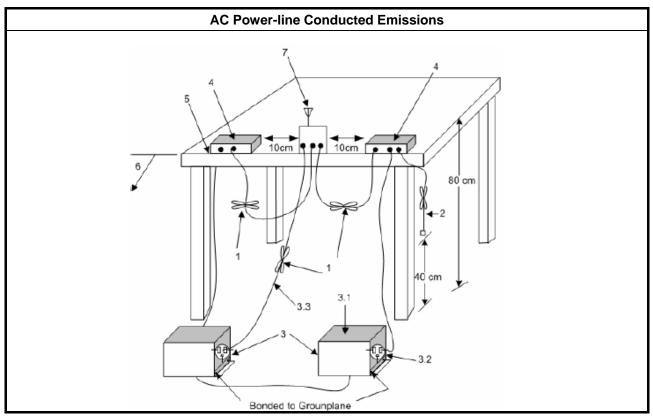
3.1 **AC Power-line Conducted Emissions**

3.1.1 **AC Power-line Conducted Emissions Limit**

AC Power-line Conducted Emissions Limit						
Frequency Emission (MHz)	Quasi-Peak	Average				
0.15-0.5	66 - 56 *	56 - 46 *				
0.5-5	56	46				
5-30	60	50				
Note 1: * Decreases with the logarithn	n of the frequency.					

creases with the logarithm of the frequency

3.1.2 Measuring Instruments

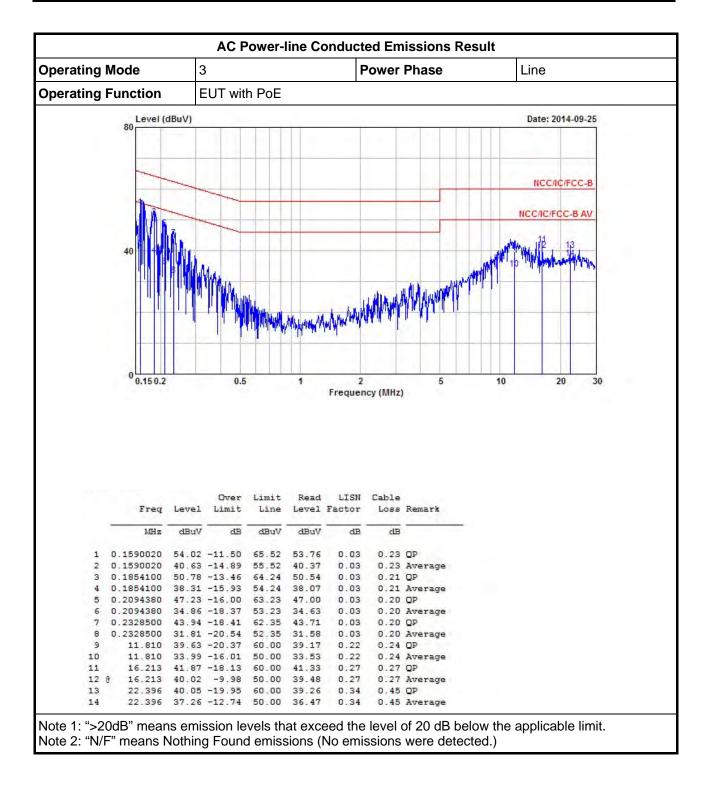

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method

Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup



erating Mode	3		F	Power	Phase		Neutra	al
erating Function	EUT with	EUT with PoE						
Level (dBu	V)			Date: 2014-09-				2014-09-25
80								
							NCC/	IC/FCC-B
lh								
							NCC/IC/F	CC-B AV
11.1								
	u E						Rober All	46
40	Mar Man					M	WALA	But
	L'ANALINA -				da da da	ALC: NO		and water
		Avia de la com		d is made	tiller -	. JW		
			M/M/W	VININ	White date	11		
		· · · ·	A A to	16 X 1	Lull also beach			
0 0.15 0.2	0.5	1	2 Frequer		5	10		20 30
0 0.15 0.2	0.5	1		ncy (MHz)		10		20 30
0 0.15 0.2	0.5	1				10		20 30
0 0.15 0.2	0.5	1				10		20 30
0 0.15 0.2	0.5	1				10		20 30
0 0.15 0.2	0.5	1				10		20 30
0 0.15 0.2	0.5	1				10		20 30
0 0.15 0.2			Frequer	ncy (MHz)		10		20 30
	Over	Limit Read	Frequer	ncy (MHz) Cable		10		20 30
0 0.150.2 Freq L	Over	Limit Read	Frequer	ncy (MHz) Cable		10		20 30
Freq La	Over	Limit Read	Frequer LISN Factor	ncy (MHz) Cable		10		20 30
Freq La	Over Evel Limit BuV dB	Limit Read Line Level dBuV dBuV	Frequer LISN Factor dB	Cable Loss	Remark	10		20 30
Freq La MHz	Over vel Limit BuV dB	Limit Read Line Level dBuV dBuV 65.30 54.86	Frequer LISN Factor dB 0.02	Cable Loss dB 0.23	Remark	10		20 30
Freq Lo MHz 0 1 0.1632710 55 2 0.1632710 43 3 0.1844300 55	Over Limit BuV dB .11 -10.19 .97 -11.33 .23 -12.05	Limit Read Line Level dBuV dBuV 65.30 54.86 55.30 43.72 64.28 52.00	Frequer LISN Factor dB 0.02 0.02 0.02	Cable Loss dB 0.23 0.23 0.21	Remark OP Average OP	10		20 30
Freq La MHz o 1 0.1632710 54 2 0.1632710 44 3 0.1844300 55 4 0.1844300 43	Over Limit BuV dB 0.11 -10.19 0.97 -11.33 0.23 -12.05 0.71 -12.57	Limit Read Line Level dBuV dBuV 65.30 54.86 55.30 43.72 64.28 52.00 54.28 41.48	Frequer LISN Factor dB 0.02 0.02 0.02 0.02	Cable Loss dB 0.23 0.23 0.21 0.21	Remark OP Average OP Average	10		20 30
Freq L4 MHz d 1 0.1632710 54 2 0.1632710 43 3 0.1844300 43 4 0.1844300 43 5 0.2083320 44	Over Limit BuV dB 	Limit Read Line Level dBuV dBuV 65.30 54.86 55.30 43.72 64.28 53.00 54.28 41.48 63.27 48.77	Frequer LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.02	Cable Loss dB 0.23 0.21 0.21 0.21	Remark OP Average OP Average OP	10		20 30
Freq La MHz o 1 0.1632710 55 2 0.1632710 45 3 0.1844300 55 4 0.1844300 45 5 0.2083320 44 6 0.2083320 35	Over Limit BuV dB .11 -10.19 .97 -11.33 .23 -12.05 .71 -12.57 .99 -14.28 .26 -14.01	Limit Read Line Level dBuV dBuV 65.30 54.86 55.30 43.72 64.28 53.00 54.28 41.48 63.27 48.77	Frequer LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	Cable Loss dB 0.23 0.21 0.21 0.20 0.20	Remark OP Average OP Average	10		20 30
Freq La MHz of 2 0.1632710 43 3 0.1844300 43 4 0.1844300 44 5 0.2083320 44 6 0.2083320 33	Over Limit BuV dB .11 -10.19 .97 -11.33 .23 -12.05 .71 -12.57 .99 -14.28 .26 -14.01 .50 -15.94	Limit Read Line Level dBuV dBuV 65.30 54.86 55.30 43.72 64.28 52.00 54.28 41.48 63.27 48.77 53.27 39.04 52.44 36.28	Frequer LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	Cable Loss dB 0.23 0.21 0.21 0.20 0.20	Remark OP Average OP Average OP Average Average	10		20 30
Freq La MHz (1 0.1632710 53 2 0.1632710 43 3 0.1844300 55 4 0.1844300 45 5 0.2083320 44 6 0.2083320 33 7 0.2303960 44 9 11.500 33	Over Limit BuV dB .11 -10.19 .97 -11.33 .23 -12.05 .71 -12.57 .99 -14.28 .26 -14.01 .50 -15.94 .27 -16.17 .68 -16.32	Limit Read Line Level dBuV dBuV 65.30 54.86 55.30 43.72 64.28 52.00 54.28 41.48 63.27 48.77 53.27 48.77 53.27 39.04 52.44 36.28 62.44 46.05 50.00 33.23	Frequer LISN Factor dB 0.02 0.0	Cable Loss dB 0.23 0.21 0.21 0.20 0.20 0.20 0.20 0.20 0.20	Remark OP Average OP Average Average OP Average OP Average	10		20 30
Freq La MHz d 1 0.1632710 55 2 0.1632710 43 3 0.1844300 55 4 0.1844300 43 5 0.2083320 44 6 0.2083320 34 7 0.2303960 34 8 0.2303960 34 9 11.500 33 10 11.500 33	Over Limit BuV dB .11 -10.19 .97 -11.33 .23 -12.05 .71 -12.57 .99 -14.28 .26 -14.01 .50 -15.94 .27 -16.17 .68 -16.32 .73 -20.27	Limit Read Line Level dBuV dBuV 65.30 54.86 55.30 43.72 64.28 52.00 54.28 41.48 63.27 48.77 53.27 39.04 52.44 36.28 62.44 46.05 50.00 33.23 60.00 39.28	Frequer LISN Factor dB 0.02 0.22 0.02 0.22 0.02 0.2	Cable Loss dB 0.23 0.21 0.21 0.20 0.20 0.20 0.20 0.20 0.20	Remark OP Average OP Average Average OP Average OP Average OP	10		20 30
Freq L4 MHz d 1 0.1632710 54 2 0.1632710 44 3 0.1844300 55 4 0.1844300 45 5 0.2083320 44 6 0.2083320 34 6 0.2083320 34 7 0.2303960 34 9 11.500 35 10 11.500 35 11 16.211 45	Over Limit BuV dB 	Limit Read Line Level dBuV dBuV 65.30 54.86 55.30 43.72 64.28 41.48 63.27 48.77 53.27 39.04 52.44 36.28 62.44 36.28 62.44 46.05 50.00 33.23 60.00 39.28 60.00 41.57	Frequer LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	Cable Loss dB 0.23 0.23 0.21 0.21 0.20 0.20 0.20 0.20 0.20 0.23 0.23 0.23	Remark OP Average OP Average OP Average OP Average OP OP	10		20 30
Freq L4 MHz c 1 0.1632710 54 2 0.1632710 43 3 0.1844300 53 4 0.1844300 44 5 0.2083320 44 6 0.2083320 34 7 0.2303960 33 8 0.2303960 44 9 11.500 33 10 11.500 34 11 16.211 44 12 8 16.211 44	Over Limit BuV dB .11 -10.19 .97 -11.33 .23 -12.05 .71 -12.57 .99 -14.28 .26 -14.01 .50 -15.94 .27 -16.17 .68 -16.32 .73 -20.27 .12 -17.88 .35 -9.65	Limit Read Line Level dBuV dBuV 65.30 54.86 55.30 43.72 64.28 52.00 54.28 41.48 63.27 48.77 53.27 39.04 52.44 36.28 62.44 46.05 50.00 33.23 60.00 39.28 60.00 41.57 50.00 39.80	Frequer LISN Factor dB 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	Cable Loss 0.23 0.23 0.21 0.20 0.20 0.20 0.20 0.20 0.23 0.23 0.27 0.27	Remark OP Average OP Average OP Average OP Average OP Average OP Average	10		20 30
Freq La MHz a 1 0.1632710 55 2 0.1632710 45 2 0.1632710 45 3 0.1844300 45 4 0.1844300 45 5 0.2083320 45 5 0.2083320 36 8 0.2303960 36 8 0.2303960 46 9 11.500 35 10 11.500 35 11 16.211 45 12 0 16.211 45 12 0 16.211 45 13 23.033 35	Over Limit BuV dB .11 -10.19 .97 -11.33 .23 -12.05 .71 -12.57 .99 -14.28 .26 -14.01 .50 -15.94 .27 -16.17 .68 -16.32 .73 -20.27 .12 -17.88 .35 -9.65 .75 -14.25	Limit Read Line Level dBuV dBuV 65.30 54.86 55.30 43.72 64.28 52.00 54.28 41.48 63.27 48.77 53.27 39.04 52.44 36.28 62.44 46.05 50.00 33.23 60.00 39.28 60.00 41.57 50.00 39.80	Frequer Factor dB 0.02 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.36 0.28 0.36 0.28 0.36 0.36 0.28 0.36 0.3	Cable Loss 0.23 0.23 0.21 0.20 0.20 0.20 0.20 0.20 0.23 0.23 0.27 0.27	Remark OP Average OP Average OP Average OP Average OP Average OP Average OP	10		20 30

3.1.5 Test Result of AC Power-line Conducted Emissions

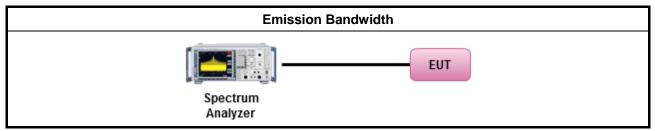
3.2 6dB Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit

Systems using digital modulation techniques:

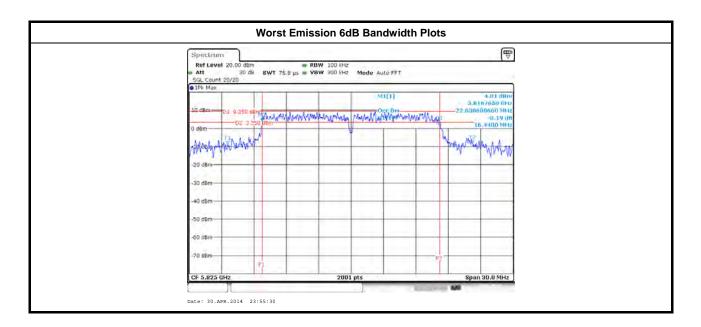
 \boxtimes 6 dB bandwidth ≥ 500 kHz.


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

		Test Method
\square	For	the emission bandwidth shall be measured using one of the options below:
	\square	Refer as FCC KDB 558074, clause 8.1 Option 1 for 6 dB bandwidth measurement.
		Refer as FCC KDB 558074, clause 8.2 Option 2 for 6 dB bandwidth measurement.
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.
\boxtimes	For	conducted measurement.
	\square	The EUT supports single transmit chain and measurements performed on this transmit chain1.
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.
	\square	The EUT supports multiple transmit chains using options given below:
		Option 1: Multiple transmit chains measurements need to be performed on one of the active transmit chains (antenna outputs). All measurement had be performed on transmit chains 1.
		Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.


3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

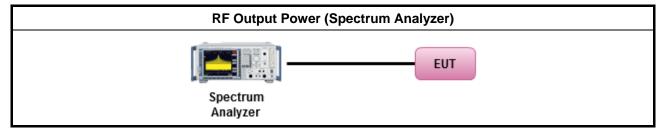
			Emi	ssion Bandwid	th Result				
Condit	ion		Emission Bandwidth (MHz)						
		Freq.	99% Bandwidth			6dB Bandwidth			
Modulation Mode	IN _{TX}	(MHz)	Chain Port 1	Chain Port 2	Chain Port 3	Chain Port 1	Chain Port 2	Chain Port	
11a	1	5745	20.73	-	-	16.47	-	-	
11a	1	5785	20.41	-	-	16.48	-	-	
11a	1	5825	22.63	-	-	16.44	-	-	
HT20	3	5745	17.63	17.61	17.69	17.67	17.67	17.70	
HT20	3	5785	17.66	17.67	17.61	17.76	17.79	17.70	
HT20	3	5825	17.66	17.66	17.64	17.74	17.67	17.71	
HT40	3	5755	36.22	36.10	36.18	36.28	36.36	36.36	
HT40	3	5795	36.18	36.18	36.22	36.44	36.36	36.40	
VHT20	3	5745	17.63	17.64	17.66	17.68	17.58	17.65	
VHT20	3	5785	17.64	17.61	17.67	17.70	17.65	17.73	
VHT20	3	5825	17.73	17.61	17.63	17.77	17.62	17.70	
VHT40	3	5755	36.22	36.18	36.22	36.52	36.32	36.44	
VHT40	3	5795	36.22	36.18	36.18	36.48	36.36	36.36	
VHT80	3	5775	75.40	75.32	75.40	73.60	75.76	76.00	
Limi	t	-		N/A ≥500 kHz					
Resu	lt				Com	plied			

3.3 RF Output Power

3.3.1 RF Output Power Limit

	RF Output Power Limit							
Max	Maximum Peak Conducted Output Power or Maximum Conducted Output Power Limit							
\boxtimes	⊠ 5725-5850 MHz Band:							
	☐ If $G_{TX} \le 6$ dBi, then $P_{Out} \le 30$ dBm (1 W)							
	Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm							
		Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30$ dBm						
e.i.r.p. Power Limit:								
⊠ 5725-5850 MHz Band								
	Point-to-multipoint systems (P2M): $P_{eirp} \le 36 \text{ dBm} (4 \text{ W})$							
		Point-to-point systems (P2P): N/A						
G _{TX}	P_{out} = maximum peak conducted output power or maximum conducted output power in dBm, G_{TX} = the maximum transmitting antenna directional gain in dBi. P_{eirp} = e.i.r.p. Power in dBm.							

3.3.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

		Test Method
\boxtimes	Мах	imum Peak Conducted Output Power
	\boxtimes	Refer as FCC KDB 558074, clause 9.1.1 Option 1 (RBW \ge EBW method).
		Refer as FCC KDB 558074, clause 9.1.3 Option 2 (peak power meter for VBW ≥ DTS BW)
\boxtimes	Мах	imum Conducted Output Power
	[dut	y cycle ≥ 98% or external video / power trigger]
	\boxtimes	Refer as FCC KDB 558074, clause 9.2.2.2 Method AVGSA-1 (spectral trace averaging).
		Refer as FCC KDB 558074, clause 9.2.2.3 Method AVGSA-1 Alt. (slow sweep speed)
	duty	cycle < 98% and average over on/off periods with duty factor
		Refer as FCC KDB 558074, clause 9.2.2.4 Method AVGSA-2 (spectral trace averaging).
		Refer as FCC KDB 558074, clause 9.2.2.5 Method AVGSA-2 Alt. (slow sweep speed)
	RF	power meter and average over on/off periods with duty factor or gated trigger
		Refer as FCC KDB 558074, clause 9.2.3 Method AVGPM (using an RF average power meter).
\boxtimes	For	conducted measurement.
	\boxtimes	The EUT supports single transmit chain and measurements performed on this transmit chain1.
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.
	\boxtimes	The EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
	\boxtimes	If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG

3.3.4 Test Setup

3.3.5 Test Result of Maximum Peak Conducted Output Power	3.3.5	Test Result of Maximum Peak Conducted Output Power
--	-------	--

Maximum Peak Conducted Output Power Result											
Condi	tion		RF Output Power (dBm)								
		Frog	RF Output Power (dBm)			Power	Ant noin	EIRP	EIRP		
Modulation Mode	Ντχ	Freq. (MHz)	Chain Port 1	Chain Port 2	Chain Port 3	Sum Chain	Limit	Ant. gain (dBi)	Power	Limit	
11a	1	5745	28.71	-	-	28.71	30.00	2.58	31.29	36.00	
11a	1	5785	28.93	-	-	28.93	30.00	2.58	31.51	36.00	
11a	1	5825	28.55	-	-	28.55	30.00	2.58	31.13	36.00	
HT20	3	5745	24.50	24.70	24.80	29.44	30.00	2.58	32.02	36.00	
HT20	3	5785	24.15	24.53	24.26	29.09	30.00	2.58	31.67	36.00	
HT20	3	5825	23.23	23.50	23.71	28.26	30.00	2.58	30.84	36.00	
HT40	3	5755	25.10	25.02	25.10	29.84	30.00	2.58	32.42	36.00	
HT40	3	5795	24.72	24.31	25.01	29.46	30.00	2.58	32.04	36.00	
VHT20	3	5745	24.95	25.12	24.73	29.71	30.00	2.58	32.29	36.00	
VHT20	3	5785	23.87	24.07	24.23	28.83	30.00	2.58	31.41	36.00	
VHT20	3	5825	22.60	23.02	22.80	27.58	30.00	2.58	30.16	36.00	
VHT40	3	5755	24.98	24.72	25.32	29.78	30.00	2.58	32.36	36.00	
VHT40	3	5795	25.22	24.46	25.12	29.72	30.00	2.58	32.30	36.00	
VHT80	3	5775	24.98	24.81	25.20	29.77	30.00	2.58	32.35	36.00	
Resu	ılt		Complied								

Maximum Conducted Output Power Result													
Condit	Condition				RF Output Power (dBm)								
		Frea.	RF Output Power (dBm)			Power	Ant. gain						
Modulation Mode	Ντχ		Chain Port 1	Chain Port 2	Chain Port 3	Sum Chain	Limit	(dBi)	EIRP Power	EIRP Limit			
11a	1	5745	24.75	-	-	24.75	30.00	2.58	27.33	36.00			
11a	1	5785	24.86	-	-	24.86	30.00	2.58	27.44	36.00			
11a	1	5825	24.75	-	-	24.75	30.00	2.58	27.33	36.00			
HT20	3	5745	17.91	18.12	17.88	22.74	30.00	2.58	25.32	36.00			
HT20	3	5785	17.77	17.82	18.17	22.69	30.00	2.58	25.27	36.00			
HT20	3	5825	16.50	17.01	17.41	21.76	30.00	2.58	24.34	36.00			
HT40	3	5755	16.51	16.55	17.01	21.47	30.00	2.58	24.05	36.00			
HT40	3	5795	16.17	15.67	16.33	20.84	30.00	2.58	23.42	36.00			
VHT20	3	5745	18.21	18.44	18.04	23.00	30.00	2.58	25.58	36.00			
VHT20	3	5785	17.93	18.11	18.27	22.88	30.00	2.58	25.46	36.00			
VHT20	3	5825	16.21	16.72	16.35	21.20	30.00	2.58	23.78	36.00			
VHT40	3	5755	16.44	16.27	16.55	21.19	30.00	2.58	23.77	36.00			
VHT40	3	5795	16.37	15.83	16.29	20.94	30.00	2.58	23.52	36.00			
VHT80 3 5775			16.44	16.13	16.32	21.07	30.00	2.58	23.65	36.00			
Resu	lt		Complied										
Note : IEEE 802.11 n a	ind ac ha	ave the CDI	D function	, so the a	array gair	n is 0.							

Power Spectral Density 3.4

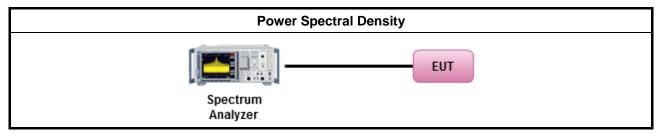
3.4.1 **Power Spectral Density Limit**

Power Spectral Density Limit

 \boxtimes Power Spectral Density (PSD) ≤ 8 dBm/3kHz

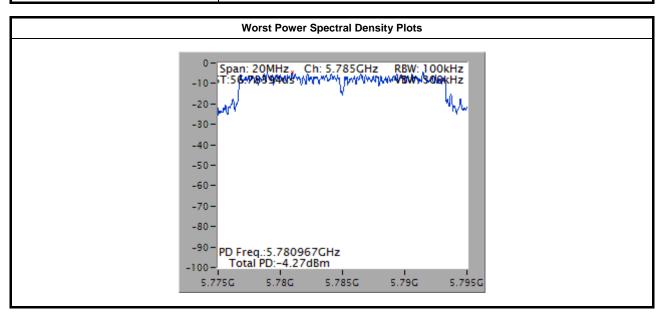
3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.4.3 Test Procedures

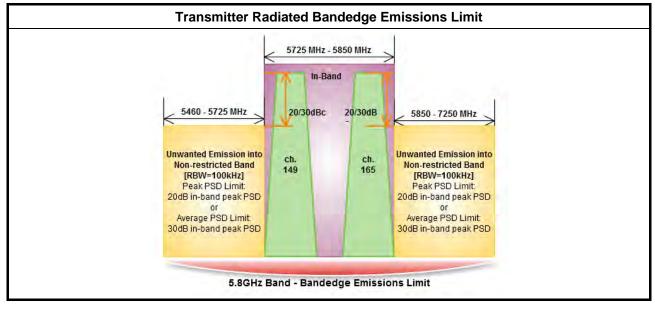
Г

		Test Method						
\boxtimes	outp the c conc of th	k power spectral density procedures that the same method as used to determine the conducted but power. If maximum peak conducted output power was measured to demonstrate compliance to putput power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum ducted output power was measured to demonstrate compliance to the output power limit, then one he average PSD procedures shall be used, as applicable based on the following criteria (the peak 0 procedure is also an acceptable option).						
	\square	Refer as FCC KDB 558074, clause 10.2 Method PKPSD (RBW=3-100kHz;detector=peak)						
	[duty	y cycle ≥ 98% or external video / power trigger]						
	\boxtimes	Refer as FCC KDB 558074, clause 10.3 Method AVGPSD-1 (spectral trace averaging).						
		Refer as FCC KDB 558074, clause 10.4 Method AVGPSD-1 Alt. (slow sweep speed)						
	duty cycle < 98% and average over on/off periods with duty factor							
	Refer as FCC KDB 558074, clause 10.5 Method AVGPSD-2 (spectral trace averaging).							
		Refer as FCC KDB 558074, clause 10.6 Method AVGPSD-2 Alt. (slow sweep speed)						
\square	For	conducted measurement.						
	\square	The EUT supports single transmit chain and measurements performed on this transmit chain.						
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.						
	\square	The EUT supports multiple transmit chains using options given below:						
		☑ Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the N _{TX} output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.						
		Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.						



3.4.4 Test Setup

3.4.5 Test Result of Power Spectral Density

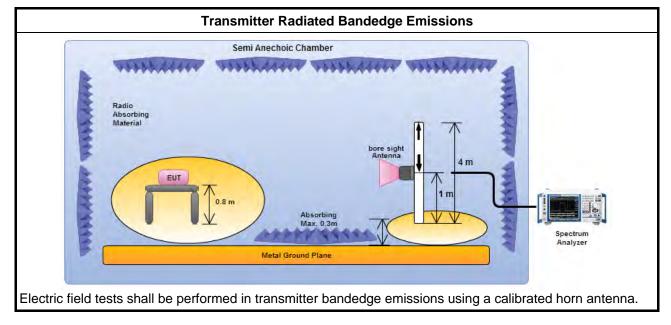

			Power Spectral Density Result				
Condition			Power Spectral Density				
Modulation Mode	Ντχ	Freq. (MHz)	Power Spectral Density (dBm/100kHz)	Power Limit (dBm/3kHz)			
11a	1	5745	-5.31	8.00			
11a	1	5785	-4.27	8.00			
11a	1	5825	-4.30	8.00			
HT20,M0	3	5745	-5.54	8.00			
HT20,M0	3	5785	-5.58	8.00			
HT20,M0	3	5825	-6.72	8.00			
HT40,M0	3	5755	-8.41	8.00			
HT40,M0	3	5795	-6.45	8.00			
VHT20,M0	3	5745	-5.62	8.00			
VHT20,M0	3	5785	-6.54	8.00			
VHT20,M0	3	5825	-7.75	8.00			
VHT40,M0	3	5755	-7.92	8.00			
VHT40,M0	3	5795	-8.31	8.00			
VHT80,M0	3	5775	-10.01	8.00			
Resu	ult	•	Comp	lied			

3.5 Transmitter Bandedge Emissions

3.5.1 Transmitter Radiated Bandedge Emissions Limit

3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.



3.5.3 Test Procedures

		Test Method						
\boxtimes	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].						
		Refer as ANSI C63.10, clause 6.9.2.2 bandedge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.						
\bowtie	For the transmitter unwanted emissions shall be measured using following options below:							
	\boxtimes	Refer as FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.						
	\boxtimes	Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.						
		Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle ≥98%)						
		Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).						
		Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW≥1/T).						
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.						
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.						
		Refer as FCC KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.						
\square	For	the transmitter bandedge emissions shall be measured using following options below:						
		Refer as FCC KDB 558074, clause 13.3 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).						
	\square	Refer as ANSI C63.10, clause 6.9.2 for band-edge testing.						
		Refer as ANSI C63.10, clause 6.9.3 for marker-delta method for band-edge measurements.						
		radiated measurement, refer as FCC KDB 558074, clause 12.2.7 and ANSI C63.10, clause 6.6. distance is 3m.						
	perfe equi extra dista mea	surements may be performed at a distance other than the limit distance provided they are not ormed in the near field and the emissions to be measured can be detected by the measurement pment. When performing measurements at a distance other than that specified, the results shall be apolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear ance for field-strength measurements, inverse of linear distance-squared for power-density surements). Measurements in the bandedge are typically made at a closer distance 3m, because nstrumentation noise floor is typically close to the radiated emission limit.						

3.5.4 Test Setup

3.5.5 Transmitter Radiated Bandedge Emissions

Modulation	N _{TX}	Test Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Pol.
11a	1	5745	111.06	5725.00	85.97	25.09	20	V
11a	1	5825	112.24	5850.59	80.64	31.60	20	V
HT20	3	5745	111.85	5724.34	71.60	40.25	20	V
HT20	3	5825	108.28	5850.97	64.48	43.80	20	V
HT40	3	5755	107.58	5724.30	81.75	25.83	20	V
HT40	3	5795	108.24	5853.10	63.78	44.46	20	V
VHT20	3	5745	110.74	5724.34	72.65	38.09	20	V
VHT20	3	5825	110.83	5852.13	64.57	46.26	20	V
VHT40	3	5755	110.03	5723.80	81.96	28.07	20	V
VHT40	3	5795	108.14	5853.80	66.43	41.71	20	V
VHT80	3	5775	108.05	5720.91	85.56	22.49	20	V
VHT80	3	5775	108.05	5850.62	82.79	25.26	20	V

3.6 Transmitter Unwanted Emissions

3.6.1 Transmitter Radiated Unwanted Emissions Limit

Restricted Band Emissions Limit								
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)					
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300					
0.490~1.705	24000/F(kHz)	33.8 - 23	30					
1.705~30.0	30	29	30					
30~88	100	40	3					
88~216	150	43.5	3					
216~960	200	46	3					
Above 960	500	54	3					

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

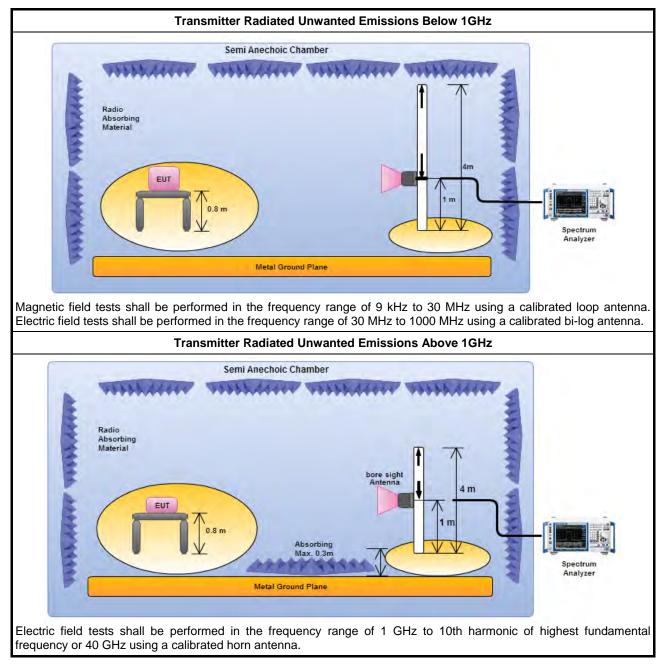
Un-restricted Band Emissions Limit						
RF output power procedure Limit (dB)						
Peak output power procedure	20					
Average output power procedure	30					
Note 1: If the peak output power procedure is used to	measure the fundamental emission power to					

Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

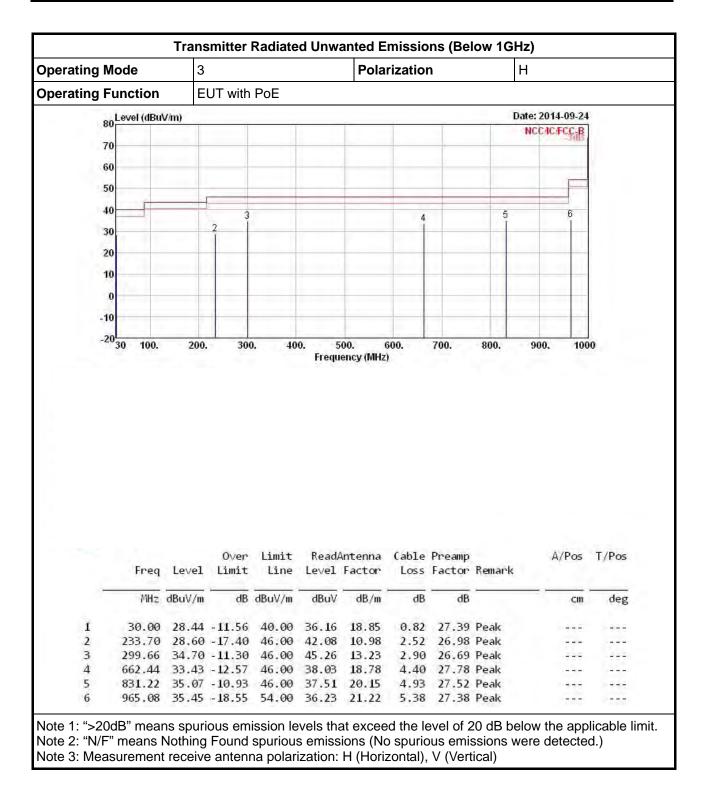


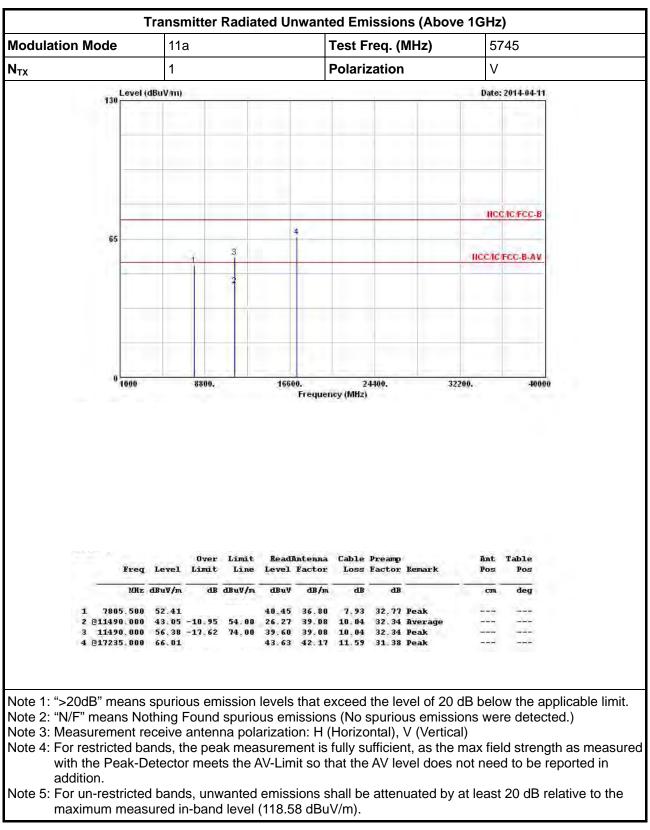
3.6.3 Test Procedures

	Test Method	
	Measurements may be performed at a distance other than the limit distance provided they ar performed in the near field and the emissions to be measured can be detected by the measure equipment. When performing measurements at a distance other than that specified, the results sh extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of distance for field-strength measurements, inverse of linear distance-squared for power-de measurements).	ment all be inear
\square	The average emission levels shall be measured in [duty cycle \geq 98 or duty factor].	
\square	For the transmitter unwanted emissions shall be measured using following options below:	
	Refer as FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.	
	\boxtimes Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.	
	Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle ≥98	%)
	Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).	
	□ Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW≥1/T).	
	Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse t	me.
	Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.	
	Refer as FCC KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.	
	Refer as FCC KDB 558074, clause 12.2.3 measurement procedure Quasi-Peak limit.	
\boxtimes	For radiated measurement, refer as FCC KDB 558074, clause 12.2.7.	
	Refer as ANSI C63.10, clause 6.4 for radiated emissions below 30 MHz and test distance is 3	ßm.
	Refer as ANSI C63.10, clause 6.5 for radiated emissions 30 MHz to 1 GHz and test distance i	s 3m.
	Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1GHz. For 1 GHz to 5 GHz, test distance is 3m; For 5 GHz to 40 GHz, test distance is 3m.	
\square	The any unwanted emissions level shall not exceed the fundamental emission level.	
\boxtimes	All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible has no need to be reported.	value

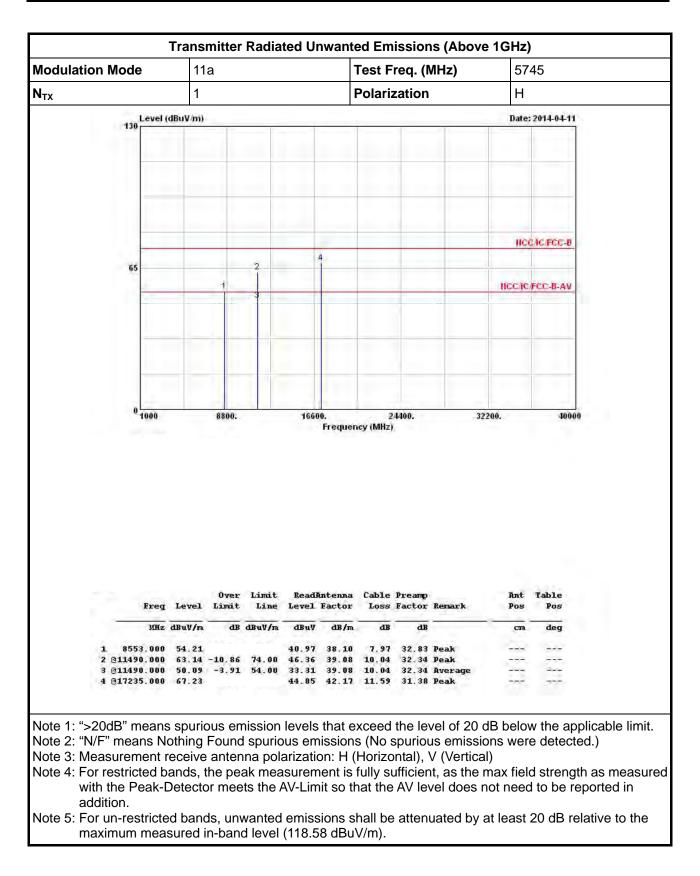
3.6.4 Test Setup

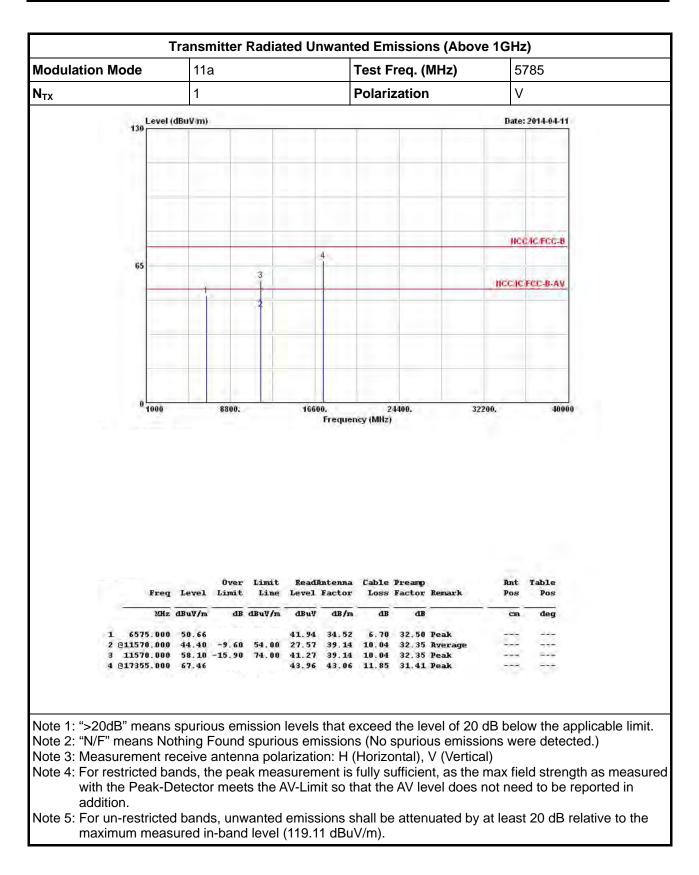
3.6.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)


All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

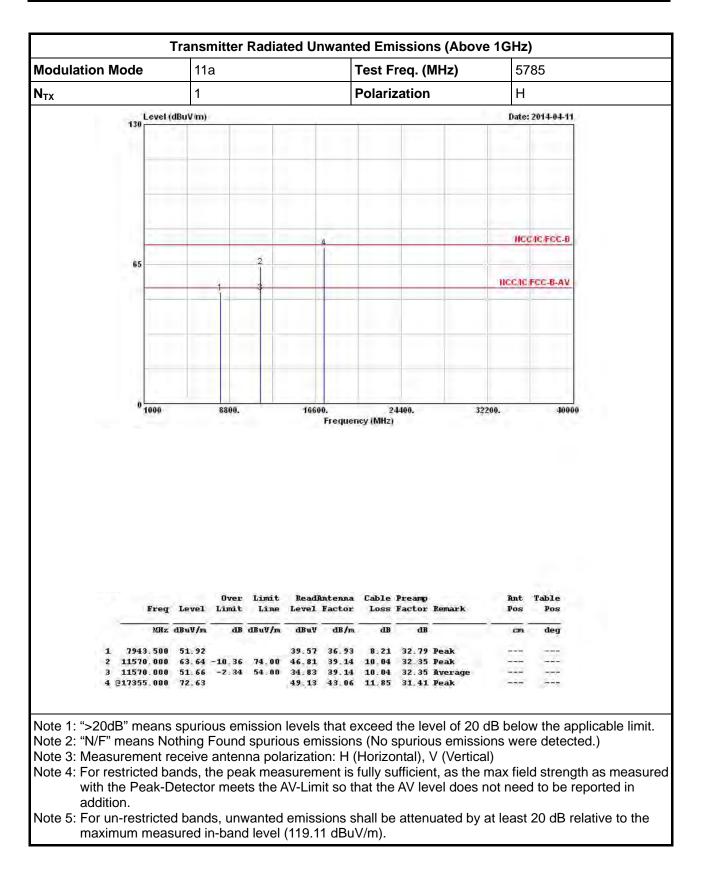

Operating Mode		3			Pola	Polarization				V		
erating Function	E	EUT with PoE										
80 Level (dBu	80 Level (dBuV/m) Date: 2014-09-24											
									NCC/C/FCC-B			
70				1.111						1.11	0	
60	_		_									
50		_										
							_	-	6			
40 2 3			1					4 5				
30					-							
20				_	-	_			-			
10												
0			_		-	-	-		-		G	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		_									1.1	
-10												
-10 -20 30 100.	200.	300	0. 40		500. Jency (MHz	600,)	700.	800.	900.	. 100	0	
20	200.	. 300	D. 40				700.	800.	900.	. 100	0	
-20 30 100.	200. Level	Over	D. 40 Limit Line	Frequ Read/) (able			900.	A/Pos	T/Pos	
-20 <mark>30 100.</mark> Freq		0ver Limit	Limit	Frequ Read/	Antenna) (able	Preamp Factor		900.			
-20 <mark>30 100.</mark> Freq	Level dBuV/m	Over Limit dB	Limit Line	Read/ Level dBuV	Antenna Factor) (able Loss 	Preamp Factor	Remark	900.	A/Pos	T/Pos	
-20 30 100. Freq MHz 1 30.00 2 41.64	Le∨el dBuV/m 36.35 35.93	0∨er Limit 	Limit Line dBuV/m 40.00 40.00	Read/ Level dBuV 50.27	Antenna Factor dB/m 18.85 11.95	(able Loss dB 0.82 1.04	Preamp Factor dB 27.39 27.33	Remark Peak Peak	900.	A/Pos	T/Pos	
-20 30 100. Freq MHz 1 30.00 2 41.64 3 61.04	Level dBuV/m 36.35 35.93 34.23	0∨er Limit 	Limit Line dBuV/m 40.00 40.00 40.00	Frequ Read/ Level dBuV 44.07 50.27 53.58	Antenna Factor dB/m 18.85 11.95 6.85	Cable Loss dB 0.82 1.04 1.26	Preamp Factor dB 27.39 27.33 27.46	Remark Peak Peak Peak	900.	A/Pos	T/Pos	
-20 30 100. Freq MHz 1 30.00 2 41.64 3 61.04 4 778.84	Level dBuV/m 36.35 35.93 34.23 33.79	0ver Limit dB -3.65 -4.07 -5.77 -12.21	Limit Line dBuV/m 40.00 40.00 40.00 40.00	Frequ Read/ Level dBuV 44.07 50.27 53.58 36.85	Antenna Factor dB/m 18.85 11.95 6.85 19.79	Cable Loss dB 0.82 1.04 1.26 4.81	Preamp Factor dB 27.39 27.33 27.46 27.66	Remark Peak Peak Peak Peak Peak	900.	A/Pos	T/Pos	
-20 30 100. Freq <u>MHz</u> 1 30.00 2 41.64 3 61.04 4 778.84 5 840.92	Level dBuV/m 36.35 35.93 34.23 33.79 35.30	0ver Limit dB -3.65 -4.07 -5.77 -12.21 -10.70	Limit Line dBuV/m 40.00 40.00 40.00	Frequ Read/ Level dBuV 44.07 50.27 53.58 36.85 37.65	Antenna Factor dB/m 18.85 11.95 6.85 19.79 20.21	Cable Loss dB 0.82 1.04 1.26 4.81 4.93	Preamp Factor dB 27.39 27.33 27.46	Remark Peak Peak Peak Peak Peak Peak	900.	A/Pos	T/Pos	

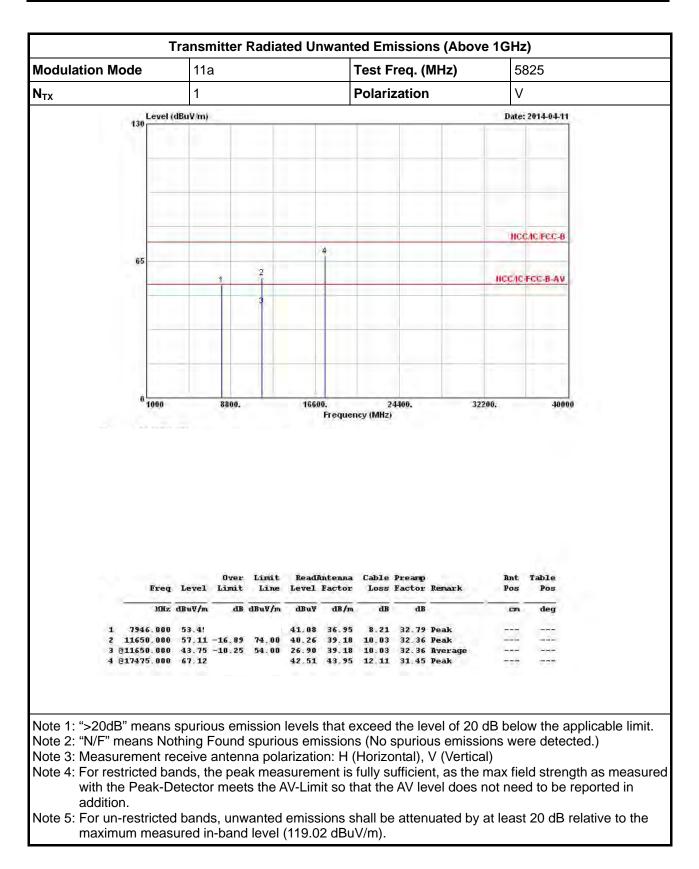
3.6.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)

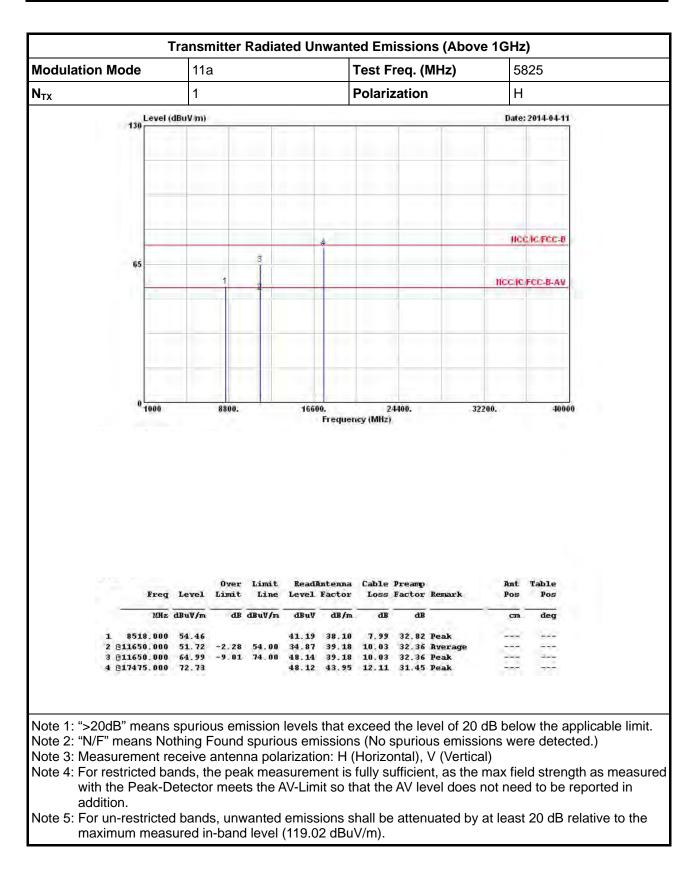


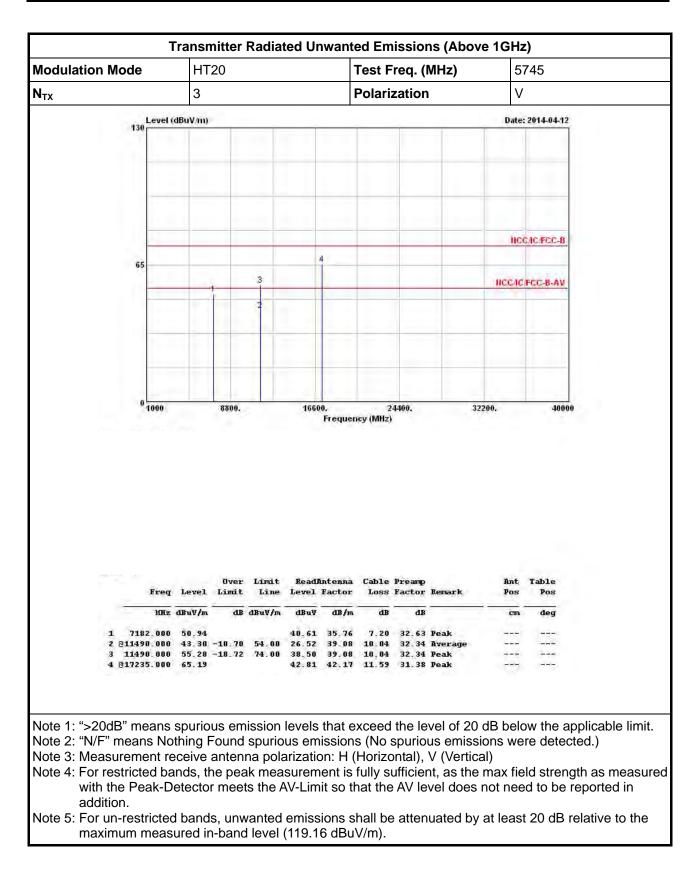


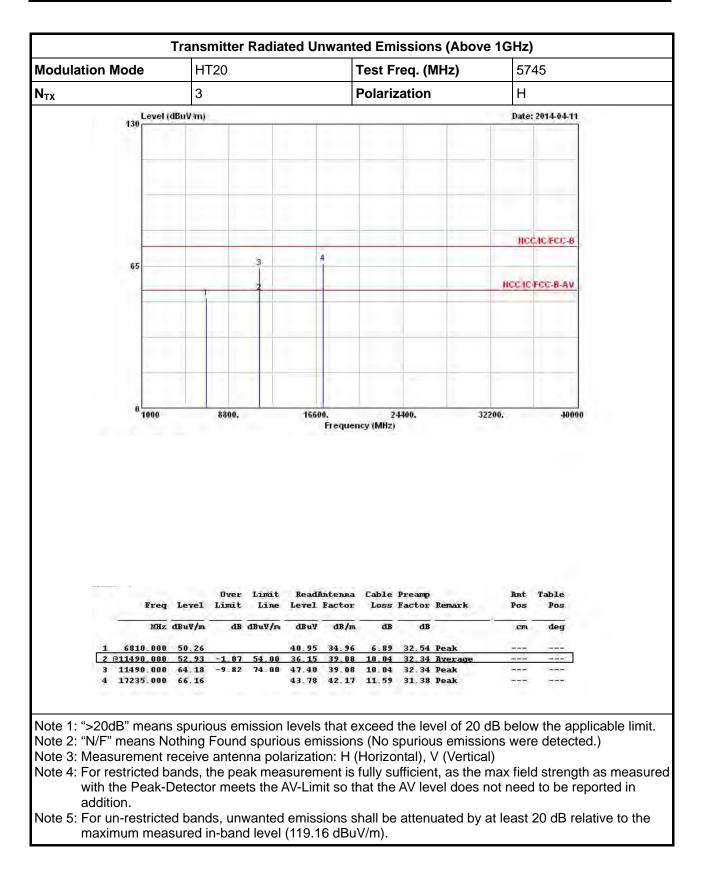
3.6.7 Transmitter Radiated Unwanted Emissions (Above 1GHz)

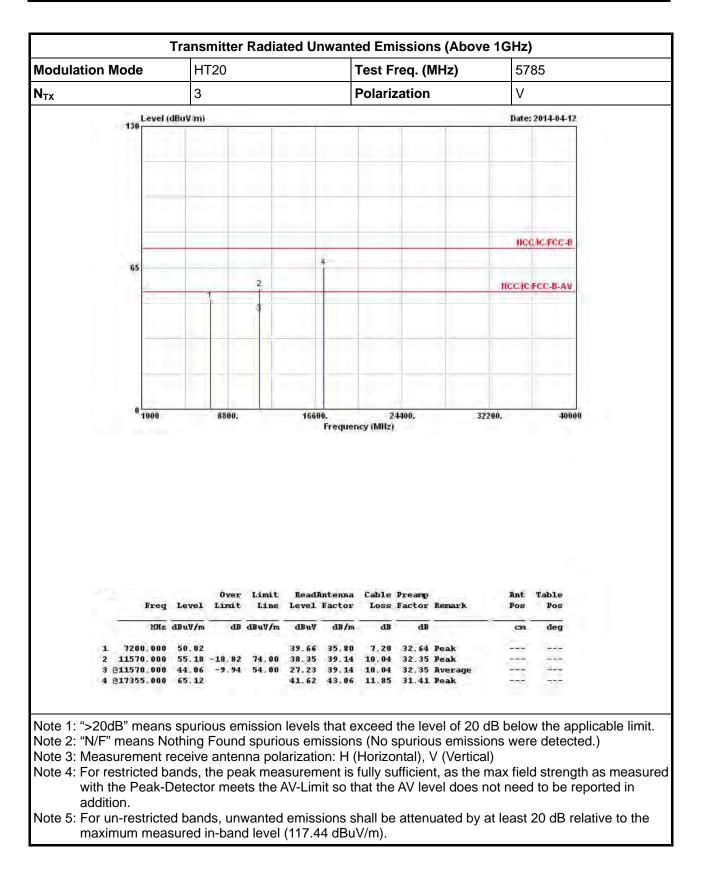


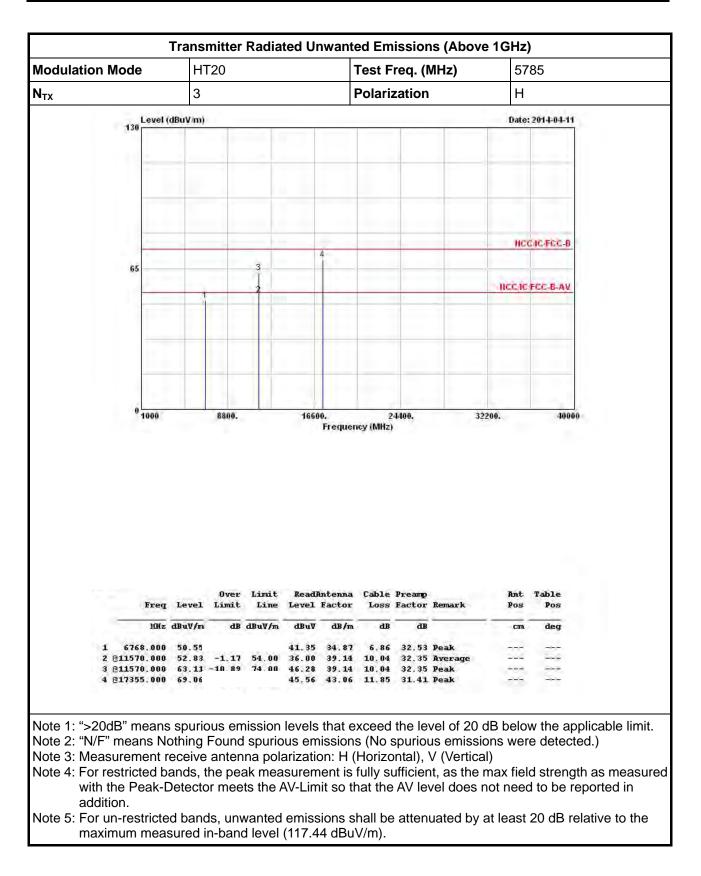


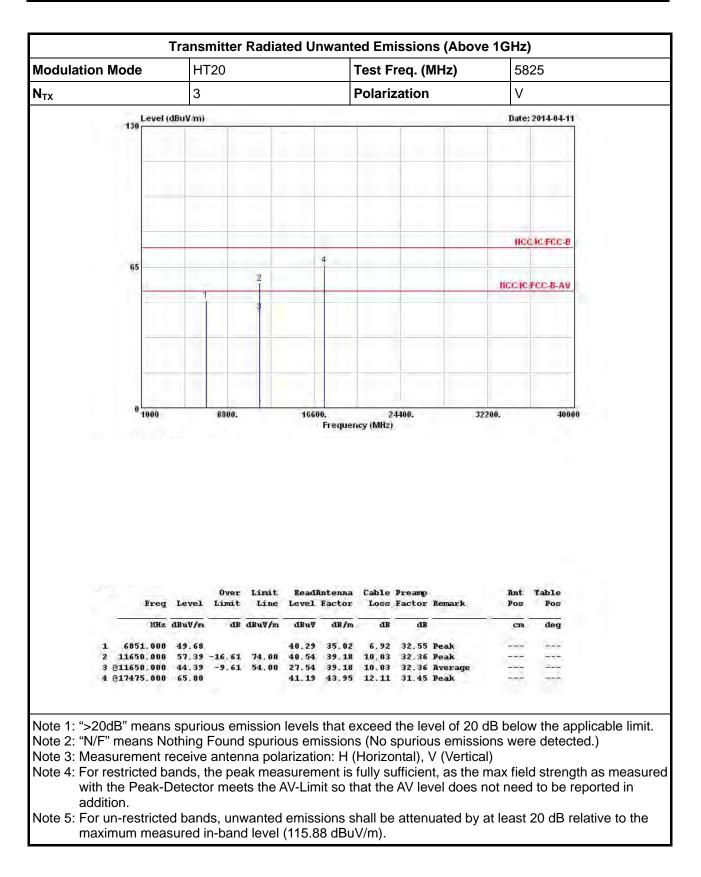


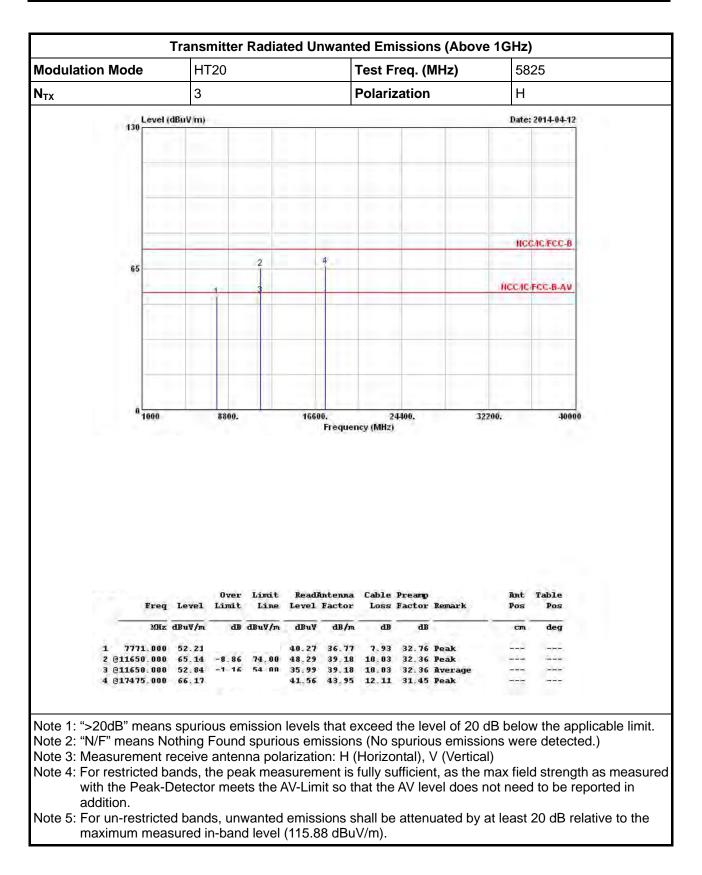


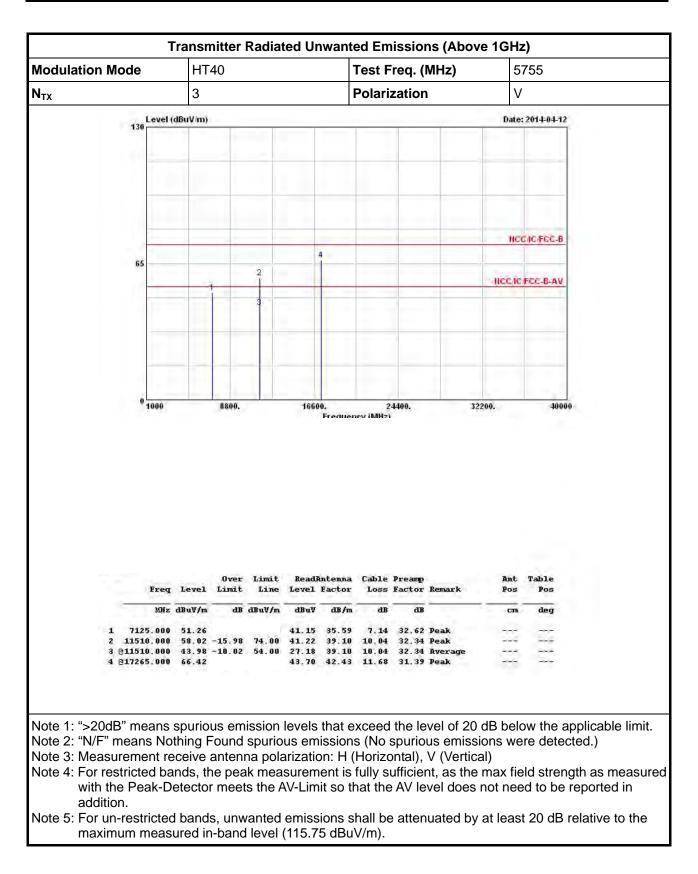


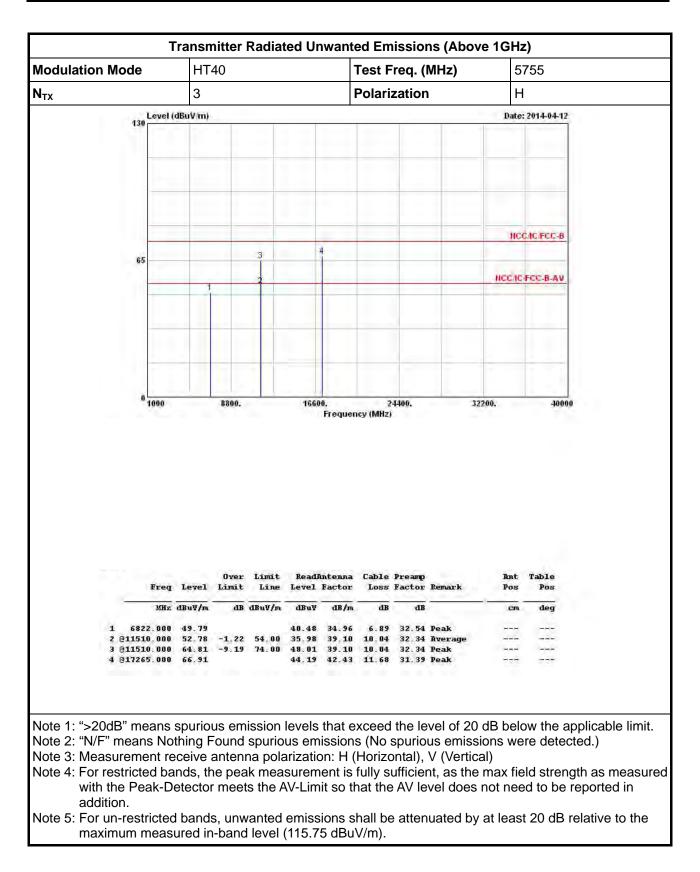


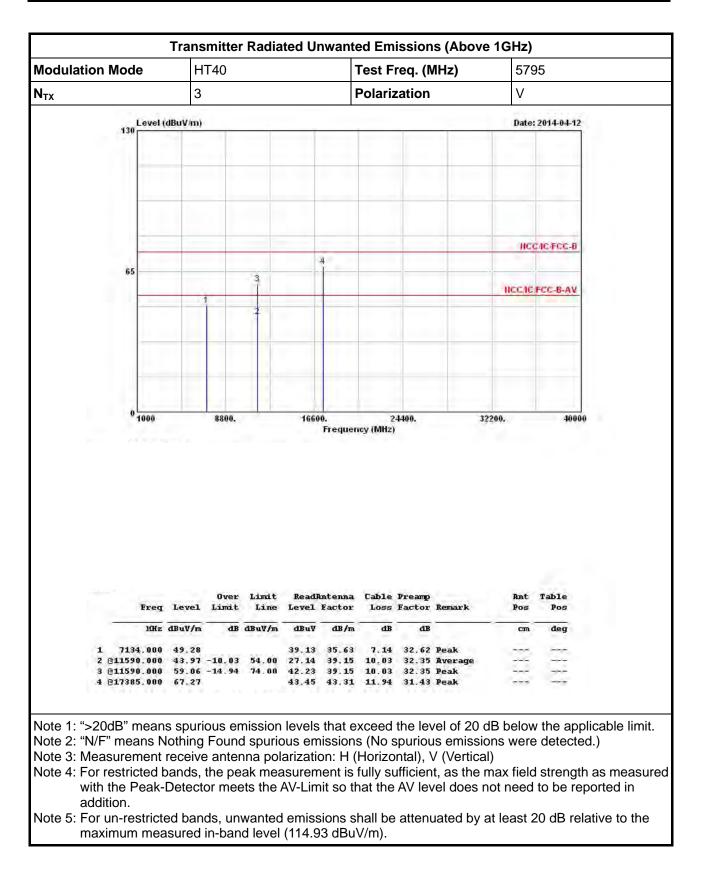


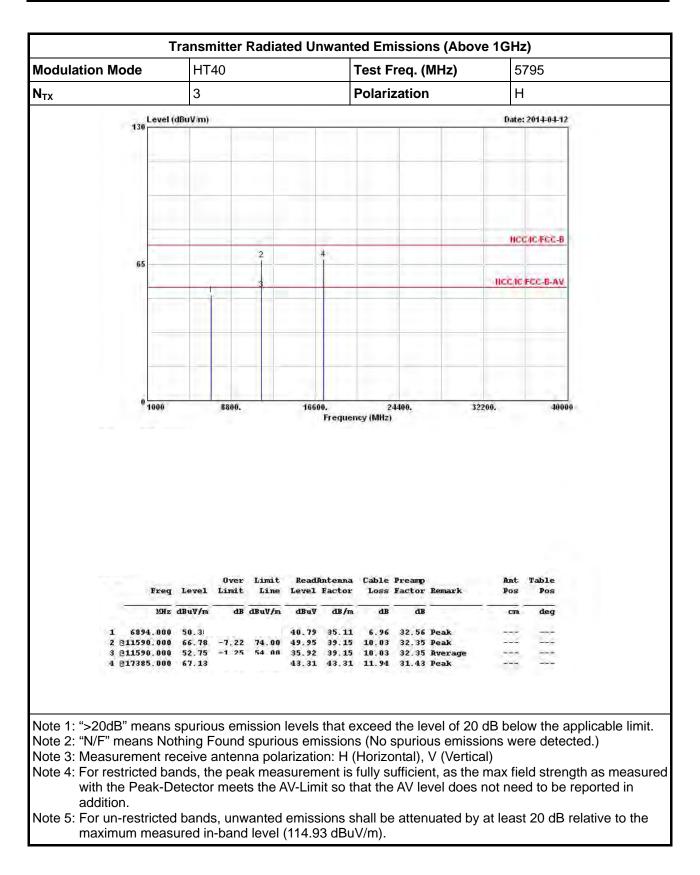


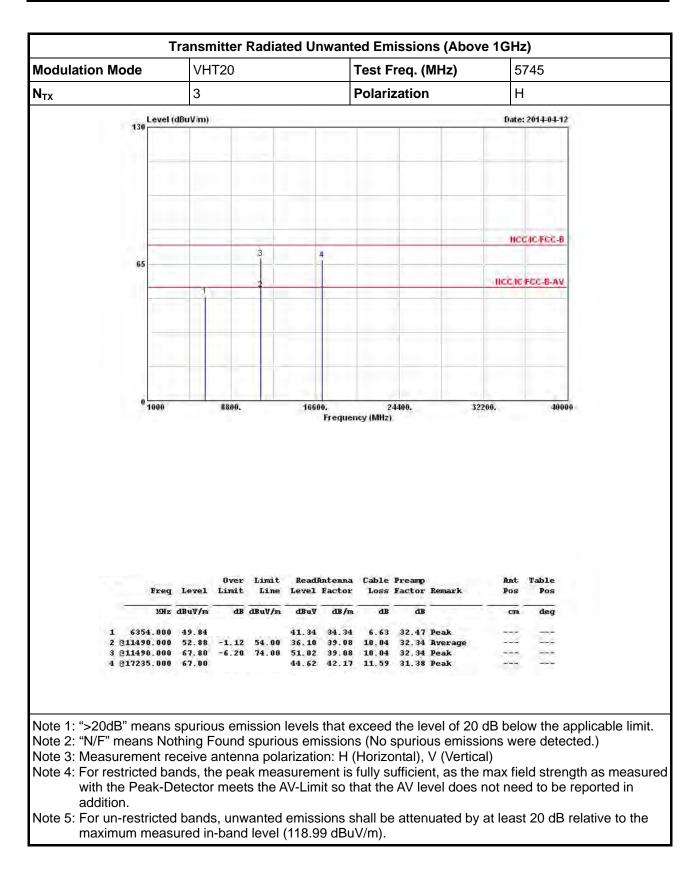


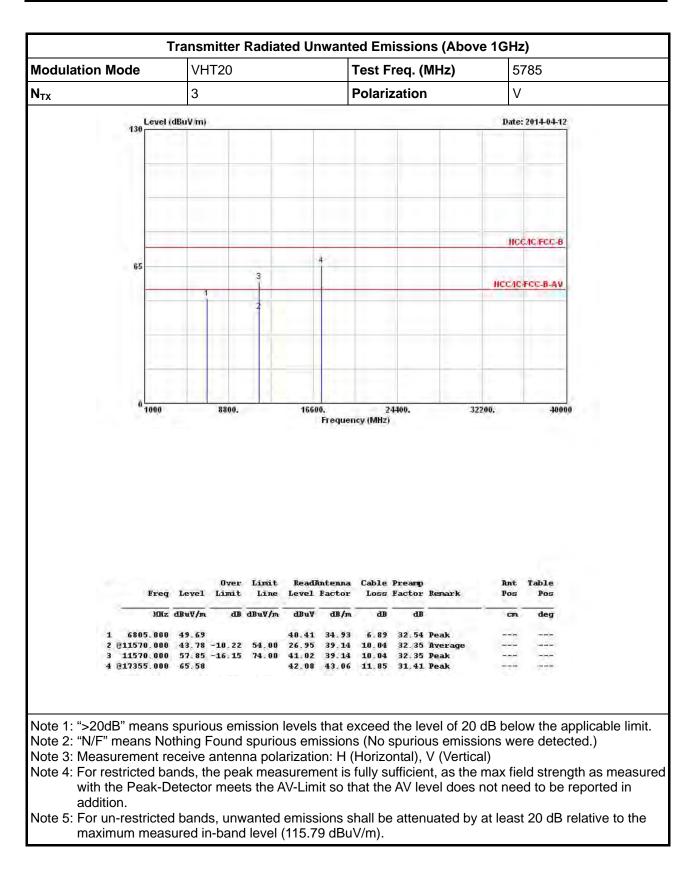


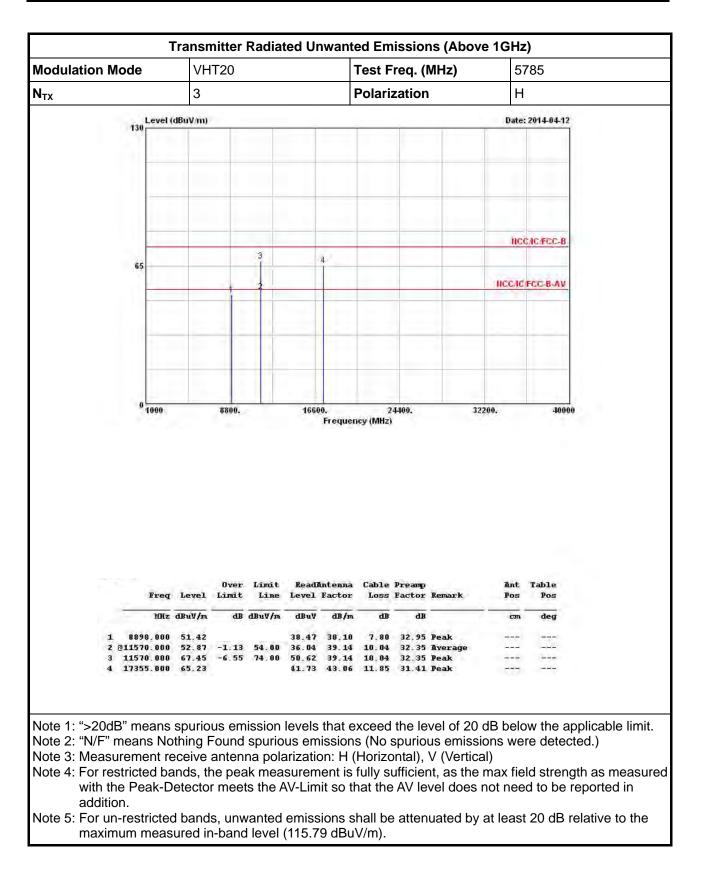


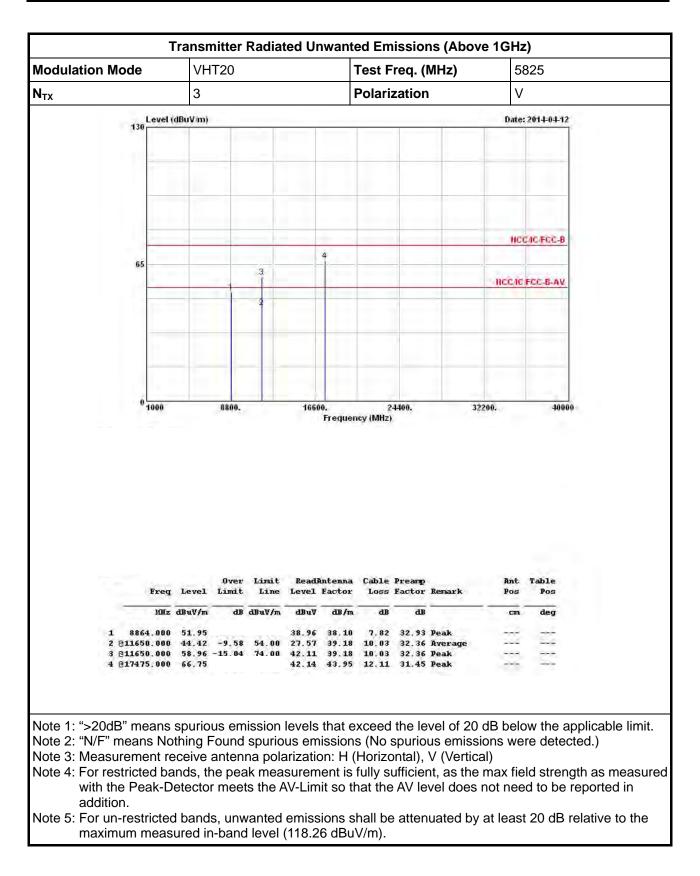


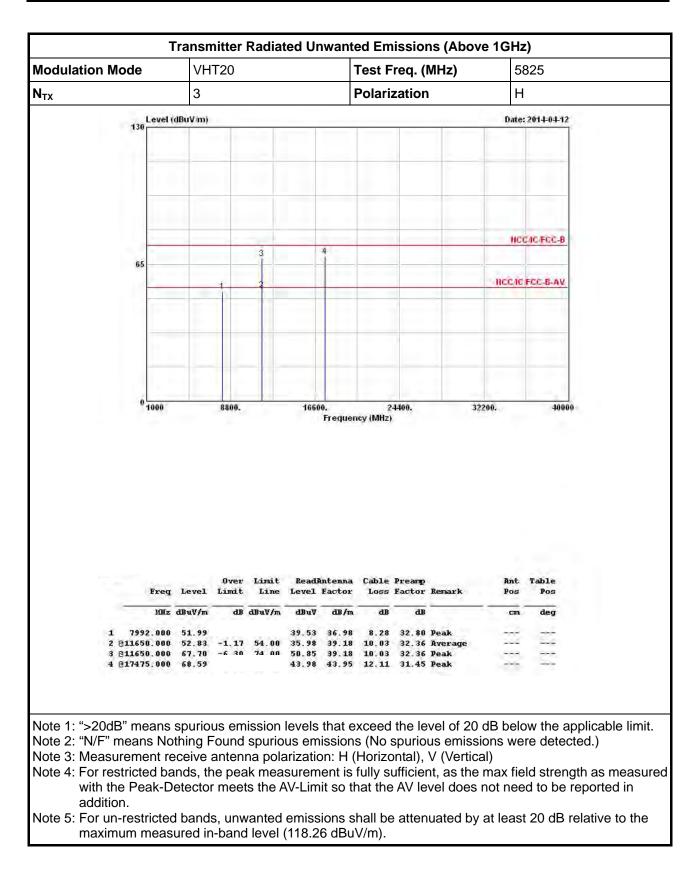


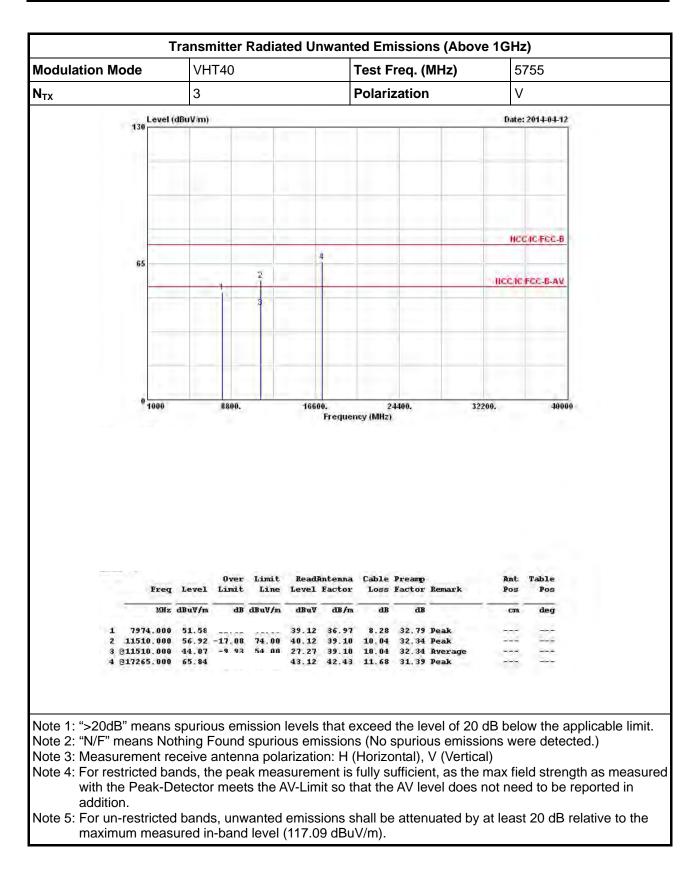


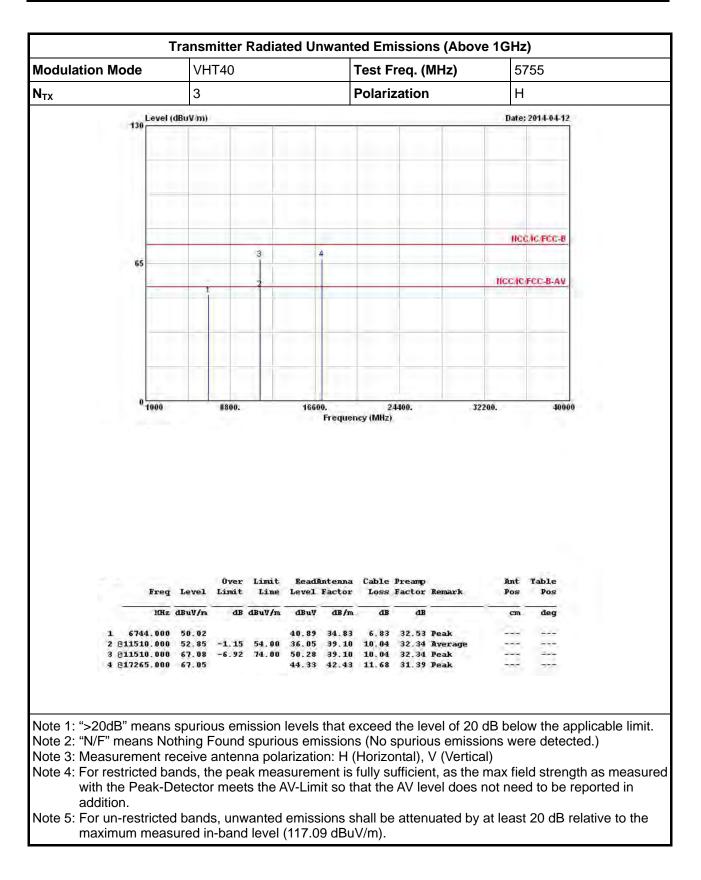


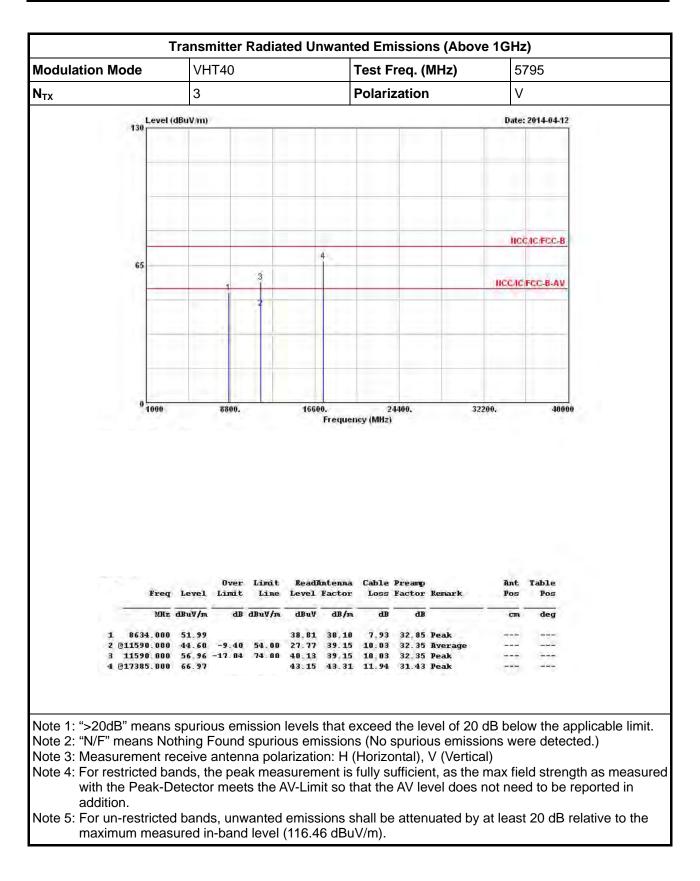


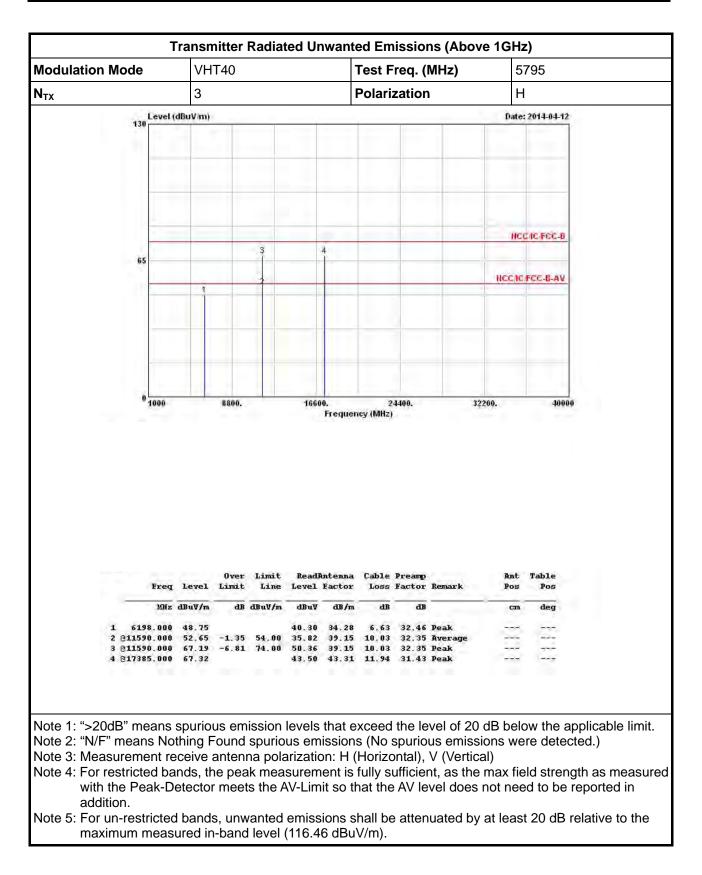


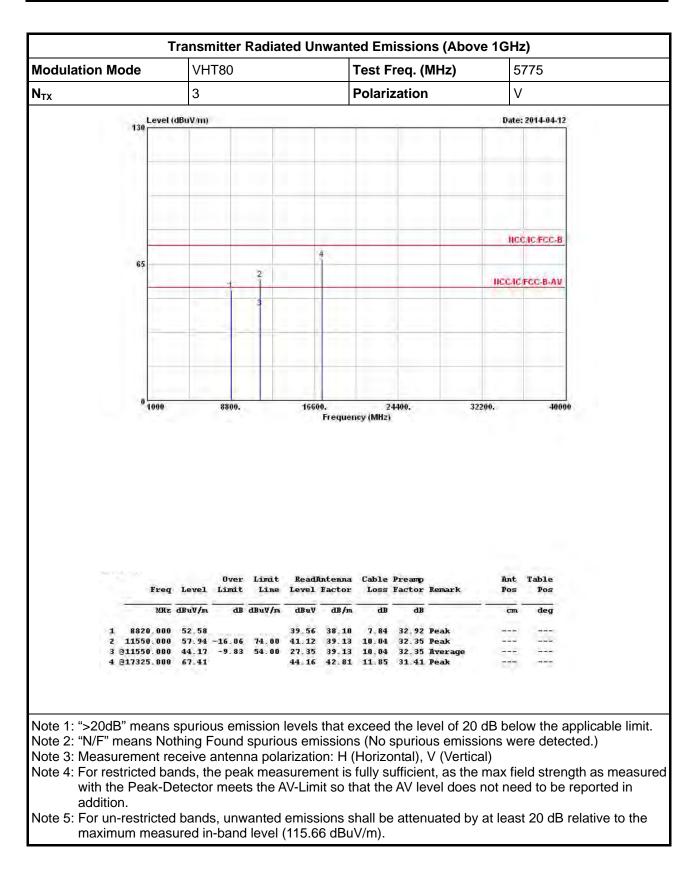


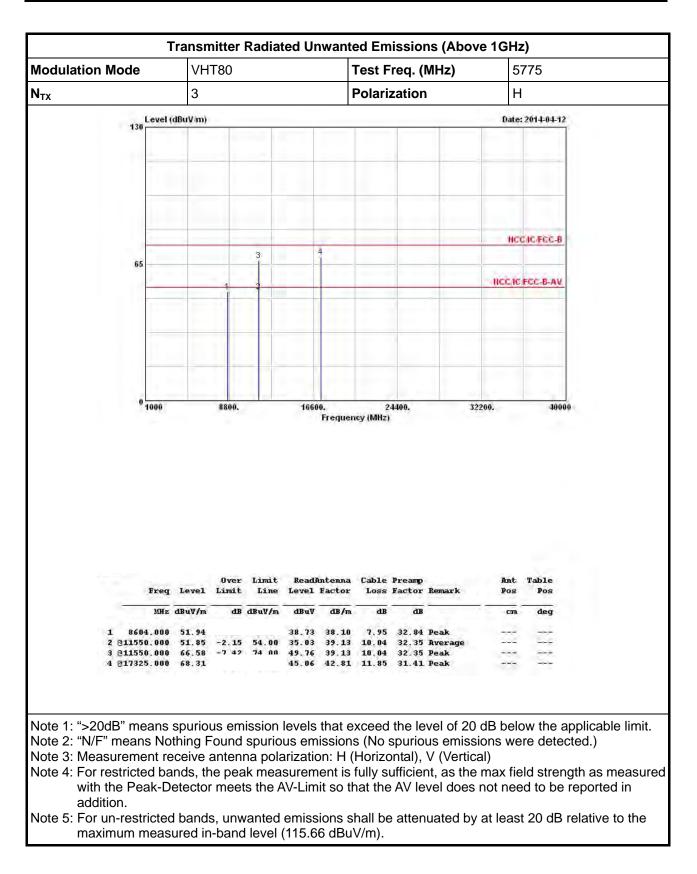












4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9kHz ~ 2.75GHz	Mar. 26, 2014	AC Conduction
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	8127-477	9kHz ~ 30MHz	Jan. 21, 2014	AC Conduction
RF Cable-CON	HUBER+SUHNER	RG213/U	7.61183201e+012	9kHz ~ 30MHz	Oct. 30, 2013	AC Conduction
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	AC Conduction

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSV 40	101013	9KHz~40GHz	Jan. 25, 2014	RF Conducted
Spectrum Analyzer	Agilent	N9030A	MY52350707	3Hz~26.5GHz	Jan. 25, 2014	RF Conducted
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Jun. 27, 2013	RF Conducted
AC Power Source	G.W	APS-9102	EL920581	AC 0V ~ 300V	Jul. 16, 2013	RF Conducted
Temp. and Humidity Chamber	Giant Force	GTH-225-20-S	MAB0103-001	-20 ~ 100℃	Nov. 21, 2013	RF Conducted
RF Cable-2m	HUBER+SUHNER	SUCOFLEX_104	SN 345673/4	30MHz ~ 26.5GHz	Dec. 02, 2013	RF Conducted
RF Cable-0.5m	HUBER+SUHNER	SUCOFLEX_103	10715/4 10716/4	30MHz ~ 26.5GHz	Dec. 02, 2013	RF Conducted

Note: Calibration Interval of instruments listed above is one year.

< Radiated Emission Below 1GHz>

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz ~ 1GHz 3m	Nov. 30, 2013	Radiated Emission
Amplifier	HP	8447D	2944A08033	10kHz ~ 1.3GHz	May. 05, 2014	Radiated Emission
Spectrum	R&S	FSP40	100004	9kHz ~ 40GHz	Mar. 27, 2014	Radiated Emission
Bilog Antenna	SCHAFFNER	CBL 6112D	22237	30MHz ~ 1GHz	Sep. 20, 2014	Radiated Emission
RF Cable-R03m	Jye Bao	RG142	CB021	9kHz ~ 1GHz	Nov. 16, 2013	Radiated Emission
RF Cable-high	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz ~ 40GHz	Dec. 11, 2013	Radiated Emission
Turn Table	EM Electronics	EM Electronics	060615	0 ~ 360 degree	N/A	Radiated Emission
Antenna Mast	MF	MF-7802	MF780208179	1 ~ 4 m	N/A	Radiated Emission

Note: Calibration Interval of instruments listed above is one year.

< Radiated Emission Above 1GHz>

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz ~ 1GHz 3m	Nov. 30, 2013	Radiated Emission
Amplifier	Agilent	8449B	3008A02120	1GHz ~ 26.5GHz	Aug. 20, 2013	Radiated Emission
Spectrum	R&S	FSP40	100004	9kHz ~ 40GHz	Mar. 27, 2014	Radiated Emission
Horn Antenna	EMCO	3115	6741	1GHz ~ 18GHz	May 31, 2013	Radiated Emission
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15GHz ~ 40GHz	Jan. 10, 2014	Radiated Emission
RF Cable-R03m	Jye Bao	RG142	CB021	9kHz ~ 1GHz	Nov. 16, 2013	Radiated Emission
RF Cable-high	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz ~ 40GHz	Dec. 11, 2013	Radiated Emission
Turn Table	EM Electronics	EM Electronics	060615	0 ~ 360 degree	N/A	Radiated Emission
Antenna Mast	MF	MF-7802	MF780208179	1 ~ 4 m	N/A	Radiated Emission

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Amplifier	EM	EM18G40G	060604	18GHz ~ 40GHz	Oct. 17.2013	Radiated Emission
Loop Antenna	TESEQ	HLA 6120	31244	9kHz ~ 30MHz	Dec. 02, 2012	Radiated Emission

Note: Calibration Interval of instruments listed above is two year.