

FCC Test Report

Equipment	•	ProSeries High Power AC1750 Wi-Fi Access Point / Router / Range Extender / Bridge
Brand Name	4	Amped Wireless
Model No.	:	APR175P / REB175P
FCC ID	:	ZTT-APR175P
Standard	÷	47 CFR FCC Part 15.247
Operating Band	:	2400 MHz – 2483.5 MHz
FCC Classification	:	DTS
Applicant	:	Amped Wireless 13089 Peyton Dr. #C307, Chino Hills CA 91709
Manufacturer	:	EDIMAX TECHNOLOGY CO., LTD. No.3,Wu-Chuan 3rd Road,Wu-Ku Industrial Park, New Taipei City, Taiwan

The product sample received on Feb. 11, 2014 and completely tested on Sep. 25, 2014. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Vic Hsiao / Supervisor

Table of Contents

1	GENERAL DESCRIPTION
1.1	Information5
1.2	Accessories And Support Equipment7
1.3	Testing Location Information
1.4	Measurement Uncertainty9
2	TEST CONFIGURATION OF EUT10
2.1	The Worst Case Modulation Configuration10
2.2	The Worst Case Power Setting Parameter10
2.3	The Worst Case Measurement Configuration11
2.4	Test Setup Diagram12
3	TRANSMITTER TEST RESULT14
3.1	AC Power-line Conducted Emissions14
3.2	6dB Bandwidth17
3.3	RF Output Power19
3.4	Power Spectral Density
3.5	Transmitter Bandedge Emissions25
3.6	Transmitter Unwanted Emissions
4	TEST EQUIPMENT AND CALIBRATION DATA57

APPENDIX A. TEST PHOTOS

APPENDIX B. PHOTOGRAPHS OF EUT

Summary of Test Result

	Conformance Test Specifications							
ReportRef. Std.DescriptionMeasuredClauseClauseClauseClauseClauseClause		Measured	Limit	Result				
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied			
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]: 14.501 MHz 43.66 (Margin 6.34dB) - AV 44.96 (Margin 15.04dB) - QP	FCC 15.207	Complied			
3.2	15.247(a)	6dB Bandwidth	6dB Bandwidth Unit [MHz] 20M: 6.63 / 40M: 34.48	≥500kHz	Complied			
3.3	15.247(b)	RF Output Power (Maximum Peak Conducted Output Power)	Power [dBm]: 28.26	Power [dBm]:30	Complied			
3.4	15.247(d)	Power Spectral Density	PSD [dBm/100kHz]: -3.10	PSD [dBm/3kHz]:8	Complied			
3.5	15.247(c)	Transmitter Radiated Bandedge Emissions	Non-Restricted Bands: 2400.00MHz: 28.72dB Restricted Bands [dBuV/m at 3m]: 2390.00MHz 72.52 (Margin 1.48dB) - PK 52.99 (Margin 1.01dB) - AV	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied			
3.6	15.247(c)	Transmitter Radiated Unwanted Emissions	[dBuV/m at 3m]: 7311MHz 65.16 (Margin 8.84dB) - PK 52.89 (Margin 1.11dB) - AV	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied			

Revision History

Report No.	Version	Description	Issued Date
FR411403-07AC	Rev. 01	Initial issue of report	Nov. 19, 2014

1 General Description

1.1 Information

1.1.1 RF General Information

RF General Information							
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{Tx})	RF Output Power (dBm)	Co-location	
2400-2483.5	b	2412-2462	1-11 [11]	1	25.40	Yes	
2400-2483.5	g	2412-2462	1-11 [11]	1	27.73	Yes	
2400-2483.5	n (HT20)	2412-2462	1-11 [11]	3	28.26	Yes	
2400-2483.5	n (HT40)	2422-2452	3-9 [7]	3	24.37	Yes	

Note 1: RF output power specifies that Maximum Peak Conducted Output Power.

Note 2: 802.11b uses a combination of DSSS-DBPSK, DQPSK, CCK modulation.

Note 3: 802.11g/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

Note 4: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting) antennas within 20 cm of each other. (i.e., EUT has simultaneously co-transmitting that operating 2.4GHz and 5GHz.)

1.1.2 Antenna Information

	Antenna Category					
	Integral antenna (antenna permanently attached)					
	Temporary RF connector provided					
	No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.					
\square	External antenna (dedicated antennas)					
	Single power level with corresponding antenna(s).					
	Multiple power level and corresponding antenna(s).					

Antenna General Information						
Port No.	Ant. Cat.	Ant. Type	Model No.	Gain _(dBi)		
1				2.40		
2	External	DIPOLE	98610PRSX002	2.40		
3				2.40		

1. 802.11b only include 1TX and Port1 for emission.

2. 802.11g/n only include 3TX and CDD function.

1.1.3 Type of EUT

	Identify EUT				
EUT	Serial Number	N/A			
Pres	sentation of Equipment	Production ; Pre-Production ; Prototype			
		Type of EUT			
\boxtimes	Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
	Other:				

1.1.4 Test Signal Duty Cycle

	Operated Mode for Worst Duty Cycle					
	Operated normally mode for worst duty cycle					
\boxtimes	Operated test mode for worst duty cycle					
	Test Signal Duty Cycle (x)Power Duty Factor[dB] - (10 log 1/x)					
\square	100.00% - IEEE 802.11b	0.00				
\boxtimes	99.30% - IEEE 802.11g	0.03				
\boxtimes	96.01% - IEEE 802.11n (HT20)	0.18				
\square	96.29% - IEEE 802.11n (HT40)	0.16				

1.1.5 EUT Operational Condition

Supply Voltage	AC mains	DC	System
Type of DC Source	Internal DC supply	External DC from PoE	External DC adapter

1.2 Accessories And Support Equipment

Accessories						
	Brand Name	APD	Model Name	WA30B12		
AC Adapter 1	Power Rating	I/P: 100-240Vac 0.8A ; O/P: 12V 2.5A				
	Power cord	1.8m, non-shielded cable, w/o ferrite core				
	Brand Name	APD	Model Name	DA-48T12		
AC Adaptor 2	Power Rating	I/P: 100-240Vac 1.2A ; O/P: 12V====4A				
AC Adapter 2	Power Cord	AC: 1.4m, non-shielded cable, w/o ferrite core DC: 1.5m, non-shielded cable, with one ferrite core				

Note: Regarding to more detail and other information, please refer to user manual.

	Support Equipment - AC Conduction and Radiated Emission						
Remo	Remote						
No.	Equipment	Brand Name	Model Name	FCC ID			
1	PoE	Acelink	PI-1000PT	DoC			

	Support Equipment - RF Conducted							
No.	Equipment Brand Name Model Name FCC ID							
1	1 Notebook Dell E5520 -							

Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 558074
- FCC KDB 662911

1.3 Testing Location Information

	Testing Location								
\bowtie	HWA YA ADD : No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.								
		TEL :	886-3-327-3456 FAX	: 886-3-327-0973					
	Test Condition Test Site No. Test Engineer Test Environment								
	AC Condu	iction	CO04-HY	Zeus	25°C / 43%				
	RF Condu	ucted	TH06-HY	Wei	24.2°C / 63%				
Radiated Emission (Below 1GHz)			03CH03-HY	Allen	24.5°C / 54%				
	Radiated Er (Above 10		03CH03-HY	Leo	24.4°C / 53%				

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

N	leasurement Uncertainty	
Test Item		Uncertainty
AC power-line conducted emissions		±2.2 dB
Emission bandwidth, 6dB bandwidth	±1.4 %	
RF output power, conducted	±0.6 dB	
Power density, conducted		±0.8 dB
Unwanted emissions, conducted	9 – 150 kHz	±0.3 dB
	0.15 – 30 MHz	±0.4 dB
	30 – 1000 MHz	±0.5 dB
	1 – 18 GHz	±0.6 dB
	18 – 40 GHz	±0.8 dB
	40 – 200 GHz	N/A
All emissions, radiated	9 – 150 kHz	±2.4 dB
	0.15 – 30 MHz	±2.2 dB
	30 – 1000 MHz	±2.5 dB
	1 – 18 GHz	±3.5 dB
	18 – 40 GHz	±3.8 dB
	40 – 200 GHz	N/A
Temperature		±0.8 °C
Humidity		±3 %
DC and low frequency voltages		±3 %
Time		±1.4 %
Duty Cycle		±1.4 %

2 Test Configuration of EUT

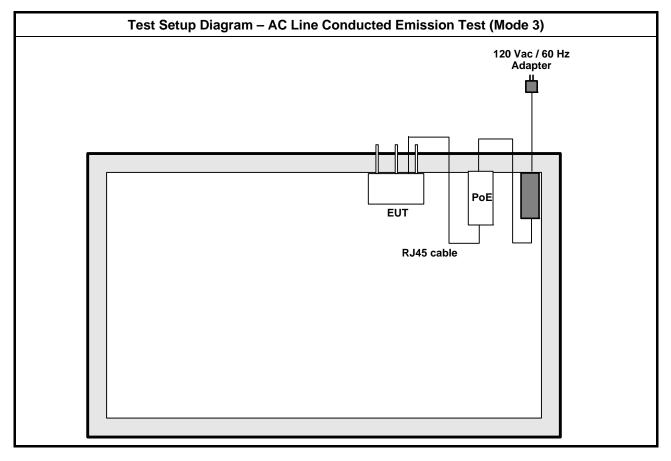
2.1 The Worst Case Modulation Configuration

	Worst Modulation Used for Conformance Testing								
Modulation Mode Transmit Chains (N _{TX}) Data Rate / MCS Worst Data Rate / MC									
11b	1	1-11 Mbps	1 Mbps						
11g	1	6-54 Mbps	6 Mbps						
HT20	3	MCS 0-23	MCS 0						
HT40	3	MCS 0-23	MCS 0						

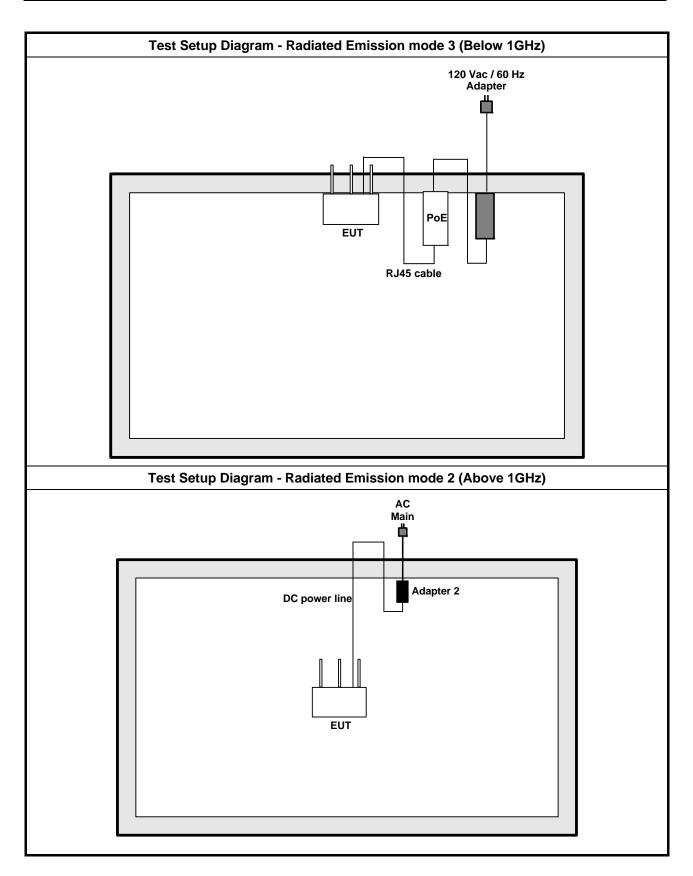
2.2 The Worst Case Power Setting Parameter

The Worst Case Power Setting Parameter (2400-2483.5MHz band)									
Test Software Version	DOS								
		Test Frequency (MHz)							
Modulation Mode	Ντχ		NCB: 20MHz			NCB: 40MHz			
		2412	2437	2462	2422	2437	2452		
11b	1	24	22.5	21	-	-	-		
11g	1	17	25	17	-	-	-		
HT-20	3	14	19	14	-	-	-		
HT-40	3	-	-	-	9.5	15	14		

2.3 The Worst Case Measurement Configuration


Т	The Worst Case Mode for Following Conformance Tests					
Tests Item AC power-line conducted emissions						
Condition AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz						
Operating Mode Operating Mode Description						
1	EUT with adatper 1 (Model Name:WA30B12)					
2	EUT with adatper 2 (Model Name:DA-48T12)					
3	3 EUT with PoE					
Operating mode 3 was th	ne worst case and it was recorded in this test report.					

The Worst Case Mode for Following Conformance Tests					
Tests Item	RF Output Power, Power Spectral Density, 6 dB Bandwidth				
Test Condition	Conducted measurement at transmit chains				
Modulation Mode	11b, 11g, HT20, HT40				


Th	e Worst Case Mode for Following Con	formance Tests					
Tests Item		Transmitter Radiated Unwanted Emissions Transmitter Radiated Bandedge Emissions					
Test Condition	Radiated measurement f EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.						
	EUT will be placed in fixed position.						
User Position	EUT will be placed in mobile position shall be performed two orthogonal p	n and operating multiple positions. EUT blanes. The worst plane is Z.					
	EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed two or three orthogonal planes.						
	1. EUT with adatper 1 (Model Name:WA30B12)						
Operating Made < 1CHz	2. EUT with adatper 2 (Model Name:DA-48T12)						
Operating Mode < 1GHz	3. EUT with PoE						
	For operating mode 3 was the worst cas	e and it was recorded in this test report.					
Operating Mode > 1GHz	2. EUT with adapter 2 (Model Name:D	A-48T12)					
Modulation Mode	11b, 11g, HT20, HT40						
	X Plane	Z Plane					
Orthogonal Planes of EUT							

2.4 Test Setup Diagram

Transmitter Test Result 3

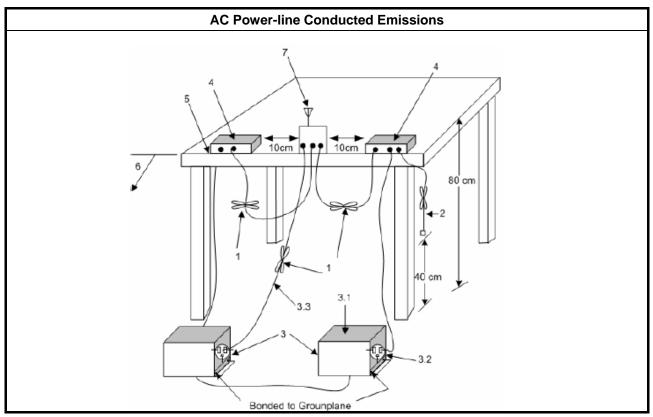
3.1 **AC Power-line Conducted Emissions**

3.1.1 **AC Power-line Conducted Emissions Limit**

AC Power-line Conducted Emissions Limit						
Frequency Emission (MHz) Quasi-Peak Average						
0.15-0.5	56 - 46 *					
0.5-5	56	46				
5-30 60 50						
Note 1: * Decreases with the logarithm of	of the frequency.	•				

creases with the logarithm of the frequency

3.1.2 Measuring Instruments

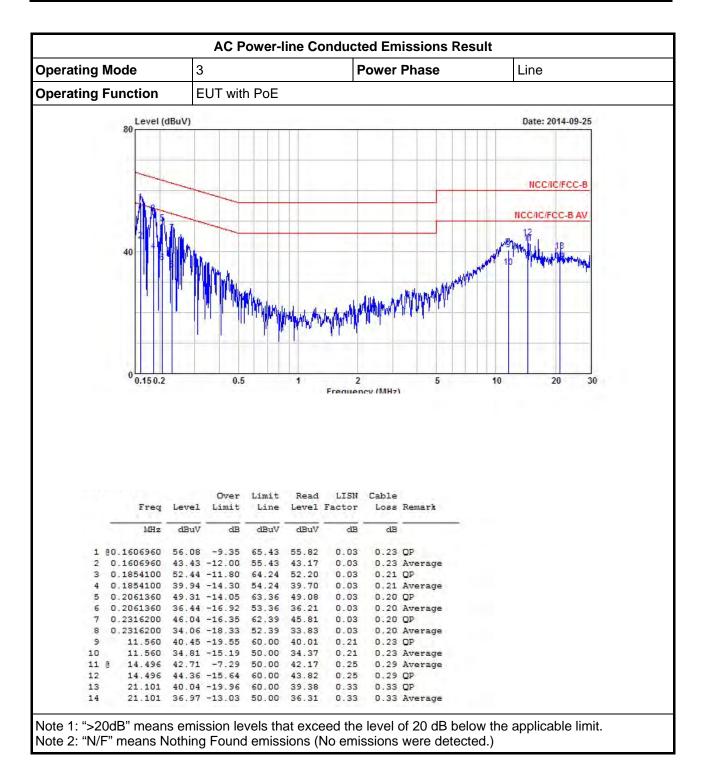

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method

Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup



erating Mode	3		F	Power	Phase		Neutral
erating Function	EUT wit	h PoE					·
Level (d	IBuV)						Date: 2014-09-2
80							
					_		NCC/IC/FCC-E
1							
115							NCC/IC/FCC-B AV
	1.						44
	ALA .			-			nb. []]\$
40 -	in the second second						With the second by later
	HAMPING AND ADDA				11	AM	a contraction
		- the life to a state of the st	in the m	A and k			
			MAL WINL	小的内有	MAN Lust	MNP .	
		ti i illini Ma	4 4 44	A. M.			
0							
0.150.2	0.5	5 1	2 Frequer		5	10	20
0 0.15 0.2	0.5	5 1		ncv (MHz		10	20
0 0.15 0.2	0.5	5 1				10	20
0 0.15 0.2	0.5	5 1				10	20
0 0.15 0.2	0.5	5 1				10	20
0 0.15 0.2	0.5	5 1				10	20
0 0.15 0.2	0.5	5 1				10	20
0 0.15 0.2			Frequer	ncv (MHz		10	20
	Over	Limit Rea	Frequer d LISN	cv (MHz Cable		10	20
Freq	Over Level Limit	Limit Rea Line Leve	Frequer A LISN 1 Factor	Cable Loss	Remark	10	20
	Over	Limit Rea	Frequer A LISN 1 Factor	cv (MHz Cable	Remark	10	20
Freq MHz 1 @0.1615500	Over Level Limit dBuV dB 55.95 -9.43	Limit Rea Line Leve dBuV dBu 65.38 55.7	Frequer d LISN Factor V dB 0 0.02	Cable Loss dB 0.23	Remark 	10	20
Freq MHz 1 80.1615500 2 0.1615500	Over Level Limit dBuV dB 55.95 -9.43 44.72 -10.66	Limit Rea Line Leve dBuV dBu 65.38 55.7 55.38 44.4	Frequer A LISN Factor V dB 0 0.02 7 0.02	Cable Loss dB 0.23 0.23	Remark OP Average	10	20
Freq MHz 1 80.1615500 2 0.1615500 3 0.1863950	Over Level Limit dBuV dB 55.95 -9.43	Limit Rea Line Leve dBuV dBu 65.38 55.7 55.38 44.4 64.20 51.7	Frequer A LISN Factor V dB 0 0.02 7 0.02 6 0.02	Cable Loss dB 0.23 0.23 0.21	Remark OP Average	10	20
Freq MHz 1 80.1615500 2 0.1615500 3 0.1863950	Over Level Limit dBuV dB 55.95 -9.43 44.72 -10.66 51.99 -12.21 41.38 -12.82	Limit Rea Line Leve dBuV dBu 65.38 55.7 55.38 44.4 64.20 51.7 54.20 41.1	Frequer A LISN 1 Factor V dB 0 0.02 7 0.02 6 0.02 5 0.02	Cable Loss dB 0.23 0.23 0.21	Remark OP Average OP Average	10	20
Freq 1 @0.1615500 2 0.1615500 3 0.1863950 4 0.1863950 5 0.2083320 6 0.2083320	Dver Level Limit dBuV dB 55.95 -9.43 44.72 -10.66 51.99 -12.21 41.38 -12.82 49.13 -14.14 39.50 -13.77	Limit Rea Line Leve dBuV dBu 65.38 55.7 55.38 44.4 64.20 51.7 54.20 41.1 63.27 48.9 53.27 39.2	Frequer A LISN 1 Factor V dB 0 0.02 7 0.02 6 0.02 5 0.02 1 0.02 8 0.02	Cable Loss 0.23 0.21 0.21 0.20 0.20	Remark OP Average OP Average OP Average	10	20
Freq MHz 1 @0.1615500 2 0.1615500 3 0.1863950 4 0.1863950 5 0.2083320 6 0.2083320 7 0.2316200	Dver Level Limit dBuV dB 55.95 -9.43 44.72 -10.66 51.99 -12.21 41.38 -12.82 49.13 -14.14 39.50 -13.77 36.84 -15.55	Limit Rea Line Leve dBuV dBu 65.38 55.7 55.38 44.4 64.20 51.7 54.20 41.1 63.27 48.9 53.27 39.2 52.39 36.6	Frequer a LISN 1 Factor V dB 0 0.02 7 0.02 6 0.02 5 0.02 5 0.02 1 0.02 8 0.02 2 0.02	Cable Loss 0.23 0.21 0.21 0.20 0.20 0.20	Remark OP Average OP Average OP Average Average	10	20
Freq MHz 1 80.1615500 2 0.1615500 3 0.1863950 4 0.1863950 5 0.2083320 6 0.2083320 7 0.2316200 8 0.2316200	Over Level Limit dBuV dB 55.95 -9.43 44.72 -10.66 51.99 -12.21 41.38 -12.82 49.13 -14.14 39.50 -13.77 36.84 -15.55 46.03 -16.36	Limit Read Line Leve dBuV dBu 65.38 55.7 55.38 44.4 64.20 51.7 54.20 41.1 63.27 48.9 53.27 39.2 52.39 36.6 62.39 45.8	Frequer A LISN Factor V dB 0 0.02 7 0.02 6 0.02 5 0.02 1 0.02 8 0.02 2 0.02 1 0.02 1 0.02 1 0.02	Cable Loss dB 0.23 0.21 0.21 0.20 0.20 0.20 0.20 0.20	Remark OP Average OP Average OP Average QP	10	20
Freq MHz 1 @0.1615500 2 0.1615500 3 0.1863950 4 0.1863950 5 0.2083320 6 0.2083320 7 0.2316200	Dver Level Limit dBuV dB 55.95 -9.43 44.72 -10.66 51.99 -12.21 41.38 -12.82 49.13 -14.14 39.50 -13.77 36.84 -15.55	Limit Real Line Leve dBuV dBu 65.38 55.7 55.38 44.4 64.20 51.7 54.20 41.1 63.27 48.9 53.27 39.2 52.39 36.6 62.39 45.8 50.00 33.0	Frequer A LISN Factor V dB 0 0.02 7 0.02 6 0.02 5 0.02 1 0.02 8 0.02 2 0.02 1 0.02 3 0.22	Cable Loss dB 0.23 0.21 0.21 0.20 0.20 0.20 0.20 0.20	Remark OP Average OP Average OP Average OP Average OP Average	10	20
Freq MHz 1 @0.1615500 2 0.1615500 3 0.1863950 4 0.1863950 4 0.1863950 5 0.2083320 6 0.2083320 7 0.2316200 8 0.2316200 9 11.620 10 11.620 11 14.501	Dver Level Limit dBuV dB 55.95 -9.43 44.72 -10.66 51.99 -12.21 41.38 -12.82 49.13 -14.14 39.50 -13.77 36.84 -15.55 46.03 -16.36 33.49 -16.51 39.37 -20.63 44.96 -15.04	Limit Rea Line Leve dBuV dBu 65.38 55.7 55.38 44.4 64.20 51.7 54.20 41.1 63.27 48.9 53.27 39.2 52.39 36.6 62.39 45.8 50.00 33.0 60.00 38.9 60.00 44.4	Frequer A LISN Factor C dB 0 0.02 7 0.02 6 0.02 7 0.02 6 0.02 1 0.02 8 0.02 1 0.02 8 0.02 1 0.22 1 0.26 1 0.26	Cable Loss dB 0.23 0.23 0.21 0.21 0.20 0.20 0.20 0.20 0.20 0.24 0.24	Remark OP Average OP Average OP Average OP Average OP Average OP OP	10	20
Freq 1 @0.1615500 2 0.1615500 3 0.1863950 4 0.1863950 5 0.2083320 6 0.2083320 7 0.2316200 8 0.2316200 9 11.620 10 11.620 11 14.501 12 @ 14.501	Dver Level Limit dBuV dB 55.95 -9.43 44.72 -10.66 51.99 -12.21 41.38 -12.82 49.13 -14.14 39.50 -13.77 36.84 -15.55 46.03 -16.36 33.49 -16.51 39.37 -20.63 344.96 -15.04 43.66 -6.34	Limit Rea Line Leve dBuV dBu 65.38 55.7 55.38 44.4 64.20 51.7 54.20 41.1 63.27 48.9 53.27 39.2 52.39 36.6 62.39 45.8 50.00 38.9 60.00 44.4 50.00 43.1	Frequer A LISN Factor A LISN Factor A D 0.02 7 0.02 6 0.02 7 0.02 6 0.02 1 0.02 8 0.02 1 0.22 1 0.26 1 0	Cable Loss dB 0.23 0.21 0.21 0.20 0.20 0.20 0.20 0.20 0.20	Remark OP Average OP Average OP Average OP Average OP Average OP Average	10	20
Freq MHz 1 @0.1615500 2 0.1615500 3 0.1863950 4 0.1863950 4 0.1863950 5 0.2083320 6 0.2083320 7 0.2316200 8 0.2316200 9 11.620 10 11.620 11 14.501	Dver Level Limit dBuV dB 55.95 -9.43 44.72 -10.66 51.99 -12.21 41.38 -12.82 49.13 -14.14 39.50 -13.77 36.84 -15.55 46.03 -16.36 33.49 -16.51 39.37 -20.63 44.96 -15.04	Limit Rea Line Leve dBuV dBu 65.38 55.7 55.38 44.4 64.20 51.7 54.20 41.1 63.27 48.9 53.27 39.2 52.39 36.6 62.39 45.8 50.00 33.0 60.00 44.4 50.00 43.1 50.00 39.4	Frequer A LISN 1 Factor V dB 0 0.02 7 0.02 6 0.02 5 0.02 1 0.02 8 0.02 2 0.02 1 0.02 8 0.02 2 0.02 1 0.02 3 0.22 1 0.22 1 0.22 8 0.22 1 0.22 1 0.22 8 0.30	Cable Loss dB 0.23 0.21 0.21 0.20 0.20 0.20 0.20 0.20 0.20	Remark OP Average OP Average OP Average OP Average OP Average OP Average OP Average Average	10	20

3.1.5 Test Result of AC Power-line Conducted Emissions

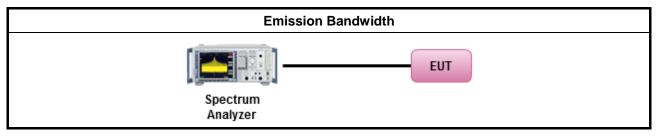
3.2 6dB Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit

Systems using digital modulation techniques:

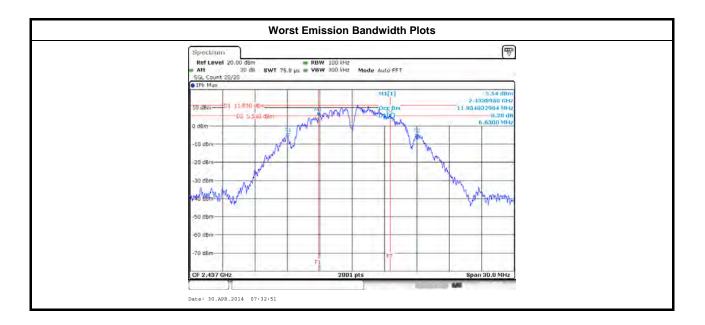
 \boxtimes 6 dB bandwidth ≥ 500 kHz.


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

		Test Method						
\square	For	the emission bandwidth shall be measured using one of the options below:						
	Refer as FCC KDB 558074, clause 8.1 Option 1 for 6 dB bandwidth measurement.							
	Refer as FCC KDB 558074, clause 8.2 Option 2 for 6 dB bandwidth measurement.							
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.						
\square	For	conducted measurement.						
	The EUT supports single transmit chain and measurements performance of this transmit chain port 1.							
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.						
	\square	The EUT supports multiple transmit chains using options given below:						
	Option 1: Multiple transmit chains measurements need to be performed on one of the activ transmit chains (antenna outputs). All measurement had be performed on transmit chains 1.							
		Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.						


3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

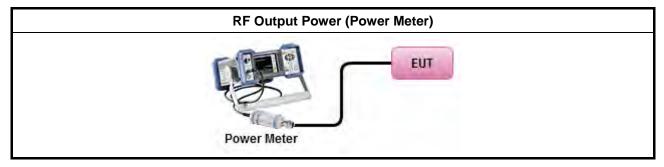
			Emi	ssion Bandwid	th Result					
Condit	ion		Emission Bandwidth (MHz)							
Madulation Mada	Modulation Mode NTY Freq.		99% Bandwidth			6dB Bandwidth				
Modulation Mode	Ντχ	(MHz)	Chain Port 1	Chain Port 2	Chain Port 3	Chain Port 1	Chain Port 2	Chain Port 3		
11b	1	2412	12.02	-	-	7.05	-	-		
11b	1	2437	11.93	-	-	6.63	-	-		
11b	1	2462	11.67	-	-	7.09	-	-		
11g	1	2412	16.46	-	-	16.53	-	-		
11g	1	2437	17.07	-	-	16.50	-	-		
11g	1	2462	16.46	-	-	16.48	-	-		
HT20	3	2412	17.69	17.61	17.69	17.73	17.05	17.73		
HT20	3	2437	17.67	17.70	17.64	17.55	17.74	17.58		
HT20	3	2462	17.72	17.63	17.70	17.73	17.64	17.64		
HT40	3	2422	36.14	36.18	36.26	36.00	36.36	36.40		
HT40	3	2437	36.10	36.10	36.14	34.68	34.76	35.32		
HT40	3	2452	36.26	36.18	36.18	35.68	34.48	36.16		
Limi	it			N/A			≥500 kHz			
Result				Complied						
Note 1: N _{TX} = Number	of Tran	smit Chain	S							

3.3 RF Output Power

3.3.1 RF Output Power Limit

	RF Output Power Limit								
Мах	Maximum Peak Conducted Output Power or Maximum Conducted Output Power Limit								
\square	240	0-2483.5 MHz Band:							
	\boxtimes	If $G_{TX} \le 6 \text{ dBi}$, then $P_{Out} \le 30 \text{ dBm} (1 \text{ W})$							
	\square	Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm							
		Point-to-point systems (P2P): If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 \text{ dBm}$							
		Smart antenna system (SAS):							
		Single beam: If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 \text{ dBm}$							
		Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm							
		Aggregate power on all beams: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3 + 8$ dB dBm							
e.i.r	.р. Р	ower Limit:							
\square	240	0-2483.5 MHz Band							
	\square	Point-to-multipoint systems (P2M): P _{eirp} ≤ 36 dBm (4 W)							
		Point-to-point systems (P2P): $P_{eirp} \le MAX(36, [P_{Out} + G_{TX}]) dBm$							
		Smart antenna system (SAS)							
		Single beam: $P_{eirp} \le MAX(36, P_{Out} + G_{TX}) dBm$							
		□ Overlap beam: $P_{eirp} \le MAX(36, P_{Out} + G_{TX}) dBm$							
		Aggregate power on all beams: $P_{eirp} \leq MAX(36, [P_{Out} + G_{TX} + 8]) dBm$							
G _{TX}	= the	aximum peak conducted output power or maximum conducted output power in dBm, e maximum transmitting antenna directional gain in dBi. i.r.p. Power in dBm.							

3.3.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

		Test Method							
\square	Max	imum Peak Conducted Output Power							
		Refer as FCC KDB 558074, clause 9.1.1 Option 1 (RBW \ge EBW method).							
	\boxtimes	Refer as FCC KDB 558074, clause 9.1.3 Option 2 (peak power meter for VBW ≥ DTS BW)							
\square	Maximum Conducted Output Power								
	[dut	y cycle ≥ 98% or external video / power trigger]							
	\boxtimes	Refer as FCC KDB 558074, clause 9.2.2.2 Method AVGSA-1 (spectral trace averaging).							
		Refer as FCC KDB 558074, clause 9.2.2.3 Method AVGSA-1 Alt. (slow sweep speed)							
	duty	cycle < 98% and average over on/off periods with duty factor							
	\boxtimes	Refer as FCC KDB 558074, clause 9.2.2.4 Method AVGSA-2 (spectral trace averaging).							
		Refer as FCC KDB 558074, clause 9.2.2.5 Method AVGSA-2 Alt. (slow sweep speed)							
	RF	power meter and average over on/off periods with duty factor or gated trigger							
		Refer as FCC KDB 558074, clause 9.2.3 Method AVGPM (using an RF average power meter).							
\square	For	conducted measurement.							
	\boxtimes	The EUT supports single transmit chain and measurements performance on this transmit chain port 1.							
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.							
	\boxtimes	The EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.							
	\boxtimes	If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG							

3.3.4 Test Setup

Directional Gain (DG) Result									
Transmit Chains	s No.	1	2	3	-				
Maximum G _{ANT}	(dBi)	2.4	2.4	2.4	-				
Modulation Mode	DG (dBi)	Ν _{τχ}	N _{ss} (Min.)	STBC	Array Gain (dB)				
11b	2.4	1	1	-	-				
11g	2.4	1	1	-	-				
HT20	2.4	3	1/2/3	-	-				
HT40	2.4	3	1/2/3	-	-				
Any transmit signals a All transmit signals are Note 2: For all transmitter outp Any transmit signals a All transmit signals are Note 3: For Spatial Multiplexin where Nss = the numb Note 4: For CDD transmission Directional Gain (DG)	 Note 1: For all transmitter outputs with equal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain = G_{ANT} + 10 log(N_{TX}) All transmit signals are completely uncorrelated, Directional Gain = G_{ANT} Note 2: For all transmitter outputs with unequal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain =10 log[(10^{G1/20} + + 10^{GN/20})² /N_{TX}] All transmit signals are completely uncorrelated, Directional Gain = 10 log[(10^{G1/20} + + 10^{GN/10})/N_{TX}] Note 3: For Spatial Multiplexing, Directional Gain (DG) = G_{ANT} + 10 log(N_{TX}/N_{SS}), where Nss = the number of independent spatial streams data. Note 4: For CDD transmissions, directional gain is calculated as power measurements: Directional Gain (DG) = G_{ANT} + Array Gain, where Array Gain is as follows: Array Gain = 0 dB (i.e., no array gain) for N_{TX} ≤ 4; 								

3.3.5 Directional Gain for Power Measurement

	Maximum Peak Conducted Output Power Result												
Condit	Condition				RF Output Power (dBm)								
Modulation Mode	Ντχ	Freq. (MHz)	Chain Port 1	Chain Port 2	Chain Port 3	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit			
11b	1	2412	25.40	-	-	25.40	30.00	2.4	27.80	36.00			
11b	1	2437	24.48	-	-	24.48	30.00	2.4	26.88	36.00			
11b	1	2462	23.25	-	-	23.25	30.00	2.4	25.65	36.00			
11g	1	2412	20.63	-	-	20.63	30.00	2.4	23.03	36.00			
11g	1	2437	27.73	-	-	27.73	30.00	2.4	30.13	36.00			
11g	1	2462	21.28	-	-	21.28	30.00	2.4	23.68	36.00			
HT20	3	2412	18.58	18.24	18.94	23.37	30.00	2.4	25.77	36.00			
HT20	3	2437	23.92	23.52	22.98	28.26	30.00	2.4	30.66	36.00			
HT20	3	2462	18.41	19.34	19.13	23.75	30.00	2.4	26.15	36.00			
HT40	3	2422	13.85	14.21	14.80	19.08	30.00	2.4	21.48	36.00			
HT40	3	2437	19.40	19.75	19.65	24.37	30.00	2.4	26.77	36.00			
HT40	3	2452	17.82	18.27	18.13	22.85	30.00	2.4	25.25	36.00			
Resu	ılt	-	Complied										
Note : IEEE 802.11 n h	ave the	CDD functio	on, so the ar	ray gain is ().								

3.3.6 Test Result of Maximum Peak Conducted Output Power

3.3.7 Test Result of Maximum Conducted Output Power

	Maximum Conducted Output Power Result										
Condit	RF Output Power (dBm)										
Modulation Mode	Ντχ	Freq. (MHz)	Chain Port 1	Chain Port 2	Chain Port 3	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit	
11b	1	2412	22.46	-	-	22.46	30.00	2.4	24.86	36.00	
11b	1	2437	21.55	-	-	21.55	30.00	2.4	23.95	36.00	
11b	1	2462	20.05	-	-	20.05	30.00	2.4	22.45	36.00	
11g	1	2412	15.75	-	-	15.75	30.00	2.4	18.15	36.00	
11g	1	2437	22.78	-	-	22.78	30.00	2.4	25.18	36.00	
11g	1	2462	16.18	-	-	16.18	30.00	2.4	18.58	36.00	
HT20	3	2412	13.17	12.82	13.54	17.95	30.00	2.4	20.35	36.00	
HT20	3	2437	18.62	18.01	17.73	22.90	30.00	2.4	25.30	36.00	
HT20	3	2462	13.05	13.81	13.69	18.30	30.00	2.4	20.70	36.00	
HT40	3	2422	8.34	8.69	9.25	13.55	30.00	2.4	15.95	36.00	
HT40	3	2437	13.84	14.24	14.11	18.84	30.00	2.4	21.24	36.00	
HT40	3	2452	12.61	12.84	12.64	17.47	30.00	2.4	19.87	36.00	
Resu	ult		Complied								
Note : IEEE 802.11 n h	nave the	CDD functio	on, so the ar	ray gain is ().						

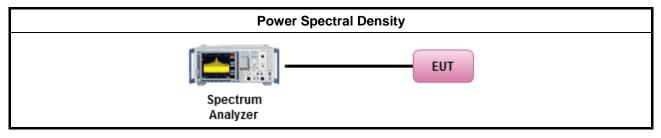
Power Spectral Density 3.4

3.4.1 **Power Spectral Density Limit**

Power Spectral Density Limit

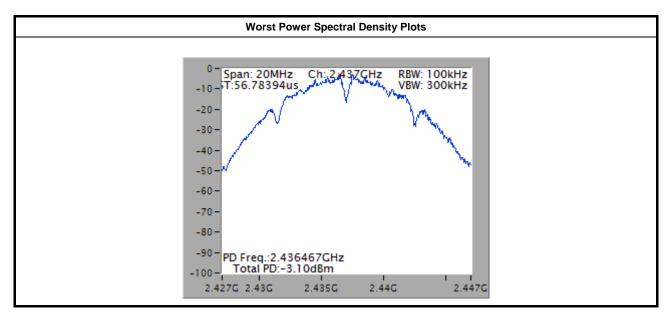
 \boxtimes Power Spectral Density (PSD) ≤ 8 dBm/3kHz

3.4.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

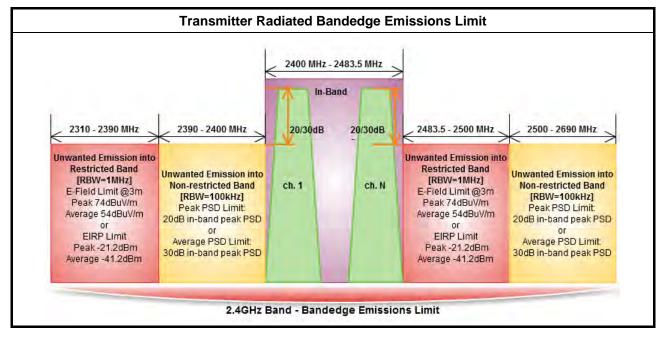
3.4.3 Test Procedures

		Test Method						
	Peak power spectral density procedures that the same method as used to determine the conducted output power. If maximum peak conducted output power was measured to demonstrate compliance to the output power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum conducted output power was measured to demonstrate compliance to the output power limit, then one of the average PSD procedures shall be used, as applicable based on the following criteria (the peak PSD procedure is also an acceptable option).							
	\boxtimes	Refer as FCC KDB 558074, clause 10.2 Method PKPSD (RBW=3-100kHz;detector=peak)						
	[dut	y cycle ≥ 98% or external video / power trigger]						
	\boxtimes	Refer as FCC KDB 558074, clause 10.3 Method AVGPSD-1 (spectral trace averaging).						
		Refer as FCC KDB 558074, clause 10.4 Method AVGPSD-1 Alt. (slow sweep speed)						
	duty cycle < 98% and average over on/off periods with duty factor							
	Refer as FCC KDB 558074, clause 10.5 Method AVGPSD-2 (spectral trace averaging).							
		Refer as FCC KDB 558074, clause 10.6 Method AVGPSD-2 Alt. (slow sweep speed)						
\square	For conducted measurement.							
	\boxtimes	The EUT supports single transmit chain and measurements performed on this transmit chain port 1.						
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.						
	\boxtimes	The EUT supports multiple transmit chains using options given below:						
		\boxtimes Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the N _{TX} output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.						
		Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.						



3.4.4 Test Setup

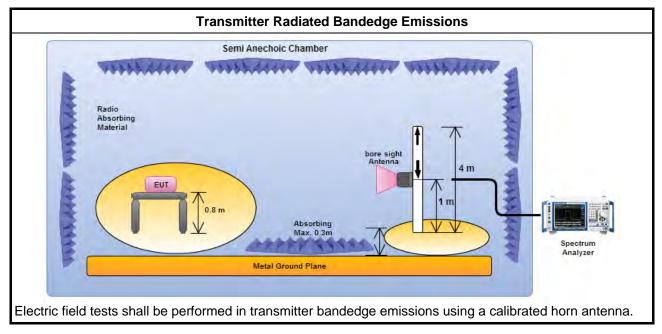
3.4.5 Test Result of Power Spectral Density


	Power Spectral Density Result								
Condi	tion		Power Spectral Density						
Modulation Mode	Ντχ	Freq. (MHz)	Sum Chain (dBm/100kHz)	PSD Limit (dBm/3kHz)					
11b	1	2412	-3.86	8					
11b	1	2437	-3.10	8					
11b	1	2462	-4.29	8					
11g	1	2412	-14.20	8					
11g	1	2437	-7.45	8					
11g	1	2462	-13.82	8					
HT20	3	2412	-9.47	8					
HT20	3	2437	-5.12	8					
HT20	3	2462	-10.05	8					
HT40	3	2422	-16.23	8					
HT40	3	2437	-10.95	8					
HT40	3	2452	-11.43	8					
Resu	ılt		Com	plied					

3.5 Transmitter Bandedge Emissions

3.5.1 Transmitter Radiated Bandedge Emissions Limit

3.5.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

		Test Method							
\square	The	The average emission levels shall be measured in [duty cycle \geq 98 or duty factor].							
\bowtie	Refer as ANSI C63.10, clause 6.9.2.2 bandedge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.								
\square	For	the transmitter unwanted emissions shall be measured using following options below:							
	\boxtimes	Refer as FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.							
	\boxtimes	Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.							
		□ Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle ≥98%)							
		Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).							
		☐ Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW≥1/T).							
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.							
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.							
		Refer as FCC KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.							
\boxtimes	For	the transmitter bandedge emissions shall be measured using following options below:							
		Refer as FCC KDB 558074, clause 13.3 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).							
	\boxtimes	Refer as ANSI C63.10, clause 6.9.2 for band-edge testing and the test distance is 3m.							
		Refer as ANSI C63.10, clause 6.9.3 for marker-delta method for band-edge measurements.							
\boxtimes	For	radiated measurement, refer as FCC KDB 558074, clause 12.2.7.							

3.5.4 Test Setup

3.5.5 Transmitter Radiated Bandedge Emissions

Modulation	N _{TX}	Test Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Pol.
11b	1	2412	111.52	2399.94	68.37	43.15	20	V
11b	1	2462	109.69	2521.90	51.43	58.26	20	V
11g	1	2412	101.90	2400.00	73.18	28.72	20	V
11g	1	2462	100.88	2510.60	51.49	49.39	20	V
HT20	3	2412	105.97	2400.00	74.62	31.35	20	V
HT20	3	2462	107.92	2519.90	52.19	55.73	20	V
HT40	3	2422	100.87	2400.00	70.30	30.57	20	V
HT40	3	2452	103.66	2507.12	51.86	51.80	20	V

Modulation Mode	Ντχ	Freq. (MHz)	Measure Distance (m)	Freq. (MHz) PK	Level (dBuV/m) PK	Limit (dBuV/m) PK	Freq. (MHz) AV	Level (dBuV/m) AV	Limit (dBuV/m) AV	Pol.
11b	1	2412	3	2371.26	64.31	74	2389.07	51.66	54	V
11b	1	2462	3	2499.50	62.26	74	2500.00	47.73	54	V
11g	1	2412	3	2390.00	71.50	74	2390.00	51.09	54	V
11g	1	2462	3	2483.50	69.84	74	2483.50	48.20	54	V
HT20	3	2412	3	2390.00	70.59	74	2390.00	51.74	54	V
HT20	3	2462	3	2484.20	70.15	74	2483.50	50.59	54	V
HT40	3	2422	3	2389.46	72.52	74	2390.00	52.99	54	V
HT40	3	2452	3	2483.60	69.85	74	2483.50	52.17	54	V

3.6 Transmitter Unwanted Emissions

3.6.1 Transmitter Radiated Unwanted Emissions Limit

	Restricted Band Emissions Limit										
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)								
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300								
0.490~1.705	24000/F(kHz)	33.8 - 23	30								
1.705~30.0	30	29	30								
30~88	100	40	3								
88~216	150	43.5	3								
216~960	200	46	3								
Above 960	500	54	3								

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

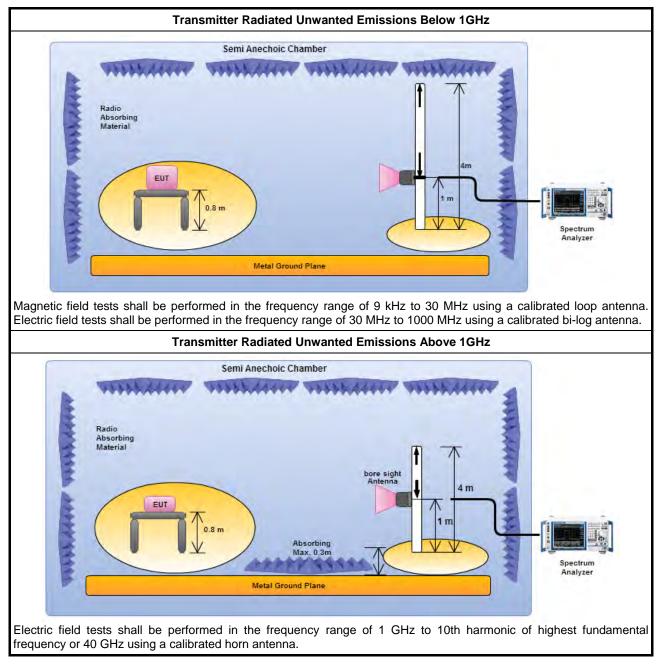
Un-restricted Band Emissions Limit						
RF output power procedure Limit (dB)						
Peak output power procedure	20					
Average output power procedure	30					
Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within						

any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.



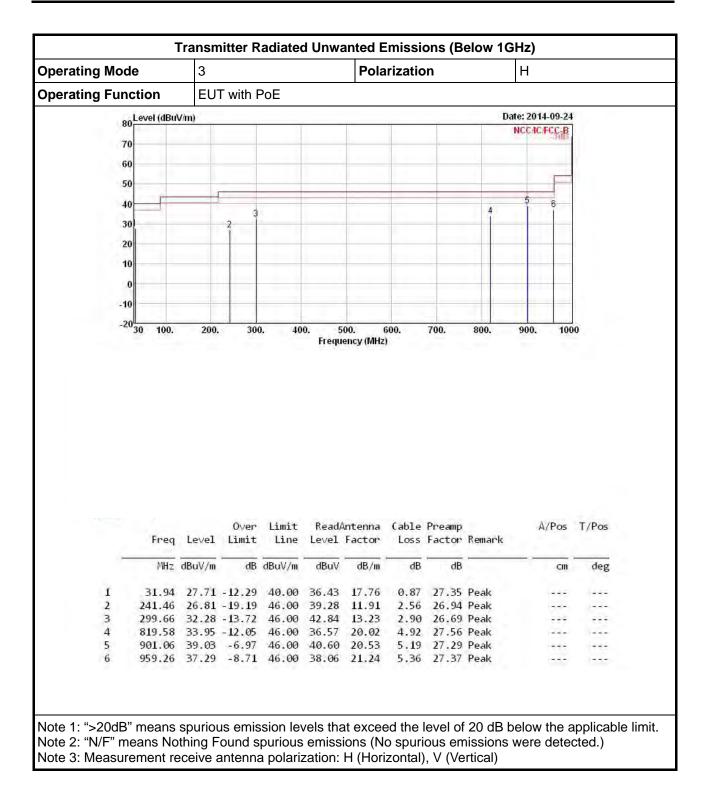
3.6.3 Test Procedures

		Test Method							
\boxtimes	Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).								
		Measurements in the frequency range 10 GHz - 18GHz are typically made at a closer distance 1m, because the instrumentation noise floor is typically close to the radiated emission limit.							
		Measurements in the frequency range above 18 GHz - 25GHz are typically made at a closer distance 0.5m, because the instrumentation noise floor is typically close to the radiated emission limit.							
\boxtimes	The	average emission levels shall be measured in [duty cycle ≥ 98 or duty factor].							
\boxtimes	For	the transmitter unwanted emissions shall be measured using following options below:							
	\square	Refer as FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.							
	\square	Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.							
		□ Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle ≥98%)							
		Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).							
		□ Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW≥1/T).							
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.							
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.							
		Refer as FCC KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.							
		Refer as FCC KDB 558074, clause 12.2.3 measurement procedure Quasi-Peak limit.							
\boxtimes	For	radiated measurement, refer as FCC KDB 558074, clause 12.2.7.							
	\boxtimes	Refer as ANSI C63.10, clause 6.4 for radiated emissions below 30 MHz and test distance is 3m.							
	\square	Refer as ANSI C63.10, clause 6.5 for radiated emissions 30 MHz to 1 GHz and test distance is 3m.							
	\square	Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1 GHz and test distance is 3m.							

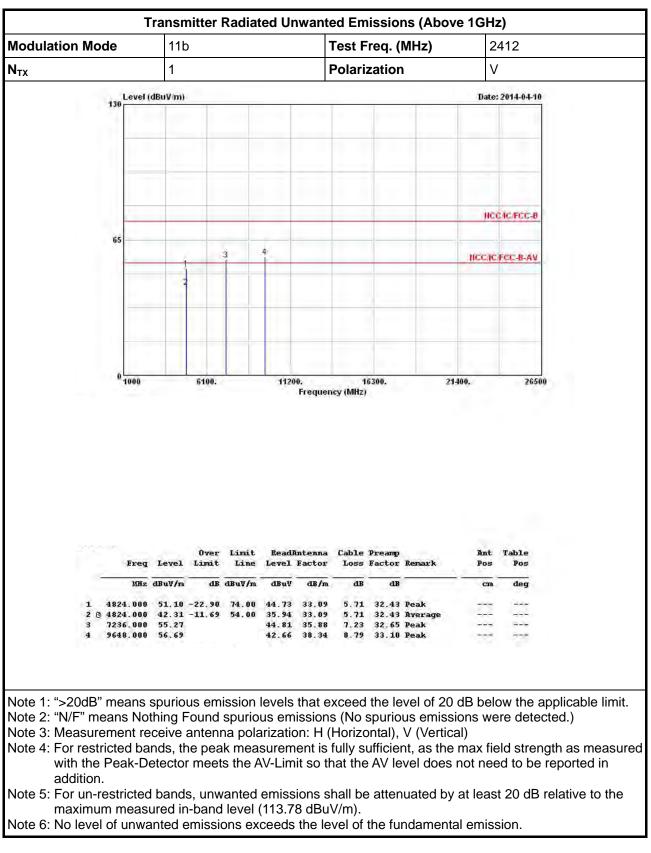
3.6.4 Test Setup

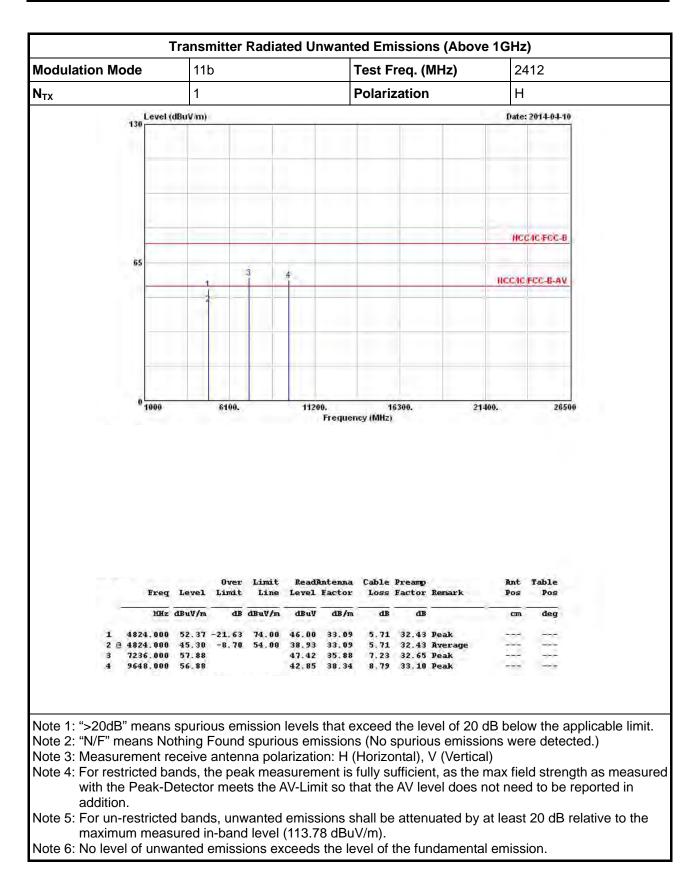
3.6.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

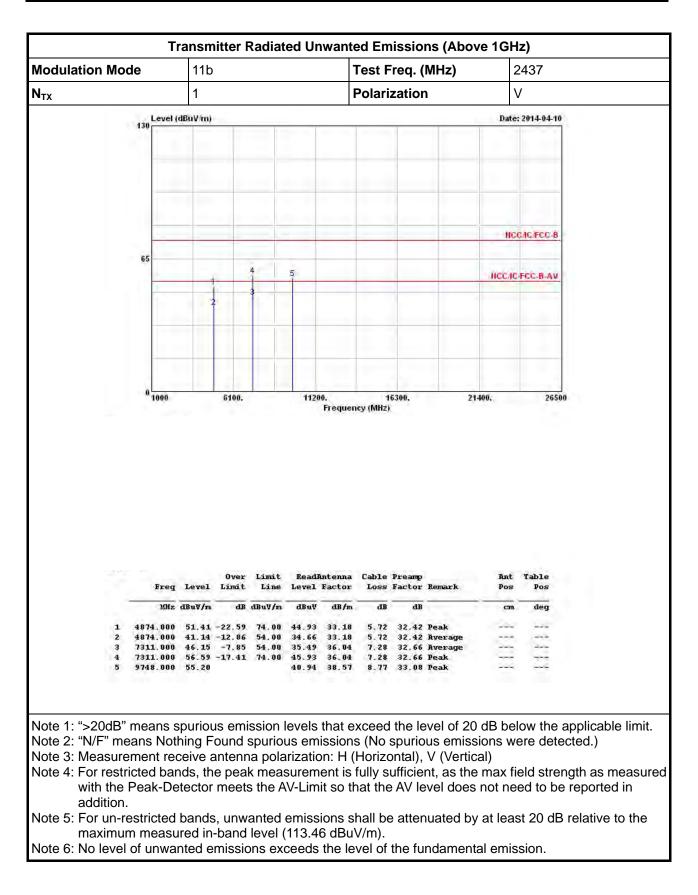
All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.



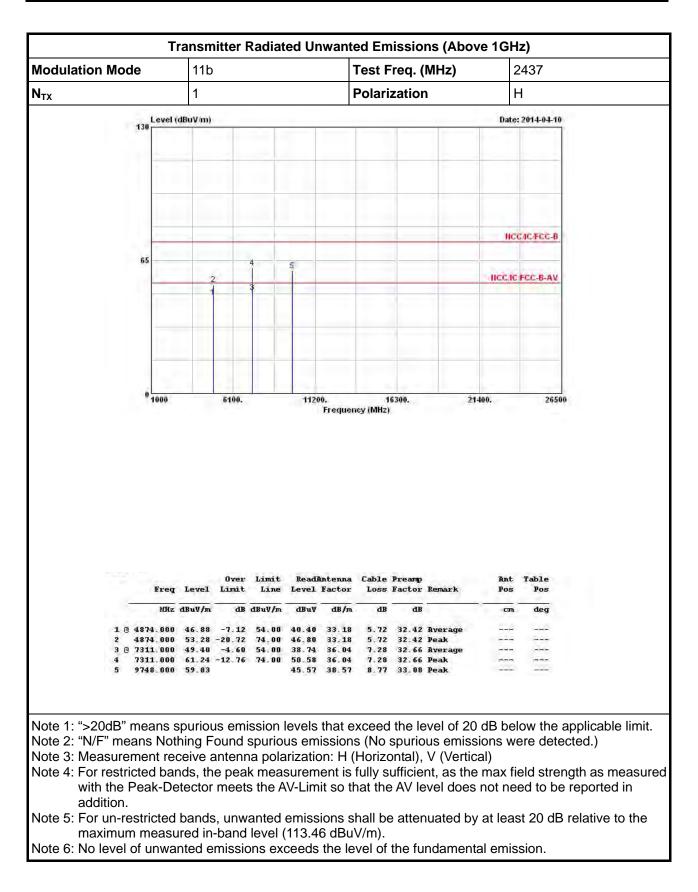
perating Mode		3	3			Polarization				V	V	
erating	Function	E	EUT with PoE									
	80 Level (dBu	V/m)	Date: 2014-09-24									
										NCC	CACAFCE	
	70										1	U
	60									_		
	50		_									
	101				-					6		
	401	5.	3			4		5		1		
	30	2		_		-						
	20						-					
	10											
	0							1				
	-10		-			-						
	-20 <mark>30 100.</mark>	200.	300	0. 40		ioo. (ency (MHz	600.)	700.	800.	90	0. 100	90
	· · · · ·	200.	300). 40				700.	800.	90	0. 100	90
	-20 30 100.	200. Level	Over	Limit	Frequ) Cable	Preamp				
	-20 30 100. Freq		Over Limit	Limit	Frequ	ency (MHz Antenna) Cable	Preamp				
	-20 30 100. Freq MHz	Level dBuV/m	Over Limit 	Limit Line dBuV/m	Frequ Read/ Level dBuV	Antenna Factor dB/m	(able Loss dB	Preamp Factor dB	Remark		A/Pos	T/Pos
	-20 30 100. Freq MHz	Level dBuV/m 36.92	Over Limit 	Limit Line dBuV/m 40.00	Frequ Read/ Level dBuV	Antenna Factor	(able Loss dB	Preamp Factor dB 27.28	Remark 		A/Pos	T/Pos
1 2 3	-20 30 100. Freq MHz 33.88 171.62 299.66	Level dBuV/m 36.92 27.62 36.45	0ver Limit dB -3.08 -15.88 -9.55	Limit Line dBuV/m 40.00 43.50 46.00	Read/ Level dBuV 46.61 42.95	Antenna Factor dB/m <u>16.67</u> 9.66 13.23	(able Loss dB 0.92 2.16	Preamp Factor dB 27.28	Remark		A/Pos	T/Pos
1 2 3 4	-20 30 100. Freq MHz 33.88 171.62 299.66 584.84	Level dBuV/m 36.92 27.62 36.45 34.43	0∨er Limit dB -3.08 -15.88 -9.55 -11.57	Limit Line dBuV/m 40.00 43.50 46.00 46.00	Frequ Read/ Level dBuV 46.61 42.95 47.01 39.96	Antenna Factor dB/m <u>16.67</u> 9.66 13.23 18.18	(able Loss dB 0.92 2.16 2.90 4.08	Preamp Factor dB 27.28 27.15 26.69 27.79	Remark OP Peak Peak Peak		A/Pos	T/Pos
1 2 3	-20 30 100. Freq MHz 33.88 171.62 299.66 584.84 683.78	Level dBuV/m <u>36.92</u> 27.62 36.45 34.43 35.30	0∨er Limit dB -3.08 -15.88 -9.55 -11.57	Limit Line dBuV/m 40.00 43.50 46.00 46.00 46.00	Frequ Read/ Level dBuV 46.61 42.95 47.01 39.96 39.93	Antenna Factor dB/m <u>16.67</u> 9.66 13.23 18.18 18.67	Cable Loss dB 0.92 2.16 2.90	Preamp Factor dB 27.28 27.15 26.69 27.79 27.79	Remark OP Peak Peak Peak Peak		A/Pos	T/Pos

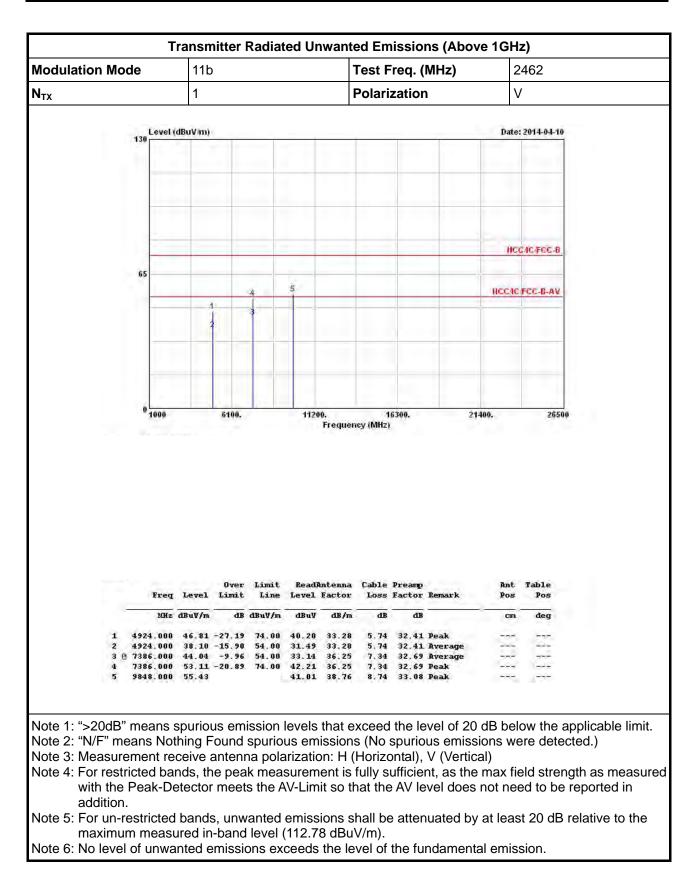

3.6.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)

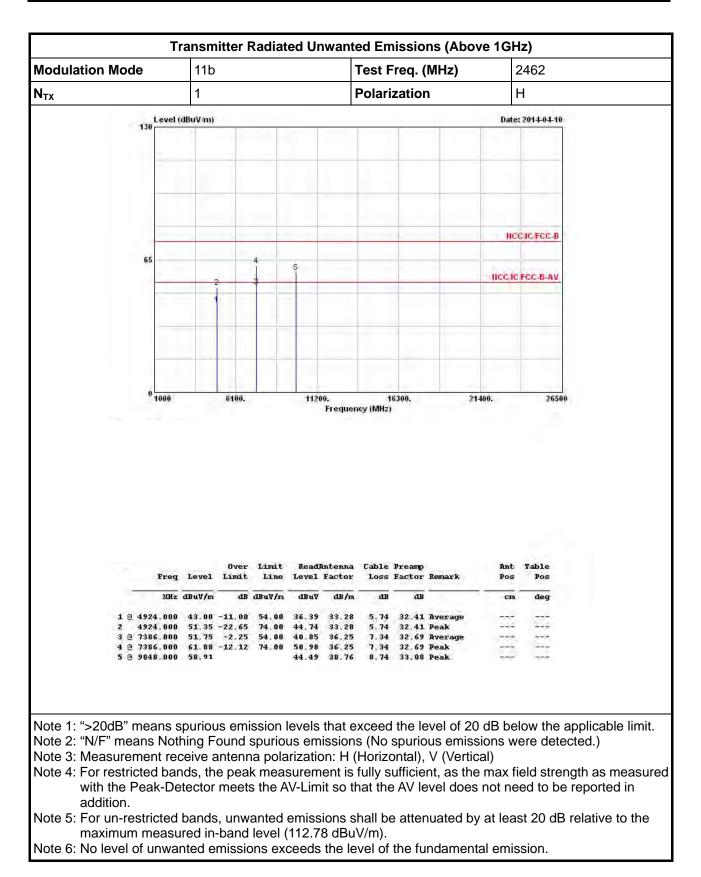


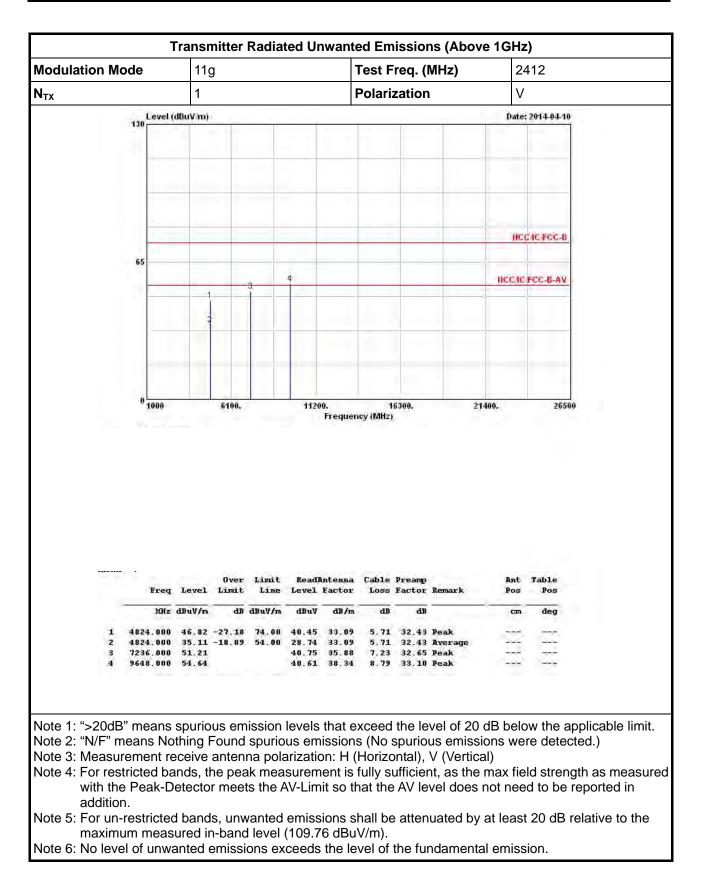


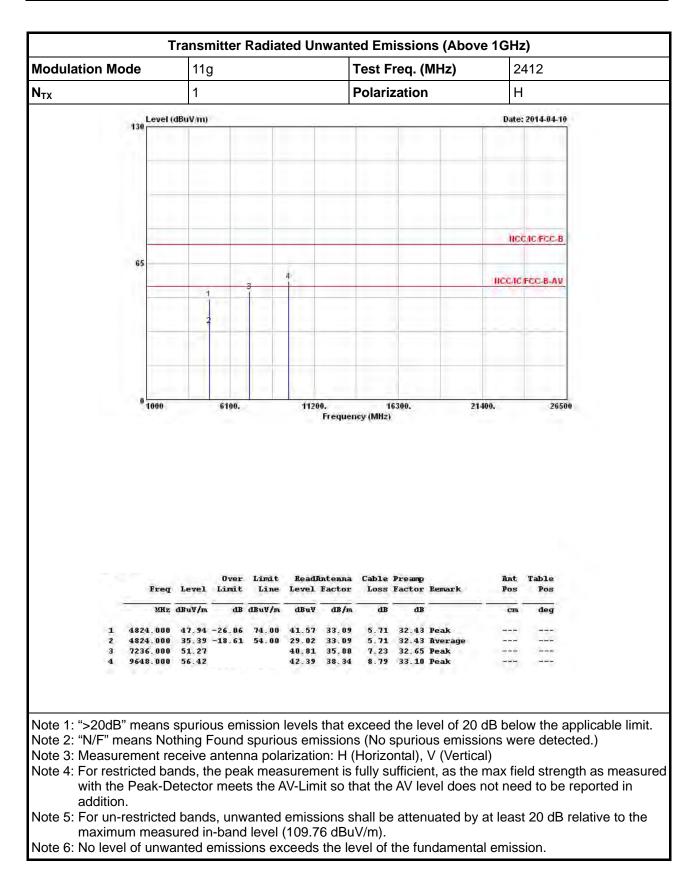
3.6.7 Transmitter Radiated Unwanted Emissions (Above 1GHz)

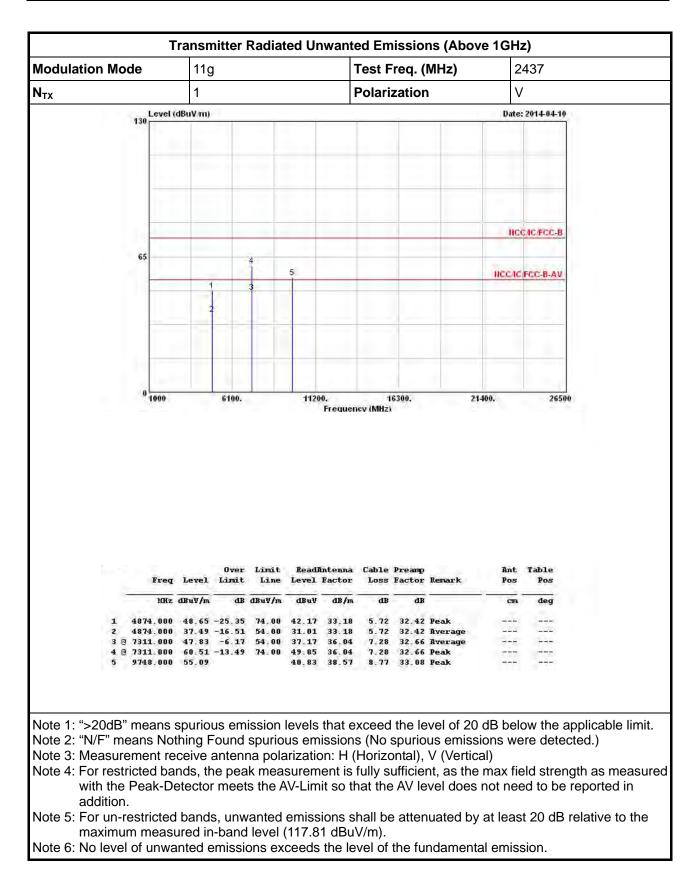


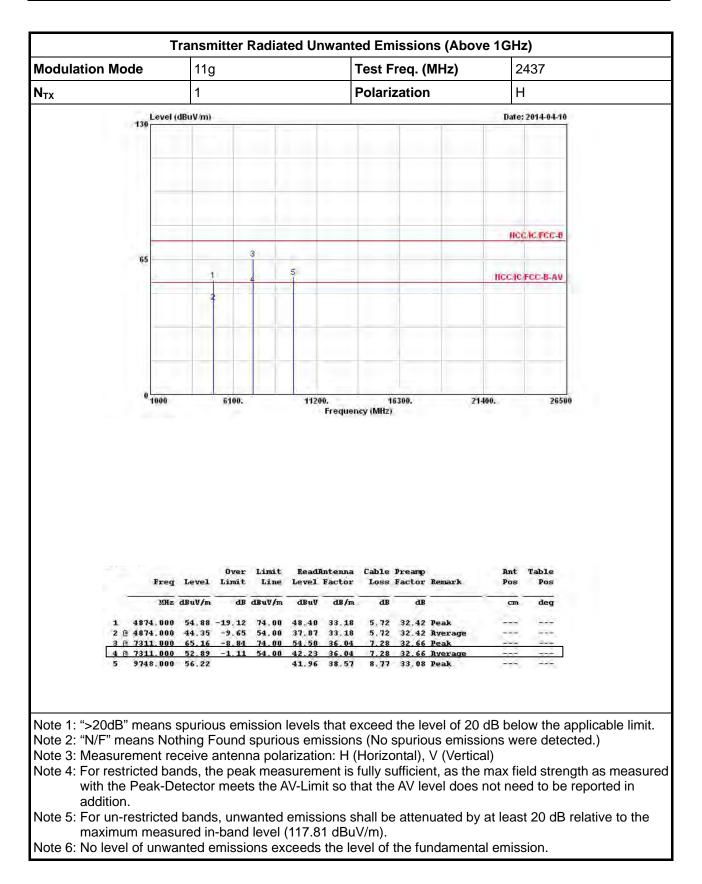


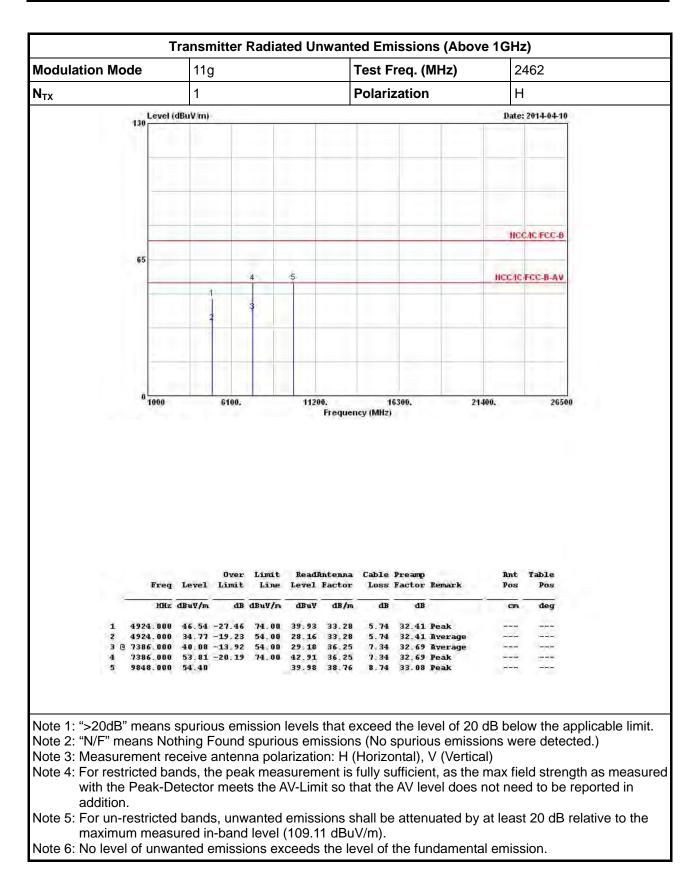


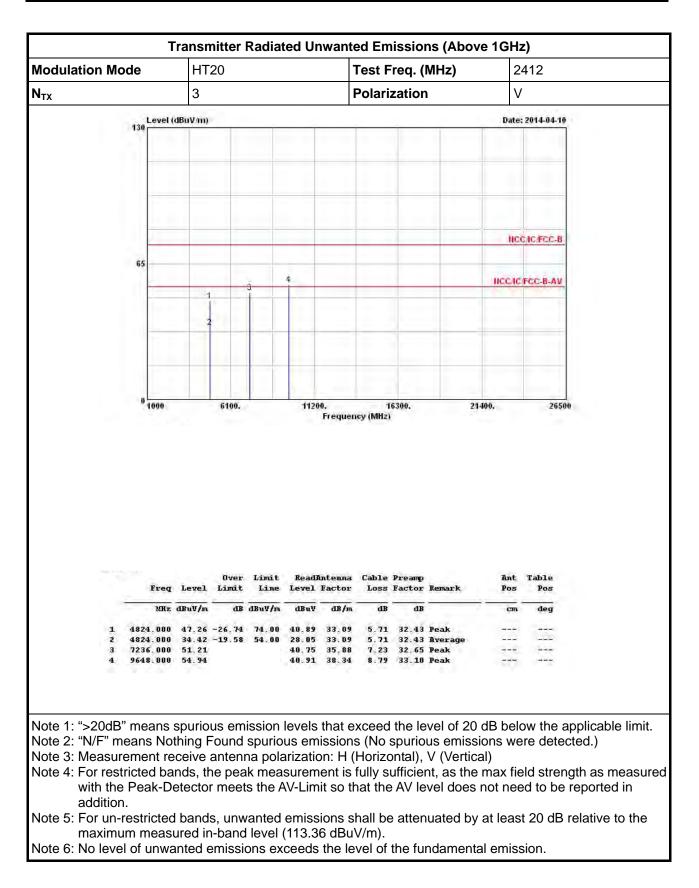


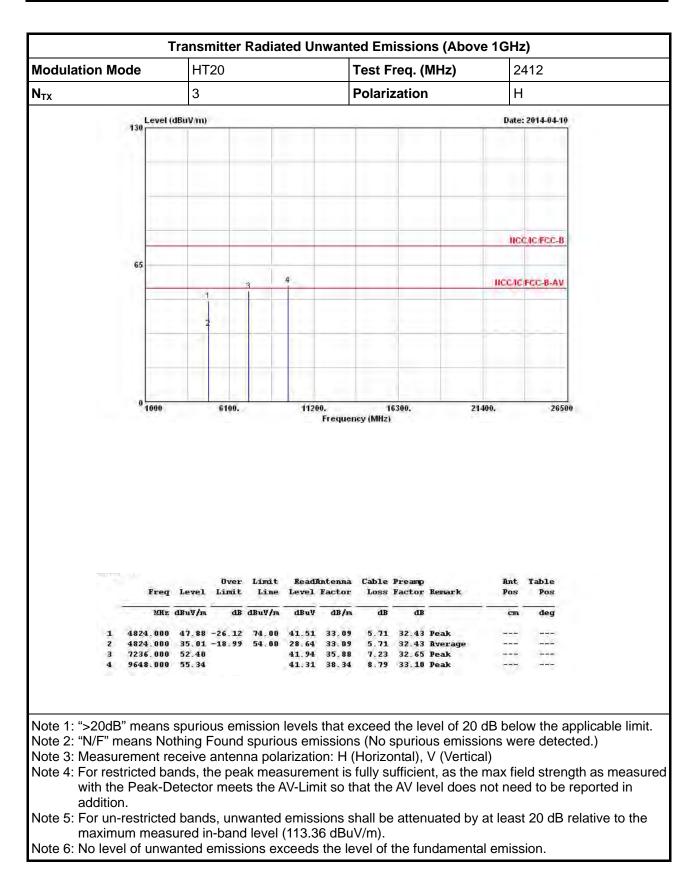


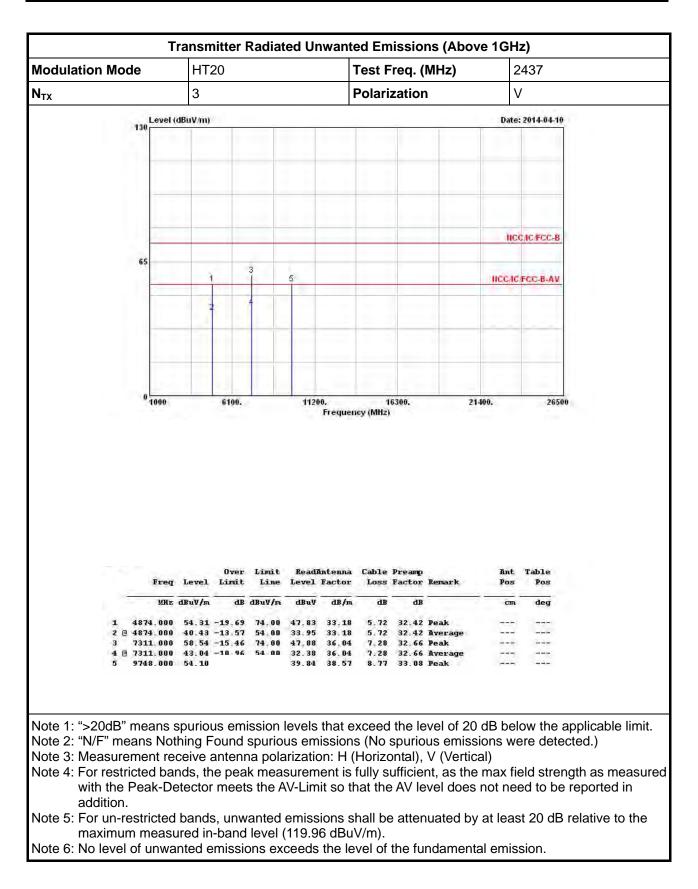


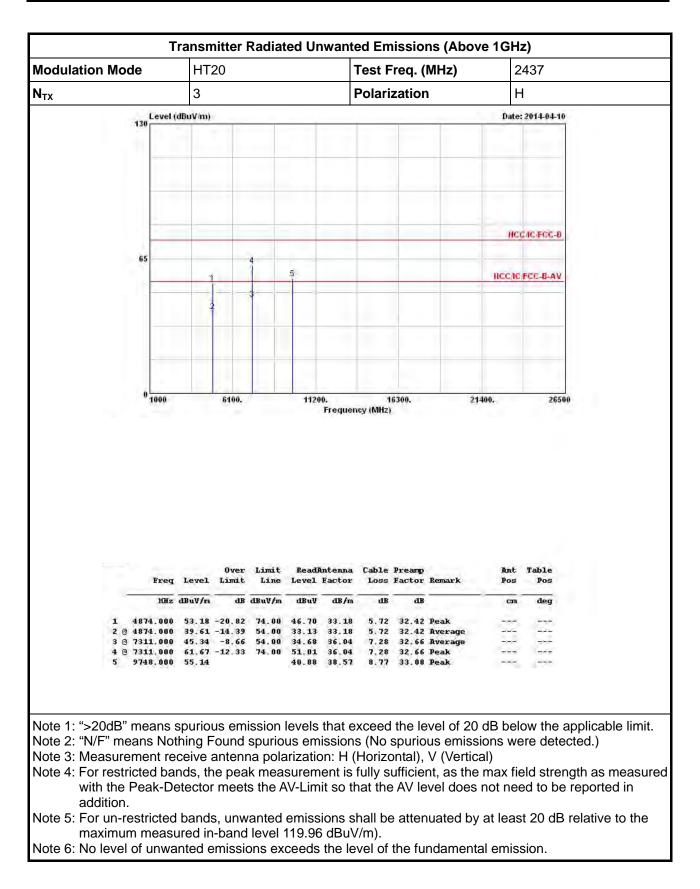


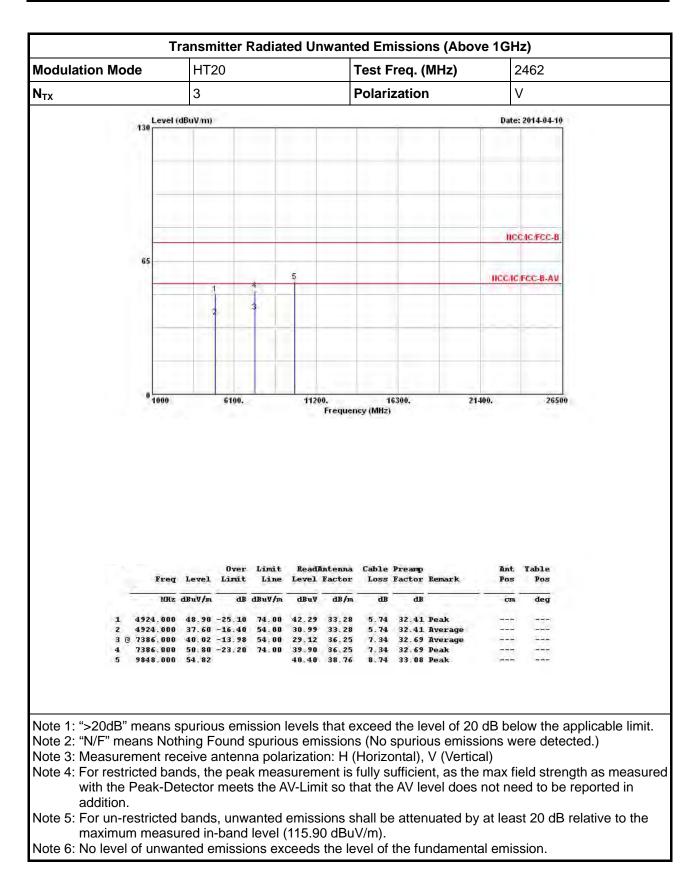


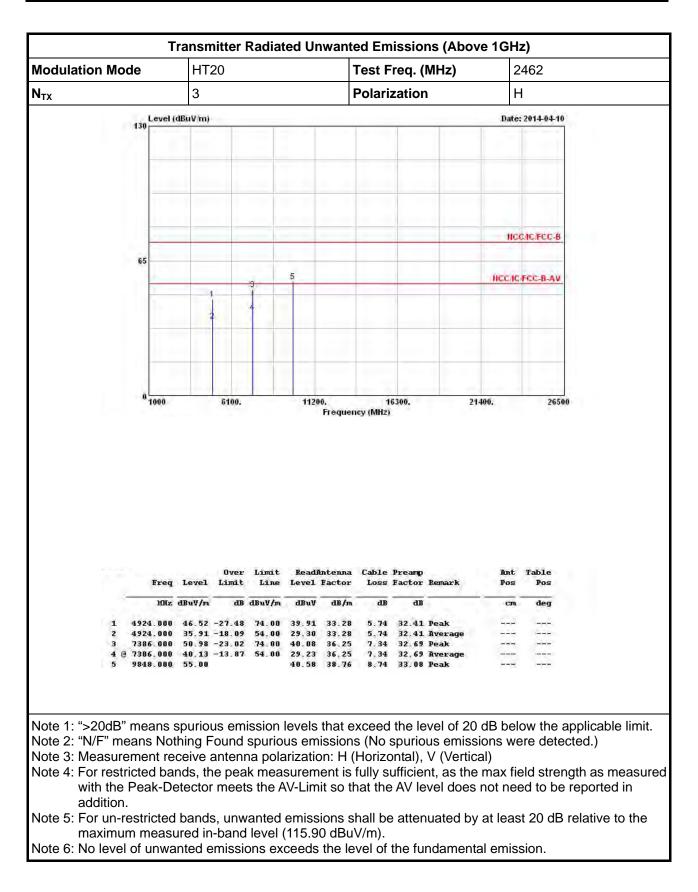


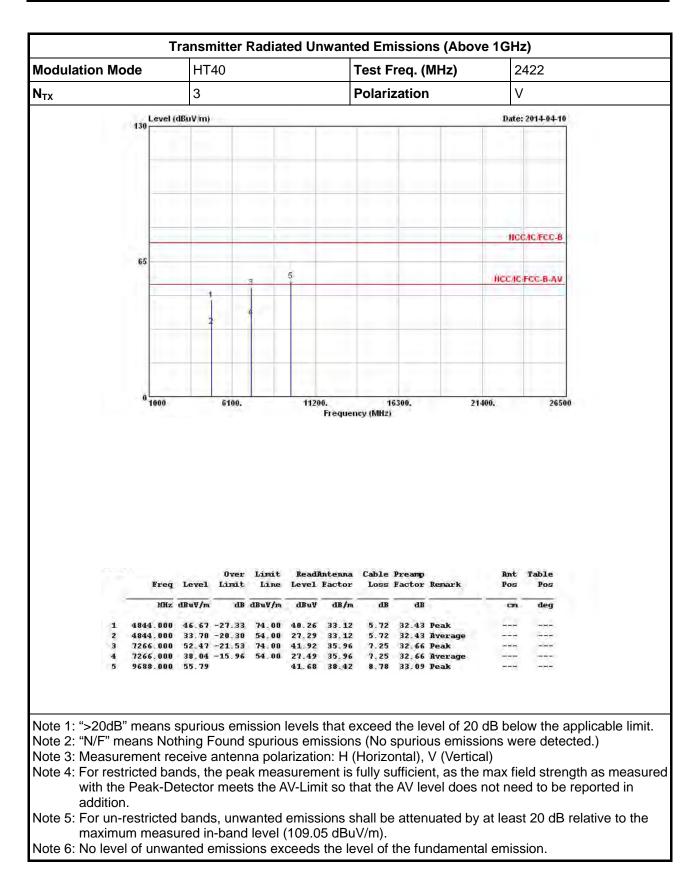


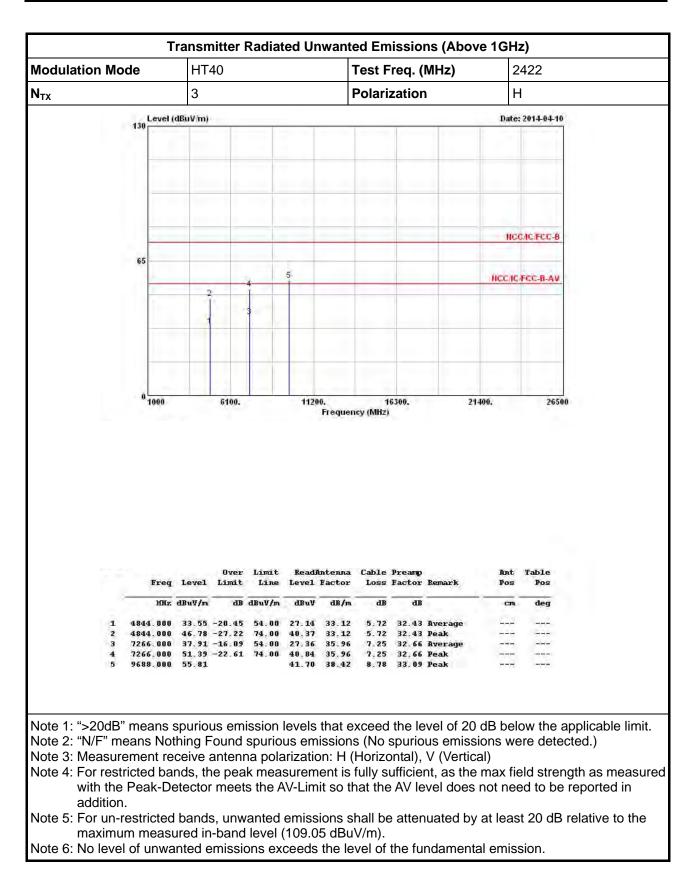


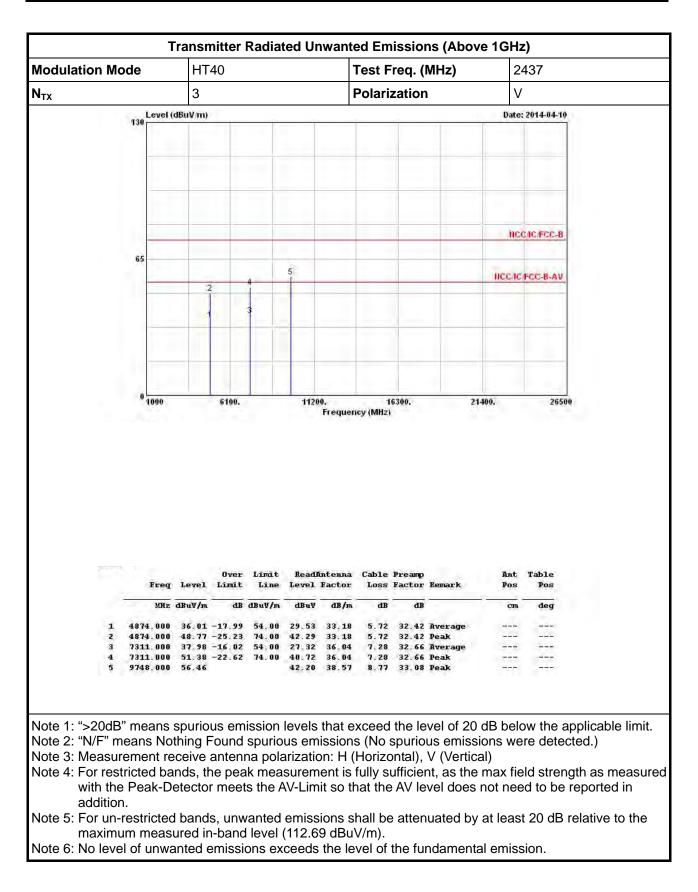


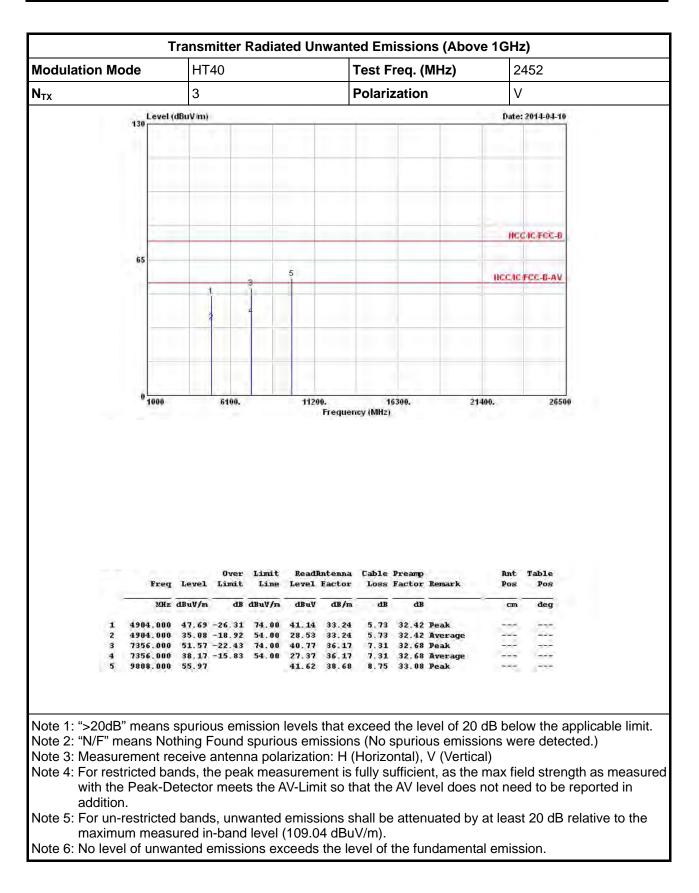


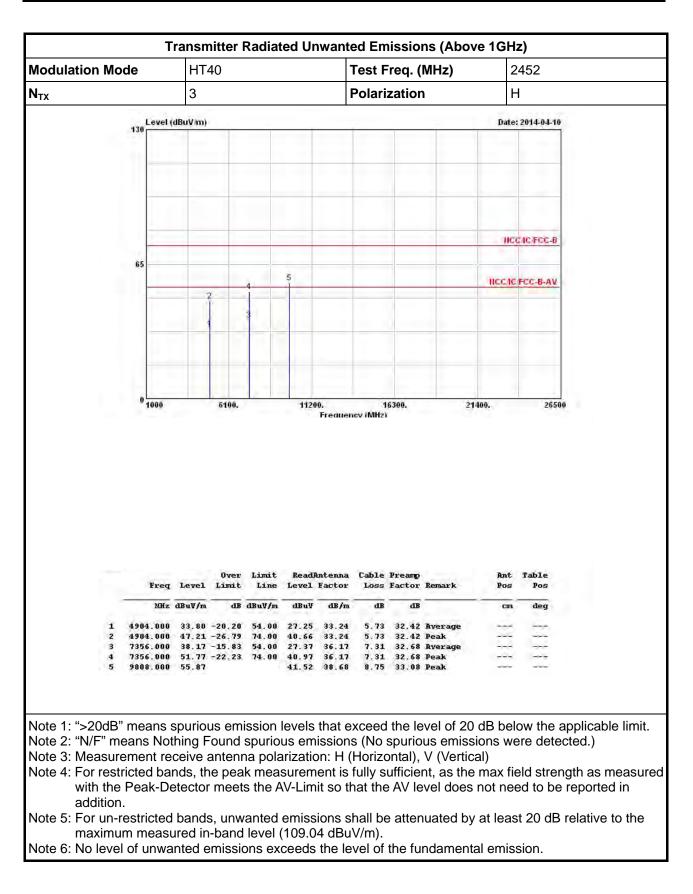












4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9kHz ~ 2.75GHz	Mar. 26, 2014	AC Conduction
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	8127-477	9kHz ~ 30MHz	Jan. 21, 2014	AC Conduction
RF Cable-CON	HUBER+SUHNER	RG213/U	7.61183201e+012	9kHz ~ 30MHz	Oct. 30, 2013	AC Conduction
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	AC Conduction

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSV 40	101013	9KHz~40GHz	Jan. 25, 2014	RF Conducted
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Jun. 27, 2013	RF Conducted
AC Power Source	G.W	APS-9102	EL920581	AC 0V ~ 300V	Jul. 16, 2013	RF Conducted
Temp. and Humidity Chamber	Giant Force	GTH-225-20-S	MAB0103-001	-20 ~ 100 ℃	Nov. 21, 2013	RF Conducted
RF Cable-2m	HUBER+SUHNER	SUCOFLEX_104	SN 345673/4	30MHz ~ 26.5GHz	Dec. 02, 2013	RF Conducted
RF Cable-0.5m	HUBER+SUHNER	SUCOFLEX_103	10715/4 10716/4	30MHz ~ 26.5GHz	Dec. 02, 2013	RF Conducted
Power Sensor	Anritsu	MA2411B	0917017	300MHz ~ 40GHz	Jan. 28, 2014	RF Conducted
Power Meter	Anritsu	ML2495A	0949003	300MHz ~ 40GHz	Jan. 28, 2014	RF Conducted

Note: Calibration Interval of instruments listed above is one year.

Report No. : FR411403-07AC

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz ~ 1GHz 3m	Nov. 30, 2013	Radiated Emission
Amplifier	HP	8447D	2944A08033	10kHz ~ 1.3GHz	May. 05, 2014	Radiated Emission
Spectrum	R&S	FSP40	100004	9kHz ~ 40GHz	Mar. 27, 2014	Radiated Emission
Bilog Antenna	SCHAFFNER	CBL 6112D	22237	30MHz ~ 1GHz	Sep. 20, 2014	Radiated Emission
RF Cable-R03m	Jye Bao	RG142	CB021	9kHz ~ 1GHz	Nov. 16, 2013	Radiated Emission
RF Cable-high	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz ~ 40GHz	Dec. 11, 2013	Radiated Emission
Turn Table	EM Electronics	EM Electronics	060615	0 ~ 360 degree	N/A	Radiated Emission
Antenna Mast	MF	MF-7802	MF780208179	1 ~ 4 m	N/A	Radiated Emission

Note: Calibration Interval of instruments listed above is one year.

< Radiated Emission Above 1GHz>

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz ~ 1GHz 3m	Nov. 30, 2013	Radiated Emission
Amplifier	Agilent	8449B	3008A02120	1GHz ~ 26.5GHz	Aug. 20, 2013	Radiated Emission
Spectrum	R&S	FSP40	100004	9kHz ~ 40GHz	Mar. 27, 2014	Radiated Emission
Horn Antenna	EMCO	3115	6741	1GHz ~ 18GHz	May 31, 2013	Radiated Emission
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15GHz ~ 40GHz	Jan. 10, 2014	Radiated Emission
RF Cable-R03m	Jye Bao	RG142	CB021	9kHz ~ 1GHz	Nov. 16, 2013	Radiated Emission
RF Cable-high	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz ~ 40GHz	Dec. 11, 2013	Radiated Emission
Turn Table	EM Electronics	EM Electronics	060615	0 ~ 360 degree	N/A	Radiated Emission
Antenna Mast	MF	MF-7802	MF780208179	1 ~ 4 m	N/A	Radiated Emission

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Loop Antenna	TESEQ	HLA 6120	31244	9kHz ~ 30MHz	Dec. 02, 2012	Radiated Emission

Note: Calibration Interval of instruments listed above is two year.