ENGINEERING TEST REPORT

MonnitLink USB Wireless Gateway
Model No.: GCM-USB
FCC ID: ZTL-RFUSB1

Applicant:

Monnit Corporation

450 South Simmons Way, Suite 670, Kaysville, UT 84037 USA

In Accordance With

Federal Communications Commission (FCC)
Part 15, Subpart C, Section 15.247
Digital Modulation Systems (DTS) Operating in 902 – 928 MHz Band

UltraTech's File No.: MONN-004QF15C247

This Test report is Issued under the Authority of Tri M. Luu, BASc Vice President of Engineering

Date: July 29, 2011

UltraTech Group of Labs

Report Prepared by: Steven Lu

Tested by: Mr. Hung Trinh

Issued Date: July 29, 2011 Test Dates: March 30 ~ July 12, 2011

The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected. This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Tel.: (905) 829-1570 Fax.: (905) 829-8050

Website: www.ultratech-labs.com, Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com

FCC

91038 1309

46390-2049

NvLap Lab Code 200093-0

SL2-IN-E-1119R

TABLE OF CONTENTS

EXHIB	IT 1.	INTRODUCTION	1
1.1.		'E	
1.2.		TED SUBMITTAL(S)/GRANT(S)	
1.3.	NOR	MATIVE REFERENCES	1
EXHIB	IT 2.	PERFORMANCE ASSESSMENT	2
2.1.	CLIE	NT INFORMATION	2
2.2.		PMENT UNDER TEST (EUT) INFORMATION	
2.3.		S TECHNICAL SPECIFICATIONS	
2.4.		OF EUT'S PORTS	
2.5.	LIST	OF ACCESSORIES	3
EXHIB	IT 3.	EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	4
3.1.	CLIM	ATE TEST CONDITIONS	4
3.2.	OPER	ATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS	4
EXHIB	IT 4.	SUMMARY OF TEST RESULTS	5
4.1.	LOCA	ATION OF TESTS	5
4.2.	APPL	ICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS	5
4.3.	MOD	IFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	5
EXHIB	IT 5.	MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	6
5.1.	TEST	PROCEDURES	6
5.2.	MEA:	SUREMENT UNCERTAINTIES	6
5.3.		SUREMENT EQUIPMENT USED	
5.4.		NTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER	
5.5.		ER LINE CONDUCTED EMISSIONS [§15.207(A)]	
5.6.		JPIED BANDWIDTH [§ 15.247(A)(2)]	
5.7.		CONDUCTED OUTPUT POWER - DTS [§ 15.247(B)(3)]	
5.8. 5.9.		NSMITTER BAND-EDGE & SPURIOUS CONDUCTED EMISSIONS [§ 15.247(D)]NSMITTER SPURIOUS RADIATED EMISSIONS AT 3 METERS [§§ 15.247(D), 15.209 & 15.205]	
5.9. 5.10.		ER SPECTRAL DENSITY [§ 15.247(E)]	
5.10.		XPOSURE REQUIRMENTS [§§ 15.247(E)(I), 1.1310 & 2.1091]	
EXHIB		TEST EQUIPMENT LIST	
EXHIB	IT 7.	MEASUREMENT UNCERTAINTY	46
7.1.	LINE	CONDUCTED EMISSION MEASUREMENT UNCERTAINTY	46
7.2	RADI	ATED EMISSION MEASUREMENT UNCERTAINTY	46

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference: FCC Part 15, Subpart C, Section 15.247		
Title:	Code of Federal Regulations (CFR), Title 47 – Telecommunication, Part 15	
Purpose of Test:	Equipment Certification for Digital Modulation Systems (DTS) Transmitter Operating in the Frequency Band 2400-2483.5 MHz.	
Test Procedures:	 ANSI C63.4-2003 FCC, KDB Publication No. 558074 	
Environmental Classification:	[x] Commercial, industrial or business environment [x] Residential environment	

1.2. RELATED SUBMITTAL(S)/GRANT(S)

None

1.3. NORMATIVE REFERENCES

Publication	Year	Title
47 CFR Parts 0-19	2010	Code of Federal Regulations (CFR), Title 47 – Telecommunication
ANSI C63.4	2003 2009	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 KHz to 40 GHz
ANSI C63.10	2009	American National Standard for Testing Unlicensed Wireless Devices
CISPR 22 & EN 55022	2008-09, Edition 6.0 2006	Information Technology Equipment - Radio Disturbance Characteristics - Limits and Methods of Measurement
CISPR 16-1-1 +A1 +A2	2006 2006 2007	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus
CISPR 16-1-2 +A1 +A2	2003 2004 2006	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-2: Conducted disturbances
FCC, KDB Publication No. 558074	2005	Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247)

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT INFORMATION

APPLICANT		
Name:	Monnit Corporation	
Address:	450 South Simmons Way, Suite 670, Kaysville, UT 84037 USA	
Contact Person:	Mr. Kelly S. Lewis Phone #: +1 (801) 561-5555 Fax #: +1 (801) 561-5575 Email Address: kellyl@monnit.com	

MANUFACTURER		
Name:	Monnit Corporation	
Address:	450 South Simmons Way, Suite 670, Kaysville, UT 84037 USA	
Contact Person:	Mr. Kelly S. Lewis Phone #: +1 (801) 561-5555 Fax #: +1 (801) 561-5575 Email Address: kellyl@monnit.com	

2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	Monnit Corporation	
Product Name:	MonnitLink USB Wireless Gateway	
Model Name or Number:	GCM-USB	
Serial Number:	Test Sample	
Type of Equipment:	Digital Transmission System (DTS)	
Input Power Supply Type:	External Regulated DC Sources	
Primary User Functions of EUT:	Access Point for WIT Wireless Sensors	

2.3. EUT'S TECHNICAL SPECIFICATIONS

TRANSMITTER		
Equipment Type:	 Portable Mobile Base Station (fixed use) 	
Intended Operating Environment:	Commercial, industrial or business	
Power Supply Requirement:	4.5 – 5.5 VDC	
RF Output Power Rating:	+8 dBm MAX	
Operating Frequency Range:	902 - 928 MHz	
RF Output Impedance:	N/A	
Channel Size:	1MHz	
Number of Channels:	25	
Modulation Type:	2-FSK	
Antenna Connector Types:	Wire Antenna soldered directly to PCB	
Antenna Description:	Manufacturer: Specialized Manufacturing Type: Wire Antenna Model No.: MC-ANT-20/4.0C Freq. Range: 902 - 928 MHz Gain: Less then than 2.1 dBi)	

2.4. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non-shielded)
1	USB and power	1	USB-A Male	USB 2.0 Standard

2.5. LIST OF ACCESSORIES

Index Number	Parts Description	Parts Number/ Model Number	Serial Number
1	HP Computer	xw4300 Workstation	2UA6210WN6
2	Dell LCD Panel	2408WFPb	MX-OJU436-74262-85F-29PS

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21 to 23 °C
Humidity:	45 to 58%
Pressure:	102 kPa
Power Input Source:	4.5 – 5.5 VDC

3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

Operating Modes: Each of lowest, middle and highest channel frequencies transmit continuously for emissions measurements.	
Special Test Software:	Special software and hardware provided by the Applicant to operate the EUT at each channel frequency continuously. For example, the transmitter will be operated at each of the lowest, middle and highest frequencies individually continuously during testing.
Special Hardware Used:	Dell Computer
Transmitter Test Antenna:	The EUT tested with the antenna fitted in a manner typical of normal intended use as integral antenna equipment.

Transmitter Test Signals			
Frequency Band(s):	902 - 928 MHz		
Frequency(ies) Tested: (Near lowest, near middle & near highest frequencies in the frequency range of operation.)	903, 915 and 927 MHz		
RF Power Output: (measured maximum output power at antenna terminals)	7.84 dBm (6.08 mW) Peak		
Normal Test Modulation:	2 - FSK		
Modulating Signal Source:	Internal		

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. **LOCATION OF TESTS**

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Power Line Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 91038) and Industry Canada office (Industry Canada File No.: 2049A-3). Expiry Date: 2014-04-04.

4.2. **APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS**

FCC Section(s)	Test Requirements	Compliance (Yes/No)
15.203	Antenna requirements	Yes [*]
15.207(a)	Power Line Conducted Emissions	Yes
15.247(a)(2)	6 dB Bandwidth	Yes
15.247(b)(3)	Peak Conducted Output Power - DTS	Yes
15.247(d)	Band-Edge and RF Conducted Spurious Emissions at the Transmitter Antenna Terminal	Yes
15.247(d), 15.209 & 15.205	Transmitter Spurious Radiated Emissions	Yes
15.247(e)	Power Spectral Density	Yes
15.247(i) 1.1307, 1.1310 & 2.1091	RF Exposure	Yes

^{*} The EUT complies with the requirement; it employs a permanently mounted integral antenna.

4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None.

EXHIBIT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

5.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in ANSI C63.4-2003 and FCC KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems.

5.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement. Refer to Exhibit 7 for Measurement Uncertainties.

5.3. MEASUREMENT EQUIPMENT USED

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4 and CISPR 16-1-1.

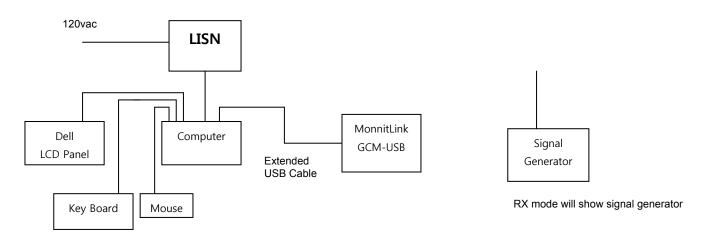
5.4. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER

The MonnitLink USB Wireless Gateway acts as Access Point for WIT Wireless Sensors.

5.5. POWER LINE CONDUCTED EMISSIONS [§15.207(a)]

5.5.1. Limit(s)

The equipment shall meet the limits of the following table:

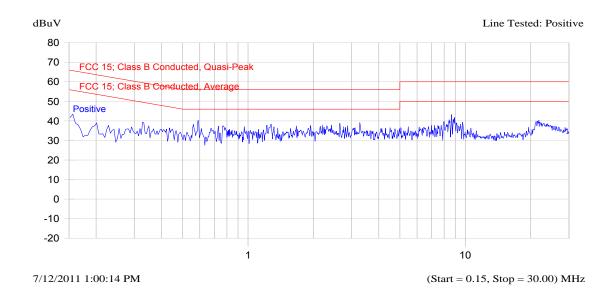

Frequency of emission	Conducted Limits (dBμV)			
(MHz)	Quasi-peak	Average		
0.15–0.5	66 to 56*	56 to 46*		
0.5–5	56	46		
5-30	60	50		

^{*}Decreases linearly with the logarithm of the frequency

5.5.2. Method of Measurements

ANSI C63.4-2003

5.5.3. Test Arrangement

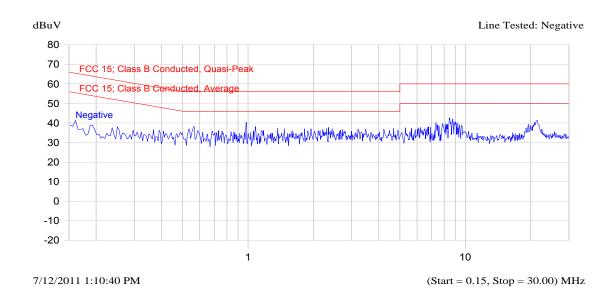

HP xw4300 Workstation, s/n: 2UA6210WN6

Dell LCD Panel, m/n: 2408WFPb, s/n: MX-OJU436-74262-85F-29PS

5.5.4. Test Data

Plot 5.5.4.1. Power Line Conducted Emissions (Tx Mode)
Line Voltage: 120 V AC
Line Tested: Positive

Current Graph

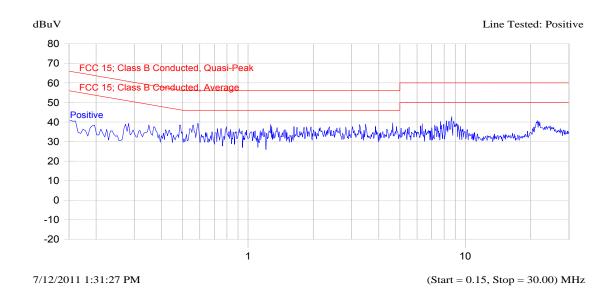


0.156 45.8 41.5 -24.4 32.2 -23.7 Positive 0.327 39.2 32.3 -28.5 24.9 -26.0 Positive 0.586 42.3 37.6 -18.4 30.2 -15.8 Positive 3.277 37.8 32.1 -23.9 22.7 -23.3 Positive 8.645 41.2 34.8 -25.2 20.7 -29.3 Positive	Frequency MHz	Peak dBuV		Delta QP-QP Limit dB	Avg dBuV	Delta Avg-Avg Limit dB	Trace Name
21.796 38.9 32.3 -27.7 25.1 -24.9 Positive	0.327 0.586 3.277 8.645	39.2 42.3 37.8 41.2	32.3 37.6 32.1 34.8	-28.5 -18.4 -23.9 -25.2	24.9 30.2 22.7 20.7	-26.0 -15.8 -23.3 -29.3	Positive Positive Positive Positive

Plot 5.5.4.2. Power Line Conducted Emissions (Tx Mode)

Line Voltage: 120 V AC Line Tested: Negative

Current Graph

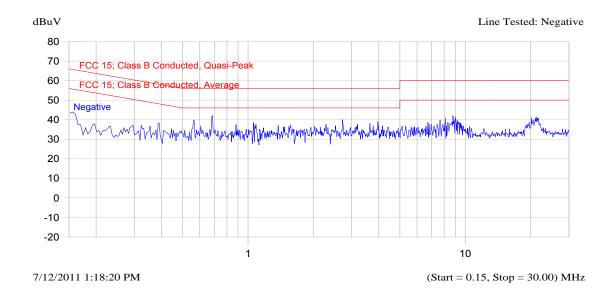


Frequency MHz	Peak dBuV		Delta QP-QP Limit dB	Avg dBuV	Delta Avg-Avg Limit dB	Trace Name
0.154	46.7	41.7	-24.1	32.1	-23.8	Negative
0.978	42.0	36.2	-19.8	29.3	-16.7	Negative
8.440	40.8	33.8	-26.2	20.7	-29.3	Negative
21.282	41.5	36.2	-23.8	29.2	-20.8	Negative

Plot 5.5.4.3. Power Line Conducted Emissions (Rx Mode)

Line Voltage: 120 V AC Line Tested: Positive

Current Graph



Frequency MHz	Peak dBuV		Delta QP-QP Limit dB	Avg dBuV	Delta Avg-Avg Limit dB	Trace Name
0.292	39.4	35.4	-26.5	28.0	-23.9	Positive
0.588	41.4	35.6	-20.4	28.1	-17.9	Positive
8.668	41.5	35.1	-24.9	27.7	-22.3	Positive
21.736	40.4	35.8	-24.2	29.1	-20.9	Positive

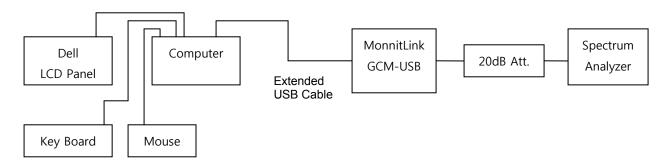
Plot 5.5.4.4. Power Line Conducted Emissions (Rx Mode)

Line Voltage: 120 V AC Line Tested: Negative

Current Graph

Frequency MHz	Peak C dBuV d	•	Delta QP-QP Limit dB	Avg dBuV	Delta Avg-Avg Limit dB	Trace Name
0.681	41.0 3			31.0		Negative
2.712	39.6	34.1	-21.9	25.3	-20.7	Negative
8.776	43.1 3	39.0	-21.0	34.8	-15.2	Negative
21.590	41.8 3	37.0	-23.0	30.2	-19.8	Negative

5.6. OCCUPIED BANDWIDTH [§ 15.247(a)(2)]


5.6.1. Limit(s)

For a Digital Modulation System, the minimum 6 dB bandwidth shall be at least 500 KHz.

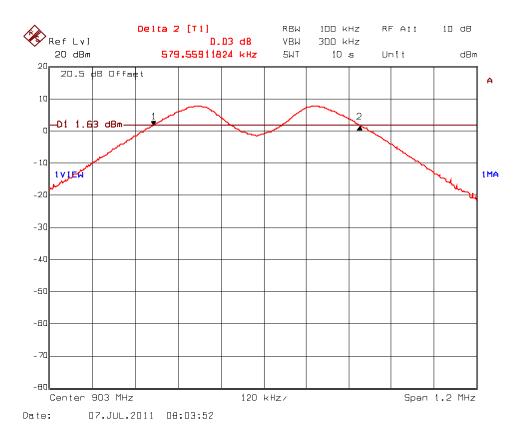
5.6.2. Method of Measurements

KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247) and ANSI C63.4-2003.

5.6.3. Test Arrangement

HP xw4300 Workstation, s/n: 2UA6210WN6

Dell LCD Panel, m/n: 2408WFPb, s/n: MX-OJU436-74262-85F-29PS

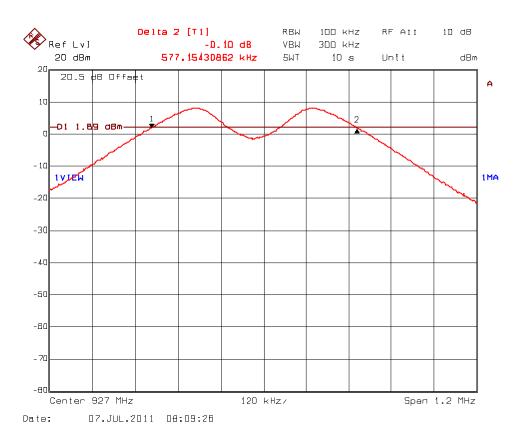

5.6.4. Test Data

Frequency (MHz)	Modulation	6 dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	
903	2-FSK	0.580	0.527	
915	2-FSK	0.580	0.512	
927	2-FSK	0.577	0.510	

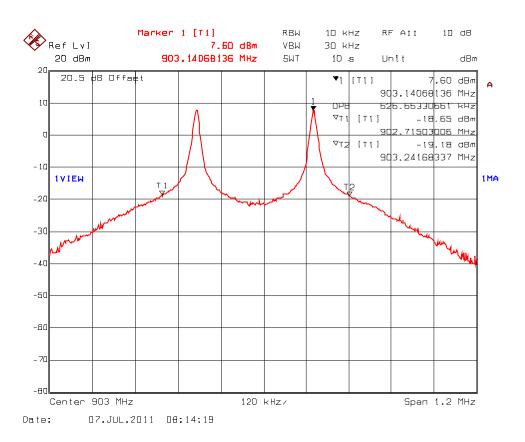
See the following plots for detailed measurements.

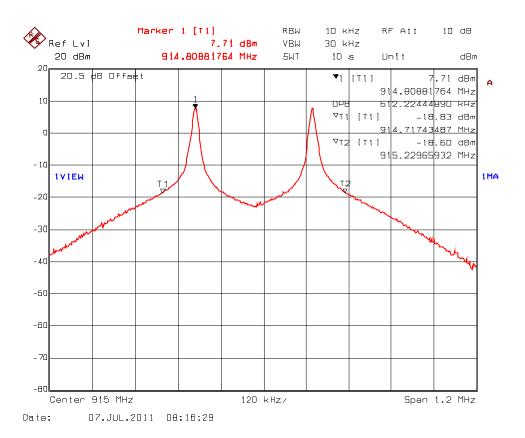
File #: MONN-004QF15C247

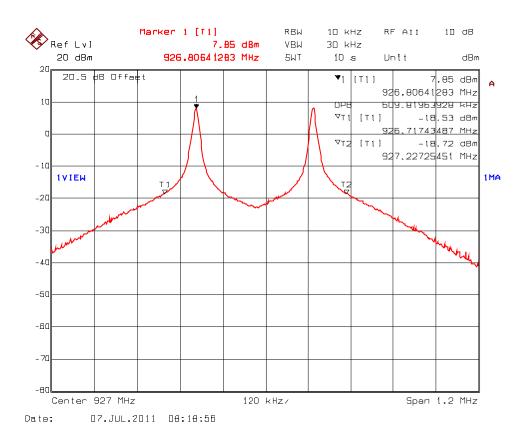
Plot 5.6.4.1. 6 dB Bandwidth, 2-FSK Test Frequency: 903 MHz



File #: MONN-004QF15C247


Plot 5.6.4.2. 6 dB Bandwidth, 2-FSK modulation Test Frequency: 915 MHz


Plot 5.6.4.3. 6 dB Bandwidth, 2-FSK modulation Test Frequency: 927 MHz

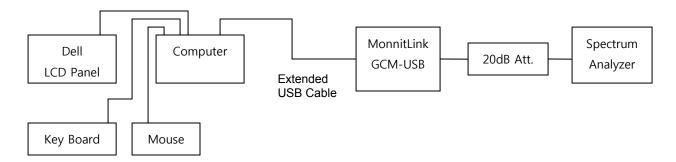

Plot 5.6.4.4. 99% Occupied Bandwidth, 2-FSK modulation Test Frequency: 903 MHz

Plot 5.6.4.5. 99% Occupied Bandwidth, 2-FSK modulation Test Frequency: 915 MHz

Plot 5.6.4.6. 99% Occupied Bandwidth, 2-FSK modulation Test Frequency: 927 MHz

5.7. PEAK CONDUCTED OUTPUT POWER - DTS [§ 15.247(b)(3)]

5.7.1. Limit(s)


§ 15.247(b)(3): For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the *maximum conducted output power* is the highest total transmit power occurring in any mode.

§15.247(b)(4): The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.7.2. Method of Measurements & Test Arrangement

KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247).

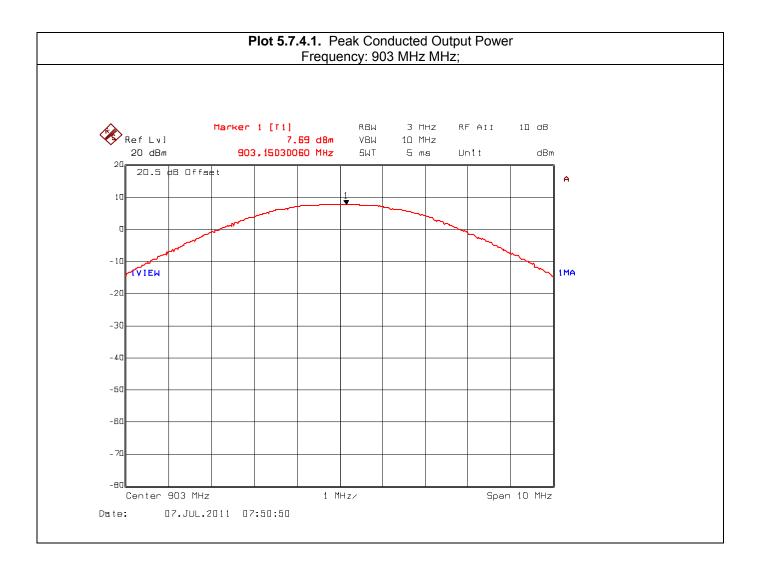
5.7.3. Test Arrangement

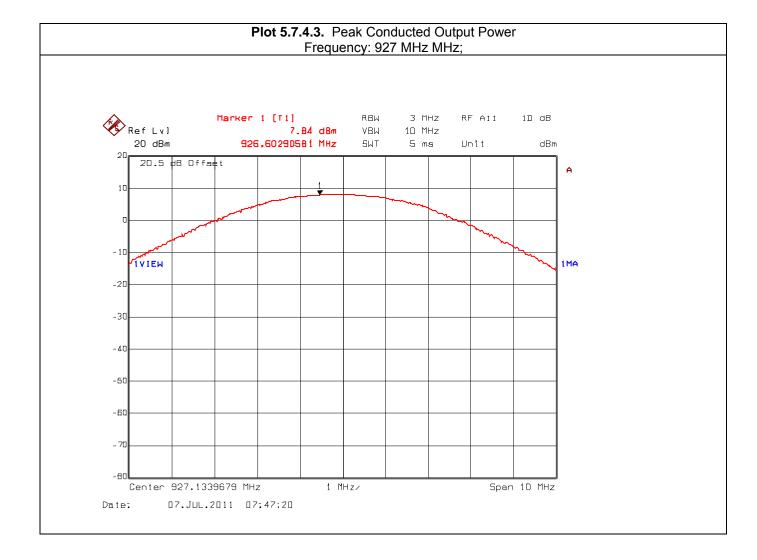
HP xw4300 Workstation, s/n: 2UA6210WN6

Dell LCD Panel, m/n: 2408WFPb, s/n: MX-OJU436-74262-85F-29PS

5.7.4. Test Data

Remark(s):


Test method used: Power output option 1, peak measurement.

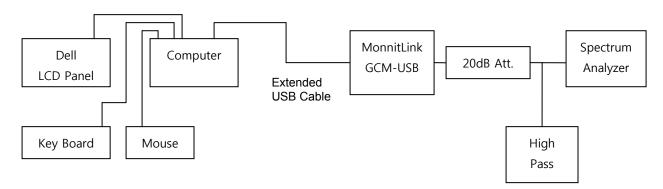

Frequency (MHz)	Modulation	Peak Conducted Peak EIRP ^(Note 1, 2) (dBm)		Peak Conducted Power Limit (dBm)	EIRP Limit (dBm)
903	2-FSK	7.69	9.79	30	36
915	2-FSK	7.69	9.79	30	36
927	2-FSK	7.84	9.94	30	36

Note 1: The Peak EIRP is calculated as the sum of Peak Conducted Power in dBm and antenna assembly gain of EUT in dBi (antenna gain – cable loss).

Note 2: The maximum assembly antenna gain: 2.1 dBi

See the following plots for details.

5.8. TRANSMITTER BAND-EDGE & SPURIOUS CONDUCTED EMISSIONS [§ 15.247(d)]


5.8.1. Limit(s)

§ 15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

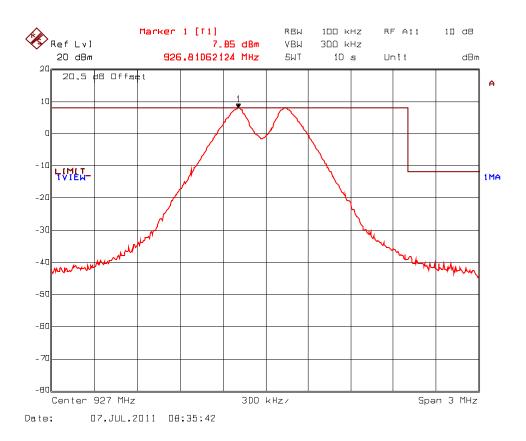
5.8.2. Method of Measurements

KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247).

5.8.3. Test Arrangement

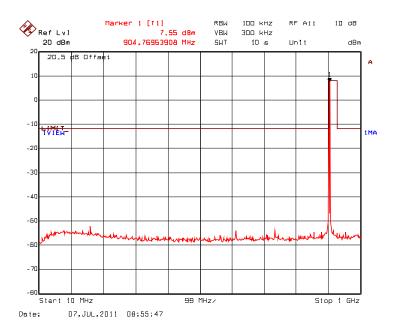

HP xw4300 Workstation, s/n: 2UA6210WN6

Dell LCD Panel, m/n: 2408WFPb, s/n: MX-OJU436-74262-85F-29PS

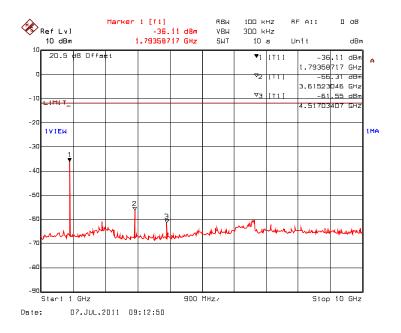

5.8.4. Test Data

5.8.4.1. **Band-Edge RF Conducted Emissions**

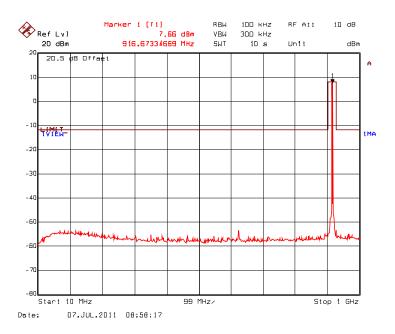
Plot 5.8.4.1.1. Band-Edge RF Conducted Emissions, 2-FSK modulation Low End of Frequency Band (903 MHz)

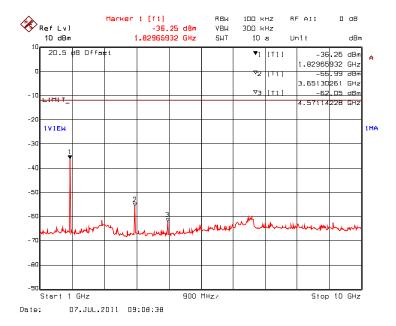


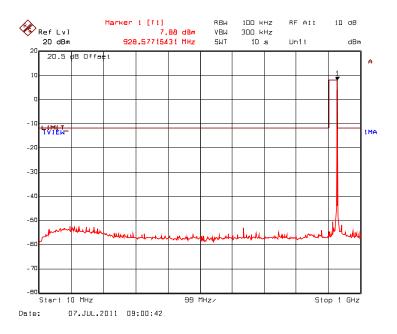
Plot 5.8.4.1.2. Band-Edge RF Conducted Emissions, 2-FSK modulation High End of Frequency Band (927 MHz)



5.8.4.2. Spurious RF Conducted Emissions


Plot 5.8.4.2.1. Spurious RF Conducted Emissions, 2-FSK modulation, 10MHz - 1 GHz Transmitter Frequency: 903 MHz


Plot 5.8.4.2.2. Spurious RF Conducted Emissions, 2-FSK modulation, 1GHz - 10 GHz Transmitter Frequency: 903 MHz


Plot 5.8.4.2.3. Spurious RF Conducted Emissions, 2-FSK modulation, 10MHz - 1 GHz Transmitter Frequency: 915 MHz

Plot 5.8.4.2.4. Spurious RF Conducted Emissions, 2-FSK modulation, 1GHz - 10 GHz Transmitter Frequency: 915 MHz

Plot 5.8.4.2.5. Spurious RF Conducted Emissions, 2-FSK modulation, 10MHz - 1 GHz Transmitter Frequency: 927 MHz

Plot 5.8.4.2.6. Spurious RF Conducted Emissions, 2-FSK modulation, 1GHz - 10 GHz Transmitter Frequency: 927 MHz

5.9. TRANSMITTER SPURIOUS RADIATED EMISSIONS AT 3 METERS [§§ 15.247(d), 15.209 & 15.205]

5.9.1. Limit(s)

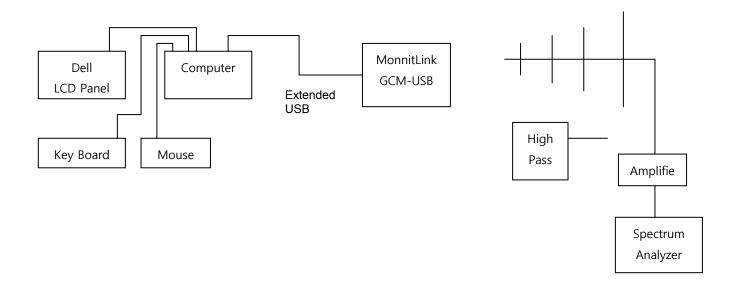
§ 15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Section 15.205(a) - Restricted Bands of Operation

MHz	MHz	MHz	GHz
0.090–0.110	16.42–16.423	399.9–410	4.5–5.15
1 0.495–0.505	16.69475-16.69525	608–614	5.35-5.46
2.1735–2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125–4.128	25.5-25.67	1300–1427	8.025–8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725–4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108-121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291–8.294	149.9–150.05	2310–2390	15.35–16.2
8.362-8.366	156.52475-156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7-156.9	2655–2900	22.01–23.12
8.41425–8.41475	162.0125-167.17	3260-3267	23.6–24.0
12.29–12.293	167.72-173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358	36.43–36.5
12.57675–12.57725	322-335.4	3600–4400	(2)
13.36–13.41.			. ,

¹ Until February 1, 1999, this restricted band shall be 0.490–0.510 MHz.

Section 15.209(a) -- Field Strength Limits within Restricted Frequency Bands --


Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490 0.490 - 1.705	2,400 / F (kHz) 24,000 / F (kHz)	300 30
1.705 - 30.0	30	30
30 – 88 88 – 216	100 150	3
216 – 960 Above 960	200 500	3 3

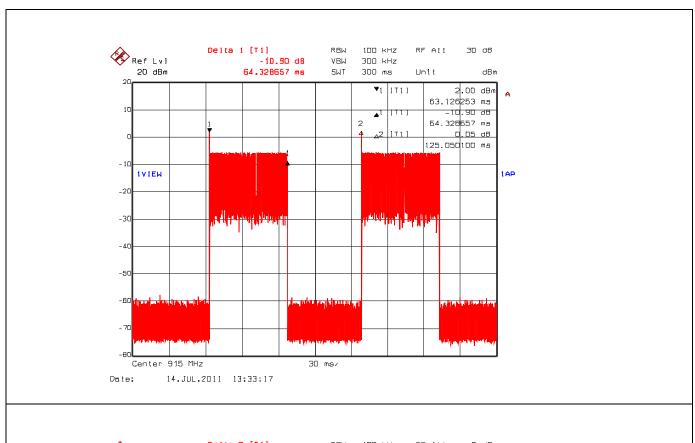
²Above 38.6

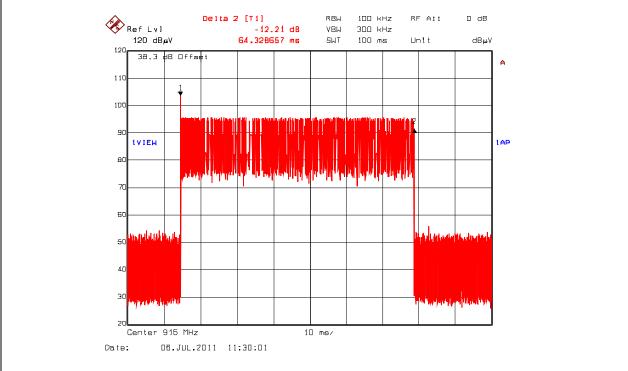
5.9.2. Method of Measurements

KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247) and ANSI C63.4-2003.

5.9.3. Test Arrangement

HP xw4300 Workstation, s/n: 2UA6210WN6


Dell LCD Panel, m/n: 2408WFPb, s/n: MX-OJU436-74262-85F-29PS


5.9.4. Test Data

Remarks:

- All spurious emissions that are in excess of 20 dB below the specified limit shall be recorded.
- EUT shall be tested in three orthogonal positions.
- The RF Average level above 1GHz is corrected by the duty cycle factor (-3.83dB) shown below:

Duty Cycle Factor: 20*Log (64.32 ms / 100 ms) = -3.83 dB

File #: MONN-004QF15C247

5.9.4.1. EUT with Wire Antenna

Fundamental Frequency: 903 MHz

Test Frequency Range: 30 MHz – 10 GHz

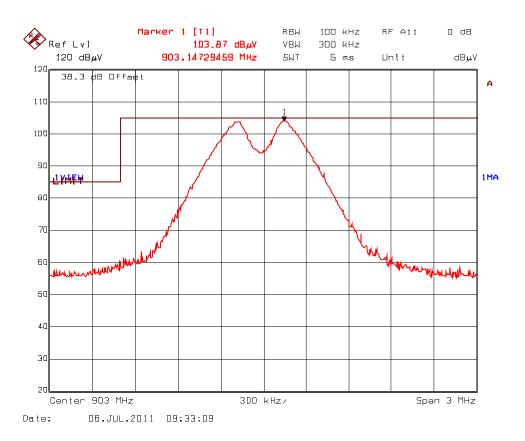
restriequent	by Italige.	30 IVII IZ —	10 0112				
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit Table 5 (dBµV/m)	Limit Section A8.5 (dBµV/m)	Margin (dB)	Pass/ Fail
903	105.42		V				
903	103.87		Н				
2709	56.99	48.98	V	54.0	88.2	-5.02	Pass*
2709	59.19	51.51	Н	54.0	88.2	-2.49	Pass*
3612	53.47	40.21	V	54.0	88.2	-13.79	Pass*
3612	52.05	39.73	Н	54.0	88.2	-14.27	Pass*
4515	55.95	43.10	V	54.0	88.2	-10.90	Pass*
4515	55.69	42.31	Н	54.0	88.2	-11.69	Pass*

^{*}Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

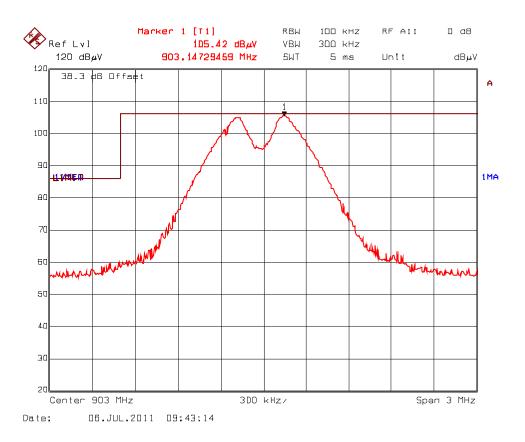
Fundamental Frequency: 915 MHz

Test Frequency Range:		30 MHz –	10 GHz				
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit Table 5 (dBµV/m)	Limit Section A8.5 (dBµV/m)	Margin (dB)	Pass/ Fail
915	104.84		V				
915	104.49		Н				
2745	56.41	48.17	V	54.0	86.9	-5.83	Pass*
2745	61.26	53.49	Н	54.0	86.9	-0.51	Pass*
3660	52.55	40.45	V	54.0	86.9	-13.55	Pass*
3660	54.41	42.67	Н	54.0	86.9	-11.33	Pass*
4575	58.40	45.53	V	54.0	86.9	-8.47	Pass*
4575	53.92	38.65	Н	54.0	86.9	-15.35	Pass*

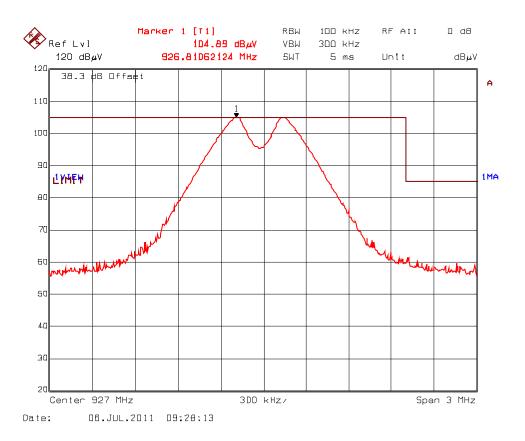
^{*}Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

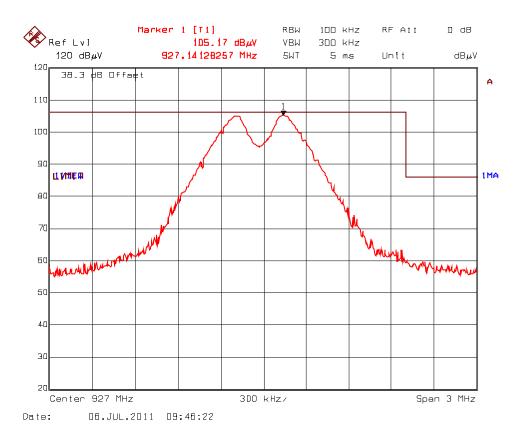

FCC ID: ZTL-RFUSB1

Fundamental Frequency: 927 MHz Test Frequency Range: 30 MHz - 10 GHz RF RF Antenna Limit Limit Section A8.5 Frequency **Peak Level** Avg Level **Plane** Table 5 Margin Pass/ (MHz) (dBµV/m) (dBµV/m) (H/V) (dBµV/m) (dBµV/m) (dB) Fail 927 105.17 ٧ 927 104.89 Η 2781 55.98 ٧ -6.3947.61 54.0 88.7 Pass* 2781 58.77 50.90 Н 54.0 88.7 -3.10Pass* -12.77 3708 52.89 41.23 ٧ 54.0 88.7 Pass* 3708 51.72 38.91 54.0 88.7 -15.09 Н Pass* ٧ 4635 55.76 42.69 54.0 88.7 -11.31 Pass* -11.93 4635 55.76 42.07 Η 54.0 88.7 Pass*


^{*}Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

See the following test data plots for band-edge emissions.

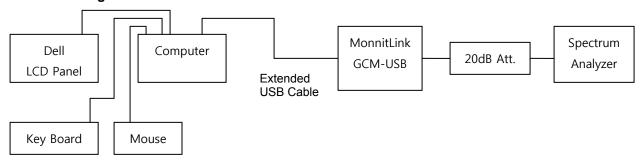

Plot 5.9.4.1.1. Band-Edge RF Radiated Emissions @ 3 m, 2-FSK modulation, Wire Antenna Low End of Frequency Band (903 MHz) Rx Antenna Orientation: Horizontal


Plot 5.9.4.1.2. Band-Edge RF Radiated Emissions @ 3 m, 2-FSK modulation, Wire Antenna Low End of Frequency Band, 903 MHz Rx Antenna Orientation: Vertical

Plot 5.9.4.1.3. Band-Edge RF Radiated Emissions @ 3 m, 2-FSK modulation, Wire Antenna High End of Frequency Band (927 MHz) Rx Antenna Orientation: Horizontal

Plot 5.9.4.1.4. Band-Edge RF Radiated Emissions @ 3 m, 2-FSK modulation, Wire Antenna High End of Frequency Band (927 MHz) Rx Antenna Orientation: Vertical

5.10. POWER SPECTRAL DENSITY [§ 15.247(e)]


5.10.1. Limit(s)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5.10.2. Method of Measurements

KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247).

5.10.3. Test Arrangement

HP xw4300 Workstation, s/n: 2UA6210WN6

Dell LCD Panel, m/n: 2408WFPb, s/n: MX-OJU436-74262-85F-29PS

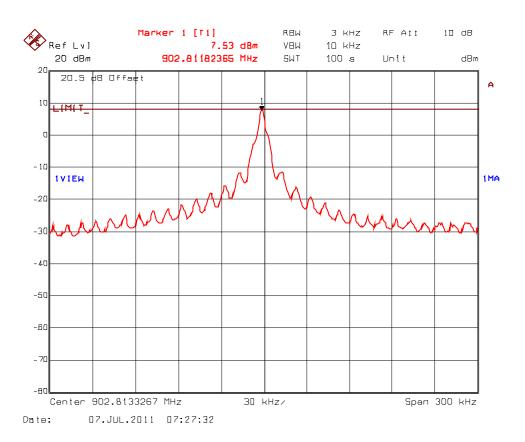
5.10.4. Test Data

Remarks:

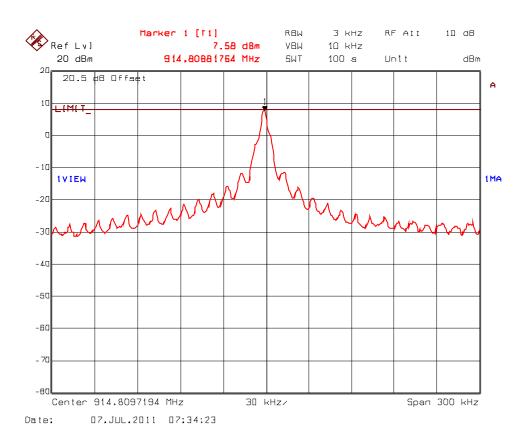
- Measurement method: Power spectral density (PSD) Option 1.
- Investigation of all combinations of modulations and data rates were carried out to determine the worst-case operation and the highest level is recorded in the following table.

Frequency (MHz)	Modulation	*PSD in 3 kHz BW (dBm)	Limit (dBm)	Margin (dB)
903	2-FSK	7.53	8	-0.47
915	2-FSK	7.58	8	-0.42
927	2-FSK	7.76	8	-0.24

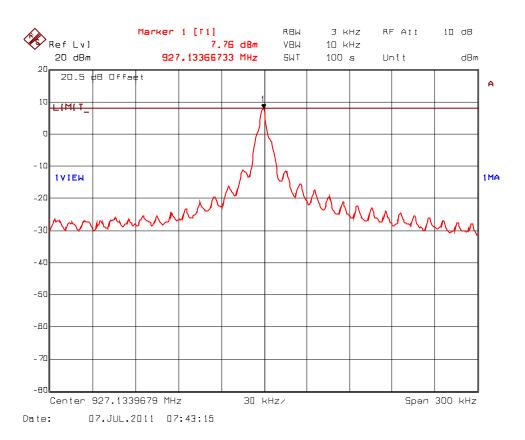
^{*}See the following plots for measurement details.


ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4


File #: MONN-004QF15C247

July 29, 2011


Plot 5.10.4.1. Power Spectral Density, 2-FSK modulation Test Frequency: 903 MHz

Plot 5.10.4.2. Power Spectral Density, 2-FSK modulation Test Frequency: 915 MHz

Plot 5.10.4.3. Power Spectral Density, 2-FSK modulation Test Frequency: 927 MHz

5.11. RF EXPOSURE REQUIRMENTS [§§ 15.247(e)(i), 1.1310 & 2.1091]

The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation.

FCC 47 CFR § 1.1310:

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)		
(A) Limits for Occupational/Controlled Exposures						
0.3–3.0	614	1.63	*(100)	6		
3.0–30	1842/f	4.89/f	*(900/f ²)	6		
30–300	61.4	0.163	1.0	6		
300–1500			f/300	6		
1500–100,000			5	6		
(B) Limits	for General Populati	on/Uncontrolled Exp	oosure			
0.3–1.34	614	1.63	*(100)	30		
1.34–30	824/f	2.19/f	*(180/f ²)	30		
30–300	27.5	0.073	0.2	30		
300–1500			f/1500	30		
1500–100,000			1.0	30		

f = frequency in MHz

* = Plane-wave equivalent power density

Note 1 to Table 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

Note 2 to Table 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

exposure or can not exercise control over their exposure.

5.11.1. Method of Measurements

Refer to Sections 1.1310, 2.1091

In order to demonstrate compliance with MPE requirements (see Section 2.1091), the following information is typically needed:

- (1) Calculation that estimates the minimum separation distance (20 cm or more) between an antenna and persons required to satisfy power density limits defined for free space.
- (2) Antenna installation and device operating instructions for installers (professional/unskilled users), and the parties responsible for ensuring compliance with the RF exposure requirement
- (3) Any caution statements and/or warning labels that are necessary in order to comply with the exposure
- (4) Any other RF exposure related issues that may affect MPE compliance

This device is categorically excluded form routine environmental evaluation for RF Exposure requirement as per section 2.1093.

This device may be used as stand-alone portable exposure conditions with no restrictions on host platforms when the source-based time-averaged output power is $\leq 60/f_{(GHz)}$ mW as specified in sec 2(a)(1) of FCC KDB 447498 v04.

Measured Maximum Peak Conducted Power = 6.1 mW

SAR is not required as Peak Conducted Power (6.1 mW) is well below the threshold value of 64 mW for 927 MHz band as calculated below.

Threshold Value = [60/f(GHz)] mW = (60/0.927) mW = 64 mW

EXHIBIT 6. TEST EQUIPMENT LIST

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range	Calibration Due Date
Spectrum Analyzer	Rohde & Schwarz	FSEK30	100077	20 Hz – 40 GHz	14 Aug 2011
Spectrum Analyzer	Rohde & Schwarz	ESU40	100037	20 Hz – 40 GHz	15 Mar 2012
RF Amplifier	Hewlett Packard	84498	3008A00769	1 – 26.5 GHz	17 Feb 2012
RF Amplifier	AH System	PAM-0118	225	20 MHz – 18 GHz	15 Mar 2012
High Pass Filter	K&L	11SH10- 1500/T8000	2	Cut off 900 MHz	Cal. on use
Horn Antenna	Emco	3155	6570	1 – 18 GHz	22 Feb 2012
Horn Antenna	Emco	3155	5955	1 – 18 GHz	09 Jan 2012
Biconi-Log Antenna	Emco	3142C	00034792	26 – 3000 MHz	26 April 2012
Dipole Antenna	Emco	3121C	434	26 – 1000 MHz	16 Aug 2011
Signal Generator	Hewlett Packard	8648C	3443U00391	100 kHz – 3200 MHz	16 Dec, 2011
Power Divider	Mini-Circuits	15542	0235	DC – 18 GHz	Cal. on use
Attenuator	Narda	4768-20	-	DC - 40 GHz	Cal. on use
Spectrum Analyzer	Hewlett Packard	HP 8593EM	3710A00223	9 kHz – 22 GHz	25 April 2012
LISN	EMCO	3825/2R	1165	10 kHz – 30 MHz	8 April 2012
Attenuator	Pasternack	PE7010-20	-	-	18 Jan 2012

EXHIBIT 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement.

7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

	Line Conducted Emission Measurement Uncertainty (150 kHz – 30 MHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 1.57	<u>+</u> 1.8
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 3.14	<u>+</u> 3.6

7.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

	Radiated Emission Measurement Uncertainty @ 3m, Horizontal (30-1000 MHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{m} u_i^2(y)}$	<u>+</u> 2.15	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.30	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3m, Vertical (30-1000 MHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{l=1}^{m} \sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 2.39	<u>+</u> 2.6
U	Expanded uncertainty U: $U = 2u_c(y)$	<u>+</u> 4.78	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3 m, Horizontal & Vertical (1 – 18 GHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} \sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 1.87	Under consideration
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 3.75	Under consideration