

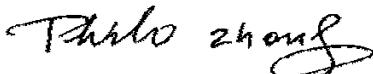
FCC TEST REPORT

FCC ID : ZTJ-HAS-400R
Applicant : Shenzhen Uniwisdom Technologies Co., Ltd.
Address : Bldg.91-94 3rd Industrial Zone, Lisonglang, Gongming Town, Bao'an District, Shenzhen, P.R.China

Equipment Under Test (EUT) :

Product Name : Peavey Assisted Listening System
Model No. : HAS-400(RECEIVER); PEAVEY ASSISTED LISTENING(RECEIVER)

Standards : FCC Part 15.109:2009


Date of Test : July 27, 2011 ~ July 28, 2011

Date of Issue : July 29, 2011

Test Engineer : Hunk yan

Reviewed By : Philo zhong

Test Result	: PASS
--------------------	---------------

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District,
Shenzhen 518105, China

Tel :+86-755-27553488

Fax:+86-755-27553868

◇ The sample detailed above has been tested to the requirements of Council Directives ANSI C63.4:2003. The test results have been reviewed against the Directives above and found to meet their essential requirements.

2 Test Summary

FCC Part 15 Subpart B Requirements			
Test Items	Test Requirement	Test Method	Result
Radiated Emission (30MHz to 1GHz)	FCC Part 15.109:2009	ANSI C63.4: 2003	PASS
Conducted Emission (150KHz to 30MHz)	FCC Part 15.107:2009	ANSI C63.4: 2003	N/A

3 Contents

1 COVER PAGE.....	1
2 TEST SUMMARY	2
3 CONTENTS.....	3
4 GENERAL INFORMATION	4
4.1 CLIENT INFORMATION.....	4
4.2 GENERAL DESCRIPTION OF E.U.T.	4
4.3 DETAILS OF E.U.T.	4
4.4 DESCRIPTION OF SUPPORT UNITS	4
4.5 STANDARDS APPLICABLE FOR TESTING	4
4.6 TEST FACILITY	5
4.7 TEST LOCATION	5
5 EQUIPMENT USED DURING TEST	6
6 CONDUCTED EMISSION DATA.....	8
7 RADIATION EMISSION DATA	8
7.1 MEASUREMENT UNCERTAINTY	8
7.2 EUT SETUP	9
7.3 SPECTRUM ANALYZER SETUP	9
7.4 TEST PROCEDURE.....	10
7.5 CORRECTED AMPLITUDE & MARGIN CALCULATION.....	10
7.6 SUMMARY OF TEST RESULTS	11
7.7 PHOTOGRAPH – RADIATION EMISSION TEST SETUP	13
8 PHOTOGRAPHS - CONSTRUCTIONAL DETAILS.....	14
8.1 EUT – FRONT VIEW	14
8.2 EUT – BACK VIEW	14
8.3 EUT – OPEN VIEW	15
8.4 PCB – FRONT VIEW	15
8.5 PCB – BACK VIEW	16
9 FCC LABEL.....	17

4 General Information

4.1 Client Information

Applicant : Shenzhen Uniwisdom Technologies Co., Ltd.

Address of Applicant : Bldg.91-94 3rd Industrial Zone, Lisonglang, Gongming Town, Bao'an District, Shenzhen, P.R.China

Manufacturer : Shenzhen Uniwisdom Technologies Co., Ltd.

Address of Manufacturer : Bldg.91-94 3rd Industrial Zone, Lisonglang, Gongming Town, Bao'an District, Shenzhen, P.R.China

4.2 General Description of E.U.T.

Product Name : Peavey Assisted Listening System

Model No. : HAS-400(RECEIVER); PEAVEY ASSISTED LISTENING(RECEIVER)

Differences describe : All of models have the same circuit and apparence, they only have different model number.

Operation Frequency : 72.0MHz ~ 76.0MHz

4.3 Details of E.U.T.

Technical Data: : DC 3.0V

4.4 Description of Support Units

The EUT has been tested as an independent unit. All the test was performed in the condition of DC 3.0V input.

4.5 Standards Applicable for Testing

The customer requested FCC tests for a Peavey Assisted Listening System. The standards used were FCC Part 15.109:2009.

4.6 Test Facility

The test facility has a test site registered with the following organizations:

- **IC – Registration No.: IC7760A**

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A, Aug.03, 2010.

- **FCC – Registration No.: 880581**

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, May 26, 2011.

4.7 Test Location

All the tests were performed at:

Waltek Services(Shenzhen) Co., Ltd. at 1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen, China

5 Equipment Used during Test

Equipment Name	Manufacturer Model	Equipment No	Internal No	Specification	Cal. Date	Due Date	Cert. No	Uncertainty
EMC Analyzer	Agilent/ E7405A	MY451149 43	W2008001	9k-26.5GHz	Aug-2010	Aug-2011	Wws200 81596	±1dB
Trilog Broadband Antenne	SCHWARZB ECK MESS-ELEKTROM / VULB9163	336	W2008002	30-3000 MHz	Aug-2010	Aug-2011	-	±1dB
Broad-band Horn Antenna	SCHWARZB ECK MESS-ELEKTROM / BBHA 9120D(1201)	667	W2008003	1-18GHz	Aug-2010	Aug-2011	-	f<10 GHz: ±1dB 10GHz<f< 18 GHz: ±1.5dB
Broadband Preamplifier	SCHWARZB ECK MESS-ELEKTROM / BBV 9718	9718-148	W2008004	0.5-18GHz	Aug-2010	Aug-2011	-	±1.2dB
10m Coaxial Cable with N-male Connectors	SCHWARZB ECK MESS-ELEKTROM / AK 9515 H	-	-	-	Aug-2010	Aug-2011	-	-
10m 50 Ohm Coaxial Cable	SCHWARZB ECK MESS-ELEKTROM / AK 9513	-	-	-	Aug-2010	Aug-2011	-	-
Positioning Controller	C&C LAB/ CC-C-IF	-	-	-	N/A	N/A	-	-
Color Monitor	SUNSPO/ SP-14C	-	-	-	N/A	N/A	-	-
Test Receiver	ROHDE&SC HWARZ/ ESPI	101155	W2005001	9k-3GHz	Aug-2010	Aug-2011	Wws200 80942	±1dB
EMI Receiver	Beijingkehuan	KH3931	-	9k-1GHz	Aug-2010	Aug-2011	-	-
Two-Line V-Network	ROHDE&SC HWARZ/ ENV216	100115	W2005002	50Ω/50μH	Aug-2010	Aug-2011	Wws200 80941	±10%
Digital Power Analyzer	Em Test AG/Switzerland/ DPA 500	V07451 03095	W2008012	Power: 2000VA Vol-range: 0-300V Freq_range: 10-80Hz	Aug-2010	Aug-2011	Wwd200 81185	Voltage distinguish:0.025% Power_freq distinguish:0.02Hz
Power Source	Em Test AG/Switzerland/ ACS 500	V07451 03096	W2008013	Vol-range: 0-300V Power_freq: 10-80Hz				

WALTEK SERVICES

Reference No.: WT11073742-E-E-F

Equipment Name	Manufacturer Model	Equipment No	Internal No	Specification	Cal. Date	Due Date	Cert. No	Uncertainty
RF Generator	TESEQ GmbH/ NSG4070	25781	W2008008	Fraq-range: 9K-1GHz RF voltage: - 60 dBm- +10dBm	Aug-2010	Aug-2011	Wws200 81890	Power_freq distinguish0. 1Hz RFeletricity distinguish 0.1 B
CDN M-Type	TESEQ GmbH/ CDN M016	25112	W2008009	Voltage correct factor 9.5 dB	Aug-2010	Aug-2011	Wwc200 82396	150K- 80MHz: ±1dB 80- 230MHz:-2- +3dB
EM-Clamp	TESEQ GmbH/ KEMZ 801	25453	W2008010	Freq_range: 0.15-1000 MHz	Aug-2010	Aug-2011	Wwc200 82397	0.3-400 MHz: ±4dB Other freq: ±5dB
Attenuator 6dB	TESEQ GmbH/ ATN6050	25365	-	-	Aug-2010	Aug-2011	Wws200 81597	-
All Modules Generator	SCHAFFNE R/6150	34579	W2008006	voltage:200V- 4.4KV Pulse current: 100A-2.2KA	Aug-2010	Aug-2011	Wwc200 82401	voltage: ±10% Pulse current: ±10%
Capacitive Coupling Clamp	SCHAFFNE R/ CDN 8014	25311	-	-	Aug-2010	Aug-2011	Wwc200 82398	-
Signal and Data Line Coupling Network	SCHAFFNE R/ CDN 117	25627	W2008011	1.2/50μS	Aug-2010	Aug-2011	Wwc200 82399	-

6 Conducted Emission Data

Test Requirement: FCC Part 15.107
 Test Method: ANSI C63.4:2003
 Test Result: N/A

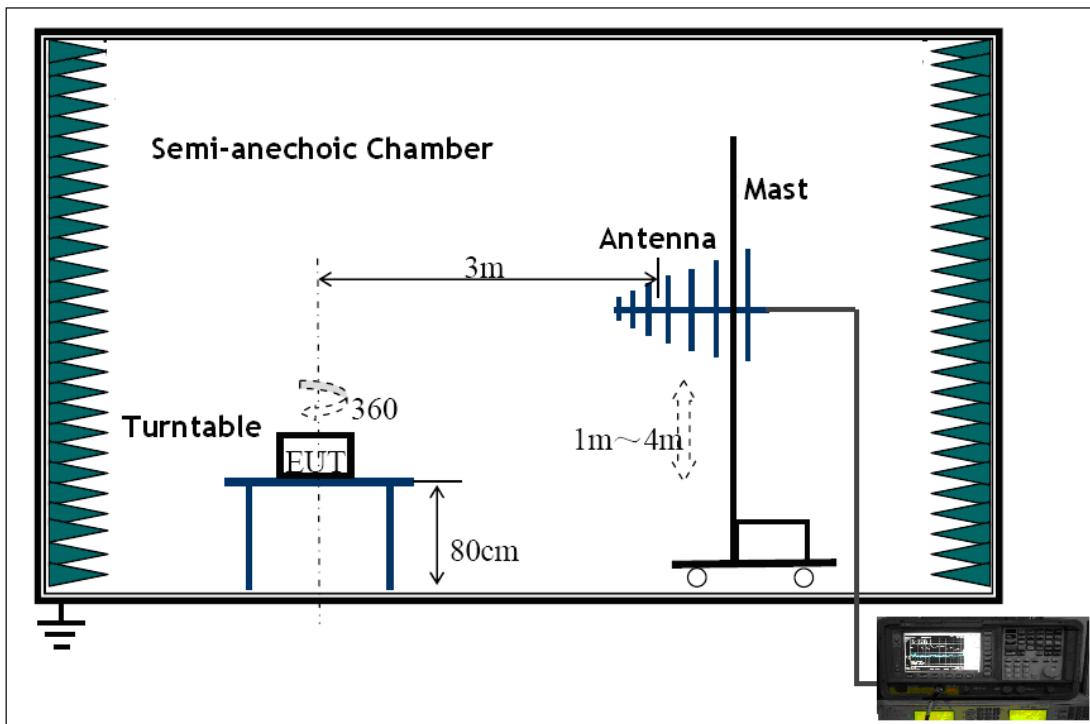
Remark: Because the EUT is DC input, this test is not applicable.

7 Radiation Emission Data

Test Requirement: FCC Part15.109
 Test Method: ANSI C63.4:2003
 Test Result: PASS
 Frequency Range: 30MHz to 1GHz
 Measurement Distance: 3m
 Class: Class B
 Limit: 40.0 dB μ V/m between 30MHz & 88MHz
 43.5 dB μ V/m between 88MHz & 216MHz
 46.0 dB μ V/m between 216MHz & 960MHz
 54.0 dB μ V/m above 960MHz
 Detector: Peak for pre-scan (120kHz resolution bandwidth)
 Quasi-Peak if maximised peak within 6dB of limit

EUT Operation:

The EUT was pre-test in four mode: low channel in standby mode, high channel in standby mode, low channel in receive mode and high channel in receive mode. The worst mode is low channel in receive mode, so the report show that data only.


7.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Waltek EMC Lab is ± 5.03 dB.

7.2 EUT Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4:2003, The specification used in this report was the FCC Part15.109 limits.

The EUT was placed on the test table in shielding room.

7.3 Spectrum Analyzer Setup

According to FCC Part15.109 Rules, the system was tested 30 to 1000MHz.

Below 1GHz

Start Frequency	30 MHz
Stop Frequency	1000MHz
Sweep Speed	Auto
IF Bandwidth.....	120 KHz
Video Bandwidth.....	100KHz
Quasi-Peak Adapter Bandwidth	120 KHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	100KHz

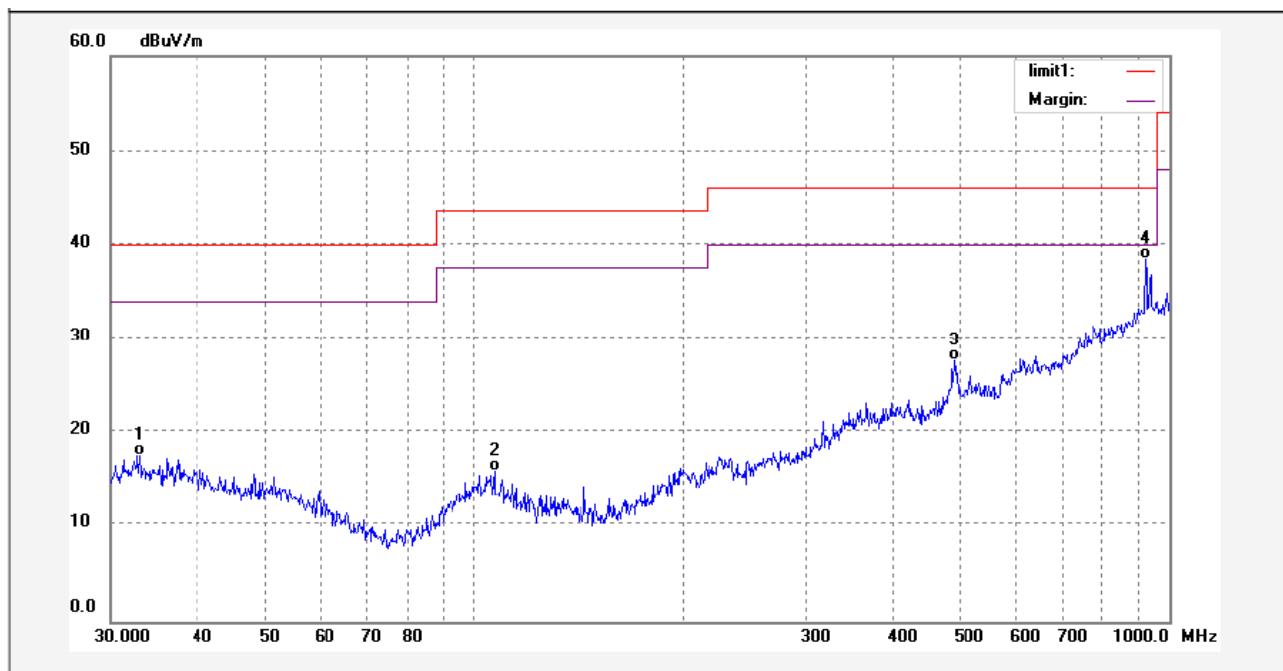
7.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
6. Repeat above procedures until the measurements for all frequencies are complete.
7. The radiation measurements are performed in X(normal uses) axis positioning. And all the modes was tested in the report.Only the worst case is shown in the report.
8. The EUT was pre-testrd in two mode:standby mode and receive mode.According to ANSI STANDARD C63.4-2003 12.1.1.2 OTHER TYPES OF RECEIVERS: In receive mode,a typical signal or an unmodulated CW signal at the operating frequency of the EUT shall be supplied to the EUT for all measurements. Such a signal may be supplied by either a signal generator and an antenna in close proximity to the EUT or directly conducted into the antenna terminals of the EUT. The signal level shall be sufficient to the local oscillator of the EUT.In this report, the antenna of the signal generator is under the turntable.

7.5 Corrected Amplitude & Margin Calculation

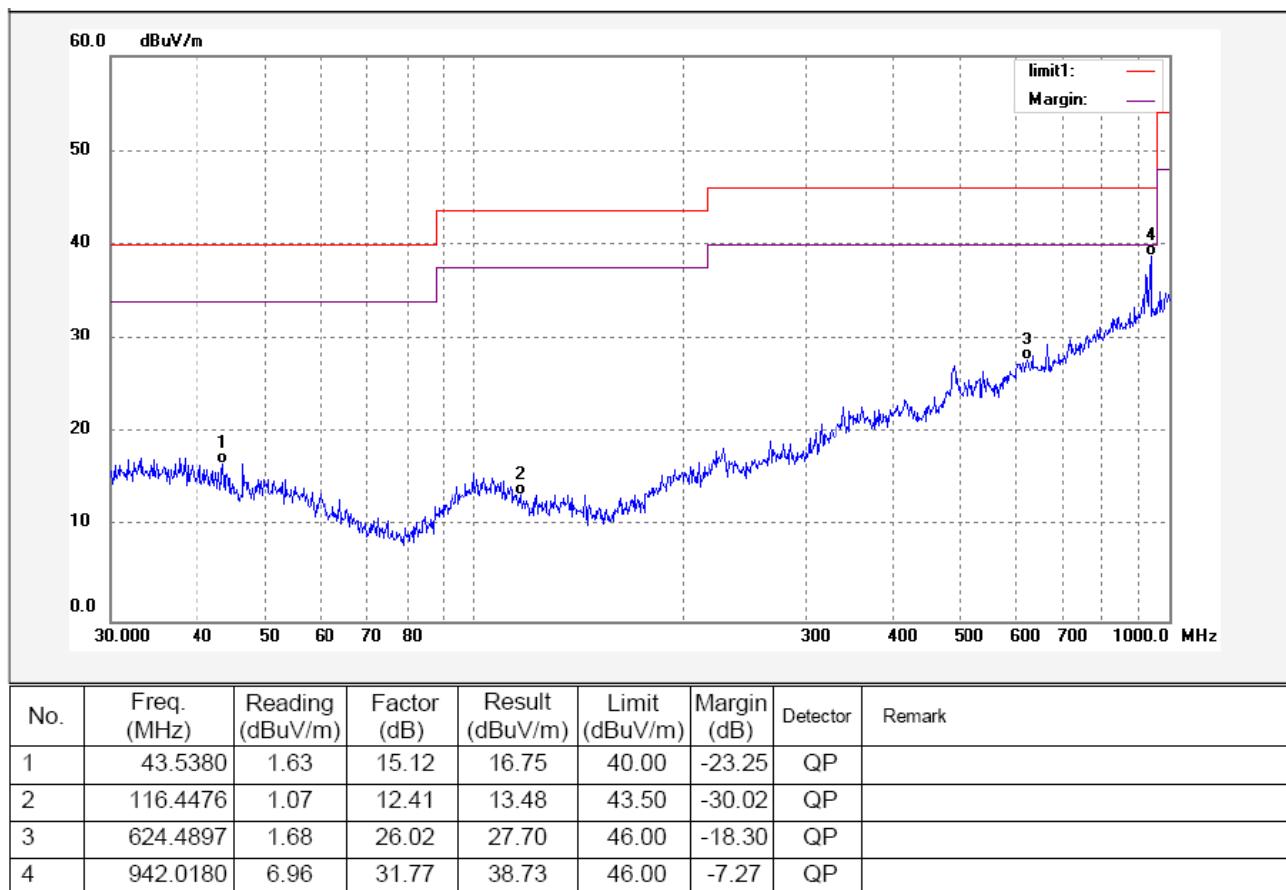
The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

$$\text{Corr. Ampl.} = \text{Indicated Reading} + \text{Antenna Factor} + \text{Cable Factor} - \text{Amplifier Gain}$$


The “**Margin**” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB μ V means the emission is 7dB μ V below the maximum limit for Class B. The equation for margin calculation is as follows:

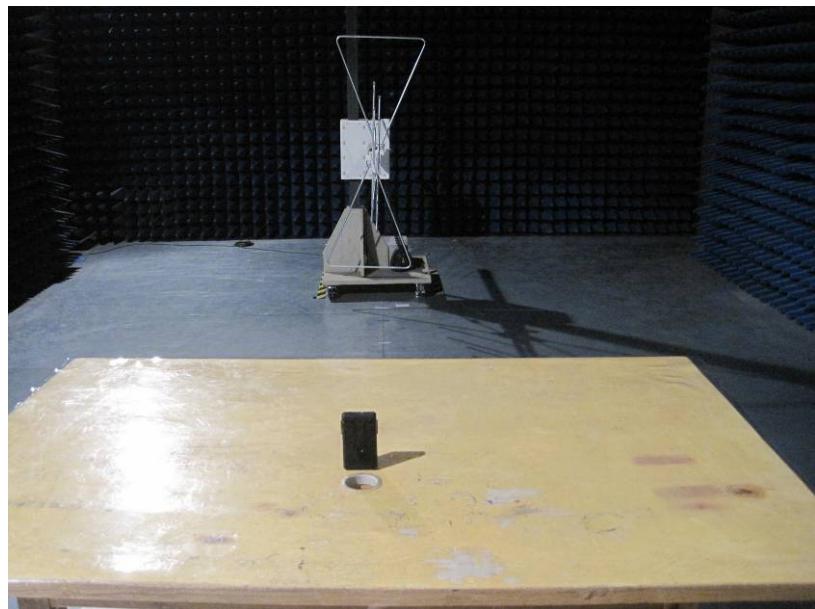
$$\text{Margin} = \text{Corr. Ampl.} - \text{Class B Limit}$$

7.6 Summary of Test Results


According to the data in this section, the EUT complied with the FCC Part15.109 standards.

Antenna polarization: Vertical

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
1	32.9854	1.13	16.57	17.70	40.00	-22.30	QP	
2	107.0306	1.87	14.05	15.92	43.50	-27.58	QP	
3	490.0451	1.86	25.75	27.61	46.00	-18.39	QP	
4	925.6132	6.72	31.77	38.49	46.00	-7.51	QP	


Antenna polarization: Horizontal

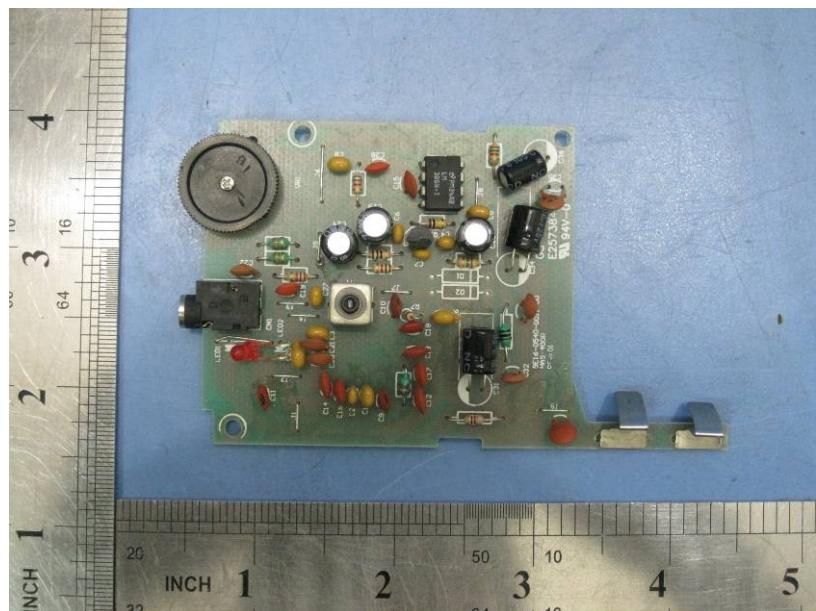
WALTEK SERVICES

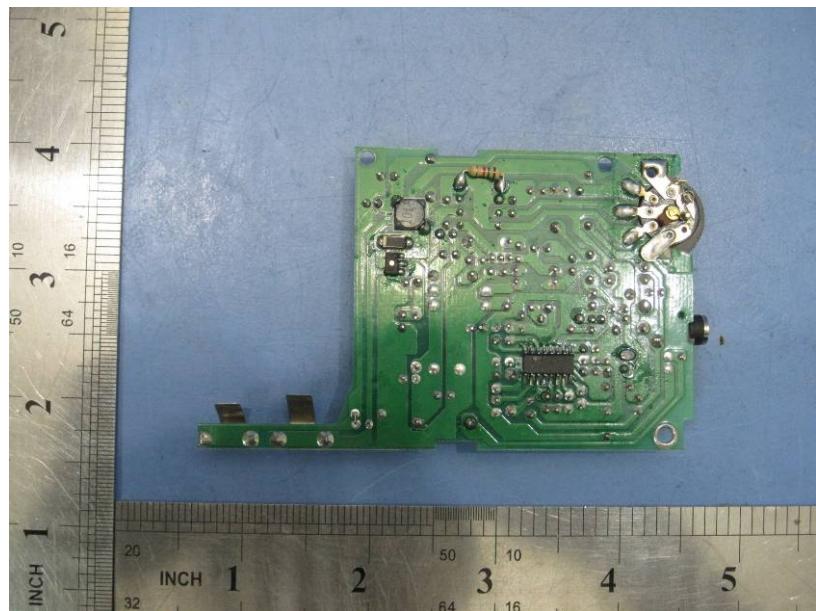
Reference No.: WT11073742-E-E-F

7.7 Photograph – Radiation Emission Test Setup

8 Photographs - Constructional Details

8.1 EUT – Front View


8.2 EUT – Back View


8.3 EUT – Open View

8.4 PCB – Front View

8.5 PCB – Back View

9 FCC Label

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:(1)this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation

The Label must not be a stick-on paper. The Label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

