

SAR EVALUATION REPORT

For

B Mobile HK Limited

G/F., 144 UN CHAU STREET, SHAM SHUI PO, KOWLOON, HONG KONG

FCC ID: ZSW-QW130

Report Type: Original Report		Product Type: GSM Mobile Phone
Test Engineer:	Sandy Wang	Sandy Wong
Report Number:	RSZ12062900	3-20
Report Date:	2012-07-23	
Reviewed By:	Alvin Huang RF Leader	mi Hung
Test Laboratory:	6/F, the 3rd Ph ShiHua Road,	33320008

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the Federal Government. * This report contain data that are not covered by the NVLAP accreditation and are marked with an asterisk " \star " (Rev.2)

Attestation of Test Results						
	Company Name B Mobile HK Limited					
EUT	EUT Description GSM Mobile Phone					
Information	FCC ID	FCC ID ZSW-QW130				
	Model Number	QW130				
	Test Date	2012.07.08—2012.07.10				
Frequency	Γ	Max. SAR Level(s) Measured	Limit(W/Kg)			
Cellular Band		0.560 W/kg 1g Head SAR 1.370 W/kg 1g Body SAR				
PCS Band		0.117 W/kg 1g Head SAR 0.424 W/kg 1g Body SAR	1.6			
WCDMA 850		1. 6 0.651 W/kg 1g Head SAR 0.528 W/kg 1g Body SAR				
WCDMA 1900	0.272 W/kg 1g Head SAR 0.735 W/kg 1g Body SAR					
ANSI / IEEE C95.1 : 2005 IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fileds,3 kHz to 300 GHz.						
	ANSI / IEEE C95.3 : 2002 IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to SuchFields,100 kHz—300 GHz.					
Applicable Standards	OET BULLETIN 65 SUPPLEMENT C Evaluating Compliance with FCC Guidelines for Human Exposure To Radiofrequency Electromagnetic Fields					
IEEE1528:2003 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques						
Note: This wireless device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in ANSI/IEEE Standards and has been tested in accordance with the measurement procedures specified in FCC OET 65 Supplement C and IEEE 1528-2003.						

The results and statements contained in this report pertain only to the device(s) evaluated.

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
EUT DESCRIPTION	5
TECHNICAL SPECIFICATION	5
REFERENCE, STANDARDS, AND GUILDELINES	6
SAR LIMITS	7
FACILITIES AND ACCREDITATION	8
DESCRIPTION OF TEST SYSTEM	9
EQUIPMENT LIST AND CALIBRATION	16
EQUIPMENTS LIST & CALIBRATION INFORMATION	16
SAR MEASUREMENT SYSTEM VERIFICATION	
LIQUID VERIFICATION	
SYSTEM ACCURACY VERIFICATION SAR SYSTEM VALIDATION DATA	
EUT TEST STRATEGY AND METHODOLOGY	
TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR	
CHEEK/TOUCH POSITION	
EAR/TILT POSITION	
TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS SAR EVALUATION PROCEDURE	
CONDUCTED OUTPUT POWER MEASUREMENT	
PROVISION APPLICABLE	
TEST PROCEDURE	
TEST RESULTS:	
SAR SIMULTANEOUS TRANSMISSION EVALUATION	
SAR MEASUREMENT RESULTS	
SAR TEST DATA	
EUT SCAN RESULTS	
APPENDIX A – MEASUREMENT UNCERTAINTY	
APPENDIX B – PROBE CALIBRATION CERTIFICATES	66
APPENDIX C – DIPOLE CALIBRATION CERTIFICATES	
APPENDIX D – EUT TEST POSITION PHOTOS	
APPENDIX E – EUT PHOTOS	97
APPENDIX F – INFORMATIVE REFERENCES	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision	
0	RSZ120629003-20	Original Report	2012-07-23	

EUT DESCRIPTION

This report has been prepared on behalf of B Mobile HK Limited and their product, FCC ID: ZSW-QW130 Model: QW130 or the EUT (Equipment under Test) as referred to in the rest of this report. The EUT is a GSM Mobile phone.

Technical Specification

Product Type	Portable	
Exposure Category:	Population / Uncontrolled	
Antenna Type(s):	Internal Antenna	
Body-Worn Accessories:	Headset	
Face-Head Accessories:	None	
Multi-slot Class:	Class 10	
Operation Mode :	GSM Voice, GPRS Data, Bluetooth and WCDMA	
	Cellular Band : 824-849 MHz(TX) ; 869-894 MHz(RX)	
	PCS Band : 1850-1910 MHz(TX) ; 1930-1990 MHz(RX)	
Frequency Band:	WCDMA850 : 824-849 MHz(TX) ; 869-894 MHz(RX)	
	WCDMA1900 : 1850-1910 MHz(TX) ; 1930-1990 MHz(RX)	
	Bluetooth : 2402MHz-2480MHz	
	Cellular Band : 32.61dBm	
	PCS Band : 29.16dBm	
Conducted RF Power:	Bluetooth : 2.98dBm	
	WCDMA850 : 22.05dBm	
	WCDMA850 : 22.32dBm	
Dimensions (L*W*H):	110 mm (L)× 60 mm (W)× 15 mm (H)	
Weight:	99.3g	
Power Source:	3.7VDC/ 1450mAh Rechargeable Battery	
Normal Operation:	: Head and Body-worn	

REFERENCE, STANDARDS, AND GUILDELINES

FCC:

The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass.

CE:

The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 2 mW/g as recommended by EN62209-1 for an uncontrolled environment. According to the Standard, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in Europe is 2 mW/g average over 10 gram of tissue mass.

The test configurations were laid out on a specially designed test fixture to ensure the reproducibility of measurements. Each configuration was scanned for SAR. Analysis of each scan was carried out to characterize the above effects in the device.

SAR Limits

	SAR (W/kg)				
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)			
Spatial Average (averaged over the whole body)	0.08	0.4			
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0			
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0			

FCC Limit (1g Tissue)

CE Limit (10g Tissue)

	SAR (W/kg)				
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)			
Spatial Average (averaged over the whole body)	0.08	0.4			
Spatial Peak (averaged over any 10 g of tissue)	2.0	10			
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0			

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg (FCC) & 2 W/kg (CE) applied to the EUT.

FACILITIES AND ACCREDITATION

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect data is located at 6/F, the 3rd Phase of WanLi Industrial Building, Shi Hua Road, Fu Tian Free Trade Zone, Shenzhen, Guangdong, P.R. of China

Additionally, Bay Area Compliance Laboratories Corp. (Shenzhen) is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200707-0).

The current scope of accreditations can be found at http://ts.nist.gov/Standards/scopes/2007070.htm

DESCRIPTION OF TEST SYSTEM

These measurements were performed with ALSAS 10 Universal Integrated SAR Measurement system from APREL Laboratories.

ALSAS-10U System Description

ALSAS-10-U is fully compliant with the technical and scientific requirements of IEEE 1528, IEC 62209, CENELEC, ARIB, ACA, and the Federal Communications Commission. The system comprises of a six axes articulated robot which utilizes a dedicated controller. ALSAS-10U uses the latest methodologies. And FDTD modeling to provide a platform which is repeatable with minimum uncertainty.

Applications

Predefined measurement procedures compliant with the guidelines of CENELEC, IEEE, IEC, FCC, etc are utilized during the assessment for the device. Automatic detection for all SAR maxima are embedded within the core architecture for the system, ensuring that peak locations used for centering the zoom scan are within a 1mm resolution and a 0.05mm repeatable position. System operation range currently available up-to 6 GHz in simulated tissue.

Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm2 step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

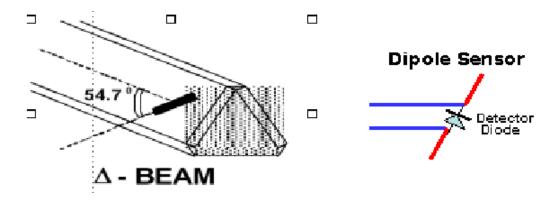
Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the ALSAS-10U software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m3 is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 5x5x8 (8mmx8mmx5mm) providing a volume of 32mm in the X & Y axis, and 35mm in the Z axis.

ALSAS-10U Interpolation and Extrapolation Uncertainty


The overall uncertainty for the methodology and algorithms the used during the SAR calculation was evaluated using the data from IEEE 1528 based on the example f3 algorithm:

$$f_3(x, y, z) = A \frac{a^2}{\frac{a^2}{4} + {x'}^2 + {y'}^2} \cdot \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2}\right)$$

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

SAR is assessed with a calibrated probe which moves at a default height of 5mm from the center of the diode, which is mounted to the sensor, to the phantom surface (in the Z Axis). The 5mm offset height has been selected so as to minimize any resultant boundary effect due to the probe being in close proximity to the phantom surface.

The following algorithm is an example of the function used by the system for linearization of the output from the probe when measuring complex modulation schemes.

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

Isotropic E-Field Probe Specification

Calibration Method	Frequency Dependent Below 1 GHz Calibration in air performed in a TEM Cell Above 1 GHz Calibration in air performed in waveguide			
Sensitivity	$0.70 \ \mu V / (V/m)^2$ to $0.85 \ \mu V / (V/m)^2$			
Dynamic Range	0.0005 W/kg to 100 W/kg			
Isotropic Response	Better than 0.1 dB			
Diode Compression Point (DCP)	Calibration for Specific Frequency			
Probe Tip Diameter	< 2.9 mm			
Sensor Offset	1.56 (+/- 0.02 mm)			
Probe Length	289 mm			
Video Bandwidth	@ 500 Hz: 1 dB @ 1.02 kHz: 3 dB			
Boundary Effect	Less than 2.1% for distance greater than 0.58 mm			
Spatial Resolution	The spatial resolution uncertainty is less than 1.5% for 4.9m diameter probe. The spatial resolution uncertainty is less than 1.0% for 2.5m diameter probe			

Boundary Detection Unit and Probe Mounting Device

ALSAS-10U incorporates a boundary detection unit with a sensitivity of 0.05mm for detecting all types of surfaces. The robust design allows for detection during probe tilt (probe normalize) exercises, and utilizes a second stage emergency stop. The signal electronics are fed directly into the robot controller for high accuracy surface detection in lateral and axial detection modes (X, Y, & Z).

The probe is mounted directly onto the Boundary Detection unit for accurate tooling and displacement calculations controlled by the robot kinematics. The probe is connect to an isolated probe interconnect where the output stage of the probe is fed directly into the amplifier stage of the Daq-Paq.

Daq-Paq (Analog to Digital Electronics)

ALSAS-10U incorporates a fully calibrated Daq-Paq (analog to digital conversion system) which has a 4 channel input stage, sent via a 2 stage auto-set amplifier module. The input signal is amplified accordingly so as to offer a dynamic range from $5\mu V$ to 800mV. Integration of the fields measured is carried out at board level utilizing a Co-Processor which then sends the measured fields down into the main computational module in digitized form via an RS232 communications port. Probe linearity and duty cycle compensation is carried out within the main Daq-Paq module.

ADC	12 Bit
Amplifier Range	20 mV to 200 mV and 150 mV to 800 mV
Field Integration	Local Co-Processor utilizing proprietary integration algorithms
Number of Input Channels	4 in total 3 dedicated and 1 spare
Communication	Packet data via RS232

Axis Articulated Robot

ALSAS-10U utilizes a six axis articulated robot, which is controlled using a Pentium based real-time movement controller. The movement kinematics engine utilizes proprietary (Thermo CRS) interpolation and extrapolation algorithms, which allow full freedom of movement for each of the six joints within the working envelope. Utilization of joint 6 allows for full probe rotation with a tolerance better than 0.05mm around the central axis.

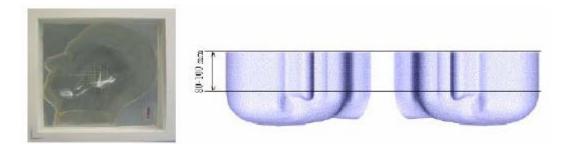
Robot/Controller Manufacturer	Thermo CRS		
Number of Axis	Six independently controlled axis		
Positioning Repeatability	0.05 mm		
Controller Type	Single phase Pentium based C500C		
Robot Reach	710 mm		
Communication	RS232 and LAN compatible		

ALSAS Universal Workstation

ALSAS Universal workstation allows for repeatability and fast adaptability. It allows users to do calibration, testing and measurements using different types of phantoms with one set up, which significantly speeds up the measurement process.

Universal Device Positioner

The universal device positioner allows complete freedom of movement of the EUT. Developed to hold a EUT in a free-space scenario any additional loading attributable to the material used in the construction of the positioner has been eliminated. Repeatability has been enhanced through the linear scales which form the design used to indicate positioning for any given test scenario in all major axes. A 15° tilt indicator is included for the of aid cheek to tilt movements for head SAR analysis. Overall uncertainty for measurements have been reduced due to the design of the Universal device positioner, which allows positioning of a device in as near to a free-space scenario as possible, and by providing the means for complete repeatability.



Phantom Types

The ALSAS-10U allows the integration of multiple phantom types. SAM Phantoms fully compliant with IEEE 1528, Universal Phantom, and Universal Flat.

APREL SAM Phantoms

The SAM phantoms developed using the IEEE SAM CAD file. They are fully compliant with the requirements for both IEEE 1528 and FCC Supplement C. Both the left and right SAM phantoms are interchangeable, transparent and include the IEEE 1528 grid with visible NF and MB lines.

APREL Laboratories Universal Phantom

The Universal Phantom is used on the ALSAS-10U as a system validation phantom. The Universal Phantom has been fully validated both experimentally from 800MHz to 6GHz and numerically using XFDTD numerical software.

The shell thickness is 2mm overall, with a 4mm spacer located at the NF/MB intersection providing an overall thickness of 6mm in line with the requirements of IEEE-1528.

The design allows for fast and accurate measurements, of handsets, by allowing the conservative SAR to be evaluated at on frequency for both left and right head experiments in one measurement.

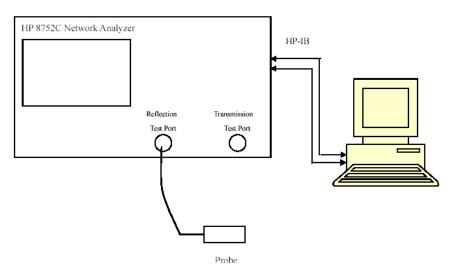
Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Ingredients	Frequency (MHz)									
(% by weight)	45	50	8.	35	91	15	19	00	24	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (Nacl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton x-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (s/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Recommended Tissue Dielectric Parameters for Head and Body

Frequency	Head	Fissue	Body Tissue		
(MHz)	8r	O' (S/m)	٤r	O' (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800-2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	


EQUIPMENT LIST AND CALIBRATION

Equipments List & Calibration Information

Equipment	Model	Calibration Date	S/N
CRS F3 robot	ALS-F3	N/A	RAF0805352
CRS F3 Software	ALS-F3-SW	N/A	N/A
CRS C500C controller	ALS-C500	N/A	RCF0805379
Probe mounting device & Boundary Detection Sensor System	ALS-PMDPS-3	N/A	120-00270
Universal Work Station	ALS-UWS	N/A	100-00157
Data Acquisition Package	ALS-DAQ-PAQ-3	2012-05-13	110-00212
Miniature E-Field Probe	ALS-E-020	2011-07-14	500-00283
Dipole, 835MHz	ALS-D-835-S-2	2011-08-25	210-00558
Dipole,1900MHz	ALS-D-1900-S-2	2011-08-25	210-00710
Dipole Spacer	ALS-DS-U	N/A	250-00907
Device holder/Positioner	ALS-H-E-SET-2	N/A	170-00510
Left ear SAM phantom	ALS-P-SAM-L	N/A	130-00311
Right ear SAM phantom	ALS-P-SAM-R	N/A	140-00359
UniPhantom	ALS-P-UP-1	N/A	150-00413
Simulated Tissue 835 MHz Head	ALS-T-835-1-H	Each Time	270-01002
Simulated Tissue 835 MHz Body	ALS-T-835-1-B	Each Time	270-02101
Simulated Tissue 1900 MHz Head	ALS-T-1900-1-H	Each Time	295-01103
Simulated Tissue 1900 MHz Body	ALS-T-1900-1-B	Each Time	295-02102
Power Amplifier	5S1G4	N/A	71377
Synthesized Sweeper	HP 8341B	2012-05-17	2624A00116
UNIVERSAL RADIO COMMUNICATION TESTER	CMU 200	2011.12.16	1100.0008.02
EMI Test Receiver	ESCI	2011-11-17	101122

SAR MEASUREMENT SYSTEM VERIFICATION

Liquid Verification

Liquid Verification Setup Block Diagram

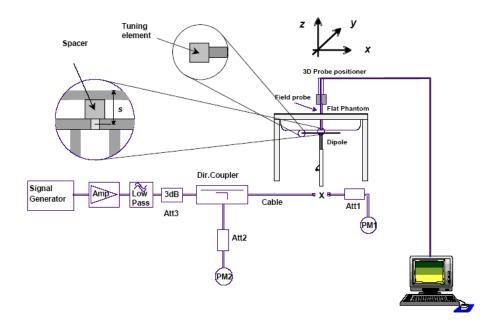
Liquid Verification Results

Enoquonay	Eroquonov Liquid		Liquid Parameter		get Value	Delta		Tolerance
Frequency	Туре	8 _r	O' (S/m)	٤r	O (S/m)	(%)		(%)
824.2	Head	41.19	0.89	41.50	0.90	-0.746	-1.113	±5
024.2	Body	55.97	0.94	55.20	0.97	1.394	-3.093	±5
826.4	Head	41.17	0.90	41.50	0.90	-0.795	-0.217	±5
820.4	Body	55.98	0.94	55.20	0.97	1.413	-3.091	±5
826.6	Head	41.12	0.91	41.50	0.90	-0.795	1.113	±5
836.6	Body	56.04	0.96	55.20	0.97	1.522	-1.031	±5
946.6	Head	41.06	0.92	41.50	0.90	-1.060	2.222	±5
846.6	Body	56.11	0.97	55.20	0.97	1.648	-0.301	±5
040.0	Head	41.05	0.93	41.50	0.90	-1.084	3.334	±5
848.8	Body	56.12	0.98	55.20	0.97	1.667	1.031	±5
1950.2	Head	41.01	1.37	40.00	1.40	2.525	-2.142	±5
1850.2	Body	53.93	1.48	53.30	1.52	1.182	-2.631	±5
1952 4	Head	41.01	1.37	40.00	1.40	2.525	-2.144	±5
1852.4	Body	53.92	1.48	53.30	1.52	1.163	-2.635	±5
1880.0	Head	41.01	1.40	40.00	1.40	2.525	-0.127	±5
1880.0	Body	53.78	1.50	53.30	1.52	0.908	-1.315	±5
1007.6	Head	41.03	1.42	40.00	1.40	2.575	1.428	±5
1907.6	Body	53.64	1.53	53.30	1.52	0.637	0.657	±5
1000.8	Head	41.03	1.42	40.00	1.40	2.575	1.428	±5
1909.8	Body	53.63	1.53	53.30	1.52	0.619	0.657	±5

*Liquid Verification was performed on 2012-07-08

Please refer to the following tables.

SAR Evaluation Report


	850 MHz Head			850 MHz Body	
Frequency (MHz)	e'	e''	Frequency (MHz)	e'	e''
824.0	41.1875481	19.504476	824.0	55.965832	20.527992
824.5	41.1854565	19.506474	824.5	55.968975	20.530725
825.0	41.1823744	19.509471	825.0	55.972103	20.533461
825.5	41.1792845	19.512468	825.5	55.975246	20.536191
826.0	41.1766954	19.515465	826.0	55.978384	20.538924
826.5	41.1739072	19.518462	826.5	55.981522	20.541657
827.0	41.1711194	19.521459	827.0	55.984661	20.544397
827.5	41.1683316	19.524456	827.5	55.987798	20.547123
828.0	41.1655438	19.527453	828.0	55.990936	20.549856
828.5	41.1627564	19.548045	828.5	55.994074	20.552589
829.0	41.1599682	19.533447	829.0	55.997212	20.555322
829.5	41.1571804	19.536444	829.5	56.000352	20.558055
830.0	41.1543926	19.539441	830.0	56.003488	20.560788
830.5	41.1516048	19.542438	830.5	56.006626	20.563521
831.0	41.1488171	19.545435	831.0	56.009764	20.566254
831.5	41.1460292	19.548432	831.5	56.012902	20.568987
832.0	41.1432414	19.551429	832.0	56.016041	20.571727
832.5	41.1404536	19.554426	832.5	56.019178	20.574453
833.0	41.1376658	19.557423	833.0	56.022316	20.577186
833.5	41.1348785	19.562418	833.5	56.025454	20.579919
834.0	41.1320902	19.563417	834.0	56.028592	20.582652
834.5	41.1293024	19.566414	834.5	56.031734	20.585385
835.0	41.1265146	19.569411	835.0	56.034868	20.588118
835.5	41.1237268	19.572408	835.5	56.038006	20.590851
836.0	41.1209394	19.575405	836.0	56.041144	20.593584
836.5	41.1181512	19.578402	836.5	56.044282	20.596317
837.0	41.1153634	19.581399	837.0	56.047424	20.599054
837.5	41.1125756	19.584396	837.5	56.050558	20.601783
838.0	41.1097878	19.587393	838.0	56.053696	20.604516
838.5	41.1077154	19.590395	838.5	56.056834	20.607249
839.0	41.1042122	19.593387	839.0	56.059972	20.609982
839.5	41.1014244	19.596384	839.5	56.063115	20.612715
840.0	41.0986366	19.599381	840.0	56.066248	20.615448
840.5	41.0958488	19.602378	840.5	56.069386	20.618181
841.0	41.0930615	19.605375	841.0	56.072524	20.620914
841.5	41.0902732	19.608372	841.5	56.075662	20.623647
842.0	41.0874854	19.611369	842.0	56.078845	20.626384
842.5	41.0846976	19.614366	842.5	56.081938	20.629113
843.0	41.0819098	19.617363	843.0	56.085076	20.631846
843.5	41.0791224	19.620361	843.5	56.088214	20.634579
844.0	41.0763342	19.623357	844.0	56.091352	20.637312
844.5	41.0735464	19.626354	844.5	56.094491	20.640045
845.0	41.0707586	19.629351	845.0	56.097628	20.642778
845.5	41.0679708	19.632348	845.5	56.100766	20.645511
846.0	41.0651835	19.635345	846.0	56.103904	20.648244
846.5	41.0623952	19.638342	846.5	56.107042	20.650977
847.0	41.0596074	19.641339	847.0	56.110181	20.653715
847.5	41.0568196	19.644336	847.5	56.113318	20.656443
848.0	41.0540318	19.647333	848.0	56.116456	20.659176
848.5	41.0512445	19.650347	848.5	56.119594	20.661909
849.0	41.0484562	19.653327	849.0	56.122732	20.664642

Frequency (MHz) e' Frequency (MHz) e' e'' 1850.0 41.011258 13.317426 1850.0 53.930016 14.344902 1851.2 41.013514 13.319325 1851.2 53.924022 14.344591 1852.4 41.014764 13.32124 1852.4 53.918028 14.345991 1852.4 41.014266 13.325022 1854.8 53.900046 14.35034 1857.2 41.01475 13.326921 1856.0 53.900046 14.351436 1858.4 41.015024 13.330719 1857.2 53.890052 14.351436 1859.6 41.01526 13.334517 1860.8 53.870071 14.356703 1862.0 41.015774 13.336416 1862.0 53.870076 14.355703 1865.6 41.015778 13.34617 1860.8 53.884082 14.355681 1864.4 41.016283 13.342114 1865.6 53.8840162 14.355781 1865.6 41.016736 13.347911 1866.8 53.840106 14		1900 MHz Head			1900 MHz Body	
1851.2 41.013514 13.319325 1851.2 53.924022 14.345991 1852.4 41.014014 13.32124 1853.6 53.912034 14.347084 1853.6 41.014014 13.32022 1854.8 53.906041 14.349258 1856.0 41.01476 13.326921 1856.0 53.900046 14.350347 1857.2 41.014775 13.328820 1857.2 53.894052 14.351445 1857.4 41.015274 13.330719 1858.4 53.882064 14.35572 1859.6 53.882064 14.35572 14.354703 1863.2 53.876071 14.354703 1862.0 41.01631 13.34214 1863.2 53.85088 14.355792 1863.2 41.016334 13.34214 1866.6 53.852044 14.350148 1864.4 41.016786 13.342114 1866.6 53.84014 14.360148 1865.6 41.016786 13.349710 1866.8 53.840106 14.361237 1869.2 41.017794 13.345911 186		e'	e''		e'	e''
1852.4 41 013764 13.321224 1852.4 53.918028 14.347084 1853.6 41 014014 13.32124 1853.6 53.918028 14.348169 1854.8 41 014266 13.325022 1854.8 53.906041 14.349258 1855.0 41.014715 13.326921 1856.0 53.900046 14.349258 1857.2 21.014775 13.32618 1859.6 53.880058 14.351436 1859.6 41.015274 13.332618 1859.6 53.820044 14.35213 1862.0 41.015778 13.334517 1860.8 53.870076 14.355792 1863.2 41.016786 13.342014 1860.4 14.355890 1863.4 43.55974 1864.4 41.016283 13.34012 1866.4 53.852094 14.359059 1865.6 41.016786 13.342114 1865.6 53.840106 14.361237 1869.2 41.01738 13.342911 1866.8 53.84112 14.36143 1869.4 41.016786 13.345911 1866	1850.0	41.011258	13.317426	1850.0	53.930016	14.344902
1853.6 41.014014 13.323124 1853.6 53.912034 14.348169 1854.8 41.014266 13.325022 1854.8 53.900046 14.349258 1857.2 41.014715 13.326921 1856.0 53.900046 14.350347 1857.2 41.014775 13.32820 1857.2 53.890058 14.351256 1859.6 41.015274 13.330719 1858.4 53.880058 14.352357 1850.0 41.015778 13.334517 1860.8 53.870071 14.354703 1862.0 41.015778 13.334517 1860.8 53.870076 14.355792 1863.2 41.016031 13.334315 1863.2 53.850064 14.355792 1865.6 41.016534 13.34012 1866.8 53.84614 14.360148 1865.6 41.016736 13.34211 1866.8 53.84014 14.360148 1866.8 41.01738 13.345911 1869.2 53.834112 14.362326 1870.4 41.017794 13.354507 1872.4 53	1851.2	41.013514	13.319325	1851.2	53.924022	14.345991
1854.8 41.014266 13.326921 1854.8 53.906041 14.349258 1856.0 41.014518 13.326921 1857.2 53.894052 14.351436 1857.2 41.014775 13.328820 1857.2 53.894052 14.351436 1858.4 41.015274 13.332618 1859.6 53.880052 14.351436 1860.8 41.015274 13.332618 1859.6 53.870071 14.354703 1862.0 41.015778 13.334517 1860.2 53.870076 14.355792 1863.2 41.016231 13.334315 1863.2 53.864082 14.355797 1865.6 41.016233 13.34014 1864.6 53.846016 14.360148 1866.8 41.01738 13.342114 1865.6 53.852094 14.360148 1866.8 41.017291 13.347811 1866.8 53.840106 14.361237 1869.2 41.017244 13.354070 1870.4 53.82118 14.364345 1871.6 41.017794 13.354070 1872.8 <td< td=""><td>1852.4</td><td>41.013764</td><td>13.321224</td><td>1852.4</td><td>53.918028</td><td>14.347084</td></td<>	1852.4	41.013764	13.321224	1852.4	53.918028	14.347084
1856.0 41.014518 13.326921 1856.0 53.90046 14.350347 1857.2 53.890452 14.351436 1858.4 41.015024 13.330719 1858.4 53.882064 14.351436 1859.6 41.015226 13.334517 1860.8 53.882064 14.35572 1862.0 41.015726 13.334517 1860.8 53.870076 14.355792 1863.2 41.016031 13.338315 1863.2 53.870076 14.355792 1865.6 41.016283 13.340214 1864.4 53.858088 14.357974 1865.6 41.016738 13.342114 1865.6 53.840106 14.350039 1866.8 41.017038 13.34711 1868.0 53.840106 14.36142 1866.8 41.017291 13.347811 1868.0 53.840106 14.36142 1870.4 41.017294 13.354008 1871.6 53.82112 14.362326 1871.6 41.017294 13.354001 1870.4 41.04771 13.36507 1871.6 <td>1853.6</td> <td>41.014014</td> <td>13.323124</td> <td>1853.6</td> <td>53.912034</td> <td>14.348169</td>	1853.6	41.014014	13.323124	1853.6	53.912034	14.348169
1857.2 41.014775 13.328820 1857.2 53.894052 14.351436 1858.4 41.015024 13.330719 1858.4 53.882064 14.35242 1859.6 41.015274 13.332618 1859.6 53.882064 14.355703 1860.8 41.015778 13.334517 1860.8 53.870071 14.354703 1862.0 41.016031 13.338315 1863.2 53.864082 14.356793 1863.2 41.016031 13.349214 1864.4 53.850082 14.356881 1864.4 41.016334 13.34012 1866.8 53.840102 14.350482 1865.6 41.016786 13.344911 1865.6 53.84014 14.360148 1869.2 41.017384 13.345911 1868.0 53.84016 14.362326 1870.4 41.017544 13.347811 1869.2 53.82118 14.363415 1871.6 41.017544 13.351608 1871.6 53.82118 14.363415 1872.4 41.018298 13.35507 1872.8 53.	1854.8	41.014266	13.325022	1854.8	53.906041	14.349258
1858.4 41.015024 13.330719 1858.4 53.880058 14.352525 1859.6 41.015274 13.332618 1859.6 53.870071 14.354703 1862.0 41.015778 13.336117 1860.8 53.870071 14.354703 1862.0 41.015778 13.336116 1862.0 53.870076 14.355792 1863.2 41.016283 13.34012 1864.4 453.858088 14.357974 1865.6 41.016283 13.34012 1866.8 53.852094 14.350959 1866.8 41.017038 13.34911 1866.8 53.840106 14.361237 1869.2 41.01794 13.349709 1870.4 53.82118 14.362326 1870.4 41.017794 13.351608 1871.6 53.82118 14.3654593 1874.0 41.018248 13.355406 1874.0 53.810136 14.3665593 1874.0 41.018298 13.357305 1875.2 53.804142 14.366793 1875.2 41.01813 13.359204 1876.4					53.900046	14.350347
1859.6 41.01574 13.332618 1859.6 53.882064 14.353614 1860.8 41.015726 13.334517 1860.8 53.876071 14.355792 1863.2 41.016031 13.338315 1863.2 53.864082 14.355792 1863.2 41.016283 13.340214 1864.4 53.850076 14.355992 1865.6 41.016534 13.342114 1865.6 53.852094 14.359059 1866.8 41.016786 13.344012 1866.8 53.846114 14.360148 1865.0 41.017291 13.345911 1866.8 53.84112 14.360236 1869.2 41.017294 13.349709 1870.4 53.82112 14.362326 1871.6 41.01794 13.351608 1871.6 53.82112 14.365593 1874.0 41.018298 13.355406 1874.0 53.81013 14.366682 1875.2 41.01895 13.3552004 1875.2 53.804142 14.36773 1876.4 41.018946 13.359204 1876.4 53.						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		41.015274	13.332618		53.882064	14.353614
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
1865.6 41.016534 13.342114 1865.6 53.852094 14.359059 1866.8 41.016786 13.344012 1866.8 53.846114 14.360148 1868.0 41.017038 13.345911 1866.8 53.840106 14.361237 1869.2 41.017291 13.347811 1869.2 53.834112 14.362326 1870.4 41.017544 13.349709 1870.4 53.822124 14.365326 1871.6 41.01794 13.35507 1872.8 53.816133 14.365593 1874.0 41.018298 13.355406 1874.0 53.810136 14.366682 1875.2 41.018552 13.357305 1875.2 53.804142 14.366884 1876.4 41.019813 13.359204 1876.4 53.798148 14.368864 1877.6 41.01994 13.363002 1878.8 53.786164 14.371038 1880.0 41.019558 13.364901 1880.0 53.768178 14.374305 1881.2 41.020063 13.368699 1882.4 <td< td=""><td></td><td>41.016031</td><td></td><td></td><td></td><td></td></td<>		41.016031				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
1883.641.02031413.3705981883.653.76218414.3753941884.841.02056613.3724971884.853.75619514.3764831886.041.02081813.3743961886.053.75019614.3775721887.241.02107313.3762951887.253.74420214.3786611888.441.02132413.3781941888.453.73820814.3797581889.641.02157413.3800941889.653.72221414.3808391890.841.02182613.3819921890.853.72622414.3819281892.041.02207813.3838911892.053.72022614.3830171893.241.02233313.3857911893.253.71423214.3841061894.441.02258313.3876891894.453.70823814.3851951895.641.02233813.3914871896.853.69625414.3862841896.841.0233813.3914871896.853.69025614.3884621899.241.02359313.3971841900.453.67826814.3906451901.641.02384413.3971841900.453.67227414.3917291902.841.02434613.4009821902.853.66628114.392818						
1884.841.02056613.3724971884.853.75619514.3764831886.041.02081813.3743961886.053.75019614.3775721887.241.02107313.3762951887.253.74420214.3786611888.441.02132413.3781941888.453.73820814.3797581889.641.02157413.3800941889.653.73221414.3808391890.841.02182613.3819921890.853.72622414.3819281892.041.02207813.3838911892.053.72022614.3830171893.241.02233313.3857911893.253.71423214.3841061894.441.02283313.3876891894.453.70823814.3851951895.641.02283413.3914871896.853.69625414.3873731898.041.02333813.3933861898.053.69025614.3884621899.241.02359313.3971841900.453.67826814.3906451901.641.02409413.3990851901.653.67227414.3917291902.841.02434613.4009821902.853.66628114.392818						
1886.041.02081813.3743961886.053.75019614.3775721887.241.02107313.3762951887.253.74420214.3786611888.441.02132413.3781941888.453.73820814.3797581889.641.02157413.3800941889.653.72622414.3808391890.841.02182613.3819921890.853.72622414.3819281892.041.02207813.3838911892.053.72022614.3830171893.241.02258313.3876891894.453.70823814.3851951895.641.02283413.3895881895.653.70224414.3862841896.841.02308613.3914871896.853.69625414.3873731898.041.02333813.3952851899.253.68426214.3845511900.441.02384413.3971841900.453.67826814.3906451901.641.02409413.3990851901.653.6628114.392818						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
1889.641.02157413.3800941889.653.73221414.3808391890.841.02182613.3819921890.853.72622414.3819281892.041.02207813.3838911892.053.72022614.3830171893.241.02233313.3857911893.253.71423214.3841061894.441.02258313.3876891894.453.70823814.3851951895.641.02283413.3895881895.653.70224414.3862841896.841.02308613.3914871896.853.69625414.3873731898.041.02333813.393861898.053.69025614.3884621899.241.02359313.3952851899.253.68426214.3895511900.441.02384413.3971841900.453.67826814.3906451901.641.02409413.390851901.653.67227414.3917291902.841.02434613.4009821902.853.66628114.392818						
1890.841.02182613.3819921890.853.72622414.3819281892.041.02207813.3838911892.053.72022614.3830171893.241.02233313.3857911893.253.71423214.3841061894.441.02258313.3876891894.453.70823814.3851951895.641.02283413.3895881895.653.70224414.3862841896.841.02308613.3914871896.853.69625414.3873731898.041.02333813.393861898.053.69025614.3884621899.241.02359313.3952851899.253.68426214.3895511900.441.02384413.3971841900.453.67826814.3906451901.641.02409413.390851901.653.67227414.3917291902.841.02434613.4009821902.853.66628114.392818						
1892.041.02207813.3838911892.053.72022614.3830171893.241.02233313.3857911893.253.71423214.3841061894.441.02258313.3876891894.453.70823814.3851951895.641.02283413.3895881895.653.70224414.3862841896.841.02308613.3914871896.853.69625414.3873731898.041.02333813.393861898.053.69025614.3884621899.241.02359313.3952851899.253.68426214.3895511900.441.02384413.3971841900.453.67826814.3906451901.641.02409413.390851901.653.67227414.3917291902.841.02434613.4009821902.853.66628114.392818						
1893.241.02233313.3857911893.253.71423214.3841061894.441.02258313.3876891894.453.70823814.3851951895.641.02283413.3895881895.653.70224414.3862841896.841.02308613.3914871896.853.69625414.3873731898.041.02333813.393861898.053.69025614.3884621899.241.02359313.3952851899.253.68426214.3895511900.441.02384413.3971841900.453.67826814.3906451901.641.02409413.390851901.653.67227414.3917291902.841.02434613.4009821902.853.66628114.392818						
1894.441.02258313.3876891894.453.70823814.3851951895.641.02283413.3895881895.653.70224414.3862841896.841.02308613.3914871896.853.69625414.3873731898.041.02333813.393861898.053.69025614.3884621899.241.02359313.3952851899.253.68426214.3895511900.441.02384413.3971841900.453.67826814.3906451901.641.02409413.3990851901.653.67227414.3917291902.841.02434613.4009821902.853.66628114.392818						
1895.641.02283413.3895881895.653.70224414.3862841896.841.02308613.3914871896.853.69625414.3873731898.041.02333813.3933861898.053.69025614.3884621899.241.02359313.3952851899.253.68426214.3895511900.441.02384413.3971841900.453.67826814.3906451901.641.02409413.3990851901.653.67227414.3917291902.841.02434613.4009821902.853.66628114.392818						
1896.841.02308613.3914871896.853.69625414.3873731898.041.02333813.3933861898.053.69025614.3884621899.241.02359313.3952851899.253.68426214.3895511900.441.02384413.3971841900.453.67826814.3906451901.641.02409413.3990851901.653.67227414.3917291902.841.02434613.4009821902.853.66628114.392818						
1898.041.02333813.3933861898.053.69025614.3884621899.241.02359313.3952851899.253.68426214.3895511900.441.02384413.3971841900.453.67826814.3906451901.641.02409413.3990851901.653.67227414.3917291902.841.02434613.4009821902.853.66628114.392818						
1899.241.02359313.3952851899.253.68426214.3895511900.441.02384413.3971841900.453.67826814.3906451901.641.02409413.3990851901.653.67227414.3917291902.841.02434613.4009821902.853.66628114.392818						
1900.441.02384413.3971841900.453.67826814.3906451901.641.02409413.3990851901.653.67227414.3917291902.841.02434613.4009821902.853.66628114.392818						
1901.641.02409413.3990851901.653.67227414.3917291902.841.02434613.4009821902.853.66628114.392818						
<u>1902.8</u> <u>41.024346</u> <u>13.400982</u> <u>1902.8</u> <u>53.666281</u> <u>14.392818</u>						
						14.393907
1905.2 41.024851 15.404781 1905.2 55.054292 14.394996 1906.4 41.025113 13.406679 1906.4 53.648298 14.396085						
						14.397174
1907.0 41.025354 15.408578 1907.0 55.042504 14.597174 1908.8 41.025606 13.410477 1908.8 53.636310 14.398263						
1908.8 41.025000 15.410477 1908.8 55.050510 14.598205 1910.0 41.025858 13.412376 1910.0 53.630316 14.399352						

System Accuracy Verification

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

System Verification Setup Block Diagram

Probe and dipole antenna List and Details

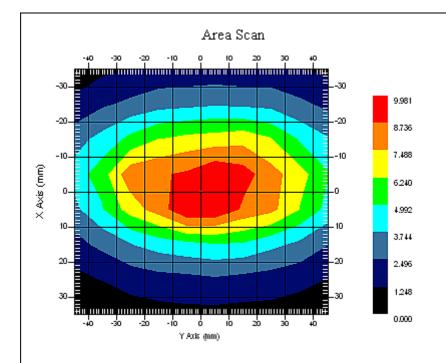
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
APREL	Probe	E-020	500-00283	2011-07-14	2012-07-13
APREL	Dipole antenna (835MHz)	ALS-835-S-2	180-00558	2011-08-25	2012-08-24
APREL	Dipole antenna (1900MHz)	ALS-1900-S-2	210-00710	2011-08-25	2012-08-24

System Accuracy Check Result

Date	Frequency Band	Liquid Type		ed SAR Kg)	Target Value (W/Kg)	Delta (%)	Tolerance (%)
	835	Head	1g	9.769	9.590	1.867	±10
2012.07.08	Body	1g	9.872	9.684	1.941	±10	
1900	Head	1g	42.652	39.648	7.577	±10	
	Body	1g	41.927	39.769	5.426	±10	

*All SAR values are normalized to 1 Watt forward power.

SAR SYSTEM VALIDATION DATA


Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

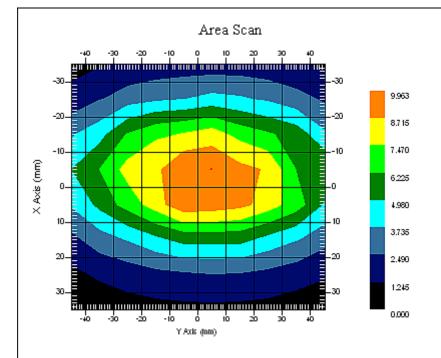
System Performance Check 835MHz Head

Dipole 835 MHz; Type: ALS-D-835-S-2; S/N: 180-00558

Product Data Device Name Serial No. Type Model Frequency Band Max. Transmit Pwr Drift Time Power Drift-Start Power Drift-Finish Power Drift (%)	
Phantom Data Name Type Size (mm) Serial No. Location Description Phantom Data	: APREL-Uni : Uni-Phantom : 280 x 280 x 200 : System Default : Center : Default
Tissue Data Type Serial No. Frequency Last Calib. Date Temperature Ambient Temp. Humidity Epsilon Sigma Density	: HEAD : 270-01002 : 836.60 MHz : 08-Jul-2012 : 20.00 °C : 21.00 °C : 56.00 RH% : 41.12 F/m : 0.91 S/m : 1000.00 kg/cu. m
Probe Data Name Model Type Serial No. Last Calib. Date Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: E-Field : E-020 : E-Field Triangle : 500-00283 : 14-Jul-2011 : 835.00 MHz : 1 : 6.6 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
Measurement Data Crest Factor Scan Type Tissue Temp. Ambient Temp. Area Scan Zoom Scan	: 1 : Complete : 21.00 °C : 21.00 °C : 8x10x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

1 gram SAR value	: 9.769 W/kg
10 gram SAR value	: 5.982 W/kg
Area Scan Peak SAR	: 9.980 W/kg
Zoom Scan Peak SAR	: 16.259 W/kg

835 MHz System Validation with Head Tissue


Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

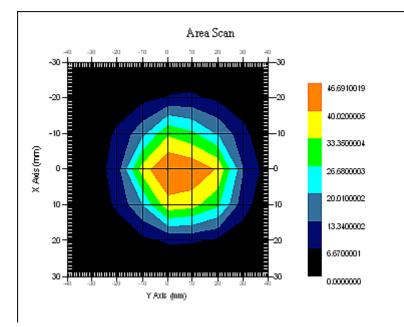
System Performance Check 835MHz Body

Dipole 835 MHz; Type: ALS-D-835-S-2; S/N: 180-00558

Product Data Device Name Serial No. Type Model Frequency Band Max. Transmit Pwr Drift Time Power Drift-Start Power Drift-Finish Power Drift-Finish	
Phantom Data Name Type Size (mm) Serial No. Location Description Phantom Data	: APREL-Uni : Uni-Phantom : 280 x 280 x 200 : System Default : Center : Default
Last Calib. Date Temperature Ambient Temp. Humidity	: Body : 270-02101 : 836.60 MHz : 08-Jul-2012 : 20.00 °C : 21.00 °C : 56.00 RH% : 56.04 F/m : 0.96 S/m : 1000.00 kg/cu. m
Probe Data Name Model Type Serial No. Last Calib. Date Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: E-Field : E-020 : E-Field Triangle : 500-00283 : 14-Jul-2011 : 835.00 MHz : 1 : 6.6 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
Measurement Data Crest Factor Scan Type Tissue Temp. Ambient Temp. Area Scan Zoom Scan	: 1 : Complete : 21.00 °C : 21.00 °C : 8x10x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

1 gram SAR value	: 9.872 W/kg
10 gram SAR value	: 6.253 W/kg
Area Scan Peak SAR	: 9.960 W/kg
Zoom Scan Peak SAR	: 15.893 W/kg

835 MHz System Validation with Body Tissue


Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

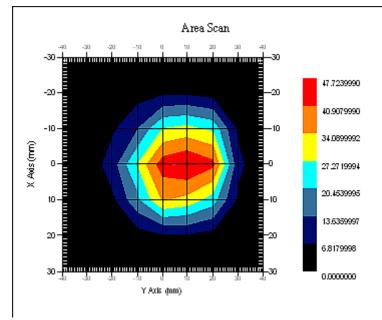
System Performance Check 1900 Head

Dipole 1900 MHz; Type: ALS-D-1900-S-2; S/N: 210-00710

Product Data Device Name Serial No. Type Model Frequency Band Max. Transmit Pwr Drift Time Power Drift-Start Power Drift-Finish Power Drift (%)	: Dipole 1900MHz : 210-00710 : Dipole : ALS-D-1900-S-2 : 1900.00 MHz : 1 W : 3 min(s) : 41.110 W/kg : 41.892W/kg : 1.921
Phantom Data Name Type Size (mm) Serial No. Location Description	: APREL-Uni : Uni-Phantom : 280 x 280 x 200 : System Default : Center : Default
	: HEAD : 295-01103 : 1880.00 MHz : 08-Jul-2012 : 20.00 °C : 21.00 °C : 56.00 RH% : 41.02 F/m : 1.40 S/m : 1000.00 kg/cu. M
Probe Data Name Model Type Serial No. Last Calib. Date Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: E-Field : E-020 : E-Field Triangle : 500-00283 : 14-Jul-2011 : 1900.00 MHz : 1 : 5.20 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
Measurement Data Crest Factor Scan Type Tissue Temp. Ambient Temp. Area Scan Zoom Scan	: 1 : Complete : 20.00 °C : 20.00 °C : 7x9x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

1 gram SAR value	: 42.652 W/kg
10 gram SAR value	: 23.821 W/kg
Area Scan Peak SAR	: 46.685 W/kg
Zoom Scan Peak SAR	: 89.963 W/kg

1900 MHz System Validation with Head Tissue

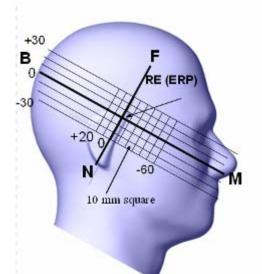

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

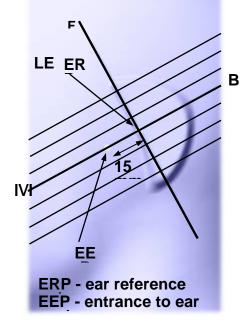
System Performance Check 1900 Body

Dipole 1900 MHz; Type: ALS-D-1900-S-2; S/N: 210-00710

Product Data Device Name Serial No. Type Model Frequency Band Max. Transmit Pwr Drift Time Power Drift-Start Power Drift-Finish Power Drift-Finish	: Dipole 1900MHz : 210-00710 : Dipole : ALS-D-1900-S-2 : 1900.00 MHz : 1 W : 3 min(s) : 41.124 W/kg : 41.729 W/kg : 1.472
Phantom Data Name Type Size (mm) Serial No. Location Description	: APREL-Uni : Uni-Phantom : 280 x 280 x 200 : System Default : Center : Default
Last Calib. Date	: Body : 295-02102 : 1880.00 MHz : 08-Jul-2012 : 20.00 °C : 21.00 °C : 56.00 RH% : 53.78 F/m : 1.50 S/m : 1000.00 kg/cu. m
Probe Data Name Model Type Serial No. Last Calib. Date Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: E-Field : E-020 : E-Field Triangle : 500-00283 : 14-Jul-2011 : 1900.00 MHz : 1 : 5.0 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
Measurement Data Crest Factor Scan Type Tissue Temp. Ambient Temp. Area Scan Zoom Scan	: 1 : Complete : 20.00 °C : 21.00 °C : 7x9x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

1 gram SAR value	: 41.927 W/kg
10 gram SAR value	: 22.839 W/kg
Area Scan Peak SAR	: 47.698 W/kg
Zoom Scan Peak SAR	: 82.963 W/kg


1900 MHz System Validation with Body Tissue

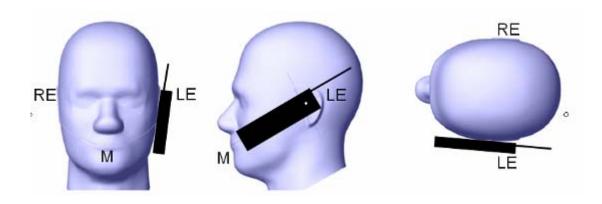

EUT TEST STRATEGY AND METHODOLOGY

Test Positions for Device Operating Next to a Person's Ear

This category includes most wireless handsets with fixed, retractable or internal antennas located toward the top half of the device, with or without a foldout, sliding or similar keypad cover. The handset should have its earpiece located within the upper ¹/₄ of the device, either along the centerline or off-centered, as perceived by its users. This type of handset should be positioned in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point". The "test device reference point" should be located at the same level as the center of the earpiece region. The "vertical centerline" should bisect the front surface of the handset at its top and bottom edges. A "ear reference point" is located on the outer surface of the head phantom on each ear spacer. It is located 1.5 cm above the center of the ear canal entrance in the "phantom reference plane" defined by the three lines joining the center of each "ear reference point" (left and right) and the tip of the mouth.

A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom. For the SCC-34/SC-2 head phantom, the device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". For interim head phantoms, the device should be positioned parallel to the cheek for maximum RF energy coupling. The "test device reference point" is aligned to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane". This is called the "initial ear position". While maintaining these three alignments, the body of the handset is gradually adjusted to each of the following positions for evaluating SAR:

Cheek/Touch Position


The device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line for the SCC-34/SC-2 head phantom.

This test position is established:

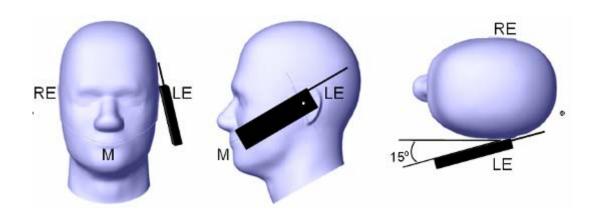
- When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom.
- (or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom.

For existing head phantoms – when the handset loses contact with the phantom at the pivoting point, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer.

Cheek /Touch Position

Ear/Tilt Position

With the handset aligned in the "Cheek/Touch Position":


1) If the earpiece of the handset is not in full contact with the phantom's ear spacer (in the "Cheek/Touch position") and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer.

2) (otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both "ear reference points" (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the device handset is tilted away from the mouth with respect to the "test device reference point" until the inside angle between the vertical centerline on the front surface of the phone and the horizontal line passing through the ear reference point isby 15 80°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously. This test position may require a device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability.

Bay Area Compliance Laboratories Corp.(Shenzhen)

If a device is also designed to transmit with its keypad cover closed for operating in the head position, such positions should also be considered in the SAR evaluation. The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tile/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s). If the transmission band of the test device is less than 10 MHz, testing at the high and low frequency channels is optional.

Ear /Tilt 15° Position

Test positions for body-worn and other configurations

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

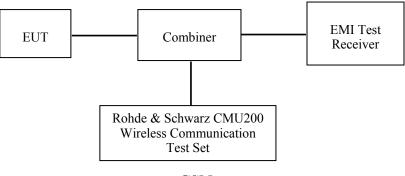
SAR Evaluation Procedure

The evaluation was performed with the following procedure:

- Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.
- Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or EUT and the horizontal grid spacing was 10 mm x 10 mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.
- Step 3: Around this point, a volume of 35 mm x 35 mm x 35 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:
 - 1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - 2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages.

All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.


CONDUCTED OUTPUT POWER MEASUREMENT

Provision Applicable

The measured peak output power should be greater and within 5% than EMI measurement.

Test Procedure

The RF output of the transmitter was connected to the input of the EMI Test Receiver through sufficient attenuation.

GSM

Test Results:

GSM

Band	Frequency	Conducted Output Power		
Danu	(MHz)	(dBm)	(Watt)	
	824.2	32.60	1.820	
Cellular Band	836.6	32.61	1.824	
	848.8	32.60	1.820	
	1850.2	28.97	0.789	
PCS Band	1880.0	29.08	0.809	
	1909.8	29.16	0.824	

Mode	Channel No.	Frequency	RF Output Power (dBm)			
WIGHT	Channel 140.	(MHz)	1 slot	2 slots	3 slots	4 slots
	128	824.2	31.16	31.17	Not support	Not support
Cellular	190	836.6	31.26	31.25	Not support	Not support
	251	848.8	31.11	31.12	Not support	Not support
	512	1850.2	28.47	28.53	Not support	Not support
PCS	661	1880.0	28.50	28.59	Not support	Not support
	810	1909.8	28.64	28.60	Not support	Not support

GPRS

For SAR, the time based average power is relevant, the difference in between depends on the duty cycle of the TDMA signal.

Number of Time slot	1	2	3	4
Duty Cycle	1:8	1:4	1:2.66	1:2
Time based Ave. power compared to slotted Ave. power	-9 dB	-6 dB	-4.25 dB	-3 dB
Crest Factor	8	4	2.66	2

The time based average power for GPRS

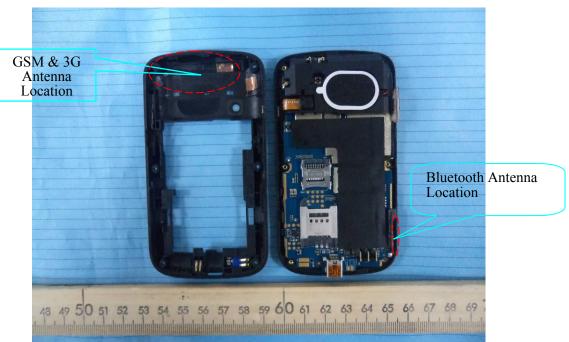
Band Channel No.	Frequency	Time based average Power (dBm)				
Dallu	Channel No.	(MHz)	1 slot	2 slots	3 slots	4 slots
	128	824.2	22.16	25.17	Not support	Not support
Cellular	190	836.6	22.26	25.25	Not support	Not support
	251	848.8	22.11	25.12	Not support	Not support
	512	1850.2	19.47	22.53	Not support	Not support
PCS	661	1880.0	19.50	22.59	Not support	Not support
	810	1909.8	19.64	22.60	Not support	Not support

Note:

- 1. Rohde & Schwarz Radio Communication Tester (CMU200) was used for the measurement of GSM peak and average output power for active timeslots.
- 2. For GSM voice, 1 timeslot has been activated with power level 5 (850 MHz band) and 0 (1900 MHz band).
- 3. For GPRS, 1 and 2 timeslots has been activated separately with power control level 5(850 MHz band) and 0(1900 MHz band).

WCDMA

Dond	Frequency	Conducted Output Power		
Band	(MHz)	GSM (dBm)	GSM (W)	
	826.4	21.95	0.157	
WCDMA 850	836.6	21.51	0.142	
	846.6	22.05	0.160	
	1852.4	22.32	0.171	
WCDMA1900	1880.0	21.99	0.158	
	1907.6	22.07	0.161	


Note:

The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 1.2 kbps RMC (reference measurement channel) configured in Test Loop Model 1.

SAR SIMULTANEOUS TRANSMISSION EVALUATION

KDB648474 SIMULTANEOUS TRANSMITION CONSIDERATION

Stand-alone and simultaneous SAR evaluation for a cell phone with multiple transmitters is base on the antennas distance of each radio.

BT and GSM & 3G Antenna Location:

Antenna Information:

Antenna-to-antenna separation distances:	5.9cm from GSM & 3G main antenna-to- BT main antenna
Simultaneous transmission:	GSM & 3G antenna can transmit simultaneously with BT antenna

CONCLUSION:

Individual transmitter	Stand-alone SAR	Simultaneous SAR
Bluetooth	Not required	Not required
GSM & 3G	Required	Simultaneous SAR of Bluetooth and GSM & 3G is not required

Note:

1. The distance between BT and GSM & 3G antenna is 5.9 cm > 5 cm. The max output power of BT antenna is (2.98dBm) $1.98 \text{mW} < 2P_{\text{Ref}}$ (24mW). According to KDB648474, Stand-alone and simultaneous SAR evaluation for Bluetooth is not require.

2. P_{Ref} is defined as the maximum conducted power available at the antenna according to source-based time-averaging requirements of Section 2.1093(d)(5).

SAR MEASUREMENT RESULTS

This page summarizes the results of the performed dosimetric evaluation.

SAR Test Data

Environmental Conditions

Temperature:	21° C
Relative Humidity:	56%
ATM Pressure:	1002 mbar

* Testing was performed by Sandy Wang on 2012.07.08-2012.07.10

Cellular Band:

EUT	Frequency (I	MHz)	Test	Antenna	Phantom	Power Drift	FCC 1g SA	R (W/Kg)
Position	Channel	MHz	Mode	Туре	Туре	(%)	Measurement	Limit
	128(Low)	824.2	GSM	Integral	SAM	/	/	1.6
Left Head Cheek	190(Middle)	836.6	GSM	Integral	SAM	2.595	0.558	1.6
	251(High)	848.8	GSM	Integral	SAM	/	/	1.6
	128(Low)	824.2	GSM	Integral	SAM	/	/	1.6
Left Head Tilt	190(Middle)	836.6	GSM	Integral	SAM	1.912	0.332	1.6
	251(High)	848.8	GSM	Integral	SAM	/	/	1.6
	128(Low)	824.2	GSM	Integral	SAM	/	/	1.6
Right Head Cheek	190(Middle)	836.6	GSM	Integral	SAM	0.606	0.560	1.6
	251(High)	848.8	GSM	Integral	SAM	/	/	1.6
	128(Low)	824.2	GSM	Integral	SAM	/	/	1.6
Right Head Tilt	190(Middle)	836.6	GSM	Integral	SAM	1.578	0.339	1.6
	251(High)	848.8	GSM	Integral	SAM	/	/	1.6
	128(Low)	824.2	GSM	Integral	Universal	/	/	1.6
Body-Worn-Headset (1.5cm)	190(Middle)	836.6	GSM	Integral	Universal	2.161	0.642	1.6
(1.5011)	251(High)	848.8	GSM	Integral	Universal	/	/	1.6
Body-Worn Back (1.5cm)	128(Low)	824.2	GPRS	Integral	Universal	2.537	1.092	1.6
	190(Middle)	836.6	GPRS	Integral	Universal	1.829	1.269	1.6
()	251(High)	848.8	GPRS	Integral	Universal	2.038	1.370	1.6

Note:

1. When the 1-g SAR is \leq 0.8W/kg, testing for other channels are optional.

EUT	Frequency	(MHz)	Test	Antenna	Phantom	Power Drift	FCC 1g SAR	(W/Kg)
Position	Channel	MHz	Mode	Туре	Туре	(%)	Measurement	Limit
	512(Low)	1850.2	GSM	Integral	SAM	/	/	1.6
Left Head Cheek	661(Middle)	1880.0	GSM	Integral	SAM	/	/	1.6
	810(High)	1909.8	GSM	Integral	SAM	3.127	0.077	1.6
	512(Low)	1850.2	GSM	Integral	SAM	/	/	1.6
Left Head Tilt	661(Middle)	1880.0	GSM	Integral	SAM	/	/	1.6
	810(High)	1909.8	GSM	Integral	SAM	1.836	0.112	1.6
	512(Low)	1850.2	GSM	Integral	SAM	/	/	1.6
Right Head Cheek	661(Middle)	1880.0	GSM	Integral	SAM	/	/	1.6
	810(High)	1909.8	GSM	Integral	SAM	1.517	0.079	1.6
	512(Low)	1850.2	GSM	Integral	SAM	/	/	1.6
Right Head Tilt	661(Middle)	1880.0	GSM	Integral	SAM	/	/	1.6
	810(High)	1909.8	GSM	Integral	SAM	2.522	0.117	1.6
	512(Low)	1850.2	GSM	Integral	Universal	/	/	1.6
Body-Worn-Headset (1.5cm)	661(Middle)	1880.0	GSM	Integral	Universal	/	/	1.6
(1.5011)		1909.8		Integral	Universal	1.317	0.247	1.6
Body-Worn Back	512(Low)	1850.2	GPRS	Integral	Universal	/	/	1.6
(1.5cm)	661(Middle)	1880.0	GPRS	Integral	Universal	/	/	1.6
(1.5011)	810(High)	1909.8	GPRS	Integral	Universal	1.244	0.424	1.6

PCS Band:

Note:

1. The EUT is a Class B mobile phone which can be attached to both GPRS and GSM services, using one service at a time.

2. The Multi-slot Classes of EUT is Class 10 which has maximum 4 Downlink slots and 2 Uplink slots, the maximum active slots is 5, when perform the multiple slots scan, 3 DL+2UL is the worse case.

3. The EUT transmit and receive through the same GSM antenna while testing SAR.

4. When the 1-g SAR is \leq 0.8W/kg, testing for other channels are optional.

EUT Frequency (MHz)	Test	Antenna	Phantom	Power Drift	FCC 1g SAR (W/Kg)			
Position	Position Channel MHz Mode		Туре Туре		(%)	Measurement	Limit	
	4132	826.4	WCDMA850	Integral	SAM	/	/	1.6
Left Head Cheek	4183	836.6	WCDMA850	Integral	SAM	/	/	1.6
	4233	846.6	WCDMA850	Integral	SAM	1.866	0.649	1.6
	4132	826.4	WCDMA850	Integral	SAM	/	/	1.6
Left Head Tilt	4183	836.6	WCDMA850	Integral	SAM	/	/	1.6
	4233	846.6	WCDMA850	Integral	SAM	1.847	0.408	1.6
	4132	826.4	WCDMA850	Integral	SAM	/	/	1.6
Right Head Cheek	4183	836.6	WCDMA850	Integral	SAM	/	/	1.6
	4233	846.6	WCDMA850	Integral	SAM	1.297	0.651	1.6
	4132	826.4	WCDMA850	Integral	SAM	/	/	1.6
Right Head Tilt	4183	836.6	WCDMA850	Integral	SAM	/	/	1.6
	4233	846.6	WCDMA850	Integral	SAM	1.176	0.413	1.6
	4132	826.4	WCDMA850	Integral	Universal	/	/	1.6
Body-Headset	4183	836.6	WCDMA850	Integral	Universal	/	/	1.6
	4233	846.6	WCDMA850	Integral	Universal	1.537	0.528	1.6

WCDMA850

Note:

1. When the 10-g SAR is \leq 1.0W/Kg, testing for other channel is optional.

2. The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 1.2 kbps RMC (reference measurement channel) configured in Test Loop Model 1.

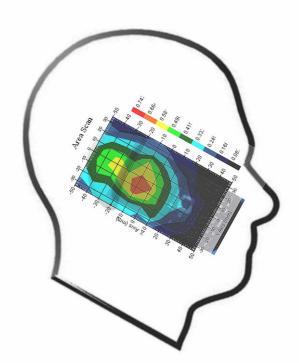
EUT	Frequency	(MHz)	Test	Antenna	Phantom	Power Drift	FCC 1g SAR (FCC 1g SAR (W/Kg)		
Position	Channel NO.	MHz	Mode	Туре	Туре	(%)	Measurement	Limit		
	9262	1852.4	WCDMA1900	Integral	SAM	1.176	0.267	1.6		
Left Head Cheek	9400	1880.0	WCDMA1900	Integral	SAM	/	/	1.6		
	9538	1907.6	WCDMA1900	Integral	SAM	/	/	1.6		
	9262	1852.4	WCDMA1900	Integral	SAM	1.198	0.235	1.6		
Left Head Tilt	9400	1880.0	WCDMA1900	Integral	SAM	/	/	1.6		
	9538	1907.6	WCDMA1900	Integral	SAM	/	/	1.6		
	9262	1852.4	WCDMA1900	Integral	SAM	1.747	0.272	1.6		
Right Head Cheek	9400	1880.0	WCDMA1900	Integral	SAM	/	/	1.6		
	9538	1907.6	WCDMA1900	Integral	SAM	/	/	1.6		
	9262	1852.4	WCDMA1900	Integral	SAM	2.857	0.248	1.6		
Right Head Tilt	9400	1880.0	WCDMA1900	Integral	SAM	/	/	1.6		
	9538	1907.6	WCDMA1900	Integral	SAM	/	/	1.6		
Body-Headset	9262	1852.4	WCDMA1900	Integral	Universal	0.764	0.735	1.6		
	9400	1880.0	WCDMA1900	Integral	Universal	/	/	1.6		
	9538	1907.6	WCDMA1900	Integral	Universal	/	/	1.6		

WCDMA1900

Note:

1. When the 10-g SAR is \leq 1.0W/Kg, testing for other channel is optional.

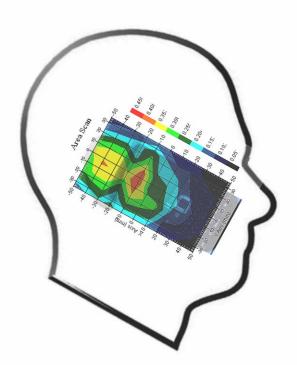
2. The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 1.2 kbps RMC (reference measurement channel) configured in Test Loop Model 1.


EUT SCAN RESULTS

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

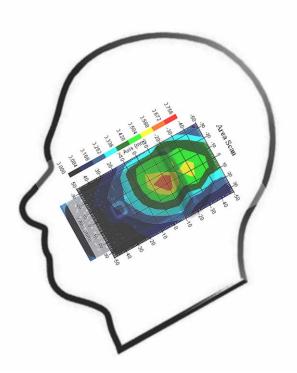
Left Head Cheek (836.6 MHz Middle Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GSM : 8 : Complete : 11x8x1: Measurement x=10mm, y=10mm, z=4mm : 7x7x7: Measurement x=5mm, y=5mm, z=5mm : 0.501 W/kg : 0.514 W/kg : 2.595
Tissue Data Type Frequency Epsilon Sigma Density	: HEAD : 836.60 MHz : 41.12 F/m : 0.91 S/m : 1000.00 kg/cu. m
5	: 500-00283 : 835.00 MHz : 8 : 6.6 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	6


Plot 1#

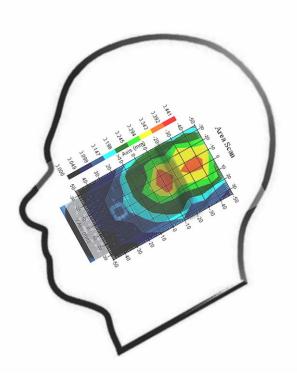
Left Head Tilt (836.6 MHz Middle Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GSM : 8 : Complete : 11x8x1: Measurement x=10mm, y=10mm, z=4mm : 7x7x7: Measurement x=5mm, y=5mm, z=5mm : 0.314 W/kg : 0.320 W/kg : 1.912
Tissue Data	
Туре	: HEAD
Frequency	: 836.60 MHz
Epsilon	: 41.12 F/m
Sigma	: 0.91 S/m
Density	: 1000.00 kg/cu. m
Probe Data Serial No. Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: 500-00283 : 835.00 MHz : 8 : 6.6 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 0.332 W/kg : 0.214 W/kg : 0.410 W/kg : 0.560 W/kg


Plot 2#

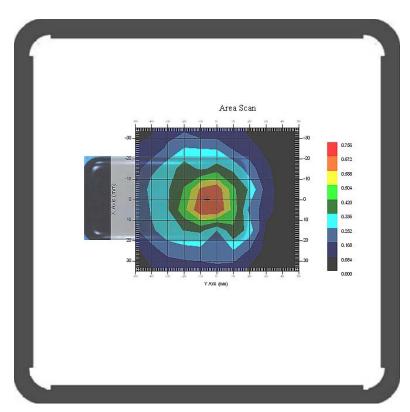
Right Head Cheek (836.6 MHz Middle Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GSM : 8 : Complete : 11x8x1: Measurement x=10mm, y=10mm, z=4mm : 7x7x7: Measurement x=5mm, y=5mm, z=5mm : 0.496 W/kg : 0.499 W/kg : 0.606
Tissue Data Type Frequency Epsilon Sigma Density	: HEAD : 836.60 MHz : 41.12 F/m : 0.91 S/m : 1000.00 kg/cu. m
	: 500-00283 : 835.00 MHz : 8 : 6.6 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 0.673 W/kg


Plot 3#

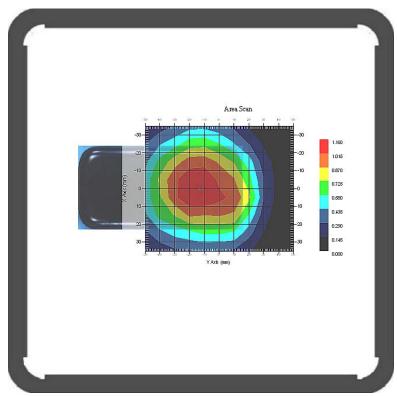
Right Head Tilt (836.6 MHz Middle Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GSM : 8 : Complete : 11x8x1: Measurement x=10mm, y=10mm, z=4mm : 7x7x7: Measurement x=5mm, y=5mm, z=5mm : 0.317 W/kg : 0.322 W/kg : 1.578
Tissue Data Type Frequency Epsilon Sigma Density	: HEAD : 836.60 MHz : 41.12 F/m : 0.91 S/m : 1000.00 kg/cu. m
5	: 500-00283 : 835.00 MHz : 8 : 6.6 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 0.395 W/kg


Plot 4#

Body-worn Back-Headset (836.6 MHz Middle Channel)

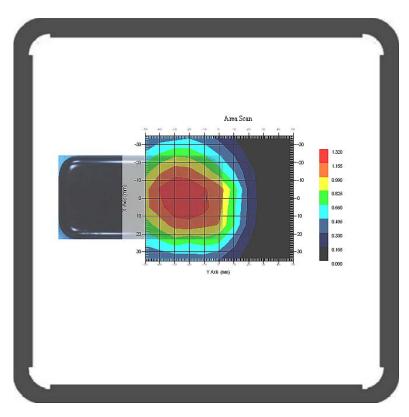
Measurement Data Test mode Crest Factor Scan Type : Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GSM : 8 : Complete : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm : 0.602 W/kg : 0.615 W/kg : 2.161
Tissue Data Type Frequency Epsilon Sigma Density	: BODY : 836.60 MHz : 56.04 F/m : 0.96 S/m : 1000.00 kg/cu. m
	: 500-00283 : 835.00 MHz : 8 : 6.6 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 0.642 W/kg : 0.465 W/kg : 0.673 W/kg : 0.881 W/kg



SAR Evaluation Report

Body-worn Back (824.2 MHz Low Channel)

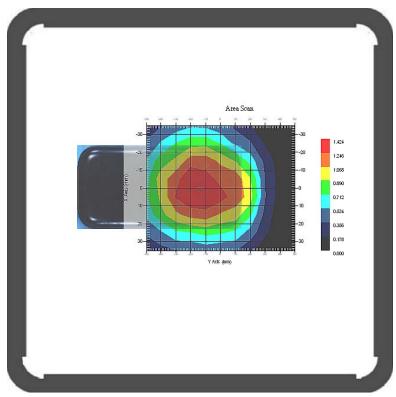
Test mode: GPRSCrest Factor: 4Scan Type :: CompleteArea Scan: 8x11x1 : Measurement x=10mm, y=10mm, z=4Zoom Scan: 7x7x7 : Measurement x=5mm, y=5mm, z=5mmPower Drift-Start: 1.025 W/kgPower Drift-Finish: 1.041 W/kgPower Drift (%): 2.537	
Tissue Data	
Type : BODY	
Frequency : 824.20 MHz	
Epsilon : 55.97 F/m	
Sigma : 0.94 S/m	
Density : 1000.00 kg/cu. m	
Probe Data	
Serial No. : 500-00283	
Frequency Band : 835.00 MHz	
Duty Cycle Factor : 4	
Conversion Factor : 6.6	
Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)^2$	
Compression Point : 95.00 mV	
Offset : 1.56 mm	
1 gram SAR value: 1.092 W/kg10 gram SAR value: 0.738 W/kgArea Scan Peak SAR: 1.159 W/kgZoom Scan Peak SAR: 1.551 W/kg	



SAR Evaluation Report

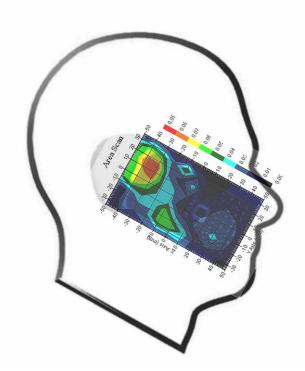
Body-worn Back (836.6 MHz Middle Channel)

Measurement Data Test mode Crest Factor Scan Type : Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GPRS : 4 : Complete : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm : 1.149 W/kg : 1.170 W/kg : 1.829
Tissue Data	
Туре	: BODY
Frequency	: 836.60 MHz
Epsilon	: 56.04 F/m
Sigma	: 0.96 S/m
Density	: 1000.00 kg/cu. m
Probe Data	
Serial No.	: 500-00283
Frequency Band	: 835.00 MHz
Duty Cycle Factor	: 4
Conversion Factor	: 6.6
Probe Sensitivity	$1.20 1.20 1.20 \mu V/(V/m)^2$
Compression Point	: 95.00 mV
Offset	: 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR	: 1.269 W/kg : 0.863 W/kg : 1.318 W/kg
Zoom Scan Peak SAR	: 1.792 W/kg



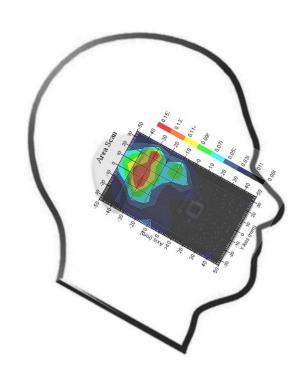
Body-worn Back (848.8 MHz High Channel)

Measurement Data Test mode Crest Factor Scan Type : Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GPRS : 4 : Complete : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm : 1.251 W/kg : 1.279 W/kg : 2.038
Tissue Data	
Туре	: BODY
Frequency	: 848.80 MHz
Epsilon	: 56.12 F/m
Sigma	: 0.98 S/m
Density	: 1000.00 kg/cu. m
Probe Data Serial No. Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: 500-00283 : 835.00 MHz : 4 : 6.6 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 1.370 W/kg : 0.942 W/kg



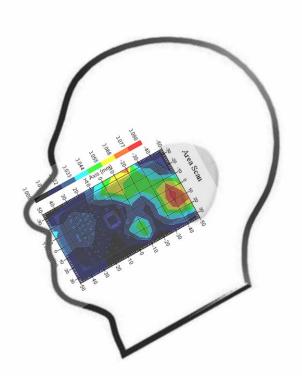
Left Head Cheek (1909.8 MHz High Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GSM : 8 : Complete : 11x8x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm : 0.064 W/kg : 0.066 W/kg : 3.127
Tissue Data Type Frequency Epsilon Sigma Density	: HEAD : 1909.80 MHz : 41.03 F/m : 1.42 S/m : 1000.00 kg/cu. m
5	: 500-00283 : 1900.00 MHz : 8 : 5.2 : 1.20 1.20 1.20 µV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 0.081 W/kg


Plot 9#

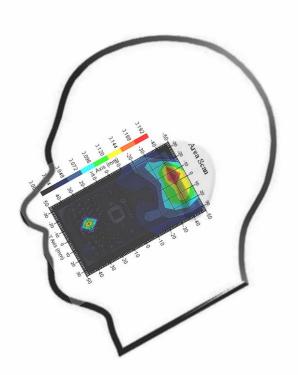
Left Head Tilt (1909.8 MHz High Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GSM : 8 : Complete : 11x8x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm : 0.109 W/kg : 0.111 W/kg : 1.836
Tissue Data Type Frequency Epsilon Sigma Density	: HEAD : 1909.80 MHz : 41.03 F/m : 1.42 S/m : 1000.00 kg/cu. m
Probe Data Serial No. Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: 500-00283 : 1900.00 MHz : 8 : 5.2 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 0.135 W/kg


Plot 10#

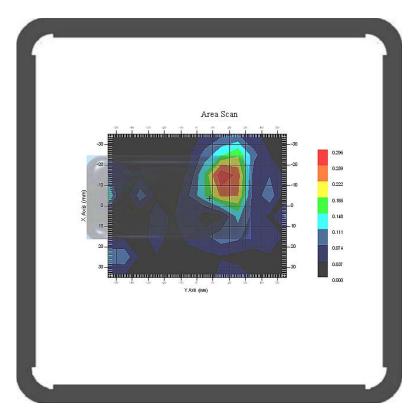
Right Head Cheek (1909.8 MHz High Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GSM : 8 : Complete : 11x8x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm : 0.066 W/kg : 0.067 W/kg : 1.517
Tissue Data Type Frequency Epsilon Sigma Density	: HEAD : 1909.80 MHz : 41.03 F/m : 1.42 S/m : 1000.00 kg/cu. m
Probe Data Serial No. Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: 500-00283 : 1900.00 MHz : 8 : 5.2 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 0.087 W/kg


Plot 11#

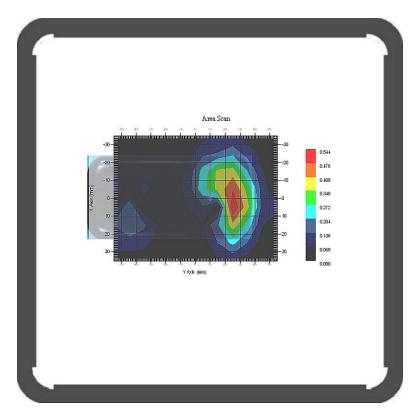
Right Head Tilt (1909.8 MHz High Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GSM : 8 : Complete : 11x8x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm : 0.119 W/kg : 0.122 W/kg : 2.522
Tissue Data Type Frequency Epsilon Sigma Density	: HEAD : 1909.80 MHz : 41.03 F/m : 1.42 S/m : 1000.00 kg/cu. m
Probe Data Serial No. Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: 500-00283 : 1900.00 MHz : 8 : 5.2 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 0.171 W/kg


Plot 12#

Body-worn Back-Headset (1909.8 MHz High Channel)

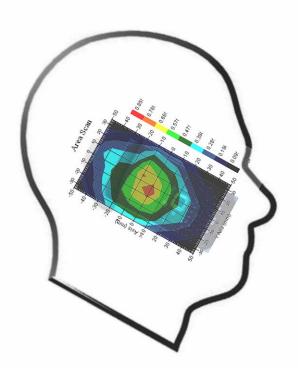
Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GSM : 8 : Complete : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm : 0.152 W/kg : 0.154 W/kg : 1.317
Tissue Data Type Frequency Epsilon Sigma Density	: Body : 1909.80 MHz : 53.63 F/m : 1.53 S/m : 1000.00 kg/cu. m
Probe Data Serial No. Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: 500-00283 : 1900.00 MHz : 8 : 5.0 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	8



SAR Evaluation Report

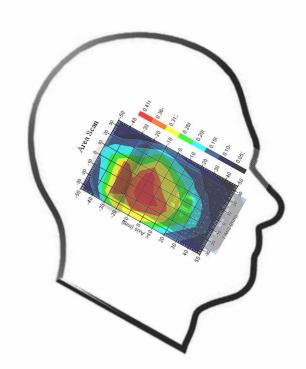
Body-worn Back (1909.8 MHz High Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: GPRS : 4 : Complete : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm : 0.402 W/kg : 0.407 W/kg : 1.244
Tissue Data Type Frequency Epsilon Sigma Density	: Body : 1909.80 MHz : 53.63 F/m : 1.53 S/m : 1000.00 kg/cu. m
Probe Data Serial No. Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: 500-00283 : 1900.00 MHz : 4 : 5.0 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 0.424 W/kg : 0.239 W/kg : 0.543 W/kg : 0.870 W/kg



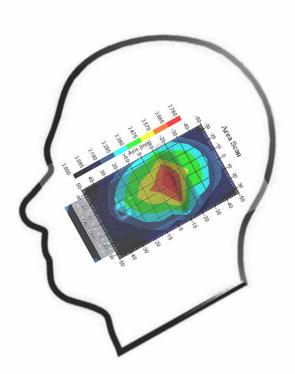
WCDMA850; Left Head Cheek (846.4MHz High Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: WCDMA850 : 1 : Complete : 11x8x1: Measurement x=10mm, y=10mm, z=4mm : 7x7x7: Measurement x=5mm, y=5mm, z=5mm : 0.429 W/kg : 0.437 W/kg : 1.866
Tissue Data Type Frequency Epsilon Sigma Density	: HEAD : 846.4 0 MHz : 41.06 F/m : 0.92 S/m : 1000.00 kg/cu. m
Probe Data Serial No. Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: 500-00283 : 835.00 MHz : 1 : 6.6 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 0.649W/kg : 0.415 W/kg : 0.763 W/kg : 0.920 W/kg


Plot 15#

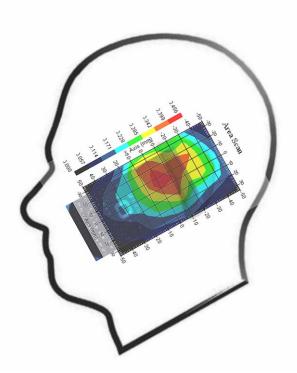
WCDMA850; Left Head Tilt (846.4 MHz High Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: WCDMA850 : 1 : Complete : 11x8x1: Measurement x=10mm, y=10mm, z=4mm : 7x7x7: Measurement x=5mm, y=5mm, z=5mm : 0.325 W/kg : 0.331 W/kg : 1.847
Tissue Data Type Frequency Epsilon Sigma Density	: HEAD : 846.4 0 MHz : 41.06 F/m : 0.92 S/m : 1000.00 kg/cu. m
2	: 500-00283 : 835.00 MHz : 1 : 6.6 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	


Plot 16#

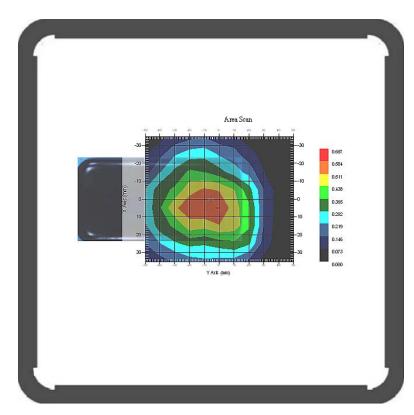
WCDMA850; Right Head Cheek (846.4 MHz High Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: WCDMA850 : 1 : Complete : 11x8x1: Measurement x=10mm, y=10mm, z=4mm : 7x7x7: Measurement x=5mm, y=5mm, z=5mm : 0.462 W/kg : 0.468 W/kg : 1.297
Tissue Data Type Frequency Epsilon Sigma Density	: HEAD : 846.40 MHz : 41.06 F/m : 0.92 S/m : 1000.00 kg/cu. m
5	: 500-00283 : 835.00 MHz : 1 : 6.6 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 0.760 W/kg


Plot 17#

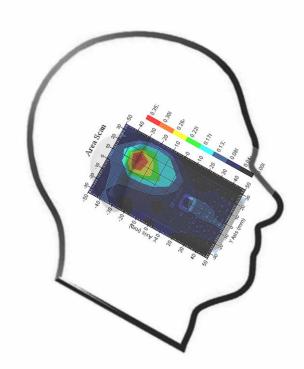
WCDMA850; Right Head Tilt (846.4 MHz High Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: WCDMA850 : 1 : Complete : 11x8x1: Measurement x=10mm, y=10mm, z=4mm : 7x7x7: Measurement x=5mm, y=5mm, z=5mm : 0.340 W/kg : 0.344 W/kg : 1.176
Tissue Data Type Frequency Epsilon Sigma Density	: HEAD : 846.40 MHz : 41.06 F/m : 0.92 S/m : 1000.00 kg/cu. m
•	: 500-00283 : 835.00 MHz : 1 : 6.6 : 1.20 1.20 1.20 µV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	


Plot 18#

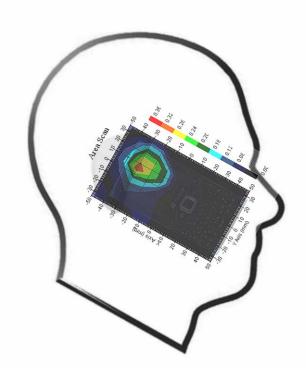
WCDMA850; Body-worn Back-Headset (846.4 MHz High Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: WCDMA850 : 1 : Complete : 8x11x1: Measurement x=10mm, y=10mm, z=4mm : 7x7x7: Measurement x=5mm, y=5mm, z=5mm : 0.521 W/kg : 0.529 W/kg : 1.537
Tissue Data Type Frequency Epsilon Sigma Density	: BODY : 846.40 MHz : 56.11 F/m : 0.97S/m : 1000.00 kg/cu. m
Probe Data Serial No. Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: 500-00283 : 835.00 MHz : 1 : 6.6 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 0.528W/kg : 0.326 W/kg : 0.586 W/kg : 0.910 W/kg



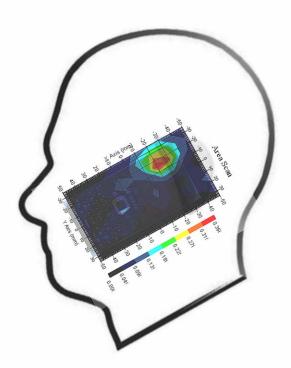
WCDMA1900; Left Head Cheek (1852.4MHz Low Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: WCDMA1900 : 1 : Complete : 11x8x1: Measurement x=10mm, y=10mm, z=4mm : 7x7x7: Measurement x=5mm, y=5mm, z=5mm : 0.235 W/kg : 0.242 W/kg : 1.176			
Tissue Data Type Frequency Epsilon Sigma Density	: HEAD : 1852.4 MHz : 41.01 F/m : 1.37 S/m : 1000.00 kg/cu. m			
5	: 500-00283 : 1900.00 MHz : 1 : 5.2 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm			
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR				


Plot 20#

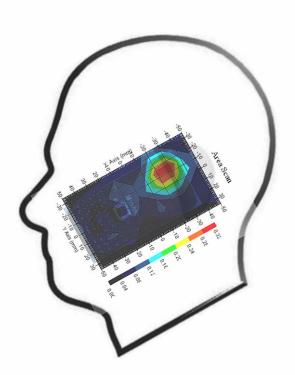
WCDMA1900; Left Head Tilt (1852.4MHz Low Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: WCDMA1900 : 1 : Complete : 11x8x1: Measurement x=10mm, y=10mm, z=4mm : 7x7x7: Measurement x=5mm, y=5mm, z=5mm : 0.167 W/kg : 0.169 W/kg : 1.198			
Tissue Data Type Frequency Epsilon Sigma Density	: HEAD : 1852.40 MHz : 41.01 F/m : 1.37 S/m : 1000.00 kg/cu. m			
5	: 500-00283 : 1900.00 MHz : 1 : 5.2 : 1.20 1.20 1.20 µV/(V/m)2 : 95.00 mV : 1.56 mm			
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR				


Plot 21#

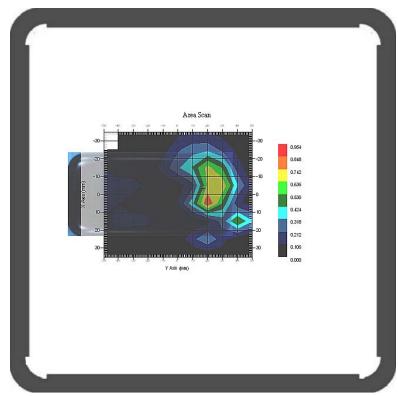
WCDMA1900; Right Head Cheek (1852.4MHz Low Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: WCDMA1900 : 1 : Complete : 11x8x1: Measurement x=10mm, y=10mm, z=4mm : 7x7x7: Measurement x=5mm, y=5mm, z=5mm : 0.229 W/kg : 0.233 W/kg : 1.747
Tissue Data Type Frequency Epsilon Sigma Density	: HEAD : 1852.40 MHz : 41.01 F/m : 1.37 S/m : 1000.00 kg/cu. m
Probe Data Serial No. Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: 500-00283 : 1900.00 MHz : 1 : 5.2 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 0.272W/kg : 0.156 W/kg : 0.357 W/kg : 0.580 W/kg


Plot 22#

WCDMA1900; Left Head Cheek (1852.4MHz Low Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: WCDMA1900 : 1 : Complete : 11x8x1: Measurement x=10mm, y=10mm, z=4mm : 7x7x7: Measurement x=5mm, y=5mm, z=5mm : 0.175 W/kg : 0.180 W/kg : 2.857
Tissue Data Type Frequency Epsilon Sigma Density	: HEAD : 1852.40 MHz : 41.01 F/m : 1.37 S/m : 1000.00 kg/cu. m
5	: 500-00283 : 1900.00 MHz : 1 : 5.2 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 0.319 W/kg


Plot 23#

WCDMA1900; Body-worn Back-Headset (1852.4MHz Low Channel)

Measurement Data Test mode Crest Factor Scan Type Area Scan Zoom Scan Power Drift-Start Power Drift-Finish Power Drift (%)	: WCDMA1900 : 1 : Complete : 8x11x1: Measurement x=10mm, y=10mm, z=4mm : 7x7x7: Measurement x=5mm, y=5mm, z=5mm : 0.537 W/kg : 0.541 W/kg : 0.746
Tissue Data Type Frequency Epsilon Sigma Density	: BODY : 1852.4 MHz : 53.92 F/m : 1.48 S/m : 1000.00 kg/cu. m
Probe Data Serial No. Frequency Band Duty Cycle Factor Conversion Factor Probe Sensitivity Compression Point Offset	: 500-00283 : 1900.00 MHz : 1 : 5 : 1.20 1.20 1.20 μV/(V/m)2 : 95.00 mV : 1.56 mm
1 gram SAR value 10 gram SAR value Area Scan Peak SAR Zoom Scan Peak SAR	: 0.850W/kg

SAR Evaluation Report

APPENDIX A – MEASUREMENT UNCERTAINTY

The uncertainty budget has been determined for the measurement system and is given in the following Table.

Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c _i ¹ (1-g)	c _i ¹ (10-g)	Standard Uncertainty (1-g) %	Standard Uncertainty (10-g) %
Measurement System							
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.7	rectangular	$\sqrt{3}$	$(1-cp)^{1/2}$	$(1-cp)^{1}$	1.5	1.5
Hemispherical Isotropy	10.9	rectangular	$\sqrt{3}$	√ср	√ср	4.4	4.4
Boundary Effect	1.0	rectangular	$\sqrt{3}$	1	1	0.6	0.6
Linearity	4.7	rectangular	$\sqrt{3}$	1	1	2.7	2.7
Detection Limit	1.0	rectangular	$\sqrt{3}$	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	$\sqrt{3}$	1	1	0.5	0.5
Integration Time	1.7	rectangular	$\sqrt{3}$	1	1	1.0	1.0
RF Ambient Condition -Noise	0.95	rectangular	$\sqrt{3}$	1	1	0.55	0.55
RF Ambient Condition - Reflections	3.0	rectangular	$\sqrt{3}$	1	1	1.7	1.7
Probe Positioner Mech. Restrictions	0.4	rectangular	$\sqrt{3}$	1	1	0.2	0.2
		Res	striction				
Probe Positioning with respect to Phantom Shell	2.9	rectangular	$\sqrt{3}$	1	1	1.7	1.7
Extrapolation and Integration	3.7	rectangular	$\sqrt{3}$	1	1	2.1	2.1
Test Sample Positioning	2.6	normal	1	1	1	26	2.6
Device Holder Uncertainty	2.0	normal	1	1	1	2.0	2.0
Drift of Output Power	0.4	rectangular	$\sqrt{3}$	1	1	0.2	0.2
		Phanton	n and Setu	սթ			
Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	$\sqrt{3}$	1	1	2.0	2.0
Liquid Conductivity(target)	5.0	rectangular	$\sqrt{3}$	0.7	0.5	2.0	1.4
Liquid Conductivity(meas.)	2.6	normal	1	0.7	0.5	1.8	1.3
Liquid Permittivity(target)	5.0	rectangular	$\sqrt{3}$	0.6	0.5	1.7	1.4
Liquid Permittivity(meas.)	2.7	normal	1	0.6	0.5	1.6	1.4
Combined Uncertainty		RSS				9.1	8.1
Combined Uncertainty (coverage factor=2)		Normal(k=2)				18.2	17.6

Measurement Uncertainty for 300MHz to 3GHz

APPENDIX B – PROBE CALIBRATION CERTIFICATES

NCL CALIBRATION LABORATORIES

Calibration File No.: 1251-1258

Client.: BACL Lab

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

> Equipment: Miniature Isotropic RF Probe Record of Calibration Head and Body Manufacturer: APREL Laboratories Model No.: E-020 Serial No.: 500-00283

Calibration Procedure: D01-032-E020-V2, D22-012-Tissue, D28-002-Dipole Project No: BACL-5607

> Calibrated: 14th July 2011 Released on: 14th July 2011

Approved By: Stuart Nicol

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES 303 Terry Fox Drive, Suite 102 Kanata, Ontario CANADA K2K 3J1 FAX: (613) 435-8306

Division of APREL Inc.

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the references listed below. Calibration is performed using accepted methodologies as per the references listed below. Probes are calibrated for air, and tissue and the values reported are the results from the physical quantification of the probe through meteorgical practices.

Calibration Method

Probes are calibrated using the following methods.

<1000MHz

TEM Cell for sensitivity in air

Standard phantom using temperature transfer method for sensitivity in tissue

>1000MHz

Waveguide* method to determine sensitivity in air and tissue *Waveguide is numerically (simulation) assessed to determine the field distribution and power

The boundary effect for the probe is assessed using a standard flat phantom where the probe output is compared against a numerically simulated series of data points

References

- IEEE Standard 1528 (2003) including Amendment 1
 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- EN 62209-1 (2006) Human Exposure to RF Fields from hand-held and body-mounted wireless communication devices - Human models. instrumentation, and procedures-Part 1: Procedure to measure the Specific Absorption Rate (SAR) for hand-held mobile wireless devices
- IEC 62209-2 Ed. 1.0 (2010-03)
 Human exposure to RF fields from hand-held and body-mounted wireless devices Human models, instrumentation, and procedures Part 2: specific absorption rate (SAR) for wireless communication devices (30 MHz 6 GHz)
- TP-D01-032-E020-V2 E-Field probe calibration procedure
- o D22-012-Tissue dielectric tissue calibration procedure
- o D28-002-Dipole procedure for validation of SAR system using a dipole
- IEEE 1309 Draft Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9kHz to 40GHz

Page 2 of 10 This page has been reviewed for content and attested to on Page 2 of this document.

Division of APREL Inc.

Conditions

Probe 500-00283 was a new probe taken from stock.

Ambient Temperature of the Laboratory:	22 °C +/- 1.5°C
Temperature of the Tissue:	21 °C +/- 1.5°C
Relative Humidity:	< 60%

Primary Measurement Standards

Instrument	Serial Number	Cal due date
Power meter Anritsu MA2408A	90025437	Nov.4, 2011
Power Sensor Anritsu MA2481D	103555	Nov 4, 2011
Attenuator HP 8495A (70dB)	1944A10711	Sept. 14, 2011
Network Analyzer Anritsu MT8801C	MB11855	Feb. 8, 2012
Secondary Measurement Standards		

occontaily incusation of an and

Signal Generator Agilent E4438C -506 MY55182336 June 7, 2012

Attestation

The below named signatories have conducted the calibration and review of the data which is presented in this calibration report.

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within/this report has been reviewed for accuracy.

Stuart Nicol

Jesse Hones

Page 3 of 10 This page has been reviewed for content and attested to on Page 2 of this document.

Division of APREL Inc.

Probe Summary

Probe Type:	E-Field Probe E020
Serial Number:	500-00283
Frequency:	As presented on page 5
Sensor Offset:	1.56
Sensor Length:	2.5
Tip Enclosure:	Composite*
Tip Diameter:	< 2.9 mm
Tip Length:	55 mm
Total Length:	289 mm

*Resistive to recommended tissue recipes per IEEE-1528

Sensitivity in Air

Channel X:	1.2 µV/(V/m) ²
Channel Y:	$1.2 \mu V/(V/m)^2$
Channel Z:	1.2 µV/(V/m) ²
100 10 100 10 10 10 10 10 10 10 10 10 10	ANTLANT DATE

Diode Compression Point:

95 mV

Page 4 of 10 This page has been reviewed for content and attested to on Page 2 of this document.

NCL Calibration Laboratories Division of APREL Inc.

Calibration for Tissue (Head H, Body B)

Frequency	Tissue Type	Measured Epsilon	Measured Sigma	Calibration Uncertainty	Tolerance Uncertainty for 5%*	Conversion Factor
450 H	Head	X	Х	Х	Х	X
450 B	Body	X	X	Х	Х	Х
750 H	Head	X	X	X	Х	X
750 B	Body	X	X	X	X	X
835 H	Head	42.35	0.938	3.5	<mark>3.4</mark>	6.6
835 B	Body	56.65	1.018	3.5	3.4	6.6
900 H	Head	41.35	0.98	3.5	<mark>3.4</mark>	6
900 B	Body	56.08	1.05	3.5	<mark>3.4</mark>	6
1450 H	Head	X	X	X	Х	X
1450 B	Body	X	X	X	X	X
1500 H	Head	X	X	Х	X	X
1500 B	Body	X	X	X	X	X
1640 H	Head	X	X	Х	Х	X
1640 B	Body	X	X	X	Х	X
1750 H	Head	38.72	1.35	3.5	3.4	5.1
1750 B	Body	51.62	1.48	<mark>3.5</mark>	<mark>3.4</mark>	<mark>4.8</mark>
1800 H	Head	X	х	Х	X	X
1800 B	Body	X	Х	X	X	X
1900 H	Head	38.72	1.35	3.5	2.7	5.2
1900 B	Body	51.62	1.48	3.5	<mark>2.7</mark>	5
2000 H	Head	X	X	X	X	X
2000 B	Body	X	X	Х	X	X
2100 H	Head	X	X	X	Х	X
2100 B	Body	X	X	X	X	X
2300 H	Head	X	X	X	X	X
2300 B	Body	X	X	X	Х	X
2450 H	Head	38.06	1.87	3.5	<mark>3.5</mark>	<mark>4.9</mark>
2450B	Body	50.22	2.03	3.5	<mark>3.5</mark>	<mark>4.3</mark>
2600 H	Head	X	X	X	Х	X
2600 B	Body	X	X	X	X	X
3000 H	Head	X	X	X	X	X
3000 B	Body	X	X	X	X	X
3600 H	Head	Х	X	X	X	X
3600 B	Body	X	X	Х	X	X
5200 H	Head	X	X	X	X	X
5200 B	Body	х	X	X	X	X
5600 H	Head	X	X	Х	X	X
5600 B	Body	X	X	X	Х	X
5800 H	Head	X	X	X	Х	X
5800 B	Body	X	X	X	X	X

Page 5 of 10 This page has been reviewed for content and attested to on Page 2 of this document.

Division of APREL Inc.

Boundary Effect:

Uncertainty resulting from the boundary effect is less than 2.1% for the distance between the tip of the probe and the tissue boundary, when less than 0.58mm.

Spatial Resolution:

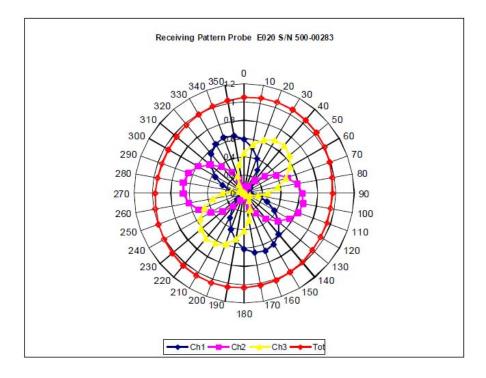
The spatial resolution uncertainty is less than 1.5% for 4.9mm diameter probe. The spatial resolution uncertainty is less than 1.0% for 2.5mm diameter probe.

DAQ-PAQ Contribution

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Boundary Effect:

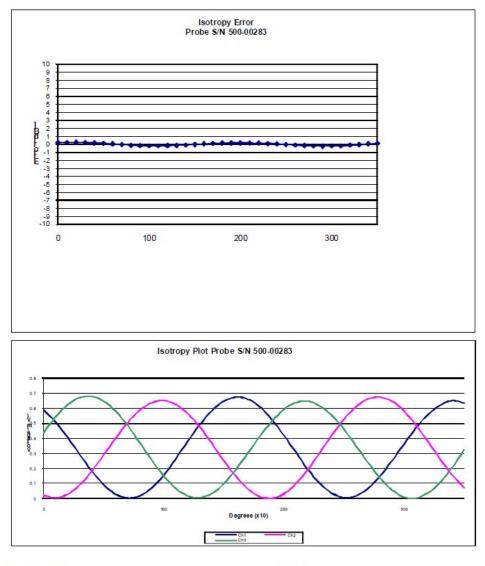
For a distance of 0.58mm the worst case evaluated uncertainty (increase in the probe sensitivity) is less than 2.1%.


NOTES:

*The maximum deviation from the centre frequency when comparing the lower to upper range is listed.

Page 6 of 10 This page has been reviewed for content and attested to on Page 2 of this document.

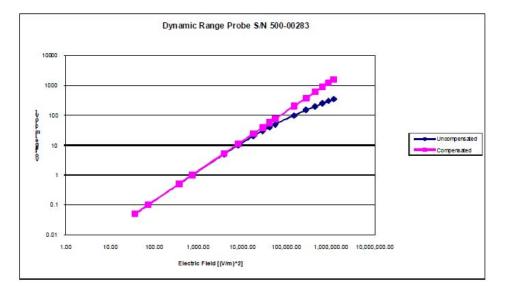
Division of APREL Inc.


Receiving Pattern Air

Page 7 of 10 This page has been reviewed for content and attested to on Page 2 of this document.

Division of APREL Inc.

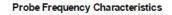
Isotropy Error Air

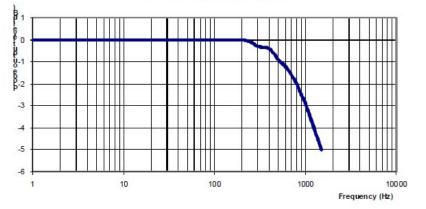

Isotropicity Tissue:

0.10 dB

Page 8 of 10 This page has been reviewed for content and attested to on Page 2 of this document.

NCL Calibration Laboratories Division of APREL Inc.


Dynamic Range



Page 9 of 10 This page has been reviewed for content and attested to on Page 2 of this document.

Division of APREL Inc.

Video Bandwidth

Video Bandwidth at 500 Hz Video Bandwidth at 1.02 KHz: 1 dB 3 dB

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2011.

Page 10 of 10 This page has been reviewed for content and attested to on Page 2 of this document.

APPENDIX C – DIPOLE CALIBRATION CERTIFICATES

NCL CALIBRATION LABORATORIES

Calibration File No: DC-1327 Project Number: BAC-dipole-cal-5618

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole(Head and Body)

Manufacturer: APREL Laboratories Part number: ALS-D-835-S-2 Frequency: 835 MHz Serial No: 180-00558

Customer: Bay Area Compliance Laboratory

Calibrated: 25th August 2011 Released on: 25th August 2011

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

 Suite 102, 303 Terry Fox Dr. Kanata, ONTARIO CANADA K2K3J1
 Division of APREL Lab. TEL: (613) 435-8306

Division of APREL Laboratories.

Conditions

Dipole 180-00558 was received in good condition and a re-calibration.

Ambient Temperature of the Laboratory:	22 °C +/- 0.5°C
Temperature of the Tissue:	21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

C. Teodorian

Primary Measurement Standards Instrument Power meter Anritsu MA2408A Power Sensor Anritsu MA2481D Attenuator HP 8495A (70dB) 1 Network Analyzer Agilent E5071C Secondary Measurement Standards Signal Generator Agilent E4438C

Serial Number	
245025437	
103555	
944A10711	
1334746J	

-506 MY55182336 June 7, 2012

Cal due date Nov.4, 2011 Nov 4, 2011

Aug.8, 2012

Feb. 8, 2012

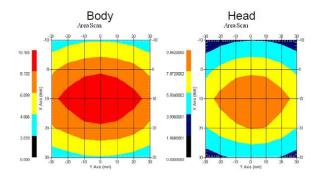
This page has been reviewed for content and attested to by signature within this document.

Division of APREL Laboratories.

Calibration Results Summary

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions


Length:	162.2 mm
Height:	89.4 mm

Electrical Specification

Tissue	Frequency	SWR:	Return Loss	Impedance
Head	835 MHz	1.0417 U	-35.395dB	49.020 Ω
Body	835 MHz	1.1177 U	-25.424dB	55. 4 35 Ω

System Validation Results

Tissue	Frequency	1 Gram	10 Gram	Peak
Head	835 MHz	9.590	6.003	15.013
Body	835 MHz	9.684	6.263	14.23

This page has been reviewed for content and attested to by signature within this document.

Division of APREL Laboratories.

Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole 180-00558. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 130 MHz to 26 GHz E-Field Probe Serial Number 212.

References

SSI-TP-018-ALSAS Dipole Calibration Procedure SSI-TP-016 Tissue Calibration Procedure IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"

Conditions

Dipole 180-00558 was new taken from stock.

Ambient Temperature of the Laboratory:	22 °C +/- 0.5°C
Temperature of the Tissue:	20 °C +/- 0.5°C

Dipole Calibration uncertainty

The calibration uncertainty for the dipole is made up of various parameters presented below.

Mechanical	1%
Positioning Error	1.22%
Electrical	1.7%
Tissue	2.2%
Dipole Validation	2.2%
TOTAL	8.32% (16.64% K=2)

This page has been reviewed for content and attested to by signature within this document.

NCL Calibration Laboratories Division of APREL Laboratories.

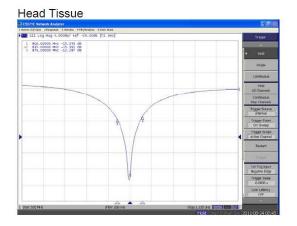
Dipole Calibration Results

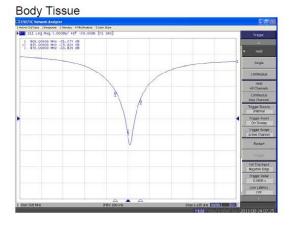
Mechanical Verification

APREL	APREL	Measured	Measured
Length	Height	Length	Height
161.0 mm	89.8 mm	162.2 mm	89.4 mm

Tissue Type	Return Loss:	SWR:	Impedance:
Head	-35.395 dB	1.0417 U	49.020Ω
Body	-25.454 dB	1.1177 U	55.435Ω

Tissue Validation

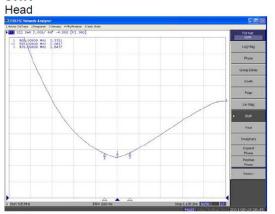

	Dielectric constant, ε _r	Conductivity, o [S/m]
Head Tissue 835MHz	41.78	0.92
Body Tissue 835MHz	56.37	0.95

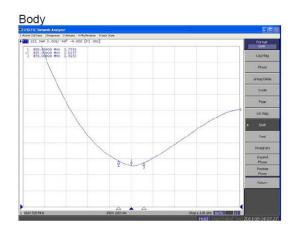

This page has been reviewed for content and attested to by signature within this document.

Division of APREL Laboratories.

The Following Graphs are the results as displayed on the Vector Network Analyzer.

S11 Parameter Return Loss

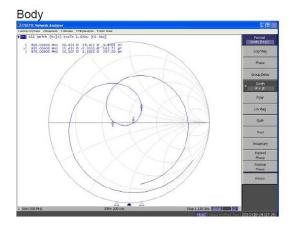




This page has been reviewed for content and attested to by signature within this document.

NCL Calibration Laboratories Division of APREL Laboratories.





This page has been reviewed for content and attested to by signature within this document.

Division of APREL Laboratories.

Smith Chart Dipole Impedance

This page has been reviewed for content and attested to by signature within this document.

Division of APREL Laboratories.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List 2011.

This page has been reviewed for content and attested to by signature within this document.

NCL CALIBRATION LABORATORIES

Calibration File No: DC-1331 Project Number: BAC-dipole –cal-5615

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole (Head & Body)

Manufacturer: APREL Laboratories Part number: ALS-D-1900-S-2 Frequency: 1900 MHz Serial No: 210-00710

Customer: Bay Area Compliance Laboratory

Calibrated: 25th August, 2011 Released on: 25th August, 2011

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

Suite 102, 303 Terry Fox Dr. Kanata, ONTARIO CANADA K2K 3J1 Division of APREL Lab. TEL: (613) 435-8300 FAX: (613)435-8306

SAR Evaluation Report

Division of APREL Laboratories.

Conditions

Dipole 210-00710 was received in good condition and was a re-calibration.

Ambient Temperature of the Laboratory:	22 °C +/- 0.5°C
Temperature of the Tissue:	21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

C. Teodorian

Primary Measurement Standards	
Instrument	
Power meter Anritsu MA2408A	
Power Sensor Anritsu MA2481D	
Attenuator HP 8495A (70dB) 1	
Network Analyzer Agilent E5071C	
Secondary Measurement Standards	
Signal Generator Agilent E4438C	

Serial Number	Cal due date
245025437	Nov.4, 2011
103555	Nov 4, 2011
944A10711	Aug.8, 2012
1334746J	Feb. 8, 2012
-506 MY55182336	June 7, 2012

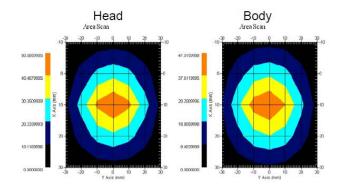
This page has been reviewed for content and attested to by signature within this document.

Division of APREL Laboratories.

Calibration Results Summary

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions


Length:	67.1 mm
Height:	38.9 mm

Electrical Specification

Tissue	Frequency	SWR:	Return Loss	Impedance
Head	1900MHz	1.0417 U	-35.395dB	49.020 Ω
Body	1900MHz	1.1177 U	-25.424dB	55.435 Ω

System Validation Results

Tissue	Frequency	1 Gram	10 Gram	Peak
Head	1900 MHz	39.648	20.311	73.365
Body	1900 MHz	39.769	20.176	75.866

This page has been reviewed for content and attested to by signature within this document.

Division of APREL Laboratories.

Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole 210-00710. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 130 MHz to 26 GHz E-Field Probe Serial Number 212.

References

SSI-TP-018-ALSAS Dipole Calibration Procedure SSI-TP-016 Tissue Calibration Procedure IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"

Conditions

Dipole 210-00710 was new taken from stock.

Ambient Temperature of the Laboratory:	22 °C +/- 0.5°C
Temperature of the Tissue:	20 °C +/- 0.5°C

Dipole Calibration uncertainty

The calibration uncertainty for the dipole is made up of various parameters presented below.

Mechanical	1%
Positioning Error	1.22%
Electrical	1.7%
Tissue	2.2%
Dipole Validation	2.2%
TOTAL	8.32% (16.64% K=2)

This page has been reviewed for content and attested to by signature within this document.

Division of APREL Laboratories.

Dipole Calibration Results

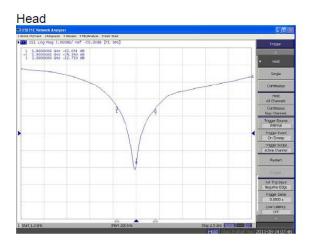
Mechanical Verification

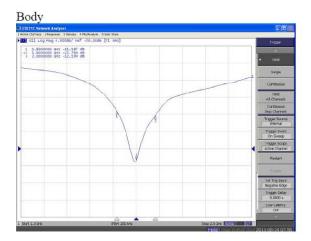
APREL	APREL	Measured	Measured
Length	Height	Length	Height
68.0 mm	39.5 mm	67.1mm	38.9 mm

Electrical Validation

Tissue Type	Return Loss:	SWR:	Impedance:
Head	-29.360 dB	1.0732 U	47.869 Ω
Body	-22.799 dB	1.1566 U	48.022 Ω

Tissue Validation

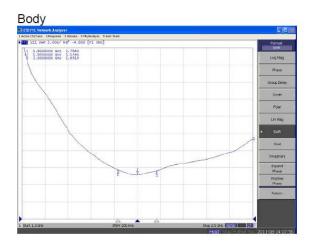

	Dielectric constant, ε _r	Conductivity, σ [S/m]
Head Tissue 1900MHz	38.4	1.43
Body Tissue 1900MHz	51.87	1.59


This page has been reviewed for content and attested to by signature within this document.

Division of APREL Laboratories.

The Following Graphs are the results as displayed on the Vector Network Analyzer.

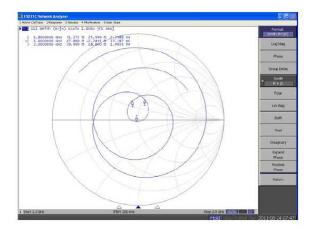
S11 Parameter Return Loss



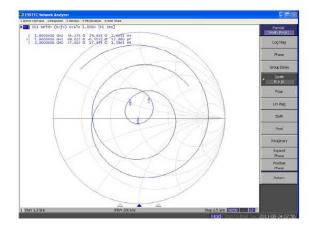
This page has been reviewed for content and attested to by signature within this document.

Division of APREL Laboratories.

SWR



This page has been reviewed for content and attested to by signature within this document.


Division of APREL Laboratories.

Smith Chart Dipole Impedance

Head

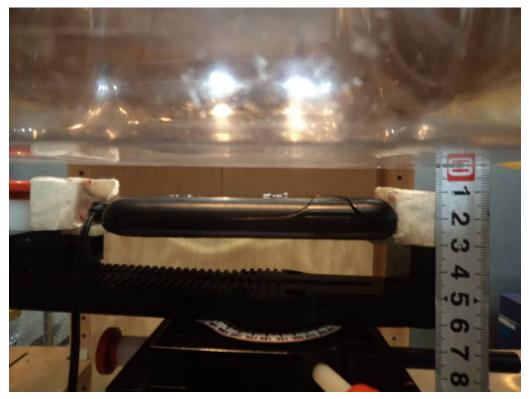
Body

This page has been reviewed for content and attested to by signature within this document.

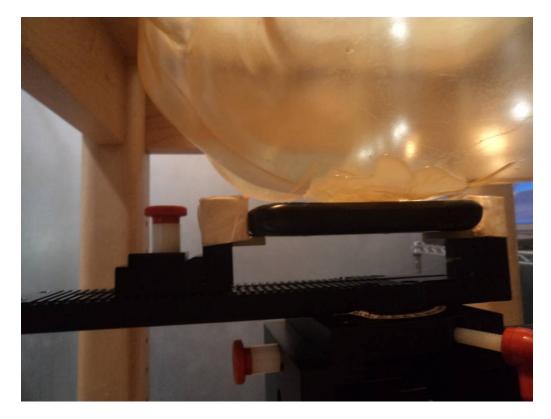
Division of APREL Laboratories.

Test Equipment

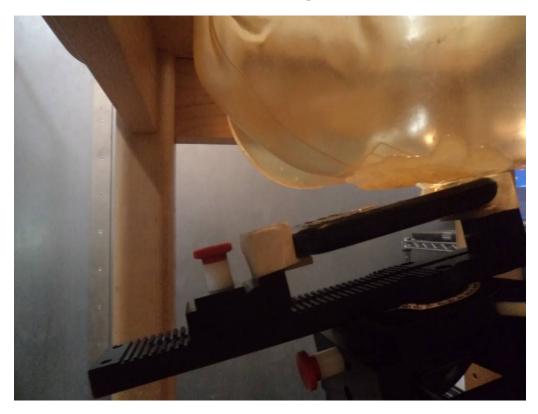
The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List 2011


This page has been reviewed for content and attested to by signature within this document.

APPENDIX D – EUT TEST POSITION PHOTOS


Liquid depth \geq 15cm

Body-worn Back-Headset Setup Photo



SAR Evaluation Report

Left Head Touch Setup Photo

Left Head Tilt Setup Photo

Right Head Touch Setup Photo

Right Head Tilt Setup Photo

SAR Evaluation Report

APPENDIX E – EUT PHOTOS

EUT – Back View

SAR Evaluation Report

EUT – Bottom View

EUT – Uncovered View

EUT –Headset View

APPENDIX F – INFORMATIVE REFERENCES

[1] Federal Communications Commission, \Report and order: Guidelines for evaluating the environmental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996.

[2] David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", Tech. Rep., Federal Communication Commission, O_ce of Engineering & Technology, Washington, DC, 1997.

[3] Thomas Schmid, Oliver Egger, and Niels Kuster, \Automated E-_eld scanning system for dosimetricPage 100 of 100 assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105{113, Jan. 1996.

[4] Niels Kuster, Ralph K.astle, and Thomas Schmid, \Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645 {652, May 1997.

[5] CENELEC, \Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz - 6GHz", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997.

[6] ANSI, ANSI/IEEE C95.1-1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.

[7] Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies", in ICECOM _ 97, Dubrovnik, October 15{17, 1997, pp. 120-24.

[8] Katja Pokovic, Thomas Schmid, and Niels Kuster, \E-field probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23 {25 June, 1996, pp. 172-175.

[9] Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, \The depen-dence of EM energy absorption upon human head modeling at 900 MHz", IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1865-1873, Oct. 1996.

[10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 1800 MHz", IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press.

[11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.

[12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992. Dosimetric Evaluation of Sample device, month 1998 9

[13] NIS81 NAMAS, \The treatment of uncertainity in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994.

[14] Barry N. Taylor and Christ E. Kuyatt, \Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 1998 10.

[15] FCC OET KDB648474 Do1 SAR Evaluation Considerations for Handsets with Multiple transmitters and Antennas.

***** END OF REPORT *****

SAR Evaluation Report