

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No.: CCIS13110046103

FCC REPORT

Applicant: B mobile HK Limited

Address of Applicant: Ground floor, 144 Un Chau Street, Sham Shui Po, Hong Kong

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: QS210

FCC ID: ZSW-QS210-LQ200

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 05 Nov., 2013

Date of Test: 05 Nov., to 18 Nov., 2013

Date of report issued: 19 Nov., 2013

Test Result: Pass *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	19 Nov., 2013	Original

Prepared by:	Shinbey Li	Date:	19 Nov., 2013
	Report Clerk		
Reviewed by:	Toncent chen	Date:	19 Nov., 2013
	Project Engineer		

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

CCIS

Report No: CCIS13110046103

3 Contents

		Pa	age
1	C	COVER PAGE	1
2	V	/ERSION	2
3	C	CONTENTS	3
4	Т	TEST SUMMARY	4
5		GENERAL INFORMATION	
		GENERAL DESCRIPTION OF E.U.T. TEST MODE DESCRIPTION OF SUPPORT UNITS LABORATORY FACILITY LABORATORY LOCATION TEST INSTRUMENTS LIST.	6 6 6
6	T	EST RESULTS AND MEASUREMENT DATA	8
7		CONDUCTED EMISSION	11
8		EUT CONSTRUCTIONAL DETAILS	

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCIS131100461RF

4 Test Summary

Test Item	Section in CFR 47	Result	
Conducted Emission	Part15.107	Pass	
Radiated Emission	Part15.109	Pass	

Pass: The EUT complies with the essential requirements in the standard.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 4 of 19

5 General Information

5.1 Client Information

Applicant:	B mobile HK Limited
Address of Applicant:	Ground floor, 144 Un Chau Street, Sham Shui Po, Hong Kong

5.2 General Description of E.U.T.

Product Name:	Mobile Phone	
Model No.:	QS210	
AC adapter:	Input:100-240V AC,50/60Hz 0.15A	
	Output:5V DC MAX500mA	
Power supply:	Rechargeable Li-ion Battery DC3.7V/600mAh	

5.3 Test Mode

Operating mode	Detail description		
PC mode	Keep the EUT in data exchange with PC(worst case)		
Playing mode	Keep the EUT in playing mode		
Recording mode	Keep the EUT in recording mode		

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCIS131100461RF

5.4 Description of Support Units

Manufacturer Description		Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745 N/A		DoC
DELL	MONITOR	E178FPC	E178FPC N/A	
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
HP	Printer	CB495A	05257893	DoC

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23118282 Fax: 0755-23116366

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 6 of 19

5.7 Test Instruments list

Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	June 09 2013	June 08 2014	
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	May 25 2013	May 24 2014	
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	May 25 2013	May 24 2014	
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
5	Coaxial Cable	CCIS	N/A	CCIS0016	Apr. 01 2013	Mar. 31 2014	
6	Coaxial Cable	CCIS	N/A	CCIS0017	Apr. 01 2013	Mar. 31 2014	
7	Coaxial cable	CCIS	N/A	CCIS0018	Apr. 01 2013	Mar. 31 2014	
8	Coaxial Cable	CCIS	N/A	CCIS0019	Apr. 01 2013	Mar. 31 2014	
9	Coaxial Cable	CCIS	N/A	CCIS0087	Apr. 01 2013	Mar. 31 2014	
10	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	Apr. 01 2013	Mar. 31 2014	
11	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	June 09 2013	June 08 2014	
12	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2013	Mar. 31 2014	
13	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2013	Mar. 29 2014	
14	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A	
15	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A	
16	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	May. 25 2013	May. 24 2014	
17	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr 01 2013	Mar. 31 2014	
18	Loop antenna	Laplace instrument	RF300	EMC0701	Aug. 12 2013	Aug. 11 2014	
19	Universal radio communication tester	Universal radio Rhode & Schwarz		CCIS0069	May. 25 2013	May. 24 2014	
20	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	May. 25 2013	May. 24 2014	

Cond	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory	Cal.Date	Cal.Due date				
	. 000 =qu.po			No.	(mm-dd-yy)	(mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	June 09 2013	June 08 2014				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	May 25 2013	May. 24 2014				
3	LISN	CHASE	MN2050D	CCIS0074	Apr. 01 2013	Mar. 31 2014				
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2013	Mar. 31 2014				

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

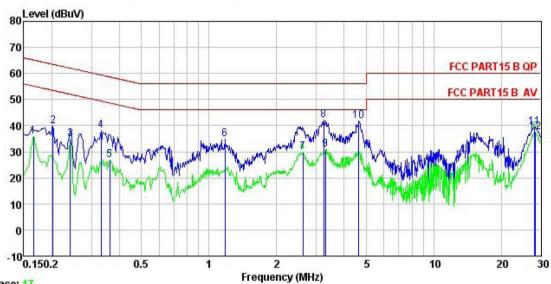
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 7 of 19

Project No.: CCIS131100461RF

6 Test results and Measurement Data

6.1 Conducted Emission

Test Requirement:	FCC Part15 B Section 15.107					
Test Method:	ANSI C63.4:2003					
Test Frequency Range:	150kHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9kHz, VBW=30kHz					
Limit:		Limit (c	IRu\/)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	0.5-30	60	50			
Test setup:	Reference Plane		_			
Test procedure	AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m					
	The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN					
	that provides a 50ohm/50uH c (Please refers to the block dia					
	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.					
Test environment:	Temp.: 23 °C Humid	l.: 56% Pres	ss.: 1 01kPa			
Measurement Record:		•	Uncertainty: 3.28dB			
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					


Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 8 of 19

Project No.: CCIS131100461RF

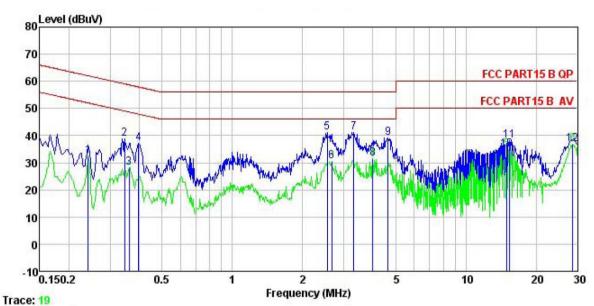
Measurement data:

Line:

Trace: 17

Site : FCC PART15 B QP LISN LINE : 461RF Condition

Job No.


EUT : Mobile phone Model : QS210
Test Mode : PC mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Cest	Engineer:	Vincent Read		Cable		Limit	Over	
	Freq		Factor					Remark
	MHz	dBu∜	<u>dB</u>	<u>ab</u>	dBu∀	dBu∀	<u>dB</u>	
1	0.166	24.73	10.24	0.78	35.75	55.16	-19.41	Average
2	0.202	28.96	10.21	0.76	39.93	63.54	-23.61	QP
3	0.242	24.01	10.23	0.75	34.99	52.04	-17.05	Average
4	0.330	27.04	10.27	0.73	38.04	59.44	-21.40	QP
1 2 3 4 5 6 7 8 9	0.361	16.01	10.27	0.73	27.01	48.69	-21.68	Average
6	1.178	23.59	10.23	0.89	34.71	56.00	-21.29	QP
7	2.622	18.65	10.28	0.93	29.86	46.00	-16.14	Average
8	3.241	30.86	10.29	0.91	42.06	56.00	-13.94	QP
9	3.293	19.75	10.29	0.91	30.95	46.00	-15.05	Average
10	4.647	30.80	10.28	0.87	41.95	56.00	-14.05	QP
11	28.152	27.74	10.76	0.87	39.37	60.00	-20.63	QP
12	28.452	25.78	10.78	0.87	37.43	50.00	-12.57	Average

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 9 of 19

Neutral:

Site

FCC PART15 B QP LISN NEUTRAL 461RF Condition

Job No. EUT Mobile phone Model QS210 Test Mode : PC mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 'C Huni:56% Atmos:101KPa
Test Engineer: Vicent Alexandra Cabla

Freq	Read Level	Factor	Cable Loss	Level	Limit		Remark
MHz	dBu∀	<u>dB</u>		dBu∀	dBu∀	<u>dB</u>	
0.242 0.346	21.56 27.91	10.23 10.25	0.75 0.73	32.54 38.89			
0.361 0.398	17.29	10.25 10.26	0.73	28.27	48.69	-20.42	Average
2.554 2.664	29.89 19.45	10.27	0.94	41.10			
3.310	30.03	10.28	0.91	41.22	56.00	-14.78	QP
4.647	28.10	10.27	0.87	39.24	56.00	-16.76	QP
15.388	27.18	10.24	0.90	38.32	60.00	-21.68	QP
	0. 242 0. 346 0. 361 0. 398 2. 554 2. 664 3. 310 3. 985 4. 647 14. 907	MHz dBuV 0.242 21.56 0.346 27.91 0.361 17.29 0.398 26.23 2.554 29.89 2.664 19.45 3.310 30.03 3.985 20.19 4.647 28.10 14.907 23.73 15.388 27.18	MHz dBuV dB 0.242 21.56 10.23 0.346 27.91 10.25 0.361 17.29 10.25 0.398 26.23 10.26 2.554 29.89 10.27 2.664 19.45 10.27 3.310 30.03 10.28 3.985 20.19 10.28 4.647 28.10 10.27 14.907 23.73 10.23 15.388 27.18 10.24	MHz dBuV dB dB 0.242 21.56 10.23 0.75 0.346 27.91 10.25 0.73 0.361 17.29 10.25 0.73 0.398 26.23 10.26 0.72 2.554 29.89 10.27 0.94 2.664 19.45 10.27 0.93 3.310 30.03 10.28 0.91 3.985 20.19 10.28 0.89 4.647 28.10 10.27 0.87 14.907 23.73 10.23 0.90 15.388 27.18 10.24 0.90	MHz dBuV dB dB dB uV 0.242 21.56 10.23 0.75 32.54 0.346 27.91 10.25 0.73 38.89 0.361 17.29 10.25 0.73 28.27 0.398 26.23 10.26 0.72 37.21 2.554 29.89 10.27 0.94 41.10 2.664 19.45 10.27 0.93 30.65 3.310 30.03 10.28 0.91 41.22 3.985 20.19 10.28 0.89 31.36 4.647 28.10 10.27 0.87 39.24 14.907 23.73 10.23 0.90 34.86 15.388 27.18 10.24 0.90 38.32	MHz dBuV dB dB dBuV dBuV 0.242 21.56 10.23 0.75 32.54 52.04 0.346 27.91 10.25 0.73 38.89 59.05 0.361 17.29 10.25 0.73 28.27 48.69 0.398 26.23 10.26 0.72 37.21 57.90 2.554 29.89 10.27 0.94 41.10 56.00 2.664 19.45 10.27 0.93 30.65 46.00 3.310 30.03 10.28 0.91 41.22 56.00 3.985 20.19 10.28 0.89 31.36 46.00 4.647 28.10 10.27 0.87 39.24 56.00 14.907 23.73 10.23 0.90 34.86 50.00 15.388 27.18 10.24 0.90 38.32 60.00	Freq Level Factor Loss Level Line Limit MHz dBuV dB dB dBuV dBuV dB

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Project No.: CCIS131100461RF

6.2 Radiated Emission

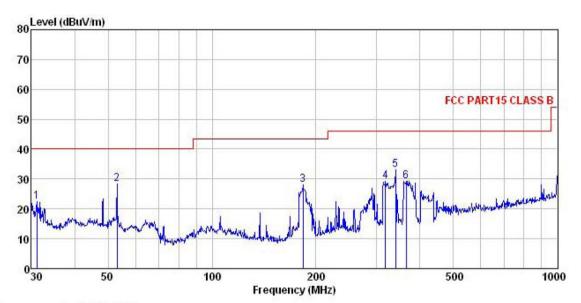
0.2 Radiated Ellission								
Test Requirement:	FCC Part15 B Section 15.109							
Test Method:	ANSI C63.4:2003							
Test Frequency Range:	30MHz to 6000MHz							
Test site:	Measurement Dis	stance: 3m (Ser	mi-Anechoic Ch	namber)				
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	Quasi-peak	120 kHz	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	7.5070 10112	Peak	1MHz	10Hz	Average Value			
Limit:	Freque	ency	Limit (dBuV/	m @3m)	Remark			
	30MHz-8	8MHz	40.0		Quasi-peak Value			
	88MHz-2	16MHz	43.5		Quasi-peak Value			
	216MHz-9		46.0		Quasi-peak Value			
	960MHz-	1GHz	54.0		Quasi-peak Value			
	Above 1	GHz	54.0		Average Value			
	7.13070	0	74.0)	Peak Value			
Test setup:	Ground Plane — Above 1GHz	dm 4m 1m 4m	S	Antenna Tower Search Antenna RF Test Receiver Antenna Tower Antenna Tower Antenna Tower Amplifier				

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 11 of 19

Project No.: CCIS131100461RF

Test Procedure:	The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.								
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.								
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.								
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.								
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.								
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.								
Test environment:	Temp.: 25 °C Humid.: 55% Press.: 1 01kPa								
Measurement Record:	Uncertainty: 4.88dB								
Test Instruments:	Refer to section 5.7 for details								
Test mode:	Refer to section 5.3 for details								
Test results:	Passed								

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 12 of 19



Project No.: CCIS131100461RF

Measurement Data

Below 1GHz

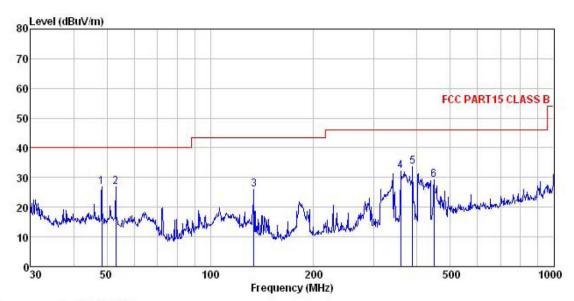
Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

Job. NO : 461RF Model : QS210

Test mode : PC mode
Power Rating : AC 120V / 50Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Garen
REMARK :


Linuati		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq		Factor						Remark
_	MHz	dBu₹	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	31.071	35.79	12.32	0.78	26.39	22.50	40.00	-17.50	QP
2	53.131	42.61	13.12	1.32	28.60	28.45	40.00	-11.55	QP
3	183.201	42.93	9.92	2.75	27.53	28.07	43.50	-15.43	QP
4	317.701	42.45	13.31	3.00	29.52	29.24	46.00	-16.76	QP
5	339.589	45.48	14.12	3.07	29.63	33.04	46.00	-12.96	QP
6	364.260	41.52	14.46	3.09	29.74	29.33	46.00	-16.67	QP

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 13 of 19

Project No.: CCIS131100461RF

Vertical:

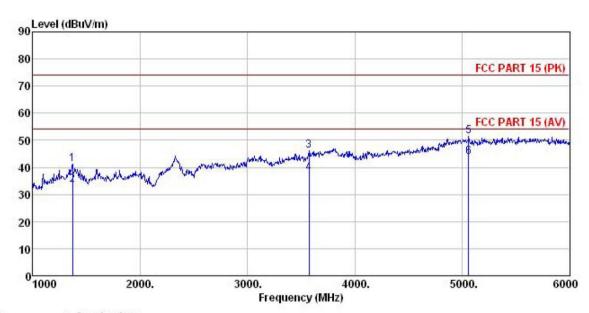
Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : 461RF Condition

Job. NO Model : QS210
Test mode : PC mode
Power Rating : AC 120V / 50Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen REMARK :

EMARK	:	200					2000	12000	
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	—dBu√			<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	48.332	40.44	13.35	1.27	28.14	26.92	40.00	-13.08	QP
2	53.131	40.89	13.12	1.32	28.60	26.73	40.00	-13.27	QP
3	134.088	44.43	8.61	2.33	29.47	25.90	43.50	-17.60	QP
4	357.929	44.29	14.38	3.10	29.71	32.06	46.00	-13.94	QP
5	387.992	45.51	14.78	3.08	29.85	33.52	46.00	-12.48	QP
6	447.982	41.03	15.57	3.20	30.50	29.30	46.00	-16.70	QP


Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 14 of 19

Project No.: CCIS131100461RF

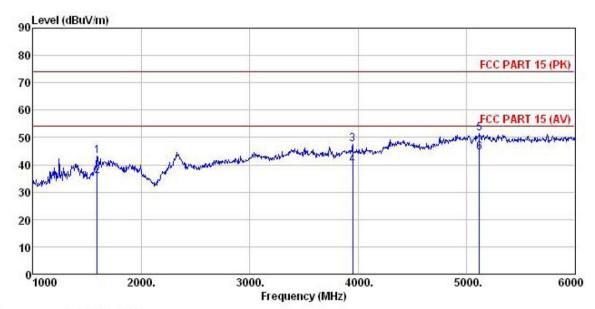
Above 1GHz

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 219RF Condition

Job No. Model : QS210 Test mode : QS210
Test mode : PC mode
Power Rating : AC 120V/60Hz
Environment : Temp: 25°C Huni:55% Atmos:101Kpa


est	Engineer:		t Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	—dB/m	dB	dB	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	1370.000	52.78	25.61	3.68	40.93	41.14	74.00	-32.86	Peak
2	1370.000	45.25	25.61	3.68	40.93	33.61			Average
3	3575.000	50.82	29.13	6.16	40.08	46.03	74.00	-27.97	Peak
4	3575.000	42.63	29.13	6.16	40.08	37.84	54.00	-16.16	Average
5	5060.000	50.29	32.01	9.13	40.02	51.41	74.00	-22.59	Peak
6	5060, 000	42.56	32, 01	9.13	40.02	43, 68	54,00	-10.32	Average

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 15 of 19

Project No.: CCIS131100461RF

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 219RF : QS210 Job No. Model Test mode : PC mode
Power Rating : AC 120V/60Hz
Environment : Temp:25°C Huni:55% Atmos:101Kpa
Test Engineer: Vincent

Freq						Limit Line	Over Limit	Remark	
MHz	dBu∀	<u>dB</u> /π	₫B	dB	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		
1590.000	54.93	24.98	4.08	40.97	43.02	74.00	-30.98	Peak	
1590.000	47.62	24.98	4.08	40.97	35.71	54.00	-18.29	Average	
3950.000	50.98	29.80	7.61	41.05	47.34	74.00	-26.66	Peak	
3950.000	43.65	29.80	7.61	41.05	40.01	54.00	-13.99	Average	
5120.000	50.43	32.10	9.13	40.05	51.61	74.00	-22.39	Peak	
5120.000	43.23	32.10	9.13	40.05	44.41	54.00	-9.59	Average	
	Freq MHz 1590.000 1590.000 3950.000 3950.000 5120.000	Read. Freq Level MHz dBuV 1590.000 54.93 1590.000 47.62 3950.000 50.98 3950.000 43.65 5120.000 50.43	ReadAntenna Freq Level Factor MHz dBuV dB/m 1590.000 54.93 24.98 1590.000 47.62 24.98 3950.000 50.98 29.80 3950.000 43.65 29.80 5120.000 50.43 32.10	ReadAntenna Cable Loss MHz dBuV dB/m dB dB dB dB dB dB dB dB	ReadAntenna Cable Preamp Level Factor Loss Factor	ReadAntenna Cable Preamp Level Factor Loss Factor Level	ReadAntenna Cable Preamp Limit Level Factor Loss Factor Level Line	ReadAntenna Cable Preamp Limit Over Level Factor Level Factor Level Line Limit	ReadAntenna Cable Preamp Limit Over Line Limit Remark

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 16 of 19

8 EUT Constructional Details

Reference to the test report No. CCIS13110046101

-----End of report-----

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 19 of 19