SIEMIC, INC.

4 and Safety Code 6

Accessing good markets RF Test Report of Mobile Phone Model: A5 C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102

Serial# 12050037-FCC-H-V1 Issue Date May 23th 2012 Page 91 of 134 www.siemic.com

COMOSAR E-Field Probe Calibration Report

Ref : ACR.277.1.11.SATU.B

SIEMIC TESTING AND CERTIFICATION SERVICES

SUITE 311, BUILDING 1, SECTION 30 ,NO.2 KEFA ROAD, SCIENCE AND TECHNOLOGY PARK NAN SHAN DISTRICT, SHENZHEN 518057, GUANGDONG, P.R.C. SATIMO COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: SN 26/11 EPG129

Calibrated at SATIMO US

2105 Barrett Park Dr. - Kennesaw, GA 30144

10/03/2011

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in SATIMO USA using the CALISAR / CALIBAIR test bench, for use with a SATIMO COMOSAR system only. All calibration results are traceable to national metrology institutions.

SIEMIC, INC. Accessing global markets Model : A5 To C95, 1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 Issue 4 and Safety Code 6

 Serial#
 12050037-FCC-H-V1

 Issue Date
 May 23th 2012

 Page
 92 of 134

SATIMO

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.277.1.11.SATU.B

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/4/2011	JS
Checked by :	Jérôme LUC	Product Manager	10/4/2011	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	10/4/2011	thim Rithmershi

	Customer Name
Distribution :	SIEMIC Testing and Certification Services

Issue	Date	Modifications	
Α	10/4/2011	Initial release	
В	11/30/2011	Add detail about the calibration method	

Page: 2/11

SIEMIC, INC. Accessing global markets Title: RF Test Report of Mobile Phone Model: A5 To C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 Issue 4 and Safety Code 6
 Serial#
 12050037-FCC-H-V1

 Issue Date
 May 23th 2012

 Page
 93 of 134

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.277.1.11.SATU.B

TABLE OF CONTENTS

1	Dev	ice Under Test	
2	Prod	luct Description	
	2.1	General Information	4
3	Mea	surement Method	
	3.1	Method	4
	3.2	Linearity	5
	3.3	Sensitivity	6
	3.4	Lower Detection Limit	6
	3.5	Isotropy	6
	3.6	Boundary Effect	6
4	Mea	surement Uncertainty	
5	Cali	bration Measurement Results	
	5.1	Sensitivity in air	7
	5.2	Linearity	8
	5.3	Sensitivity in liquid	8
	5.4	Isotropy	9
6	List	of Equipment	

Page: 3/11

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.277.1.11.SATU.B

1 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	Satimo		
Model	SSE2		
Serial Number	SN 26/11 EPG129		
Product Condition (new / used)	new		
Frequency Range of Probe	0.7 GHz-6GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.153 MΩ		
	Dipole 2: R2=0.215 MΩ		
	Dipole 3: R3=0.192 MΩ		

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

Satimo's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – Satimo COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

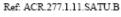
3 MEASUREMENT METHOD

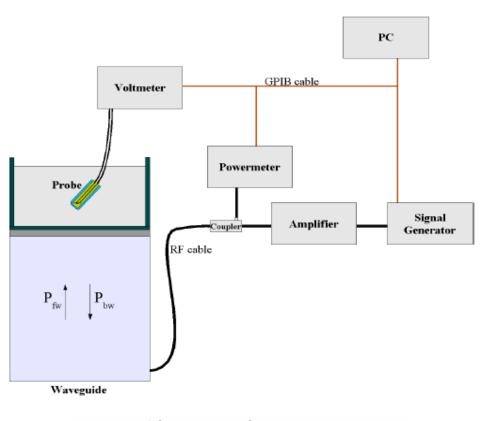
The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 METHOD

Probe calibration is realized, in compliance with CENELEC EN 50361; CEI/IEC 62209 and IEEE 1528 std, with CALISAR, SATIMO proprietary calibration system. The calibration is performed with the technique using reference waveguide.

Page: 4/11


Accessing global RF Test Report of Mobile Phone Model: A5 C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102


SIEMIC, INC.

4 and Safety Code 6

Issue Date May 23th 2012 Page 95 of 134

COMOSAR E-FIELD PROBE CALIBRATION REPORT ATIMO

$$SAR = \frac{4\left(P_{fw} - P_{bw}\right)}{ab\delta}\cos^2\left(\pi\frac{y}{a}\right)e^{-(2z/\delta)}$$

Where :

= Forward Power P_{fw} P_{bw} = Backward Power = Waveguide dimensions a and b = Skin depth

Keithley configuration:

Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO

After each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

LINEARITY 3.2

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 5/11

SIEMIC, INC. Accessing global RF Test Report of Mobile Phone

C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 4 and Safety Code 6

Serial# Issue Date May 23th 2012 96 of 134 Page www.siemic.com

ΑΤΙΜΟ

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR 277.1.11.SATU.B

3.3 SENSITIVITY

Model : A5

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.4 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.5 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°-180°) in 15° increments. At each step the probe is rotated about its axis (0°-360°).

3.6 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

MEASUREMENT UNCERTAINTY 4

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Field probe linearity	3.00%	Rectangular	√3	1	1.732%

Page: 6/11

4 and Safety Code 6

Serial# 12050037-FCC Issue Date May 23th 2012 -102 Page 97 of 134

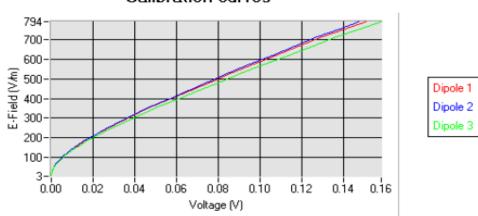
COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.277.1.11.SATU.B

Combined standard uncertainty			5.831%
Expanded uncertainty 95 % confidence level k = 2			11.662%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters				
Liquid Temperature 21 °C				
Lab Temperature	21 °C			
Lab Humidity	45 %			


5.1 SENSITIVITY IN AIR

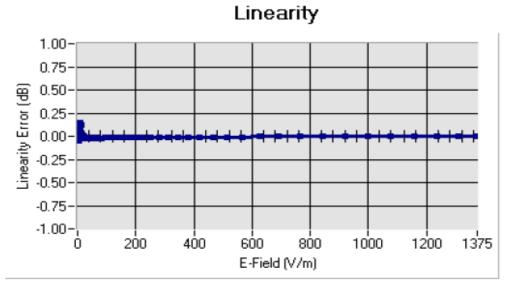
Normx dipole $1 (\mu V/(V/m)^2)$	Normy dipole $2 (\mu V/(V/m)^2)$	Normz dipole 3 $(\mu V/(V/m)^2)$
0.53	0.53	0.58

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
120	118	123

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

Page: 7/11


This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

Calibration curves

SIEMIC, INC. Accessing global markets Title: RF Test Report of Mobile Phone Model: A5 To C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 Issue 4 and Safety Code 6

COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref. ACR.277.1.11.SATU.B

5.2 LINEARITY

Linearity: 1+/-3.51% (+/-0.16dB)

5.3 SENSITIVITY IN LIQUID

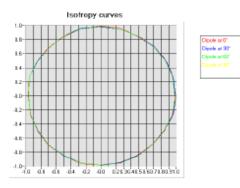
Liquid	Frequency	Permittivity	Epsilon (S/m)	ConvF
	(MHz +/-			
	100MHz)			
HL850	835	42.56	0.88	8.78
BL850	835	55.23	0.98	9.07
HL900	900	42.02	0.96	8.74
BL900	900	55.02	1.03	9.03
HL1800	1750	39.03	1.39	8.60
BL1800	1750	53.78	1.50	8.83
HL1900	1880	39.43	1.42	9.09
BL1900	1880	53.99	1.52	9.32
HL2000	1950	39.43	1.44	8.54
BL2000	1950	54.76	1.54	8.82
HL2450	2450	40.32	1.82	9.02
BL2450	2450	53.67	1.96	9.28
HL3500	3500	36.43	2.86	7.99
BL3500	3500	52.75	3.43	8.31
HL5200	5200	34.57	4.41	6.30
BL5200	5200	48.32	5.01	6.43
HL5500	5500	34.93	4.96	7.27
BL5500	5500	48.99	5.77	7.55
HL5800	5800	33.69	5.42	7.52
BL5800	5800	49.56	6.11	7.79

LOWER DETECTION LIMIT: 7mW/kg

Page: 8/11

Serial# 12050037-FCC-H-V1 Issue Date May 23th 2012 Page 99 of 134

SATIMO

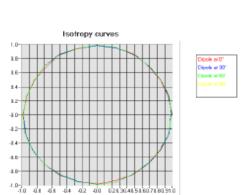

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.277.1.11.SATU.

5.4 ISOTROPY

HL900 MHz

 Axial isotropy: 	0.08 dB
 Hemispherical isotropy: 	0.04 dB


0.09 dB

0.07 dB

HL1800 MHz

- Axial isotropy:

-	Hen	nispl	herical	isotropy:
		-		

Page: 9/11

SIEMIC, INC. Accessing global markets Itle: RF Test Report of Mobile Phone Model: A5 0 C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 sue 4 and Safety Code 6

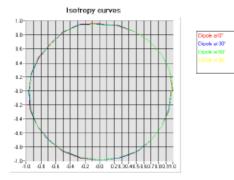
 Serial#
 12050037-FCC-H-V1

 Issue Date
 May 23th 2012

 Page
 100 of 134

ATIMO c

COMOSAR E-FIELD PROBE CALIBRATION REPORT


Ref: ACR.277.1.11.SATU.B

HL5500 MHz

		-	
-	Axıal	isotroj	ру

- Hemispherical isotropy:

0.14	dB
0.08	dB

Page: 10/11

SIEMIC, INC. Accessing global markets Model : A5 To C95, 1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 Issue 4 and Safety Code 6
 Serial#
 12050037-FCC-H-V1

 Issue Date
 May 23th 2012

 Page
 101 of 134

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.277.1.11.SATU.B

LIST OF EQUIPMENT 6

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
Flat Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2010	02/2013
Reference Probe	Satimo	EP 94 SN 37/08	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Multimeter	Keithley 2000	1188656	11/2010	11/2013
Signal Generator	Agilent E4438C	MY49070581	12/2010	12/2013
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	11/2010	11/2013
Power Sensor	HP ECP-E26A	US37181460	11/2010	11/2013
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Temperature / Humidity Sensor	Control Company	11-661-9	3/2010	3/2012

<text><text><text><text><text><text>

SIEMIC TESTING AND CERTIFICATION SERVICES

SUITE 311, BUILDING 1, SECTION 30 ,NO.2 KEFA ROAD, SCIENCE AND TECHNOLOGY PARK NAN SHAN DISTRICT, SHENZHEN 518057 , GUANGDONG ,P.R.C.

SATIMO COMOSAR REFERENCE DIPOLE

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

06/01/2011

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SIEMIC, INC. Accessing global markets Title: RF Test Report of Mobile Phone Model : A5 To C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 Issue 4 and Safety Code 6

 Serial#
 12050037-FCC-H-V1

 Issue Date
 May 23th 2012

 Page
 103 of 134

ATIN

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR, 158.4.11.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	6/7/2011	JS
Checked by :	Jérôme LUC	Product Manager	6/7/2011	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	6/7/2011	sum nuthoushi

	Customer Name
	SIEMIC Testing
Distribution :	and Certification
	Services

Issue	Date	Modifications	
Α	6/7/2011	Initial release	
1			

Page: 2/9

SIEMIC, INC. Accessing global markets Model : A5 To C95, 1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 Issue 4 and Safety Code 6

 Serial#
 12050037-FCC-H-V1

 Issue Date
 May 23th 2012

 Page
 104 of 134

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.4.11. SATU.A

TABLE OF CONTENTS

1	Intro	duction	
2	Devi	ce Under Test	
3	Prod	uct Description4	
	3.1	General Information	4
4	Mea	surement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results6	
	6.1	Return Loss	6
	6.2	Mechanical Dimensions	6
7	Vali	dation measurement7	
	7.1	Measurement Condition	7
	7.2	Head Liquid Measurement	7
	7.3	Measurement Result	8
8	List	of Equipment8	

Page: 3/9

Accessing global RF Test Report of Mobile Phone C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 4 and Safety Code 6

Issue Date May 23th 2012 Page 105 of 134

IMC

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.4.11.SATU.A

INTRODUCTION 1

Model : A5

SIEMIC, INC.

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

DEVICE UNDER TEST 2

Device Under Test		
Device Type	COMOSAR 835 MHz REFERENCE DIPOLE	
Manufacturer	Satimo	
Model	SID835	
Serial Number	SN 18/11 DIPC150	
Product Condition (new / used)	new	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/9

SIEMIC, INC. Accessing global market

Accessing global markets RF Test Report of Mobile Phone Model: A5 C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 4 and Safety Code 6

Serial# 12050037-FCC-H-V1 Issue Date May 23th 2012 Page 106 of 134 www.siemic.com

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.4.11.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

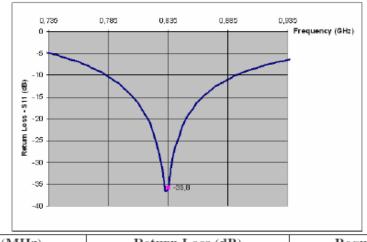
Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	16.19 %
10 g	15.86 %

Page:	5/9
-------	-----



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.4.11. SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS

Frequency (MHz)	Return Loss (dB)	Requirement (dB)
835	-35.8	-20

6.2 MECHANICAL DIMENSIONS

Frequency MHz	Lm	ım	hm	m	d n	nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.	PASS	89.8 ±1 %.	PASS	3.6 ±1 %.	PASS
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

Page: 6/9

Accessing global RF Test Report of Mobile Phone C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102

Issue Date May 23th 2012 Page 108 of 134

Model : A5

e 4 and Safety Code 6

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR, 158, 4, 11, SATU, A

7 VALIDATION MEASUREMENT

SIEMIC, INC.

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

MEASUREMENT CONDITION 7.1

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 43.0 sigma: 0.88
Distance between dipole center and liquid	15.0 mm
A rea scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

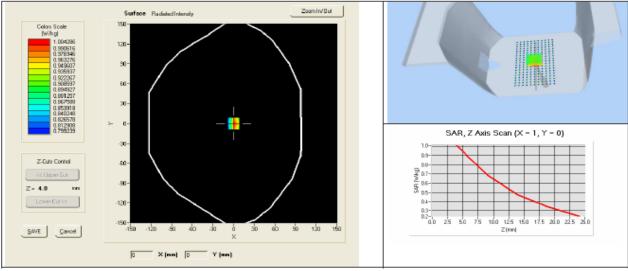
Frequency MHz	Relative per	mittivity (ɛ,')	Conductivity (ơ) S/m		
	required	measured	required	measured	
300	45.3 ±5 %		0.87 ±5 %		
450	43.5 ±5 %		0.87 ±5 %		
750	41.9 ±5 %		0.89 ±5 %		
835	41.5 ±5 %	PASS	0.90 ±5 %	PASS	
900	41.5 ±5 %		0.97 ±5 %		
1450	40.5 ±5 %		1.20 ±5 %		
1500	40.4 ±5 %		1.23 ±5 %		
1640	40.2 ±5 %		1.31 ±5 %		
1750	40.1 ±5 %		1.37 ±5 %		
1800	40.0 ±5 %		1.40 ±5 %		
1900	40.0 ±5 %		1.40 ±5 %		
1950	40.0 ±5 %		1.40 ±5 %		
2000	40.0 ±5 %		1.40 ±5 %		
2100	39.8 ±5 %		1.49 ±5 %		
2300	39.5 ±5 %		1.67 ±5 %		
2450	39.2 ±5 %		1.80 ±5 %		
2600	39.0 ±5 %		1.96 ±5 %		
3000	38.5 ±5 %		2.40 ±5 %		
3500	37.9 ±5 %		2.91 ±5 %		

7.2 HEAD LIQUID MEASUREMENT

Page: 7/9

SIEMIC, INC. Accessing global markets RF Test Report of Mobile Phone Model : A5 C95, 1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 e 4 and Safety Code 6

Serial# 12050037-FCC-H-V1 Issue Date May 23th 2012 Page 109 of 134


SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.4.11.SATU.A

7.3 MEASUREMENT RESULT

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Frequency MHz	1 g SAR	1 g SAR (W/kg/W)		(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56	9.59 (0.96)	6.22	6.25 (0.62)
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	
	-	-		+

SIEMIC, INC. Accessing global markets Title: RF Test Report of Mobile Phone Model : A5 To C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 Issue 4 and Safety Code 6

 Serial#
 12050037-FCC-H-V1

 Issue Date
 May 23th 2012

 Page
 110 of 134

11 SATIMO

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR, 158.4.11.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
Flat Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2010	02/2013		
Calipers	Carrera	CALIPER-01	12/2010	12/2013		
Reference Probe	Satimo	EPG122 SN 18/11	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Multimeter	Keithley 2000	1188656	11/2010	11/2013		
Signal Generator	Agilent E4438C	MY49070581	12/2010	12/2013		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	11/2010	11/2013		
Power Sensor	HP ECP-E26A	US37181460	11/2010	11/2013		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Temperature and Humidity Sensor	Control Company	11-661-9	3/2010	3/2012		

Page: 9/9

SIEMIC, INC. Accessing global markets RF Test Report of Mobile Phone Model : A5 C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102

4 and Safety Code 6

Serial# 12050037-FCC-H-V1 Issue Date May 23th 2012 Page 111 of 134 www.siemic.com

SAR Reference Dipole Calibration Report

Ref: ACR.158.7.11.SATU.A

SIEMIC TESTING AND CERTIFICATION SERVICES

SUITE 311, BUILDING 1, SECTION 30 ,NO.2 KEFA ROAD, SCIENCE AND TECHNOLOGY PARK NAN SHAN DISTRICT, SHENZHEN 518057 , GUANGDONG ,P.R.C.

SATIMO COMOSAR REFERENCE DIPOLE

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

06/01/2011

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SIEMIC, INC. Accessing global markets Model : A5 To C95, 1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 Issue 4 and Safety Code 6

 Serial#
 12050037-FCC-H-V1

 Issue Date
 May 23th 2012

 Page
 112 of 134

ATIN 10

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.7.11.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	6/7/2011	JES
Checked by :	Jérôme LUC	Product Manager	6/7/2011	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	6/7/2011	sum nuthoushi

	Customer Name
Distribution :	SIEMIC Testing and Certification Services

Issue	Date	Modifications	
A	6/7/2011	Initial release	

Page: 2/9

SIEMIC, INC. Accessing global markets Title: RF Test Report of Mobile Phone Model : A5 To C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 Issue 4 and Safety Code 6

 Serial#
 12050037-FCC-H-V1

 Issue Date
 May 23th 2012

 Page
 113 of 134

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.7.11.SATU.A

TABLE OF CONTENTS

1	Intro	duction4	
2	Devi	ce Under Test4	
3	Prod	uct Description4	
	3.1	General Information	4
4	Mea	surement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results6	
	6.1	Return Loss	6
	6.2	Mechanical Dimensions	6
7	Vali	dation measurement7	
	7.1	Measurement Condition	7
	7.2	Head Liquid Measurement	7
	7.3	Measurement Result	8
8	List	of Equipment	

Page: 3/9

C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102

Issue Date May 23th 2012 Page 114 of 134

TIMO

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.7.11.SATU.A

1 INTRODUCTION

SIEMIC, INC.

Accessing global RF Test Report of Mobile Phone

Model : A5

4 and Safety Code 6

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

DEVICE UNDER TEST 2

Device Under Test		
Device Type	COMOSAR 1900 MHz REFERENCE DIPOLE	
Manufacturer	Satimo	
Model	SID1900	
Serial Number	SN 18/11 DIPG153	
Product Condition (new / used)	new	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/9

Issue Date May 23th 2012 Page 115 of 134 C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.7.11.SATU.A

MEASUREMENT METHOD 4

SIEMIC, INC.

Accessing global RF Test Report of Mobile Phone

Model : A5

4 and Safety Code 6

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

www.siemic.com

RETURN LOSS REQUIREMENTS 4.1

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

DIMENSION MEASUREMENT 5.2

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

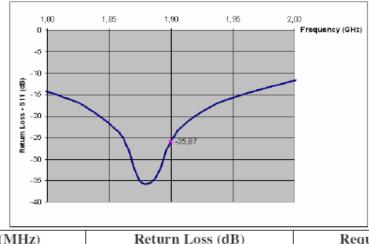
The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	16.19 %
10 g	15.86 %

Page: 5/9

SIEMIC, INC. Accessing global marines Title: RF Test Report of Mobile Phone Model: A5 To C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 Issue 4 and Safety Code 6

Serial# 12050037-FCC-H-V1 Issue Date May 23th 2012 Page 116 of 134


SATIMO

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.7.11.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS

Frequency (MHz)	Return Loss (dB)	Requirement (dB)
1900	-25.9	-20

6.2 MECHANICAL DIMENSIONS

Frequency MHz	Lm	ım	hm	m	d n	nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.	PASS	39.5 ±1 %.	PASS	3.6 ±1 %.	PASS
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

Page: 6/9

Accessing global RF Test Report of Mobile Phone C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102

Issue Date May 23th 2012 Page 117 of 134

ATIMO

Model : A5

e 4 and Safety Code 6

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR, 158, 7, 11, SATU, A

7 VALIDATION MEASUREMENT

SIEMIC, INC.

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps' : 38.5 sigma : 1.42
Distance between dipole center and liquid	10.0 mm
A rea scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

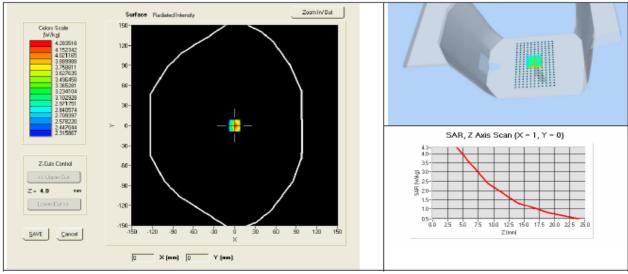
7.1 MEASUREMENT CONDITION

Frequency MHz	Relative per	mittivity (ε,')	Conductiv	ity (ơ) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %	PASS	1.40 ±5 %	PASS
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %		1.80 ±5 %	
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

7.2 HEAD LIQUID MEASUREMENT

Page: 7/9

Serial# 12050037-FCC-H-V1 Issue Date May 23th 2012 Page 118 of 134


SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.7.11.SATU.A

7.3 MEASUREMENT RESULT

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Frequency MHz	1 g SAR (1 g SAR (W/kg/W)		(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7	39.92 (3.99)	20.5	20.49 (2.05)
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	

Page: 8/9

SIEMIC, INC. Accessing global markets Title: RF Test Report of Mobile Phone Model : A5 To C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 Issue 4 and Safety Code 6

 Serial#
 12050037-FCC-H-V1

 Issue Date
 May 23th 2012

 Page
 119 of 134

SATIMO

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.7.11.SATU.A

LIST OF EQUIPMENT 8

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
Flat Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2010	02/2013
Calipers	Carrera	CALIPER-01	12/2010 12/2013	
Reference Probe	Satimo	EPG122 SN 18/11	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Multimeter	Keithley 2000	1188656	11/2010	11/2013
Signal Generator	Agilent E4438C	MY49070581	12/2010	12/2013
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	11/2010	11/2013
Power Sensor	HP ECP-E26A	US37181460	11/2010	11/2013
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	11-661-9	3/2010	3/2012

Page: 9/9

SIEMIC, INC. Accessing global markets RF Test Report of Mobile Phone Model : A5 C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102

4 and Safety Code 6

Serial# 12050037-FCC-H-V1 Issue Date May 23th 2012 Page 120 of 134 www.siemic.com

SAR Reference Dipole Calibration Report

Ref: ACR.158.9.11.SATU.A

SIEMIC TESTING AND CERTIFICATION SERVICES

SUITE 311, BUILDING 1, SECTION 30 ,NO.2 KEFA ROAD, SCIENCE AND TECHNOLOGY PARK NAN SHAN DISTRICT, SHENZHEN 518057 , GUANGDONG ,P.R.C.

SATIMO COMOSAR REFERENCE DIPOLE

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

06/01/2011

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

SIEMIC, INC. Accessing global markets Title: RF Test Report of Mobile Phone Model : A5 To C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 Issue 4 and Safety Code 6

 Serial#
 12050037-FCC-H-V1

 Issue Date
 May 23th 2012

 Page
 121 of 134

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.9.11.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	6/7/2011	JS
Checked by :	Jérôme LUC	Product Manager	6/7/2011	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	6/7/2011	thim Ruthourshi

	Customer Name
Distribution :	SIEMIC Testing and Certification Services

Issue	Date	Modifications
А	6/7/2011	Initial release

Page: 2/9

SIEMIC, INC. Accessing global markets Model : A5 To C95, 1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 Issue 4 and Safety Code 6

 Serial#
 12050037-FCC-H-V1

 Issue Date
 May 23th 2012

 Page
 122 of 134

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.9.11.SATU.A

TABLE OF CONTENTS

1	Intro	duction4	
2	Devi	ce Under Test	
3	Prod	uct Description4	
	3.1	General Information	4
4	Mea	surement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results	
	6.1	Return Loss	6
	6.2	Mechanical Dimensions	6
7	Vali	dation measurement7	
	7.1	Measurement Condition	7
	7.2	Head Liquid Measurement	7
	7.3	Measurement Result	8
8	List	of Equipment	

Page: 3/9

C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 4 and Safety Code 6

Issue Date May 23th 2012 Page 123 of 134

TIMO

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.9.11.SATU.A

1 INTRODUCTION

SIEMIC, INC.

Accessing global RF Test Report of Mobile Phone

Model : A5

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

DEVICE UNDER TEST 2

Device Under Test			
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE		
Manufacturer	Satimo		
Model	SID2450		
Serial Number SN 18/11 DIPJ155			
Product Condition (new / used) new			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/9

SIEMIC, INC. Accessing global RF Test Report of Mobile Phone

Issue Date May 23th 2012 Page 124 of 134 C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102

ATIMO

Model : A5

4 and Safety Code 6

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 158.9.11.SATU A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

www.siemic.com

4.1 RETURN LOSS REOUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REOUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss		
400-6000MHz	0.1 dB		

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

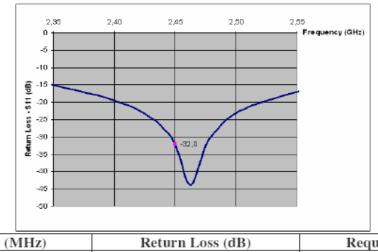
Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty	
1 g	16.19 %	
10 g	15.86 %	

Serial# 12050037-FCC-H-V1 Issue Date May 23th 2012 Page 125 of 134



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.9.11.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS

Frequency (MHz)	Return Loss (dB)	Requirement (dB)
2450	-32.00	-20

6.2 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		hmm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.	PASS	30.4 ±1 %.	PASS	3.6 ±1 %.	PASS
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

Page: 6/9

Accessing global m RF Test Report of Mobile Phone C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102

Issue Date May 23th 2012 Page 126 of 134

Model : A5

e 4 and Safety Code 6

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.9.11.SATU.A

7 VALIDATION MEASUREMENT

SIEMIC, INC.

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 MEASUREMENT CONDITION

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps' : 38.8 sigma : 1.88
Distance between dipole center and liquid	10.0 mm
A rea scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

7.2 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ε,')	Conductivity (a) S/m		
	required	measured	required	measured	
300	45.3 ±5 %		0.87 ±5 %		
450	43.5 ±5 %		0.87 ±5 %		
750	41.9 ±5 %		0.89 ±5 %		
835	41.5 ±5 %		0.90 ±5 %		
900	41.5 ±5 %		0.97 ±5 %		
1450	40.5 ±5 %		1.20 ±5 %		
1500	40.4 ±5 %		1.23 ±5 %		
1640	40.2 ±5 %		1.31 ±5 %		
1750	40.1 ±5 %		1.37 ±5 %		
1800	40.0 ±5 %		1.40 ±5 %		
1900	40.0 ±5 %		1.40 ±5 %		
1950	40.0 ±5 %		1.40 ±5 %		
2000	40.0 ±5 %		1.40 ±5 %		
2100	39.8 ±5 %		1.49 ±5 %		
2300	39.5 ±5 %		1.67 ±5 %		
2450	39.2 ±5 %	PASS	1.80 ±5 %	PASS	
2600	39.0 ±5 %		1.96 ±5 %		
3000	38.5 ±5 %		2.40 ±5 %		
3500	37.9 ±5 %		2.91 ±5 %		

Page: 7/9

SIEMIC, INC. Accessing global mark RF Test Report of Mobile Phone

Model: A5 C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 e 4 and Safety Code 6 Serial# 12050037-FCC-H-V1 Issue Date May 23th 2012 Page 127 of 134

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.9.11.SATU.A

7.3 MEASUREMENT RESULT

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Frequency MHz	1 0 SAR IW/R0/W1		10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	53.82 (5.38)	24	24.12 (2.41)
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	

Page: 8/9

SIEMIC, INC. Accessing global markets Title: RF Test Report of Mobile Phone Model : A5 To C95.1, IEEE 1528, OET Bulletin 65 Supplement C, IEC62209-2 & RSS-102 Issue 4 and Safety Code 6

 Serial#
 12050037-FCC-H-V1

 Issue Date
 May 23th 2012

 Page
 128 of 134

SATIMO

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 158.9.11.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
Flat Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2010	02/2013
Calipers	Carrera	CALIPER-01	12/2010	12/2013
Reference Probe	Satimo	EPG122 SN 18/11	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Multimeter	Keithley 2000	1188656	11/2010	11/2013
Signal Generator	Agilent E4438C	MY49070581	12/2010	12/2013
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	11/2010	11/2013
Power Sensor	HP ECP-E26A	US37181460	11/2010	11/2013
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	11-661-9	3/2010	3/2012

Page: 9/9