

RADIO TEST REPORT FCC ID: ZSW-30-133

Product:	Mobile Phone
Trade Mark:	Bmobile
Model No.:	BL61 PRO
Family Model:	N/A
Report No.:	S23111603501002
Issue Date:	Jan 31, 2024

Prepared for

b mobile HK Limited

Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak Street; Kwai Chung; New Territories; Hong Kong, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

1	TEST	RESULT CERTIFICATION	4
2	SUM	MARY OF TEST RESULTS	5
3	FACI	LITIES AND ACCREDITATIONS	6
-			
		ACILITIES ABORATORY ACCREDITATIONS AND LISTINGS	
		ABORATORY ACCREDITATIONS AND LISTINGS	
4	GEN	ERAL DESCRIPTION OF EUT	7
5	DESC	CRIPTION OF TEST MODES	9
6	SETU	P OF EQUIPMENT UNDER TEST	.10
(5.1 I	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	.10
(SUPPORT EQUIPMENT	
0	5.3 I	EQUIPMENTS LIST FOR ALL TEST ITEMS	.12
7	TEST	REQUIREMENTS	.14
		CONDUCTED EMISSIONS TEST	
	7.1 (<i>7.1.1</i>	Applicable Standard	
	7.1.1	Conformance Limit	
	7.1.2	Measuring Instruments	
	7.1.4	Test Configuration	
	7.1.5	Test Procedure	
	7.1.6	Test Results	
-	7.2 I	RADIATED SPURIOUS EMISSION	.17
	7.2.1	Applicable Standard	
	7.2.2	Conformance Limit	
	7.2.3	Measuring Instruments	
	7.2.4	Test Configuration	
	7.2.5	Test Procedure	
,	7.2.6	Test Results	
		5DB BANDWIDTH	
	7.3.1 7.3.2	Applicable Standard	
	7.3.2	Conformance Limit Measuring Instruments	
	7.3.4	Test Setup	
	7.3.5	Test Procedure	
	7.3.6		
-	7.4 I	DUTY CYCLE	.27
	7.4.1	Applicable Standard	.27
	7.4.2	Conformance Limit	.27
	7. 4 .3	Measuring Instruments	.27
	7.4.4	Test Setup	
	7.4.5	Test Procedure	
	7.4.6	Test Results	
		PEAK OUTPUT POWER	
	7.5.1	Applicable Standard	
	7.5.2	Conformance Limit	
	7.5.3 7.5.4	Measuring Instruments	
	7.5.4	Test Setup Test Procedure	
	7.5.6	Test Results	
,		POWER SPECTRAL DENSITY	
	,.0 I		.50

Report No.: S23111603501002

	7.0.1	11	
	7.6.2	Conformance Limit	30
	7.6.3		
	7.6.4	··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·	
	7.6.5	Test Procedure	30
	7.6.6		
	7.7	CONDUCTED BAND EDGE MEASUREMENT	
	7.7.1	II	
	7.7.2		
	7.7.3		
	7.7.4	1	
	7.7.5		
	7.7.6		
	7.8	SPURIOUS RF CONDUCTED EMISSIONS	
	7.8.1		
	7.8.2		
	7.8.3	<i>r</i>	
	7.8.4		
	7.8.5		
	7.9	ANTENNA APPLICATION	
	7.9.1		
	7.9.2	Result	34
8	TES	T RESULTS	35
	8.1	DUTY CYCLE	35
	8.2	MAXIMUM CONDUCTED OUTPUT POWER	38
	8.3	-6DB BANDWIDTH	41
	8.4	OCCUPIED CHANNEL BANDWIDTH	44
	8.5	MAXIMUM POWER SPECTRAL DENSITY LEVEL	47
	8.6	BAND EDGE	50
	8.7	CONDUCTED RF SPURIOUS EMISSION	53

1 TEST RESULT CERTIFICATION

Applicant's name:	b mobile HK Limited	
Address:	Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak Street; Kwai Chung; New Territories; Hong Kong, China	
Manufacturer's Name:	b mobile HK Limited	
Address:	Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak Street; Kwai Chung; New Territories; Hong Kong, China	
Product description		
Product name:	Mobile Phone	
Model and/or type reference:	BL61 PRO	
Family Model:	N/A	
Test sample number	S231116035001	
Date of Test	Dec 18, 2023 ~ Jan 31, 2024	

Measurement Procedure Used:

APPLICABLE STANDARDS		
APPLICABLE STANDARD/ TEST PROCEDURE TEST RESULT		
FCC 47 CFR Part 2, Subpart J		
FCC 47 CFR Part 15, Subpart C	Complied	
ANSI C63.10-2013 Complied		
KDB 558074 D01 15.247 Meas Guidance v05r02	KDB 558074 D01 15.247 Meas Guidance v05r02	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Prepared : By : Allen Liu (Project Engineer)	Reviewed By - Aaron Cheng (Supervisor)	Approved : Alex Li By : Alex Li (Manager)

Version.1.3

2 SUMMARY OF TE	SUMMARY OF TEST RESULTS				
	FCC Part15 (15.247), Subpart C				
Standard Section	Test Item	Verdict	Remark		
15.207	Conducted Emission	PASS			
15.247 (a)(2)	6dB Bandwidth	PASS			
15.247 (b)	Peak Output Power PASS				
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS			
15.247 (e)	Power Spectral Density	PASS			
15.247 (d)	Band Edge Emission	PASS			
15.247 (d)	Spurious RF Conducted Emission	PASS			
15.203	Antenna Requirement PASS				

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
-	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
Name of Firm Site Location	 Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	Mobile Phone	
Trade Mark	Bmobile	
FCC ID	ZSW-30-133	
Model No.	BL61 PRO	
Family Model	N/A	
Model Difference	N/A	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK	
Number of Channels	40 Channels	
Antenna Type	PIFA Antenna	
Antenna Gain	0.95dBi	
Power supply	DC 3.8V/3000mAh from battery or DC 5V from Adapter.	
Adapter	Adapter INPUT: AC 100-240V~50-60Hz 0.2A OUTPUT: DC 5.0V1A	
HW Version	Bmobile_BL61Pro_TIGO_LATAM_V002	
SW Version	Bmobile_BL61Pro_HW_V1.0	

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

Revision History			
Report No.	Version	Description	Issued Date
S23111603501002	Rev.01	Initial issue of report	Jan 31, 2024

NTEK 北测

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation) were used for all test.

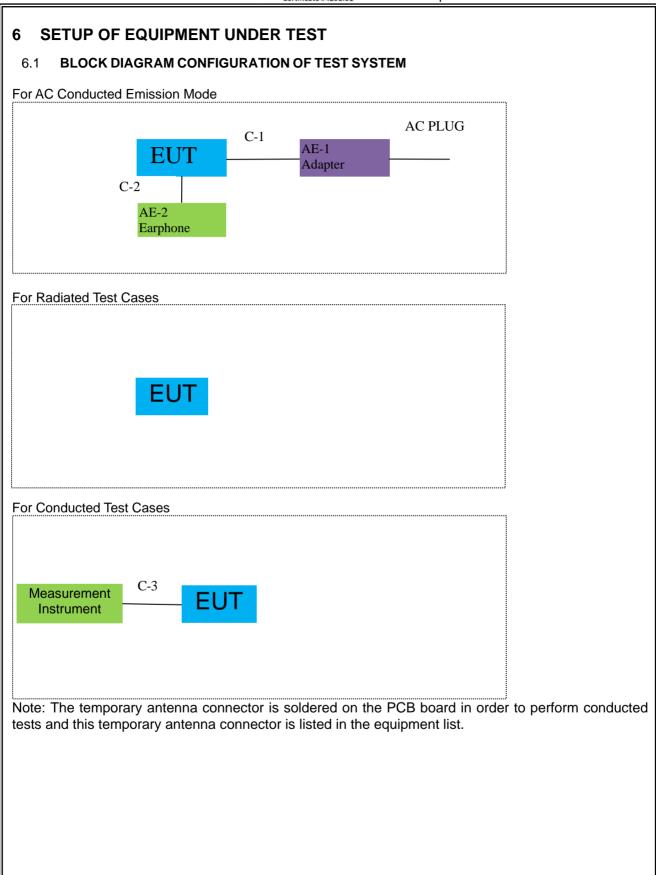
The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+kx2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.


Test Cases			
Test Item	Data Rate/ Modulation		
AC Conducted Emission	Mode 1: normal link mode		
	Mode 1: normal link mode		
Radiated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps		
Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps		
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps		
Conducted Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps		
Conducted Test Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps		
Cases	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps		

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

- 2. AC power line Conducted Emission was tested under maximum output power.
- 3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.
- 4. EUT built-in battery-powered, the battery is fully-charged.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
	Mobile Phone	BL61 PRO	N/A	EUT
AE-1	Adapter	N/A	N/A	Peripherals
AE-2	Earphone	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

adiatic		estequipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2023.03.27	2024.03.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023.05.29	2024.05.28	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2023.03.27	2024.03.26	1 year
4	Test Receiver	R&S	ESPI7	101318	2023.03.27	2024.03.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2023.03.27	2024.03.26	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2023.03.27	2024.03.26	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2023.05.29	2024.05.28	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2023.05.29	2024.05.28	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2023.05.29	2024.05.28	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2023.05.29	2024.05.28	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2023.05.06	2026.05.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2023.05.06	2026.05.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2023.05.29	2024.05.28	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Cc	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2023.03.27	2024.03.26	1 year
2	LISN	R&S	ENV216	101313	2023.03.27	2024.03.26	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2023.03.27	2024.03.26	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

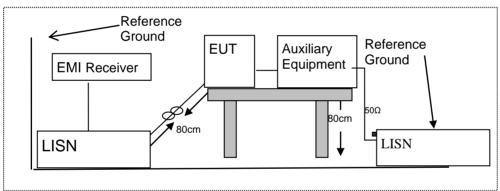
7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	


Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

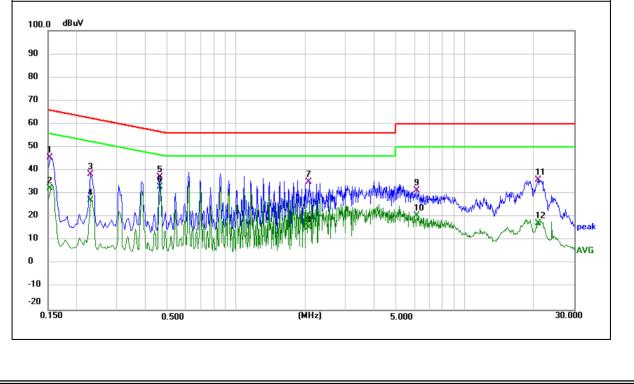
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results


EUT:	Mobile Phone	Model Name :	BL61 PRO
Temperature:	24 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

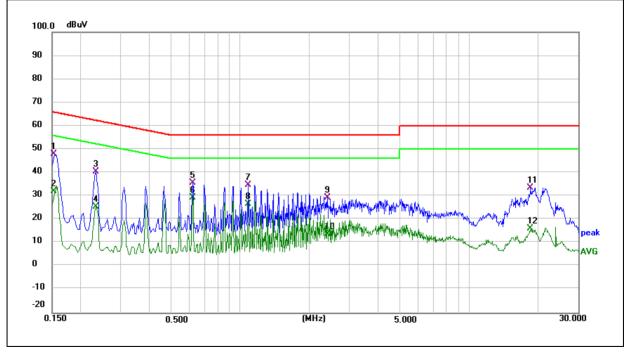
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1539	35.58	9.93	45.51	65.79	-20.28	QP
0.1539	22.54	9.93	32.47	55.79	-23.32	AVG
0.2300	28.10	10.10	38.20	62.45	-24.25	QP
0.2300	17.23	10.10	27.33	52.45	-25.12	AVG
0.4620	26.47	10.57	37.04	56.66	-19.62	QP
0.4620	22.44	10.57	33.01	46.66	-13.65	AVG
2.0660	25.41	9.66	35.07	56.00	-20.93	QP
2.0660	5.97	9.66	15.63	46.00	-30.37	AVG
6.1540	21.73	9.68	31.41	60.00	-28.59	QP
6.1540	10.94	9.68	20.62	50.00	-29.38	AVG
20.8460	26.11	9.70	35.81	60.00	-24.19	QP
20.8460	7.54	9.70	17.24	50.00	-32.76	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

Version.1.3


EUT:	Mobile Phone	Model Name :	BL61 PRO
Temperature:	24 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	Ν
	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1539	38.16	9.93	48.09	65.79	-17.70	QP
0.1539	22.06	9.93	31.99	55.79	-23.80	AVG
0.2340	30.27	10.10	40.37	62.31	-21.94	QP
0.2340	15.47	10.10	25.57	52.31	-26.74	AVG
0.6180	24.73	10.89	35.62	56.00	-20.38	QP
0.6180	18.52	10.89	29.41	46.00	-16.59	AVG
1.0820	22.95	11.82	34.77	56.00	-21.23	QP
1.0820	14.77	11.82	26.59	46.00	-19.41	AVG
2.3980	19.79	9.66	29.45	56.00	-26.55	QP
2.3980	4.10	9.66	13.76	46.00	-32.24	AVG
18.5300	23.94	9.72	33.66	60.00	-26.34	QP
18.5300	6.50	9.72	16.22	50.00	-33.78	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

Version.1.3

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	GHz
16.42-16.423	399.9-410	4.5-5.15
16.69475-16.69525	608-614	5.35-5.46
16.80425-16.80475	960-1240	7.25-7.75
25.5-25.67	1300-1427	8.025-8.5
37.5-38.25	1435-1626.5	9.0-9.2
73-74.6	1645.5-1646.5	9.3-9.5
74.8-75.2	1660-1710	10.6-12.7
123-138	2200-2300	14.47-14.5
149.9-150.05	2310-2390	15.35-16.2
156.52475-156.52525	2483.5-2500	17.7-21.4
156.7-156.9	2690-2900	22.01-23.12
162.0125-167.17	3260-3267	23.6-24.0
167.72-173.2	3332-3339	31.2-31.8
240-285	3345.8-3358	36.43-36.5
322-335.4	3600-4400	(2)
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

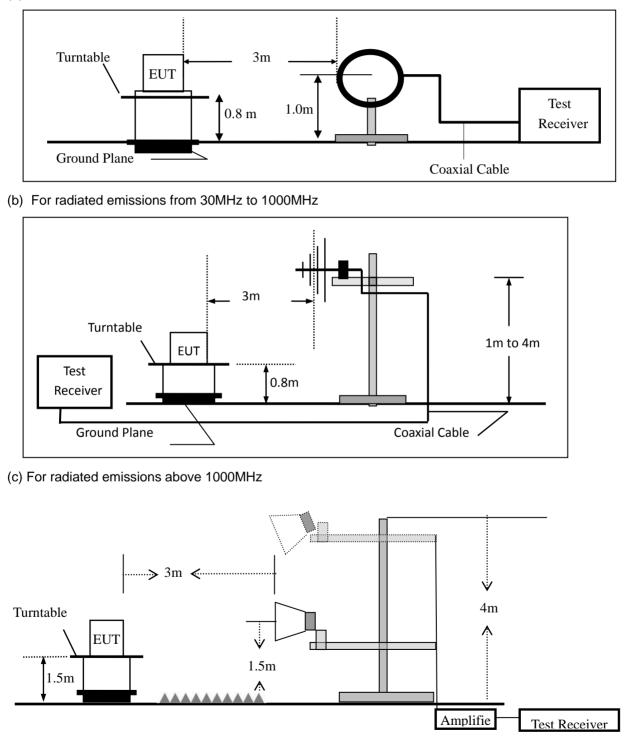
Frequency(MHz)	Class B (dBuV/	/m) (at 3M)
	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

Version.1.3

NTEK 北测

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission t	est, the Spectrum An	alyzer was set with the follow	ving configurations:
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	1 MHz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Mobile Phone	Model No.:	BL61 PRO
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK AV		PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

EUT:	Mobile Phone	Model Name :	BL61 PRO
Temperature:	24 ℃	Relative Humidity:	53%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	DC 3.8V		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	34.6385	5.32	23.84	29.16	40.00	-10.84	QP
V	85.2980	5.30	16.02	21.32	40.00	-18.68	QP
V	164.9075	11.27	17.64	28.91	43.50	-14.59	QP
V	285.9778	7.05	19.90	26.95	46.00	-19.05	QP
V	647.3856	6.74	27.02	33.76	46.00	-12.24	QP
V	878.3214	6.02	30.37	36.39	46.00	-9.61	QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	rtorriari
Н	34.1560	6.79	24.10	30.89	40.00	-9.11	QP
Н	86.5027	5.21	16.19	21.40	40.00	-18.60	QP
Н	157.5588	7.17	18.06	25.23	43.50	-18.27	QP
Н	285.9777	7.57	19.90	27.47	46.00	-18.53	QP
Н	383.9318	11.62	22.78	34.40	46.00	-11.60	QP
H Remark	711.6734	14.49	28.03	42.52	46.00	-3.48	QP
	n Level= Meter	Reading+ Fa	ctor Margir	n= Emission I	evel - Limit		
80.0	dBuV/m		otor, margi				
70							
60							
50 -							
						6 X	
40					5		sout
30 🗛	, *					South Walk March March March 199	
50	when where we wanted		3		head to adapt the state of the		
20	and the state of t	2	netwardships takes his at the	water the and the second of the second	5 hull he when he was a start of the		
	weiter while and the other standing	wellow when a					
10							
0.0							
30.0	00 6	0.00	(MHz)	300.00		1000.000

purious Em	ission	Above 1GH	lz (1GHz t	to 25G	Hz)					
UT:		Mobile Pho	one		Mo	del No.:		BL61 PRO)		
emperature	:	20 ℃			Re	lative Hum	nidity:	48%	48%		
est Mode:		Mode2/Mo	de3/Mode	4	Te	st By:		Allen Liu			
						•					
Frequency	Read Leve		Antenna Factor	Prear Facto		Emission Level	Limits	Margin	Remark	Comment	
(MHz)	(dBµ∖	/) (dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)			
			Low (Channel	(24	02 MHz)(GF	SK)Above	e 1G			
4804.338	62.46	5 5.21	35.59	44.3	0	58.96	74.00	-15.04	Pk	Vertical	
4804.338	41.63	3 5.21	35.59	44.3	0	38.13	54.00	-15.87	AV	Vertical	
7206.107	61.10	6.48	36.27	44.6	0	59.25	74.00	-14.75	Pk	Vertical	
7206.107	42.40	6.48	36.27	44.6	0	40.55	54.00	-13.45	AV	Vertical	
4804.169	62.77	7 5.21	35.55	44.3	0	59.23	74.00	-14.77	Pk	Horizontal	
4804.169	42.77	5.21	35.55	44.3	0	39.23	54.00	-14.77	AV	Horizontal	
7206.214	60.91	6.48	36.27	44.5	2	59.14	74.00	-14.86	Pk	Horizontal	
7206.214	40.89	6.48	36.27	44.5	2	39.12	54.00	-14.88	AV	Horizontal	
			Mid C	Channel	(24	40 MHz)(GF	SK)Above	1G			
4880.473	62.87	7 5.21	35.66	44.2	0	59.54	74.00	-14.46	Pk	Vertical	
4880.473	43.57	7 5.21	35.66	44.2	0	40.24	54.00	-13.76	AV	Vertical	
7320.265	64.35	5 7.10	36.50	44.4	3	63.52	74.00	-10.48	Pk	Vertical	
7320.265	41.68	3 7.10	36.50	44.4	3	40.85	54.00	-13.15	AV	Vertical	
4880.366	62.10	5.21	35.66	44.2	0	58.77	74.00	-15.23	Pk	Horizontal	
4880.366	41.38	3 5.21	35.66	44.2	0	38.05	54.00	-15.95	AV	Horizontal	
7320.234	59.54	7.10	36.50	44.4	3	58.71	74.00	-15.29	Pk	Horizontal	
7320.234	44.11	7.10	36.50	44.4	3	43.28	54.00	-10.72	AV	Horizontal	
			High (Channel	(24	80 MHz)(GF	SK) Abov	e 1G		-	
4960.482	63.66	5.21	35.52	44.2	1	60.18	74.00	-13.82	Pk	Vertical	
4960.482	42.26	5.21	35.52	44.2	1	38.78	54.00	-15.22	AV	Vertical	
7440.131	63.97	7 7.10	36.53	44.6	0	63.00	74.00	-11.00	Pk	Vertical	
7440.131	48.95	5 7.10	36.53	44.6	0	47.98	54.00	-6.02	AV	Vertical	
4960.326	63.74	4 5.21	35.52	44.2	1	60.26	74.00	-13.74	Pk	Horizontal	
4960.326	45.32	2 5.21	35.52	44.2	1	41.84	54.00	-12.16	AV	Horizontal	
7440.199	63.54	7.10	36.53	44.6	0	62.57	74.00	-11.43	Pk	Horizontal	
7440.199	44.74	7.10	36.53	44.6	0	43.77	54.00	-10.23	AV	Horizontal	

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

JT:	Mobile F	Iobile Phone Model No.:				BL61 PRO				
emperature:	20 ℃			Relativ	e Humidity	/:	48%	48%		
est Mode:	Mode2/	Mode4		Test B	y:		Allen	Liu		
	•• ·			-						
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lim	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	V/m)	(dB)	Туре	
				1Mbps	(GFSK)					
2310.00	63.41	2.97	27.80	43.80	50.38	7	4	-23.62	Pk	Horizontal
2310.00	44.11	2.97	27.80	43.80	31.08	5	4	-22.92	AV	Horizontal
2310.00	61.57	2.97	27.80	43.80	48.54	7	4	-25.46	Pk	Vertical
2310.00	41.99	2.97	27.80	43.80	28.96	5	4	-25.04	AV	Vertical
2390.00	63.03	3.14	27.21	43.80	49.58	7	4	-24.42	Pk	Vertical
2390.00	43.34	3.14	27.21	43.80	29.89	5	4	-24.11	AV	Vertical
2390.00	63.15	3.14	27.21	43.80	49.70	7	4	-24.30	Pk	Horizontal
2390.00	42.57	3.14	27.21	43.80	29.12	5	4	-24.88	AV	Horizontal
2483.50	62.63	3.58	27.70	44.00	49.91	7	4	-24.09	Pk	Vertical
2483.50	43.77	3.58	27.70	44.00	31.05	5	4	-22.95	AV	Vertical
2483.50	64.47	3.58	27.70	44.00	51.75	7	4	-22.25	Pk	Horizontal
2483.50	44.92	3.58	27.70	44.00	32.20	5	4	-21.80	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

UT:	Mobile I	Phone		Model	Model No.:			BL61 PRO			
Temperature:	20 ℃			Relativ	e Humidity	/: 4	48%				
Test Mode:	Mode2/	Mode4		Test B	y:	/	Allen	Liu			
				_							
Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lim	nits	Margin	Detector	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ\	V/m)	(dB)	Туре		
3260	63.64	4.04	29.57	44.70	52.55	74	4	-21.45	Pk	Vertical	
3260	57.23	4.04	29.57	44.70	46.14	54	4	-7.86	AV	Vertical	
3260	66.40	4.04	29.57	44.70	55.31	74	4	-18.69	Pk	Horizontal	
3260	58.04	4.04	29.57	44.70	46.95	54	4	-7.05	AV	Horizontal	
3332	65.43	4.26	29.87	44.40	55.16	74	4	-18.84	Pk	Vertical	
3332	57.81	4.26	29.87	44.40	47.54	54	4	-6.46	AV	Vertical	
3332	66.97	4.26	29.87	44.40	56.70	74	4	-17.30	Pk	Horizontal	
3332	53.19	4.26	29.87	44.40	42.92	54	4	-11.08	AV	Horizontal	
17797	45.12	10.99	43.95	43.50	56.56	74	4	-17.44	Pk	Vertical	
17797	34.78	10.99	43.95	43.50	46.22	54	4	-7.78	AV	Vertical	
17788	45.44	11.81	43.69	44.60	56.34	74	4	-17.66	Pk	Horizontal	
17788	36.21	11.81	43.69	44.60	47.11	54	4	-6.89	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit.

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

a) Set RBW = 100 kHz.

- b) Set the video bandwidth (VBW) \ge 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Mobile Phone	Model No.:	BL61 PRO
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	Mobile Phone	Model No.:	BL61 PRO
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.5 PEAK OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Mobile Phone	Model No.:	BL61 PRO
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.6 **POWER SPECTRAL DENSITY**

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5*DTS bandwidth.

c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.

- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Mobile Phone	Model No.:	BL61 PRO
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Mobile Phone	Model No.:	BL61 PRO
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Allen Liu

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

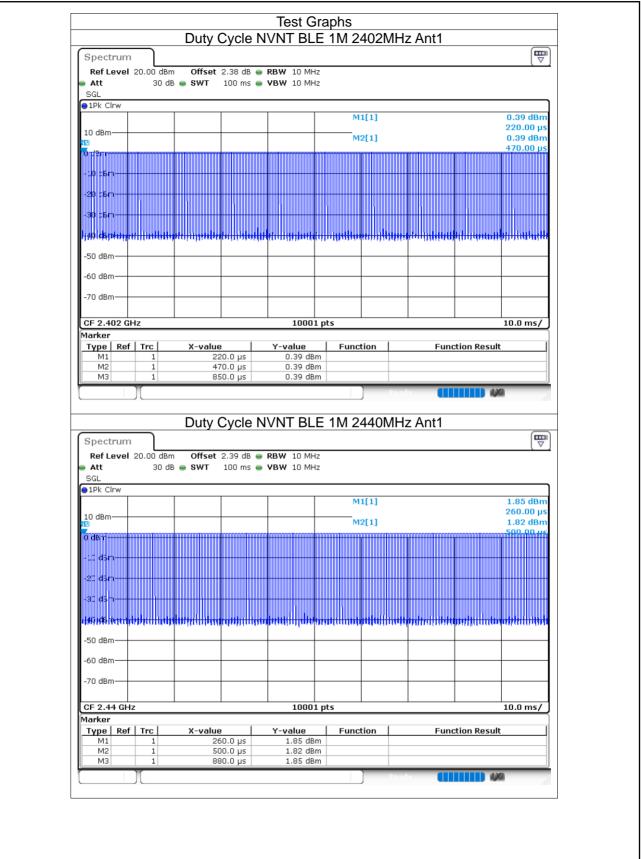
7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

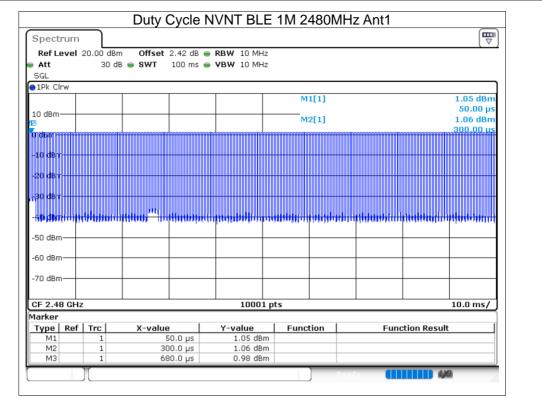
7.9.2 Result

The EUT antenna is permanent attached PIFA antenna (Gain: 0.95dBi). It comply with the standard requirement.


8 TEST RESULTS

8.1 DUTY CYCLE

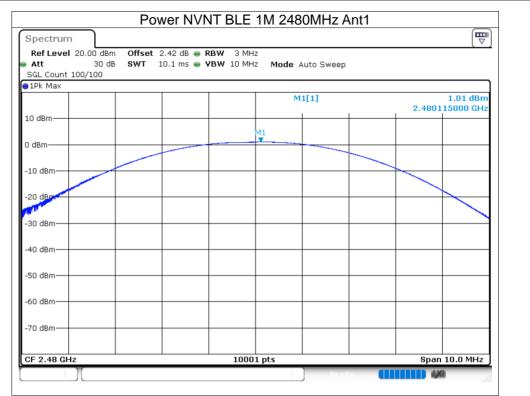
Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 1M	2402	Ant1	62.4	2.05	2.63
NVNT	BLE 1M	2440	Ant1	62.4	2.05	2.63
NVNT	BLE 1M	2480	Ant1	63.09	2	2.63



Report No.: S23111603501002

8.2 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	0.45	30	Pass
NVNT	BLE 1M	2440	Ant1	1.88	30	Pass
NVNT	BLE 1M	2480	Ant1	1.01	30	Pass

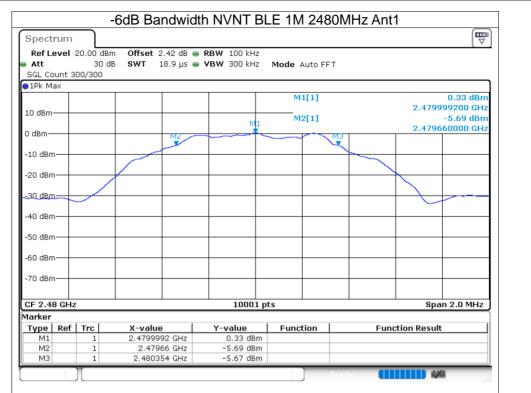


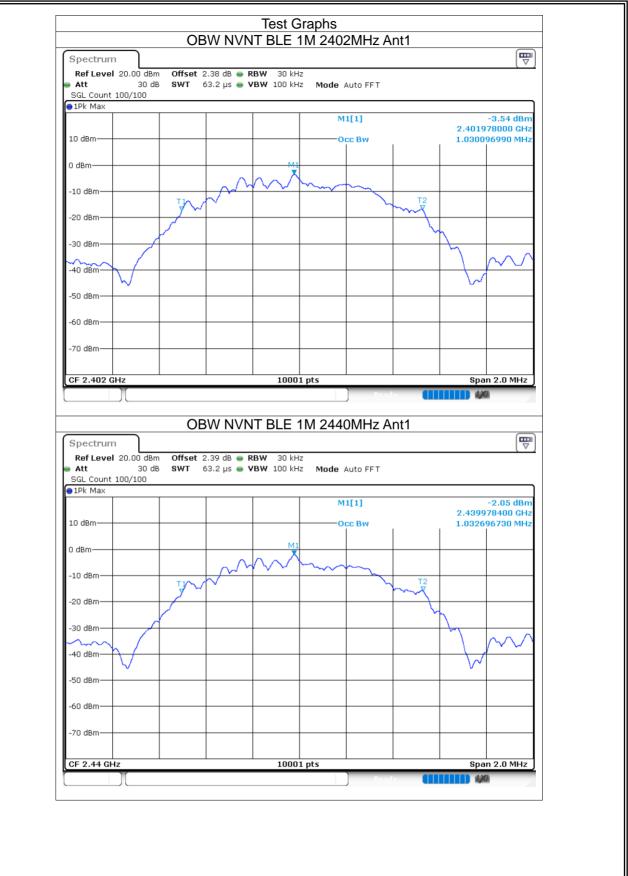
SGL Count 100/1	30 dB SWT	2.38 dB - RBW 3 10.1 ms - VBW 10		Auto Sweep			
1Pk Max			N	11[1]			0.45 dBm
10 dBm				-		2.4019	36000 GHz
0 dBm			M:				
-10 dBm							
-20 dBm							
-30 dBm							
-40 dBm			_				
-50 dBm							
-60 dBm							
-70 dBm							
CF 2.402 GHz		10	001 pts			Snar	10.0 MHz
Spectrum Ref Level 20.0 Att	0 dBm Offset 30 dB SWT	wer NVNT BL 2.39 dB • RBW 3 10.1 ms • VBW 10	E 1M 244				
Spectrum Ref Level 20.0 Att SGL Count 100/1	0 dBm Offset 30 dB SWT	wer NVNT BL	E 1M 244 MHz MHz Mode	Auto Sweep			
Spectrum Ref Level 20.0 Att SGL Count 100/1 1Pk Max	0 dBm Offset 30 dB SWT	wer NVNT BL	E 1M 244 MHz MHz Mode				
Spectrum Ref Level 20.0 Att SGL Count 100/1 1Pk Max 10 dBm	0 dBm Offset 30 dB SWT	wer NVNT BL 2.39 dB ● RBW 3 10.1 ms ● VBW 10	E 1M 244 MHz MHz Mode	Auto Sweep			
Spectrum Ref Level 20.0 Att SGL Count 100/1 1Pk Max 10 dBm 0 dBm	0 dBm Offset 30 dB SWT	wer NVNT BL 2.39 dB ● RBW 3 10.1 ms ● VBW 10	E 1M 244 MHz Mode	Auto Sweep			
Spectrum Ref Level 20.0 Att SGL Count 100/1 1Pk Max 10 dBm -10 dBm	0 dBm Offset 30 dB SWT	wer NVNT BL 2.39 dB ● RBW 3 10.1 ms ● VBW 10	E 1M 244 MHz Mode	Auto Sweep			
Spectrum Ref Level 20.0 Att SGL Count 100/1 1Pk Max 10 dBm -10 dBm	0 dBm Offset 30 dB SWT	wer NVNT BL 2.39 dB ● RBW 3 10.1 ms ● VBW 10	E 1M 244 MHz Mode	Auto Sweep			
Spectrum Ref Level 20.0 Att SGL Count 100/1 1Pk Max 10 dBm -10 dBm	0 dBm Offset 30 dB SWT	wer NVNT BL 2.39 dB ● RBW 3 10.1 ms ● VBW 10	E 1M 244 MHz Mode	Auto Sweep			
Spectrum Ref Level 20.0 Att SGL Count 100/1 1Pk Max 10 dBm -10 dBm -20 dBm	0 dBm Offset 30 dB SWT	wer NVNT BL 2.39 dB ● RBW 3 10.1 ms ● VBW 10	E 1M 244 MHz Mode	Auto Sweep			
Spectrum Ref Level 20.0 Att SGL Count 100/1 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm	0 dBm Offset 30 dB SWT	wer NVNT BL 2.39 dB ● RBW 3 10.1 ms ● VBW 10	E 1M 244 MHz Mode	Auto Sweep			
Spectrum Ref Level 20.0 Att SGL Count 100/1 JIPk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	0 dBm Offset 30 dB SWT	wer NVNT BL 2.39 dB ● RBW 3 10.1 ms ● VBW 10	E 1M 244 MHz Mode	Auto Sweep			
Spectrum Ref Level 20.0 Att SGL Count 100/1 IPk Max ID dBm O dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	0 dBm Offset 30 dB SWT	wer NVNT BL 2.39 dB ● RBW 3 10.1 ms ● VBW 10	E 1M 244 MHz Mode	Auto Sweep			
Spectrum Ref Level 20.0 Att SGL Count 100/1 JIPk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	0 dBm Offset 30 dB SWT	wer NVNT BL 2.39 dB ● RBW 3 10.1 ms ● VBW 10	E 1M 244 MHz Mode	Auto Sweep			
Spectrum Ref Level 20.0 Att SGL Count 100/1 DIPk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -60 dBm	0 dBm Offset 30 dB SWT	Wer NVNT BL	E 1M 244 MHz Mode	Auto Sweep		2.4398	1.88 dBm 26000 GHz

Report No.: S23111603501002

8.3 -6DB BANDWIDTH

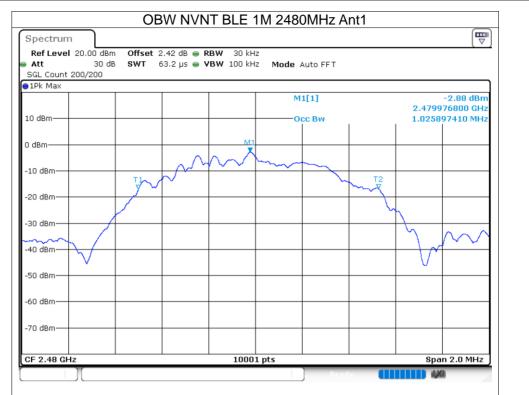
Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	0.714	0.5	Pass
NVNT	BLE 1M	2440	Ant1	0.71	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.694	0.5	Pass





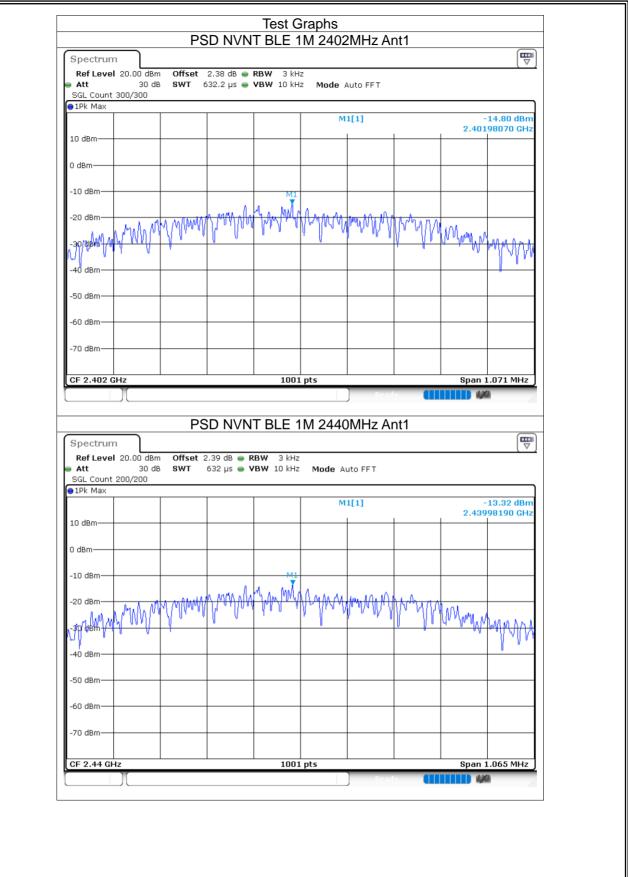
8.4 OCCUPIED CHANNEL BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.03
NVNT	BLE 1M	2440	Ant1	1.033
NVNT	BLE 1M	2480	Ant1	1.026



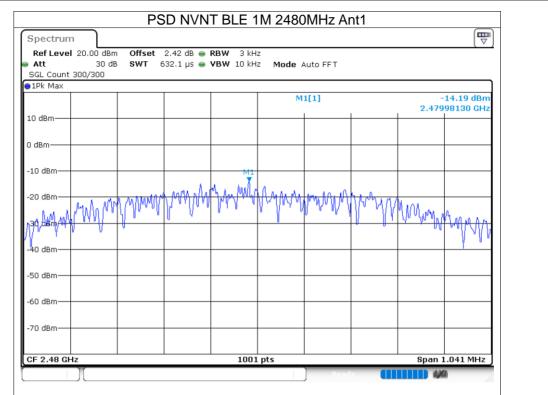
Version.1.3

Report No.: S23111603501002

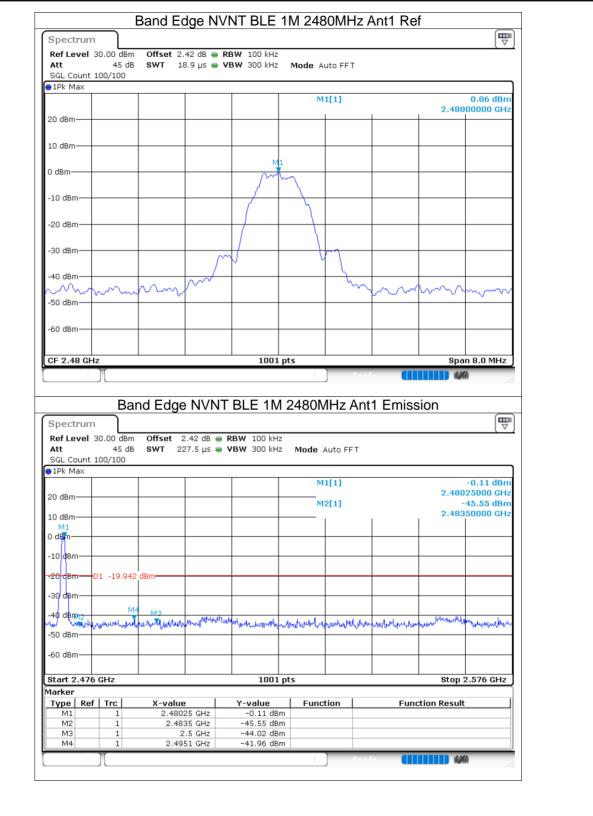


8.5 MAXIMUM POWER SPECTRAL DENSITY LEVEL

 		<u> </u>		<u>··</u>		
Condition	Mode	Frequency	Antenna	Conducted	Limit	Verdict
		(MHz)		PSD (dBm)	(dBm)	
NVNT	BLE 1M	2402	Ant1	-14.8	8	Pass
NVNT	BLE 1M	2440	Ant1	-13.32	8	Pass
NVNT	BLE 1M	2480	Ant1	-14.19	8	Pass

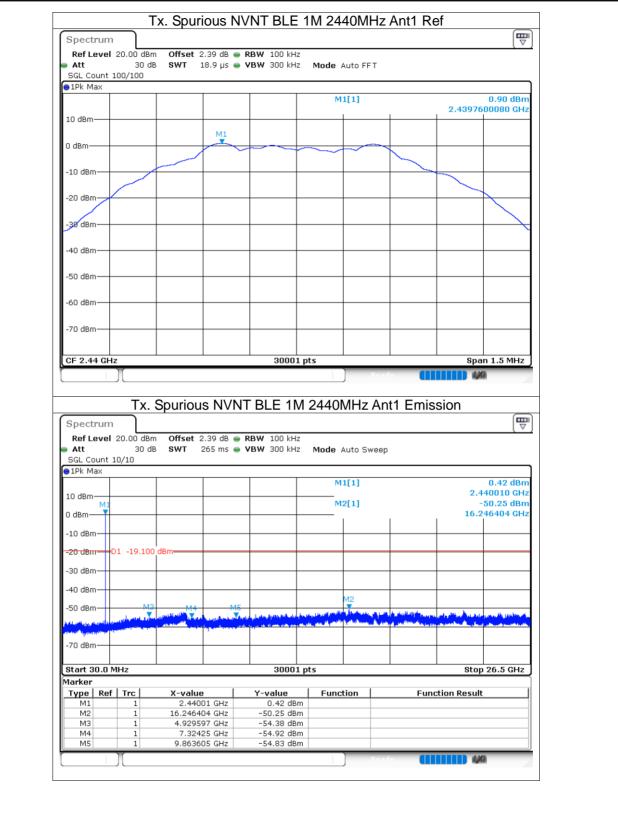


8.6 BAN	ND EDGE Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-49.78	-20	Pass
NVNT	BLE 1M	2480	Ant1	-42.02	-20	Pass



Spectrum		Band Ed							E)
Ref Level Att	20.00 dBm 35 dB	Offset 2.3 SWT 18.			Mode A	uto FFT			(*	-
SGL Count 1Pk Max	100/100									1
TER MIGA					м	1[1]			-0.28 dBm	
10 dBm								2.402	00000 GHz	
0 dBm				M	1					
-10 dBm										
-20 dBm										
-30 dBm										
			M	./		7				
-40 dBm						6				1
-50 dBm			√			1 m	mar			
-60 dBm	~~~							www.	~~~~·	
-70 dBm										
CF 2.402 G				1001	pts		•	Spa	n 8.0 MHz	1
][nd Edae	NVNT) Read	t1 Emiss	ion		2
Spectrum)[Bar	nd Edge		BLE 1M	2402N) Pear /IHz Ant	1 Emiss	sion)
Spectrum Ref Level Att	Bar Bar 20.00 dBm 35 dB	offset 2.3 swT 227	38 dB 😑 🛛	BLE 1M	2402N		te 🚺	sion]
Spectrum Ref Level Att SGL Count	Bar Bar 20.00 dBm 35 dB	Offset 2.3	38 dB 😑 🛛	BLE 1M	2402N		t1 Emiss	sion]
Spectrum Ref Level Att SGL Count	Bar Bar 20.00 dBm 35 dB	Offset 2.3	38 dB 😑 🛛	BLE 1M	2402N 2 2 2 3 3 3 3 3 3		1 Emiss		-0.33 dBm]
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm	Bar Bar 20.00 dBm 35 dB	Offset 2.3	38 dB 😑 🛛	BLE 1M	2402N Mode /	Auto FFT	1 Emiss	2.401	-0.33 dBm 95000 GHz 53.80 dBm	
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm	Bar Bar 20.00 dBm 35 dB	Offset 2.3	38 dB 😑 🛛	BLE 1M	2402N Mode /	Auto FFT	t Emiss	2.401	-0.33 dBm 95000 GHz	
Spectrum Ref Level Att SGL Count SGL Count IPk Max	Bar Bar 20.00 dBm 35 dB	Offset 2.3	38 dB 😑 🛛	BLE 1M	2402N Mode /	Auto FFT	t1 Emiss	2.401	-0.33 dBm 95000 GHz 53.80 dBm	
Spectrum Ref Level Att SGL Count JPk Max 10 dBm 0 dBm -10 dBm	Bar Bar 20.00 dBm 35 dB	Offset 2. SWT 227	38 dB 😑 🛛	BLE 1M	2402N Mode /	Auto FFT	1 Emiss	2.401	-0.33 dBm 95000 GHz 53.80 dBm	
Spectrum Ref Level Att SGL Count) IPk Max 10 dBm 	Bar 20.00 dBm 35 dB 100/100	Offset 2. SWT 227	38 dB 😑 🛛	BLE 1M	2402N Mode /	Auto FFT		2.401	-0.33 dBm 95000 GHz 53.80 dBm	
Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Bar 20.00 dBm 35 dB 100/100	Offset 2. SWT 227	38 dB • F	BLE 1M	2402N Mode /	Auto FFT	t1 Emiss	2.401	-0.33 dBm 95000 GHz 53.80 dBm	
Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm -30 dBm -40 dBm	Bar 20.00 dBm 35 dB 100/100	Offset 2.: SWT 227	38 dB ● R .5 µs ● V	BLE 1M	2402N	Auto FFT 1[1] 2[1]		2.401 - 2.400	-0.33 dBm 95000 GHz 53.80 dBm 00000 GHz	
Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	Bar 20.00 dBm 35 dB 100/100	Offset 2.: SWT 227	38 dB ● R .5 µs ● V	BLE 1M	2402N	Auto FFT		2.401 - 2.400	-0.33 dBm 95000 GHz 53.80 dBm 00000 GHz	
Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm	Bar 20.00 dBm 35 dB 100/100	Offset 2.: SWT 227	38 dB ● R .5 µs ● V	BLE 1M	2402N	Auto FFT 1[1] 2[1]		2.401 - 2.400	-0.33 dBm 95000 GHz 53.80 dBm 00000 GHz	
Spectrum Ref Level Att SGL Count) 1Pk Max 10 dBm 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -70 dBm	Bai 20.00 dBm 35 dB 100/100	Offset 2.: SWT 227	38 dB ● R .5 µs ● V	BLE 1M	Mode / Mode / M	Auto FFT 1[1] 2[1]		2.401 - 2.400 	-0.33 dBm 95000 GHz 53.80 dBm 00000 GHz	
Spectrum Ref Level Att SGL Count IPK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm	Bar 20.00 dBm 35 dB 100/100 D1 -20.279	Offset 2.3 SWT 227	38 dB ● R .5 µs ● V	BLE 1M	Mode / Mode / M	Auto FFT 1[1] 2[1]	Autor Autor A	2.401 - 2.400 	-0.33 dBm 95000 GHz 53.80 dBm 00000 GHz	
Spectrum Ref Level Att SGL Count 9 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm	Bar 20.00 dBm 35 dB 100/100 D1 -20.279	Offset 2.: SWT 227	38 dB • Р	BLE 1M	2402N	Auto FFT 1[1] 2[1]	Autor Autor A	2.401 - 2.400 	-0.33 dBm 95000 GHz 53.80 dBm 00000 GHz	
Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 d	Bai 20.00 dBm 35 dB 100/100 D1 -20.279 Undurration 5 GHz f Trc 1 1	Offset 2.3 SWT 227	38 dB • • • • .5 µs • • И И 4 ули и и 4 GHz	BLE 1M	2402N	Auto FFT 1[1] 2[1]	Autor Autor A	2.401 - 2.400 	-0.33 dBm 95000 GHz 53.80 dBm 00000 GHz	
Spectrum Ref Level Att SGL Count IPk Max IO dBm 	Bai 20.00 dBm 35 dB 100/100 D1 -20.279	Offset 2.3 SWT 227	38 dB ● R 5 µs ● V M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	BLE 1M	2402N Mode / M M m M Func n n n	Auto FFT 1[1] 2[1]	Autor Autor A	2.401 - 2.400 	-0.33 dBm 95000 GHz 53.80 dBm 00000 GHz	

8.7 CON	DUCTE	D RF Spuriou	s Emiss	ION		
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-50.68	-20	Pass
NVNT	BLE 1M	2440	Ant1	-51.15	-20	Pass
NVNT	BLE 1M	2480	Ant1	-50.82	-20	Pass



Spectrum							
Ref Level 20 Att SGL Count 300	30 dB		B 👄 RBW 100 kHz s 👄 VBW 300 kHz	Mode Auto FFT			
⊜1Pk Max							
				M1[1]		2.40199	-0.23 dBm 994500 GHz
10 dBm						+	<u> </u>
			M1				
0 dBm				~~~~			
-10 dBm							
-20 dBm							
-30 dBm							
-SQUBIII							
-40 dBm							
-50 dBm						1	
-60 dBm							
-70 dBm							┼───┨│
Spectrum			30001 p	R	eady 🚺 Ant1 Emis		m 1.5 MHz)
Spectrum Ref Level 20 Att	1.00 dBm 30 dB	Offset 2.38 di		2402MHz /			
Spectrum Ref Level 20 Att SGL Count 10/	1.00 dBm 30 dB	Offset 2.38 di		2402MHz /			
Spectrum Ref Level 20 Att SGL Count 10/	1.00 dBm 30 dB	Offset 2.38 di		2402MHz /		ssion	
Spectrum Ref Level 20 Att SGL Count 10/ 1Pk Max	1.00 dBm 30 dB	Offset 2.38 di		2402MHz / Mode Auto Swa 		ssion 2.4	-1.39 dBm ₩2070 GHz
Spectrum Ref Level 20 Att SGL Count 10/ 1Pk Max 10 dBm	1.00 dBm 30 dB	Offset 2.38 di		2402MHz / Mode Auto Swe		ssion 2	
Spectrum Ref Level 20 Att SGL Count 10/ PIPk Max 10 dBm 0 dBm	1.00 dBm 30 dB	Offset 2.38 di		2402MHz / Mode Auto Swa 		ssion 2	-1.39 dBm H02070 GHz -50.91 dBm
Spectrum Ref Level 20 Att SGL Count 10/ 1Pk Max 10 dBm -10 dBm -10 dBm	30 dBm 30 dB	Offset 2.38 dl SWT 265 m		2402MHz / Mode Auto Swa 		ssion 2	-1.39 dBm H02070 GHz -50.91 dBm
Spectrum Ref Level 20 Att SGL Count 10/ 1Pk Max 10 dBm -10 dBm -10 dBm 20 dBm D1	1.00 dBm 30 dB	Offset 2.38 dl SWT 265 m		2402MHz / Mode Auto Swa 		ssion 2	-1.39 dBm H02070 GHz -50.91 dBm
Spectrum Ref Level 20 Att SGL Count 10/ SGL Count 10/ 10/ ID dBm 10 dBm -10 dBm -10 dBm -20 dBm D1 -30 dBm	30 dBm 30 dB	Offset 2.38 dl SWT 265 m		2402MHz / Mode Auto Swa 		ssion 2	-1.39 dBm H02070 GHz -50.91 dBm
Spectrum Ref Level 20 Att SGL Count 10/ 1Pk Max 10 dBm 10 dBm -10 dBm -10 dBm -20 dBm -10 dBm -40 dBm	30 dBm 30 dB	Offset 2.38 dl SWT 265 m	VNT BLE 1M	2402MHz / Mode Auto Swa 		ssion 2	-1.39 dBm H02070 GHz -50.91 dBm
Spectrum Ref Level 20 Att SGL Count 10/ SGL Count 10/ 10/ ID dBm 10 dBm -10 dBm -10 dBm -20 dBm D1 -30 dBm	30 dBm 30 dB	Offset 2.38 dl SWT 265 m		2402MHz / Mode Auto Swa M1[1] M2[1]		ssion 2	-1.39 dBm H02070 GHz -50.91 dBm
Spectrum Ref Level 20 Att SGL Count 10/ 1Pk Max 10 dBm 10 dBm -10 dBm -10 dBm -20 dBm -10 dBm -40 dBm	-20.232 c	Offset 2.38 dl SWT 265 m	VNT BLE 1M	Mode Auto Swe		ssion 2	-1.39 dBm H02070 GHz -50.91 dBm
Att SGL Count 10/ 1Pk Max 10 dBm 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	-20.232 c	Offset 2.38 dl SWT 265 m	VNT BLE 1M	2402MHz / Mode Auto Swa M1[1] M2[1]		ssion 2	-1.39 dBm H02070 GHz -50.91 dBm
Spectrum Ref Level 20 Att SGL Count 10/ SGL Count 10/ 10/ 10 dBm 0 dBm 0 -10 dBm 0 dBm 0 -30 dBm -01 -30 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm	-20,232 c	Offset 2.38 dl SWT 265 m	VNT BLE 1M	2402MHz / Mode Auto Swe M1[1] M2[1]		2 6.5	-1.39 dBm 402070 GHz 50.91 dBm 955434 GHz
Spectrum Ref Level 20 Att SGL Count 10/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -70 dBm SG dBm SG dBm	-20,232 c	Offset 2.38 dl SWT 265 m	VNT BLE 1M	2402MHz / Mode Auto Swe M1[1] M2[1]		2 6.5	-1.39 dBm H02070 GHz -50.91 dBm
Spectrum Ref Level 20 Att SGL Count 10/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -70 dBm Start 30.0 MH Marker Type Ref	-20.232 c	Offset 2.38 dl SWT 265 m	VNT BLE 1M B RBW 100 kHz s VBW 300 kHz	2402MHz / Mode Auto Swe M1[1] M2[1]		2 6.5	-1.39 dBm ₩2070 GHz 50.91 dBm ₩255434 GHz
Spectrum Ref Level 20 Att SGL Count 10/ 1Pk Max 10 dBm 10 dBm -10 dBm -10 dBm -20 dBm -20 dBm -50 dBm -70 dBm Start 30.0 MH	-20.232 c	Offset 2.38 dl SWT 265 m	VNT BLE 1M	Mode Auto Swa Mode Auto Swa M1[1] M2[1]		2 6.5	-1.39 dBm ₩2070 GHz 50.91 dBm ₩255434 GHz
Spectrum Ref Level 20 Att SGL Count 10/// SGL Count 10// 10// 10 dBm - - 10 dBm - - -10 dBm - - -20 dBm D1 - -30 dBm - - -40 dBm - - -70 dBm - - Start 30.0 MH - M1 - M2 M3 - -	-20.232 c	Offset 2.38 dl SWT 265 m	WNT BLE 1M B RBW 100 kHz S VBW 300 kHz	Mode Auto Swa Mode Auto Swa M1[1] M2[1]		2 6.5	-1.39 dBm ₩2070 GHz 50.91 dBm ₩255434 GHz
Spectrum Ref Level 20 Att SGL Count 10/ 1Pk Max 10 dBm 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -70 dBm Start 30.0 MH Marker Type Ref 1 M2	-20.232 c	Offset 2.38 dl SWT 265 m	VNT BLE 1M	Mode Auto Swa Mode Auto Swa M1[1] M2[1]		2 6.5	-1.39 dBm ₩2070 GHz 50.91 dBm ₩255434 GHz
Spectrum Ref Level 20 Att SGL Count 10/ 1Pk Max 10 dBm 10 10 dBm - - 10 -10 dBm - - 10 -20 dBm D1 - - - -30 dBm - - - - -40 dBm - - - - - -70 dBm -	-20.232 c	Offset 2.38 dl SWT 265 m Image: SWT 260 m	VNT BLE 1M	Mode Auto Swa Mode Auto Swa M1[1] M2[1]		2 6.5	-1.39 dBm ₩2070 GHz 50.91 dBm ₩255434 GHz

