

RADIO TEST REPORT FCC ID: ZSW-30-122

Product: Mobile Phone Trade Mark: Bmobile Model No.: BL52 Family Model: BL52 Pro Report No.: S22082500101001 Issue Date: Sep 22. 2022

Prepared for

b mobile HK Limited

Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak Street; Kwai Chung; New Territories; Hong Kong, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

1	TE	ST RESULT CERTIFICATION	3
2	SUI	MMARY OF TEST RESULTS	4
3	FA	CILITIES AND ACCREDITATIONS	5
	.1	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS	
-	.2 .3	MEASUREMENT UNCERTAINTY	
4	GE	NERAL DESCRIPTION OF EUT	6
5	DE	SCRIPTION OF TEST MODES	8
6	SET	FUP OF EQUIPMENT UNDER TEST	9
6	.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
0	.2	SUPPORT EQUIPMENT	
6	.3	EQUIPMENTS LIST FOR ALL TEST ITEMS	
7	TE	ST REQUIREMENTS	
7	.1	CONDUCTED EMISSIONS TEST	
	.2	RADIATED SPURIOUS EMISSION	
	.3	NUMBER OF HOPPING CHANNEL	
	.4	HOPPING CHANNEL SEPARATION MEASUREMENT	
	.5 .6	AVERAGE TIME OF OCCUPANCY (DWELL TIME) 20DB BANDWIDTH TEST	
	.6 .7	PEAK OUTPUT POWER	
	.7	CONDUCTED BAND EDGE MEASUREMENT	
	.8	SPURIOUS RF CONDUCTED EMISSION	
	.10	ANTENNA APPLICATION	
	.11	FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	
8		ST RESULTS	
	.1	DWELL TIME	
-	.1 .2	DWELL TIME	
-	.2 .3	OCCUPIED CHANNEL BANDWIDTH	
-	.3 .4	CARRIER FREQUENCIES SEPARATION	
	. - .5	NUMBER OF HOPPING CHANNEL	
-	.6	BAND EDGE	
	.7	CONDUCTED RF SPURIOUS EMISSION	

1 TEST RESULT CERTIFICATION

Applicant's name:	b mobile HK Limited
Address:	Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak Street; Kwai Chung; New Territories; Hong Kong, China
Manufacturer's Name:	b mobile HK Limited
Address:	Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak Street; Kwai Chung; New Territories; Hong Kong, China
Product description	
Test Sample Number:	S220825001003
Product name:	Mobile Phone
Model and/or type reference:	BL52
Family Model:	BL52 Pro

Measurement Procedure Used:

APPLICABLE STANDARDS		
STANDARD/ TEST PROCEDURE	TEST RESULT	
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test

Aug 26. 2022 ~ Sep 21, 2022

Nen bin

(Allen Liu)

Testing Engineer

Authorized Signatory

(Alex Li)

FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

 "N/A" denotes test is not applicable in this Test Report.
All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
-	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	Mobile Phone	
Trade Mark	Bmobile	
FCC ID	ZSW-30-122	
Model No.	BL52	
Family Model	BL52 Pro	
Model Difference	All models are the same circuit and RF module, except the model name.	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK, π/4-DQPSK, 8-DPSK	
Number of Channels	79 Channels	
Antenna Type	PIFA Antenna	
Antenna Gain	0.9dBi	
Adapter	INPUT: AC 100-240V~50-60Hz 0.15A OUTPUT: DC 5.0V500mA	
Battery	DC 3.8V, 2000mAh	
Power supply	DC 3.8V from battery or DC 5V from Adapter.	
HW Version	Bmobile_BL52_HW_V2.0	
SW Version	Bmobile_BL52_TIGO_LATAM_V001	

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Revision History			
Report No.	Version	Description	Issued Date
S22082500101001	Rev.01	Initial issue of report	Sep 22. 2022

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

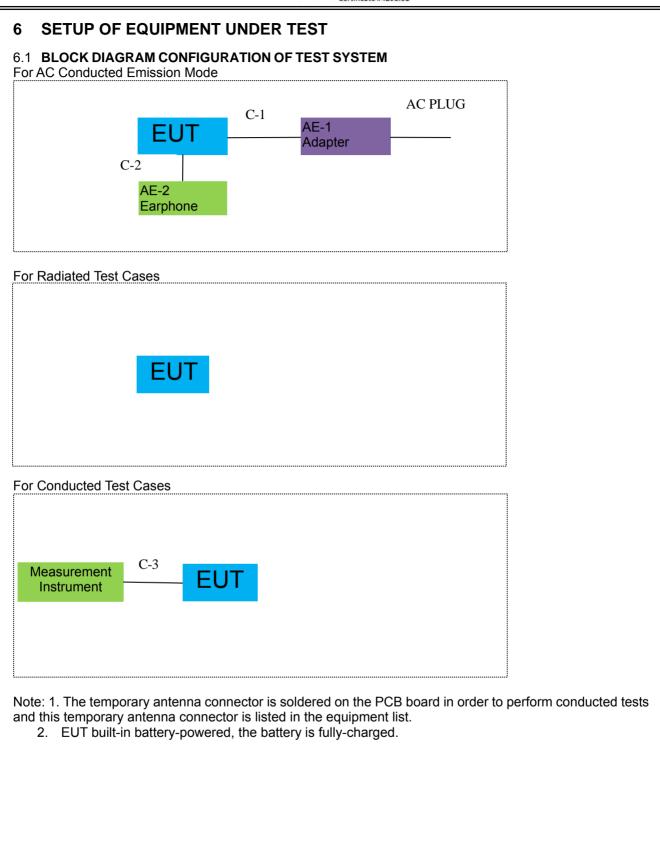
Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission		
Final Test Mode	Description	
Mode 1 normal link mode		

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases	
Final Test Mode	Description
Mode 1	normal link mode
Mode 2	CH00(2402MHz)
Mode 3	CH39(2441MHz)
Mode 4	CH78(2480MHz)


Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases		
Final Test Mode	Description	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	
Mode 5	Hopping mode	

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	N/A	Peripherals
AE-2	Earphone	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	0.9m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		estequipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.06	2023.04.05	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.04.06	2023.04.05	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.04.06	2023.04.05	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2021.11.07	2022.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2022.06.17	2023.06.16	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.11.07	2022.11.06	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2021.11.07	2022.11.06	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2020.05.11	2023.05.10	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2020.05.11	2023.05.10	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2020.05.11	2023.05.10	3 year
16	Filter	TRILTHIC	2400MHz	29	2021.11.07	2022.11.06	1 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2022.04.06	2023.04.05	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

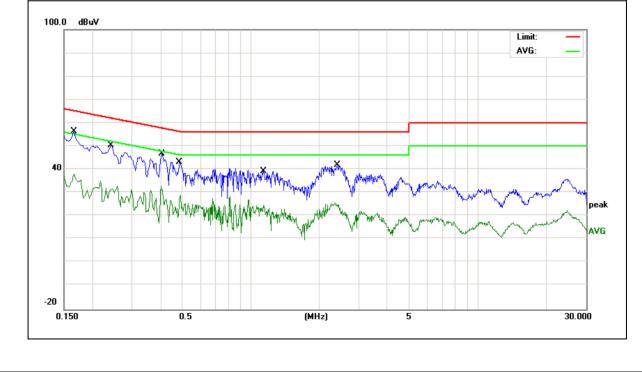
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.5 Test Results

Pass

7.1.6 Test Results

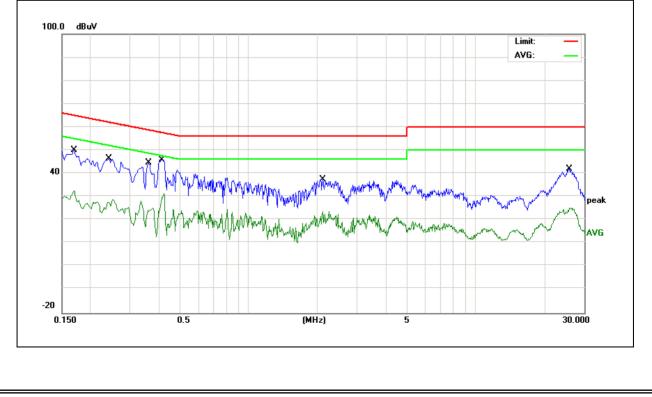

EUT:	Mobile Phone	Model Name :	BL52
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1660	46.77	9.61	56.38	65.15	-8.77	QP
0.1660	36.41	9.61	46.02	55.15	-9.13	AVG
0.2419	40.73	9.63	50.36	62.03	-11.67	QP
0.2419	30.70	9.63	40.33	52.03	-11.70	AVG
0.4060	37.03	9.66	46.69	57.73	-11.04	QP
0.4060	26.59	9.66	36.25	47.73	-11.48	AVG
0.4859	33.42	9.66	43.08	56.24	-13.16	QP
0.4859	23.36	9.66	33.02	46.24	-13.22	AVG
1.1379	29.63	9.68	39.31	56.00	-16.69	QP
1.1379	19.47	9.68	29.15	46.00	-16.85	AVG
2.4060	32.12	9.70	41.82	56.00	-14.18	QP
2.4060	21.32	9.70	31.02	46.00	-14.98	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	Mobile Phone	Model Name :	BL52
Temperature:	25 ℃	Relative Humidity:	62%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demente
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1700	40.48	9.65	50.13	64.96	-14.83	QP
0.1700	30.50	9.65	40.15	54.96	-14.81	AVG
0.2419	36.79	9.62	46.41	62.03	-15.62	QP
0.2419	26.63	9.62	36.25	52.03	-15.78	AVG
0.3619	34.92	9.66	44.58	58.68	-14.10	QP
0.3619	24.49	9.66	34.15	48.68	-14.53	AVG
0.4139	36.28	9.67	45.95	57.57	-11.62	QP
0.4139	25.66	9.67	35.33	47.57	-12.24	AVG
2.1179	27.72	9.67	37.39	56.00	-18.61	QP
2.1179	17.38	9.67	27.05	46.00	-18.95	AVG
25.8380	31.85	10.22	42.07	60.00	-17.93	QP
25.8380	21.93	10.22	32.15	50.00	-17.85	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 OC 1 art 13.203, restricted bands				
MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(2)	
13.36-13.41				

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV	/m) (at 3M)
Frequency(MHz)	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
For Frequency 9kHz~30MHz:

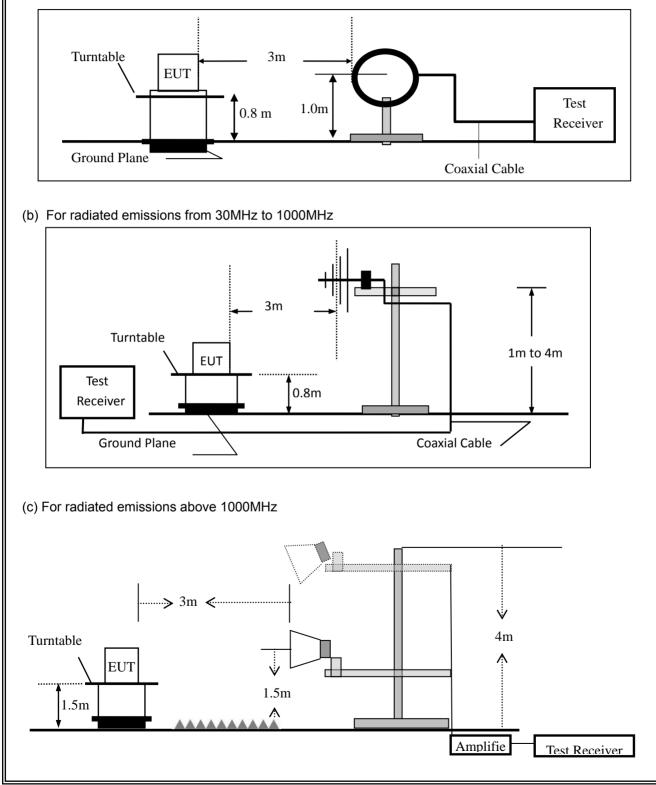
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission t	ouring the radiated emission test, the Spectrum Analyzer was set with the following configurations:								
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth						
30 to 1000	QP	120 kHz	300 kHz						
About 1000	Peak	1 MHz	1 MHz						
Above 1000	Average	1 MHz	1 MHz						

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

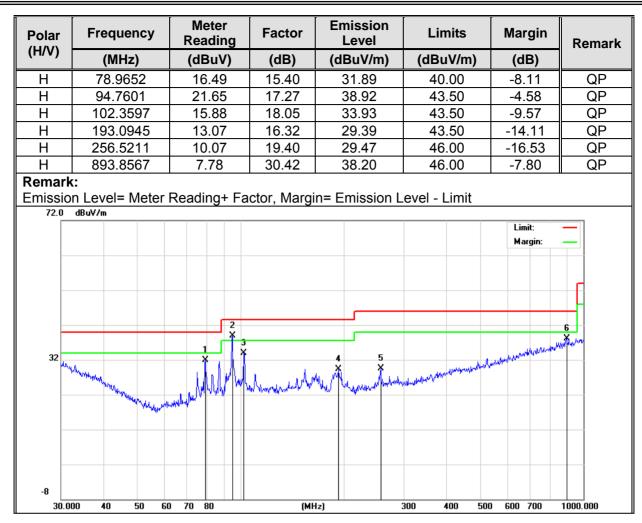
EUT:	Mobile Phone	Model No.:	BL52
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Emission Level(dBuV/m) Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below: EUT: Mobile Phone Model Name : **BL52 25°**℃ Relative Humidity: 55% Temperature: Test Mode: Pressure: 1010hPa Mode 1 DC 3.8V Test Voltage :

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	31.1798	6.35	25.65	32.00	40.00	-8.00	QP
V	38.8878	14.84	21.38	36.22	40.00	-3.78	QP
V	87.1116	20.77	16.23	37.00	40.00	-3.00	QP
V	94.4283	21.80	17.27	39.07	43.50	-4.43	QP
V	102.3597	20.29	18.05	38.34	43.50	-5.16	QP
V	189.7384	15.31	16.18	31.49	43.50	-12.01	QP


Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

NTEK 北测[®]

Spurious E			Hz (1GHz i		,	יום	50		
EUT:				Model		BL			
emperature:	perature: 20 ℃			Relativ	Relative Humidity: 48%				
est Mode:		2/Mode3/		Test By			en Liu		
Il the modulation modes have been tested, and the worst result was report as below:									
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m) (dB)		
			Low Chanr	nel (2402 M	Hz)(GFSK)/	Above 1G			
4804.214	64.16	5.21	35.59	44.30	60.66	74.00	-13.34	Pk	Vertical
4804.214	41.41	5.21	35.59	44.30	37.91	54.00	-16.09	AV	Vertical
7206.265	60.74	6.48	36.27	44.60	58.89	74.00	-15.11	Pk	Vertical
7206.265	45.13	6.48	36.27	44.60	43.28	54.00	-10.72	AV	Vertical
4804.109	61.52	5.21	35.55	44.30	57.98	74.00	-16.02	Pk	Horizontal
4804.109	43.61	5.21	35.55	44.30	40.07	54.00	-13.93	AV	Horizontal
7206.224	63.18	6.48	36.27	44.52	61.41	74.00	-12.59	Pk	Horizontal
7206.224	47.29	6.48	36.27	44.52	45.52	54.00	-8.48	AV	Horizontal
			Mid Chanr	iel (2441 MI	Hz)(GFSK)A	Above 1G			1
4882.396	63.45	5.21	35.66	44.20	60.12	74.00	-13.88	Pk	Vertical
4882.396	42.74	5.21	35.66	44.20	39.41	54.00	-14.59	AV	Vertical
7323.241	61.22	7.10	36.50	44.43	60.39	74.00	-13.61	Pk	Vertical
7323.241	48.11	7.10	36.50	44.43	47.28	54.00	-6.72	AV	Vertical
4882.108	61.55	5.21	35.66	44.20	58.22	74.00	-15.78	Pk	Horizontal
4882.108	49.57	5.21	35.66	44.20	46.24	54.00	-7.76	AV	Horizontal
7323.132	60.75	7.10	36.50	44.43	59.92	74.00	-14.08	Pk	Horizontal
7323.132	43.06	7.10	36.50	44.43	42.23	54.00	-11.77	AV	Horizontal
			High Chanr	nel (2480 MI	Hz)(GFSK)	Above 1G			
4960.397	66.36	5.21	35.52	44.21	62.88	74.00	-11.12	Pk	Vertical
4960.397	42.70	5.21	35.52	44.21	39.22	54.00	-14.78	AV	Vertical
7440.201	62.43	7.10	36.53	44.60	61.46	74.00	-12.54	Pk	Vertical
7440.201	46.29	7.10	36.53	44.60	45.32	54.00	-8.68	AV	Vertical
4960.225	67.65	5.21	35.52	44.21	64.17	74.00	-9.83	Pk	Horizontal
4960.225	47.00	5.21	35.52	44.21	43.52	54.00	-10.48	AV	Horizontal
7440.298	60.70	7.10	36.53	44.60	59.73	74.00	-14.27	Pk	Horizontal
7440.298	46.00	7.10	36.53	44.60	45.03	54.00	-8.97	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

	Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz									
ΕU	T:	Mobile Phone				No.:	BL5	2		
Те	mperature:	20 ℃			Relative	Relative Humidity:		48%		
Те	st Mode:	Mode2/ Mo	ode4		Test By	<i>'</i> :	Alle	n Liu		
AI	If the modulation modes have been tested, and the worst result was report as below:									
	Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
				1M	lbps(GFSK)	-Non-hoppin	g			
	2310.00	57.73	2.97	27.80	43.80	44.70	74	-29.30	Pk	Horizontal
	2310.00	44.41	2.97	27.80	43.80	31.38	54	-22.62	AV	Horizontal
	2310.00	60.08	2.97	27.80	43.80	47.05	74	-26.95	Pk	Vertical
	2310.00	42.24	2.97	27.80	43.80	29.21	54	-24.79	AV	Vertical
	2390.00	58.39	3.14	27.21	43.80	44.94	74	-29.06	Pk	Vertical
	2390.00	42.92	3.14	27.21	43.80	29.47	54	-24.53	AV	Vertical
	2390.00	58.03	3.14	27.21	43.80	44.58	74	-29.42	Pk	Horizontal
	2390.00	42.24	3.14	27.21	43.80	28.79	54	-25.21	AV	Horizontal
	2483.50	58.92	3.58	27.70	44.00	46.20	74	-27.80	Pk	Vertical
	2483.50	44.16	3.58	27.70	44.00	31.44	54	-22.56	AV	Vertical
	2483.50	60.51	3.58	27.70	44.00	47.79	74	-26.21	Pk	Horizontal
	2483.50	42.39	3.58	27.70	44.00	29.67	54	-24.33	AV	Horizontal
					1Mbps(GFS	K)-hopping				
	2310.00	50.54	2.97	27.80	43.80	37.51	74.00	-36.49	Pk	Vertical
	2310.00	40.23	2.97	27.80	43.80	27.20	54.00	-26.80	AV	Vertical
	2310.00	50.02	2.97	27.80	43.80	36.99	74.00	-37.01	Pk	Horizontal
	2310.00	41.19	2.97	27.80	43.80	28.16	54.00	-25.84	AV	Horizontal
	2390.00	51.06	3.14	27.21	43.80	37.61	74.00	-36.39	Pk	Vertical
	2390.00	44.05	3.14	27.21	43.80	30.60	54.00	-23.40	AV	Vertical
	2390.00	53.70	3.14	27.21	43.80	40.25	74.00	-33.75	Pk	Horizontal
	2390.00	42.04	3.14	27.21	43.80	28.59	54.00	-25.41	AV	Horizontal
	2483.50	54.44	3.58	27.70	44.00	41.72	74.00	-32.28	Pk	Vertical
	2483.50	42.93	3.58	27.70	44.00	30.21	54.00	-23.79	AV	Vertical
	2483.50	52.10	3.58	27.70	44.00	39.38	74.00	-34.62	Pk	Horizontal
	2483.50	44.79	3.58	27.70	44.00	32.07	54.00	-21.93	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

EUT:	Mobil	Mobile Phone			No.:		BL52			
Femperature:	20 ℃			Relativ	e Humidity	/:	48%			
Fest Mode:	Mode	2/ Mode4		Test By	/:		Allen	Liu		
All the modul	ation mode	s have be	en tested	, and the	worst resu	ılt wa	as rep	ort as bel	ow:	
Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Liı	mits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dB	uV/m)	(dB)	Туре	
3260	60.70	4.04	29.57	44.70	49.61		74	-24.39	Pk	Vertical
3260	57.61	4.04	29.57	44.70	46.52	Į	54	-7.48	AV	Vertical
3260	61.95	4.04	29.57	44.70	50.86		74	-23.14	Pk	Horizontal
3260	58.20	4.04	29.57	44.70	47.11	į	54	-6.89	AV	Horizontal
3332	65.15	4.26	29.87	44.40	54.88		74	-19.12	Pk	Vertical
3332	53.57	4.26	29.87	44.40	43.30	į	54	-10.70	AV	Vertical
3332	62.90	4.26	29.87	44.40	52.63	-	74	-21.37	Pk	Horizontal
3332	53.59	4.26	29.87	44.40	43.32	ę	54	-10.68	AV	Horizontal
17797	44.04	10.99	43.95	43.50	55.48	-	74	-18.52	Pk	Vertical
17797	33.21	10.99	43.95	43.50	44.65	Ę	54	-9.35	AV	Vertical
17788	45.17	11.81	43.69	44.60	56.07	-	74	-17.93	Pk	Horizontal
17788	32.65	11.81	43.69	44.60	43.55	į	54	-10.45	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Mobile Phone	Model No.:	BL52
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Allen Liu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	Mobile Phone	Model No.:	BL52
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 **Test Results**

EUT:	Mobile Phone	Model No.:	BL52
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Mobile Phone	Model No.:	BL52
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 **PEAK OUTPUT POWER**

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW \geq the 20 dB bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Mobile Phone	Model No.:	BL52
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

- RBW = 100KHz
- VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Mobile Phone	Model No.:	BL52
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Allen Liu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PIFA antenna (Gain: 0.9dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

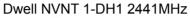
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each: centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

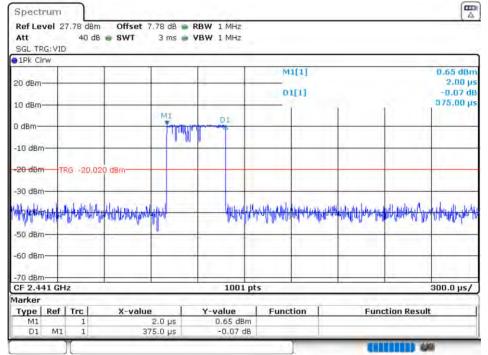
This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

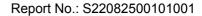
7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

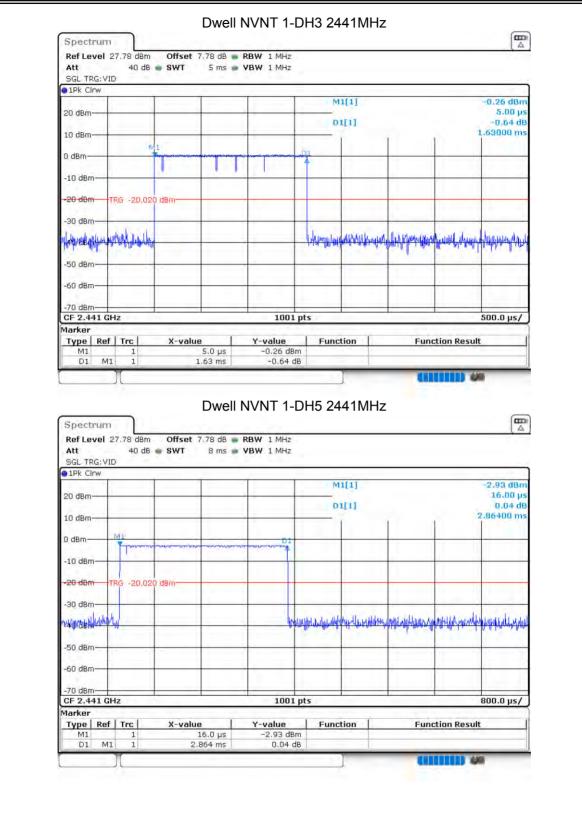


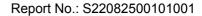


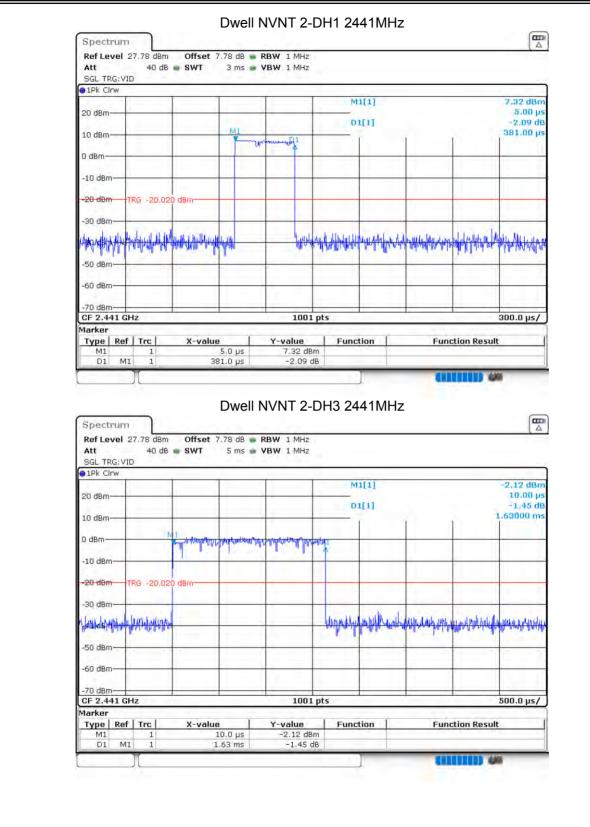

8 TEST RESULTS

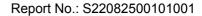
8.1 DWELL TIME

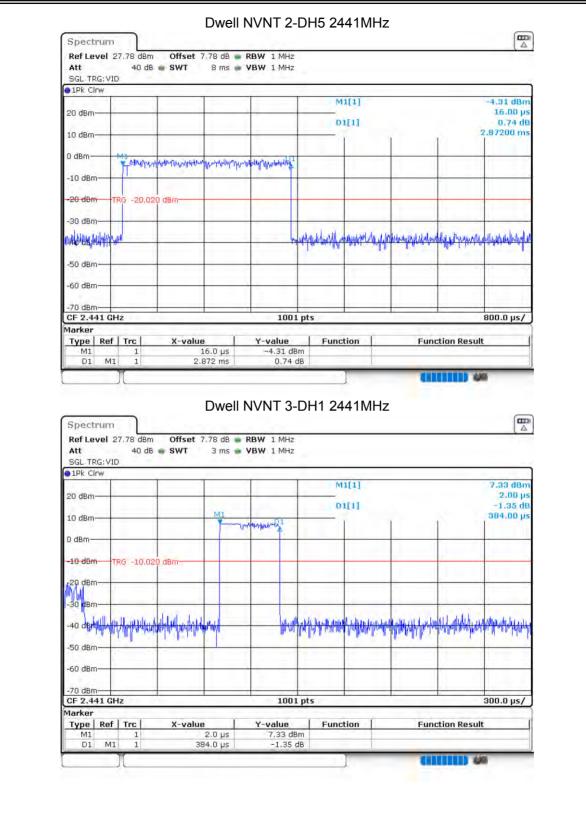
Condition	Mode	Frequency	Pulse Time	Total Dwell	Period Time	Limit	Verdict
		(MHz)	(ms)	Time (ms)	(ms)	(ms)	
NVNT	1-DH1	2441	0.375	120	31600	400	Pass
NVNT	1-DH3	2441	1.63	260.8	31600	400	Pass
NVNT	1-DH5	2441	2.864	305.493	31600	400	Pass
NVNT	2-DH1	2441	0.381	121.92	31600	400	Pass
NVNT	2-DH3	2441	1.63	260.8	31600	400	Pass
NVNT	2-DH5	2441	2.872	306.347	31600	400	Pass
NVNT	3-DH1	2441	0.384	122.88	31600	400	Pass
NVNT	3-DH3	2441	1.62	259.2	31600	400	Pass
NVNT	3-DH5	2441	2.88	307.2	31600	400	Pass

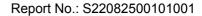


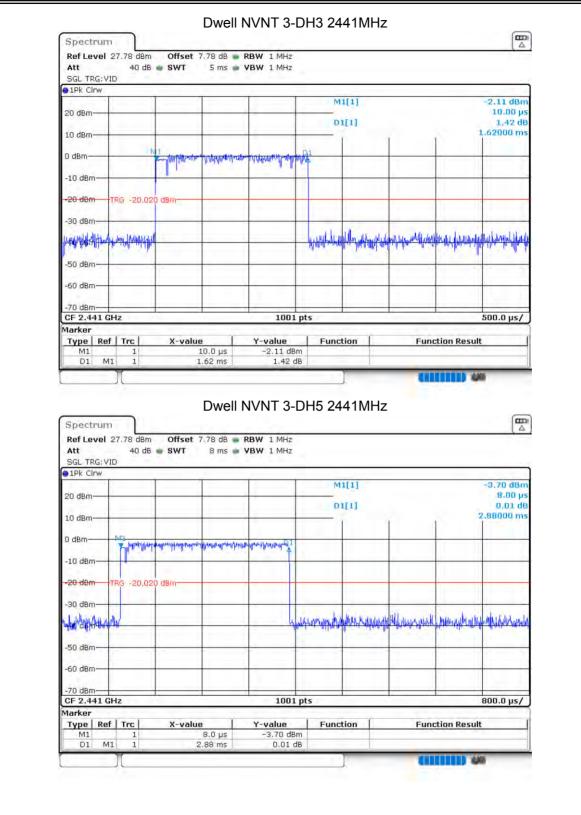


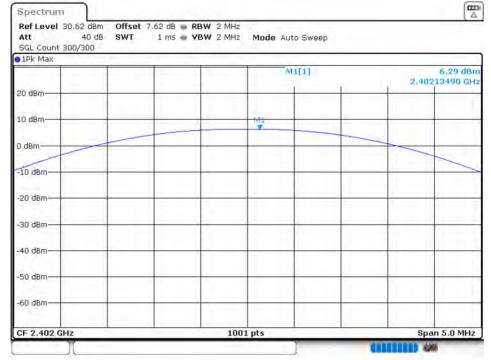




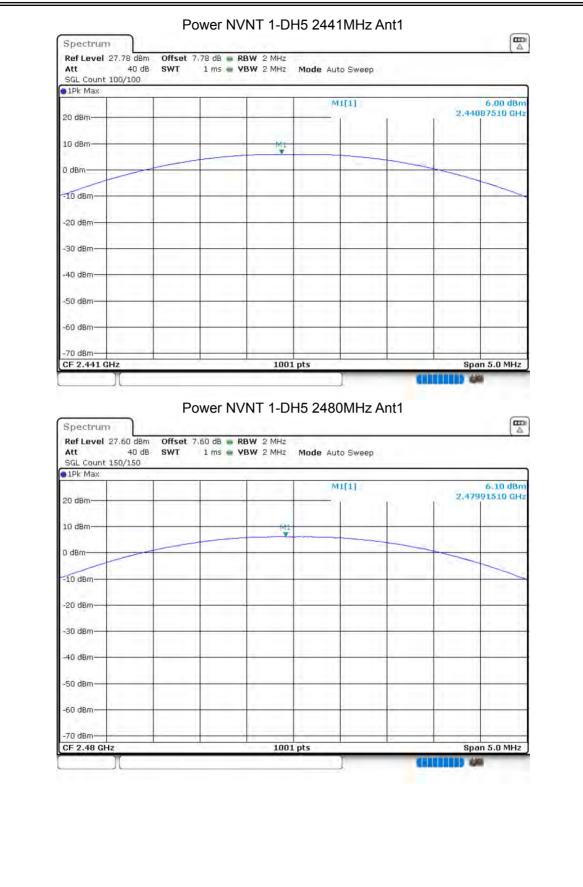




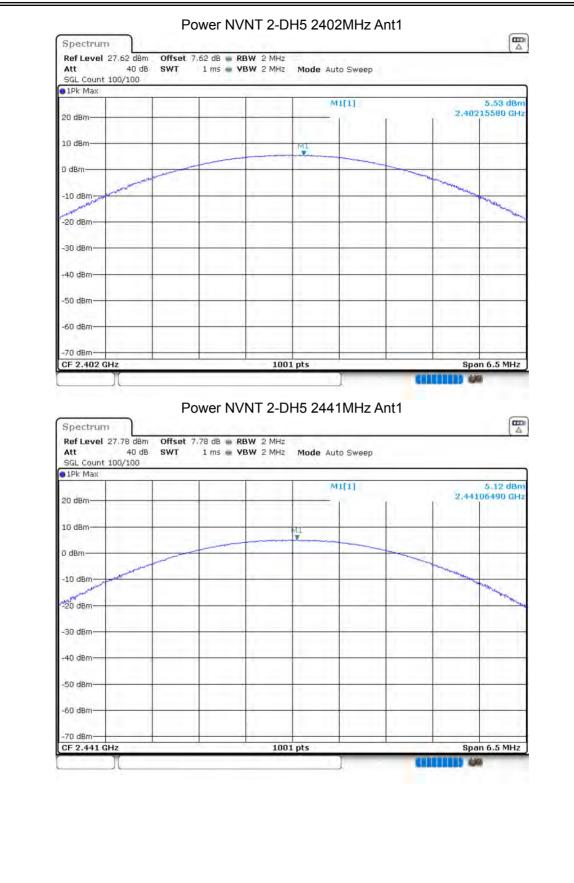


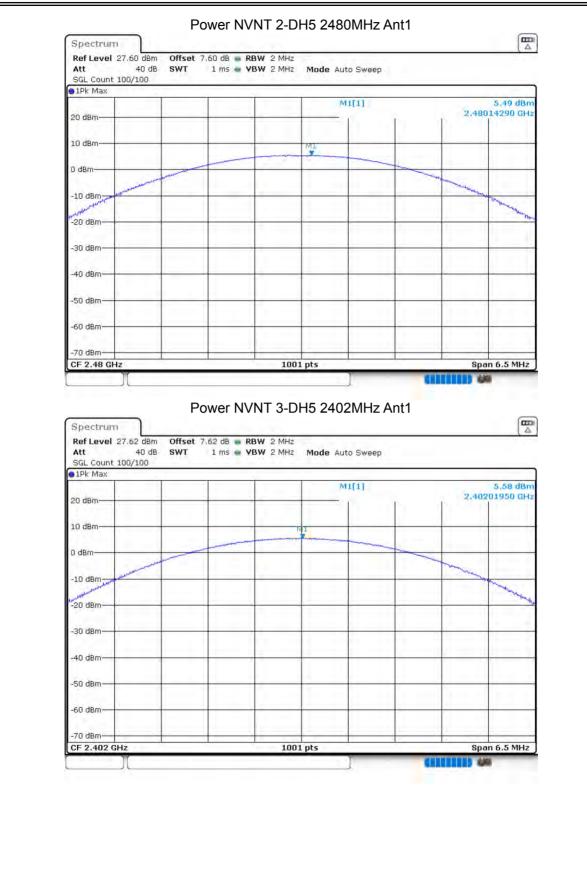


8.2 MAXIMUM CONDUCTED OUTPUT POWER

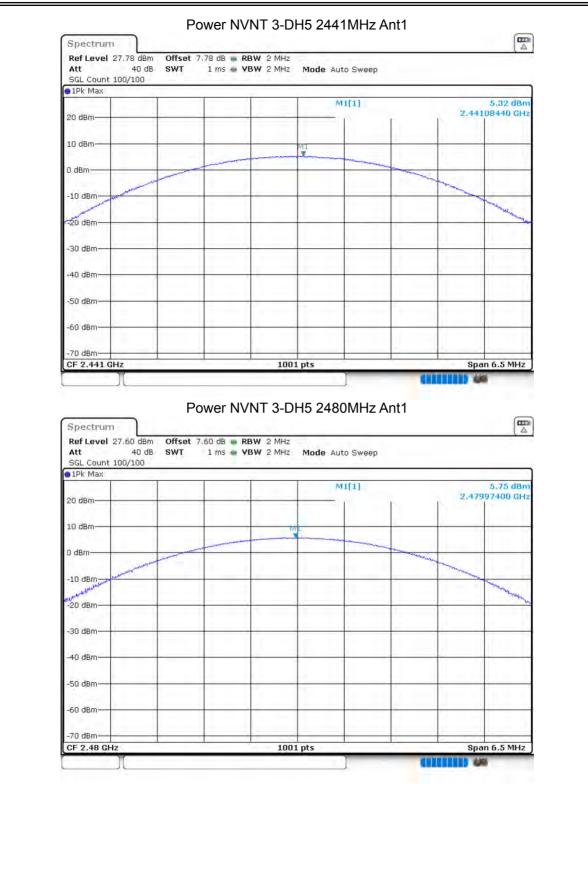

0.2 100 0 011			011-11			
Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	6.289	30	Pass
NVNT	1-DH5	2441	Ant 1	6.004	30	Pass
NVNT	1-DH5	2480	Ant 1	6.103	30	Pass
NVNT	2-DH5	2402	Ant 1	5.525	21	Pass
NVNT	2-DH5	2441	Ant 1	5.122	21	Pass
NVNT	2-DH5	2480	Ant 1	5.488	21	Pass
NVNT	3-DH5	2402	Ant 1	5.579	21	Pass
NVNT	3-DH5	2441	Ant 1	5.324	21	Pass
NVNT	3-DH5	2480	Ant 1	5.748	21	Pass

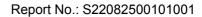
Power NVNT 1-DH5 2402MHz Ant1





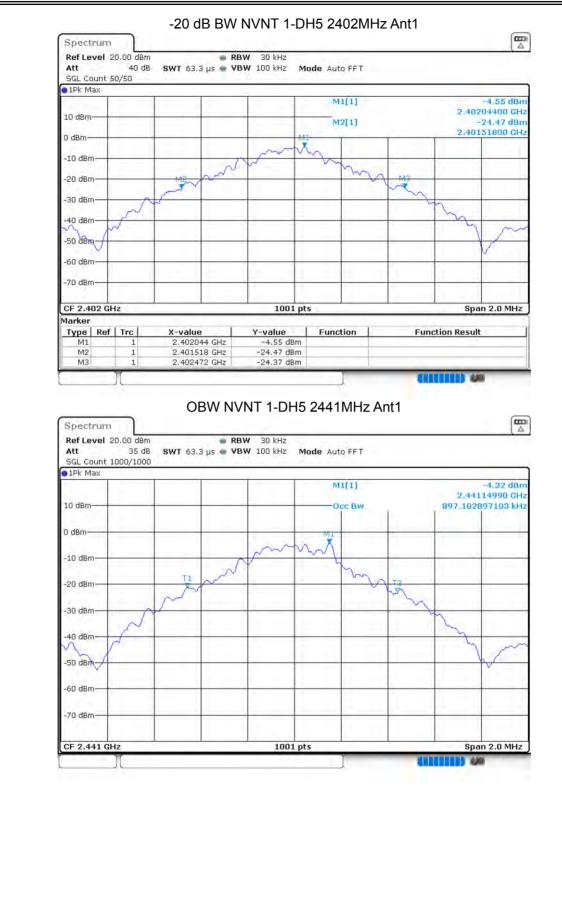
Version.1.3

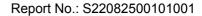


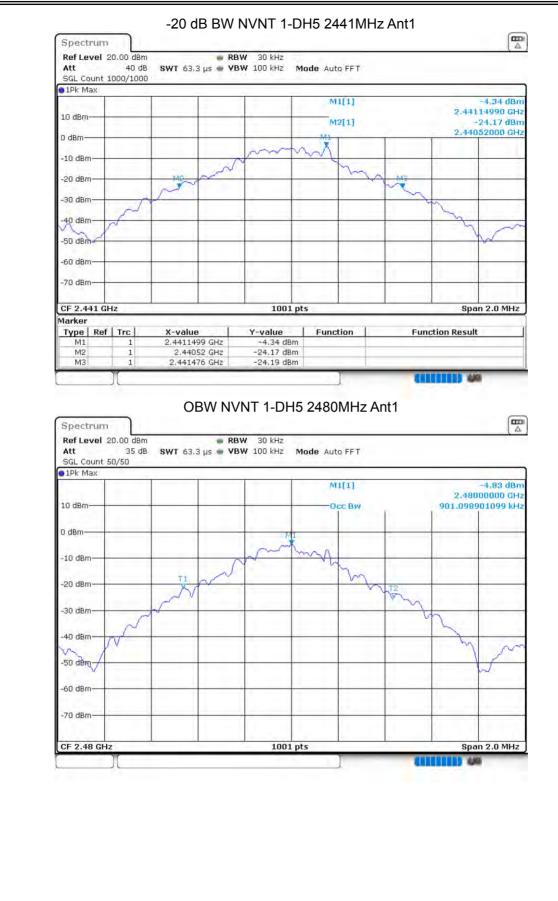


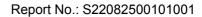
8.3 OCCUPIED CHANNEL BANDWIDTH

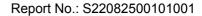
0.3 0000			11			
Condition	Mode	Frequency	Antenna	99% OBW	-20 dB Bandwidth	Verdict
		(MHz)		(MHz)	(MHz)	
NVNT	1-DH5	2402	Ant 1	0.9011	0.954	Pass
NVNT	1-DH5	2441	Ant 1	0.8971	0.956	Pass
NVNT	1-DH5	2480	Ant 1	0.9011	0.97	Pass
NVNT	2-DH5	2402	Ant 1	1.1788	1.29	Pass
NVNT	2-DH5	2441	Ant 1	1.1728	1.28	Pass
NVNT	2-DH5	2480	Ant 1	1.1808	1.302	Pass
NVNT	3-DH5	2402	Ant 1	1.1888	1.286	Pass
NVNT	3-DH5	2441	Ant 1	1.1768	1.282	Pass
NVNT	3-DH5	2480	Ant 1	1.1868	1.298	Pass

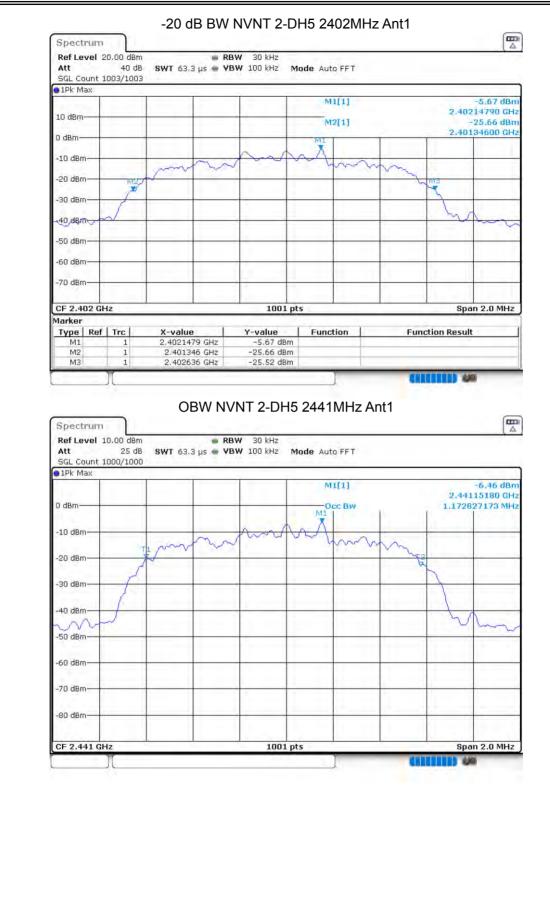

OBW NVNT 1-DH5 2402MHz Ant1

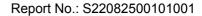


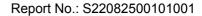


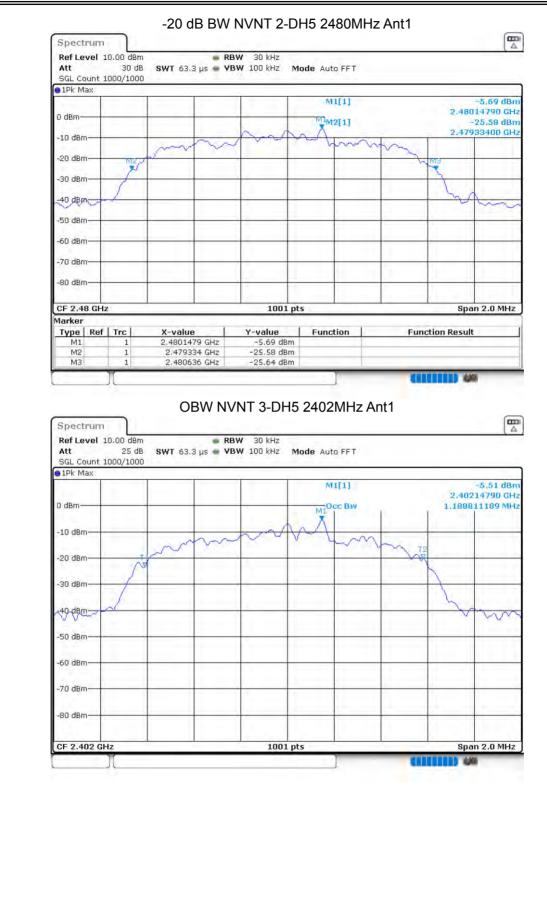


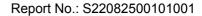


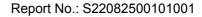


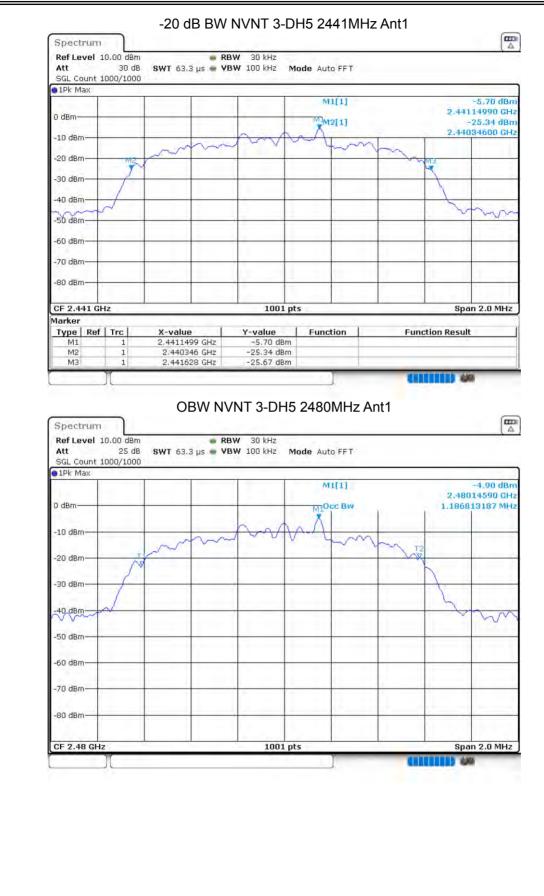


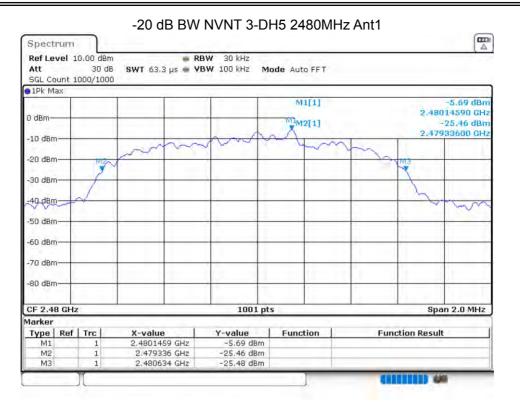












Version.1.3

8.4 CARRIER FREQUENCIES SEPARATION Condition Mode Hopping Freq1 Hopping Freq2 HFS Limit Verdict (MHz) (MHz) (MHz) (MHz) NVNT 1-DH5 2402.044 2403.043 0.954 0.999 Pass NVNT 1-DH5 2441.149 2442.151 1.002 0.956 Pass NVNT 1-DH5 2479.044 2480.043 0.999 0.97 Pass NVNT 2-DH5 2402.005 2403.148 1.143 0.86 Pass NVNT 2-DH5 2441.149 2442.154 1.005 0.853 Pass **NVNT** 2478.996 2-DH5 2479.998 1.002 0.868 Pass **NVNT** 3-DH5 2401.999 2403.001 1.002 0.865 Pass NVNT 3-DH5 2441.152 2442.151 0.999 0.855 Pass NVNT 3-DH5 2479.146 2480.148 0.865 Pass 1.002

CFS NVNT 1-DH5 2402MHz Spectrum Ref Level 27.62 dBm Offset 7.62 dB 💼 RBW 30 kHz 40 dB 63,2 µs 🕳 YBW 100 kHz Att SWT Mode Auto FFT 01Pk Max M1[1] 3.14 dBn 2.40204400 GHz 20 dBm M2[1] 3.13 dBn 2.40304300 GH 10 dBm MI M2 0 dBm 5 -10 dBm n -20 dBm -30 dBm 40 dBr -50 dBm -60 dBm -70 dBm Span 3.0 MHz CF 2.4025 GHz 1001 pts Marker Type | Ref | Trc X-value Function **Function Result** Y-value

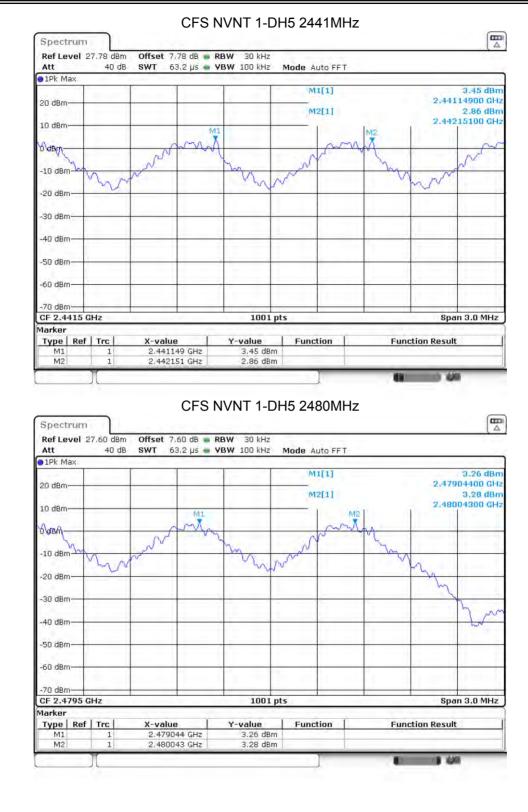
3.14 dBm

3.13 dBm

61 D 444

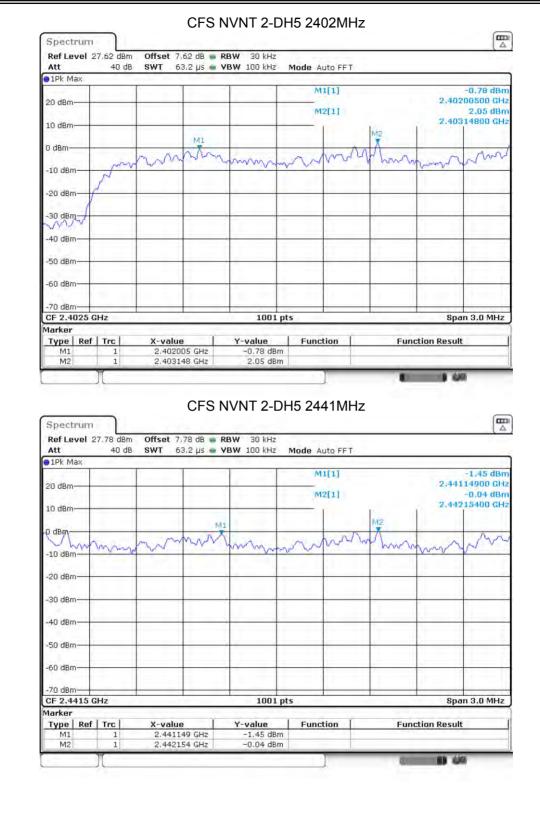
2.402044 GHz

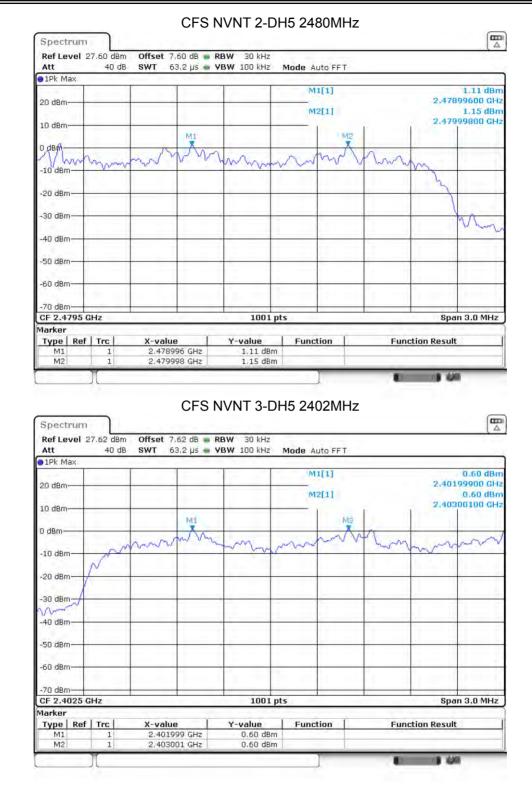
2.403043 GHz

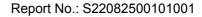

M1

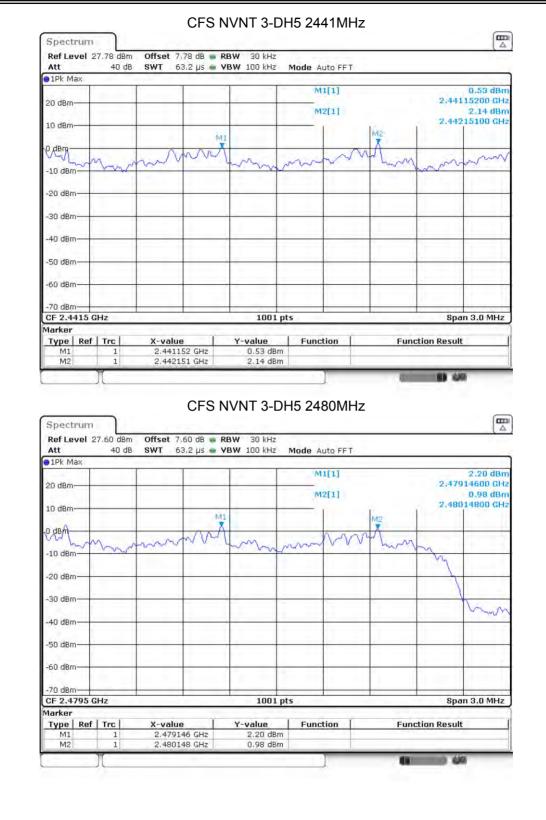
M2

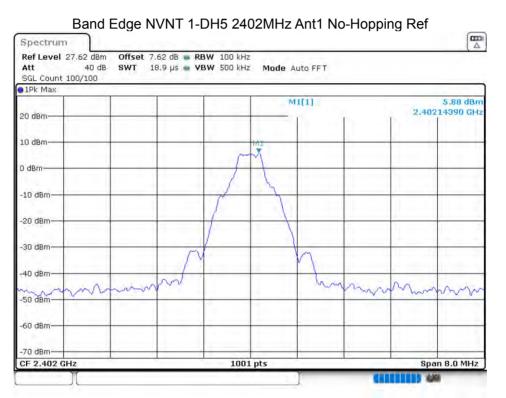
1











NUMB	ER OF HOPPING CHANNEL Mode Hopping Number Limit Verdict
IVNT	1-DH5 79 15 Pass
	Hopping No. NVNT 1-DH5 2402MHz
	Spectrum
	Ref Level 27.62 dBm Offset 7.62 dB 🖷 RBW 100 kHz
	Att 40 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep SGL Count 7000/7000
	●1Pk Max
	20 dBm 2.4018370 GHz
	M2[1] 5.71 dBm 10ldBm 2.480076@gH2
	DEBLOTANDANDANDANANANANANANANANANANANANANANAN
	. SAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
	-10 dBm
	-20 dBm
	-20 dBm
	-40 dBm
	M Contraction of the Contraction
	-50 dBm
	-60 dBm
	-70 dBm
	Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker
	Type Ref Trc X-value Y-value Function Function Result
	M1 1 2.401837 GHz 5.74 dBm M2 1 2.4800765 GHz 5.71 dBm

8.6 BANDEDGE

8.6 BAND	EDGE						
Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH5	2402	Ant 1	No-Hopping	-46.4	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-46.93	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-46.96	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-47.7	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-45.99	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-44.68	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-47.15	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-45.63	-20	Pass
NVNT	3-DH5	2402	Ant 1	No-Hopping	-45.67	-20	Pass
NVNT	3-DH5	2402	Ant 1	Hopping	-44.46	-20	Pass
NVNT	3-DH5	2480	Ant 1	No-Hopping	-48.37	-20	Pass
NVNT	3-DH5	2480	Ant 1	Hopping	-47.34	-20	Pass

Att SGL Count 1Pk Max	27.62 dBm 40 dB 100/100			RBW 100 kHz /BW 500 kHz		uto FFT			
20 dBm			1		M1	[1]		2.40	5.63 dBm 195000 GHz
10 dBm			1		M2	[1]			-45.06 dBm 0000000sHz
0 dBm				-			1		
-10 dBm	25.000					1	-	1	
-20 dBm	D1 -14,117	dBm		_					
-30 dBm									
-40 dBm	land and a	1.41.1.5	. And real	M4		a mar		M3	MS
-50 dBm-	Antoin Mousin	orbitwingstratte	and my property of	quitartural	recorded most server	randouryphone	milneumblie	hologoogooglada	marying with
-60 dBm									
-70 dBm						1			
Start 2.30 Narker	6 GHZ			1001	pts	1		Stop	2.406 GHz
Type Re		X-value	95 GHz	Y-value 5.63 dBn		on	Func	tion Resul	t
M1 M2	1	2	2.4 GHz	-45.06 dBn					
M2 M3 M4 B		2 2. 2.3 ge(Hop) Offset 7	2.4 GHz 39 GHz 52 GHz Ding) N	-45.06 dBn -46.56 dBn -40.52 dBn /NT 1-DI BW 100 kHz BW 100 kHz	-15 2402		ant1 Hop	pping R	ef
M2 M3 M4 B Spectrun Ref Level Att	and Edg	2 2. 2.3 ge(Hop) Offset 7	2.4 GHz 39 GHz 52 GHz Ding) N	-46.55 dBn -40.52 dBn /NT 1-DI BW 100 kHz	H5 2402 Mode Aut	to FFT	Ant1 Hop	oping R	
M2 M3 M4 Spectrun Ref Level Att SGL Count	1 1 1 27.62 dBm 40 dB	2 2. 2.3 ge(Hop) Offset 7	2.4 GHz 39 GHz 52 GHz Ding) N	-46.55 dBn -40.52 dBn /NT 1-DI BW 100 kHz	-15 2402	to FFT	ant1 Hop		m
M2 M3 M4 B Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm-	1 1 1 27.62 dBm 40 dB	2 2. 2.3 ge(Hop) Offset 7	2.4 GHz 39 GHz 52 GHz Ding) N	-46.55 dBn -40.52 dBn /NT 1-DI BW 100 kHz	H5 2402 Mode Aut	to FFT	ant1 Hop		6,18 dBm
M2 M3 M4 B Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm-	1 1 1 27.62 dBm 40 dB	2 2. 2.3 ge(Hop) Offset 7	2.4 GHz 39 GHz 52 GHz Ding) N	-46.55 dBn -40.52 dBn /NT 1-DI BW 100 kHz	H5 2402 Mode Aut	to FFT	ant1 Hop		6,18 dBm
M2 M3 M4 B Spectrun Ref Level Att SGL Count	1 1 1 27.62 dBm 40 dB	2 2. 2.3 ge(Hop) Offset 7	2.4 GHz 39 GHz 52 GHz Ding) N	-46.55 dBn -40.52 dBn /NT 1-DI BW 100 kHz	H5 2402 Mode Aut	to FFT			6,18 dBm
M2 M3 M4 B Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	1 1 1 27.62 dBm 40 dB	2 2. 2.3 ge(Hop) Offset 7	2.4 GHz 39 GHz 52 GHz Ding) N	-46.55 dBm -40.52 dBm /NT 1-DI BW 100 kHz	H5 2402 Mode Aut	to FFT	ant1 Hop		6,18 dBm
M2 M3 M4 B Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	1 1 1 27.62 dBm 40 dB	2 2. 2.3 ge(Hop) Offset 7	2.4 GHz 39 GHz 52 GHz Ding) N	-46.55 dBm -40.52 dBm /NT 1-DI BW 100 kHz	H5 2402 Mode Aut	to FFT			6,18 dBm
M2 M3 M4 Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	1 1 1 27.62 dBm 40 dB	2 2. 2.3 ge(Hop) Offset 7	2.4 GHz 39 GHz 52 GHz Ding) N	-46.55 dBm -40.52 dBm /NT 1-DI BW 100 kHz	H5 2402 Mode Aut	to FFT			6,18 dBm
M2 M3 M4 Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm-	1 1 1 27.62 dBm 40 dB	2 2. 2.3 ge(Hop) Offset 7	2.4 GHz 39 GHz 52 GHz Ding) N	-46.55 dBm -40.52 dBm /NT 1-DI BW 100 kHz	H5 2402 Mode Aut	to FFT			6,18 dBm
M2 M3 M4 B Spectrun Ref Level Att SGL Count 10 dBm	1 1 1 27.62 dBm 40 dB	2 2. 2.3 ge(Hop) Offset 7	2.4 GHz 39 GHz 52 GHz Ding) N	-46.55 dBm -40.52 dBm /NT 1-DI BW 100 kHz	H5 2402 Mode Aut	to FFT			6,18 dBm
M2 M3 M4 Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	1 1 1 27.62 dBm 40 dB	2 2. 2.3 ge(Hop) Offset 7	2.4 GHz 39 GHz 52 GHz Ding) N	-46.55 dBm -40.52 dBm /NT 1-DI BW 100 kHz	H5 2402 Mode Aut	to FFT			6,18 dBm
M2 M3 M4 B Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	1 1 1 27.62 dBm 40 dB	2 2. 2.3 ge(Hop) Offset 7	2.4 GHz 39 GHz 52 GHz Ding) N	-46.55 dBm -40.52 dBm /NT 1-DI BW 100 kHz	H5 2402 Mode Aut	to FFT			6,18 dBm
M2 M3 M4 B Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 1 1 27.62 dBm 40 dB	2 2. 2.3 ge(Hop) Offset 7	2.4 GHz 39 GHz 52 GHz Ding) N	-46.55 dBm -40.52 dBm /NT 1-DI BW 100 kHz	H5 2402 Mode Aut	to FFT			6,18 dBm
M2 M3 M4 B Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	1 1 1 27.52 dBm 40 dB 8000/8000	2 2. 2.3 ge(Hop) Offset 7	2.4 GHz 39 GHz 52 GHz Ding) N	-46.55 dBm -40.52 dBm /NT 1-DI BW 100 kHz	Mode Aut	to FFT		2.40	6,18 dBm

20 dBm M1[1] 5.33 20 dBm 2.4040500 10 dBm 2.400000 0.dBm 2.400000 0.dBm 2.400000 -10 dBm 2.400000 -20 dBm -20 dBm -20 dBm -40 dBm -30 dBm -40 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -60 dBm -70 dBm -70 dBm -80 dBm -70 dBm -90 dBm -90 dBm -91 dBm -91 dBm -92 dBm -91 dBm -93 dBm -91 dBm -90	1Pk Max	40 700/700			VBW 300 kHz					
10 dBm M2[1] 2-450.00 0 dBm 2.400000 -20 dBm -13.836 dBm -14.44 -20 dBm -13.836 dBm -14.44 -20 dBm -14.44 -14.44 -30 dBm -14.44 -14.44 -40 dBm -14.44 -14.44 -40 dBm -14.44 -14.44 -40 dBm -14.44 -14.44 -50 dBm -14.44 -14.44 -60 dBm -14.44 -14.44 -60 dBm -14.44 -14.44 -50 dBm -14.44 -14.44 -60 dBm -14.44 -14.44 -70 dBm -14.44 -14.44 -11 2.440405 GHz -5.30 dBm Function Result M3 1 2.3505 GHz -45.00 dBm -140.76 dBm M4 1 2.3505 GHz -40.76 dBm -140.76 dBm Stot<						M1	[1]			5.30 dBn
0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -50 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -11 2.40405 GHz Stop 2.4066 Marker Type Ref Trc X-value M1 1 2.40405 GHz 5.30 dBm M3 1 2.40405 GHz -5.30 dBm M3 1 2.3505 GHz -45.00 dBm M4 1 2.3505 GHz -45.00 dBm M4 1 2.3505 GHz -40.76 dBm -50 dB					1.2	M2	[1]			-45.00 dBn
-10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -50 dBm -70			1					<u> </u>	2.40	
C1 -13.816 dBm M4 -20 dBm -30 dBm -40 dBm -40 dBm -30 dBm -40 dBm -40 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm Marker -74 dAds GHz 5.30 dBm -70 dBm M1 1 2.4 GHz -45.00 dBm -70 dBm M3 1 2.360 GHz -45.07 dBm -40.76 dBm M4 1 2.3505 GHz -40.76 dBm -40.76 dBm M4 1 2.3505 GHz -40.76 dBm -40.76 dBm Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Mode Auto FFT SGL Count 100/100 -70 dBm -70 dBm -70 dBm -70 dBm 0 dBm -70 dBm -710 dBm -710 dBm -710 dBm			1							
-30 dBm		01 -13,8	16 dBm							1.40
40 dBm M4					1			·	1	
50 dBm -60 dBm		2 2		- III			1.271			
-60 dBm -70 dBm Stort 2.306 GHz 1001 pts Storp 2.406 Marker Y-value Function Function Result M1 1 2.4 0405 GHz 5.30 dBm Function Result M2 1 2.4 0405 GHz 5.30 dBm Function Result M3 1 2.387 GHz -45.07 dBm Function Result M4 1 2.387 GHz -45.17 dBm Function Result M4 1 2.3505 GHz -40.76 dBm Function Result Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Auto FFT SGL Count 100/100 SWT 18.9 µS YBW 300 kHz Mode Auto FFT 5.72 20 dBm Max M1[1] 5.72 2.4798242 10 dBm Max M1[1] 5.72 3.73 -20 dBm Max Max Max <th< td=""><td>delaware and a long</td><td>Manually</td><td>anglowedgen</td><td>anne provide the house</td><td>name and the second second</td><td>andreadings</td><td>monadelyment</td><td>opprover harress</td><td>MB wanter</td><td>and the second</td></th<>	delaware and a long	Manually	anglowedgen	anne provide the house	name and the second second	andreadings	monadelyment	opprover harress	MB wanter	and the second
Start 2.306 GHz 1001 pts Stop 2.406 Marker Y-value Function Function Result M1 1 2.40405 GHz 5.30 dBm Function Result M2 1 2.40405 GHz -45.00 dBm Function Result M3 1 2.387 GHz -45.17 dBm Function Result M4 1 2.3505 GHz -45.17 dBm Function Result M4 1 2.3505 GHz -40.76 dBm Function Result Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Mode Auto FFT SGL Count 100/100 SWT 18.9 µS YBW 300 kHz Mode Auto FFT 9 dBm 0 dBm 0 dBm 7.4798242 10 dBm 7.4798242 10 dBm 0 dBm 0 dBm 0 dBm 0 dBm <td< td=""><td></td><td></td><td></td><td>1 :</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				1 :						
Start 2.306 GHz 1001 pts Stop 2.406 Marker Y-value Function Function Result M1 1 2.40405 GHz 5.30 dBm Function Function Result M2 1 2.4 GHz -45.00 dBm Function Function Result M3 1 2.387 GHz -45.17 dBm Function Function Result M4 1 2.3505 GHz -40.76 dBm Function Function Result M4 1 2.3505 GHz -40.76 dBm Function Result Function Result M4 1 2.3505 GHz -40.76 dBm Function Result Function Result Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Spectrum Function Result Function Result SGL Count 100/100 SwT 18.9 µS VBW 300 kHz Mode Auto FFT SGL Count 100/100 I D dBm I I Max I MI[1] S.72 2.4798242 10 dBm I Max I M			· · · · · ·				1	·	1	
Type Ref Trc X-value Y-value Function Function Result M1 1 2.40405 GHz 5.30 dBm		5 GHz			1001 p	ts			Stop	2.406 GHz
M1 1 2.40405 GHz 5.30 dBm M2 1 2.4 GHz -45.00 dBm M3 1 2.387 GHz -45.77 dBm M4 1 2.3505 GHz -40.76 dBm M4 1 2.3505 GHz -40.76 dBm Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs YBW 300 kHz M4 1 2.4798242 0 dBm M1[1] 5.72 20 dBm M1[1] 5.72 20 dBm M1[1] 2.4798242 10 dBm M1[1] 2.4798242 -20 dBm M1 M1 M1		f Trc	X-va	alue	Y-value	Functi	on I	Fun	ction Resu	lt
M3 1 2.387 GHz -45.17 dBm M4 1 2.3505 GHz -40.76 dBm Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µ5 YBW 300 kHz Max 20 dBm 0 M1[1] 5.72 20 dBm 0 M1[1] 2.4798242 10 dBm M1 0 M1 -20 dBm M1 M1 40	M1	1		40405 GHz	5.30 dBm	-				
Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Spectrum Ref Level 27.60 dB Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µS VBW 300 kHz Mode Auto FFT SGL Count 100/100 91Pk Max 5.72 20 dBm 0 dBm 0 dBm 7.4798242 10 dBm 0 dBm 0 dBm 0 dBm -10 dBm 0 dBm 0 dBm 0 dBm	MЗ	1		2.387 GHz	-45,17 dBm					
Spectrum Ref Level 27.60 dB Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µs YBW 300 kHz Mode Auto FFT SGL Count 100/100 ID ID <t< th=""><th>_</th><th>T</th><th></th><th></th><th></th><th>1</th><th></th><th>100</th><th></th><th>8</th></t<>	_	T				1		100		8
10 dBm	Ref Level Att SGL Count	27.60 de 40 i	m Offset	: 7.60 dB 🖷	RBW 100 kHz	A. 7.5		o-Hoppin	ng Ref	(E
D dBm	Ref Level Att SGL Count 1Pk Max	27.60 de 40 i	m Offset	: 7.60 dB 🖷	RBW 100 kHz	Mode Aut	to FF T	o-Hoppin		5.72 dBn
-10 dBm -20 dBm -30 dBm	Ref Level Att SGL Count 1Pk Max	27.60 de 40 i	m Offset	: 7.60 dB 🖷	RBW 100 kHz	Mode Aut	to FF T	p-Hoppin		[Δ
-20 dBm	Ref Level Att SGL Count 1Pk Max 20 dBm-	27.60 de 40 i	m Offset	: 7.60 dB 🖷	RBW 100 kHz VBW 300 kHz	Mode Aut	to FF T	p-Hoppin		5.72 dBn
-20 dBm	Ref Level Att SGL Count 1Pk Max 20 dBm	27.60 de 40 i	m Offset	: 7.60 dB 🖷	RBW 100 kHz VBW 300 kHz	Mode Aut	to FF T	p-Hoppin		5.72 dBn
-30 dBm	Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	27.60 de 40 i	m Offset	: 7.60 dB 🖷	RBW 100 kHz VBW 300 kHz	Mode Aut	to FF T	p-Hoppin		5.72 dBn
	Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm- -10 dBm-	27.60 de 40 i	m Offset	: 7.60 dB 🖷	RBW 100 kHz VBW 300 kHz	Mode Aut	to FF T	p-Hoppin		5.72 dBn
-40 dBm	Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm- -10 dBm-	27.60 de 40 i	m Offset	: 7.60 dB 🖷	RBW 100 kHz VBW 300 kHz	Mode Aut	to FF T			5.72 dBn
io dom	Ref Level Att SGL Count ID dBm	27.60 de 40 i	m Offset	: 7.60 dB 🖷	RBW 100 kHz VBW 300 kHz	Mode Aut	to FF T			5.72 dBn
	Ref Level Att SGL Count ID dBm	27.60 de 40 i	m Offset	: 7.60 dB 🖷	RBW 100 kHz VBW 300 kHz	Mode Aut	to FF T			5.72 dBn
	Ref Level Att SGL Count 9 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	27.60 de 40 i	m Offset	: 7.60 dB 🖷	RBW 100 kHz VBW 300 kHz	Mode Aut	to FF T			5.72 dBn
-60 dBm-	Ref Level Att SGL Count ● 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	27.60 de 40 i	m Offset	: 7.60 dB 🖷	RBW 100 kHz VBW 300 kHz	Mode Aut	to FF T			5.72 dBn 982420 GH:
-70 dBm-	Ref Level Att SGL Count 0 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	27.60 de 40 i	m Offset	: 7.60 dB 🖷	RBW 100 kHz VBW 300 kHz	Mode Aut	to FF T			5.72 dBn 982420 GH:
CF 2.48 GHz 1001 pts Span 8.0	Ref Level Att SGL Count SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	27.60 de 40 i	m Offset	: 7.60 dB 🖷	RBW 100 kHz VBW 300 kHz	Mode Aut	to FF T		2.47	5.72 dBn 982420 GH:
	Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	27.60 de 40 100/100	m Offset	: 7.60 dB 🖷	RBW 100 kHz VBW 300 kHz	Mode Aut	to FF T		2.47	5.72 dBn 982420 GH:
	Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	27.60 de 40 100/100	m Offset	: 7.60 dB 🖷	RBW 100 kHz VBW 300 kHz	Mode Aut	to FF T		2.47	5.72 dBn 982420 GH:

●1Pk Max		-	[1	M	1[1]			5.27 dBm
20 dBm									95000 GHz
10 ¹ d8m	-			-	M	2[1]			46.42 dBm 50000 GHz
0 dBm									
-10 dBm		10			_				
-20 cBm	D1 -14.279	dBm-	_		_				
-30 dBm		_							
-40 dBm	M4	M3			-			. Million or	
-50 dBm-	with the states of the second second	and all a first and a second	handle wanted	-Muranahamanna	glad to fall provided	when which	eyyalametalan	collon sources in	M. M. Mulliman
-60 dBm									
-70 dBm									1 1
Start 2.476 Marker	i GHz			1001	pts	_		Stop :	2.576 GHz
Type Ref	Trc 1	X-value	95 GHz	Y-value 5.27 dBr	Func	tion	Funct	ion Result	
M2 M3	1	2.48	35 GHz	-46.42 dBr -45.71 dBr	m				
M4	1		45 GHz	-41.25 dBr					
Spectrum Ref Level Att SGL Count	1 27.60 dBm 40 dB	Offset 7.	60 dB 🐞 R	VNT 1-D BW 100 kHz BW 300 kHz	13.7		ant1 Hop	ping R	ef
Spectrum Ref Level Att SGL Count 1Pk Max	1 27.60 dBm 40 dB	Offset 7.	60 dB 🐞 R	BW 100 kHz	Mode A		ant1 Hop		5.79 dBm
Spectrum Ref Level Att SGL Count	1 27.60 dBm 40 dB	Offset 7.	60 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	ant1 Hop		
Spectrum Ref Level Att SGL Count 1Pk Max	1 27.60 dBm 40 dB	Offset 7.	60 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	ant1 Hop		5.79 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm	1 27.60 dBm 40 dB	Offset 7.	60 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT	Ant1 Hop		5.79 dBm
Spectrum Ref Level Att SGL Count IPk Max 20 dBm 10 dBm 0 dBm	1 27.60 dBm 40 dB	Offset 7.	60 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT	snt1 Hop		5.79 dBm
Spectrum Ref Level Att SGL Count IPk Max 20 dBm 10 dBm	1 27.60 dBm 40 dB	Offset 7.	60 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT	Ant1 Hop		5.79 dBm
Spectrum Ref Level Att SGL Count IPk Max 20 dBm 10 dBm 0 dBm	1 27.60 dBm 40 dB	Offset 7.	60 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT	snt1 Hop		5.79 dBm
Spectrum Ref Level Att SGL Count IPK Max 20 dBm 10 dBm -10 dBm	1 27.60 dBm 40 dB	Offset 7.	60 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT	Ant1 Hop		5.79 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	1 27.60 dBm 40 dB	Offset 7.	60 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT	Ant1 Hop		5.79 dBm
Spectrum Ref Level Att SGL Count IPK Max 20 dBm 10 dBm -10 dBm -20 dBm	1 27.60 dBm 40 dB	Offset 7.	60 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT	Ant1 Hop		5.79 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	1 27.60 dBm 40 dB	Offset 7.	60 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT	Ant1 Hop		5.79 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	1 27.60 dBm 40 dB	Offset 7.	60 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT	snt1 Hop		5.79 dBm
Spectrum Ref Level Att SGL Count IPK Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	1 27.60 dBm 40 dB	Offset 7.	60 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT	Ant1 Hop		5.79 dBm
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm	27.60 dBm 40 dB 8009/8009	Offset 7.	60 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT	Ant1 Hop	2.479	5.79 dBm
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	27.60 dBm 40 dB 8009/8009	Offset 7.	60 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT	Ant1 Hop	2.479	5.79 dBm 82420 GHz

Att SGL Count 7	7.60 dBm 40 dB 00/700			RBW 100 kHz VBW 300 kHz	Mode Au	to FFT			
●1Pk Max			_	7 1					F oF de
20 dBm		_	-		M1[11		2.478	5.35 dBn 315000 GH
MudBm-		1000	1	102 201 2	M2[1]			-44.36 dBn 350000 GH:
101.dBm DdBm								1	
9 (961)	1								
-10 dBm	1 -14.212	dBm			1		-		-
-20 cBm							-		1
-30 dBm		-	-						
-40 dBm	Met	EM.	we previous	man month would be	a har south the second	and tight 1 a t	and a set	and maline	ales and the second
-50 dBm	and an and the second	mod a maderal	Strong 1	. Development and the	Chambra Barro	restand Arrest	Inflamment with the new	withon.	. Dan Bernal Malari
-60 dBm			_						
-70 dBm			-				1	1	1
Start 2.476	GHz			1001 pt	5			Stop	2.576 GHz
Marker Type Ref	Trc	X-value	1	Y-value	Functio	n l	Fun	ction Result	t
M1	1 1	2.478	15 GHz 35 GHz	5.35 dBm -44.36 dBm				(11 U1	
MO		2.400	55 GHZ						
M2 M3	1	2	.5 GHz	-43.44 dBm					
	I Band I	2 2.49 Edge N Offset 7.	VNT 2	-43.44 dBm -41.91 dBm -DH5 2402 RBW 100 kHz VBW 300 kHz	A 2.3		o-Hoppi	ng Ref	۵ ۲
M3 M4 Spectrum Ref Level 2	1 1 Band 7.62 dBm 40 dB	2 2.49 Edge N Offset 7.	VNT 2	-41.91 dBm -DH5 2402 RBW 100 kHz	A 2.3		o-Hoppi	ng Ref	(m A
M3 M4 Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max	1 1 Band 7.62 dBm 40 dB	2 2.49 Edge N Offset 7.	VNT 2	-41.91 dBm -DH5 2402 RBW 100 kHz	A 2.3	o FFT	o-Hoppi		4,22 dBn
M3 M4 Spectrum Ref Level 2 Att SGL Count 1	1 1 Band 7.62 dBm 40 dB	2 2.49 Edge N Offset 7.	VNT 2	-41.91 dBm -DH5 2402 RBW 100 kHz	Mode Auti	o FFT	p-Hoppi		
M3 M4 Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max	1 1 Band 7.62 dBm 40 dB	2 2.49 Edge N Offset 7.	VNT 2	-41.91 dBm -DH5 2402 RBW 100 kHz yBW 300 kHz	Mode Auti	o FFT	o-Hoppi		4,22 dBn
M3 M4 Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max 20 dBm 10 dBm	1 1 Band 7.62 dBm 40 dB	2 2.49 Edge N Offset 7.	VNT 2	-41.91 dBm -DH5 2402 RBW 100 kHz	Mode Auti	o FFT	p-Hoppi		4,22 dBn
M3 M4 Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm 10 dBm	1 1 Band 7.62 dBm 40 dB	2 2.49 Edge N Offset 7.	VNT 2	-41.91 dBm -DH5 2402 RBW 100 kHz yBW 300 kHz	Mode Auti	o FFT	p-Hoppi		4,22 dBn
M3 M4 Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max 20 dBm	1 1 Band 7.62 dBm 40 dB	2 2.49 Edge N Offset 7.	VNT 2	-41.91 dBm -DH5 2402 RBW 100 kHz yBW 300 kHz	Mode Auti	o FFT	p-Hoppin		4,22 dBn
M3 M4 Spectrum Ref Level 2 Att SGL Count 1 IPk Max 20 dBm 10 dBm -10 dBm	1 1 Band 7.62 dBm 40 dB	2 2.49 Edge N Offset 7.	VNT 2	-41.91 dBm -DH5 2402 RBW 100 kHz yBW 300 kHz	Mode Auti	o FFT	p-Hoppi		4,22 dBn
M3 M4 Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm 10 dBm 0 dBm	1 1 Band 7.62 dBm 40 dB	2 2.49 Edge N Offset 7.	VNT 2	-41.91 dBm -DH5 2402 RBW 100 kHz yBW 300 kHz	Mode Auti	0 FFT	p-Hoppi		4,22 dBn
M3 M4 Spectrum Ref Level 2 Att SGL Count 1 IPk Max 20 dBm 10 dBm -10 dBm	1 1 Band 7.62 dBm 40 dB	2 2.49 Edge N Offset 7.	VNT 2	-41.91 dBm -DH5 2402 RBW 100 kHz yBW 300 kHz	Mode Auti	o FFT	p-Hoppin		4,22 dBn
M3 M4 Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	1 1 Band 7.62 dBm 40 dB	2 2.49 Edge N Offset 7.	VNT 2	-41.91 dBm -DH5 2402 RBW 100 kHz yBW 300 kHz	Mode Auti	0 FFT	p-Hoppin		4,22 dBn
M3 M4 Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 1 Band 7.62 dBm 40 dB	2 2.49 Edge N Offset 7.	VNT 2	-41.91 dBm -DH5 2402 RBW 100 kHz yBW 300 kHz	Mode Auti	0 FFT	p-Hoppin		4,22 dBn
M3 M4 Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	1 1 Band 7.62 dBm 40 dB	2 2.49: Edge N' Offset 7. SWT 18	VNT 2	-41.91 dBm -DH5 2402 RBW 100 kHz yBW 300 kHz	Mode Auti	0 FFT			4,22 dBn
M3 M4 Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm	1 1 Band 7.62 dBm 40 dB	2 2.49: Edge N' Offset 7. SWT 18	VNT 2	-41.91 dBm -DH5 2402 RBW 100 kHz yBW 300 kHz	Mode Auti	0 FFT			4,22 dBn
M3 M4 Spectrum Ref Level 2 Att SGL Count 1 Plk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 1 Band 7.62 dBm 40 dB	2 2.49: Edge N' Offset 7. SWT 18	VNT 2	-41.91 dBm -DH5 2402 RBW 100 kHz yBW 300 kHz	Mode Auti	0 FFT			4,22 dBn
M3 M4 Spectrum Ref Level 2 Att SGL Count 1 PPk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -60 dBm -70 dBm	1 1 1 7.62 dBm 40 dB 00/100	2 2.49: Edge N' Offset 7. SWT 18	VNT 2	-41.91 dBm	Mode Auto	0 FFT		2,400	4.22 dBn
M3 M4 Spectrum Ref Level 2 Att SGL Count 1 PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -60 dBm	1 1 1 7.62 dBm 40 dB 00/100	2 2.49: Edge N' Offset 7. SWT 18	VNT 2	-41.91 dBm -DH5 2402 RBW 100 kHz yBW 300 kHz	Mode Auto	0 FFT		2,400	4,22 dBn

Ref Level Att SGL Count 1Pk Max	27.62 dBm 40 dB 100/100			RBW 100 kH: /BW 300 kH:		Auto FFT			
20 dBm					M	1[1]		0 401	4.42 dBm
			1 1		M	2[1]			95000 GHz 47.17 dBm
10 dBm							(-)	2.400	000001GHz
0 dBm			1			1.	() ()	1	Â
-10 dBm	D1 -15,779	dBm							
-20 dBm				1			-		
-30 dBm		-							
-40 dBm		a second second	M4	he determination	11.01 1.00 0. 1	and the second states	a Russ Blue La	M3	MP
-50 dBm	arthrest a traine	hahannahanasin	~ v v ·		And we wanted and a start	ALLWART AND TAL TO THE SALE	Prograd a Delicord	1000 for the work	and the sur
-60 dBm							-		
-70 dBm					_		_		
Start 2.30 Marker	6 GHz			1001	pts			Stop :	2.406 GHz
	f Trc	X-value	95 GHz	Y-value 4.42 dB	Funct	tion	Func	tion Result	[
M1 M2	1		.4 GHz	-47.17 dB	m				
Spectrun		2,339 ge(Hopp offset 7,4	62 dB 🐞 RE	-45.42 dBi -41.78 dBi /NT 2-D BW 100 kHz BW 300 kHz	m H5 240		nt1 Hop	oping R	ef
M4 Spectrun Ref Level Att SGL Count	and Edg	2,339 ge(Hopp offset 7,4	99 GH2 Ding) NV 62 dB • RE	-41.78 dB /NT 2-D 3W 100 kHz	m H5 240		ant1 Hop	oping R	
M4 Spectrun Ref Level Att SGL Count 1Pk Max	1 and Edg 27.62 dBm 40 dB	2,339 ge(Hopp offset 7,4	99 GH2 Ding) NV 62 dB • RE	-41.78 dB /NT 2-D 3W 100 kHz	m H5 240 Mode Ar		ant1 Hop		4,42 dBm
M4 Spectrun Ref Level Att SGL Count	1 and Edg 27.62 dBm 40 dB	2,339 ge(Hopp offset 7,4	99 GH2 Ding) NV 62 dB • RE	-41.78 dB /NT 2-D 3W 100 kHz	m H5 240 Mode Ar	uto FFT	ant1 Hop		
M4 Spectrun Ref Level Att SGL Count 1Pk Max	1 and Edg 27.62 dBm 40 dB	2,339 ge(Hopp offset 7,4	99 GH2 Ding) NV 62 dB • RE	-41.78 dB /NT 2-D 3W 100 kHz	m H5 240 Mode Ar	uto FFT			4,42 dBm
M4 Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	1 and Edg 27.62 dBm 40 dB	2,339 ge(Hopp offset 7,4	99 GH2 Ding) NV 62 dB • RE	-41.78 dB /NT 2-D 3W 100 kHz	m H5 240 Mode Ar	uto FFT	ant1 Hop		4,42 dBm
M4 Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm-	1 and Edg 27.62 dBm 40 dB	2,339 ge(Hopp offset 7,4	99 GH2 Ding) NV 62 dB • RE	-41.78 dB /NT 2-D 3W 100 kHz	m H5 240 Mode Ar	uto FFT			4,42 dBm
M4 Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	1 and Edg 27.62 dBm 40 dB	2,339 ge(Hopp offset 7,4	99 GH2 Ding) NV 62 dB • RE	-41.78 dB /NT 2-D 3W 100 kHz	m H5 240 Mode Ar	uto FFT			4,42 dBm
M4 Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- D dBm-	1 and Edg 27.62 dBm 40 dB	2,339 ge(Hopp offset 7,4	99 GH2 Ding) NV 62 dB • RE	-41.78 dB /NT 2-D 3W 100 kHz	m H5 240 Mode Ar	uto FFT			4,42 dBm
M4 Spectrun Ref Level Att SGL Count 10 dBm- 10 dBm- -10 dBm- -20 dBm-	1 and Edg 27.62 dBm 40 dB	2,339 ge(Hopp offset 7,4	99 GH2 Ding) NV 62 dB • RE	-41.78 dB /NT 2-D 3W 100 kHz	m H5 240 Mode Ar	uto FFT			4,42 dBm
M4 Spectrun Ref Level Att SGL Count 10 dBm- 10 dBm- -10 dBm-	1 and Edg 27.62 dBm 40 dB	2,339 ge(Hopp offset 7,4	99 GH2 Ding) NV 62 dB • RE	-41.78 dB /NT 2-D 3W 100 kHz	m H5 240 Mode Ar	uto FFT			4,42 dBm
M4 Spectrun Ref Level Att SGL Count 10 dBm- 10 dBm- -10 dBm- -20 dBm-	1 and Edg 27.62 dBm 40 dB	2,339 ge(Hopp offset 7,4	99 GH2 Ding) NV 62 dB • RE	-41.78 dB /NT 2-D 3W 100 kHz	m H5 240 Mode Ar	uto FFT			4,42 dBm
M4 Spectrun Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	1 and Edg 27.62 dBm 40 dB	2,339 ge(Hopp offset 7,4	99 GH2 Ding) NV 62 dB • RE	-41.78 dB /NT 2-D 3W 100 kHz	m H5 240 Mode Ar	uto FFT			4,42 dBm
M4 Spectrun Ref Level Att SGL Count 10 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	1 and Edg 27.62 dBm 40 dB	2,339 ge(Hopp offset 7,4	99 GH2 Ding) NV 62 dB • RE	-41.78 dB /NT 2-D 3W 100 kHz	m H5 240 Mode Ar	uto FFT			4,42 dBm
M4 Spectrun Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	1 and Edg 27.62 dBm 40 dB	2,339 ge(Hopp offset 7,4	99 GH2 Ding) NV 62 dB • RE	-41.78 dB /NT 2-D 3W 100 kHz	m H5 240 Mode Ar	uto FFT			4,42 dBm
M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	1 and Edg 27.62 dBm 40 dB	2,339 ge(Hopp offset 7,4	99 GH2 Ding) NV 62 dB • RE	-41.78 dB /NT 2-D 3W 100 kHz	m H5 240 Mode Ar	uto FFT			4,42 dBm
M4 Spectrum Ref Level Att SGL Count SGL Count ID dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm	1 and Edg 27.62 dBm 40 dB 8000/8000	2,339 ge(Hopp offset 7,4	99 GH2 Ding) NV 62 dB • RE	-41.78 dB /NT 2-D 3W 100 kHz	Mode A	uto FFT		2,404	4,42 dBm

Att SGL Count	40 dB 1000/1000	3991 227.	.5 µз —	VBW 300 kHz	Mode Aut	UFFI			
					M1[1]		10.6	3.43 dBr
20 dBm					M2[1]			205000 GH -44.58 dBr
10 dBm					1			2.40	000009/6H
0 dBm-				1.			1		you
	D1 -15,584	dBm							
-20 dBm									
-30 dBm			M4				-	1	
-40 dBm	a Manufacture dual	pursely warment	nutrona	approximation and pro-	under mander	Here Mary James	unander maning	Halland M3	- Mary Mr
-50 dBm				· · · · ·					1
-60 dBm			-				f	1	
-70 dBm	GHz			1001 p	ts			Stop	2.406 GHz
Marker Type Ref	Tre	X-value	1	Y-value	Functio	n I	Euro	ction Resu	
M1 M2	1	2.40205	GHz GHz	3.43 dBm -44.58 dBm			- un	scion Ne3u	
M3	1	2.39	GHz	-44.46 dBm -40.27 dBm					
M4 Spectrum Ref Level Att SGL Count	Band 27.60 dBm 40 dB	Edge NV	NT 2-	-DH5 2480 RBW 100 kHz VBW 300 kHz	0.2.5		-Hoppi	ng Ref	بر م
Spectrum Ref Level Att SGL Count IPk Max	Band 27.60 dBm 40 dB	Edge NV	NT 2-	-DH5 2480	0.2.5	FFT	-Hoppi		4.04 dBr
Spectrum Ref Level Att SGL Count	Band 27.60 dBm 40 dB	Edge NV	NT 2-	-DH5 2480	Mode Auto	FFT	-Hoppi		
Spectrum Ref Level Att SGL Count IPk Max	Band 27.60 dBm 40 dB	Edge NV	NT 2-	-DH5 2480	Mode Auto	FFT	-Hoppi		4.04 dBr
Spectrum Ref Level Att SGL Count IPk Max 20 dBm-	Band 27.60 dBm 40 dB	Edge NV	NT 2-	-DH5 2480	Mode Auto	FFT	-Hoppi		4.04 dBr
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	Band 27.60 dBm 40 dB	Edge NV	NT 2-	-DH5 2480	Mode Auto	FFT	-Hoppi		4.04 dBr
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	Band 27.60 dBm 40 dB	Edge NV	NT 2-	-DH5 2480	Mode Auto	FFT	-Hoppi		4.04 dBr
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	Band 27.60 dBm 40 dB	Edge NV	NT 2-	-DH5 2480	Mode Auto	FFT	-Hoppi		4.04 dBr
Spectrum Ref Level Att SGL Count 10 dBm- 10 dBm- 0 dBm- -10 dBm-	Band 27.60 dBm 40 dB	Edge NVI	NT 2-	-DH5 2480	Mode Auto	FFT	-Hoppi		4.04 dBr
Spectrum Ref Level Att SGL Count I OldBm D dBm -10 dBm -20 dBm	Band 27.60 dBm 40 dB	Edge NVI	NT 2-	-DH5 2480	Mode Auto	FFT	-Hoppi		4.04 dBr
Spectrum Ref Level Att SGL Count I OdBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Band 27.60 dBm 40 dB	Edge NVI	NT 2-	-DH5 2480	Mode Auto	FFT	-Hoppi		4.04 dBr
Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	Band 27.60 dBm 40 dB	Edge NVI	NT 2-	-DH5 2480	Mode Auto	FFT		2,48	4.04 dBr
Spectrum Ref Level Att SGL Count I OdBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Band 27.60 dBm 40 dB	Edge NVI	NT 2-	-DH5 2480	Mode Auto	FFT		2,48	4.04 dBr
Spectrum Ref Level Att SGL Count I D dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	Band 27.60 dBm 40 dB	Edge NVI	NT 2-	-DH5 2480	Mode Auto	FFT		2,48	4.04 dBr
Spectrum Ref Level Att SGL Count ID dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	Band 27.60 dBm 40 dB 100/100	Edge NVI	NT 2-	-DH5 2480	Mode Auto	FFT		2,48	4.04 dBr
Spectrum Ref Level Att SGL Count ID dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	Band 27.60 dBm 40 dB 100/100	Edge NVI	NT 2-		Mode Auto	FFT		2,48	4,04 dBr
Spectrum Ref Level Att SGL Count ID dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	Band 27.60 dBm 40 dB 100/100	Edge NVI	NT 2-		Mode Auto	FFT		2,48	4,04 dBr

SGL Count 1Pk Max	100/100			1				_	
20 dBm					M	11[1]		2,480	1.96 dBm 15000 GHz
10_dBm			-		M	2[1]		-	45.58 dBm
						1		2.960	50000 GHz
			1			1			
-10 cBm	01 -15,956	dBm							
-20 dBm				· · · · ·		1	1		1 7
-39 dBm		-						1 - 1	
-40 demiz	mound	Morthurson	- Marine Marine Lander	where where	Amen moskether is	militanin	whether a section	ungelimbered	manunun
-50 dBm					W				
-60 dBm				1					
-70 dBm	011-			1001				Otan	2.576 GHz
Marker	GHZ			1001	pts	1.00		stop	2.576 GHZ
Type Ref	Trc 1	X-value 2.480	e	Y-value 1.96 dB	Func m	tion	Fun	ction Result	
M2 M3	1	2.48	35 GHz 2.5 GHz	-45.58 dB -45.53 dB	m				
			99 GHz	-43.12 dB					
M4 Spectrum Ref Level Att SGL Count	27.60 dBm 40 dB	ge(Hop) offset 7	ping) N'	VNT 2-D BW 100 kHz BW 300 kHz	100.2		ant1 Ho	pping R	ef
Ba Spectrum Ref Level Att SGL Count • 1Pk Max	and Edg 27.60 dBm 40 dB	ge(Hop) offset 7	ping) N'	BW 100 kHz	Mode A		Ant1 Ho		4.41 dBm
Ba Spectrum Ref Level Att SGL Count	and Edg 27.60 dBm 40 dB	ge(Hop) offset 7	ping) N'	BW 100 kHz	Mode A	uto FFT	ant1 Ho		
Ba Spectrum Ref Level Att SGL Count • 1Pk Max	27.60 dBm 40 dB 8000/8000	ge(Hop) offset 7	ping) N'	BW 100 kHz	Mode A	uto FFT	Ant1 Ho		4.41 dBm
Ba Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm- 10 dBm-	and Edg 27.60 dBm 40 dB	ge(Hop) offset 7	ping) N'	BW 100 kHz	Mode A	uto FFT	ant1 Ho		4.41 dBm
Ba Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm-	27.60 dBm 40 dB 8000/8000	ge(Hop) offset 7	ping) N'	BW 100 kHz	Mode A	uto FFT	Ant1 Ho		4.41 dBm
Ba Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm- 10 dBm-	27.60 dBm 40 dB 8000/8000	ge(Hop) offset 7	ping) N'	BW 100 kHz	Mode A	uto FFT	Ant1 Ho		4.41 dBm
Ba Spectrum Ref Level Att SGL Count I Dk Max 20 dBm 10 dBm	27.60 dBm 40 dB 8000/8000	ge(Hop) offset 7	ping) N'	BW 100 kHz	Mode A	uto FFT	Ant1 Ho		4.41 dBm
Ba Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm	27.60 dBm 40 dB 8000/8000	ge(Hop) offset 7	ping) N'	BW 100 kHz	Mode A	uto FFT	Ant1 Ho		4.41 dBm
Ba Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm	27.60 dBm 40 dB 8000/8000	ge(Hop) offset 7	ping) N'	BW 100 kHz	Mode A	uto FFT	Ant1 Ho		4.41 dBm
Ba Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm	27.60 dBm 40 dB 8000/8000	ge(Hop) offset 7	ping) N'	BW 100 kHz	Mode A	uto FFT	Ant1 Ho		4.41 dBm
Ba Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	27.60 dBm 40 dB 8000/8000	ge(Hop) offset 7	ping) N'	BW 100 kHz	Mode A	uto FFT	Ant1 Ho		4.41 dBm
Ba Spectrum Ref Level Att SGL Count I SGL Count I D dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	27.60 dBm 40 dB 8000/8000	ge(Hop) offset 7	ping) N'	BW 100 kHz	Mode A	uto FFT	Ant1 Ho		4.41 dBm
Ba Spectrum Ref Level Att SGL Count I D dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	27.60 dBm 40 dB 8000/8000	ge(Hop) offset 7	ping) N'	BW 100 kHz	Mode A	uto FFT	Ant1 Ho		4.41 dBm
Ba Spectrum Ref Level Att SGL Count IDk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	And Edg 27.60 dBm 40 dB 8000/8000	ge(Hop) offset 7	ping) N'			uto FFT	Ant1 Ho	2.477	4.41 dBm 13890 GHz
Ba Spectrum Ref Level Att SGL Count I SGL Count I D dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	And Edg 27.60 dBm 40 dB 8000/8000	ge(Hop) offset 7	ping) N'	BW 100 kHz		uto FFT	Ant1 Ho	2.477	4.41 dBm
Ba Spectrum Ref Level Att SGL Count IDk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	And Edg 27.60 dBm 40 dB 8000/8000	ge(Hop) offset 7	ping) N'			uto FFT	Ant1 Ho	2.477	4.41 dBm 13890 GHz

Att	27.60 dBm 40 dB 1000/1000			RBW 100 kHz VBW 300 kHz	Mode A	uto FFT.			
1Pk Max		1	[M	1[1]		_	3.05 dBm
20 dBm					_				795000 GHz
14 dBm						2[1]			-44.81 dBn 350000 GHz
pdem				-		_		-	1
-10 cBm									
-20 cBm	01 -15,586	dBm						-	
-30 d <mark>8</mark> m									
-40 dBm2-		N43				1			
Lat. They we	n Muniwahan your to	mathematic	annersature	An work and the second	anakanishal m	howwww.	consolverest	- while he was a second	when which in
-50 dBm					_	1			1.1.1.1
-60 dBm							I		1
-70 dBm	6 GHz	l		1001 p	ots			Stor	2.576 GHz
Marker			7			1 = 4		10.0	
Type Re M1	f Trc 1	X-value 2.4779	95.GHz	Y-value 3.05 dBm	Funct	ion	Func	tion Resu	It
M2 M3	1		35 GHz	-44.81 dBm -42.63 dBm					
	1		92 GHz	-41.22 dBm		- 1			
M4 Spectrun Ref Level Att SGL Count	Band 27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	-DH5 2402 RBW 100 kHz /BW 300 kHz	10.20		-Hoppir	ng Ref	*
Spectrun Ref Level Att SGL Count IPk Max	Band 27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	RBW 100 kHz	Mode Au		Hoppir		4,18 dBm
Spectrum Ref Level Att SGL Count	Band 27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	RBW 100 kHz	Mode Au	uto FFT	Hoppir		
Spectrun Ref Level Att SGL Count IPk Max	Band 27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	RBW 100 kHz /BW 300 kHz	Mode Au	uto FFT	-Hoppir		4,18 dBm
Spectrum Ref Level Att SGL Count SGL Count 1Pk Max 20 dBm- 10 dBm-	Band 27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	RBW 100 kHz /BW 300 kHz	Mode At	uto FFT	-Hoppir		4,18 dBm
Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm-	Band 27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	RBW 100 kHz /BW 300 kHz	Mode At	uto FFT	-Hoppir		4,18 dBm
Spectrum Ref Level Att SGL Count SGL Count 1Pk Max 20 dBm- 10 dBm-	Band 27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	RBW 100 kHz /BW 300 kHz	Mode At	uto FFT	-Hoppir		4,18 dBm
Spectrum Ref Level Att SGL Count SGL Count 1Pk Max 20 dBm	Band 27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	RBW 100 kHz /BW 300 kHz	Mode At	uto FFT	-Hoppir		4,18 dBm
Spectrum Ref Level Att SGL Count IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Band 27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	RBW 100 kHz /BW 300 kHz	Mode At	uto FFT	-Hoppir		4,18 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm	Band 27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	RBW 100 kHz /BW 300 kHz	Mode At	uto FFT	-Hoppir		4,18 dBm
Spectrum Ref Level Att SGL Count I D dBm D dBm -10 dBm -10 dBm -20 dBm	Band 27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	RBW 100 kHz /BW 300 kHz	Mode At	uto FFT	-Hoppir		4,18 dBm
Spectrum Ref Level Att SGL Count I D dBm D dBm -10 dBm -20 dBm -30 dBm -40 dBm	Band 27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	RBW 100 kHz /BW 300 kHz	Mode At	uto FFT	-Hoppir		4,18 dBm
Spectrum Ref Level Att SGL Count © 1Pk Max 20 dBm	Band 27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	RBW 100 kHz /BW 300 kHz	Mode At	uto FFT	-Hoppir		4,18 dBm
Spectrum Ref Level Att SGL Count I D dBm D dBm -10 dBm -20 dBm -30 dBm -40 dBm	Band 27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	RBW 100 kHz /BW 300 kHz	Mode At	uto FFT	p-Hoppir		4,18 dBm
Spectrum Ref Level Att SGL Count © 1Pk Max 20 dBm	Band 27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	RBW 100 kHz /BW 300 kHz	Mode At	uto FFT	-Hoppir		4,18 dBm
Spectrum Ref Level Att SGL Count © 1Pk Max 20 dBm	Band 27.62 dBm 40 dB 300/300	Offset 7.	62 dB 🐞 F	RBW 100 kHz /BW 300 kHz		uto FFT	-Hoppir	2,40	4,18 dBm 214390 GHz
Spectrum Ref Level Att SGL Count SGL Count 10 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	Band 27.62 dBm 40 dB 300/300	Offset 7.	62 dB 🐞 F	RBW 100 kHz /BW 300 kHz		uto FFT	p-Hoppir	2,40	4,18 dBn 214390 GHz
Spectrum Ref Level Att SGL Count SGL Count 10 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	Band 27.62 dBm 40 dB 300/300	Offset 7.	62 dB 🐞 F	RBW 100 kHz /BW 300 kHz		uto FFT	-Hoppir	2,40	4,18 dBm 214390 GHz

Ref Level Att	27.62 dBm 40 dB			BW 100 kHz BW 300 kHz		Auto FFT			
SGL Count	100/100	2010 10							
					M	1[1]		0.000	4.50 dBm
20 dBm					M	2[1]			85000 GHz 45.14 dBm
10 dBm				-	_	1	()	2.400	000001GHz
0 dBm			-	-			-		
-10 dBm-				-			-		
-20 dBm—	D1 -15.825	dBm		-	-				
-30 dBm									- NH
-40 dBm				M4		1		M3:	1112
-50 dBm-	manshammenter	humanyperation	mmurthaukath	Amount in the monormal and	en buch not be it	amanafaaarba	alyppinationship	while Transult	ward wa
				·		1			1.
-60 dBm				· · · · · · · · · · · · · · · · · · ·			· · · · · · · ·	1	
-70 dBm- Start 2.30	6 GHz			1001	pts			Stop	2.406 GHz
Marker			-						
Type Re M1	ef Trc 1	X-value 2.4018	35 GHz	Y-value 4.50 dBr	Func m	tion	Fund	tion Result	-
M2 M3	1		.4 GHz 39 GHz	-45.14 dBr -45.66 dBr					
Spectrur		2.350 ge(Hopp offset 7.4	06 GH2 Ding) N\ 62 dB ■ RE	-41.49 dBi	H5 240		ant1 Ho	oping R	ef
B Spectrur Ref Level Att SGL Count	and Edg	2.350 ge(Hopp offset 7.4	06 GH2 Ding) N\ 62 dB ■ RE	-41.49 dBi	H5 240		ant1 Hoj	oping R	m
B Spectrur Ref Level Att SGL Count 1Pk Max	and Edg	2.350 ge(Hopp offset 7.4	06 GH2 Ding) N\ 62 dB ■ RE	-41.49 dBi	H5 240 Mode A		ant1 Hoj		4,64 dBm
B Spectrur Ref Level Att SGL Count 1Pk Max	and Edg	2.350 ge(Hopp offset 7.4	06 GH2 Ding) N\ 62 dB ■ RE	-41.49 dBi	H5 240 Mode A	uto FFT	ant1 Ho		
B Spectrur Ref Level Att SGL Count IPk Max 20 dBm	and Edg	2.350 ge(Hopp offset 7.4	06 GH2 Ding) N\ 62 dB ■ RE	-41.49 dBi	H5 240 Mode A	uto FFT			4,64 dBm
B Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	and Edg	2.350 ge(Hopp offset 7.4	06 GH2 Ding) N\ 62 dB ■ RE	-41.49 dBi	H5 240 Mode A	uto FFT	ant1 Ho		4,64 dBm
B Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	and Edg	2.350 ge(Hopp offset 7.4	06 GH2 Ding) N\ 62 dB ■ RE	-41.49 dBi	H5 240 Mode A	uto FFT			4,64 dBm
B Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	and Edg	2.350 ge(Hopp offset 7.4	06 GH2 Ding) N\ 62 dB ■ RE	-41.49 dBi	H5 240 Mode A	uto FFT			4,64 dBm
B Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm- -10 dBm-	and Edg	2.350 ge(Hopp offset 7.4	06 GH2 Ding) N\ 62 dB ■ RE	-41.49 dBi	H5 240 Mode A	uto FFT			4,64 dBm
B Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	and Edg	2.350 ge(Hopp offset 7.4	06 GH2 Ding) N\ 62 dB ■ RE	-41.49 dBi	H5 240 Mode A	uto FFT			4,64 dBm
B Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm- -10 dBm-	and Edg	2.350 ge(Hopp offset 7.4	06 GH2 Ding) N\ 62 dB ■ RE	-41.49 dBi	H5 240 Mode A	uto FFT			4,64 dBm
B Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	and Edg	2.350 ge(Hopp offset 7.4	06 GH2 Ding) N\ 62 dB ■ RE	-41.49 dBi	H5 240 Mode A	uto FFT			4,64 dBm
B Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm- -10 dBm- -20 dBm-	and Edg	2.350 ge(Hopp offset 7.4	06 GH2 Ding) N\ 62 dB ■ RE	-41.49 dBi	H5 240 Mode A	uto FFT			4,64 dBm
B Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	and Edg	2.350 ge(Hopp offset 7.4	06 GH2 Ding) N\ 62 dB ■ RE	-41.49 dBi	H5 240 Mode A	uto FFT			4,64 dBm
B Spectrur Ref Level Att SGL Count I C	and Edg	2.350 ge(Hopp offset 7.4	06 GH2 Ding) N\ 62 dB ■ RE	-41.49 dBi	H5 240 Mode A	uto FFT			4,64 dBm
B Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	and Edg	2.350 ge(Hopp offset 7.4	06 GH2 Ding) N\ 62 dB ■ RE	-41.49 dBi	H5 240 Mode A	uto FFT			4,64 dBm
B Spectrum Ref Level Att SGL Count ID MBM 20 dBm 20 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	and Edg 1 27.62 dBm 40 dB 1000/8000	2.350 ge(Hopp offset 7.4	06 GH2 Ding) N\ 62 dB ■ RE	-41.49 dBi	H5 240	uto FFT		2.404	4,64 dBm 14190 GHz
B Spectrur Ref Level SGL Count 1Pk Max 20 dBm	and Edg 1 27.62 dBm 40 dB 1000/8000	2.350 ge(Hopp offset 7.4	06 GH2 Ding) N\ 62 dB ■ RE	-41.49 dBi	H5 240	uto FFT		2.404	4,64 dBm

	40 dB 1000/1000	3W1 24	27.5 µs 🖷	VBW 300 ki	nz Mode /	Auto FFT			
●1Pk Max	-	-	-	r -	M	1[1]			4,42 dBr
20 dBm				1	M	2[1]			15000 GH -43.62 dBr
10 dBm				-			(100000 GH
0 dBm	-		-	-	-				Mr
-10 dBm			-	-	-	-	-		
-20 dBm	D1 -15,363	dBm	-				-		
-30 dBm			-		-				
-40 dBm	1.00		muruh	M4			10 cr a cr a	M3	MP
-50 dBm-	and reported in the	antrodynamic	print and	whith an close	maria and a	and and a state of the state of	with many with a second	and and a second	have
-60 dBm				-					
-70 dBm							1		1
Start 2.30	5 GHz		1	100	1 pts			Stop	2.406 GHz
Marker Type Re	f Trc	X-value	e	Y-value	Func	tion	Fund	tion Result	1
M1 M2	1		15 GHz 2.4 GHz	4.42 d -43.62 d					
			39 GHz	-44.42 d					
M3 M4	1			-20 02 d	Rm				
M4 Spectrun Ref Level Att SGL Count	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7	96 GHZ VNT 3- .60 dB - R	BW 100 kH	80MHz		-Hoppir	ng Ref	
M4 Spectrun Ref Level Att	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7	96 GHZ VNT 3- .60 dB - R	DH5 24	80MHz /	uto FFT	-Hoppir	ng Ref	[4
M4 Spectrun Ref Level Att SGL Count	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7	96 GHZ VNT 3- .60 dB - R	DH5 24	80MHz /		p-Hoppir		4,52 dBr
M4 Spectrun Ref Level Att SGL Count IPk Max 20 dBm-	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7	96 GHZ VNT 3- .60 dB - R	DH5 24	80MHz /	uto FFT	p-Hoppir		4,52 dBr
M4 Spectrun Ref Level Att SGL Count • 1Pk Max	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7	96 GHZ VNT 3- .60 dB - R	DH5 24	80MHz /	uto FFT	p-Hoppir		4,52 dBr
M4 Spectrun Ref Level Att SGL Count IPk Max 20 dBm-	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7	96 GHZ VNT 3- .60 dB - R	DH5 24	80MHz /	uto FFT	p-Hoppir		4,52 dBr
M4 Spectrun Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm- 0 dBm-	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7	96 GHZ VNT 3- .60 dB - R	DH5 24	80MHz /	uto FFT	p-Hoppir		4,52 dBr
M4 Spectrun Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm-	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7	96 GHZ VNT 3- .60 dB - R	DH5 24	80MHz /	uto FFT	p-Hoppir		4,52 dBr
M4 Spectrun Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm- 0 dBm-	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7	96 GHZ VNT 3- .60 dB - R	DH5 24	80MHz /	uto FFT	p-Hoppir		4,52 dBr
M4 Spectrun Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm- -10 dBm-	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7	96 GHZ VNT 3- .60 dB - R	DH5 24	80MHz /	uto FFT	p-Hoppir		4,52 dBr
M4 Spectrun Ref Level Att SGL Count 10 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7	96 GHz VNT 3- 60 dB — R 8.9 µs — V	DH5 24	80MHz /	uto FFT	p-Hoppir		4,52 dBr
M4 Spectrun Ref Level Att SGL Count ID dBm- 10 dBm- 10 dBm- -20 dBm- -30 dBm- -40 dBm-	1 Band 27.60 dBm 40 dB 100/100	2.34 Edge N Offset 7	96 GHz VNT 3- 60 dB — R 8.9 µs — V	DH5 24	80MHz /	uto FFT	p-Hoppir	2.475	4,52 dBr
M4 Spectrun Ref Level Att SGL Count 10 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	1 Band 27.60 dBm 40 dB	2.34 Edge N Offset 7	96 GHz VNT 3- 60 dB — R 8.9 µs — V	DH5 24	80MHz /	uto FFT	p-Hoppir		4,52 dBr
M4 Spectrun Ref Level Att SGL Count • 1Pk Max 20 dBm - 10 dBm - 20 dBm - 20 dBm - 30 dBm - 30 dBm - 50 dBm	1 Band 27.60 dBm 40 dB 100/100	2.34 Edge N Offset 7	96 GHz VNT 3- 60 dB — R 8.9 µs — V	DH5 24	80MHz /	uto FFT	p-Hoppir	2.475	4,52 dBr
M4 Spectrun Ref Level Att SGL Count 10 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm- -40 dBm-	1 Band 27.60 dBm 40 dB 100/100	2.34 Edge N Offset 7	96 GHz VNT 3- 60 dB — R 8.9 µs — V	DH5 24	80MHz /	uto FFT	p-Hoppir	2.475	4,52 dBr
M4 Spectrun Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	1 Band 27.60 dBm 40 dB 100/100	2.34 Edge N Offset 7	96 GHz VNT 3- 60 dB — R 8.9 µs — V		80MHz /	uto FFT	p-Hoppir	2.475	4.52 dBr
M4 Spectrun Ref Level Att SGL Count 9 ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	1 Band 27.60 dBm 40 dB 100/100	2.34 Edge N Offset 7	96 GHz VNT 3- 60 dB — R 8.9 µs — V		RSOMHZ A	uto FFT	p-Hoppir	2.475	4,52 dBr
M4 Spectrun Ref Level Att SGL Count ID dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	1 Band 27.60 dBm 40 dB 100/100	2.34 Edge N Offset 7	96 GHz VNT 3- 60 dB — R 8.9 µs — V		80MHz /	uto FFT	p-Hoppir	2.475	4.52 dBr

20 dBm								
				M	1[1]		2 400	3.16 dBm 015000 GHz
10,0Bm				M	2[1]			-46.21 dBm
T						1	2.48	350000 GHz
			-					
-10 cBm						-		
-20 aBm	81 dBm			_		_		
-30 08m	-		-			_	-	
	M4 M2							
-50 dBm	numer many	alph Pankins	burn white ways	nothermarkelises	and the second second	www.weatherpool	reported that have a stand of the	the support the super-
			· · · · · · · · · · · · · · · · · · ·					
-60 dBm		15	1					
-70 dBm		1	1001	pts			Stop	2.576 GHz
Marker					1.20			
Type Ref Trc M1 1	X-value 2.480	≇ 15.GHz	Y-value 3.16 dBn	Func	tion	Funct	ion Resul	t
M2 1 M3 1		35 GHz 2.5 GHz	-46.21 dBn -46.40 dBn					
M4 1		73 GHz	-43.86 dBn					
Spectrum Ref Level 27.60 dB Att 40 c SGL Count 8000/800	dB SWT 10	.60 dB 🐞 R	VNT 3-DI	13.2		nt1 Hop	ping R	tef
Spectrum Ref Level 27.60 dB Att 40 d	om Offset 7. dB SWT 18	.60 dB 🐞 R	BW 100 kHz	Mode A	uto FFT	nt1 Hop	ping R	
Spectrum Ref Level 27.60 dB Att 40 c SGL Count 8000/800	om Offset 7. dB SWT 18	.60 dB 🐞 R	BW 100 kHz	Mode A		nt1 Hop		
Spectrum Ref Level 27.60 dB Att 40 d SGL Count 8000/800 1Pk Max	om Offset 7. dB SWT 18	.60 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT	nt1 Hop		4,86 dBm
Spectrum Ref Level 27.60 dB Att 40 c SGL Count \$000/800 1Pk Max 20 dBm-	om Offset 7. dB SWT 18	.60 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT	nt1 Hop		4,86 dBm
Spectrum Ref Level 27.60 dB Att 40 d SGL Count 8000/800 IPk Max 20 dBm 10 dBm	om Offset 7. dB SWT 18	.60 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT	nt1 Hop		4,86 dBm
Spectrum Ref Level 27.60 dB Att 40 c SGL Count 8000/800 IPk Max 20 dBm 10 dBm -10 dBm	om Offset 7. dB SWT 18	.60 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT	nt1 Hop		4,86 dBm
Spectrum Ref Level 27.60 dB Att 40 d SGL Count 8000/800 IPk Max 20 dBm 10 dBm	om Offset 7. dB SWT 18	.60 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT	nt1 Hop		4,86 dBm
Spectrum Ref Level 27.60 dB Att 40 c SGL Count 8000/800 IPk Max 20 dBm 10 dBm -10 dBm	om Offset 7. dB SWT 18	.60 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT	nt1 Hop		4,86 dBm
Spectrum Ref Level 27.60 dB Att 400 SGL Count 8000/800 IPk Max 20 dBm 10 dBm 0° dBm -10 dBm -20 dBm	om Offset 7. dB SWT 18	.60 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT	nt1 Hop		4,86 dBm
Spectrum Ref Level 27.60 dB Att 40 d SGL Count 8000/800 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	om Offset 7. dB SWT 18	.60 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT	nt1 Hop		4,86 dBm
Spectrum Ref Level 27.60 dB Att 40 d SGL Count 8000/800 IPk Max 20 dBm 10 dBm *0 dBm -20 dBm -30 dBm -40 dBm	om Offset 7. dB SWT 18	.60 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT	nt1 Hop		4,86 dBm
Spectrum Ref Level 27.60 dB Att 40 d SGL Count 8000/800 IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	om Offset 7. dB SWT 18	.60 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT	nt1 Hop		4,86 dBm
Spectrum Ref Level 27.60 dB Att 40 d SGL Count 8000/800 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	om Offset 7. dB SWT 18	.60 dB 🐞 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT	nt1 Hop	2,480	4,86 dBm

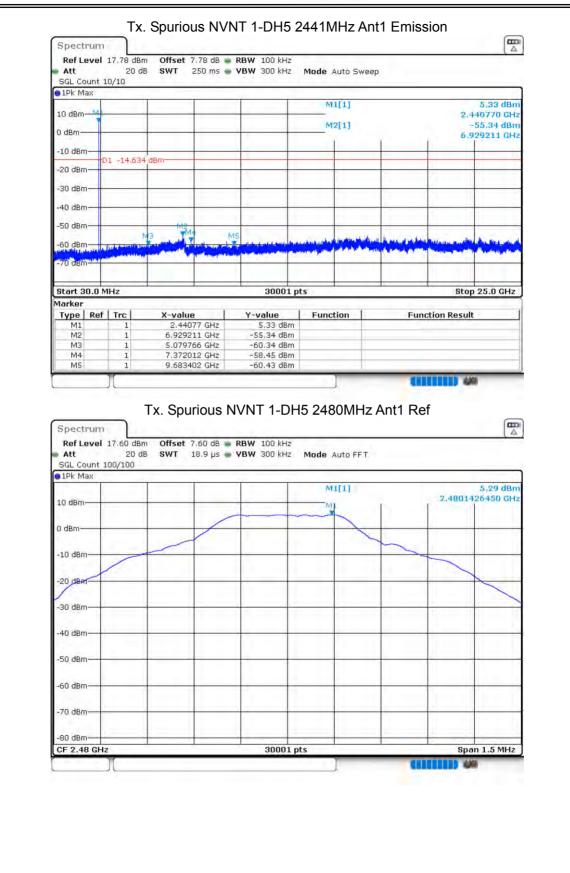
Spectrur	n							
Ref Level Att SGL Count	40 dE	8 SWT 227,5 µs	RBW 100 kHz VBW 300 kHz	Mode Auto F	FT.			
🕽 1Pk Max								
				M1[1]		4.43 dBm		
20 dBm						2.47715000 GHz		
10 dBm			1.1	M2[1]		-43.04 dB 2.48350000 G		
		1			(2740330000 GHZ		
aldem	-							
1								
-10 cBm-	A 112 A							
-20 aBm-	D1 -15,14	s apu.						
20 00111			1					
-30 dBm								
MO	M4	M3		100				
-40 dBm2			weeking all and some providence	a handles all weat	un Amarillan unt	moren mother wanter warden war		
-50 dBm-	V.			es of a second a	Be and an adding a	And in the		
-60 dBm	((
	1.00					to a second seco		
-70 dBm- Start 2.47	6 CUIN	1 1	1001 pt	1		Stop 2.576 GHz		
Marker			1001 pt:	5		Stup 2.570 GH2		
	f Trc	X-value	Y-value	Function	I Eur	ction Result		
M1	1	2.47715 GHz	4,43 dBm	ranction	Fui	iction Result		
M2	1	2.4835 GHz	-43.04 dBm					
MЗ	1	2.5 GHz	-42.64 dBm		1			
M4	1	2.4899 GHz	-42.48 dBm		1			

8.7 CONDUCTED RF SPURIOUS EMISSION

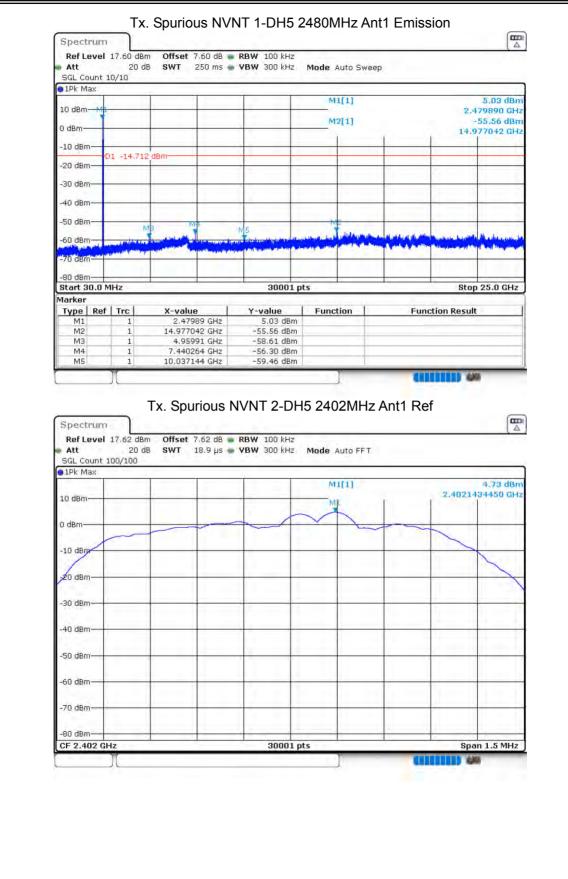
0.1 00110	001LD1					
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-53.79	-20	Pass
NVNT	1-DH5	2441	Ant 1	-60.7	-20	Pass
NVNT	1-DH5	2480	Ant 1	-60.85	-20	Pass
NVNT	2-DH5	2402	Ant 1	-57.29	-20	Pass
NVNT	2-DH5	2441	Ant 1	-60.03	-20	Pass
NVNT	2-DH5	2480	Ant 1	-59.88	-20	Pass
NVNT	3-DH5	2402	Ant 1	-56.09	-20	Pass
NVNT	3-DH5	2441	Ant 1	-58.89	-20	Pass
NVNT	3-DH5	2480	Ant 1	-57.06	-20	Pass

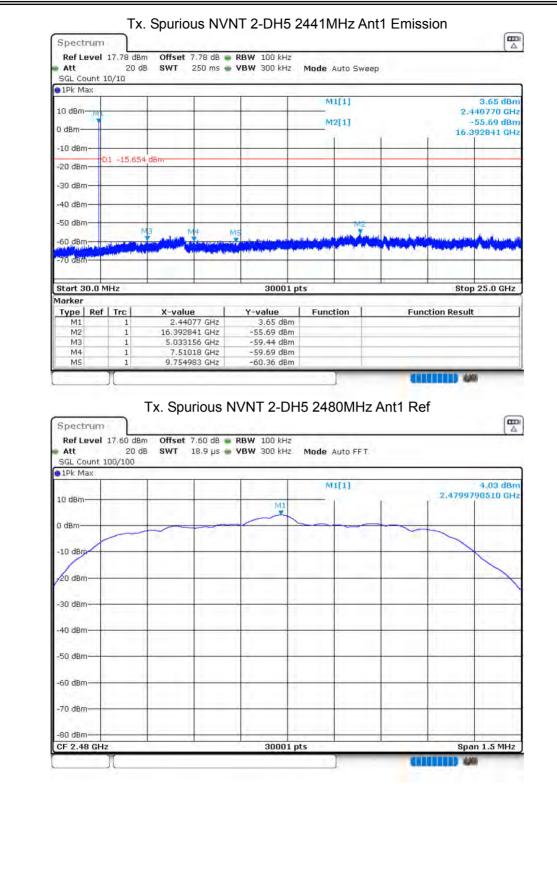
Spectrum Ref Level 17.62 dBm Offset 7.62 dB 🖷 RBW 100 kHz SWT 18.9 µs 🛥 VBW 300 kHz Att 20 dB Mode Auto FFT SGL Count 100/100 1Pk Max 5,89 dBm 2.4018280560 GHz MI[1] 10 dBm-0 dBm -10 dBm--20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm-Span 1.5 MHz 30001 pts CF 2.402 GHz 144

Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Ref

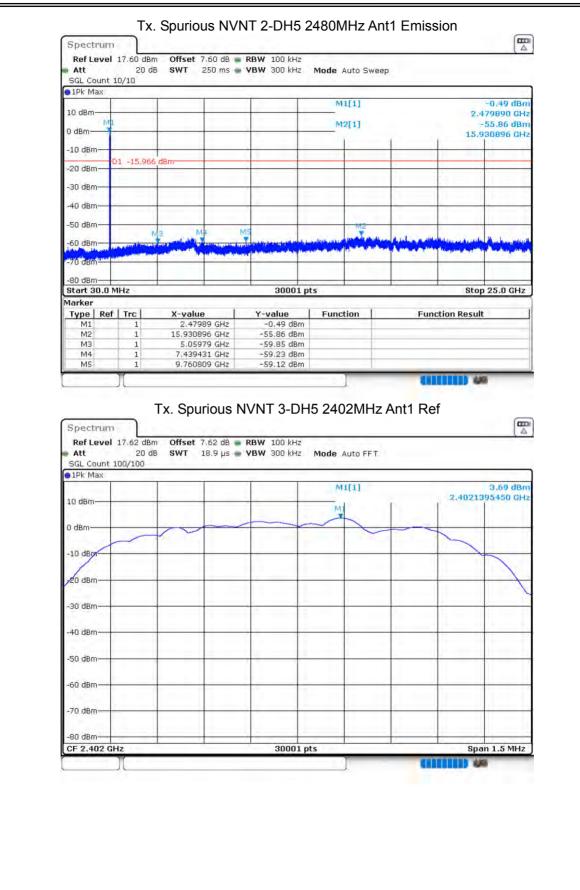


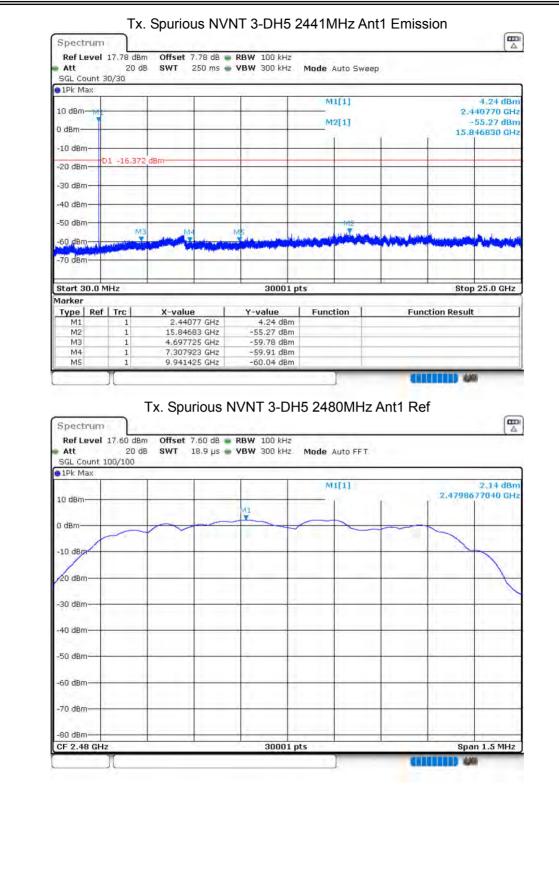
10 dBm					M1	[1]			5.53 dB
0 dBm			-		M2	m			01650 GI 47.91 dB
							(06378 G
-10 dBm	01 -14,107	d8m							
-20 dBm-	te ne bees		-	-	-	_	-		-
-30 dBm				-					
-40 dBm		Ma							_
-50 dBm		IVIE T	_					11 11	
-60 dBm-	Ma	Harris Market	MS	and the state of the state	Auto Auto Auto	autoriante antesa	بالمعادية الدوراتي	Stampediates Rosette	Anteria
-70 dBm-1		and the second	and the second date of the second	genter and produce the state	ever during t	and the second second	A Standard	Contraction of the second states	Anthroat
-80 dBm Start 30.0 M	MHz		1	30001 p	ots			Stop	25.0 GH
Marker	1 Torol	X-value		V	Functi	. 1	Euro	tion Result	
Type Ref	1		65 GHz	Y-value 5.53 dBm	Functi	un	Fun	alon Result	
M2 M3	1	7.2063		-47.91 dBm -58.91 dBm		_			
M4	1	7.2063	78 GHz	-47.91 dBm					
		0 5377.	44 GHz	~60.15 dBm	1	1			
M5 Spectrum Ref Level Att SGL Count : 1Pk Max	17.78 dBm 20 dB	Tx. Spui	rious N'	VNT 1-DH	Mode Au	uto FFT	Ant1 Re	f	
Spectrum Ref Level Att SGL Count :	17.78 dBm 20 dB	Tx. Spui	rious N'	VNT 1-DH		uto FFT	Ant1 Re	f 2.44099	5,37 dB
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm	17.78 dBm 20 dB	Tx. Spui	rious N'	VNT 1-DH	Mode Au	uto FFT	Ant1 Re		5,37 de
Spectrum Ref Level Att SGL Count 1Pk Max	17.78 dBm 20 dB	Tx. Spui	rious N'	VNT 1-DH	Mode Au	uto FFT	Ant1 Re		5,37 dB
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm	17.78 dBm 20 dB	Tx. Spui	rious N'	VNT 1-DH	Mode Au	uto FFT	Ant1 Re		5,37 dB
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm	17.78 dBm 20 dB	Tx. Spui	rious N'	VNT 1-DH	Mode Au	uto FFT	Ant1 Re		5,37 de
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm	17.78 dBm 20 dB	Tx. Spui	rious N'	VNT 1-DH	Mode Au	uto FFT	Ant1 Re		5,37 de
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	17.78 dBm 20 dB	Tx. Spui	rious N'	VNT 1-DH	Mode Au	uto FFT	Ant1 Re		5,37 de
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm	17.78 dBm 20 dB	Tx. Spui	rious N'	VNT 1-DH	Mode Au	uto FFT	Ant1 Re		5,37 de
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	17.78 dBm 20 dB	Tx. Spui	rious N'	VNT 1-DH	Mode Au	uto FFT	Ant1 Re		5,37 dB
Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	17.78 dBm 20 dB	Tx. Spui	rious N'	VNT 1-DH	Mode Au	uto FFT	Ant1 Re		5,37 de
Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	17.78 dBm 20 dB	Tx. Spui	rious N'	VNT 1-DH	Mode Au	uto FFT	Ant1 Re		5,37 de
Spectrum Ref Level Att SGL Count : 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	17.78 dBm 20 dB	Tx. Spui	rious N'	VNT 1-DH	Mode Au	uto FFT	Ant1 Re		5,37 dB
Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	17.78 dBm 20 dB	Tx. Spui	rious N'	VNT 1-DH	Mode Au	uto FFT	Ant1 Re		5,37 dB
Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	17.78 dBm 20 dB	Tx. Spui	rious N'	VNT 1-DH	Mode Au	uto FFT	Ant1 Re		5,37 dB
Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm	17,78 dBm 20 dB 100/100	Tx. Spui	rious N'		Mode Au	uto FFT	Ant1 Re	2,44099	5.37 de 22500 G
Spectrum Ref Level Att SGL Count : 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm	17,78 dBm 20 dB 100/100	Tx. Spui	rious N'	VNT 1-DH	Mode Au	uto FFT	Ant1 Re	2,44099	5,37 de





10 dBm					(M1[1]			-0.36 di
						11100			401650 G
e ann				-		M2[1]	1		-52.57 dt 205546 G
-10 dBm				-	-				
-20 dBm-	D1 -15.273	dBm	-						
-30 dBm									
-40 dBm									
		Ma							
-50 dBm	M		MS			1. and a lo	100 - 1		1000
-60 dBm-	and faith and a stream		elly transportations	and the second	a diga da da da da da da	and the second second	- And a start of the	na Miner and Anter Sectors	
-70 dBm	A STATE OF STATE OF STATE		and at the second						
-80 dBm						-			
Start 30.0 Aarker	MHz			3000	l pts			Sto	p 25.0 GH
Type Rei	f Trc	X-value	1	Y-value	Fun	ction	Fun	ction Resul	t
M1	1	2.4016	5 GHz	-0.36 dB	m				
M2 M3	1	7.20554		-52.57 dB -60.01 dB					
	1	7.20554	6 GHz	-52.57 dB	m				
M4				60 07 db	1. A				
M5 Spectrum Ref Level Att SGL Count	1]]]]]]]]]]]]]]]]]]]	Offset 7	ious N'	-60.27 dB VNT 2-D RBW 100 kH YBW 300 kH	0H5 24	41MHz		ef	[
M5 Spectrum Ref Level Att	1]]]]]]]]]]]]]]]]]]]	Tx. Spur	ious N'	VNT 2-D	0H5 24 2 2 Mode			ef	1
M5 Spectrum Ref Level Att SGL Count	1]]]]]]]]]]]]]]]]]]]	Tx. Spur	ious N .78 dB ο Ι 8.9 μs ο Ι	VNT 2-D	0H5 24 2 2 Mode	Auto FFT.			4.35 dE
M5 Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm-	1]]]]]]]]]]]]]]]]]]]	Tx. Spur	ious N'	VNT 2-D	0H5 24 2 2 Mode	Auto FFT.			4.35 dB
M5 Spectrum Ref Level Att SGL Count 1Pk Max	1]]]]]]]]]]]]]]]]]]]	Tx. Spur	ious N .78 dB ο Ι 8.9 μs ο Ι	VNT 2-D	0H5 24 2 2 Mode	Auto FFT.			4.35 dB
M5 Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm-	1]]]]]]]]]]]]]]]]]]]	Tx. Spur	ious N .78 dB ο Ι 8.9 μs ο Ι	VNT 2-D	0H5 24 2 2 Mode	Auto FFT.			4.35 dB
M5 Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm- 0 dBm-	1]]]]]]]]]]]]]]]]]]]	Tx. Spur	ious N .78 dB ο Ι 8.9 μs ο Ι	VNT 2-D	0H5 24 2 2 Mode	Auto FFT.			4.35 dB
M5 Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm- 0 dBm-	1]]]]]]]]]]]]]]]]]]]	Tx. Spur	ious N .78 dB ο Ι 8.9 μs ο Ι	VNT 2-D	0H5 24 2 2 Mode	Auto FFT.			4.35 dB 284560 G)
M5 Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm	1]]]]]]]]]]]]]]]]]]]	Tx. Spur	ious N .78 dB ο Ι 8.9 μs ο Ι	VNT 2-D	0H5 24 2 2 Mode	Auto FFT.			4.35 dB
M5 Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm	1]]]]]]]]]]]]]]]]]]]	Tx. Spur	ious N .78 dB ο Ι 8.9 μs ο Ι	VNT 2-D	0H5 24 2 2 Mode	Auto FFT.			4.35 dB
M5 Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm	1]]]]]]]]]]]]]]]]]]]	Tx. Spur	ious N .78 dB ο Ι 8.9 μs ο Ι	VNT 2-D	0H5 24 2 2 Mode	Auto FFT.			4.35 dB
M5 Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1]]]]]]]]]]]]]]]]]]]	Tx. Spur	ious N .78 dB ο Ι 8.9 μs ο Ι	VNT 2-D	0H5 24 2 2 Mode	Auto FFT.			4.35 dB
M5 Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	1]]]]]]]]]]]]]]]]]]]	Tx. Spur	ious N .78 dB ο Ι 8.9 μs ο Ι	VNT 2-D	0H5 24 2 2 Mode	Auto FFT.			4.35 dB
M5 Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1]]]]]]]]]]]]]]]]]]]	Tx. Spur	ious N .78 dB ο Ι 8.9 μs ο Ι	VNT 2-D	0H5 24 2 2 Mode	Auto FFT.			4.35 dB
M5 Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	1]]]]]]]]]]]]]]]]]]]	Tx. Spur	ious N .78 dB ο Ι 8.9 μs ο Ι	VNT 2-D	0H5 24 2 2 Mode	Auto FFT.			4.35 dB
M5 Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	1]]]]]]]]]]]]]]]]]]]	Tx. Spur	ious N .78 dB ο Ι 8.9 μs ο Ι	VNT 2-D	0H5 24 2 2 Mode	Auto FFT.			4.35 dB
M5 Spectrum Ref Level Att SGL Count IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	1]]]]]]]]]]]]]]]]]]]	Tx. Spur	ious N .78 dB ο Ι 8.9 μs ο Ι	VNT 2-D	0H5 24 2 2 Mode	Auto FFT.			4.35 dE
M5 Spectrum Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -10 dBm -30 dBm -30 dBm -50 dBm -60 dBm	1 17,78 dBm 20 dB 100/100	Tx. Spur	ious N .78 dB ο Ι 8.9 μs ο Ι	VNT 2-D	PH5 24	Auto FFT.		2.4408	4.35 dE





-20 dBm	D1 -16,315				M1[1]		2.40165	
-10 dBm	D1 -16,315				1107.12			
-20 dBm	D1 -16,315				M2[1]		-52.4	
-20 dBm	D1 -16,315					-		
12.00		dBm	_			-		
-30 dBm								
-40 dBm						_		
-50 dBm		Ma						_
-60 dBm-	MS	. and Mi	MS	فيه متحد والتجاهد	-	And Adaptions	And the state of t	List.
-70 dBm-			na la factoria na state targana					100
-80 dBm			-	1 1 1		1		
Start 30.0	MHz		-	30001 p	s	2	Stop 25.0	O GI
Marker Type Rei	flTrcl	X-value	1	Y-value	Function	Eun	ction Result	
M1	1	2.4016	65 GHz	3.21 dBm	T uniocium		anon nosar	_
M2 M3	1	7.20554		-52.40 dBm -59.64 dBm				
M4 M5	1			-52.40 dBm				
Distance in the second	1	7.20554						
Att SGL Count	1 1 1 1 1 1 1 1 7,78 dBm 20 dB	7.20554 9.44119 Tx. Spur	•3 GHz	-59.98 dBm		Iz Ant1 Re	f	(
Ref Level Att	1 1 1 1 1 1 1 1 7,78 dBm 20 dB	7.20554 9.44119 Tx. Spur	•3 GHz	-59,98 dBm VNT 3-DH RBW 100 kHz				
Ref Level Att SGL Count	1 1 1 1 1 1 1 1 7,78 dBm 20 dB	7.20554 9.44119 Tx. Spur	•3 GHz	-59.98 dBm VNT 3-DH RBW 100 kHz YBW 300 kHz	Mode Auto FF			53 d
Ref Level Att SGL Count 1Pk Max	1 1 1 1 1 1 1 1 7,78 dBm 20 dB	7.20554 9.44119 Tx. Spur	•3 GHz	-59,98 dBm VNT 3-DH RBW 100 kHz	Mode Auto FF		3,6	63 d
Ref Level Att SGL Count 1Pk Max	1 1 1 1 1 1 1 1 7,78 dBm 20 dB	7.20554 9.44119 Tx. Spur	•3 GHz	-59.98 dBm VNT 3-DH RBW 100 kHz YBW 300 kHz	Mode Auto FF		3,6	53 d
Ref Level Att SGL Count 1Pk Max	1 1 1 1 1 1 1 1 7,78 dBm 20 dB	7.20554 9.44119 Tx. Spur	•3 GHz	-59.98 dBm VNT 3-DH RBW 100 kHz YBW 300 kHz	Mode Auto FF		3,6	53 d
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm	1 1 1 1 1 1 1 1 7,78 dBm 20 dB	7.20554 9.44119 Tx. Spur	•3 GHz	-59.98 dBm VNT 3-DH RBW 100 kHz YBW 300 kHz	Mode Auto FF		3,6	53 d
Ref Level Att SGL Count 1Pk Max 10 dBm- 0 dBm-	1 1 1 1 1 1 1 1 7,78 dBm 20 dB	7.20554 9.44119 Tx. Spur	•3 GHz	-59.98 dBm VNT 3-DH RBW 100 kHz YBW 300 kHz	Mode Auto FF		3,6	53 d
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm	1 1 1 1 1 1 1 1 7,78 dBm 20 dB	7.20554 9.44119 Tx. Spur	•3 GHz	-59.98 dBm VNT 3-DH RBW 100 kHz YBW 300 kHz	Mode Auto FF		3,6	53 d
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -30 dBm -30 dBm	1 1 1 1 1 1 1 1 7,78 dBm 20 dB	7.20554 9.44119 Tx. Spur	•3 GHz	-59.98 dBm VNT 3-DH RBW 100 kHz YBW 300 kHz	Mode Auto FF		3,6	53 d
Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 dBm	1 1 1 1 1 1 1 1 7,78 dBm 20 dB	7.20554 9.44119 Tx. Spur	•3 GHz	-59.98 dBm VNT 3-DH RBW 100 kHz YBW 300 kHz	Mode Auto FF		3,6	53 d
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -30 dBm -30 dBm	1 1 1 1 1 1 1 1 7,78 dBm 20 dB	7.20554 9.44119 Tx. Spur	•3 GHz	-59.98 dBm VNT 3-DH RBW 100 kHz YBW 300 kHz	Mode Auto FF		3,6	(53 d 90 C
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	1 1 1 1 1 1 1 1 7,78 dBm 20 dB	7.20554 9.44119 Tx. Spur	•3 GHz	-59.98 dBm VNT 3-DH RBW 100 kHz YBW 300 kHz	Mode Auto FF		3,6	63 d
Ref Level Att SGL Count IPk Max 10 dBm -0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 1 1 1 1 1 1 1 7,78 dBm 20 dB	7.20554 9.44119 Tx. Spur	•3 GHz	-59.98 dBm VNT 3-DH RBW 100 kHz YBW 300 kHz	Mode Auto FF		3,6	63 d
Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	1 1 1 1 1 1 1 1 7,78 dBm 20 dB	7.20554 9.44119 Tx. Spur	•3 GHz	-59.98 dBm VNT 3-DH RBW 100 kHz YBW 300 kHz	Mode Auto FF		3,6	63 d
Ref Level Att SGL Count SGL Count 10 dBm 0 dBm -10 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm	1 1 1 1 1 1 1 1 7,78 dBm 20 dB	7.20554 9.44119 Tx. Spur	•3 GHz	-59.98 dBm VNT 3-DH RBW 100 kHz YBW 300 kHz	Mode Auto FF		3,6	53 d
Ref Level Att SGL Count SGL Count IPk Max 10 dBm 0 dBm -10 dBm -30 dBm -30 dBm -50 dBm -50 dBm	1 1 1 1 17.78 dBm 20 dB 100/100	7.20554 9.44119 Tx. Spur	•3 GHz	-59.98 dBm VNT 3-DH RBW 100 kHz YBW 300 kHz	Mode Auto FF		3,6	30 (

Ref Le Att SGL Co		17.60 dB 20 (0/30			RBW 100 kHz VBW 300 kHz	Mode)	Auto Sweep			(Δ		
1Pk Ma	эх	200	1									
10 dBm-						M	1[1]			2.78 dBn		
10 0Bm-	M						01.17		2.479890 (-54.02 d			
0 dBm-						M	2[1]		-54,92 d 15,344933 (
					1		1	(15.3	11933 GH2		
-10 dBm		-	+									
		1 -17.86	1 dBm							-		
-20 dBm										-		
-30 dBm	-											
00 00.0										1.		
-40 dBm		_										
-50 dBm			MR MA		MS		Ma					
-60 dBm	_		The second of the		The second second	and the stand	philastic discrimination	A subscription and	Warmen the worder	Antonia		
and the latest	in and the		- passing the second second		- Province of the Party Name	and the second			To down the same first	Andersetter		
-70 dBm	1					-						
-80 dBm	_					1.3		S				
Start 3	U.U M	HZ		_	30001 pt	s			Stop	25.0 GHz		
Marker				1		-	. 1	age to				
	Ref		X-value	114	Y-value 2.78 dBm	Func	tion	Fund	tion Result			
M1 M2		1	2.47989 G 15.344933 G		-54.92 dBm							
M2 M3	-	1	15.344933 G 5.10973 G		-59.37 dBm							
M4	-	1	7.439431 G		~59.77 dBm							
M5	-	1	10.052126 G		-58.93 dBm							

END OF REPORT