

RADIO TEST REPORT FCC ID: ZSW-30-119

Product: Mobile Phone Trade Mark: Bmobile Model No.: BL60 PRO Family Model: N/A Report No.: S22051802601002 Issue Date: Jun 06, 2022

Prepared for

b mobile HK Limited

Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak Street; Kwai Chung; New Territories; Hong Kong, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

1							
2	2 SUMMARY OF TEST RESULTS						
3	FA	CILITIES AND ACCREDITATIONS	5				
	3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5				
4	GE	NERAL DESCRIPTION OF EUT	6				
5	DE	SCRIPTION OF TEST MODES	8				
6	SE	FUP OF EQUIPMENT UNDER TEST	9				
	6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	10 11				
7	TE	ST REQUIREMENTS	13				
	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION 6DB BANDWIDTH DUTY CYCLE PEAK OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BAND EDGE MEASUREMENT SPURIOUS RF CONDUCTED EMISSIONS ANTENNA APPLICATION	16 25 26 28 29 31 32 33				
8	TE	ST RESULTS					
	8.1 8.2 8.3 8.4 8.5	MAXIMUM CONDUCTED OUTPUT POWER OCCUPIED CHANNEL BANDWIDTH MAXIMUM POWER SPECTRAL DENSITY LEVEL BAND EDGE CONDUCTED RF SPURIOUS EMISSION	36 40 42				

NTEK 北测

1 TEST RESULT CERTIFICATION

Applicant's name:	b mobile HK Limited		
Address:	Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak Street; Kwai Chung; New Territories; Hong Kong, China		
Manufacturer's Name:	b mobile HK Limited		
Address:	Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak Street; Kwai Chung; New Territories; Hong Kong, China		
Product description			
Test Sample Number:	S220518026003		
Product name:	Mobile Phone		
Model and/or type reference:	BL60 PRO		
Family Model:	N/A		
	IN/A		

Measurement Procedure Used:

APPLICABLE STANDARDS

 APPLICABLE STANDARD/ TEST PROCEDURE
 TEST RESULT

 FCC 47 CFR Part 2, Subpart J
 FCC 47 CFR Part 15, Subpart C

 Complied
 Complied

ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	May 19. 2022 ~ Jun 06, 2022	
Testing Engineer	:	12 Men Lin	
		(Allen Liu)	_
Authorized Signatory	:	Alex	
		(Alex Li)	_

NTEK 北测

2 SUMMARY OF TEST RESULTS

R

ilac.M

FCC Part15 (15.247), Subpart C						
Standard Section Test Item Verdict Remark						
15.207	Conducted Emission	PASS				
15.247 (a)(2)	6dB Bandwidth	PASS				
15.247 (b) Peak Output Power		PASS				
15.209 (a) 15.205 (a) Radiated Spurious Emission		PASS				
15.247 (e)	Power Spectral Density	PASS				
15.247 (d) Band Edge Emission		PASS				
15.247 (d) Spurious RF Conducted Emission		PASS				
15.203	Antenna Requirement	PASS				

ACCREDITED

Certificate #4298.01

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab. :	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
-	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm :	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location :	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty	
1	Conducted Emission Test	±2.80dB	
2	RF power, conducted	±0.16dB	
3	Spurious emissions, conducted	±0.21dB	
4 All emissions, radiated(30MHz~1GHz)		±2.64dB	
5 All emissions, radiated(1GHz~6GHz)		±2.40dB	
6 All emissions, radiated(>6GHz)		±2.52dB	
7	Temperature	±0.5°C	
8	Humidity	±2%	
9 All emissions, radiated(9KHz~30MHz)		±6dB	

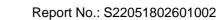
NTEK 北测

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment	Mobile Phone			
Trade Mark	Bmobile			
FCC ID	ZSW-30-119			
Model No.	BL60 PRO			
Family Model	N/A			
Model Difference	N/A			
Operating Frequency	2402MHz~2480MHz			
Modulation	GFSK			
Number of Channels	40 Channels			
Antenna Type	PIFA Antenna			
Antenna Gain	0.95dBi			
Adapter	INPUT: AC 100-240V~50-60Hz 0.2A OUTPUT: DC 5.0V1A			
Battery	DC 3.8V, 3000mAh			
Power supply	DC 3.8V from battery or DC 5V from Adapter.			
HW Version Bmobile_BL60Pro_HW_V1.0				
SW Version Bmobile_BL60Pro_TIGO_LATAM_V001				

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.



Revision History

Report No.	Version	Description	Issued Date
S22051802601002	Rev.01	Initial issue of report	Jun 06, 2022
			I

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Certificate #4298.01

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

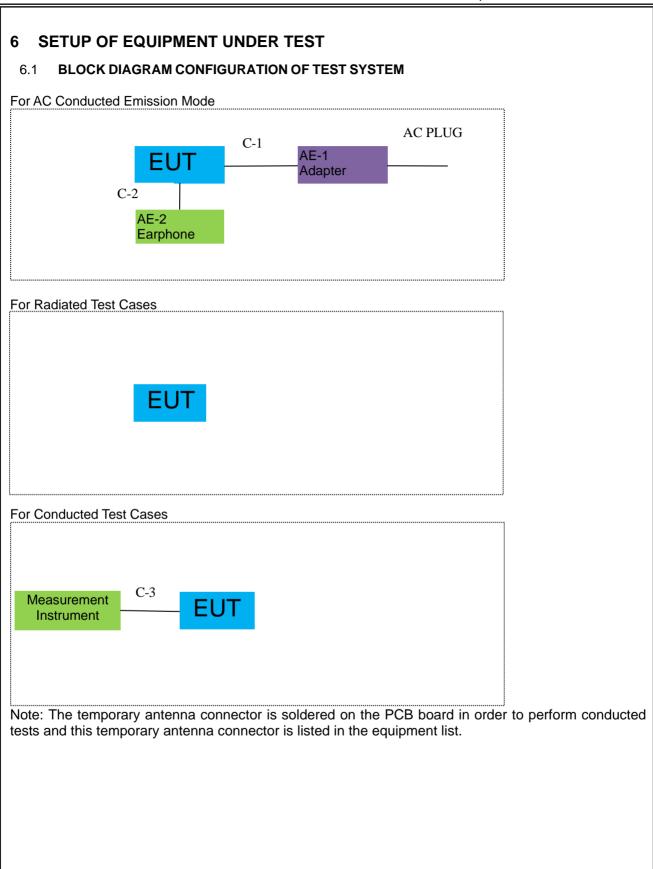
Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+kx2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases					
Test Item	Data Rate/ Modulation				
AC Conducted Emission	Mode 1: normal link mode				
	Mode 1: normal link mode				
Radiated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps				
Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps				
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps				
	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps				
Conducted Test	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps				
Cases	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps				

Note:


1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode(duty cycle =100% during the test)

2. AC power line Conducted Emission was tested under maximum output power.

3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

4. EUT built-in battery-powered, the battery is fully-charged.

NTEK 北测

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	N/A	Peripherals
AE-2	Earphone	N/A	N/A	Peripherals

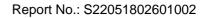
Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	0.9m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK 北测

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS


Radiation& Conducted Test equipment

		estequipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.06	2023.04.05	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2021.07.01	2022.06.30	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2021.07.01	2022.06.30	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2021.11.07	2022.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2021.07.01	2022.06.30	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.11.07	2022.11.06	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2021.07.01	2022.06.30	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.06	2022.08.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2019.08.06	2022.08.05	3 year
16	Filter	TRILTHIC	2400MHz	29	2021.07.01	2022.06.30	1 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	onduction Test	equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2022.04.06	2023.04.05	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

ACCRED

Certificate #4298.01

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

NTEK 北测[®]

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

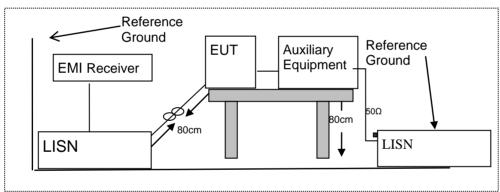
7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

	Conducted	Emission Limit
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56*	56-46*
0.5-5.0	56	46
5.0-30.0	60	50

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

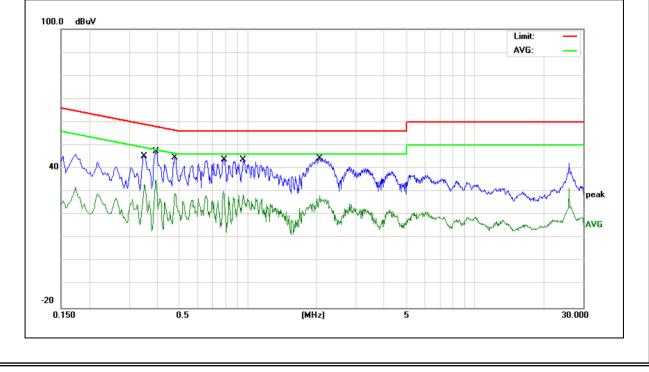
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results

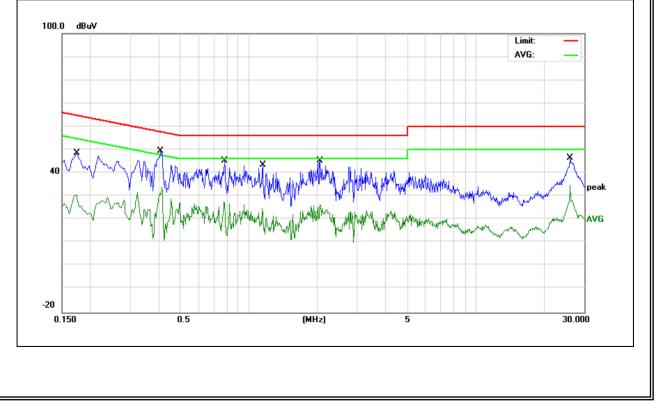

EUT:	Mobile Phone	Model Name :	BL60 PRO
Temperature:	22 °C	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domort
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.3499	35.58	9.63	45.21	58.96	-13.75	QP
0.3499	26.03	9.63	35.66	48.96	-13.30	AVG
0.3940	37.61	9.65	47.26	57.98	-10.72	QP
0.3940	27.60	9.65	37.25	47.98	-10.73	AVG
0.4779	35.04	9.65	44.69	56.38	-11.69	QP
0.4779	24.91	9.65	34.56	46.38	-11.82	AVG
0.7860	34.22	9.66	43.88	56.00	-12.12	QP
0.7860	23.79	9.66	33.45	46.00	-12.55	AVG
0.9579	33.98	9.67	43.65	56.00	-12.35	QP
0.9579	23.91	9.67	33.58	46.00	-12.42	AVG
2.0659	34.71	9.68	44.39	56.00	-11.61	QP
2.0659	24.50	9.68	34.18	46.00	-11.82	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	Mobile Phone	Model Name :	BL60 PRO
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demonto
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1737	38.85	9.65	48.50	64.78	-16.28	QP
0.1737	28.71	9.65	38.36	54.78	-16.42	AVG
0.4098	39.72	9.66	49.38	57.65	-8.27	QP
0.4098	29.99	9.66	39.65	47.65	-8.00	AVG
0.7820	35.45	9.66	45.11	56.00	-10.89	QP
0.7820	25.70	9.66	35.36	46.00	-10.64	AVG
1.1498	33.90	9.66	43.56	56.00	-12.44	QP
1.1498	23.70	9.66	33.36	46.00	-12.64	AVG
2.0619	35.71	9.67	45.38	56.00	-10.62	QP
2.0619	25.48	9.67	35.15	46.00	-10.85	AVG
26.0018	36.34	10.25	46.59	60.00	-13.41	QP
26.0018	26.40	10.25	36.65	50.00	-13.35	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	GHz		
16.42-16.423	399.9-410	4.5-5.15		
16.69475-16.69525	608-614	5.35-5.46		
16.80425-16.80475	960-1240	7.25-7.75		
25.5-25.67	1300-1427	8.025-8.5		
37.5-38.25	1435-1626.5	9.0-9.2		
73-74.6	1645.5-1646.5	9.3-9.5		
74.8-75.2	1660-1710	10.6-12.7		
123-138	2200-2300	14.47-14.5		
149.9-150.05	2310-2390	15.35-16.2		
156.52475-156.52525	2483.5-2500	17.7-21.4		
156.7-156.9	2690-2900	22.01-23.12		
162.0125-167.17	3260-3267	23.6-24.0		
167.72-173.2	3332-3339	31.2-31.8		
240-285	3345.8-3358	36.43-36.5		
322-335.4	3600-4400	(2)		
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358		

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/	′m) (at 3M)
	PEAK	AVERAGE
Above 1000	74	54

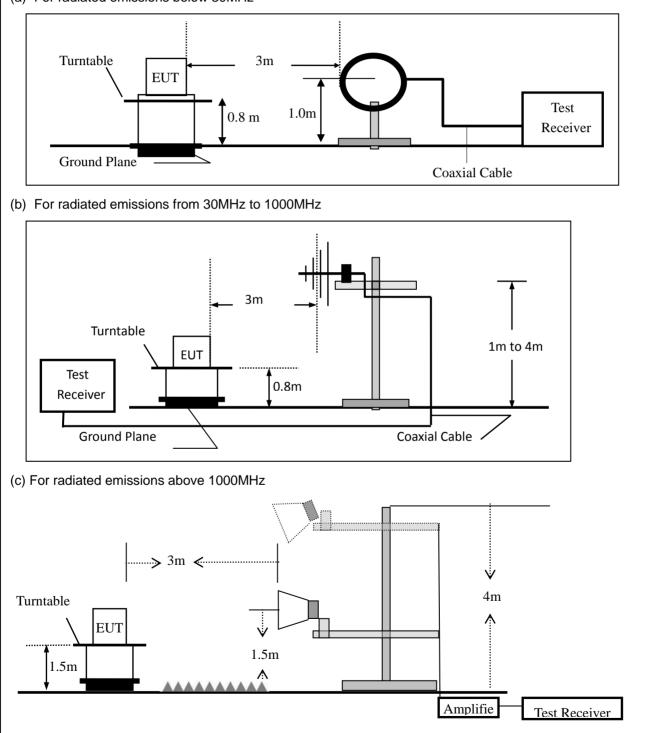
Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

NTEK 北测



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Certificate #4298.01

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth		
30 to 1000	QP	120 kHz	300 kHz		
Above 4000	Peak	1 MHz	1 MHz		
Above 1000	Average	1 MHz	1 MHz		

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

	Spurious	Emission	below	30MHz	(9KHz to 30MHz)
--	----------	----------	-------	-------	-----------------

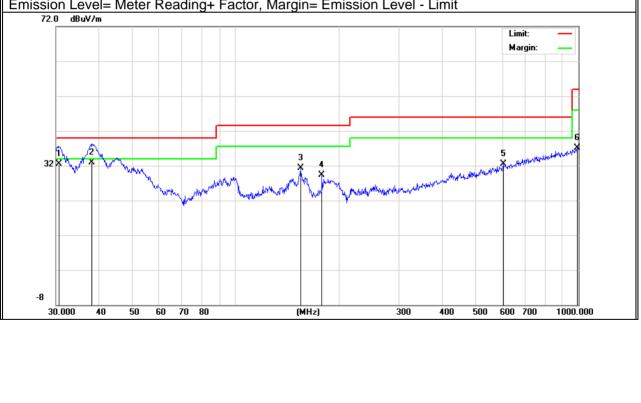
EUT:	Mobile Phone	Model No.:	BL60 PRO
Temperature:	20 ℃	Relative Humidity:	48%
Lest Mode:	Mode1/Mode2/Mode3/ Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK AV		PK	AV	PK	AV	

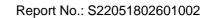
Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

EUT:	Mobile Phone	Model Name :	BL60 PRO
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	DC 3.8V		


ACCREDITED

Certificate #4298.01


Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	uV/m) (dBuV/m)			
V	30.6379	6.48	26.12	32.60	40.00	-7.40	QP	
V	38.2120	10.93	22.07	33.00	40.00	-7.00	QP	
V	154.8204	12.97	18.32	31.29	43.50	-12.21	QP	
V	178.7584	12.53	16.85	29.38	43.50	-14.12	QP	
V	603.5392	6.93	25.62	32.55	46.00	-13.45	QP	
V	993.0114	6.68	30.46	37.14	54.00	-16.86	QP	

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
Н	30.0000	5.54	26.11	31.65	40.00	-8.35	QP	
Н	38.0782	7.93	22.14	30.07	40.00	-9.93	QP	
Н	92.1388	7.97	17.28	25.25	43.50	-18.25	QP	
Η	160.9089	10.23	18.11	28.34	43.50	-15.16	QP	
Η	478.8456	7.53	23.89	31.42	46.00	-14.58	QP	
H Remark	962.1623	7.05	30.09	37.14	54.00	-16.86	QP	
72.0	n Level= Meter F dBuV/m		tor, margin			Limit:		
322	Z	hymmeria a start	A Webwerendforterwerend	Mun munn	5 Xamarana bakatan ara		S AM X	
-8 30.	000 40 50 6	50 70 80	(MI	Hz)	300 400 500	600 700	000.000	

ACCREDITED

Certificate #4298.01

NTEK	北测®
------	-----

■ Spurious	Spurious Emission Above 1GHz (1GHz to 25GHz)											
EUT:	Ν	Nobile Pho	ne		Mod	el No.:		BL60) PRO			
Temperature	e: 2	20 °C			Rela	elative Humidity: 48%						
Test Mode:	N	Node2/Mo	de3/Mode4	ŀ	Test By:			Aller	Allen Liu			
Frequency	Read Level	Cable loss	Antenna Factor	Prea Fac		Emission Level	Lim	its	Margin	Remark	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dl	В)	(dBµV/m)	(dBµ	V/m)	(dB)			
Low Channel (2402 MHz)(GFSK)Above 1G												
4804.338	62.83	5.21	35.59	44.	30	59.33	74.	00	-14.67	Pk	Vertical	
4804.338	42.57	5.21	35.59	44.	30	39.07	54.	00	-14.93	AV	Vertical	
7206.107	60.28	6.48	36.27	44.	60	58.43	74.	00	-15.57	Pk	Vertical	
7206.107	41.68	6.48	36.27	44.	60	39.83	54.	00	-14.17	AV	Vertical	
4804.169	63.52	5.21	35.55	44.	30	59.98	74.	00	-14.02	Pk	Horizontal	
4804.169	43.44	5.21	35.55	44.	30	39.90	54.	00	-14.10	AV	Horizontal	
7206.214	62.11	6.48	36.27	44.	4.52 60.34		74.	00	-13.66	Pk	Horizontal	
7206.214	41.45	6.48	36.27	44.	52	39.68	54.	00	-14.32	AV	Horizontal	
Mid Channel (2440 MHz)(GFSK)Above 1G												
4880.473	64.29	5.21	35.66	44.	20	60.96	74.	00	-13.04	Pk	Vertical	
4880.473	43.30	5.21	35.66	44.	20	39.97	54.	00	-14.03	AV	Vertical	
7320.265	65.94	7.10	36.50	44.	43	65.11	74.	00	-8.89	Pk	Vertical	
7320.265	42.16	7.10	36.50	44.	43	41.33	54.	00	-12.67	AV	Vertical	
4880.366	62.59	5.21	35.66	44.	20	59.26	74.	00	-14.74	Pk	Horizontal	
4880.366	42.02	5.21	35.66	44.	20	38.69	54.	00	-15.31	AV	Horizontal	
7320.234	59.43	7.10	36.50	44.	43	58.60	74.	00	-15.40	Pk	Horizontal	
7320.234	43.37	7.10	36.50	44.	43	42.54	54.	00	-11.46	AV	Horizontal	
			High Cha	annel (2480	MHz)(GFSK	() Abo	ove 10	3			
4960.482	63.88	5.21	35.52	44.	21	60.40	74.	00	-13.60	Pk	Vertical	
4960.482	42.12	5.21	35.52	44.	21	38.64	54.	00	-15.36	AV	Vertical	
7440.131	65.11	7.10	36.53	44.	60	64.14	74.	00	-9.86	Pk	Vertical	
7440.131	49.83	7.10	36.53	44.	60	48.86	54.	00	-5.14	AV	Vertical	
4960.326	62.70	5.21	35.52	44.	21	59.22	74.	00	-14.78	Pk	Horizontal	
4960.326	45.32	5.21	35.52	44.	21	41.84	54.	00	-12.16	AV	Horizontal	
7440.199	63.78	7.10	36.53	44.	60	62.81	74.	00	-11.19	Pk	Horizontal	
7440.199	45.53	7.10	36.53	44.	60	44.56	54.	00	-9.44	AV	Horizontal	

TED

ACCREE

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

ι	JT:	Mobile P	hone			Model No.: BL60			BL60) PRO		
e	mperature:	rature: 20 ℃					ive Humidit	y:	48%			
Test Mode: Mode2/ Mode4 T			Test I	By:		Allen	Liu					
I			<u> </u>		_		_ · ·					
	Frequency	Meter Reading	Cable Loss	Antenna Factor		eamp actor	Emission Level	Lin	nits	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(0	dB)	(dBµV/m)	(dBµ	ıV/m)	(dB)	Туре	
1Mbps(GFSK)												
	2310.00	64.30	2.97	27.80	43	8.80	51.27	7	'4	-22.73	Pk	Horizontal
	2310.00	43.27	2.97	27.80	43	8.80	30.24	5	54	-23.76	AV	Horizontal
	2310.00	62.31	2.97	27.80	43	3.80	49.28	7	'4	-24.72	Pk	Vertical
	2310.00	42.37	2.97	27.80	43	8.80	29.34	5	54	-24.66	AV	Vertical
	2390.00	63.24	3.14	27.21	43	8.80	49.79	7	'4	-24.21	Pk	Vertical
	2390.00	42.59	3.14	27.21	43	8.80	29.14	5	64	-24.86	AV	Vertical
	2390.00	64.86	3.14	27.21	43	8.80	51.41	7	'4	-22.59	Pk	Horizontal
	2390.00	43.26	3.14	27.21	43	8.80	29.81	5	64	-24.19	AV	Horizontal
	2483.50	61.81	3.58	27.70	44	1.00	49.09	7	'4	-24.91	Pk	Vertical
	2483.50	44.02	3.58	27.70	44	4.00	31.30	5	64	-22.70	AV	Vertical
	2483.50	65.73	3.58	27.70	44	4.00	53.01	7	'4	-20.99	Pk	Horizontal
	2483.50	43.59	3.58	27.70	44	1.00	30.87	5	64	-23.13	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

EUT:	Mobil	e Phone		Mo	Model No.:			BL60 PRO			
Temperature	emperature: 20 °C Relative H						48%				
Test Mode: Mode2/ Mode4			Te	st By:		Allen	Liu				
Frequency	Reading Level	Cable Loss	Antenna Factor	Pream Facto		Li	mits	Margin	Detector	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dB	µV/m)	(dB)	Туре		
3260	63.25	4.04	29.57	44.70	52.16		74	-21.84	Pk	Vertical	
3260	57.61	4.04	29.57	44.70	46.52		54	-7.48	AV	Vertical	
3260	65.09	4.04	29.57	44.70	54.00		74	-20.00	Pk	Horizontal	
3260	58.23	4.04	29.57	44.70	47.14		54	-6.86	AV	Horizontal	
3332	64.70	4.26	29.87	44.4(54.43		74	-19.57	Pk	Vertical	
3332	57.41	4.26	29.87	44.4(47.14	4	54	-6.86	AV	Vertical	
3332	66.61	4.26	29.87	44.4(56.34		74	-17.66	Pk	Horizontal	
3332	53.12	4.26	29.87	44.4(42.85		54	-11.15	AV	Horizontal	
17797	45.72	10.99	43.95	43.50	57.16		74	-16.84	Pk	Vertical	
17797	36.33	10.99	43.95	43.50	47.77	4	54	-6.23	AV	Vertical	
17788	45.10	11.81	43.69	44.60	56.00		74	-18.00	Pk	Horizontal	
17788	36.66	11.81	43.69	44.60	47.56		54	-6.44	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit.

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

Certificate #4298.01

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Mobile Phone	Model No.:	BL60 PRO
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

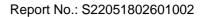
The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}



7.4.6 Test Results

EUT:	JT: Mobile Phone		BL60 PRO	
Temperature:	20 ℃	Relative Humidity:	48%	
Test Mode:	N/A	Test By:	N/A	

Note: Not Applicable

7.5 PEAK OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

Certificate #4298.01

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Mobile Phone	Model No.:	BL60 PRO
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

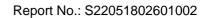
7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

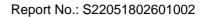
The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.


The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5*DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.


7.6.6 Test Results

EUT:	Mobile Phone	Model No.:	BL60 PRO
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

ACCREDITED

Certificate #4298.01

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

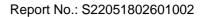
The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.


Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Mobile Phone	Model No.:	BL60 PRO
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Allen Liu

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

Certificate #4298.01

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

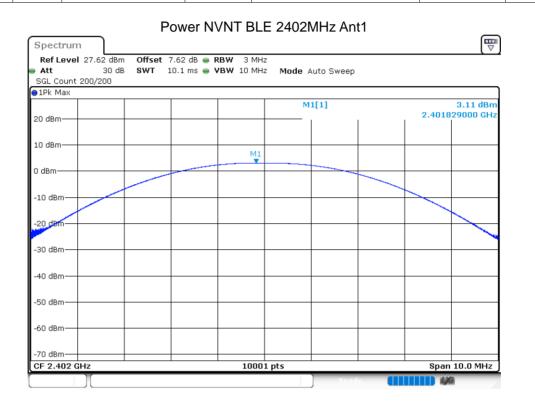
Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.9 ANTENNA APPLICATION

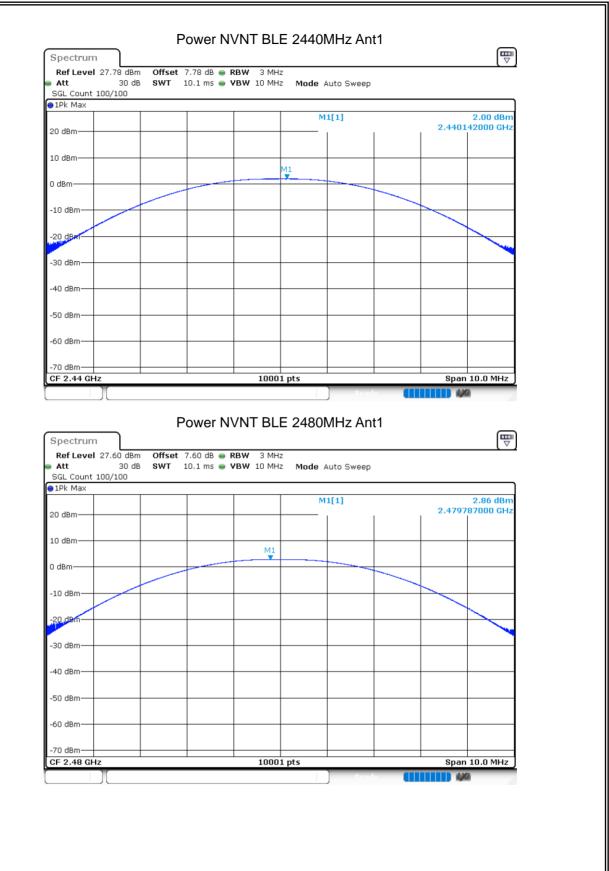
7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

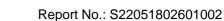

The EUT antenna is permanent attached PIFA antenna (Gain: 0.95dBi). It comply with the standard requirement.

8 TEST RESULTS


8.1 MAXIMUM CONDUCTED OUTPUT POWER

	Condition NVNT NVNT NVNT	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
l	NVNT	BLE	2402	Ant 1	3.114	30	Pass
l	NVNT	BLE	2440	Ant 1	1.998	30	Pass
I	NVNT	BLE	2480	Ant 1	2.864	30	Pass

Report No.: S22051802601002

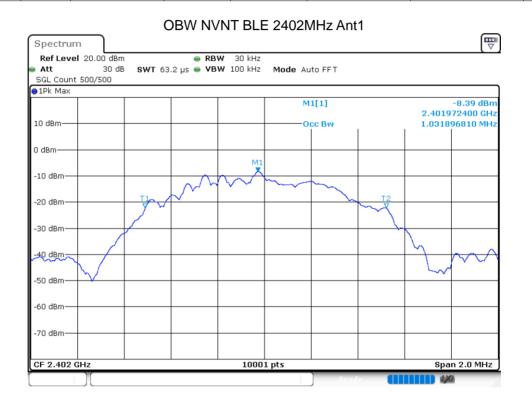


ACCREDITED

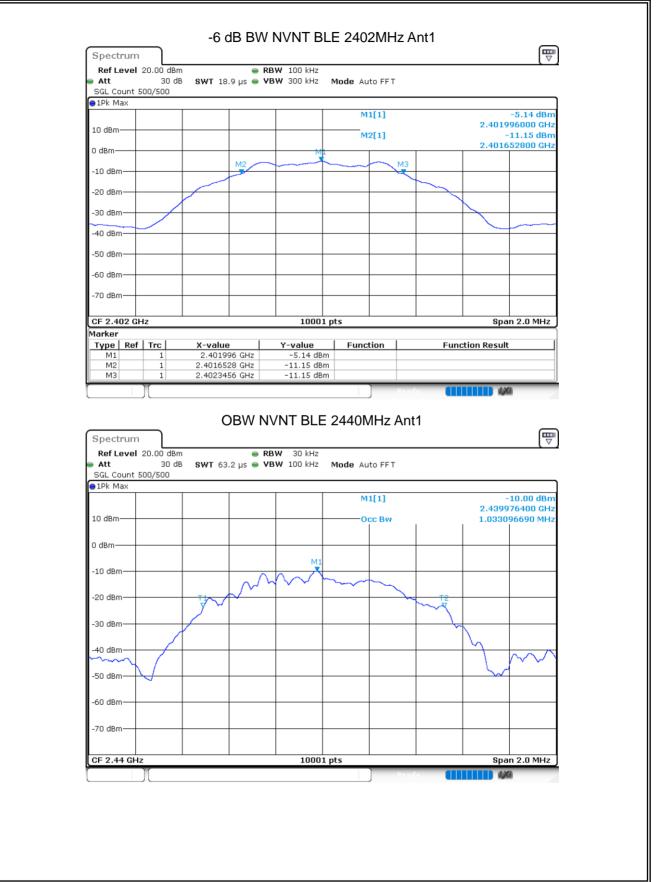
Certificate #4298.01

Version.1.3

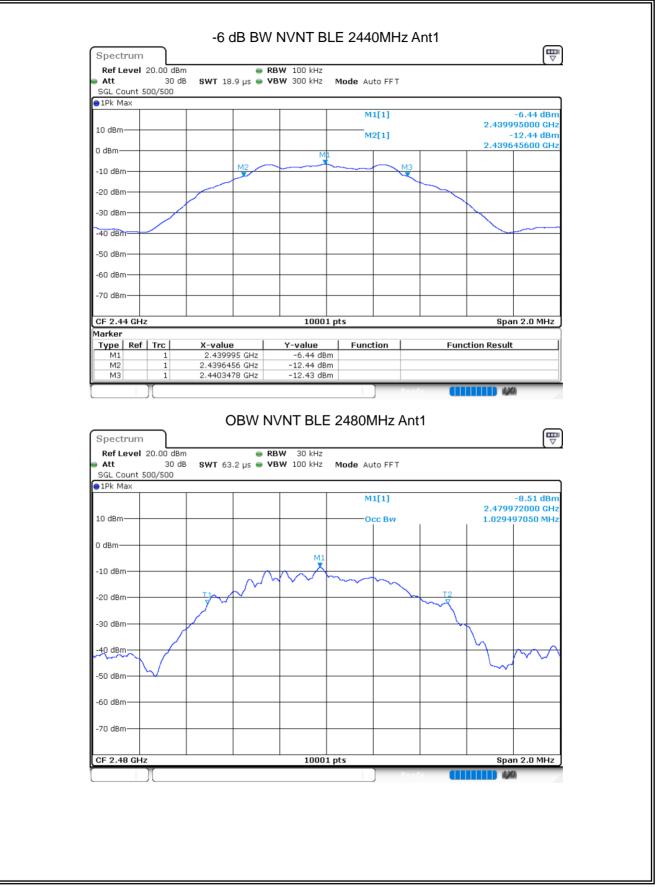
NTEK 北测[®]


8.2 OCCUPIED CHANNEL BANDWIDTH

0.2 000								
Condition	Mode	Frequency	Antenna	99%	-6 dB	Limit -6 dB	Verdict	
		(MHz)		OBW	Bandwidth	Bandwidth		
				(MHz)	(MHz)	(MHz)		
NVNT	BLE	2402	Ant 1	1.0319	0.6928	0.5	Pass	
NVNT	BLE	2440	Ant 1	1.0331	0.7022	0.5	Pass	
NVNT	BLE	2480	Ant 1	1.0295	0.6992	0.5	Pass	

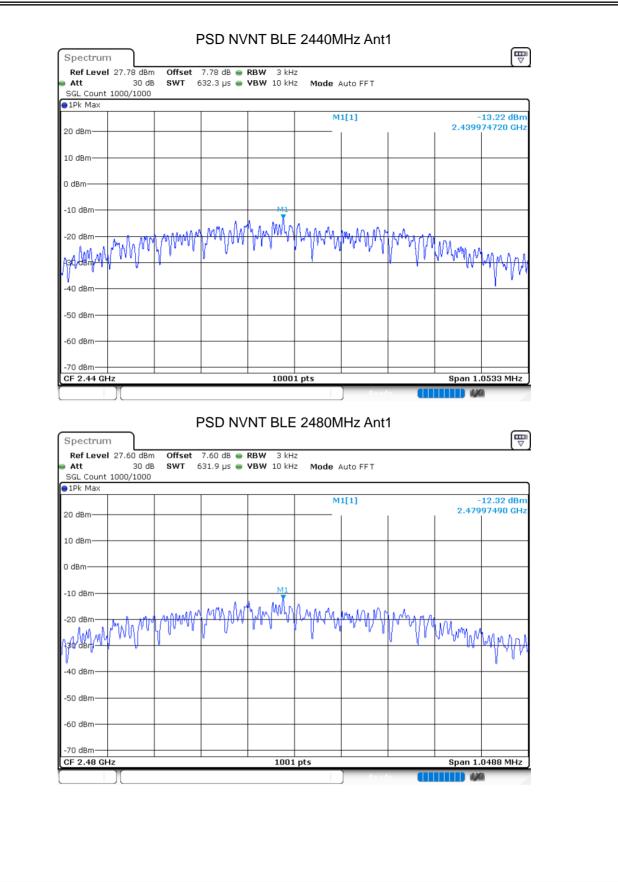

ACCREDITED

Certificate #4298.01


ilac-MR

-6 dB BW NVNT BLE 2480MHz Ant1

ACCREDITED


Spect	rum						
	evel :	20.00 dB	_	RBW 100 kHz			
Att		30 (dB SWT 18.9 µs 🖷	VBW 300 kHz N	1ode Auto FFT		
SGL CC		00/500					
	ax 				M1[1]		-5.31 dBm
					with		2.479994400 GHz
10 dBm	-				M2[1]		-11.31 dBm
0 dBm-							2.479646200 GHz
U UBIII-				MIL			
-10 dBn	<u> </u>		M2			M3	
-20 dBn	<u>ו</u> רי						
-30 dBn	ר ו						
-40 dBn							
-40 UBII	' _						
-50 dBn	1 —						
-60 dBn							
-70 dBn	-ר						
CF 2.4	8 GHz	2		10001 pt	ts		Span 2.0 MHz
Marker							
Туре	Ref		X-value	Y-value	Function	Fun	ction Result
M1 M2		1	2.4799944 GHz 2.4796462 GHz	-5.31 dBm -11.31 dBm			
M2 M3		1	2.4803454 GHz	-11.31 dBm			
	-		2110001011012	11/01/00/11			
		Л				Ready	

ondition	Mode	Frequency (MI	Hz)	Antenna	Max PS	D (dBm/	3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	BLE	2402		Ant 1		12.126	•	•	8	Pass
NVNT	BLE	2440		Ant 1	-	13.219			8	Pass
NVNT	BLE	2480		Ant 1	-	12.318			8	Pass
	👄 Att		t 7.62	D NVNT B	kHz	_				
	● 1Pk Ma 20 dBm-	×			M	1[1]			12.13 dBm 74540 GHz	
	10 dBm-									
	-10 dBm									
	-20 dBm -30 dBm	MANNAR MANN	W M	WWWWWW	Maynan	MANNA A	MM	Manna	MMM	
	-40 dBm -50 dBm								1	
	-60 dBm									
	-70 dBm			10)001 pts			Span 1.	0392 MHz	
						Read	· (1	

ACCREDITED

ACCREDITED

NTEK 北测[®]

ilac-MR

ACCREDITED

		Certificate #42	50.01			o.: S22051802
	_					
	Band Edge	NVNT BLE 2	402MHz Ar	nt1 Emissi	on	
Spectrum						
Ref Level 17.62 d Att 30		dB 👄 RBW 100 kHz µs 👄 VBW 300 kHz		т		
SGL Count 500/50		_				
1Pk Max			M1[1]			2.41 dBm
10 dBm			milii		2.4019	2.41 UBIT 95000,GHz
0 dBm			M2[1]			+1.16 Bm 00000(GHz
					2.4000	10000 0112
-10 dBm	500 40-5					
-20 dBm 01 -17.	528 dBm					
-30 dBm						<u> </u>
-40 dBm						MZ
		M4			MB	N h
-50 dBm	municipalities	Mughan Manus many	wentenhermon	rubanhan	www.Troneed	Υ · ·
-60 dBm						
-70 dBm						
-80 dBm						
Start 2.306 GHz		1001	pts		Stop 2	.406 GHz
1arker Type Ref Trc	X-value	Y-value	Function	Fur	nction Result	1
M1 1 M2 1	2.40195 G 2.4 G					
M3 1	2.39 G	Hz -53.98 dBr	n			
M4 1	2.349 G	Hz -51.23 dBr	n			
				Ready		lli.
	Rond Ed	ge NVNT BLI	= 2480MH-	Ant1 Pof		
Cu a atumuna	Danu Lu		_ 2400101112			
Spectrum Ref Level 17.60 d	Bm Offset 7.60 d	B 👄 RBW 100 kHz				
Att 30	dB SWT 18.9 µ	IS VBW 300 kHz	Mode Auto FF1	г		
SGL Count 100/10 1Pk Max	כ					
			M1[1]			2.10 dBm
10 dBm				I	2.4799	99200 GHz
		MI				
0 dBm		~~~	~\			
-10 dBm			<u> </u>			
-20 dBm					+ +	————
20 dbm		/	1			
-30 dBm			41			
-40 dBm		\sim		_		
	\mathcal{I}			\checkmark		~
/50 dBm	<u> </u>				$ \nabla \sqrt{ }$	<u> </u>
	1 1			1	1 × 1	
-60 dBm						
-60 dBm						

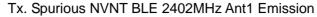
1001 pts

ACCREE

-80 dBm· CF 2.48 GHz

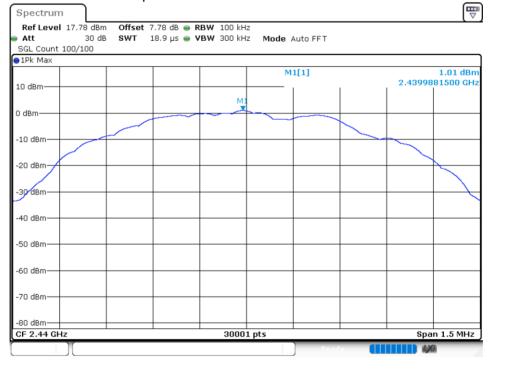
Span 8.0 MHz

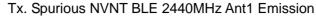
		7.60 dBi 30 d 000/100	B SWT 227.5 μs	 RBW 100 kHz VBW 300 kHz 	Mode Auto FFT		
1Pk M		000/100	10				
-					M1[1]	2.21 dB	۱m
10 dBm M1	_					2.47995000 G	Hz
					M2[1]	-46.78 dB	
0 dB <mark>m</mark> -						2.48350000 G	Hz
-10 dBn							
10 001							
-20 dBn	1-P	1 -17.90	00 dBm				-
Щ							
-30 dBn							-
-40 dBn	18						
-50 dBn	A.L		M3				
	· YYY	hoperation	www.Wyrun Haunaan	Mar Man March March	within the man work on	how was a south which the way was not a south of the sout	and the
-60 dBn	י—⊢						_
-70 dBn	+-י						-
00 Jp-							
-80 dBn Start 2		сп ²		1001 pt:		Stop 2.576 GH	
Aarker	.470			1001 pt:	.	300p 2.370 GH	2
Type	Ref	Tro	X-value	Y-value	Function	Function Result	
M1	Kei	1	2,47995 GHz	2.21 dBm	- anction	Function Result	-1
M2		1	2.4835 GHz	-46.78 dBm			-1
MЗ		1	2.5 GHz	-53.38 dBm			-1
M4		1	2.4835 GHz	-46.78 dBm			


ACCREDITED

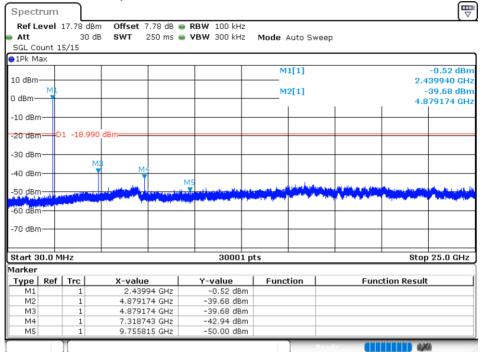
ACCREDITED Certificate #4298.01

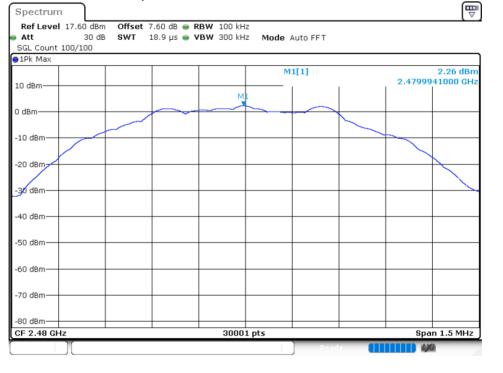
8.5 CO	NDUCT	ED RF SPUF	RIOUS E	MISSION				
Condition	Mode	Frequency	(MHz)	Antenna	Max Valu	ue (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	2	Ant 1	-46.52		-20	Pass
NVNT	BLE	2440)	Ant 1	-40	.69	-20	Pass
NVNT	BLE	2480)	Ant 1	-47	.15	-20	Pass
	Spect Ref Lo Att	2480) Tx. Spurio	Ant 1 ous NVNT dB • RBw 100 µs • VBw 300	-47 BLE 2402 kHz Mode 4	.15	-20 1 Ref 2.4019	
	CF 2.4	02 GHz		30	1001 pts		Sp	an 1.5 MHz
						Ready		



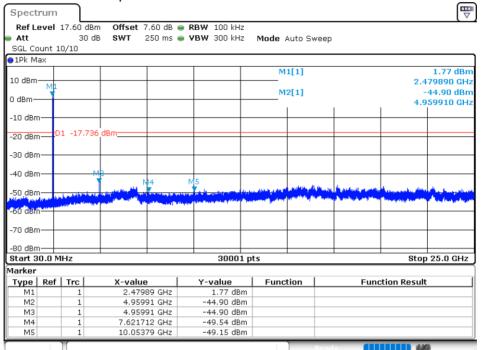

ACCREDITED

Spectrum	J	in off t					u and a state of the state of		
Ref Level				RBW 100 kHz					
Att		O dB SWT	250 ms (● VBW 300 kHz	Mode Auto S	weep			
SGL Count 1	5/15								
)1Pk Max									
					M1[1]		1.47 dBr		
10 dBm							2.401650 GH		
) dBm 🕂					M2[1]		-44.29 dBr		
5 abiii					1	1	4.804264 GH		
-10 dBm									
	1 17	.766 dBm							
-20 dBm	1 -17.	./00 ubm							
-30 dBm									
-30 UBIII									
-40 dBm		Ma							
		M4	1	45					
-50 dBm			dar brogathe			and the second sec			
60 dBm —	- Andrewson		The second s	hadren biber berkende der Berkende ber					
-60 aBm									
-70 dBm									
, o abiii									
-80 dBm									
Start 30.0 M	IHz			30001 pt	s		Stop 25.0 GHz		
1arker									
Type Ref	Trc	X-valu	e	Y-value	Function	Fun	ction Result		
M1	1		.65 GHz	1.47 dBm					
M2	1		64 GHz	-44.29 dBm					
MЗ				-44.29 dBm					
M4	1		28 GHz	-49.10 dBm					
M5	1	9.4128	94 GHz	-50.47 dBm					





ACCREDITED



ACCREDITED

Certificate #4298.01

END OF REPORT