

RADIO TEST REPORT FCC ID: ZSW-30-116

Product: Mobile Phone Trade Mark: Bmobile Model No.: B63 PRO Family Model: N/A Report No.: S22040601401001 Issue Date: May 13. 2022

Prepared for

b mobile HK Limited

Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak Street; Kwai Chung;New Territories; Hong Kong, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

I

TABLE OF CONTENTS

1	1 TEST RESULT CERTIFICATION				
2	2 SUMMARY OF TEST RESULTS				
3	FACILITIES AND ACCREDITATIONS				
	3.1	FACILITIES			
	3.2 3.3	LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY			
4		NERAL DESCRIPTION OF EUT			
_		SCRIPTION OF TEST MODES			
5					
6	SET	UP OF EQUIPMENT UNDER TEST			
	6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM			
	6.2	SUPPORT EQUIPMENT	. 10		
	6.3	EQUIPMENTS LIST FOR ALL TEST ITEMS			
7	TES	T REQUIREMENTS	.13		
	7.1	CONDUCTED EMISSIONS TEST	.13		
	7.2	RADIATED SPURIOUS EMISSION			
	7.3	NUMBER OF HOPPING CHANNEL			
	7.4	HOPPING CHANNEL SEPARATION MEASUREMENT			
	7.5	AVERAGE TIME OF OCCUPANCY (DWELL TIME)			
	7.6	20DB BANDWIDTH TEST			
	7.7 7.8	PEAK OUTPUT POWER	.30		
	7.8 7.9	SPURIOUS RF CONDUCTED EMISSION	22		
	7.10	ANTENNA APPLICATION			
		REQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS			
8		T RESULTS			
U		DWELL TIME			
	8.1 8.2	DWELL TIME			
	8.2 8.3	OCCUPIED CHANNEL BANDWIDTH			
	8.3 8.4	CARRIER FREQUENCIES SEPARATION			
	8.5	NUMBER OF HOPPING CHANNEL			
	8.6	BAND EDGE			
	8.7	CONDUCTED RF SPURIOUS EMISSION			

1 TEST RESULT CERTIFICATION

Applicant's name:	b mobile HK Limited
Address:	Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak Street; Kwai Chung;New Territories; Hong Kong, China
Manufacturer's Name	b mobile HK Limited
Address:	Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak Street; Kwai Chung;New Territories; Hong Kong, China
Product description	
Product name:	Mobile Phone
Model and/or type reference:	B63 PRO
Family Model:	N/A

Measurement Procedure Used:

APPLICABLE STANDARDS		
STANDARD/ TEST PROCEDURE TEST RESULT		
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test

Apr 08. 2022 ~ May 11, 2022

Nen lin

(Allen Liu)

Testing Engineer

Authorized Signatory

(Alex Li)

SUMMARY OF TEST RESULTS FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location :	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	Mobile Phone	
Trade Mark	Bmobile	
FCC ID	ZSW-30-116	
Model No.	B63 PRO	
Family Model	N/A	
Model Difference	N/A	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK, π/4-DQPSK, 8-DPSK	
Number of Channels	79 Channels	
Antenna Type	PIFA Antenna	
Antenna Gain	1.1dBi	
Adapter	INPUT: AC 100-240V~50-60Hz 0.2A OUTPUT: DC 5.0V1A	
Battery	DC 3.8V, 3000mAh	
Power supply	DC 3.8V from battery or DC 5V from Adapter.	
HW Version	Bmobile_B63Pro_HW_V1.0	
SW Version	Bmobile_B63PRO_TEM_MX_V001	

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Certificate #4298.01 Revision History				
Report No.	Version	Description	Issued Date	
S22040601401001	Rev.01	Initial issue of report	May 13, 2022	

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

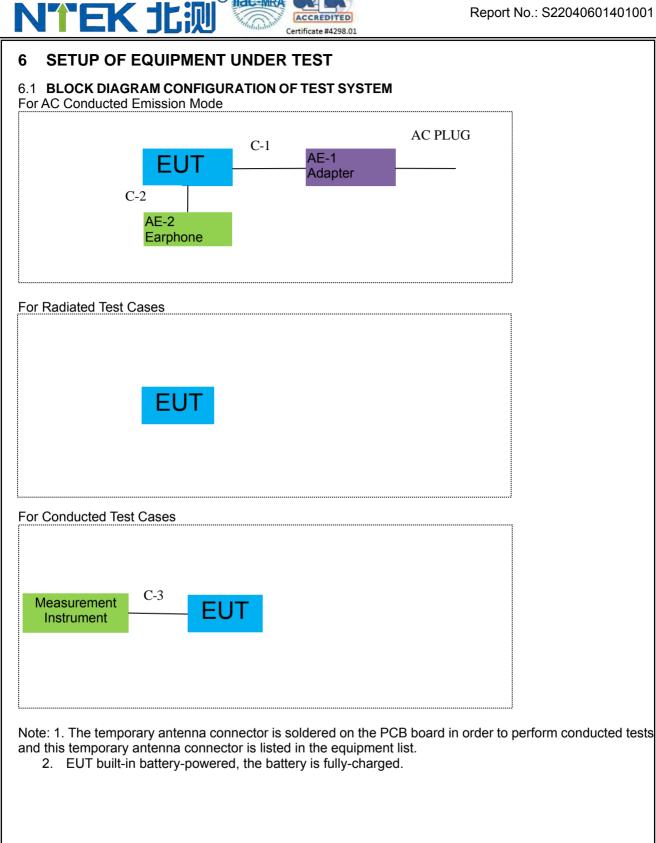
Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission			
Final Test Mode Description			
Mode 1 normal link mode			
Note: AO a superline. Opendusted Englishing upper tested on dealers and income structure and			


Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	

Note: For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases		
Final Test Mode	Description	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	
Mode 5	Hopping mode	

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	N/A	Peripherals
AE-2	Earphone	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	0.9m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

	estequipment					
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.06	2023.04.05	1 year
Spectrum Analyzer	Agilent	N9020A	MY49100060	2021.07.01	2022.06.30	1 year
Spectrum Analyzer	R&S	FSV40	101417	2021.07.01	2022.06.30	1 year
Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2021.11.07	2022.11.06	1 year
Amplifier	EMC	EMC051835 SE	980246	2021.07.01	2022.06.30	1 year
Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.11.07	2022.11.06	1 year
Power Meter	DARE	RPR3006W	15I00041SN 084	2021.07.01	2022.06.30	1 year
Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.06	2022.08.05	3 year
High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2019.08.06	2022.08.05	3 year
Filter	TRILTHIC	2400MHz	29	2021.07.01	2022.06.30	1 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A
	Kind of EquipmentSpectrum AnalyzerSpectrum AnalyzerSpectrum AnalyzerSpectrum Coasial SwitchBilog Antenna50Ω Coaxial SwitchHorn AntennaBroadband Horn AntennaBroadband Horn AntennaPower MeterTest Cable (9KHz-30MHz) Test Cable (30MHz-1GHz)High Test Cable(1G-40G Hz)High Test Cable(1G-40G Hz)Filtertemporary antenna connector	Kind of EquipmentManufacturerSpectrum AnalyzerAglientSpectrum AnalyzerAgilentSpectrum AnalyzerR&STest ReceiverR&SBilog AntennaTESEQ50Ω Coaxial SwitchAnritsuHorn AntennaEMBroadband Horn AntennaSCHWARZBE CKAmplifierEMCActive Loop AntennaSCHWARZBE CKPower MeterDARETest Cable (9KHz-30MHz)N/ATest Cable (30MHz-1GHz)N/AHigh Test Cable(1G-40G Hz)N/AFilterTRILTHICtemporary antenna connectorNTS	Kind of EquipmentManufacturerType No.Spectrum AnalyzerAglientE4407BSpectrum AnalyzerAgilentN9020ASpectrum AnalyzerR&SFSV40Test ReceiverR&SESPI7Bilog AntennaTESEQCBL6111D50Ω Coaxial SwitchAnritsuMP59BHorn AntennaEMEM-AH-1018 0Broadband Horn AntennaSCHWARZBE CKBBHA 9170AmplifierEMCEMC051835 SEActive Loop AntennaSCHWARZBE CKFMZB 1519 BPower MeterDARERPR3006WTest Cable (9KHz-30MHz)N/AR-01Test Cable (30MHz-1GHz)N/AR-03 Hz)High Test Cable(1G-40G Hz)N/AR-03 Hz)High Test Cable(1G-40G Hz)N/AR-04 Hz)FilterTRILTHIC2400MHztemporary antenna connectorNTSR001	Kind of EquipmentManufacturerType No.Serial No.Spectrum AnalyzerAglientE4407BMY45108040Spectrum AnalyzerAgilentN9020AMY49100060Spectrum AnalyzerR&SFSV40101417Test ReceiverR&SESPI7101318Bilog AntennaTESEQCBL6111D3121650Ω Coaxial SwitchAnritsuMP59B6200983705Horn AntennaEMEM-AH-1018 02011071402Broadband Horn AntennaSCHWARZBE CKBBHA 9170803AmplifierEMCSE980246Active Loop AntennaSCHWARZBE CKFMZB 1519 B055Power MeterDARERPR3006W15100041SN 084Test Cable (30MHz-1GHz)N/AR-01N/AHigh Test Cable(1G-40G Hz)N/AR-03N/AHigh Test Cable(1G-40G Hz)N/AR-04N/AFilterTRILTHIC2400MHz29temporary antenna connectorNTSR001N/A	Kind of EquipmentManufacturerType No.Serial No.Last calibrationSpectrum AnalyzerAglientE4407BMY451080402022.04.06Spectrum AnalyzerAgilentN9020AMY491000602021.07.01Spectrum AnalyzerR&SFSV401014172021.07.01Spectrum AnalyzerR&SESPI71013182022.04.06Bilog AntennaTESEQCBL6111D312162022.03.30500 Coaxial SwitchAnritsuMP59B62009837052020.05.11Horn AntennaEMEM-AH-1018 020110714022022.03.31Broadband Horn AntennaSCHWARZBE CKBBHA 91708032021.11.07AmplifierEMCEMC051835 SE9802462021.07.01Active Loop AntennaSCHWARZBE CKFMZB 1519 B0552021.07.01Power MeterDARERPR3006W15100041SN 0842019.08.06(9KH2-30MHz)N/AR-01N/A2019.08.06High Test Cable(1G-40G Hz)N/AR-03N/A2019.08.06High Test Cable(1G-40G Hz)N/AR-04N/A2019.08.06High Test Cable(1G-40G Hz)N/AR-04N/A2019.08.06High Test Cable(1G-40G Hz)N/AR-04N/A2019.08.06High Test Cable(1G-40G Hz)N/AR-04N/AN/AFilterTRILTHIC2400MHz292021.07.01Temporary antenna connector<	Kind of Equipment Manufacturer Type No. Serial No. Last calibration Calibrated until Spectrum Analyzer Aglient E4407B MY45108040 2022.04.06 2023.04.05 Spectrum Analyzer Aglient N9020A MY49100060 2021.07.01 2022.06.30 Spectrum Analyzer R&S FSV40 101417 2021.07.01 2022.06.30 Spectrum Analyzer R&S ESPI7 101318 2022.04.06 2023.04.05 Bilog Antenna TESEQ CBL6111D 31216 2022.03.03 2023.03.29 50Ω Coaxial Switch Anritsu MP59B 6200983705 2020.05.11 2023.03.30 Broadband Horn Antenna EM EM-AH-1018 2011071402 2022.03.31 2023.03.30 Broadband Horn Antenna EMC EMC051835 980246 2021.07.01 2022.06.30 Active Loop Antenna CK B 15100041SN 084 2021.07.01 2022.06.30 Test Cable (9KH2-30MH2) N/A R-01 N/A 2019.08.06 2022.08.05

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2022.04.06	2023.04.05	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

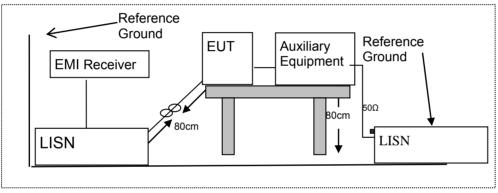
Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

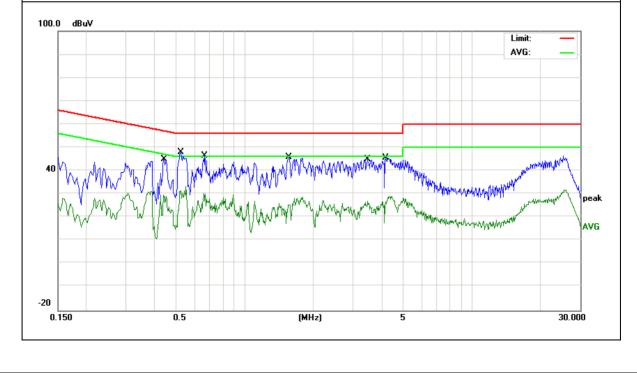
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
 may be terminated, if required, using the correct terminating impedance. The overall length shall not
 exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.5 Test Results

Pass

7.1.6 Test Results

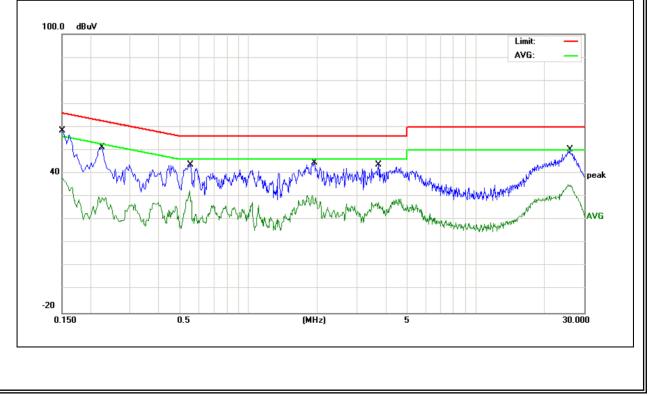

EUT:	Mobile Phone	Model Name :	B63 PRO
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.4420	35.38	9.64	45.02	57.02	-12.00	QP
0.4420	25.69	9.64	35.33	47.02	-11.69	AVG
0.5220	38.29	9.65	47.94	56.00	-8.06	QP
0.5220	27.60	9.65	37.25	46.00	-8.75	AVG
0.6660	36.74	9.72	46.46	56.00	-9.54	QP
0.6660	26.61	9.72	36.33	46.00	-9.67	AVG
1.5620	36.09	9.76	45.85	56.00	-10.15	QP
1.5620	25.39	9.76	35.15	46.00	-10.85	AVG
3.4700	35.39	9.70	45.09	56.00	-10.91	QP
3.4700	25.63	9.70	35.33	46.00	-10.67	AVG
4.1658	35.96	9.67	45.63	56.00	-10.37	QP
4.1658	25.58	9.67	35.25	46.00	-10.75	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	Mobile Phone	Model Name :	B63 PRO
Temperature:	25 °C	Relative Humidity:	62%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1516	47.98	9.63	57.61	65.91	-8.30	QP
0.1516	37.39	9.63	47.02	55.91	-8.89	AVG
0.2260	41.51	9.64	51.15	62.59	-11.44	QP
0.2260	31.69	9.64	41.33	52.59	-11.26	AVG
0.5540	33.95	9.71	43.66	56.00	-12.34	QP
0.5540	23.65	9.71	33.36	46.00	-12.64	AVG
1.9418	34.91	9.67	44.58	56.00	-11.42	QP
1.9418	24.58	9.67	34.25	46.00	-11.75	AVG
3.7219	34.14	9.76	43.90	56.00	-12.10	QP
3.7219	23.39	9.76	33.15	46.00	-12.85	AVG
25.9378	40.58	9.83	50.41	60.00	-9.59	QP
25.9378	30.39	9.83	40.22	50.00	-9.78	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to FOC Fart15.20			
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

	Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
Γ	0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
	0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
	1.705~30.0	30	29.5	30
	30-88	100	40	3
	88-216	150	43.5	3
	216-960	200	46	3
	Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Froguopov(MHz)	Class B (dBuV/	/m) (at 3M)
Frequency(MHz)	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

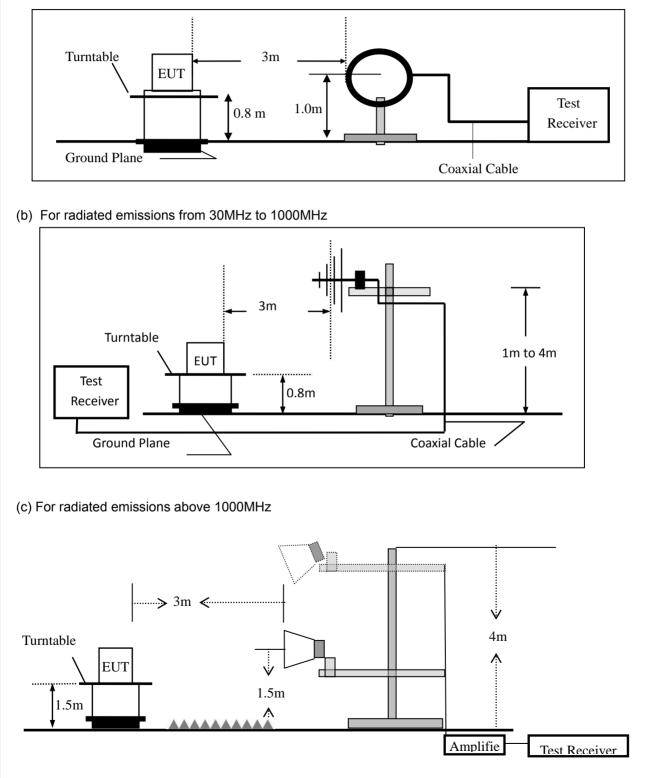
Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

7.2.3 Measuring Instruments


'EK 北测

The Measuring equipment is listed in the section 6.3 of this test report.

ACCREDITED Certificate #4298.01

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

<u> </u>	
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission te	est, the Spectrum An	alyzer was set with the follow	ving configurations:
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Abaua 4000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	1 MHz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

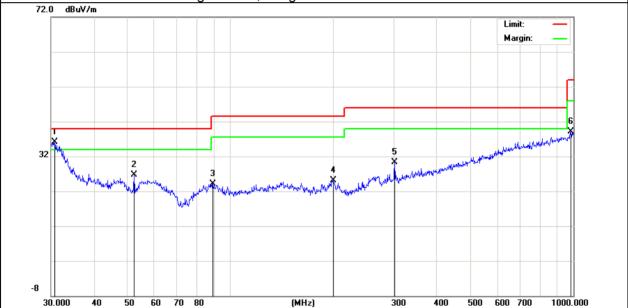
7.2.6 Test Results

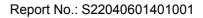
Spuriou	s Emission	below 30MHz	(9KHz to 30MHz)
---------	------------	-------------	-----------------

EUT:	Mobile Phone	Model No.:	B63 PRO
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Ove	r(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	r(dB) AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.


Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the weather the second sec


All the modulation	All the modulation modes have been tested, and the worst result was report as below:								
EUT: Mobile Phone Model Name : B63 PRO									
Temperature:	perature: 25°C Relative Humidity: 55%								
Pressure:	1010hPa	Test Mode:	Mode 1						
Test Voltage :	DC 3.8V								

Polar	Frequency	Meter Reading	Reading Factor Level Limits		Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	30.7454	11.60	24.50	36.10	40.00	-3.90	QP
V	52.3912	12.96	13.79	26.75	40.00	-13.25	QP
V	88.9637	8.54	15.50	24.04	43.50	-19.46	QP
V	199.2855	10.26	14.83	25.09	43.50	-18.41	QP
V	301.4223	10.03	20.32	30.35	46.00	-15.65	QP
V	982.6200	7.48	31.62	39.10	54.00	-14.90	QP QP QP QP QP QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remar
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	30.4238	6.18	24.84	31.02	40.00	-8.98	QP
Н	96.4362	6.81	16.07	22.88	43.50	-20.62	QP
Н	162.0414	9.52	17.41	26.93	43.50	-16.57	QP
Н	269.4284	6.34	20.39	26.73	46.00	-19.27	QP
Н	444.8514	5.79	23.89	29.68	46.00	-16.32	QP
Н	793.3960	8.64	29.17	37.81	46.00	-8.19	QP
						Margin:	_
32	man and a start a s	2 gehedrigengenweckel ^{te} rreichen	3 http://www.hundlella	Manau and	5 NMM-Hallon Mark		
-8							

 Spurious 	Emission	Above 1	GHz (1GH	z to 25GH	z)					
EUT:	Mol	bile Phon	e	Mode	l No.:	B63 I	63 PRO			
Temperature	: 20	č	Relative Humidity:				8%			
Test Mode:	Мо	de2/Mode	e3/Mode4	Test E	Bv:	Allen	Liu			
All the modula					,			/:		
				.,						
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)			
			Low Chan	nel (2402 l	/Hz)(GFSK)-	Above 1G				
4804.214	64.17	5.21	35.59	44.30	60.67	74.00	-13.33	Pk	Vertical	
4804.214	41.49	5.21	35.59	44.30	37.99	54.00	-16.01	AV	Vertical	
7206.265	61.03	6.48	36.27	44.60	59.18	74.00	-14.82	Pk	Vertical	
7206.265	44.12	6.48	36.27	44.60	42.27	54.00	-11.73	AV	Vertical	
4804.109	61.33	5.21	35.55	44.30	57.79	74.00	-16.21	Pk	Horizontal	
4804.109	42.59	5.21	35.55	44.30	39.05	54.00	-14.95	AV	Horizontal	
7206.224	62.54	6.48	36.27	44.52	60.77	74.00	-13.23	Pk	Horizontal	
7206.224	47.13	6.48	36.27	44.52	45.36	54.00	-8.64	AV	Horizontal	
			Mid Chan	nel (2441 N	/Hz)(GFSK)-	-Above 1G				
4882.396	63.52	5.21	35.66	44.20	60.19	74.00	-13.81	Pk	Vertical	
4882.396	43.86	5.21	35.66	44.20	40.53	54.00	-13.47	AV	Vertical	
7323.241	60.21	7.10	36.50	44.43	59.38	74.00	-14.62	Pk	Vertical	
7323.241	47.31	7.10	36.50	44.43	46.48	54.00	-7.52	AV	Vertical	
4882.108	62.20	5.21	35.66	44.20	58.87	74.00	-15.13	Pk	Horizontal	
4882.108	48.40	5.21	35.66	44.20	45.07	54.00	-8.93	AV	Horizontal	
7323.132	61.32	7.10	36.50	44.43	60.49	74.00	-13.51	Pk	Horizontal	
7323.132	42.02	7.10	36.50	44.43	41.19	54.00	-12.81	AV	Horizontal	
			High Chan	nel (2480 l	/Hz)(GFSK)	- Above 1G	-			
4960.397	66.24	5.21	35.52	44.21	62.76	74.00	-11.24	Pk	Vertical	
4960.397	43.21	5.21	35.52	44.21	39.73	54.00	-14.27	AV	Vertical	
7440.201	61.44	7.10	36.53	44.60	60.47	74.00	-13.53	Pk	Vertical	
7440.201	45.82	7.10	36.53	44.60	44.85	54.00	-9.15	AV	Vertical	
4960.225	68.45	5.21	35.52	44.21	64.97	74.00	-9.03	Pk	Horizontal	
4960.225	46.86	5.21	35.52	44.21	43.38	54.00	-10.62	AV	Horizontal	
7440.298	62.23	7.10	36.53	44.60	61.26	74.00	-12.74	Pk	Horizontal	
7440.298	46.19	7.10	36.53	44.60	45.22	54.00	-8.78	AV	Horizontal	

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Spurious	Emission i	n Restri	cted Band	2310-2	390MHz and	2483.	5-250	0MHz		
EUT:	Mobile Pl	none		Мо	del No.:		B63 F	RO		
Temperature	e: 20 °C Relative Humidity: 48%									
Test Mode: Mode2/ Mode4 Test By: Allen Liu										
All the modu	lation mod	es have	been teste	ed, and	the worst res	ult wa	s repo	ort as belo	ow:	
Frequency	Meter Reading	Cable Loss	Antenna Factor	Pream Facto		Lin	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	ıV/m)	(dB)	Туре	
			1	Mbps(G	⁼ SK)-Non-hopp	oing				
2310.00	57.78	2.97	27.80	43.80	44.75	7	'4	-29.25	Pk	Horizontal
2310.00	44.92	2.97	27.80	43.80	31.89	5	54	-22.11	AV	Horizontal
2310.00	59.46	2.97	27.80	43.80	46.43	7	'4	-27.57	Pk	Vertical
2310.00	42.64	2.97	27.80	43.80	29.61	5	54	-24.39	AV	Vertical
2390.00	58.00	3.14	27.21	43.80	44.55	7	' 4	-29.45	Pk	Vertical
2390.00	42.73	3.14	27.21	43.80	29.28	5	54	-24.72	AV	Vertical
2390.00	57.34	3.14	27.21	43.80	43.89	7	' 4	-30.11	Pk	Horizontal
2390.00	42.30	3.14	27.21	43.80	28.85	5	54	-25.15	AV	Horizontal
2483.50	59.12	3.58	27.70	44.00	46.40	7	' 4	-27.60	Pk	Vertical
2483.50	42.73	3.58	27.70	44.00	30.01	5	54	-23.99	AV	Vertical
2483.50	59.27	3.58	27.70	44.00	46.55	7	'4	-27.45	Pk	Horizontal
2483.50	43.66	3.58	27.70	44.00	30.94	5	54	-23.06	AV	Horizontal
				1Mbps	GFSK)-hoppin	g				
2310.00	53.73	2.97	27.80	43.80	40.70	74	.00	-33.30	Pk	Vertical
2310.00	41.15	2.97	27.80	43.80	28.12	54	.00	-25.88	AV	Vertical
2310.00	54.18	2.97	27.80	43.80	41.15	74	.00	-32.85	Pk	Horizontal
2310.00	41.38	2.97	27.80	43.80	28.35	54	.00	-25.65	AV	Horizontal
2390.00	52.82	3.14	27.21	43.80	39.37	74	.00	-34.63	Pk	Vertical
2390.00	44.16	3.14	27.21	43.80	30.71	54	.00	-23.29	AV	Vertical
2390.00	53.91	3.14	27.21	43.80	40.46	74	.00	-33.54	Pk	Horizontal
2390.00	42.76	3.14	27.21	43.80	29.31	54	.00	-24.69	AV	Horizontal
2483.50	53.95	3.58	27.70	44.00	41.23	74	.00	-32.77	Pk	Vertical
2483.50	44.96	3.58	27.70	44.00	32.24	54	.00	-21.76	AV	Vertical
2483.50	52.16	3.58	27.70	44.00	39.44	74	.00	-34.56	Pk	Horizontal
2483.50	41.67	3.58	27.70	44.00	28.95	54	.00	-25.05	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

UT:	T: Mobile Phone			e Model No.:				B63 PRO			
emperature:	20 °C	2		F	Relati	ive Humidity	y:	48%			
est Mode:	Mod	e2/ Mode	э4	٦	Test E	Зу:		Allen	Liu		
All the modula	ation mod	es have	been teste	ed, ar	nd th	e worst res	ult wa	as rep	ort as be	low:	
Frequency	Reading Level	Cable Loss	Antenna Factor		eamp ictor	Emission Level	Lir	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(d	dB)	(dBµV/m)	(dBl	uV/m)	(dB)	Туре	
3260	60.58	4.04	29.57	44	1.70	49.49	7	74	-24.51	Pk	Vertical
3260	57.42	4.04	29.57	44	1.70	46.33	5	54	-7.67	AV	Vertical
3260	62.12	4.04	29.57	44	1.70	51.03	7	74	-22.97	Pk	Horizontal
3260	58.12	4.04	29.57	44	1.70	47.03	5	54	-6.97	AV	Horizontal
3332	66.12	4.26	29.87	44	4.40	55.85	7	74	-18.15	Pk	Vertical
3332	54.16	4.26	29.87	44	4.40	43.89	5	54	-10.11	AV	Vertical
3332	64.07	4.26	29.87	44	1.40	53.80	7	74	-20.20	Pk	Horizontal
3332	54.05	4.26	29.87	44	4.40	43.78	5	54	-10.22	AV	Horizontal
17797	44.05	10.99	43.95	43	3.50	55.49	7	74	-18.51	Pk	Vertical
17797	33.52	10.99	43.95	43	3.50	44.96	5	54	-9.04	AV	Vertical
17788	43.88	11.81	43.69	44	1.60	54.78	7	74	-19.22	Pk	Horizontal
17788	32.37	11.81	43.69	44	.60	43.27	Ę	54	-10.73	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Mobile Phone	Model No.:	B63 PRO
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Allen Liu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	Mobile Phone	Model No.:	B63 PRO
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	Mobile Phone	Model No.:	B63 PRO
Temperature:	20 ℃	Relative Humidity:	48% Allen Liu
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Mobile Phone	Model No.:	B63 PRO 48% Allen Liu
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 **PEAK OUTPUT POWER**

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge$ the 20 dB bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Mobile Phone	Model No.:	B63 PRO
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

- RBW = 100KHz
- VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Mobile Phone	Model No.:	B63 PRO
Temperature:	20 °C	Relative Humidity:	
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Allen Liu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PIFA antenna (Gain: 1.1dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmission sover the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

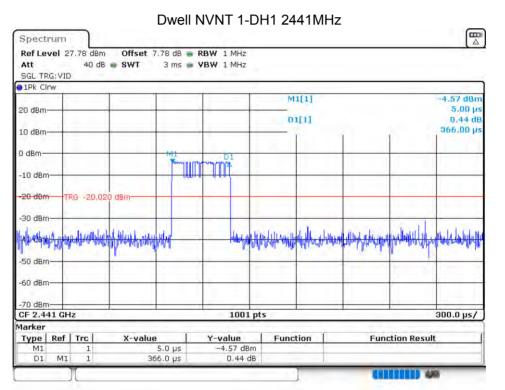
7.11.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each: centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

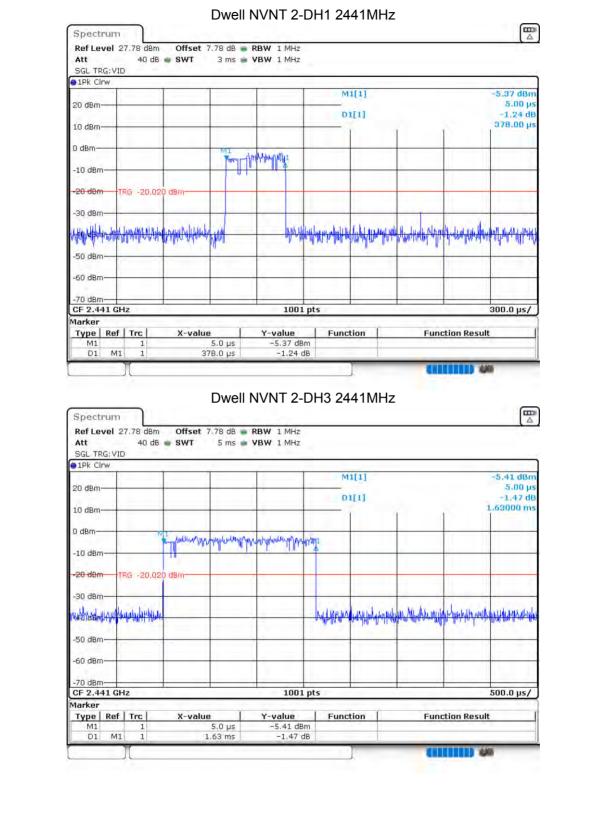
7.11.3 EUT Pseudorandom Frequency Hopping Sequence

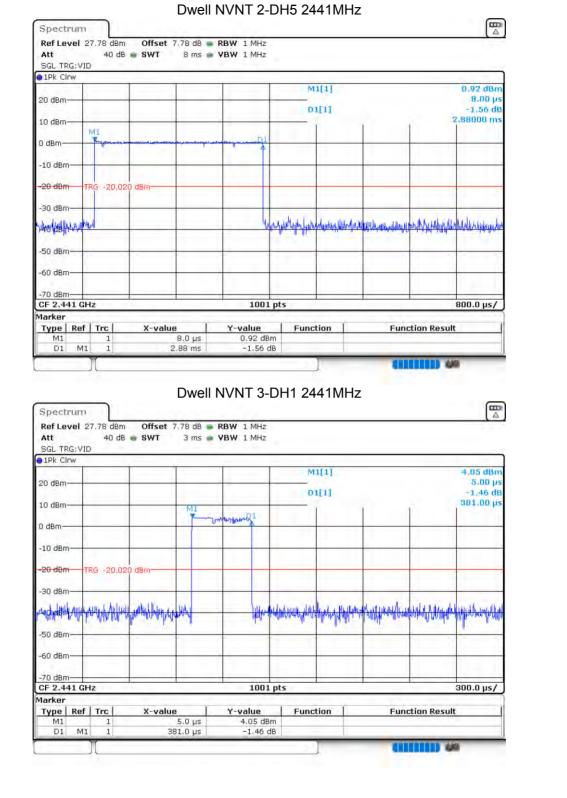
Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.


The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

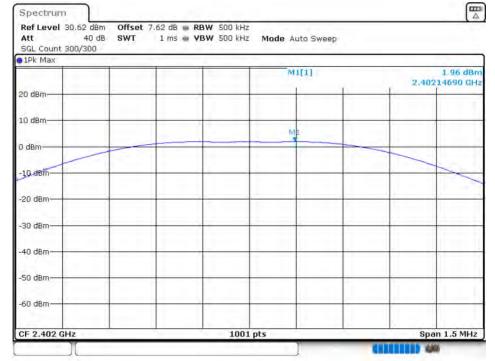
8 TEST RESULTS

8.1 DWELL TIME


1				1		1
Mode	Frequency	Pulse Time	Total Dwell	Period Time	Limit	Verdict
	(MHz)	(ms)	Time (ms)	(ms)	(ms)	
1-DH1	2441	0.366	117.12	31600	400	Pass
1-DH3	2441	1.62	259.2	31600	400	Pass
1-DH5	2441	2.88	307.2	31600	400	Pass
2-DH1	2441	0.378	120.96	31600	400	Pass
2-DH3	2441	1.63	260.8	31600	400	Pass
2-DH5	2441	2.88	307.2	31600	400	Pass
3-DH1	2441	0.381	121.92	31600	400	Pass
3-DH3	2441	1.62	259.2	31600	400	Pass
3-DH5	2441	2.864	305.493	31600	400	Pass
	1-DH1 1-DH3 1-DH5 2-DH1 2-DH3 2-DH5 3-DH1 3-DH3	(MHz) 1-DH1 2441 1-DH3 2441 1-DH5 2441 2-DH1 2441 2-DH3 2441 2-DH5 2441 3-DH1 2441 3-DH1 2441 3-DH3 2441	(MHz)(ms)1-DH124410.3661-DH324411.621-DH524412.882-DH124410.3782-DH324411.632-DH524412.883-DH124410.3813-DH324411.62	(MHz)(ms)Time (ms)1-DH124410.366117.121-DH324411.62259.21-DH524412.88307.22-DH124410.378120.962-DH324411.63260.82-DH524412.88307.23-DH124410.381121.923-DH324411.62259.2	(MHz)(ms)Time (ms)(ms)1-DH124410.366117.12316001-DH324411.62259.2316001-DH524412.88307.2316002-DH124410.378120.96316002-DH324411.63260.8316002-DH524412.88307.2316003-DH124410.381121.92316003-DH324411.62259.231600	(MHz)(ms)Time (ms)(ms)(ms)1-DH124410.366117.12316004001-DH324411.62259.2316004001-DH524412.88307.2316004002-DH124410.378120.96316004002-DH324411.63260.8316004002-DH524412.88307.2316004003-DH124410.381121.92316004003-DH324411.62259.231600400



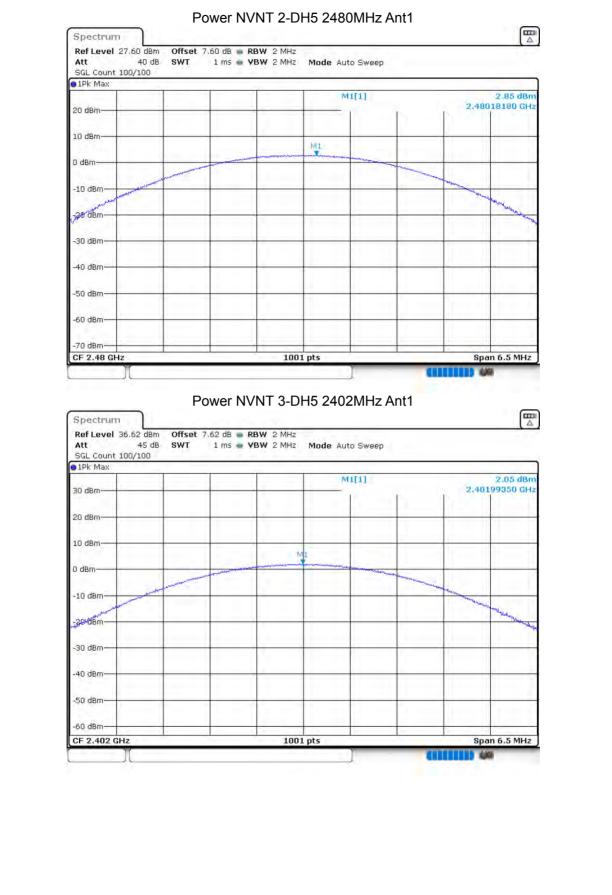
1Pk Clrw					111			4 00 40
20 dBm					1[1]			-4.02 dBm 10.00 µs
10 dBm-			-	01	[1]			-0.02 dB L.62000 ms
D dBm	End balance manage		lo ano la algan	D1 73	1			1
-10 dBm	1						-	
-20 dBm TRG -20,020) dBm	1	-			-		-
-30 dBm		-			-		Inter I	
apadauses have been and the second of the			-	her and the state	my multime	Hand Marked Mark	upp July 194	h sphan th
-50 dBm-							1	1.4.4.1
-60 dBm								
		- 1	1					1.2.1
-70 dBm- CF 2.441 GHz		-	1001	ots		1	-	500.0 µs/
Marker Type Ref Trc	X-value		Y-value	Funct			tion Result	
D1 M1 1	1.	62 ms	-0,02 dB		1	01		8
Spectrum			IVNT 1-E) 41MHz			
Spectrum Ref Level 27.78 dBm		Dwell N	IVNT 1-E		41MHz	-		
Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID P1Pk Cirw	Offset 7	Dwell N	IVNT 1-E Bw 1 mhz)H5 24] 41MHz 1[1]			-5.98 dBm
Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID IPk Cirw 20 dBm	Offset 7	Dwell N	IVNT 1-E Bw 1 mhz	DH5 24				-5.98 dBm 8.00 µs -0.26 dB
Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID P1Pk Cirw	Offset 7	Dwell N	IVNT 1-E Bw 1 mhz	DH5 24	1[1]			-5.98 dBm 8.00 µs
Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID IPk Cirw 20 dBm	Offset 7	Dwell N	IVNT 1-E BW 1 MHz BW 1 MHz	DH5 24	1[1]		3	-5.98 dBm 8.00 µs -0.26 dB
Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 0.40m	Offset 7	Dwell N	IVNT 1-E BW 1 MHz BW 1 MHz	DH5 24	1[1]		3	-5.98 dBm 8.00 µs -0.26 dB
Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID IPk Clrw 20 dBm 10 dBm 0 dBm M1	Offset 7	Dwell N	IVNT 1-E BW 1 MHz BW 1 MHz	DH5 24	1[1]			-5.98 dBm 8.00 µs -0.26 dB
Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm -10 dBm M1	Offset 7	Dwell N	IVNT 1-E BW 1 MHz BW 1 MHz	DH5 24	1[1]		3	-5.98 dBm 8.00 µs -0.26 dB
Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm TRG -20,020 -30 dBm	Offset 7	Dwell N	DI	DH5 24	u[1] u[1]			-5.98 d8m 9.00 µs -0.26 d8 2.88000 ms
Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm TRG -20.020 -30 dBm	Offset 7	Dwell N	DI	DH5 24	u[1] u[1]			-5.98 dBm 8.00 µs -0.26 dB
Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID ● 1Pk Clrw 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	Offset 7	Dwell N	DI	DH5 24	u[1] u[1]			-5.98 d8m 9.00 µs -0.26 d8 2.88000 ms
Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm TRG -20.020 -30 dBm	Offset 7	Dwell N	DI	DH5 24	u[1] u[1]			-5.98 d8m 9.00 µs -0.26 d8 2.88000 ms
Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID 10 dBm 10 dBm 10 dBm 20 dBm -10 dBm -20 dBm -20 dBm -50 dBm -60 dBm -70 dBm	Offset 7	Dwell N	IVNT 1-E BW 1 MHz BW 1 MHz	0H5 24	u[1] u[1]		agendel frequencies	-5.98 dBm 8.00 µs -0.26 dB 2.88000 ms
Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG; VID 1Pk Clrw 20 dBm 10 dBm 10 dBm 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	Offset 7	Dwell N	DI	0H5 24	u[1] u[1]		agendel frequencies	-5.98 d8m 9.00 µs -0.26 d8 2.88000 ms
Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID ● 1Pk Cirw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 2.441 GHz Marker Type Ref Trc	Offset 7 SWT	Dwell N	IVNT 1-E BW 1 MHz BW 1 MHz	DH5 24	1[1] 1[1]	r ^u uiųnsaulte	agendel frequencies	-5.98 dBm 8.00 µs -0.26 dB 2.88000 ms
Spectrum Ref Level 27.78 dBm Att 40 dB SGL TRG: VID ● 1Pk Clrw 20 dBm 10 dBm 10 dBm 20 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm GF 2.441 GHz Marker	Offset 7 SWT	Dwell N .78 dB R 8 ms V	IVNT 1-E BW 1 MHz BW 1 MHz	DH5 24	1[1] 1[1]	r ^u uiųnsaulte	ւրորի հետուրե	-5.98 dBm 8.00 µs -0.26 dB 2.88000 ms

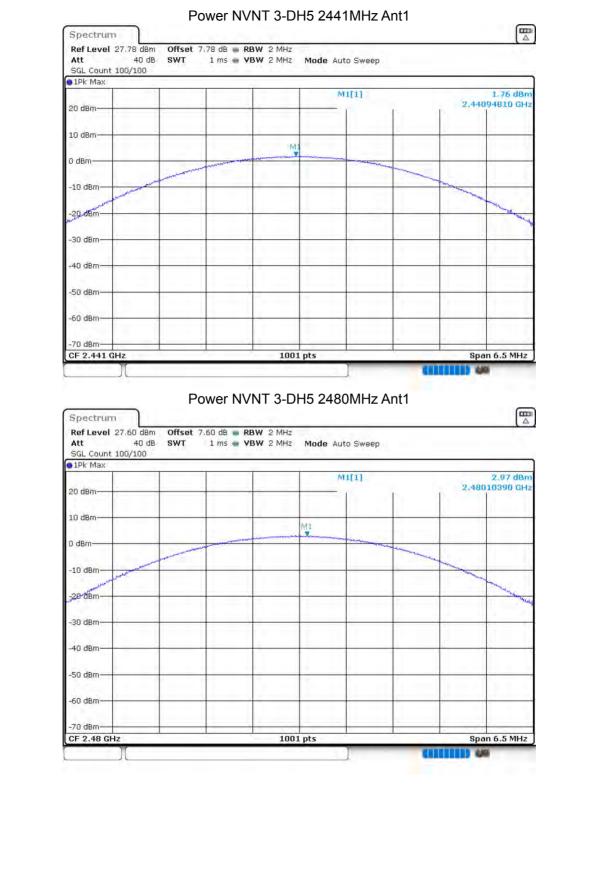

1Pk Clrw	1	1	1	M	1[1]			-4.86 dBm
20 dBm		· · · · · · · · · · · · · · · · · · ·			[1]			10.00 µs 0.63 dB
10 dBm						í í	1	.62000 ms
D dBm	MI	10.10.200.200	101000	01				
-10 dBm	L.U.M. M.	. Artrallahora	-qulyerallratures	1rux				
-20 dBm TRG -20.0	020 dBm	1						
-30 dBm								
LAND BALLAND	lak			- Jaca Japas	A Material Andread	HARANSIN WAL	Mar Mark	edition (kela like
his class with a	y a			hat ha n	an an molle and	a dais adailadada	All & and a	Road-all and
-50 dBm-	-							
-60 dBm		1 = 1						
-70 dBm CF 2.441 GHz		-	1001	pts				500.0 µs/
Marker	X-valu	. 1	Y-value	Funct	tion 1	Functi	on Result	
Type Ref Trc M1 1		10.0 µs	-4.86 dBm	n		Funcu	un kesuit	
51 649 1								
SGL TRG: VID		7.78 dB 🍙 F	0.63 de NVNT 3-E RBW 1 MHz VBW 1 MHz		41MHz			
Spectrum Ref Level 27.78 dB Att 40 d SGL TRG: VID 1Pk Clrw	m Offset	Dwell N 7.78 dB • F	NVNT 3-E RBW 1 MHz	DH5 24	41MHz			-7.87 dBm
Spectrum Ref Level 27.78 dB Att 40 d SGL TRG:VID 1Pk Clrw 20 dBm	m Offset	Dwell N 7.78 dB • F	NVNT 3-E RBW 1 MHz	DH5 24				-7.87 dBm 16.00 µs 0.93 dB
Spectrum Ref Level 27.78 dB Att 40 d SGL TRG: VID IPk Clrw	m Offset	Dwell N 7.78 dB • F	NVNT 3-E RBW 1 MHz	DH5 24	1[1]		2	-7.87 dBm 16.00 µs
Spectrum Ref Level 27.78 dB Att 40 d SGL TRG:VID 9 1Pk Clrw 20 dBm 10 dBm 0 dBm	m Offset B SWT	Dwell N 7.78 dB • F 8 ms • V	NVNT 3-E RBW 1 MHz VBW 1 MHz	DH5 24	1[1]		2	-7.87 dBm 16.00 µs 0.93 dB
Spectrum Ref Level 27.78 dB Att 40 d SGL TRG:VID 9 1Pk Clrw 20 dBm 10 dBm 0 dBm	m Offset	Dwell N 7.78 dB • F 8 ms • V	NVNT 3-E RBW 1 MHz VBW 1 MHz	DH5 24	1[1]		2	-7.87 dBm 16.00 µs 0.93 dB
Spectrum Ref Level 27.78 dB Att 40 d SGL TRG: VID PIPk Clrw 20 dBm 10 dBm D dBm M1	m Offset IB SWT	Dwell N 7.78 dB • F 8 ms • V	NVNT 3-E RBW 1 MHz VBW 1 MHz	DH5 24	1[1]		2	-7.87 dBm 16.00 µs 0.93 dB
Spectrum Ref Level 27.78 dB Att 40 d SGL TRG: VID 9 1Pk Clrw 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm TRG -20,0 -30 dBm	m Offset IB SWT	Dwell N 7.78 dB • F 8 ms • V	NVNT 3-E	DH5 24	u[1]			-7.87 dBm 16.00 µs 0.93 dB 3.86400 ms
Spectrum Ref Level 27.78 dB Att 40 d SGL TRG: VID 9 1Pk Clrw 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm TRG -20,0 -30 dBm	m Offset IB SWT	Dwell N 7.78 dB • F 8 ms • V	NVNT 3-E	DH5 24	u[1]			-7.87 dBm 16.00 µs 0.93 dB 3.86400 ms
Spectrum Ref Level 27.78 dBi Att 40 d SGL TRG: VID ● 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	m Offset IB SWT	Dwell N 7.78 dB • F 8 ms • V	NVNT 3-E	DH5 24	u[1]			-7.87 dBm 16.00 µs 0.93 dB 3.86400 ms
Spectrum Ref Level 27.78 dB Att 40 d SGL TRG: VID 1Pk Cirw 20 dBm 10 dBm 10 dBm 20 dBm 10 dBm 10 dBm 20 dBm 10 dBm	m Offset IB SWT	Dwell N 7.78 dB • F 8 ms • V	NVNT 3-E	DH5 24	u[1]			-7.87 dBm 16.00 µs 0.93 dB 3.86400 ms
Spectrum Ref Level 27.78 dB Att 40 d SGL TRG:VID ● 1Pk Clrw 20 dBm 10 dBm -10 dBm -30 dBm -30 dBm -50 dBm	m Offset IB SWT	Dwell N 7.78 dB • F 8 ms • V	NVNT 3-E	DH5 24	u[1]			-7.87 dBm 16.00 µs 0.93 dB 3.86400 ms
Spectrum Ref Level 27.78 dB Att 40 d SGL TRG: VID ● 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm -70 dBm CF 2.441 GHz	m Offset IB SWT	Dwell N 7.78 dB • F 8 ms • V	NVNT 3-E	DH5 24	u[1]		aythouse righty	-7.87 dBm 16.00 µs 0.93 dB 3.86400 ms
Spectrum Ref Level 27.78 dB Att 40 d SGL TRG: VID IPk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 2.441 GHz Marker Type Type	m Offset B SWT	Dwell N 7.78 dB • F 8 ms • N	NVNT 3-E	DH5 24	1[1] 1[1] 1]	Inseelfighertforzhozeto	aythouse righty	-7.87 dBm 16.00 µs 0.93 dB 8.86400 ms
Spectrum Ref Level 27.78 dB Att 40 d SGL TRG: VID ● 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 2.441 GHz	m Offset B SWT	Dwell N 7.78 dB • F 8 ms • N	NVNT 3-E	DH5 24	1[1] 1[1] 1]	Inseelfighertforzhozeto	esyboose talky	-7.87 dBm 16.00 µs 0.93 dB 8.86400 ms

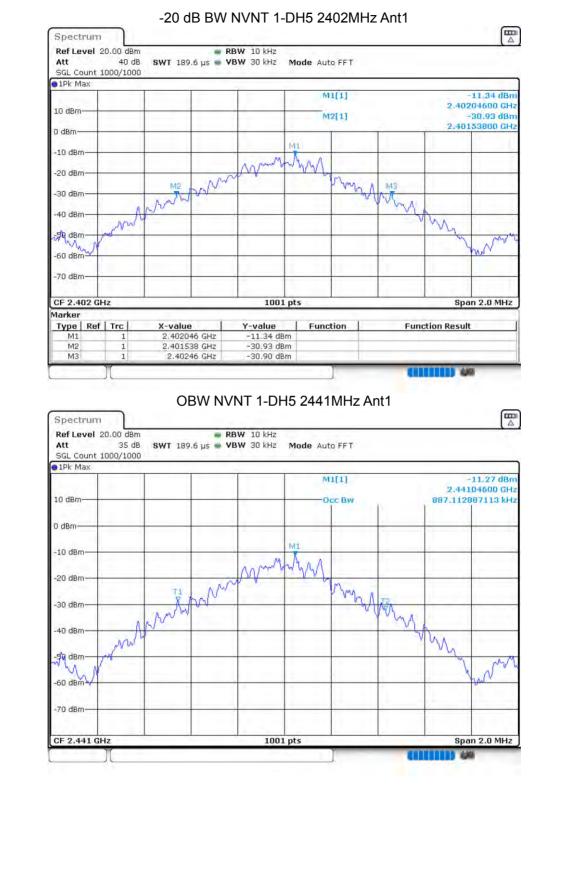
8.2 MAXIMUM CONDUCTED OUTPUT POWER

•••••••••••••••••••••••••••••••••••••••						
Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	1.96	30	Pass
NVNT	1-DH5	2441	Ant 1	2.179	30	Pass
NVNT	1-DH5	2480	Ant 1	2.895	30	Pass
NVNT	2-DH5	2402	Ant 1	1.972	21	Pass
NVNT	2-DH5	2441	Ant 1	1.712	21	Pass
NVNT	2-DH5	2480	Ant 1	2.847	21	Pass
NVNT	3-DH5	2402	Ant 1	2.046	21	Pass
NVNT	3-DH5	2441	Ant 1	1.761	21	Pass
NVNT	3-DH5	2480	Ant 1	2.971	21	Pass

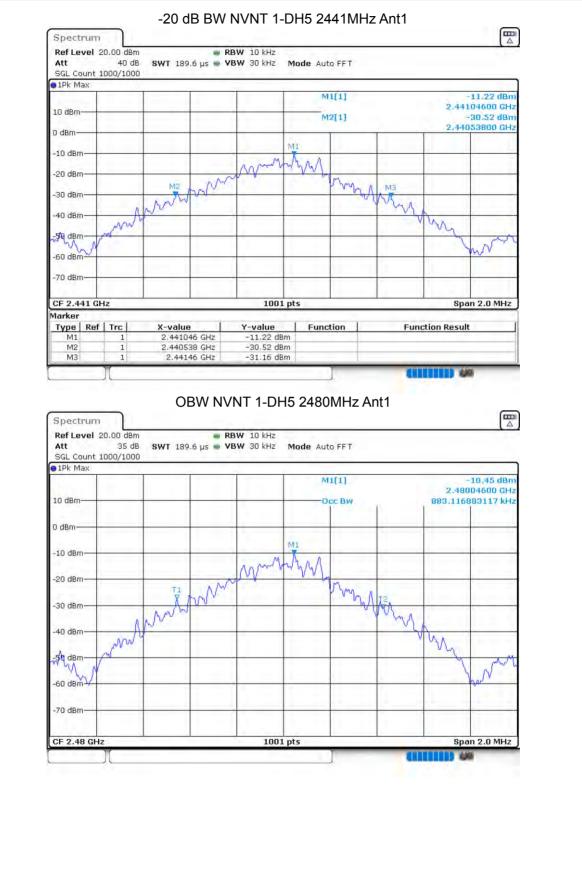

Power NVNT 1-DH5 2402MHz Ant1

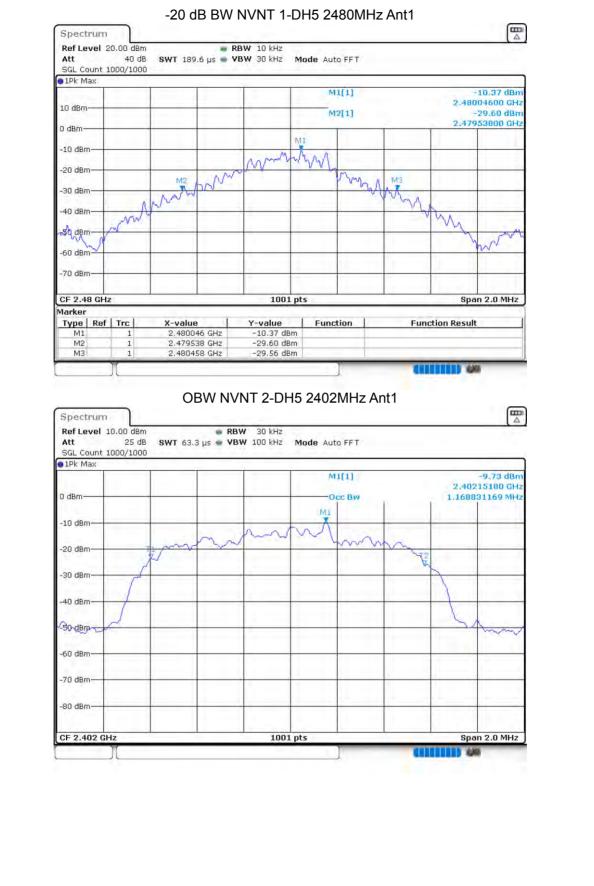


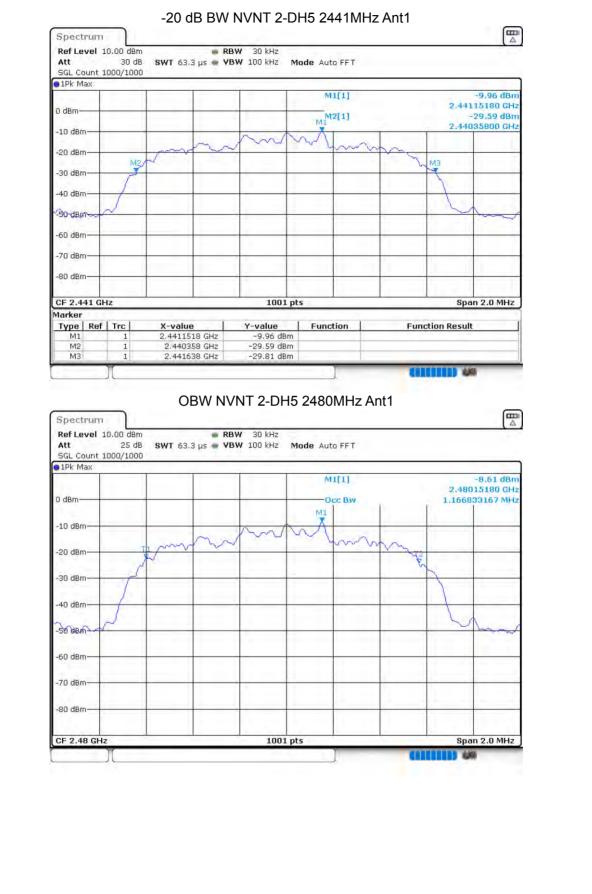



8.3 OCCUPIED CHANNEL BANDWIDTH

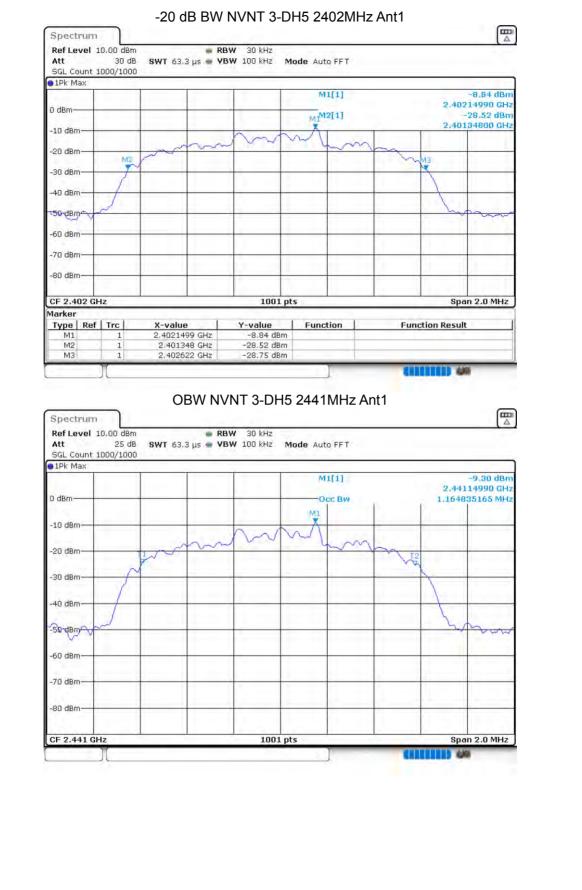
0.3 00001			1			
Condition	Mode	Frequency	Antenna	99% OBW	-20 dB Bandwidth	Verdict
		(MHz)		(MHz)	(MHz)	
NVNT	1-DH5	2402	Ant 1	0.8871	0.922	Pass
NVNT	1-DH5	2441	Ant 1	0.8871	0.922	Pass
NVNT	1-DH5	2480	Ant 1	0.8831	0.92	Pass
NVNT	2-DH5	2402	Ant 1	1.1688	1.28	Pass
NVNT	2-DH5	2441	Ant 1	1.1668	1.28	Pass
NVNT	2-DH5	2480	Ant 1	1.1668	1.28	Pass
NVNT	3-DH5	2402	Ant 1	1.1648	1.274	Pass
NVNT	3-DH5	2441	Ant 1	1.1648	1.276	Pass
NVNT	3-DH5	2480	Ant 1	1.1648	1.282	Pass

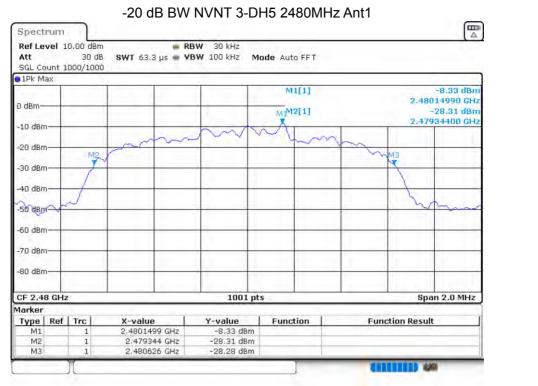


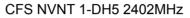


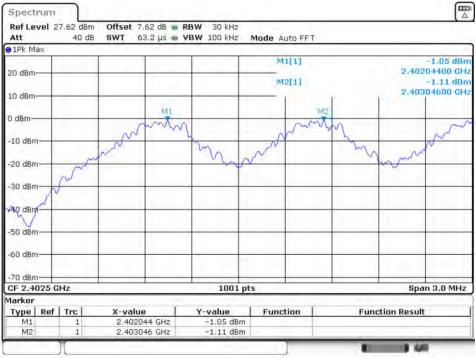


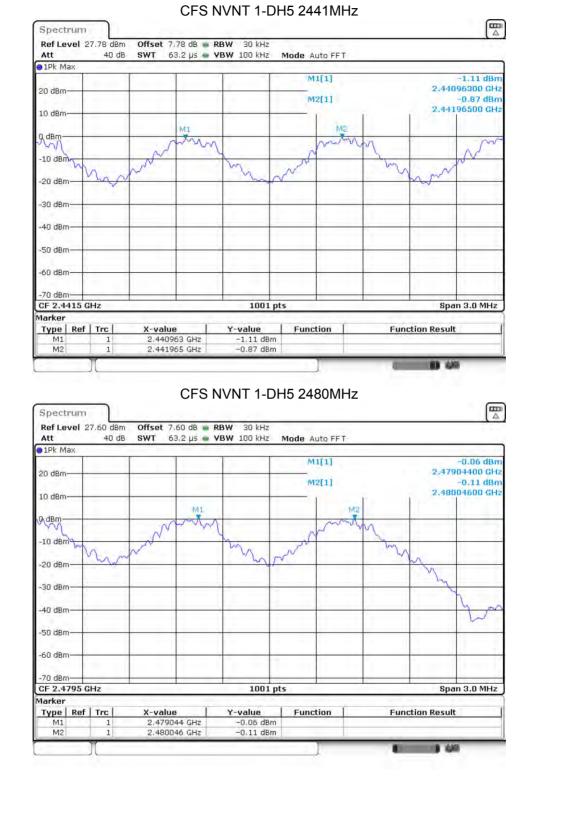




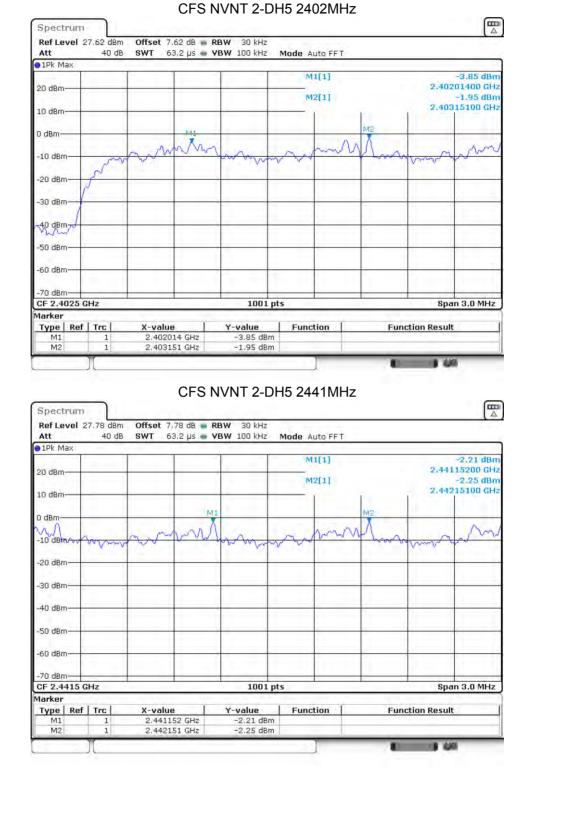


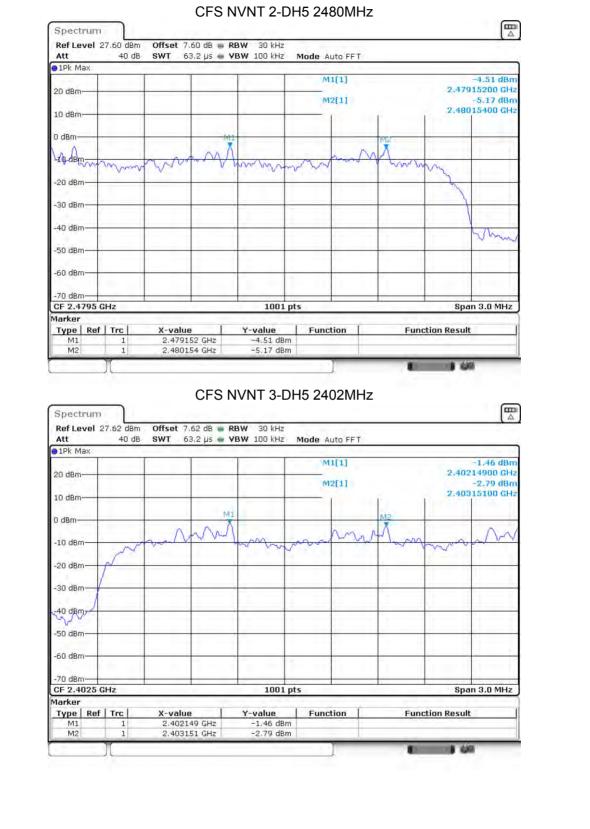


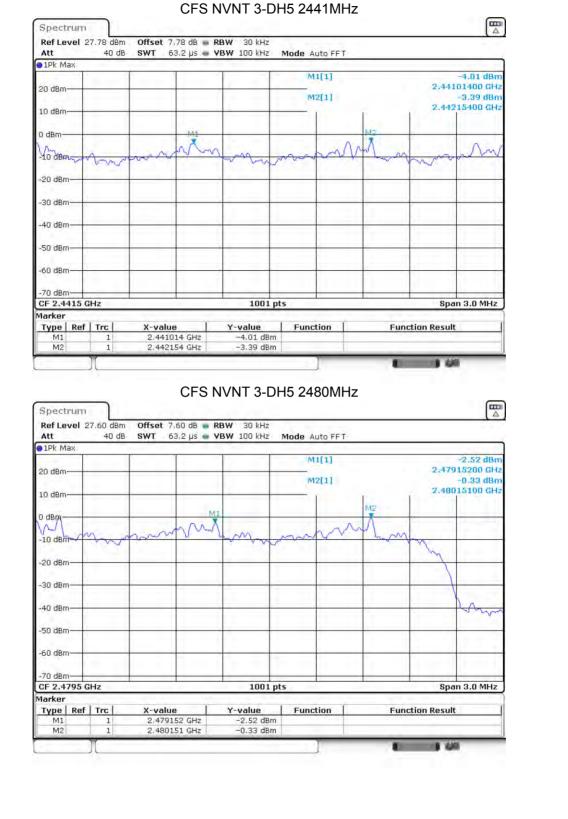



8.4 CARRIER FREQUENCIES SEPARATION

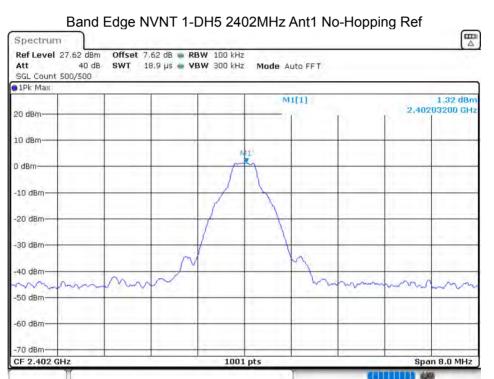
			۱ ۱	•		à
Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
		(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH5	2402.044	2403.046	1.002	0.922	Pass
NVNT	1-DH5	2440.963	2441.965	1.002	0.922	Pass
NVNT	1-DH5	2479.044	2480.046	1.002	0.92	Pass
NVNT	2-DH5	2402.014	2403.151	1.137	0.853	Pass
NVNT	2-DH5	2441.152	2442.151	0.999	0.853	Pass
NVNT	2-DH5	2479.152	2480.154	1.002	0.853	Pass
NVNT	3-DH5	2402.149	2403.151	1.002	0.849	Pass
NVNT	3-DH5	2441.014	2442.154	1.14	0.851	Pass
NVNT	3-DH5	2479.152	2480.151	0.999	0.855	Pass





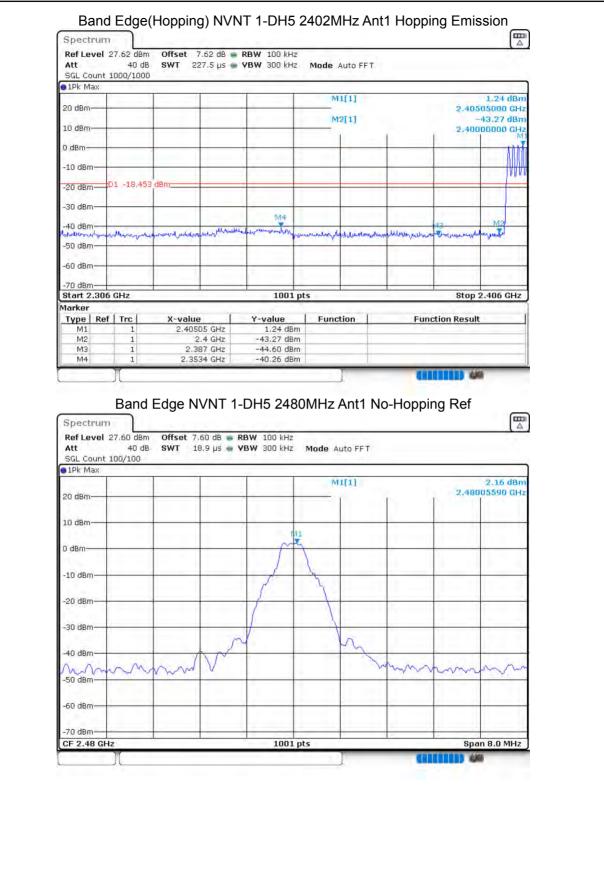


Version.1.3



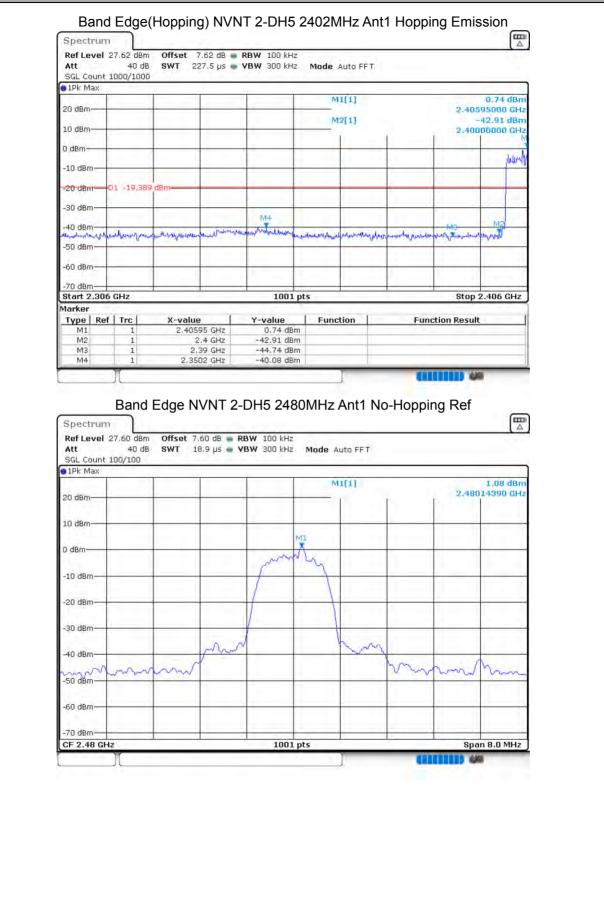
ondition	Mode	Hopping								
NVNT	1-DH5		79	15	Pass	;				
			Hon	nina No	. NVNT	1_DH5 '	24021	1H7		
	Spectre	um	ΠΟΡ		. INVINI	1-01107		11 12		
	1	el 27.62 dBm		2 dB 📦 RBV						
	Att SGL Cou	40 dB int 8000/8000		1 ms 🖷 VBN	W 300 kHz	Mode Auto	o Sweep			
	●1Pk Ma		1 1	1	i	M1[11			1.04.40
	20 dBm-								2.4	1.34 dBn 018370 GHa
	10 dBm-					M2[1]		2.4	2.29 dBm 802435 GHz
	M1 O NBMAN	<u></u>		ADADADADA	กลกลกลกลก	AAAAAAAA	ладалар	ADADADAD		M2 MAAAA
	- HUUN		HARAN AN	WWWW	MANANAN				WWWW	ANNANA -
	-14 8841	ALANDAGAG	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	In karaba	· · · · · · · · · · · · · · · · · · ·			r. u	10101010	101.01.0
	-20 dBm-									
	-80 dBm-									
	40 dBm-			-						Ina
	-50 dBm-							-	-	
	-60 dBm-	-			_				-	-
	-70 dBm-								1.1	
	10 00111							-	Stop 2	.4835 GHz
	Start 2.4	4 GHz			1001 pt	s				
	Start 2.4 Marker Type	Ref Trc	X-value		Y-value	Functio	in [Fun	ction Resul	
	Start 2.4 Marker		X-value 2.401837 2.4802435	7 GHz			n I	Fun		
	Start 2.4 Marker Type M1	Ref Trc	2.401837	7 GHz	Y-value 1.34 dBm		in [Fun		
	Start 2.4 Marker Type M1	Ref Trc	2.401837	7 GHz	Y-value 1.34 dBm		in [Fun		
	Start 2.4 Marker Type M1	Ref Trc	2.401837	7 GHz	Y-value 1.34 dBm		n 1	Fun		
	Start 2.4 Marker Type M1	Ref Trc	2.401837	7 GHz	Y-value 1.34 dBm		n	Fun		
	Start 2.4 Marker Type M1	Ref Trc	2.401837	7 GHz	Y-value 1.34 dBm		n	Fun		
	Start 2.4 Marker Type M1	Ref Trc	2.401837	7 GHz	Y-value 1.34 dBm		in	Fun		
	Start 2.4 Marker Type M1	Ref Trc	2.401837	7 GHz	Y-value 1.34 dBm			Fun		
	Start 2.4 Marker Type M1	Ref Trc	2.401837	7 GHz	Y-value 1.34 dBm		m	Fun		
	Start 2.4 Marker Type M1	Ref Trc	2.401837	7 GHz	Y-value 1.34 dBm		n	Fun		
	Start 2.4 Marker Type M1	Ref Trc	2.401837	7 GHz	Y-value 1.34 dBm			Fun		
	Start 2.4 Marker Type M1	Ref Trc	2.401837	7 GHz	Y-value 1.34 dBm		m	Fun		
	Start 2.4 Marker Type M1	Ref Trc	2.401837	7 GHz	Y-value 1.34 dBm		n	Fun		
	Start 2.4 Marker Type M1	Ref Trc	2.401837	7 GHz	Y-value 1.34 dBm			Fun		
	Start 2.4 Marker Type M1	Ref Trc	2.401837	7 GHz	Y-value 1.34 dBm		m	Fun		
	Start 2.4 Marker Type M1	Ref Trc	2.401837	7 GHz	Y-value 1.34 dBm			Fun		
	Start 2.4 Marker Type M1	Ref Trc	2.401837	7 GHz	Y-value 1.34 dBm			Fun		
	Start 2.4 Marker Type M1	Ref Trc	2.401837	7 GHz	Y-value 1.34 dBm			Fun		
	Start 2.4 Marker Type M1	Ref Trc	2.401837	7 GHz	Y-value 1.34 dBm			Fun		
	Start 2.4 Marker Type M1	Ref Trc	2.401837	7 GHz	Y-value 1.34 dBm			Fun		
	Start 2.4 Marker Type M1	Ref Trc	2.401837	7 GHz	Y-value 1.34 dBm			Fun		

8.6 BAND EDGE


0.0 DANUE						1	1
Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH5	2402	Ant 1	No-Hopping	-41.62	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-41.81	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-45.4	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-43.89	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-40.67	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-40.69	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-44.27	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-44.8	-20	Pass
NVNT	3-DH5	2402	Ant 1	No-Hopping	-40.28	-20	Pass
NVNT	3-DH5	2402	Ant 1	Hopping	-40.66	-20	Pass
NVNT	3-DH5	2480	Ant 1	No-Hopping	-44.56	-20	Pass
NVNT	3-DH5	2480	Ant 1	Hopping	-45.04	-20	Pass

	1				M1[[1]			1.22 di	Bmi
20 dBm					M2[m		2.4	-47.39 di	
10 dBm								2.4	0000000 G M1	Hz
0 dBm			-	-				-	1	
-10 dBm			-	-	-		-			-
-20 dBm	D1 -18.677	dBm	_		_					-
-30 dBm	·						-			
-40 dBm	1	and the second	M4	abarandhimmenya			6 1/200	M3	m. Martin	
-50 dBm-	monutainut	man	district and an	men an under	mannanapp	human use - nal	Cerember Marken	When Souther	hugh yath and	7.14-4
-60 dBm				-					_	
-70 dBm						1	_			1
Start 2.30 Marker	6 GHz			1001	pts			Sto	p 2.406 GH	łz
Type Re		X-value		Y-value	Functio	on	Fund	tion Resu	alt	-
M1 M2	1		5 GHz 4 GHz	1.22 dBn -47.39 dBn				-		-
M3 M4	1		39 GHz	-45,78 dBn						
IVI4	1	2,341	5 GHz	-40.30 dBn	n					
B Spectrum Ref Level Att SGL Count	and Edg	ge(Hopp	Ding) N'	-40.30 dBn	H5 2402	to FFT	nt1 Hop		1.55 di	
B Spectrum Ref Level Att	and Edg n 27.62 dBm 40 dB	ge(Hopp	Ding) N'	VNT 1-DI	H5 2402 Mode Aut	to FFT	nt1 Hop		[Bm
B Spectrun Ref Level Att SGL Count • 1Pk Max	and Edg n 27.62 dBm 40 dB	ge(Hopp	Ding) N'	VNT 1-DI	H5 2402 Mode Aut	to FFT	.nt1 Hop		1.55 di	Bm
B Spectrum Ref Level Att SGL Count SGL Count 1Pk Max 20 dBm- 10 dBm-	and Edg n 27.62 dBm 40 dB	ge(Hopp	Ding) N'	VNT 1-DI	H5 2402 Mode Aut	to FFT	.nt1 Hop		1.55 di 0503700 G	Bm
B Spectrun Ref Level Att SGL Count 9 1Pk Max 20 dBm-	and Edg n 27.62 dBm 40 dB	ge(Hopp	Ding) N'	VNT 1-DI	H5 2402 Mode Aut	to FFT	.nt1 Hop	2.44 M	1.55 di 0503700 G	Bm
B Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	and Edg n 27.62 dBm 40 dB	ge(Hopp	Ding) N'	VNT 1-DI	H5 2402 Mode Aut	to FFT	.nt1 Hop	2.44 M	1.55 di 0503700 G	Bm
B Spectrum Ref Level Att SGL Count SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	and Edg n 27.62 dBm 40 dB	ge(Hopp	Ding) N'	VNT 1-DI	H5 2402 Mode Aut	to FFT	.nt1 Hop	2.44 M	1.55 di 0503700 G	Bm
B Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm- -10 dBm-	and Edg n 27.62 dBm 40 dB	ge(Hopp	Ding) N'	VNT 1-DI	H5 2402 Mode Aut	to FFT	.nt1 Hop	2.44 M	1.55 di 0503700 G	Bm
B Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	and Edg n 27.62 dBm 40 dB	ge(Hopp	Ding) N'	VNT 1-DI	H5 2402 Mode Aut	to FFT	.nt1 Hop	2.44 M	1.55 di 0503700 G	Bm
B Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	and Edg n 27.62 dBm 40 dB	ge(Hopp	Ding) N'	VNT 1-DI	H5 2402 Mode Aut	to FFT	.nt1 Hop	2.44 M	1.55 di 0503700 G	Bm
B Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	and Edg n 27.62 dBm 40 dB	ge(Hopp	Ding) N'	VNT 1-DI	H5 2402 Mode Aut	to FFT	.nt1 Hop	2.44 M	1.55 di 0503700 G	Bm
B Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm - 10 dBm - 20 dBm - 20 dBm - 30 dBm - 40 dBm	and Edg n 27.62 dBm 40 dB	ge(Hopp	Ding) N'	VNT 1-DI	H5 2402 Mode Aut	to FFT	.nt1 Hop	2.44 M	1.55 di 0503700 G	Bm
B Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm	and Edg n 27.62 dBm 40 dB	ge(Hopp	Ding) N'	VNT 1-DI	H5 2402 Mode Aut	to FFT	.nt1 Hop	2.44 M	1.55 di 0503700 G	Bm
B Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm- -50 dBm-	and Edg 27.62 dBm 40 dB 2000/2000	ge(Hopp	Ding) N'	VNT 1-DI	H5 2402	to FFT	.nt1 Hop	2,4	1.55 di 0503700 G	Bm HHz
B Spectrum Ref Level Att SGL Count SGL Count 10 dBm- 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -50 dBm- -50 dBm- -70 dBm-	and Edg 27.62 dBm 40 dB 2000/2000	ge(Hopp	Ding) N'		H5 2402	to FFT	.nt1 Hop	2,4	1.55 di 0503700 G	Bm HHz
B Spectrum Ref Level Att SGL Count SGL Count 10 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	and Edg 27.62 dBm 40 dB 2000/2000	ge(Hopp	Ding) N'		H5 2402	to FFT	.nt1 Hop	2,4	1.55 di 0503700 G	Bm HHz

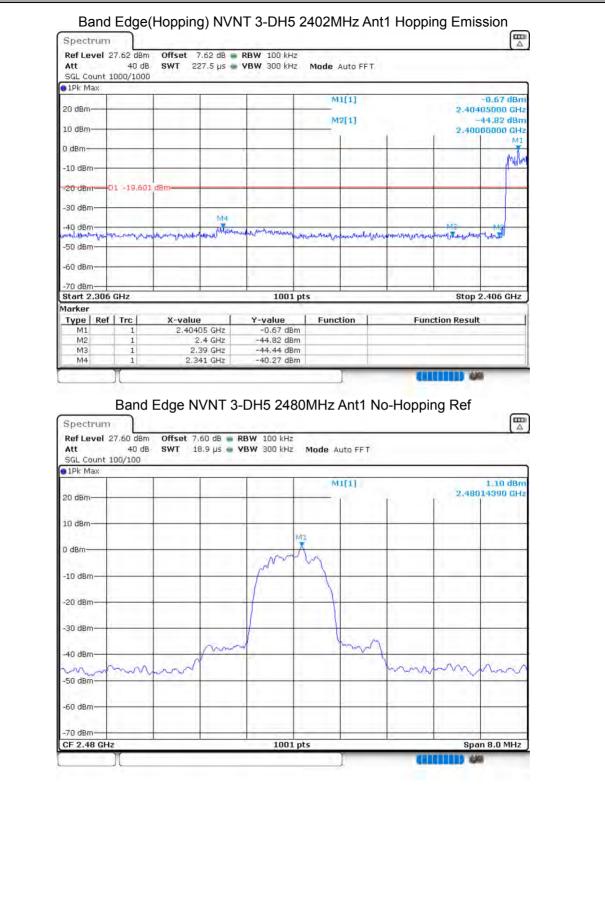
●1Pk Max	1	-	1	M	[1]			2.45 dBm
20 dBm					2[1]			015000 GHz -47.06 dBm
10 dBm-		-	-		e(+)	6		350000 GHz
0 dBm	-				-	-	1	1
-10 dBm			-					
-20 dBm - 01 -17.	340 dBm				_	_		
-30 dBm			·	. <u></u>		t	1	1:
	NI4		1000	1	1 - 1 -	1	-	1785
-40 dBm	multimontality	wanterman	and proving the second	Adventurion and	happy	toppent to hot may	ways weddallens	Marcallanom
1					1.1			
-60 dBm			· · · · · ·			J.,		1
-70 dBm Start 2.476 GHz	-		1001	pts			Stop	2.576 GHz
Marker	N control	. 1	O contra	L. Fund	Inc. 1			
TypeRefTrcM11		15 GHz	Y-value 2.45 dB		ion	Fund	tion Resu	τ
M2 1 M3 1		35 GHz 2.5 GHz	-47.06 dB -45.89 dB					
M4 1	2.49	64 GHz	-43.25 dB	m	- U			
N.					-	100	LILLID é	10
	dge(Hopp 3m Offset 7. dB swt 19	oing) N'	VNT 1-D	Mode Au	ito FFT	Ant1 Hop	oping F	
Band E Spectrum Ref Level 27.60 dl Att 40 SGL Count 2000/20	dge(Hopp 3m Offset 7. dB swt 19	oing) N'	BW 100 kHz	Mode Au		Ant1 Hop	1.00	
Band E Spectrum Ref Level 27.60 d Att 40 SGL Count 2000/20 1Pk Max 20 dBm	dge(Hopp 3m Offset 7. dB swt 19	oing) N'	BW 100 kHz	Mode Au	ito FFT	Ant1 Hop	1.00	2,37 dBm
Band E Spectrum Ref Level 27.60 d Att 40 SGL Count 2000/20 1Pk Max	dge(Hopp 3m Offset 7. dB swt 19	oing) N'	BW 100 kHz	Mode Au	ito FFT	Ant1 Hop	1.00	2,37 dBm
Band E Spectrum Ref Level 27.60 dl Att 40 SGL Count 2000/20 9 IPk Max 20 dBm- 10 dBm-	dge(Hopp 3m Offset 7. dB swt 19	oing) N'	BW 100 kHz	Mode Au	ito FFT	Ant1 Hop	1.00	2,37 dBm
Band E Spectrum Ref Level 27.60 dl Att 40 SGL Count 2000/20 9 IPk Max 20 dBm 10 dBm 10 dBm M1 0-dBm	dge(Hopp 3m Offset 7. dB swt 19	oing) N'	BW 100 kHz	Mode Au	ito FFT	Ant1 Hop	1.00	2,37 dBm
Band E Spectrum Ref Level 27.60 dl Att 40 SGL Count 2000/20 O IPK Max 20 dBm- 10 dBm- M1	dge(Hopp 3m Offset 7. dB swt 19	oing) N'	BW 100 kHz	Mode Au	ito FFT	Ant1 Hop	1.00	2,37 dBm
Band E Spectrum Ref Level 27.60 dl Att 40 SGL Count 2000/20 9 IPK Max 20 dBm 10 dBm 10 dBm M1	dge(Hopp 3m Offset 7. dB swt 19	oing) N'	BW 100 kHz	Mode Au	ito FFT	Ant1 Hop	1.00	2,37 dBm
Band E Spectrum Ref Level 27.60 dl Att 40 SGL Count 2000/20 9 IPK Max 20 dBm 10 dBm -10 dBm -10 dBm	dge(Hopp 3m Offset 7. dB swt 19	oing) N'	BW 100 kHz	Mode Au	ito FFT	Ant1 Hop	1.00	2,37 dBm
Band E Spectrum Ref Level 27.60 dl Att 40 SGL Count 2000/20 • 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	dge(Hopp 3m Offset 7. dB swt 19	oing) N'	BW 100 kHz	Mode Au	ito FFT	Ant1 Hop	1.00	2,37 dBm
Band E Spectrum Ref Level 27.60 di Att 40 SGL Count 2000/20 0 IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm	dge(Hopp 3m Offset 7. dB swt 19	oing) N'	BW 100 kHz	Mode Au	ito FFT	Ant1 Hop	1.00	2,37 dBm
Band E Spectrum Ref Level 27.60 dl Att 40 SGL Count 2000/20 • 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	dge(Hopp 3m Offset 7. dB swt 19	oing) N'	BW 100 kHz	Mode Au	ito FFT	Ant1 Hop	1.00	2,37 dBm
Band E Spectrum Ref Level 27.60 dl Att 40 SGL Count 2000/20 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	dge(Hopp 3m Offset 7. dB swt 19	oing) N'	BW 100 kHz	Mode Au	ito FFT	Ant1 Hop	1.00	2,37 dBm
Band E Spectrum Ref Level 27.60 dl Att 40 SGL Count 2000/20 • IPk Max 20 dBm 10 dBm 10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	dge(Hopp 3m Offset 7. dB swt 19	oing) N'	BW 100 kHz	Mode Au	ito FFT	Ant1 Ho	1.00	2,37 dBm
Band E Spectrum Ref Level 27.60 dl Att 40 SGL Count 2000/20 IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	dge(Hopp 3m Offset 7. dB swt 19	oing) N'	RBW 100 KHz	Mode Au	ito FFT	Ant1 Hop	2.47	2,37 dBm 701900 GHz
Band E Spectrum Ref Level 27.60 dl Att 40 SGL Count 2000/20 • IPk Max 20 dBm 10 dBm 10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	dge(Hopp 3m Offset 7. dB swt 19	oing) N'	BW 100 kHz	Mode Au	ito FFT	Ant1 Hop	2.47	2,37 dBm
Band E Spectrum Ref Level 27.60 dl Att 40 SGL Count 2000/20 IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	dge(Hopp 3m Offset 7. dB swt 19	oing) N'	RBW 100 KHz	Mode Au	ito FFT	Ant1 Hop	2.47	2,37 dBm 701900 GHz
Band E Spectrum Ref Level 27.60 dl Att 40 SGL Count 2000/20 IPk Max 20 dBm 10 dBm 40 dBm -10 dBm -30 dBm -40 dBm -50 dBm -60 dBm	dge(Hopp 3m Offset 7. dB swt 19	oing) N'	RBW 100 KHz	Mode Au	ito FFT	Ant1 Hop	2.47	2,37 dBm 701900 GHz



●1Pk Max	1 1	1 1			
20 dBm		-	M1[1]	2.47	2.63 dBm 695000 GHz
10 dBm		1.01	M2[1]		-43.47 dBm 350000 GHz
b/dBm-					
H10 dBm					
Da (47)	626 dBm				
-20 08/11					· · · · · · · ·
-30 dBm	M4M3			· · · · · · · · · · · · · · · · · · ·	
-40 dBm understand	our the phenomenal	man when a strate	mananterpresentational	and most and many more thanks	and more than ment
-50 dBm					
-60 dBm					1
-70 dBm		1001 pt	s	Ston	2.576 GHz
Marker					
TypeRefTrcM11	X-value 2.47695 GHz	Y-value 2.63 dBm	Function	Function Resul	t
M2 1	2.4835 GHz 2.5 GHz	-43.47 dBm -43.18 dBm			
M3 1					
M3 1 M4 1	2.4978 GHz	-41.52 dBm			and the second se
M4 1	2.4978 GHz d Edge NVNT 8m Offset 7.62 dB dB SWT 18.9 µs	2-DH5 2402	A.2	No-Hopping Ref	
M4 1 Ban Spectrum Ref Level 27.52 d Att 40 SGL Count 100/100 • 1Pk Max	2.4978 GHz d Edge NVNT 8m Offset 7.62 dB dB SWT 18.9 µs	2-DH5 2402	A.2		-0.82 dBm
M4 1 Ban Spectrum Ref Level 27.62 d Att 40 SGL Count 100/100	2.4978 GHz d Edge NVNT 8m Offset 7.62 dB dB SWT 18.9 µs	2-DH5 2402	Mode Auto FFT		
M4 1 Ban Spectrum Ref Level 27.52 d Att 40 SGL Count 100/100 • 1Pk Max	2.4978 GHz d Edge NVNT 8m Offset 7.62 dB dB SWT 18.9 µs	2-DH5 2402	Mode Auto FFT		-0.82 dBm
M4 1 Ban Spectrum Ref Level 27.62 d Att 40 SGL Count 100/100 • 1Pk Max 20 dBm	2.4978 GHz d Edge NVNT 8m Offset 7.62 dB dB SWT 18.9 µs	2-DH5 2402	Mode Auto FFT		-0.82 dBm
M4 1 Ban Spectrum Ref Level 27.62 d Att 40 SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm	2.4978 GHz d Edge NVNT 8m Offset 7.62 dB dB SWT 18.9 µs	2-DH5 2402 RBW 100 kHz VBW 300 kHz	Mode Auto FFT		-0.82 dBm
M4 1 Ban Spectrum Ref Level 27.62 d Att 40 SGL Count 100/100 1Pk Max 20 dBm 10 dBm	2.4978 GHz d Edge NVNT 8m Offset 7.62 dB dB SWT 18.9 µs	2-DH5 2402 RBW 100 kHz VBW 300 kHz	Mode Auto FFT		-0.82 dBm
M4 1 Ban Spectrum Ref Level 27.62 d Att 40 SGL Count 100/100 1Pk Max 20 dBm 10 dBm 0 dBm	2.4978 GHz d Edge NVNT 8m Offset 7.62 dB dB SWT 18.9 µs	2-DH5 2402 RBW 100 kHz VBW 300 kHz	Mode Auto FFT		-0.82 dBm
M4 1 Ban Spectrum Ref Level 27.62 d Att 40 SGL Count 100/100 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm	2.4978 GHz d Edge NVNT 8m Offset 7.62 dB dB SWT 18.9 µs	2-DH5 2402 RBW 100 kHz VBW 300 kHz	Mode Auto FFT		-0.82 dBm
M4 1 Ban Spectrum Ref Level 27.62 d Att 40 SGL Count 1Pk Max 20 dBm 10 dBm 0 -10 dBm -10 dBm	2.4978 GHz	2-DH5 2402 RBW 100 kHz VBW 300 kHz	Mode Auto FFT		-0.82 dBm
M4 1 Ban Spectrum Ref Level 27.62 d Att 40 SGL Count 100/100 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm	2.4978 GHz d Edge NVNT 8m Offset 7.62 dB dB SWT 18.9 µs	2-DH5 2402 RBW 100 kHz VBW 300 kHz	Mode Auto FFT	2,40	-0.82 dBm
M4 1 Ban Spectrum Ref Level 27.62 d Att 40 SGL count 10 dBm 20 dBm 10 dBm 0 -10 dBm -0 -20 dBm -0	2.4978 GHz	2-DH5 2402 RBW 100 kHz VBW 300 kHz	Mode Auto FFT		-0.82 dBm
M4 1 Ban Ref Level 27.62 d Att 40 SGL Count 100/100 • IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	2.4978 GHz	2-DH5 2402 RBW 100 kHz VBW 300 kHz	Mode Auto FFT	2,40	-0.82 dBm
M4 1 Ban Ref Level 27.52 d Att 40 SGL Count 100/100 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	2.4978 GHz	2-DH5 2402 RBW 100 kHz VBW 300 kHz	Mode Auto FFT	2,40	-0.82 dBm
M4 1 Ref Level 27.62 d Att 40 SGL Count 100/100 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -60 dBm	2.4978 GHz	2-DH5 2402	Mode Auto FFT	2,40	-0.82 dBm 184020 GHz
M4 1 Ref Level 27.62 d Att 40 SGL Count 100/100 • IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	2.4978 GHz	2-DH5 2402 RBW 100 kHz VBW 300 kHz	Mode Auto FFT	2,40	-0.82 dBm
M4 1 Ref Level 27.62 d Att 40 SGL Count 100/100 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	2.4978 GHz	2-DH5 2402	Mode Auto FFT	2,40	-0.82 dBm 184020 GHz

SGL Count 100/ 91Pk Max	100						
20 dBm-				M1[1]		2.40	0.14 dBm 1185000 GHz
10 dBm			1	M2[1]			-45.63 dBm
0 dBm							M1
-10 dBm			1.				
-20 dBm-01 -	20.819 dBm						1.1
-30 dBm-							
-40 dBm	_	M4				МЗ	mit
-50 dBm	mannaharden	hide Spilled Mathematica	and an arthur and	replanced	chultoniceskatant/had	and the second second	Mondulat www
-60 dBm						_	
-70 dBm-							
Start 2.306 GH: Marker	2		1001	pts		Stop	2.406 GHz
Type Ref Tr M1	1 2.44 1 1	UE 0185 GHz 2.4 GHz 2.39 GHz 3402 GHz	Y-value 0.14 dB -45.63 dB -46.54 dB -41.50 dB	m m		Function Resu	
	4 C.		-11.00 db				100
Spectrum Ref Level 27.6	40 dB SWT	7.62 dB 🖷 I	RBW 100 kHz	Mode Auto F	FT	Hopping F	Ref
Spectrum Ref Level 27.6 Att SGL Count 8000	2 dBm Offset 40 dB SWT	7.62 dB 🖷 I	RBW 100 kHz		FT		
Spectrum Ref Level 27.67 Att SGL Count 8000 1Pk Max	2 dBm Offset 40 dB SWT	7.62 dB 🖷 I	RBW 100 kHz	Mode Auto F	FT		0.61 dBm
Spectrum Ref Level 27.63 Att SGL Count 8000 1Pk Max 20 dBm	2 dBm Offset 40 dB SWT	7.62 dB 🖷 I	RBW 100 kHz	Mode Auto F	FT		0.61 dBm
Spectrum Ref Level 27.63 Att SGL Count 8000 1Pk Max 20 dBm 10 dBm	2 dBm Offset 40 dB SWT	7.62 dB 🖷 I	RBW 100 kHz	Mode Auto F	FT		0.61 dBm
Spectrum Ref Level 27.63 Att SGL Count 8000 1Pk Max 20 dBm 10 dBm -10 dBm	2 dBm Offset 40 dB SWT	7.62 dB 🖷 I	RBW 100 kHz	Mode Auto F	FT		0.61 dBm
Spectrum Ref Level 27.62 Att SGL Count 8000 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm	2 dBm Offset 40 dB SWT	7.62 dB 🖷 I	RBW 100 kHz	Mode Auto F	FT		0.61 dBm
Spectrum Ref Level 27.63 Att SGL Count 8000 1Pk Max 20 dBm 10 dBm -10 dBm	2 dBm Offset 40 dB SWT	7.62 dB 🖷 I	RBW 100 kHz	Mode Auto F	FT		0.61 dBm
Spectrum Ref Level 27.62 Att SGL Count 8000 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	2 dBm Offset 40 dB SWT	7.62 dB 🖷 I	RBW 100 kHz	Mode Auto F	FT		0.61 dBm
Spectrum Ref Level 27.63 Att SGL Count 8000 •1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	2 dBm Offset 40 dB SWT	7.62 dB 🖷 I	RBW 100 kHz	Mode Auto F	FT		0.61 dBm
Spectrum Ref Level 27.6: Att SGL Count 8000 I Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	2 dBm Offset 40 dB SWT	7.62 dB 🖷 I	RBW 100 kHz	Mode Auto F	FT		0.61 dBm
Spectrum Ref Level 27.6: Att SGL Count 8000 • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	2 dBm Offset 40 dB SWT	7.62 dB 🖷 I	RBW 100 kHz	Mode Auto F	FT		0.61 dBm
Spectrum Ref Level 27.6: Att SGL Count 8000 9 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	2 dBm Offset 40 dB SWT	7.62 dB 🖷 I	RBW 100 kHz	Mode Auto F	FT	2.40	0.61 dBm
Spectrum Ref Level 27.63 Att SGL Count 8000 • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	2 dBm Offset 40 dB SWT	7.62 dB 🖷 I	RBW 100 kHz	Mode Auto F	FT	2.40	0.61 dBm 1299900 GHz
Spectrum Ref Level 27.63 Att SGL Count 8000 • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	2 dBm Offset 40 dB SWT	7.62 dB 🖷 I	RBW 100 kHz	Mode Auto F		2.40	0.61 dBm 1299900 GHz

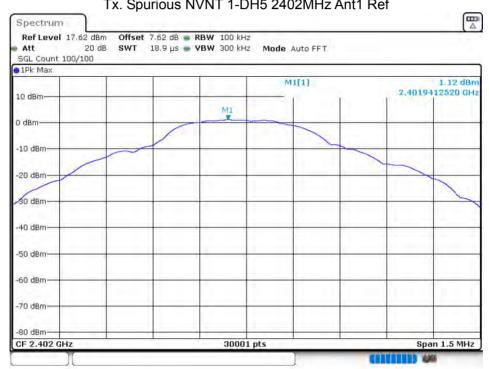
SGL Count 10 1Pk Max	0/100					_			
20 dBm					M	1[1]		2.470	0.78 dBm 95000 GHz
			-		M	2[1]			-46.53 dBm
10 dBm						1	()	2.483	150000 GH2
0 dBm		-			1.000			1	1
-10.cBm			1						
-20 CBm-01	-18,925	dBm:							
-30 dBm			-						
-40 dBm	M4		La Palmona	rtue manual that	ware to the se	the local	and the survey	L.M. PAUNINAPON	haman
-50 dBm	nter an anna an a	Ralling Produced	uprover i	a strangeralle in all	chemory and the	- and - a	Nober Marahara Ale	Man	a Judonishranama
-60 dBm	_	_				1			
-70 dBm						1			1
Start 2.476 0 Marker	Hz			1001	pts	_		Stop	2.576 GHz
Type Ref		X-value	e	Y-value 0.78 dBr	Func	tion	Fund	tion Result	- 1
M1 M2	1	2.48	35 GHz	-46.53 dBr	n				
MB	1		2.5 GHz	-44.64 dBr					
M4	1	2.49	12 GHz	-43.20 dBr	9.				
Bar Spectrum Ref Level 27 Att SGL Count 80	nd Edg	e(Hop	ping) N'	-43.20 dBr VNT 2-D BW 100 kHz BW 300 kHz	H5 248 Mode A		Ant1 Ho		2.24 dBm
Bar Spectrum Ref Level 27 Att SGL Count 80 1Pk Max	nd Edg	e(Hop	ping) N'	VNT 2-D	H5 248 Mode A	uto FF T	Ant1 Ho		
Bar Spectrum Ref Level 27 Att SGL Count 80	nd Edg	e(Hop	ping) N'	VNT 2-D	H5 248 Mode A	uto FF T	Ant1 Ho		2.24 dBm
Bar Spectrum Ref Level 27 Att SGL Count 80 1Pk Max	nd Edg	Offset 7 SWT 1	ping) N'	VNT 2-D	H5 248 Mode A	uto FF T	Ant1 Ho		2.24 dBm
Bar Spectrum Ref Level 27 Att SGL Count 800 1Pk Max 20 dBm- 10 dBm-	nd Edg	e(Hop	ping) N'	VNT 2-D	H5 248 Mode A	uto FF T	Ant1 Ho		2.24 dBm
Bar Spectrum Ref Level 27 Att SGL Count 80 1Pk Max 20 dBm 10 dBm 0 dBm	nd Edg	Offset 7 SWT 1	ping) N'	VNT 2-D	H5 248 Mode A	uto FF T	Ant1 Ho		2.24 dBm
Bar Spectrum Ref Level 27 Att SGL Count 800 1Pk Max 20 dBm- 10 dBm-	nd Edg	Offset 7 SWT 1	ping) N'	VNT 2-D	H5 248 Mode A	uto FF T	Ant1 Ho		2.24 dBm
Bar Spectrum Ref Level 27 Att SGL Count 80 1Pk Max 20 dBm 10 dBm 0 dBm	nd Edg	Offset 7 SWT 1	ping) N'	VNT 2-D	H5 248 Mode A	uto FF T	Ant1 Ho		2.24 dBm
Bar Spectrum Ref Level 27 Att SGL Count 80 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm	nd Edg	Offset 7 SWT 1	ping) N'	VNT 2-D	H5 248 Mode A	uto FF T	Ant1 Ho		2.24 dBm
Bar Spectrum Ref Level 27 Att SGL Count 80 •1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	nd Edg	Offset 7 SWT 1	ping) N'	VNT 2-D	H5 248	uto FFT	Ant1 Ho		2.24 dBm
Bar Spectrum Ref Level 27 Att SGL Count 80 •1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm	nd Edg	Offset 7 SWT 1	ping) N'	VNT 2-D	H5 248	uto FF T	Ant1 Ho		2.24 dBm
Bar Spectrum Ref Level 27 Att SGL Count 80 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	nd Edg	Offset 7 SWT 1	ping) N'	VNT 2-D	H5 248	uto FFT	Ant1 Ho		2.24 dBm
Bar Spectrum Ref Level 27 Att SGL Count 80 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	nd Edg	Offset 7 SWT 1	ping) N'	VNT 2-D	H5 248	uto FFT	Ant1 Ho		2.24 dBm
Bar Spectrum Ref Level 27 Att SGL Count 80 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	nd Edg	Offset 7 SWT 1	ping) N'	VNT 2-D	H5 248	uto FFT	Ant1 Ho		2.24 dBm
Bar Spectrum Ref Level 27 Att SGL Count 80 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm	nd Edg	Offset 7 SWT 1	ping) N'		H5 248	uto FFT		2.47	2.24 dBm 82620 GHz
Bar Spectrum Ref Level 27 Att SGL Count 80 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm	nd Edg	Offset 7 SWT 1	ping) N'	VNT 2-D	H5 248	uto FFT	Ant1 Ho	2.47	2.24 dBm
Bar Spectrum Ref Level 27 Att SGL Count 80 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm	nd Edg	Offset 7 SWT 1	ping) N'		H5 248	uto FFT	Ant1 Ho	2.47	2.24 dBm 82620 GHz
Bar Spectrum Ref Level 27 Att SGL Count 80 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	nd Edg	Offset 7 SWT 1	ping) N'		H5 248	uto FFT	Ant1 Ho	2.47	2.24 dBm 82620 GHz



Att SGL Count 100 1Pk Max			VBW 300 kH:					
20 dBm		- 1		MI	[1]	-	2.476	-1.00 dBm 05000 GHz
10 dBm			1.1	M2	[1]		-	43.80 dBm
1 0_dBm					(2.400	
-10 cBm			-		1			
-20 cBm-01	-17.759 dBm		-			-		-
-30 dBm				-			-	
-40 dbm ²	M43	to the same of the party	allynormanit	k. Laboration	Automotion and a	ut laws the anna	Laure Hoter and	Alt as cales deaths
-50 dBm	- Participation of the		0.00000000	. An an an a fair	da ana da te	and a deciman		P. Mulliman
-60 dBm					· ·····			
-70 dBm					1			1
Start 2.476 GH Marker	lz		1001	pts			Stop	2.576 GHz
Type Ref T		alue	Y-value	Funct	ion	Fund	tion Result	
M1 M2	1 :	.47605 GHz 2.4835 GHz	-1.00 dB -43.80 dB	m				
M3 M4	1	2.5 GHz 2.4989 GHz	-44.74 dB -42.57 dB					
				And a second sec				
Spectrum Ref Level 27.1 Att SGL Count 300	40 dB SWT	e NVNT 3- t 7.62 dB = F 18.9 μs = Y	RBW 100 kHz	Mode Au	ito FFT	o-Hoppin	ng Ref	-1.03 dBm
Spectrum Ref Level 27.4 Att SGL Count 300 1Pk Max	52 dBm Offse 40 dB SWT	et 7.62 dB 👞 F	RBW 100 kHz	Mode Au		p-Hoppin		-1.03 dBm .99200 GHz
Spectrum Ref Level 27.1 Att SGL Count 300 1Pk Max 20 dBm	52 dBm Offse 40 dB SWT	et 7.62 dB 👞 F	RBW 100 kHz	Mode Au	ito FFT	p-Hoppin		-1.03 dBm
Spectrum Ref Level 27.1 Att SGL Count 300 1Pk Max 20 dBm 10 dBm	52 dBm Offse 40 dB SWT	et 7.62 dB 👞 F	RBW 100 kHz	Mode Au	ito FFT	p-Hoppin		-1.03 dBm
Spectrum Ref Level 27.1 Att SGL Count 300 1Pk Max 20 dBm 10 dBm	52 dBm Offse 40 dB SWT	et 7.62 dB 👞 F	RBW 100 kHz	Mode Au	ito FFT			-1.03 dBm
Spectrum Ref Level 27.1 Att SGL Count 300 1Pk Max 20 dBm 10 dBm 0 dBm	52 dBm Offse 40 dB SWT	et 7.62 dB 👞 F	RBW 100 kHz	Mode Au	ito FFT	p-Hoppin		-1.03 dBm
Spectrum Ref Level 27.1 Att SGL Count 300 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	52 dBm Offse 40 dB SWT	et 7.62 dB 👞 F	RBW 100 kHz	Mode Au	ito FFT			-1.03 dBm
Spectrum Ref Level 27.1 Att SGL Count 300 PPk Max 20 dBm 10 dBm -10 dBm -10 dBm	52 dBm Offse 40 dB SWT	et 7.62 dB 👞 F	RBW 100 kHz	Mode Au	ito FFT			-1.03 dBm
Spectrum Ref Level 27.1 Att SGL Count 300 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	52 dBm Offse 40 dB SWT	et 7.62 dB 👞 F	RBW 100 kHz	Mode Au	ito FFT			-1.03 dBm
Spectrum Ref Level 27.1 Att SGL Count 300 1PK Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	52 dBm Offse 40 dB SWT	et 7.62 dB 👞 F	RBW 100 kHz	Mode Au	ito FFT			-1.03 dBm
Spectrum Ref Level 27.1 Att SGL Count 300 • IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	52 dBm Offse 40 dB SWT	et 7.62 dB 👞 F	RBW 100 kHz	Mode Au	ito FFT			-1.03 dBm
Spectrum Ref Level 27.1 Att SGL Count 300 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	52 dBm Offse 40 dB SWT	et 7.62 dB 👞 F	RBW 100 kHz	Mode Au	ito FFT		2.401	-1.03 dBm 99200 GHz
Spectrum Ref Level 27.1 Att SGL Count 300 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	52 dBm Offse 40 dB SWT	et 7.62 dB 👞 F	RBW 100 kHz	Mode Au	ito FFT		2.401	-1.03 dBm
Spectrum Ref Level 27.1 Att SGL Count 300 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	52 dBm Offse 40 dB SWT	et 7.62 dB 👞 F	RBW 100 kHz	Mode Au	ito FFT		2.401	-1.03 dBm 99200 GHz
Spectrum Ref Level 27.1 Att SGL Count 300 • IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	52 dBm Offse 40 dB SWT	et 7.62 dB 👞 F	RBW 100 kHz	Mode Au	ito FFT	p-Hoppin	2.401	-1.03 dBm 99200 GHz

●1Pk Max				1	54	1[1]			0.46 dBm
20 dBm					_				205000 GHz
10 dBm			-	-	M	2[1]			-44.36 dBm 000000 GHz M1
0 dBm				-					1 I
-10 dBm							-		1
-20 dBm D	-21,027	dBm			-				
-30 dBm			M4			1		1	
-40 dBm	when when a show	mangentressel		approximation and	Mahanshathin	maturinglass	Wanter Marine Marine 14	M3	Marken ha
-50 dBm-								a constant	
-60 dBm				1				1	
-70 dBm Start 2.306 0	Hz		<u> </u>	1001	pts			Stop	2.406 GHz
Marker Type Ref	Trc	X-value		Y-value	Func	tion	Fun	tion Resul	t I
M1	1	2,402	05 GHz	0.46 dB	m				
M2	1	2	.4 GHz	-44.36 dB					
	1 1 1	2.	2.4 GHz 39 GHz 97 GHz	-44.36 dB -45.72 dB -41.32 dB	m				
M2 M3 M4 Bar Spectrum Ref Level 27 Att SGL Count 30	1 1 nd Edg 7.62 dBm 40 dB	2. 2.33 ge(Hopp Offset 7.	39 GHz 97 GHz Ding) N 62 dB B R	-45.72 dB	m H5 240 Mode A	uto FFT	Ant1 Ho	pping R	
M2 M3 M4 Bar Spectrum RefLevel 27 Att SGL Count 30 • 1Pk Max	1 1 nd Edg 7.62 dBm 40 dB	2. 2.33 ge(Hopp Offset 7.	39 GHz 97 GHz Ding) N 62 dB B R	-45.72 dB -41.32 dB VNT 3-D BW 100 kHz	m H5 240 Mode A		Ant1 Ho		
M2 M3 M4 Bar Spectrum Ref Level 27 Att SGL Count 30 • 1Pk Max 20 dBm	1 1 nd Edg 7.62 dBm 40 dB	2. 2.33 ge(Hopp Offset 7.	39 GHz 97 GHz Ding) N 62 dB B R	-45.72 dB -41.32 dB VNT 3-D BW 100 kHz	m H5 240 Mode A	uto FFT	Ant1 Ho		0,40 dBm
M2 M3 M4 Bar Spectrum RefLevel 27 Att SGL Count 30 • 1Pk Max	1 1 nd Edg 7.62 dBm 40 dB	2. 2.33 ge(Hopp Offset 7.	39 GHz 97 GHz Ding) N 62 dB B R	-45.72 dB -41.32 dB VNT 3-D BW 100 kHz	m H5 240 Mode A	uto FFT	Ant1 Ho		0,40 dBm
M2 M3 M4 Bar Spectrum Ref Level 27 Att SGL Count 30 • 1Pk Max 20 dBm	1 1 nd Edg 7.62 dBm 40 dB	2. 2.33 ge(Hopp Offset 7.	39 GHz 97 GHz Ding) N 62 dB B R	-45.72 dB -41.32 dB VNT 3-D BW 100 kHz BW 300 kHz	Mode A	uto FFT			0,40 dBm
M2 M3 M4 Bar Spectrum Ref Level 27 Att SGL Count 30 • 1Pk Max 20 dBm 10 dBm	1 1 nd Edg 7.62 dBm 40 dB	2. 2.33 ge(Hopp Offset 7.	39 GHz 97 GHz Ding) N 62 dB B R	-45.72 dB -41.32 dB VNT 3-D BW 100 kHz BW 300 kHz	m m H5 240 Mode A	uto FFT	Ant1 Ho		0,40 dBm
M2 M3 M4 Bar Spectrum Ref Level 27 Att SGL Count 30 1Pk Max 20 dBm 10 dBm 0 dBm	1 1 nd Edg 7.62 dBm 40 dB	2. 2.33 ge(Hopp Offset 7.	39 GHz 97 GHz Ding) N 62 dB B R	-45.72 dB -41.32 dB VNT 3-D BW 100 kHz BW 300 kHz	Mode A	uto FFT			0,40 dBm
M2 M3 M4 Bar Spectrum Ref Level 27 Att SGL Count 30 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	1 1 nd Edg 7.62 dBm 40 dB	2. 2.33 ge(Hopp Offset 7.	39 GHz 97 GHz Ding) N 62 dB B R	-45.72 dB -41.32 dB VNT 3-D BW 100 kHz BW 300 kHz	Mode A	uto FFT			0,40 dBm
M2 M3 M4 Bar Spectrum Ref Level 27 Att SGL Count 30 1Pk Max 20 dBm 10 dBm -10 dBm	1 1 nd Edg 7.62 dBm 40 dB	2. 2.33 ge(Hopp Offset 7.	39 GHz 97 GHz Ding) N 62 dB B R	-45.72 dB -41.32 dB VNT 3-D BW 100 kHz BW 300 kHz	Mode A	uto FFT			0,40 dBm
M2 M3 M4 Bar Spectrum Ref Level 27 Att SGL Count 30 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	1 1 nd Edg 7.62 dBm 40 dB	2. 2.33 ge(Hopp Offset 7.	39 GHz 97 GHz Ding) N 62 dB B R	-45.72 dB -41.32 dB VNT 3-D BW 100 kHz BW 300 kHz	Mode A	uto FFT			0,40 dBm
M2 M3 M4 Bar Spectrum Ref Level 27 Att SGL Count 30 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	1 1 nd Edg 7.62 dBm 40 dB	2. 2.33 ge(Hopp Offset 7.	39 GHz 97 GHz Ding) N 62 dB B R	-45.72 dB -41.32 dB VNT 3-D BW 100 kHz BW 300 kHz	Mode A	uto FFT			0,40 dBm
M2 M3 M4 Bar Spectrum Ref Level 27 Att SGL Count 30 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 1 nd Edg 7.62 dBm 40 dB	2. 2.33 ge(Hopp Offset 7.	39 GHz 97 GHz Ding) N 62 dB B R	-45.72 dB -41.32 dB VNT 3-D BW 100 kHz BW 300 kHz	Mode A	uto FFT			0,40 dBm
M2 M3 M3 M4 Bar Spectrum Ref Level 27 Att SGL Count 30 SGL 1Pk Max 20 dBm 10 dBm - -10 dBm - -20 dBm - -30 dBm - -50 dBm - -60 dBm -	1 1 nd Edg 7.62 dBm 40 dB	2. 2.33 ge(Hopp Offset 7.	39 GHz 97 GHz Ding) N 62 dB B R	-45.72 dB -41.32 dB VNT 3-D BW 100 kHz BW 300 kHz	Mode A	uto FFT			0,40 dBm
M2 M3 M4 Bar Spectrum Ref Level 27 Att SGL Count 30 10 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	1 1 .62 dBm 40 dB 100/3000	2. 2.33 ge(Hopp Offset 7.	39 GHz 97 GHz Ding) N 62 dB B R	-45.72 dB -41.32 dB VNT 3-D BW 100 kHz BW 300 kHz	Mode A	uto FFT		2.403	0,40 dBm
M2 M3 M4 Bar Spectrum Ref Level 27 Att SGL Count 30 9 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	1 1 .62 dBm 40 dB 100/3000	2. 2.33 ge(Hopp Offset 7.	39 GHz 97 GHz Ding) N 62 dB B R	-45.72 dB -41.32 dB VNT 3-D BW 100 kHz BW 300 kHz	Mode A	uto FFT		2.403	0,40 dBm 314290 GHz

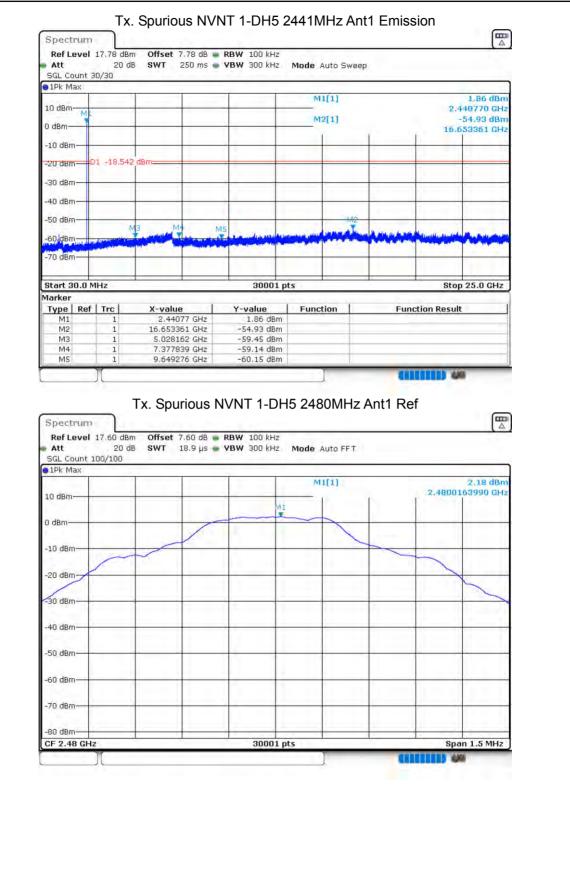
						1 11			
-40 dBm						my		moun	······
-20 dBm				1					
0 dBm -10 dBm	rup	ww	m	m	hong				
10 dBm	0.0								
20 dBm-					M	1(1)	6	2.47	2,57 dBm 614790 GHz
Ba Spectrum Ref Level Att SGL Count 1Pk Max	1 27.60 dBm 40 dB		io dB 💼 RI	/NT 3-D BW 100 kHz BW 300 kHz	F 23. 2.		Ant1 Ho	oping R	Ref
M3 M4	1 1		5 GHz 8 GHz	-45.96 dB -43.47 dB		r i	00		10
Marker Type Ret M1 M2	1		5 GHz 5 GHz	Y-value 1.21 dB -46.16 dB	m	tion	Fund	tion Resul	t
-70 dBm Start 2.476	i GHz			1001	pts			Stop	2.576 GHz
-50 dBm	northermore	haline an ann an Ann Ann Ann Ann Ann Ann Ann A	nodill - and a district of the	an Mary Mary a	franken han han han han han han han han han ha	dufteren heren h	grandentstyrednessedet	Marth 1 10 - when	ndkalene seren selan sere
-30 dBm		Ma	, ablues					. Acamer	
-10 cBm	D1 -18,903	dBm:							
0 dBm		1		-					
10 dBm					M	2[1]			015000 GHz -46.16 dBm 350000 GHz
20 dBm					M	1[1]			1.21 dBm



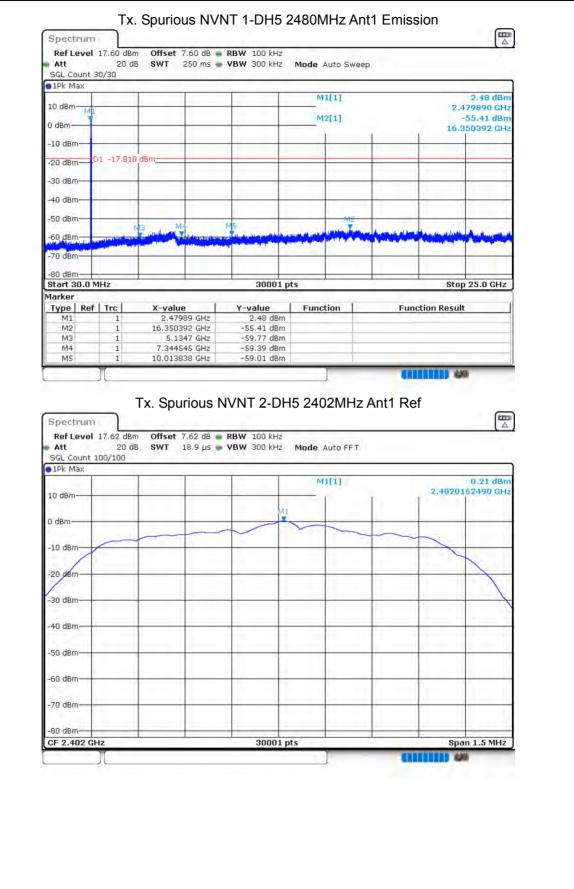
Spectrum Ref Level 3	17 60 400	Offset 7.60 dB					
Att	40 dE		VBW 300 kHz	Mode Auto FFT			
SGL Count 1		of the second	Y D YY 300 KH2	Moue Auto FFT			
1Pk Max							
a concern				M1[1]			-1.40 dBm
0 dBm						2,480	05000 GHz
				M2[1]			44.07 dBm
10 dBm	_					2.48350000 GHz	
MI					-		
dBm					-		1.
10 cBm							· · · · · ·
20 cBm	1 -17.42	5 dBm					
20 9 5 11							
30 dBm-						· · · · · · · · ·	
1	114					10.000	
40 d6 m2	M4	M3 John	monthly unich mound	Color In Color		Monuch	1.0
the second	an and a farming	hermonettermoneterm	an a Annan and and	an and hold and hold and and a	mannen	and the second	And Andrean Andreas
50 dBm							
60 dBm					-	10	
ou ubm					1.	1	
70 dBm					_		
Start 2.476	GHz	-1. <u>"</u>	1001 pt	5	- k	Stop	2.576 GHz
1arker							
Type Ref	Trc	X-value	Y-value	Function	Fund	tion Result	
M1	1	2.48005 GHz	-1.40 dBm				
M2	1	2.4835 GHz	-44.07 dBm				
MЗ	1	2.5 GHz	-43,99 dBm				
M4	1	2.4909 GHz	-42.47 dBm				

8.7 CONDUCTED RF SPURIOUS EMISSION

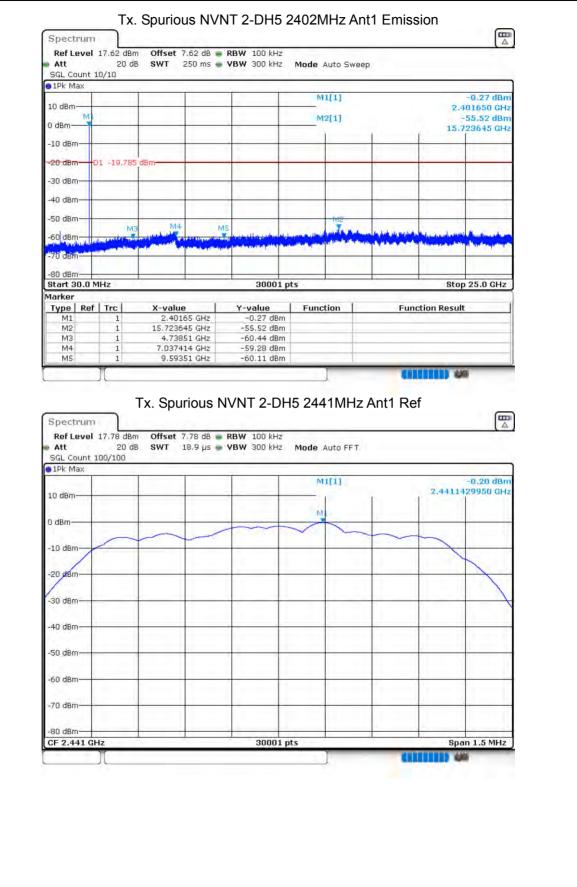
0.1 00110	001001					
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-48.2	-20	Pass
NVNT	1-DH5	2441	Ant 1	-56.39	-20	Pass
NVNT	1-DH5	2480	Ant 1	-57.58	-20	Pass
NVNT	2-DH5	2402	Ant 1	-55.72	-20	Pass
NVNT	2-DH5	2441	Ant 1	-55.42	-20	Pass
NVNT	2-DH5	2480	Ant 1	-54.79	-20	Pass
NVNT	3-DH5	2402	Ant 1	-54.82	-20	Pass
NVNT	3-DH5	2441	Ant 1	-54.96	-20	Pass
NVNT	3-DH5	2480	Ant 1	-54.32	-20	Pass

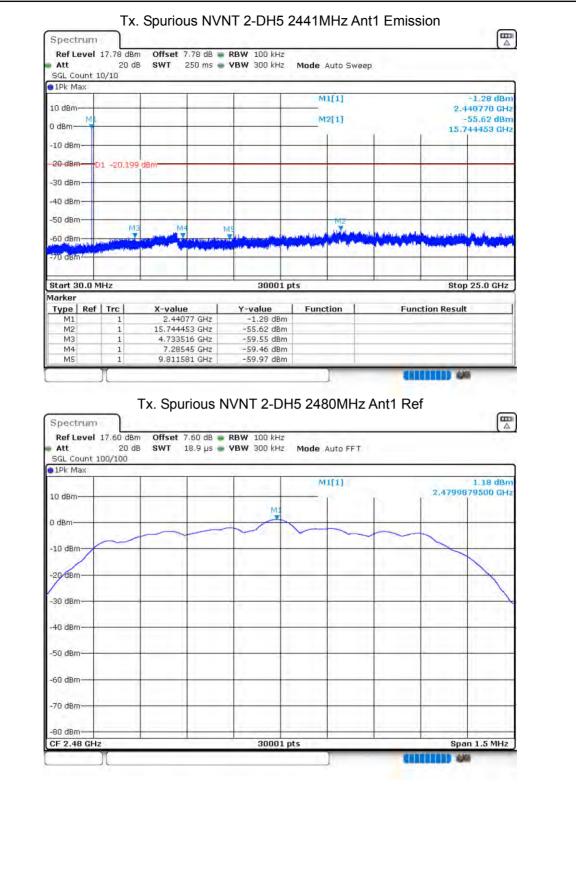


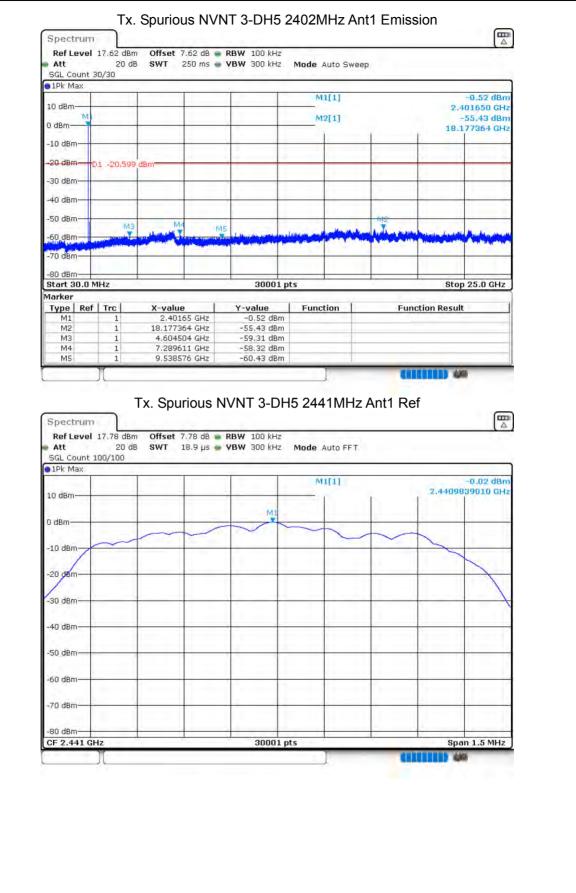
Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Ref

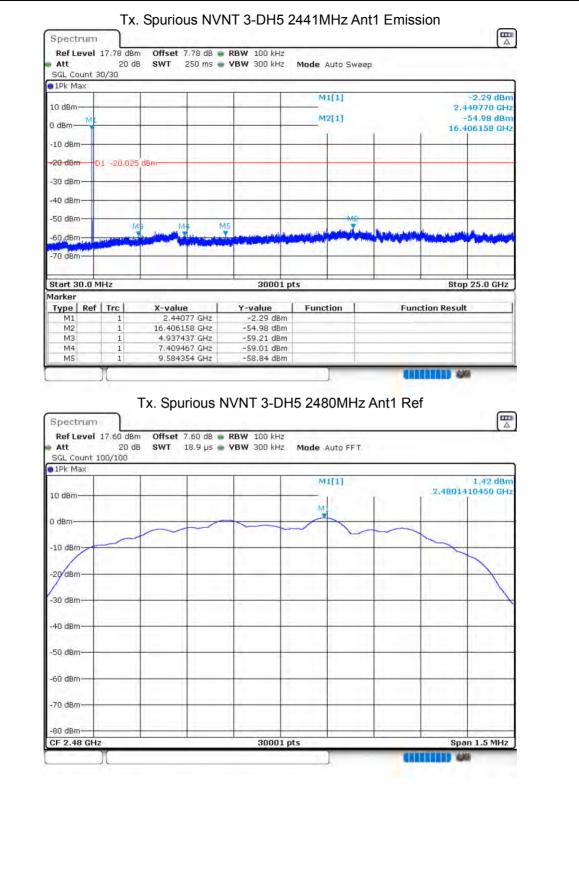


10 dBm	3. M4		M1[1] M2[1]			1.17 dBm 11650 GHz 17.09 dBm 3.968 MHz
0 dBm -10 dBm -20 dBm -30 dBm -4 <u>M</u> gBm -50 dBm	3. M4		M2[1]			
-20 dBm D1 -18.880 -30 dBm -40 dBm -50 dBm M3	3. M4					
-20 dBm D1 -18.880 -30 dBm -40 dBm -50 dBm M3	3. M4					
-30 dBm -4Д dBm -50 dBm	3. M4					
-48.dBm						1 T
-50 dBm						
Ma		430				
-60 dBm		M5		the second sector	1	mak
	And the second second		and the second s		Contraction of the second second	Read with
-70 dBm						
-80 dBm		00001 at			Oten	05.0.0115
Start 30.0 MHz Aarker		30001 pt	5		stop	25.0 GHz
Type Ref Trc	X-value	Y-value	Function	Fund	ction Result	1
M1 1 M2 1	2.40165 GHz 888.968 MHz	1.17 dBm -47.09 dBm				
M3 1 M4 1	4.692731 GHz 7.00745 GHz	-59.11 dBm -58.72 dBm				
M5 1	9,730845 GHz	-59.23 dBm				
Ref Level 17.78 dBn	in and a	NVNT 1-DH	5 2441MH	z Ant1 Re	f	
Ref Level 17,78 dBn Att 20 df SGL Count 100/100 1Pk Max	n Offset 7.78 dB	RBW 100 kHz	Mode Auto FF1	1	f	
Att 20 df SGL Count 100/100	n Offset 7.78 dB	RBW 100 kHz		1		(Ⅲ) 1,46 dBm 3000 GHz
Att 20 di SGL Count 100/100 100/100 1Pk Max 10 dBm	n Offset 7.78 dB	RBW 100 kHz	Mode Auto FF1	1		1,46 dBm
Att 20 df SGL Count 100/100 1Pk Max	n Offset 7.78 dB	RBW 100 kHz VBW 300 kHz	Mode Auto FF1	1		1,46 dBm
Att 20 di SGL Count 100/100 100/100 1Pk Max 10 dBm	n Offset 7.78 dB	RBW 100 kHz VBW 300 kHz	Mode Auto FF1	1		1,46 dBm
Att 20 di SGL Count 100/100 1Pk Max 10 dBm 0 dBm	n Offset 7.78 dB	RBW 100 kHz VBW 300 kHz	Mode Auto FF1	1		1,46 dBm
Att 20 di SGL Count 100/100 1Pk Max 10 dBm 0 dBm	n Offset 7.78 dB	RBW 100 kHz VBW 300 kHz	Mode Auto FF1	1		1,46 dBm
Att 20 di SGL Count 100/100 1Pk Max 10 dBm 0 dBm	n Offset 7.78 dB	RBW 100 kHz VBW 300 kHz	Mode Auto FF1	1		1,46 dBm
Att 20 di SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -80 dBm	n Offset 7.78 dB	RBW 100 kHz VBW 300 kHz	Mode Auto FF1	1		1,46 dBm
Att 20 di SGL Count 100/100 100/100 1Pk Max 10 dBm 0 dBm	n Offset 7.78 dB	RBW 100 kHz VBW 300 kHz	Mode Auto FF1	1		1,46 dBm
Att 20 di SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -80 dBm	n Offset 7.78 dB	RBW 100 kHz VBW 300 kHz	Mode Auto FF1	1		1,46 dBm
Att 20 di SGL Count 100/100 100/100 1Pk Max 10 dBm 10 dBm 10 dBm -10 dBm	n Offset 7.78 dB	RBW 100 kHz VBW 300 kHz	Mode Auto FF1	1		1,46 dBm
Att 20 di SGL Count 100/100 100/100 1Pk Max 10 dBm 10 dBm	n Offset 7.78 dB	RBW 100 kHz VBW 300 kHz	Mode Auto FF1	1		1,46 dBm
Att 20 di SGL Count 100/100 100/100 1Pk Max 10 dBm 10 dBm 10 dBm -10 dBm	n Offset 7.78 dB	RBW 100 kHz VBW 300 kHz	Mode Auto FF1	1		1,46 dBm
Att 20 di SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -50 dBm -60 dBm	n Offset 7.78 dB	RBW 100 kHz VBW 300 kHz	Mode Auto FF1	1		1,46 dBm
Att 20 di SGL Count 100/100 0 1Pk Max 0 10 dBm 0 -10 dBm 0 -20 dBm 0 -50 dBm 0 -50 dBm 0	n Offset 7.78 dB	RBW 100 kHz VBW 300 kHz	Mode Auto FFT	1	2,440993	1,46 dBm









SGL Count 10/10 9 1Pk Max	1	1	M1[1]		-1.4	2 dBm
10 dBm					2.4798	90 GHz
0 dBm			M2[1]		-53.6	05 GHz
-10 dBm				-		
-20 dBm	18.816 dBm					
-30 dBm						
-40 dBm		1				11
-50 dBm	M2	· · · · ·			· · · · · · · · · · · ·	
-60 dBm	NB I M	M5	La color and a set of	Non Non States	La fore de la faite de la	
-70 dBm		and many density of point lines where the	ter finansisten preserve in the second second	And Antonio Contraction	Manual provide the state	Ten Hayanda an Ma
		· · · · · · · · · · · · · · · · · · ·	1 m 11 11 m			
-80 dBm Start 30.0 MHz		300	01 pts	1 1	Stop 25.	0 GHz
Marker	1	1	1	-		
	1 2.4798	Y-value 39 GHz -1.42 c	Function	Funct	ion Result	
	1 5.18630 1 5.12304					
M4	1 7.40280 1 10.04047	19 GHz -59.87 c	1Bm			
M5	1 10,04047	-5 GH2 -59.74 0			AND ARE	
Spectrum Ref Level 17.6 Att SGL Count 100/:	2 dBm Offset 7 20 dB SWT 1	ious NVNT 3- .62 dB RBW 100 k 8.9 µs VBW 300 k	Hz	1		
Ref Level 17.6 Att	2 dBm Offset 7 20 dB SWT 1	.62 dB 💿 RBW 100 k	Hz	1		iū dBm
Ref Level 17.6 Att SGL Count 100/: 1Pk Max	2 dBm Offset 7 20 dB SWT 1	.62 dB 💿 RBW 100 k	Hz Hz Mode Auto FF [*]	1	-0,6	iū dBm
Ref Level 17.6 Att SGL Count 100/: 1Pk Max	2 dBm Offset 7 20 dB SWT 1	.62 dB 💿 RBW 100 k	Hz Hz Mode Auto FF	1	-0,6	iū dBm
Ref Level 17.6 Att SGL Count 100/: 1Pk Max	2 dBm Offset 7 20 dB SWT 1	.62 dB 💿 RBW 100 k	Hz Hz Mode Auto FF	1	-0,6	iū dBm
Ref Level 17.6 Att SGL Count 100/1 • 1Pk Max • 1Pk Max 0 dBm -10 dBm	2 dBm Offset 7 20 dB SWT 1	.62 dB 💿 RBW 100 k	Hz Hz Mode Auto FF	1	-0,6	iū dBm
Ref Level 17.6 Att SGL Count 100/1 O 1Pk Max 10 dBm 0 dBm	2 dBm Offset 7 20 dB SWT 1	.62 dB 💿 RBW 100 k	Hz Hz Mode Auto FF	1	-0,6	iū dBm
Ref Level 17.6 Att SGL Count 100/1 • 1Pk Max • 1Pk Max 0 dBm -10 dBm	2 dBm Offset 7 20 dB SWT 1	.62 dB 💿 RBW 100 k	Hz Hz Mode Auto FF	1	-0,6	iū dBm
Ref Level 17.6 Att SGL Count 100/1 • IPk Max • IPk Max 0 dBm • 10 dBm • -10 dBm	2 dBm Offset 7 20 dB SWT 1	.62 dB 💿 RBW 100 k	Hz Hz Mode Auto FF	1	-0,6	iū dBm
Ref Level 17.6 Att SGL Count 100/: 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	2 dBm Offset 7 20 dB SWT 1	.62 dB 💿 RBW 100 k	Hz Hz Mode Auto FF	1	-0,6	iū dBm
Ref Level 17.6 Att SGL Count 100/2 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	2 dBm Offset 7 20 dB SWT 1	.62 dB 💿 RBW 100 k	Hz Hz Mode Auto FF	1	-0,6	iū dBm
Ref Level 17.6 Att SGL Count 100/5 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	2 dBm Offset 7 20 dB SWT 1	.62 dB 💿 RBW 100 k	Hz Hz Mode Auto FF	1	-0,6	iū dBm
Ref Level 17.6 Att SGL Count 100/3 • IPk Max • IPk Max • 0 dBm • 0 dBm • -10 dBm • -20 dBm • -30 dBm • -40 dBm • -50 dBm • -60 dBm	2 dBm Offset 7 20 dB SWT 1	.62 dB 💿 RBW 100 k	Hz Hz Mode Auto FF	1	-0,6	iū dBm
Ref Level 17.6 Att SGL Count 100/3 • IPk Max • IPk Max • 0 dBm • 0 dBm • -10 dBm • -20 dBm • -30 dBm • -50 dBm • -60 dBm	2 dBm Offset 7 20 dB SWT 1	.62 dB • RBW 100 k 8.9 μs • VBW 300 k	Hz Hz Mode Auto FF	1	-0,6	i0 dBm 90 GHz
Ref Level 17.6 Att SGL Count 100/: 9 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	2 dBm Offset 7 20 dB SWT 1	.62 dB • RBW 100 k 8.9 μs • VBW 300 k	Hz Mode Auto FF ⁻	1	-0,6 2,40203274	i0 dBm 90 GHz

		veep	ode Auto S		60 dB 🐞 F 50 ms 🖷 🕻	Offset 7. SWT 2				Ref Le Att GL Cou
							-			Pk Ma
-1.49 dBm 2.479890 GHz			M1[1]	_				_		d8m-
-52.90 dBm			M2[1]						6.4h	ubm
5.184640 GHz					\rightarrow		-	_	-	dBm-
	1	- 1	1							
										0 dBm-
		-				m	581 dB	-18.58	D1	0 dBm-
1		-	-				-			0 dBm-
										0 dBm-
		_					11			u ubiir
	· · · ·	-	-				MZ		_	0 dBm-
and here the	and a star and a star	and a	a share a	and the second	M	MA	MB			
A REAL PROPERTY AND A REAL		and the second s		Sector Sector Sector	allow the allow	and an an and a second	and the second	and the state	مع الملايل	0 dBm-
	1			100						0 dBm-
			111							o abin
		-	-				-		_	0 dBm-
Stop 25.0 GHz				30001 pt				Hz	0.0 MH	art 30
					-					rker
Result	Function	1	Function	alue		X-value			Ref	ype
				1.49 dBm		2,47989		1		M1
				2.90 dBm		5.18464		1		M2
				9.26 dBm	the second se	5.041479	_	1		M3
				9.82 dBm 9.49 dBm	4 GHz	7.4352		1		M4

END OF REPORT