

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZE201010103

FCC REPORT

Applicant: b mobile HK Limited

Address of Applicant: Flat 18, 14/F Block 1, Golden Industrial Building, 16-26 Kwai Tak

Street, Kwai Chung, New Territories, Hong Kong

Equipment Under Test (EUT)

Product Name: Tablet

Model No.: T70

Trade mark: Bmobile

FCC ID: ZSW-30-104

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 28 Oct., 2020

Date of Test: 29 Oct., to 16 Nov., 2020

Date of report issued: 17 Nov., 2020

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	17 Nov., 2020	Original

Tested by:

Test Engineer

Date: 17 Nov., 2020

Reviewed by:

Project Engineer

Date: 17 Nov., 2020

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3		ITENTS	
J			
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	8
	6.2	CONDUCTED EMISSION	_
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1 6.6.2		_
	6.7	SPURIOUS EMISSION	
	6.7.1		
	6.7.2		
7	_	T SETUP PHOTO	
•	_		
8	EUT	CONSTRUCTIONAL DETAILS	43
Α	PPENDIX	A - WIFI	44

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013
KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	b mobile HK Limited
Address:	Flat 18, 14/F Block 1, Golden Industrial Building, 16-26 Kwai Tak Street, Kwai Chung, New Territories, Hong Kong
Manufacturer:	b mobile HK Limited
Address:	Flat 18, 14/F Block 1, Golden Industrial Building, 16-26 Kwai Tak Street, Kwai Chung, New Territories, Hong Kong

5.2 General Description of E.U.T.

Product Name:	Tablet
Model No.:	T70
Operation Frequency:	2412MHz~2462MHz: 802.11b/802.11g/802.11n(HT20)
	2422MHz~2452MHz: 802.11n(HT40)
Channel numbers:	11: 802.11b/802.11g/802.11(HT20)
	7: 802.11n(HT40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V, 2000mAh
AC adapter:	Input: AC100-240V, 50/60Hz, 0.25A Output: DC 5.0V, 1.5A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel for 802.11b/g/n(HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

^{1.} For 802.11n-HT40 mode, the channel number is from 3 to 9;

^{2.} Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest Channel.

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.				
Mode Data rate				
802.11b	1Mbps			
802.11g	6Mbps			
802.11n(HT20)	6.5Mbps			
802.11n(HT40)	13.5Mbps			

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-21-2020	07-20-2021
Loop Antenna	SCHWARZBECK	FMZB1519B	044	03-07-2020	03-06-2021
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-20-2020	06-19-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919k)
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021	
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	07-17-2021	
Cable	HP	10503A	N/A	03-05-2020	03-04-2021	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

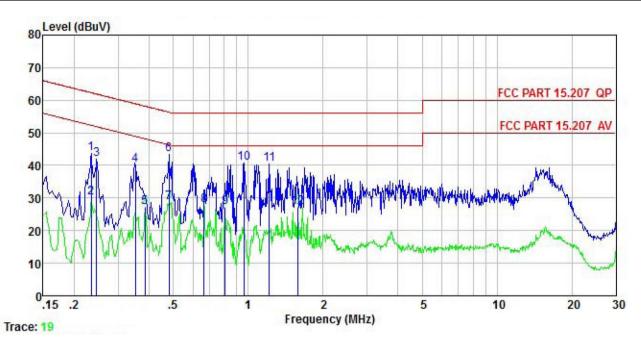
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 2 dBi.

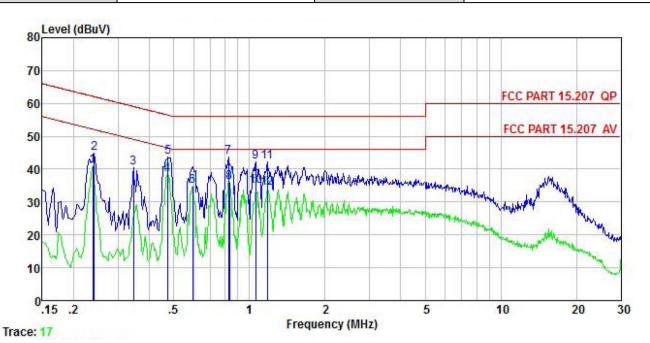

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kHz	RBW=9 kHz, VBW=30 kHz			
Limit:		Limit (dBu\/)			
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarit	hm of the frequency.			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 				
Test setup:	LISN		er — AC power		
Test Instruments:	LISN: Line Impedence Stabi Test table height=0.8m Refer to section 5.9 for deta	ilization Network			
	Refer to section 5.3 for details				
Test mode:		uio			
Test results:	Passed				

Measurement Data:

Product name:	Tablet	Product model:	T70
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq			Aux Factor			177		
	MHz	dBu∇	<u>dB</u>	<u>dB</u>	<u>dB</u>	dBu₹	dBuV	<u>dB</u>	
1	n 234	33 83	-0.57	-0.20	10 75	43 81	62 30	-18 49	ΩP

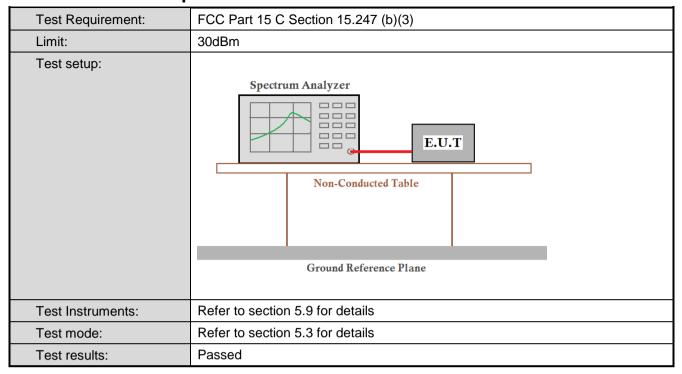

300	0000	~~.~~	~ ~ ~ ~ .	~ ~ ~ ~		10101	02.00 10.10 41
2	0.234	20.09	-0.57	-0.20	10.75	30.07	52.30 -22.23 Average
3	0.246	31.88	-0.57	-0.21	10.75	41.85	61.91 -20.06 QP
4	0.352	29.74	-0.51	0.12	10.73	40.08	58.91 -18.83 QP
4 5	0.385	16.49	-0.49	0.33	10.72	27.05	48.17 -21.12 Average
6	0.481	33.25	-0.44	-0.24	10.75	43.32	56.32 -13.00 QP
7	0.481	18.71	-0.44	-0.24	10.75	28.78	46.32 -17.54 Average
8	0.665	17.82	-0.51	-0.39	10.77	27.69	46.00 -18.31 Average
9	0.809	16.94	-0.57	-0.05	10.81	27.13	46.00 -18.87 Average
10	0.963	29.99	-0.61	0.36	10.86	40.60	56.00 -15.40 QP
11	1.216	29.93	-0.59	0.24	10.90	40.48	56.00 -15.52 QP
12	1 585	16 77	-0.55	-0.05	10 93	27 10	46 NN -18 QN Amerage

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

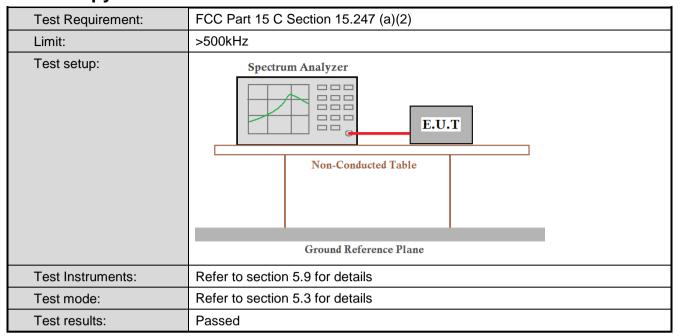
Product name:	Tablet	Product model:	T70
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u>	dB	₫B	dBu∀	dBu₹	<u>d</u> B	
1 2	0.238 0.242	30.84 34.69	-0.67 -0.67	0.00 0.00	10.75 10.75	40.92 44.77		-11.25 -17.27	Average OP
2	0.346	30.25	-0.65	-0.03	10.73	40.30	59.05	-18.75	QP
4 5 6 7	0.471 0.474	28.34 33.58	-0.64 -0.65	0.01 0.01	10.75 10.75	38.46 43.69		-8.03 -12.76	Average OP
6	0.595	24.75	-0.64	0.04	10.77	34.92	46.00	-11.08	Average
7	0.826 0.835	33.48 25.82	-0.66 -0.66	0.06 0.06	10.82 10.82	43.70 36.04		-12.30 -9.96	QP Average
8 9	1.060	31.84	-0.68	0.09	10.88	42.13	56.00	-13.87	QP
10 11	1.060 1.178	24.56 31.82	-0.68	0.09 0.10	10.88 10.89	34.85 42.12		-11.15 -13.88	Average
12	1.178	23.81	-0.69	0.10	10.89	34.11			Average


Notes:

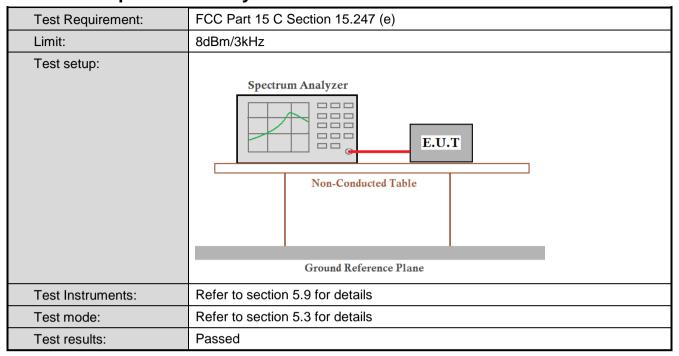
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.3 Conducted Output Power



Measurement Data: Refer to Appendix A - WIFI

6.4 Occupy Bandwidth



Measurement Data: Refer to Appendix A - WIFI

6.5 Power Spectral Density

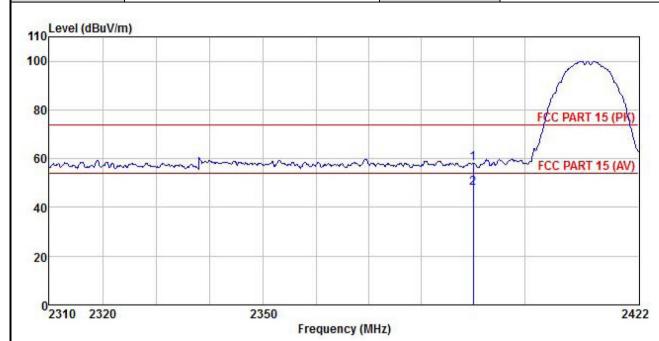
Measurement Data: Refer to Appendix A - WIFI

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

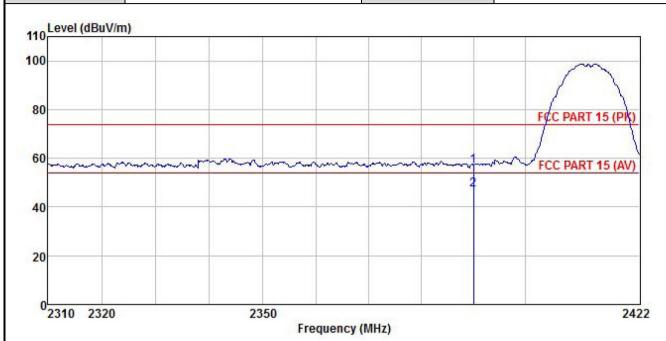
Measurement Data: Refer to Appendix A - WIFI


6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Se	ection 15.209	and 15.205						
Test Frequency Range:	2310 MHz to 2390	2310 MHz to 2390 MHz and 2483.5 MHz to 2500 MHz							
Test Distance:	3m								
Receiver setup:	Frequency	Detector	Detector RBW		Remark				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	RMS 1MHz 3MHz Average Value								
Limit:	Frequency		54.00		Remark verage Value				
	Above 1GH	z	74.00		Peak Value				
Test Procedure:	the ground at determine the 2. The EUT was antenna, which tower. 3. The antenna ground to det horizontal an measurement 4. For each sus and then the and the rotal maximum reasonable. 5. The test-recesspecified Bail of the emission limit specified the EUT would 10dB margin.	t a 3 meter case position of the set 3 meters chewas mount height is varietermine the moderation of th	ne top of a rotal mber. The talk he highest rad a saway from the ted on the top hed from one maximum value arizations of the top hed from 0 degrees set to Peal Maximum Hold EUT in peak recould be stop d. Otherwise the	ole was rotated interest of a variable- eter to four most the field size antenna are was arranged into from 1 meagrees to 360 cm. If Mode, mode was 10 ped and the presence of the ped and the	meters above ed 360 degrees to e-receiving height antenna heters above the trength. Both e set to make the to its worst case ter to 4 meters legrees to find the extion and dB lower than the beak values of that did not have ak, quasi-peak or				
Test setup:	150cm	AE EUT (Turntable)	Horn 3m Ground Reference Plane	Antenna Tov	ver W				
Test Instruments:	Refer to section 5	.9 for details							
Toot mode:	Refer to section 5	.3 for details							
Test mode:									

802.11b mode:

Product Name:	Tablet	Product Model:	T70
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


	Freq		Antenna Factor							
	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	<u>dB</u>	dBuV/m	dBu∜/m	<u>dB</u>	
1 2	2390.000 2390.000									

Remark:

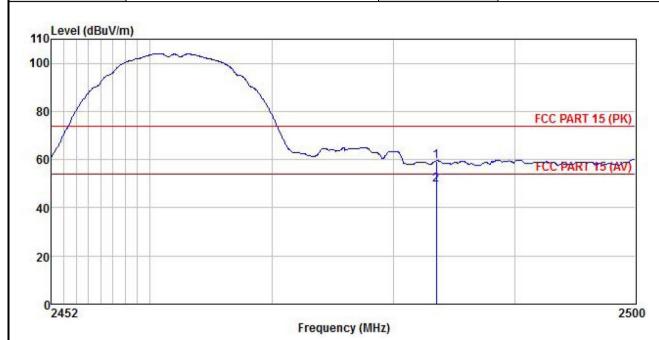
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Tablet	Product Model:	T70
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor						
	MHz	dBu∜	dB/m	<u>dB</u>	<u>ab</u>	<u>dB</u>	dBuV/m	dBuV/m	
1	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Tablet	Product Model:	T70
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

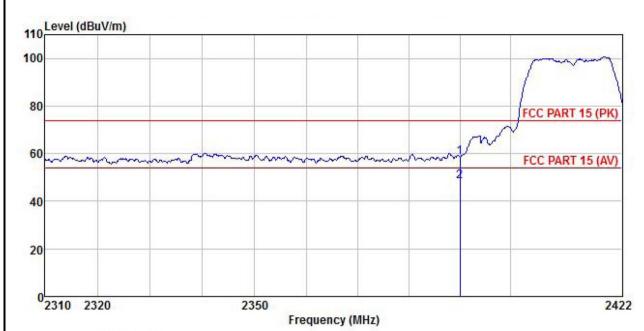


	Freq		Antenna Factor					Over Limit	
	MHz	—dBu∇	— <u>dB</u> /m	 <u>ab</u>	<u>qp</u>	$\overline{dBuV/m}$	$\overline{dB}\overline{uV/m}$	<u>ab</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

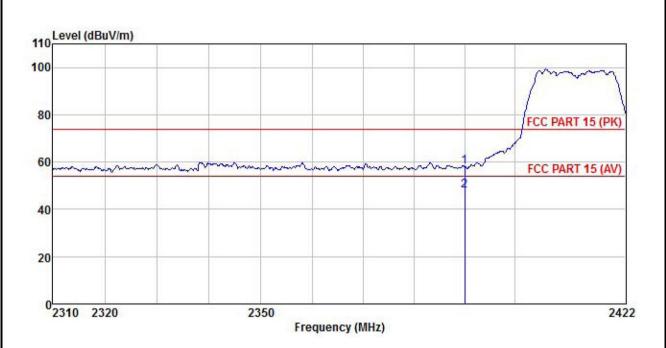
Product Name:	Tablet	Product Model:	T70
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor					Over Limit	
-	MHz	dBu∇	<u>dB</u> /π	 <u>ab</u>	<u>q</u> B	$\overline{\mathtt{dBuV/m}}$	dBuV/m	<u>ab</u>	
	2483,500 2483,500								


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11g mode:

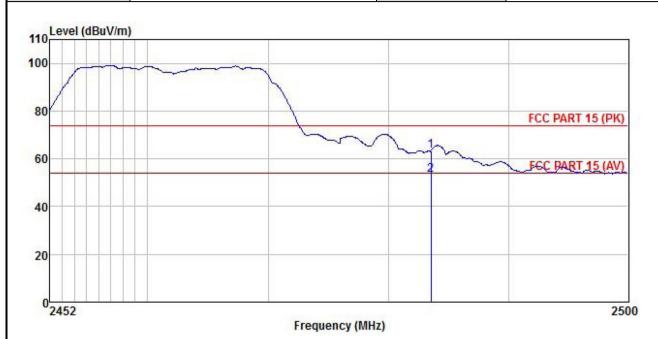
Product Name:	Tablet	Product Model:	T70
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		Antenna Factor						
-	MHz	dBu∜	— <u>d</u> B/π	 <u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	dBu∜/m	<u>ab</u>	
	2390.000 2390.000								

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

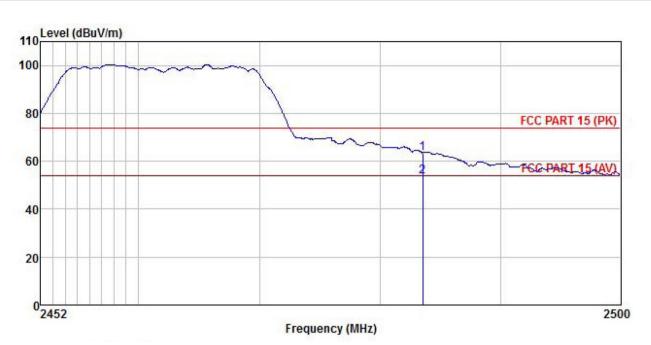
Product Name:	Tablet	Product Model:	T70
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


Freq	ReadAntenna Freq Level Factor							
MHz	dBu∜	— <u>d</u> B/m	 <u>ab</u>	<u>d</u> B	dBuV/m	dBuV/m	<u>ab</u>	
2390.000 2390.000								

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Tablet	Product Model:	T70		
Test By:	Mike	Test mode:	802.11g Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		



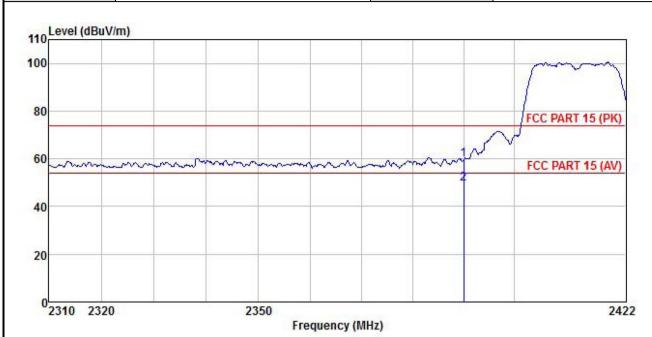
Freq	Read/ Level	Intenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark
MHz	dBu∀	<u>dB</u> /m	<u>ab</u>		<u>ab</u>	$\overline{dBuV/m}$	dBuV/m		
2483.500 2483.500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Tablet	Product Model:	T70
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

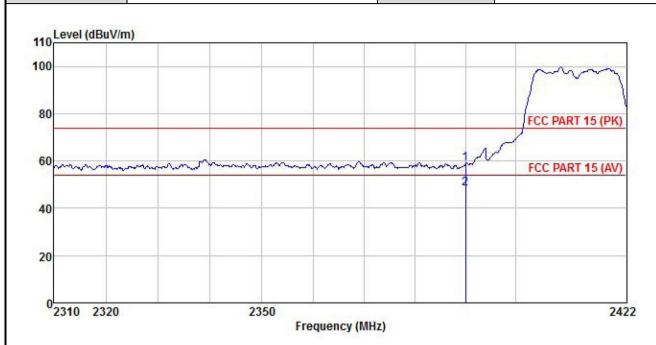
Freq		Antenna Factor						
MHz	dBu∜	<u>dB</u> /m	 <u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
2483.500 2483.500								

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.


^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11n(HT20):

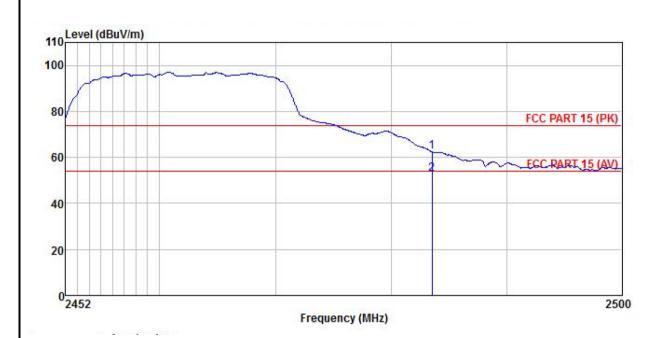
Product Name:	Tablet	Product Model:	T70
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


Freq		Antenna Factor						
MHz	dBu∇	— <u>d</u> B/m	 <u>ab</u>	<u>dB</u>	dBuV/m	dBuV/m	 	÷.
2390.000 2390.000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

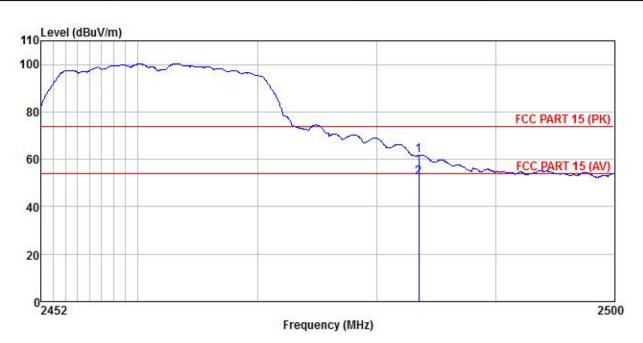
Product Name:	Tablet	Product Model:	T70
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



Freq		Antenna Factor						
MHz	dBu∜	<u>dB</u> /m	 <u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Tablet	Product Model:	T70		
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

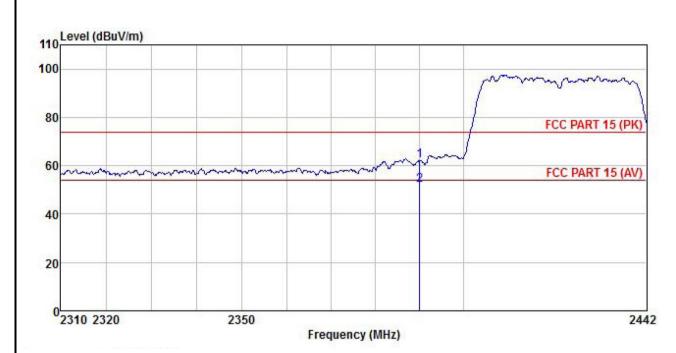


	Freq		Antenna Factor				Limit Line		Remark
2	MHz	—dBu∜	— <u>d</u> B/m	 <u>ab</u>	<u>dB</u>	$\overline{\mathtt{dBuV/m}}$	dBuV/m	<u>dB</u>	
	2483,500 2483,500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

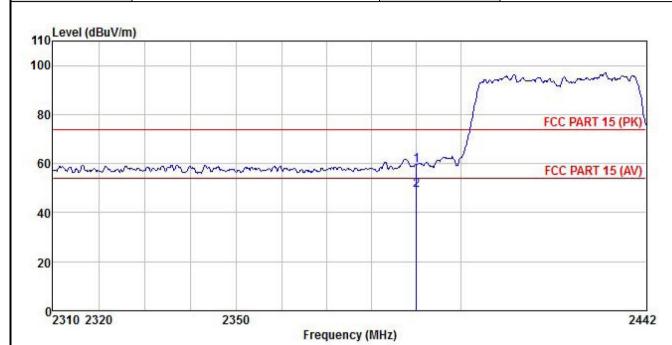
Product Name:	Tablet	Product Model:	T70
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Freq		ReadAntenna Ca Level Factor L					Limit Line		
MHz	—dBu∇	— <u>d</u> B/m		<u>ab</u>	<u>d</u> B	dBuV/m	dBuV/m	<u>ab</u>	
2483.500 2483.500									


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11n(HT40):

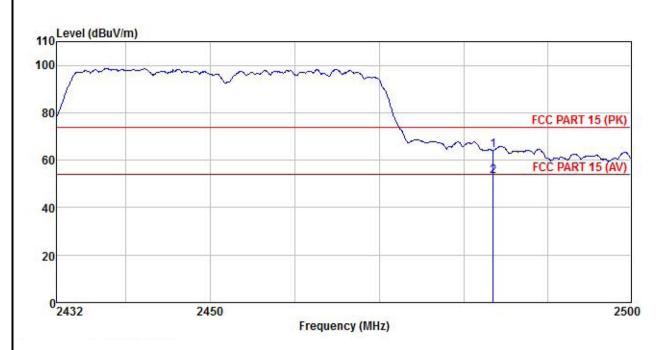
Product Name:	Tablet	Product Model:	T70		
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode		
Test Channel:	Lowest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		


	Freq				Preamp Factor		Limit Line		
2	MHz	dBu∜	<u>dB</u> /m	 <u>dB</u>	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
	2390.000 2390.000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

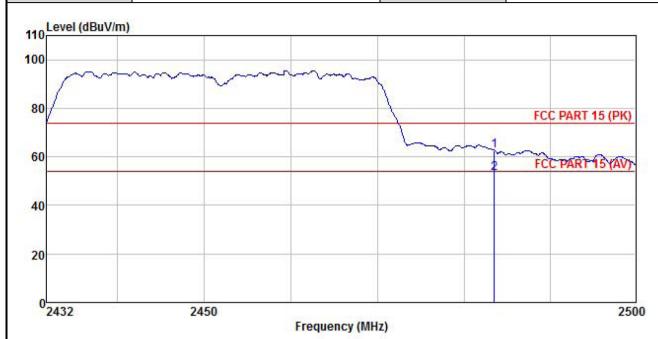
Product Name:	Tablet	Product Model:	T70
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


	Freq		Antenna Factor					Limit Line		
	MHz	dBu₹	dB/m	<u>ab</u>	₫B	<u>dB</u>	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000									

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Tablet	Product Model:	T70
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


Freq	Read/ Level	Antenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark
MHz	dBu₹	<u>dB</u> /m	₫B	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
2483.500 2483.500									

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Tablet	Product Model:	T70
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

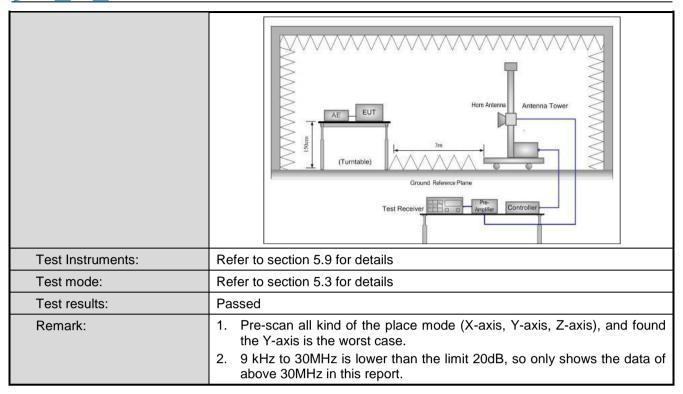
	Freq		Antenna Factor						
	MH z	—dBu∇	— <u>d</u> B/m	 <u>ab</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>ab</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

6.7 Spurious Emission

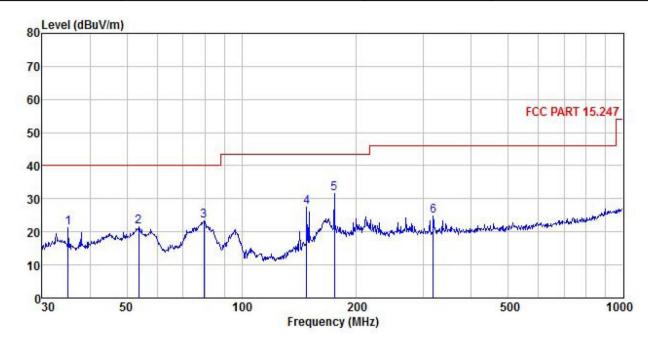
6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
Test setup:	
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed


Measurement Data: Refer to Appendix A - WIFI

6.7.2 Radiated Emission Method

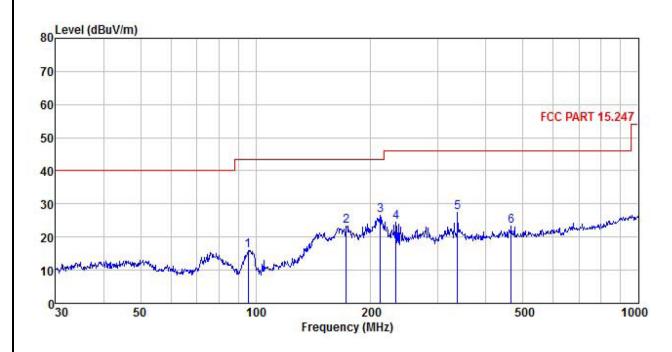
6.7.2 Radiated Emission							
Test Requirement:	FCC Part 15 C Se	ction 15.2	209 an	d 15.205			
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m						
Receiver setup:	Frequency	Detect	tor	RBW	VI	BW	Remark
	30MHz-1GHz	Quasi-p	eak	120KHz)KHz	Quasi-peak Value
	Above 1GHz	Peak		1MHz		ЛHz	Peak Value
		RMS		1MHz		ЛHz	Average Value
Limit:	Frequency		Limi	t (dBuV/m @3i	m)		Remark
	30MHz-88MH			40.0			uasi-peak Value
	88MHz-216MHz 216MHz-960MHz			43.5 46.0			uasi-peak Value uasi-peak Value
	960MHz-1GH			54.0			uasi-peak Value
	300WHZ-1011	Average Value					
	Above 1GHz	<u>'</u>		54.0 74.0		,	Peak Value
	 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 						
Test setup:	Below 1GHz EUT Turn Table Ground B	0.8m	4m			s	



Measurement Data (worst case):

Below 1GHz:

Product Name:	Tablet	Product Model:	T70
Test By:	Mike	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		Antenna Factor					Limit Line	Over Limit	
	MHz	dBu∜	— <u>d</u> B/π		<u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>ab</u>	
1	35.128	38.26	12.61	0.34	0.00	29.95	21.26	40.00	-18.74	QP
2	53.693	39.16	11.79	0.40	0.00	29.81	21.54	40.00	-18.46	QP
2 3 4	79.521	39.88	12.66	0.47	0.00	29.64	23.37	40.00	-16.63	QP
4	147.921	41.89	14.14	0.61	0.00	29.23	27.41	43.50	-16.09	QP
5	175.037	43.25	16.80	0.67	0.00	29.01	31.71	43.50	-11.79	QP
6	317.701	33.60	18.74	0.89	0.00	28.49	24.74	46.00	-21.26	QP

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	Tablet	Product Model:	T70
Test By:	Mike	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor			Preamp Factor		Limit Line	Over Limit	Remark
-	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	95.427	35.70	9.36	0.51	0.00	29.55	16.02	43.50	-27.48	QP
2	172.599	35.04	16.65	0.66	0.00	29.03	23.32	43.50	-20.18	QP
3	211.527	36.34	18.35	0.73	0.00	28.76	26.66	43.50	-16.84	QP
4	232.532	34.04	18.43	0.75	0.00	28.64	24.58	46.00	-21.42	QP
5	337.216	36.25	18.77	0.91	0.00	28.53	27.40	46.00	-18.60	QP
6	465.599	31.74	19.27	1.07	0.00	28.90	23.18	46.00	-22.82	QP

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz

	802.11b											
Test channel: Lowest channel												
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	55.65	30.81	6.81	2.46	41.82	53.91	74.00	-20.09	Vertical			
4824.00	56.37	30.81	6.81	2.46	41.82	54.63	74.00	-19.37	Horizontal			
				Detector:	Average V	alue						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	47.85	30.81	6.81	2.46	41.82	46.11	54.00	-7.89	Vertical			
4824.00	48.93	30.81	6.81	2.46	41.82	47.19	54.00	-6.81	Horizontal			

	Test channel: Middle channel												
Detector: Peak Value													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	59.65	30.93	6.85	2.47	41.84	58.06	74.00	-15.94	Vertical				
4874.00	57.15	30.93	6.85	2.47	41.84	55.56	74.00	-18.44	Horizontal				
				Detector:	Average Va	alue							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	46.65	30.93	6.85	2.47	41.84	45.06	54.00	-8.94	Vertical				
4874.00	49.11	30.93	6.85	2.47	41.84	47.52	54.00	-6.48	Horizontal				

	Test channel: Highest channel													
	Detector: Peak Value													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4924.00	57.85	31.05	6.89	2.48	41.86	56.41	74.00	-17.59	Vertical					
4924.00	58.13	31.05	6.89	2.48	41.86	56.69	74.00	-17.31	Horizontal					
				Detector:	Average V	alue								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4924.00	47.44	31.05	6.89	2.48	41.86	46.00	54.00	-8.00	Vertical					
4924.00	46.91	31.05	6.89	2.48	41.86	45.47	54.00	-8.53	Horizontal					

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11g										
Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4824.00	56.62	30.81	6.81	2.46	41.82	54.88	74.00	-19.12	Vertical	
4824.00	55.47	30.81	6.81	2.46	41.82	53.73	74.00	-20.27	Horizontal	
				Detector:	Average V	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4824.00	48.16	30.81	6.81	2.46	41.82	46.42	54.00	-7.58	Vertical	
4824.00	47.99	30.81	6.81	2.46	41.82	46.25	54.00	-7.75	Horizontal	

Test channel: Middle channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	57.89	30.93	6.85	2.47	41.84	56.30	74.00	-17.70	Vertical
4874.00	58.33	30.93	6.85	2.47	41.84	56.74	74.00	-17.26	Horizontal
				Detector:	Average V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	47.45	30.93	6.85	2.47	41.84	45.86	54.00	-8.14	Vertical
4874.00	46.13	30.93	6.85	2.47	41.84	44.54	54.00	-9.46	Horizontal

Test channel: Highest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	58.98	31.05	6.89	2.48	41.86	57.54	74.00	-16.46	Vertical
4924.00	59.33	31.05	6.89	2.48	41.86	57.89	74.00	-16.11	Horizontal
				Detector:	Average V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	47.85	31.05	6.89	2.48	41.86	46.41	54.00	-7.59	Vertical
4924.00	48.51	31.05	6.89	2.48	41.86	47.07	54.00	-6.93	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11n(HT20)										
Test channel: Lowest channel										
Detector: Peak Value										
Frequency	Read	Antenna	Cable	Aux	Preamp	Level	Limit	Over	Delemi-ation	
(MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Factor (dB)	(dBuV/m)	Line (dBuV/m)	Limit Polarization (dB)	Polarization	
4824.00	58.84	30.81	6.81	2.46	41.82	57.10	74.00	-16.90	Vertical	
4824.00	57.16	30.81	6.81	2.46	41.82	55.42	74.00	-18.58	Horizontal	
Detector: Average Value										
	Dood	Antonno	Cabla	Aux		aiue	Limit	Over		
Frequency	Read Level	Antenna Factor	Cable Loss	Factor	Preamp Factor	Level	Limit Line	Over Limit	Polarization	
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	1 olalization	
4824.00	46.66	30.81	6.81	2.46	41.82	44.92	54.00	-9.08	Vertical	
4824.00	47.13	30.81	6.81	2.46	41.82	45.39	54.00	-8.61	Horizontal	
.0200		00.01	0.0.			.0.00	000	0.0.		
Test channel: Middle channel										
				Detector	r: Peak Val	ue				
-	Read	Antenna	Cable	Aux	Preamp		Limit	Over		
Frequency	Level	Factor	Loss	Factor	Factor	Level	Line	Limit	Polarization	
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
4874.00	59.95	30.93	6.85	2.47	41.84	58.36	74.00	-15.64	Vertical	
4874.00	57.16	30.93	6.85	2.47	41.84	55.57	74.00	-18.43	Horizontal	
				Detector:	Average V	alue				
Frequency	Read	Antenna	Cable	Aux	Preamp	Level	Limit	Over		
(MHz)	Level	Factor	Loss	Factor	Factor	(dBuV/m)	Line	Limit	Polarization	
, ,	(dBuV)	(dB/m)	(dB)	(dB)	(dB)	,	(dBuV/m)	(dB)		
4874.00	47.74	30.93	6.85	2.47	41.84	46.15	54.00	-7.85	Vertical	
4874.00	48.16	30.93	6.85	2.47	41.84	46.57	54.00	-7.43	Horizontal	
			_							
			Ιe		l: Highest c					
					r: Peak Val	ue			l	
Frequency	Read	Antenna	Cable	Aux	Preamp	Level	Limit	Over	Dalariantian	
(MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB	Factor (dB)	(dBuV/m)	Line (dBuV/m)	Limit (dB)	Polarization	
4924.00	58.65	31.05	6.89	2.48	41.86	57.21	74.00	-16.79	Vertical	
4924.00	57.43	31.05		2.48	41.86	55.99	74.00	-18.01	Horizontal	
4924.00	37.43	31.03	6.89	l	l	l.	74.00	-10.01	HOHZOHIAI	
	Door	Antonna	Cabla	ı	Average V	aiue	l imit	0.45		
Frequency	Read Level	Antenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Polarization	
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dB)	(dBuV/m)	IOBIIV/M) I	(dB)		
4924.00	46.66	31.05	6.89	2.48	41.86	45.22	54.00	-8.78	Vertical	
4924.00	47.18	31.05	6.89	2.48	41.86	45.74	54.00	-8.26	Horizontal	
Remark:		01.00	0.00		1	1 1017 1	000	0.20	. ionzoniai	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11n(HT40)										
Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4844.00	55.78	30.87	6.83	2.46	41.83	54.11	74.00	-19.89	Vertical	
4844.00	57.16	30.87	6.83	2.46	41.83	55.49	74.00	-18.51	Horizontal	
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4844.00	48.95	30.87	6.83	2.46	41.83	47.28	54.00	-6.72	Vertical	
4844.00	49.35	30.87	6.83	2.46	41.83	47.68	54.00	-6.32	Horizontal	
	Test channel: Middle channel									
	Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	56.65	30.93	6.85	2.47	41.84	55.06	74.00	-18.94	Vertical	
4874.00	57.14	30.93	6.85	2.47	41.84	55.55	74.00	-18.45	Horizontal	
				Detector:	Average V	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	48.52	30.93	6.85	2.47	41.84	46.93	54.00	-7.07	Vertical	
4874.00	46.13	30.93	6.85	2.47	41.84	44.54	54.00	-9.46	Horizontal	
			Te	st channel	l: Highest c	hannel				
				Detector	: Peak Val	ue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4904.00	57.85	30.99	6.87	2.48	41.85	56.34	74.00	-17.66	Vertical	
4904.00	59.93	30.99	6.87	2.48	41.85	58.42	74.00	-15.58	Horizontal	

Detector: Average Value

Preamp

Factor

(dB)

41.85

41.85

Level

(dBuV/m)

47.34

45.65

Limit

Line

(dBuV/m)

54.00

54.00

Over

Limit

(dB)

-6.66

-8.35

Remark:

Frequency

(MHz)

4904.00

4904.00

Read

Level

(dBuV)

48.85

47.16

Cable

Loss

(dB)

6.87

6.87

Aux

Factor

(dB)

2.48

2.48

Antenna

Factor

(dB/m)

30.99

30.99

Project No.: JYTSZE2010101

Polarization

Vertical

Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.