Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

FCC REPORT

Report Reference No.....: CHTEW19020096

Project No.....: SHT1812060301EW

FCC ID.....: ZSW-30-079

Applicant's name.....: b mobile HK Limited

Address...... Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak

Street; Kwai Chung; New Territories; Hong Kong

Report verification:

Manufacturer..... b mobile HK Limited

Address...... Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak

Street; Kwai Chung; New Territories; Hong Kong

Test item description: Mobile Phone

Trade Mark Bmobile

Model/Type reference...... AX1077

Listed Model(s) -

Standard: FCC CFR Title 47 Part 2

FCC CFR Title 47 Part 22 FCC CFR Title 47 Part 24

FCC CFR Title 47 Part 27

Date of receipt of test sample.......... Dec 27,2018

Date of testing...... Dec 28,2018- Feb 21,2019

Date of issue...... Feb 22,2019

Result..... Pass

Compiled by

(position+printedname+signature)...: File administrators Silvia Li

Silvia Li

Supervised by

(position+printedname+signature)....: Project Engineer Aaron Fang

Aaron.Fang

Approved by

(position+printedname+signature)....: Manager Hans Hu

Homsty

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

Address...... 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road,

Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Report No.: CHTEW19020096 Page: 2 of 39 Issued: 2019-02-22

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
_		
1.1.	Applicable Standards	3
1.2.	Report version information	3
<u>2.</u>	TEST DESCRIPTION	4
_		_
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT operation mode	7
3.5.	EUT configuration	8
3.6.	Modifications	8
	TEST ENVIRONMENT	
<u>4.</u>	TEST ENVIRONMENT	9
4.1.	Address of the test laboratory	9
4.2.	Test Facility	9
4.3.	Equipments Used during the Test	10
4.4.	Environmental conditions	11
4.5.	Statement of the measurement uncertainty	11
<u>5.</u>	TEST CONDITIONS AND RESULTS	12
5.1.	Conducted Output Power	12
5.2.	Peak-to-Average Ratio	13
5.3.	99% Occupied Bandwidth & 26 dB Bandwidth	14
5.4.	Band Edge	15
5.5.	Conducted Spurious Emissions	16
5.6.	Frequency stability VS Temperature measurement	17
5.7.	Frequency stability VS Voltage measurement	18
5.8.	ERP and EIRP	19
5.9.	Radiated Spurious Emission	27
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	39
_		
<u>7.</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	39
<u>8.</u>	APPENDIX REPORT	39
_		

Report No.: CHTEW19020096 Page: 3 of 39 Issued: 2019-02-22

1. TEST STANDARDS AND REPORT VERSION

1.1. Applicable Standards

The tests were performed according to following standards:

FCC Rules Part 2: FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS

FCC Rules Part 22: PUBLIC MOBILE SERVICES

FCC Rules Part 24: PERSONAL COMMUNICATIONS SERVICES

FCC Rules Part 27: MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

ANSI C63.26: 2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

KDB 971168 D01 Power Meas License Digital Systems v03: MEASUREMENT GUIDANCE FOR

CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

1.2. Report version information

Revision No.	Date of issue	Description
N/A	2019-02-22	Original

Report No.: CHTEW19020096 Page: 4 of 39 Issued: 2019-02-22

2. Test Description

Test Item	Section in CFR 47	Result	Test Engineer	
	Part 2.1046			
Conducted Output Power	Part 22.913(a)	Pass	Jiongsheng Feng	
Conducted Catput Circle	Part 24.232(c)	1 455	Giorigonorig i orig	
	Part 27.50			
Peak-to-Average Ratio	Part 24.232	Pass	Jiongsheng Feng	
T can to Average Natio	Part 27.50	1 433	Siongsheng reng	
	Part 2.1049			
99% Occupied Bandwidth & 26 dB	Part 22.917(b)	Pass	Jiongsheng Feng	
Bandwidth	Part 24.238(b)	1 055	Jiongsheng reng	
	Part 27.53			
	Part 2.1051			
Band Edge	Part 22.917	Pass	Jiongsheng Feng	
Band Edge	Part 24.238	Fass		
	Part 27.53			
	Part 2.1051			
Conducted Spurious Emissions	Part 22.917	Pass	Jiongsheng Feng	
Conducted Spurious Emissions	Part 24.238	Pass		
	Part 27.53			
	Part 2.1055(a)(1)(b)			
Frequency stability VS Temperature	Part 22.355	Pass	Jiongsheng Feng	
l requericy stability v3 remperature	Part 24.235	Fass	Jiongsheng reng	
	Part 27.54			
	Part 2.1055(d)(1)(2)			
Frequency stability VS Voltage	Part 22.355	Pass	Jiongsheng Feng	
rrequericy stability v3 voltage	Part 24.235	F a 5 5	Jiongsheng Feng	
	Part 27.54			
	Part 22.913(a)			
ERP and EIRP	Part 24.232(b)	Pass	Shower Dai	
	Part 27.50			
	Part 2.1053			
Padiated Spurious Emissions	Part 22.917	Pass	Shower Dei	
Radiated Spurious Emissions	Part 24.238	F d 5 5	Shower Dai	
	Part 27.53			

Note: The measurement uncertainty is not included in the test result.

Report No.: CHTEW19020096 Page: 5 of 39 Issued: 2019-02-22

3. **SUMMARY**

3.1. Client Information

Applicant:	b mobile HK Limited	
Address:	Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak Street; Kwai Chung; New Territories; Hong Kong	
Manufacturer:	b mobile HK Limited	
Address:	Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak Street; Kwai Chung; New Territories; Hong Kong	

3.2. Product Description

Name of EUT:	Mobile Phone				
Trade Mark:	Bmobile				
Model No.:	AX1077				
Listed Model(s):	-				
IMEI Code:	Conducted: 8674000 Radiated: 867400020				
SIM Information:	Support One SIM Ca	ırd			
Power supply:	DC3.8V				
Adapter information:	Input:100-240Va.c. 5 Output:5.0Vd.c. 1000				
Hardware version:	V1.0				
Software version:	Bmobile_AX1077_TI	GO_LTM_V005			
4G					
Operation Band:	⊠ FDD Band 2	⊠ FDD Band 4 ⊠ FDD Band 5			
	⊠ FDD Band 7				
	FDD Band 2:	1850.7 MHz – 1909.3 MHz			
Transmit frequency:	FDD Band 4:	1710.7 MHz – 1754.3 MHz			
Transmit frequency.	FDD Band 5:	824.7 MHz – 848.3 MHz			
	FDD Band 7:	2502.5 MHz – 2567.5 MHz			
	FDD Band 2:	1930.7 MHz – 1989.3 MHz			
Descive frequency	FDD Band 4:	2110.7 MHz – 2154.3 MHz			
Receive frequency:	FDD Band 5:	869.7 MHz – 893.3 MHz			
	FDD Band 7:	2622.5 MHz – 2687.5 MHz			
	FDD Band 2:	1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz			
Channal have decidable	FDD Band 4:	1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz			
Channel bandwidth:	FDD Band 5:	1.4MHz, 3MHz, 5MHz, 10MHz			
	FDD Band 7:	5MHz, 10MHz, 15MHz, 20MHz			
Power Class:	Class 3				

Report No.: CHTEW19020096 Page: 6 of 39 Issued: 2019-02-22

Modulation type:	QPSK, 16QAM
Antenna type	PIFA Antenna
Antenna Gain	Band2:-1.5dBi Band4:-1.2dBi Band5:-2.0dBi Band7:-2.0dBi

3.3. Operation state

Test frequency list

FDD Band 2	Test Frequency ID	Bandwidth [MHz]	NuL	Frequency of Uplink [MHz]	N _{DL}	Frequency of Downlink [MHz]
		1.4	18607	1850.7	607	1930.7
		3	18615	1851.5	615	1931.5
	Low Range	5	18625	1852.5	625	1932.5
	Low realige	10	18650	1855	650	1935
		15 ^[1]	18675	1857.5	675	1937.5
		لتا 20	18700	1860	700	1940
	Mid Range	1.4/3/5/10 15 ^[1] /20 ^[1]	18900	1880	900	1960
		1.4	19193	1909.3	1193	1989.3
		3	19185	1908.5	1185	1988.5
	High Range	5	19175	1907.5	1175	1987.5
		10 15 ^[1]	19150	1905	1150	1985
		20 [1]	19125 19100	1902.5 1900	1125 1100	1982.5 1980
	NOTE 1: Bandwidth					
	36.101 [2	7] Clause 7.3) is allo	wed.			
FDD Band 4	Test Frequency ID	Bandwidth [MHz]	NuL	Frequency of Uplink [MHz]	N _{DL}	Frequency of Downlink [MHz]
		1.4	19957	1710.7	1957	2110.7
		3	19965	1711.5	1965	2111.5
	Low Range	5	19975	1712.5	1975	2112.5
		10	20000	1715	2000	2115
		15 20	20025 20050	1717.5	2025 2050	2117.5
	Mid Danes	1.4/3/5/10/15/20	20050	1720 1732.5	2050	2120 2132.5
	Mid Range	1.4	20175	1754.3	2393	2154.3
		3	20393	1753.5	2385	2153.5
	1 †	5	20375	1752.5	2375	2152.5
	High Range	10	20350	1750	2350	2150
		15	20325	1747.5	2325	2147.5
		20	20300	1745	2300	2145
						·
FDD Band 5	Test Frequency ID	Bandwidth [MHz]	N _{UL}	Frequency of Uplink [MHz]	N _{DL}	Frequency of Downlink
FDD Band 5	Test Frequency ID	[MHz]		Uplink [MHz]		Downlink [MHz]
FDD Band 5		[MHz]	20407	Uplink [MHz]	2407	Downlink [MHz] 869.7
FDD Band 5	Test Frequency ID	[MHz] 1.4 3	20407 20415	Uplink [MHz] 824.7 825.5	2407 2415	Downlink [MHz] 869.7 870.5
FDD Band 5		[MHz] 1.4 3	20407 20415 20425	824.7 825.5 826.5	2407 2415 2425	Downlink [MHz] 869.7 870.5 871.5
FDD Band 5	Low Range	1.4 3 5 10 ^[1]	20407 20415 20425 20450	824.7 825.5 826.5 829	2407 2415 2425 2450	Downlink [MHz] 869.7 870.5 871.5
FDD Band 5		[MHz] 1.4 3	20407 20415 20425	824.7 825.5 826.5	2407 2415 2425	Downlink [MHz] 869.7 870.5 871.5
FDD Band 5	Low Range	1.4 3 5 10 ^[1]	20407 20415 20425 20450	824.7 825.5 826.5 829	2407 2415 2425 2450	Downlink [MHz] 869.7 870.5 871.5
FDD Band 5	Low Range	1.4 3 5 10 ^[1] 1.4/3/5 10 ^[1]	20407 20415 20425 20450 20525 20643 20635	824.7 825.5 826.5 829 836.5 848.3 847.5	2407 2415 2425 2450 2525 2643 2635	Downlink [MHz] 869.7 870.5 871.5 874 881.5 893.3 892.5
FDD Band 5	Low Range	1.4 3 5 10 ^[1] 1.4/3/5 10 ^[1] 1.4 3	20407 20415 20425 20450 20525 20643 20635 20625	824.7 825.5 826.5 826.5 829 836.5 848.3 847.5 846.5	2407 2415 2425 2450 2525 2643 2635 2625	Downlink [MHz] 869.7 870.5 871.5 874.8 881.5 893.3 892.5 891.5
FDD Band 5	Low Range Mid Range High Range	1.4 3 5 10 III 1.4/3/5 10 III 1.4/3/5 10 III 1.4 3 5 10 III	20407 20415 20425 20450 20525 20643 20635 20625 20600	Uplink [MHz] 824.7 825.5 826.5 829 836.5 848.3 847.5 846.5 844	2407 2415 2425 2450 2525 2643 2635 2625 2600	Downlink [MHz] 869.7 870.5 871.5 874 881.5 893.3 892.5 891.5 889
FDD Band 5	Low Range Mid Range High Range	1.4 3 5 10 III 1.4/3/5 10 III 1.4/3/5 10 III 1.4 3 5 10 III	20407 20415 20425 20450 20525 20643 20635 20625 20600 of the spec	Uplink [MHz] 824.7 825.5 826.5 829 836.5 848.3 847.5 846.5 844	2407 2415 2425 2450 2525 2643 2635 2625 2600	Downlink [MHz] 869.7 870.5 871.5 874 881.5 893.3 892.5 891.5 889
FDD Band 5 FDD Band 7	Low Range Mid Range High Range	[MHz] 1.4 3 5 10 [1] 1.4/3/5 10 [1] 1.4/3/5 10 [1] 1.4 3 5 10 [1] pr which a relaxation	20407 20415 20425 20450 20525 20643 20635 20625 20600 of the spec	Uplink [MHz] 824.7 825.5 826.5 829 836.5 848.3 847.5 846.5 844	2407 2415 2425 2450 2525 2643 2635 2625 2600	Downlink [MHz] 869.7 870.5 871.5 874 881.5 893.3 892.5 891.5 889 rement (TS
	Low Range Mid Range High Range NOTE 1: Bandwidth f	[MHz] 1.4 3 5 10 [1] 1.4(3)/5 10 [1] 1.4 3 5 10 [1] 1.0 r which a relaxation Clause 7.3) is allow	20407 20415 20425 20450 20525 20635 20635 20625 20605 NuL	Uplink [MHz] 824.7 825.5 826.5 829 836.5 848.3 847.5 846.5 844 fied UE receiver sei	2407 2415 2425 2450 2525 2643 2635 2600 nsitivity requi	Downlink
	Low Range Mid Range High Range NOTE 1: Bandwidth f 36.101 [27	[MHz] 1.4 3 5 10 (II) 1.4/3/5 10 (II) 1.4 3 5 10 (II) 1.4 Clause 7.3) is allow Bandwidth [MHz]	20407 20415 20425 20425 20426 20525 20643 20635 20635 20600 of the spec ved.	Uplink [MHz] 824.7 825.5 826.5 826.5 836.5 848.3 847.5 846.5 844 fied UE receiver sei Frequency of Uplink [MHz] 2502.5	2407 2415 2425 2450 2525 2643 2635 2625 2600 nsitivity requi	Downlink [MHz] 869.7 870.5 870.5 871.5 874 881.5 893.3 892.5 891.5 889. rement (TS Frequency of Downlink [MHz] 2622.5
	Low Range Mid Range High Range NOTE 1: Bandwidth f	[MHz] 1.4 3 5 10 [1] 1.4/3/5 10 [ti] 1.4 3 5 10 [1] 1.4 3 5 IO [II] Dr which a relaxation (Clause 7.3) is allow	20407 20415 20425 20425 20450 20525 20643 20632 20600 of the spec-ved.	Uplink [MHz] 824.7 825.5 826.5 829 836.5 848.3 847.5 846.5 844 fied UE receiver sei	2407 2415 2425 2450 2525 2643 2635 2600 nsitivity requi	Downlink
	Low Range Mid Range High Range NOTE 1: Bandwidth f 36.101 [27	1.4 3 5 10 (11) 1.4/(3/5) 1.0 (12) 1.4/(3/5) 1.0 (13) 1.4 3 5 10 (11) 1.4 3 5 10 (11) 1.4 3 5 10 (11) 1.4 3 5 10 (11) 1.4 3 5 10 (11) 1.4 3 5 10 (11) 1.4 3 5 10 (11) 1.4 3 5 10 (11) 1.4 3 5 10 (11) 1.4 3 5 10 (11) 1.5 10 15 10 15 20 (11)	20407 20415 20425 20450 20525 20643 20635 20602 20600 of the spec- ved.	Uplink [MHz] 824.7 825.5 826.5 829 836.5 848.3 847.5 846.5 844 fied UE receiver sel Frequency of Uplink [MHz] 2502.5 2505	2407 2415 2425 2450 2525 2643 2635 2600 nsitivity requi	Downlink [MHz] 869.7 870.5 871.5 874 881.5 893.3 892.5 891.5 889 rement (TS Frequency of Downlink [MHz] 2622.5 2625
	Low Range Mid Range High Range NOTE 1: Bandwidth f 36.101 [27	1.4 3 5 10 (11) 1.4/(3/5) 1.0 (12) 1.4/(3/5) 1.0 (13) 1.4 3 5 10 (11) 1.4 3 5 10 (11) 1.4 3 5 10 (11) 1.4 3 5 10 (11) 1.4 3 5 10 (11) 1.4 3 5 10 (11) 1.4 3 5 10 (11) 1.4 3 5 10 (11) 1.4 3 5 10 (11) 1.4 3 5 10 (11) 1.5 10 15 10 15 20 (11)	20407 20415 20425 20425 20450 20525 20643 20632 20600 of the spec-ved.	Uplink [MHz] 824.7 825.5 826.5 829 836.5 848.3 847.5 846.5 844 filed UE receiver sel Frequency of Uplink [MHz] 2502.5 2507.5	2407 2415 2425 2425 2450 2525 2643 2635 2600 nsitivity requi	Downlink
	Low Range Mid Range High Range NOTE 1: Bandwidth f 36.101 [27	[MHz] 1.4 3 5 10 [1] 1.4/3/5 10 [ti] 1.4 3 5 10 [1] 1.4 3 5 IO [II] Dr which a relaxation (Clause 7.3) is allow	20407 20415 20425 20425 20450 20525 20643 20635 20600 1 of the spec ved. Nul. 20775 20800 20825 20800	### Uplink [MHz] ### 824.7 ### 825.5 ### 826.5 ### 826.5 ### 836.5 ### 844.5 ### 844.5 ### 844.5 ### ### ### 844.5 ### ### ### ### ### 844.5 ### ### ### ### ### ### ### ### ### #	2407 2415 2425 2425 2450 2525 2643 2635 2600 nsitivity requi	Downlink [MHz] 869.7 870.5 871.5 874.5 874.5 893.3 892.5 899.5 889.7 889.5 889.7 889.5 889.7 8
	Low Range Mid Range High Range NOTE 1: Bandwidth f 36.101 [27] Test Frequency ID Low Range Mid Range	[MHz] 1.4 3 5 10 [1] 1.4/3/5 10 [ti] 1.4/3/5 10 [ti] 1.4 3 5 10 [1] or which a relaxation (Clause 7.3) is allow Bandwidth [MHz] 5 10 15 20 [1] 5/10/15 20 [1]	20407 20415 20425 20425 20425 20525 20643 20635 20600 1 of the spec ved. Nu. 20775 20800 20825 20850 21100	### Uplink [MHz] ### 824.7 ### 825.5 ### 826.5 ### 826.5 ### 836.5 ### 844.5 ### 844.5 ### 844.5 ### B44.5 ### Frequency of Uplink [MHz] ### 2502.5 ### 2505 ### 2505 ### 2507.5 ### 2535	2407 2415 2425 2425 2450 2525 2643 2635 2600 nsitivity requi	Downlink [MHz] 889.7 870.5 870.5 871.5 874 881.5 893.3 892.5 889.7 889.5 889 rement (TS Frequency of Downlink [MHz] 2622.5 2625 2625 2630 2655 2655 2630 2655
	Low Range Mid Range High Range NOTE 1: Bandwidth f 36.101 [27	[MHz] 1.4 3 5 10 III 1.4/3/5 10 III 1.4 3 5 10 III 1.4 3 5 10 III 1.4 3 5 10 III Clause 7.3) is allow Bandwidth [MHz] 5 10 15 20 III 5/10/15 20 III 5 10 15	20407 20415 20425 20425 20450 20525 20643 20635 20600 of the specyed. NuL 20775 20800 20825 20850 21100 21425	### Uplink [MHz] ### 824.7 ### 825.5 ### 826.5 ### 829 ### 836.5 ### 844.5 ### 844.5 ### 844.5 ### Frequency of Uplink [MHz] ### 2502.5 ### 2507.5 ### 2507.5 ### 2507.5 ### 2507.5 ### 2507.5 ### 2507.5 ### 2507.5	2407 2415 2425 2450 2525 2643 2635 2600 nsitivity requi	Downlink [MHz] 869.7 870.5 871.5 874.4 881.5 893.3 892.5 891.5 889.5 8
	Low Range Mid Range High Range NOTE 1: Bandwidth f 36.101 [27 Test Frequency ID Low Range Mid Range High Range	[MHz] 1.4 3 5 10 III 1.4/(3/5) 1.4/(3/5) 10 III 1.4 3 5 10 III 1.4 0 III 1.4 0 III 1.4 0 III 0 III 1.4 0 III	20407 20415 20425 20425 20450 20525 20643 20635 20625 20600 of the specyed. Nul. 20775 20800 20825 20850 21100 21425 21350	Uplink [MHz] 824.7 825.5 826.5 829 836.5 848.3 847.5 846.5 844.5 844.5 844.5 825.5	2407 2415 2425 2450 2525 2643 2635 2600 nsitivity requi	Downlink [MHz] 869.7 870.5 871.5 874 881.5 893.3 892.5 891.5 889.7 889.5 889
	Low Range Mid Range High Range NOTE 1: Bandwidth f 36.101 [27 Test Frequency ID Low Range Mid Range High Range	[MHz] 1.4 3 5 10 [1] 1.4/3/5 10 [ti] 1.4 3 5 10 [1] 10 reproper the selection of the selec	20407 20415 20425 20425 20450 20525 20643 20635 20600 1 of the spec ved. NuL 20775 20800 21100 21425 21400 21375 21375 21505	Uplink [MHz] 824.7 825.5 826.5 829 836.5 848.3 847.5 846.5 844.5 844.5 844.5 825.5	2407 2415 2425 2450 2525 2643 2635 2600 nsitivity requi	Downlink [MHz] 869.7 870.5 871.5 874 881.5 893.3 892.5 891.5 889.7 889.5 889
	Low Range Mid Range High Range NOTE 1: Bandwidth f 36.101 [27 Test Frequency ID Low Range Mid Range High Range	[MHz] 1.4 3 5 10 III 1.4/(3/5) 1.4/(3/5) 10 III 1.4 3 5 10 III 1.4 0 III 1.4 0 III 1.4 0 III 0 III 1.4 0 III	20407 20415 20425 20425 20450 20525 20643 20635 20600 1 of the spec ved. NuL 20775 20800 21100 21425 21400 21375 21375 21505	Uplink [MHz] 824.7 825.5 826.5 829 836.5 848.3 847.5 846.5 844.5 844.5 844.5 825.5	2407 2415 2425 2450 2525 2643 2635 2600 nsitivity requi	Downlink [MHz] 869.7 870.5 871.5 874 881.5 893.3 892.5 891.5 889.7 889.5 889
	Low Range Mid Range High Range NOTE 1: Bandwidth f 36.101 [27 Test Frequency ID Low Range Mid Range High Range	[MHz] 1.4 3 5 10 [1] 1.4/3/5 10 [ti] 1.4 3 5 10 [1] 10 reproper the selection of the selec	20407 20415 20425 20425 20450 20525 20643 20635 20600 1 of the spec ved. NuL 20775 20800 21100 21425 21400 21375 21375 21505	Uplink [MHz] 824.7 825.5 826.5 829 836.5 848.3 847.5 846.5 844.5 844.5 844.5 825.5	2407 2415 2425 2450 2525 2643 2635 2600 nsitivity requi	Downlink [MHz] 869.7 870.5 871.5 874 881.5 893.3 892.5 891.5 889.7 889.5 889

Report No.: CHTEW19020096 Page: 7 of 39 Issued: 2019-02-22

3.4. EUT operation mode

For RF test items

The EUT has been tested under typical operating condition. Testing was performed by configuring EUT to maximum output power status.

Tookling	Devid			Bandwid	Ith (MHz)			Modulation		RB#		
Test Items	Band	1.4	3	5	10	15	20	QPSK	16QAM	1	Half	Full
	2	0	0	0	0	0	0	0	0	0	0	0
Conducted Output	4	0	0	0	0	0	0	0	0	0	0	0
Power	5	0	0	0	0	-	-	0	0	0	0	0
	7	-	-	0	0	0	0	0	0	0	0	0
	2	0	0	0	0	0	0	0	0	0	-	0
Peak-to-Average	4	0	0	0	0	0	0	0	0	0	-	0
Peak-to-Average Ratio	5	0	0	0	0	-	-	0	0	0	-	0
	7	-	-	0	0	0	0	0	0	0	-	0
	2	0	0	0	0	0	0	0	0	-	-	0
99% Occupied Bandwidth & 26	4	0	0	0	0	0	0	0	0	-	-	0
dB Bandwidth	5	0	0	0	0	-	-	0	0	-	-	0
	7	-	-	0	0	0	0	0	0	-	-	0
	2	0	0	0	0	0	0	0	0	0	-	0
Dand Edna	4	0	0	0	0	0	0	0	0	0	-	0
Band Edge	5	0	0	0	0	-	-	0	0	0	-	0
	7	-	-	0	0	0	0	0	0	0	-	0
	2	0	0	0	0	0	0	0	0	0	-	-
Conducted	4	0	0	0	0	0	0	0	0	0	-	-
Spurious Emission	5	0	0	0	0	-	-	0	0	0	-	-
	7	-	-	0	0	0	0	0	0	0	-	-
	2	0	0	0	0	0	0	0	0	-	-	0
Frequency	4	0	0	0	0	0	0	0	0	-	-	0
Stability	5	0	0	0	0	-	-	0	0	-	-	0
	7	-	-	0	0	0	0	0	0	-	-	0
	2	0	0	0	0	0	0	0	0	0	-	-
ERP and EIRP	4	0	0	0	0	0	0	0	0	0	-	-
ERP and EIRP	5	0	0	0	0	-	-	0	0	0	-	-
	7	-	-	0	0	0	0	0	0	0	-	•
	2	0	0	0	0	0	0	0	-	0	-	•
Radiated Spurious	4	0	0	0	0	0	0	0	-	0	-	ī
Emission	5	0	0	0	0	_	-	0	-	0	-	ì
	7	-		0	0	0	0	0	-	0	-	•
Remark	2. The 3. The	e mark " c e mark "-" e device i der differe	means the investig	at this ba atedfrom	ndwidth is 30MHz to	s not test o10 times	offundar	mental signa	al for radiate	d spuriou	ıs emissio	n test

Shenzhen Huatongwei International Inspection Co., Ltd.

emissions are reported.

Report Template Version: V01 (2018-01)

Report No.: CHTEW19020096 Page: 8 of 39 Issued: 2019-02-22

3.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturersupplied by the lab

	eapphea by the lab		
	/	Manufacturer:	/
0	1	Model No.:	/
	1	Manufacturer:	/
0		Model No.:	/

3.6. Modifications

No modifications were implemented to meet testing criteria.

Report No.: CHTEW19020096 Page: 9 of 39 Issued: 2019-02-22

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

4.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files.

IC-Registration No.:5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No.: 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

Report No.: CHTEW19020096 Page: 10 of 39 Issued: 2019-02-22

4.3. Equipments Used during the Test

RF Co	RF Conducted Test					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)
1	Universal Radio Communication	Rohde&Schwarz	CMU200	112012	10/28/2018	10/27/2019
2	Wide Radio communication tester	Rohde&Schwarz	CMW500	137688	09/29/2018	09/28/2019
3	Spectrum Analyzer	Rohde&Schwarz	FSV40	100048	10/28/2018	10/27/2019
4	MXA Signal Analyzer	Agilent	N9020A	MY5050187	09/29/2018	09/28/2019
5	Splitter	Mini-Circuit	ZAPD-4	400059	03/19/2018	03/18/2019
6	Climate Chamber	ESPEC	GPL-2	0010003045	11/08/2018	11/07/2019
7	Temperature and Humidity Meter	MINGLE	RH100	N/A	10/30/2018	10/29/2019

Radia	Radiated Emissions						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)	
1	Anechoic Chamber	Albatross projects	SAC-3m-01	C11121	09/30/2018	09/29/2021	
2	Loop Antenna	R&S	HFH2-Z2	100020	04/02/2018	04/01/2021	
3	Ultra-Broadband Antenna	SCHWARZBECK	VULB9163	538	04/05/2017	04/04/2020	
4	Preamplifier	BONN	BLWA0160-2M	1811887	11/14/2018	11/13/2019	
5	RF Connection Cable	HUBER+SUHNER	RE-7-FL	N/A	11/15/2018	11/14/2019	
6	EMI Test Software	R&S	ESK1	N/A	N/A	N/A	
7	Spectrum Analyzer	R&S	FSP40	100597	10/27/2018	10/26/2019	
8	Horn Antenna	SCHWARZBECK	9120D	1011	03/27/2017	03/26/2020	
9	Band rejection filter	Microwave	N/A	N/A	11/14/2018	11/13/2019	
10	Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-248	04/28/2018	04/27/2019	
11	High pass filter	Wainwright	WHKX3.0/18G- 10SS	38	11/14/2018	11/13/2019	
12	RF Connection Cable	HUBER+SUHNER	RE-7-FH	N/A	11/15/2018	11/14/2019	
13	Universal Radio Communication	Rohde&Schwarz	CMU200	112012	10/28/2018	10/27/2019	
14	Wide Radio communication tester	Rohde&Schwarz	CMW500	137688	10/24/2018	10/23/2019	
15	EMI Test Software	Audix	E3	N/A	N/A	N/A	
16	Turntable	MATURO	TT2.0-1T	N/A	N/A	N/A	
17	Antenna Mast	MATURO	TAM-4.0-P-12	N/A	N/A	N/A	
18	Temperature and Humidity Meter	MINGLE	RH100	N/A	10/30/2018	10/29/2019	

Report No.: CHTEW19020096 Page: 11 of 39 Issued: 2019-02-22

4.4. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

	VN=Nominal Voltage	DC 3.80V		
Voltage	VL=Lower Voltage	DC 3.50V		
	VH=Higher Voltage	DC 4.35V		
Tomporoturo	TN=Normal Temperature	25 °C		
Temperature	Extreme Temperature	From −30° to + 50° centigrade		
Humidity	30~60 %			
Air Pressure	950-1050 hPa			

4.5. Statement of the measurement uncertainty

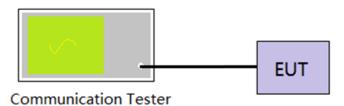
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01"Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1"and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongweilaboratory is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.63 dB	(1)
Transmitter power Radiated	2.38dB for <1GHz 3.45dB for >1GHz	(1)
Conducted spurious emissions 9kHz~40GHz	0.63 dB	(1)
Radiated spurious emissions	2.38dB for <1GHz	(1)
Tradition of the control of the cont	3.45dB for >1GHz	(1)
Occupied Bandwidth	18Hz for <1GHz	(1)
Occupied Baridwidth	69Hz for >1GHz	(1)
Frequency error	18Hz for <1GHz	(1)
Trequency entor	69Hz for >1GHz	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: CHTEW19020096 Page: 12 of 39 Issued: 2019-02-22


5. TEST CONDITIONS AND RESULTS

5.1. Conducted Output Power

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT output port was connected to communication tester.
- 2. Set EUT at maximum power through communication tester.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure the maximum burst average power.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix A on the section 8 appendix report

Report No.: CHTEW19020096 Page: 13 of 39 Issued: 2019-02-22

5.2. Peak-to-Average Ratio

LIMIT

13dB

TEST CONFIGURATION

TEST PROCEDURE

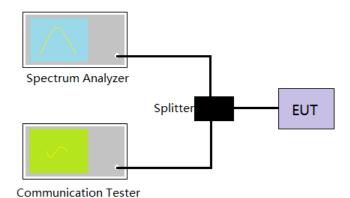
- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. Center Frequency = Carrier frequency, RBW > Emission bandwidth of signal
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed.
 - i. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms.
 - ii. For bursttransmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that issynced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in whichthetransmitter is operating at maximum power
- 6. Record the maximum PAPR level associated with a probability of 0.1%.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix B on the section 8 appendix report


Report No.: CHTEW19020096 Page: 14 of 39 Issued: 2019-02-22

5.3. 99% Occupied Bandwidth & 26 dB Bandwidth

<u>LIMIT</u>

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. Spectrum analyzer setting as follow:

Center Frequency= Carrier frequency, RBW=1% to 5% of the anticipated OBW, VBW= 3 * RBW, Detector=Peak,

Trace maximum hold.

4. Record the value of 99% Occupied bandwidth and 26dB bandwidth.

TEST MODE:

Please refer to the clause 3.3

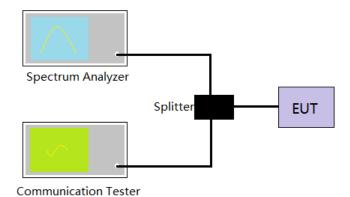
TEST RESULTS

Refer to appendix C on the section 8 appendix report

Report No.: CHTEW19020096 Page: 15 of 39 Issued: 2019-02-22

5.4. Band Edge

LIMIT


Part 24.238 and Part 22.917 and Part 27.53 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

LTE Band 7

Part 27.53 m(4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees. Limit <-25 dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- The band edges of low and high channels were measured.
- Spectrum analyzer setting as follow:
 RBW= no less than 1% of the OBW, VBW =3 * RBW, Sweep time= Auto
- 5. Record the test plot.

TEST MODE:

Please refer to the clause 3.3

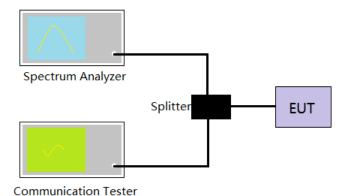
TEST RESULTS

Refer to appendix D on the section 8 appendix report

Report No.: CHTEW19020096 Page: 16 of 39 Issued: 2019-02-22

5.5. Conducted Spurious Emissions

LIMIT


Part 24.238 and Part 22.917 and Part 27.53 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

LTE Band 7

Part 27.53 m(4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees. Limit <-25 dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. Spectrum analyzer setting as follow:

Below 1GHz, RBW=100KHz, VBW = 300KHz, Detector=Peak, Sweep time= Auto Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peak, Sweep time= Auto Scan frequency range up to 10th harmonic.

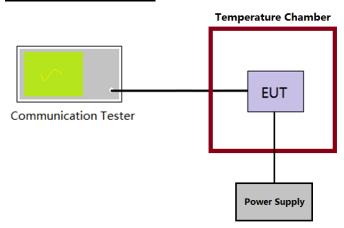
4. Record the test plot.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix E on the section 8 appendix report


Report No.: CHTEW19020096 Page: 17 of 39 Issued: 2019-02-22

5.6. Frequency stability VS Temperature measurement

LIMIT

2.5ppm

TEST CONFIGURATION

TEST PROCEDURE

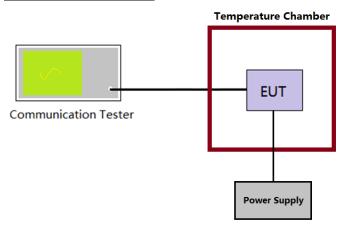
- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. The EUT output port was connected to communication tester.
- 3. The EUT was placed inside the temperature chamber.
- 4. Turn EUT off and set the chamber temperature to –30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- 5. Repeat step 4 measure with 10°C increased per stage until the highest temperature of +50°C reached.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix F on the section 8 appendix report


Report No.: CHTEW19020096 Page: 18 of 39 Issued: 2019-02-22

5.7. Frequency stability VS Voltage measurement

LIMIT

2.5ppm

TEST CONFIGURATION

TEST PROCEDURE

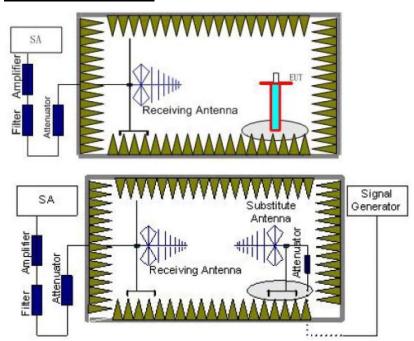
- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. The EUT output port was connected to communication tester.
- 3. The EUT was placed inside the temperature chamber at 25°C
- 4. The power supply voltage to the EUT was varied $\pm 15\%$ of the nominal value measured at the input to the EUT
- 5. Record the maximum frequency change.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix F on the section 8 appendix report


Report No.: CHTEW19020096 Page: 19 of 39 Issued: 2019-02-22

5.8. ERP and EIRP

LIMIT

LTE Band 2/7: 2W(33dBm) EIRP LTE Band 4: 1W(30dBm) EIRP LTE Band 5: 7W(38.50dBm) ERP

TEST CONFIGURATION

TEST PROCEDURE

- 1. EUT was placed on a 0.8 meter for below 1GHz and 1.5 meter for above 1GHz high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.0m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz for above 1GHz and RBW=100kHz, VBW=300kHz for 30MHz to 1GHz,, And the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest isconnected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- 6. The measurement results are obtained as described below:

Report No.: CHTEW19020096 Page: 20 of 39 Issued: 2019-02-22

Power(EIRP)=PMea- PAg - Pcl + Ga

We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)=PMea- Pcl + Ga

7. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.

ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

	t Applicable	☐ Not	Passed	\boxtimes
--	--------------	-------	--------	-------------

Report No.: CHTEW19020096 Page: 21 of 39 Issued: 2019-02-22

LTE Band 2-1.4MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dPm)	Danill		
iviodulation	Channel	Vertical	Horizontal	Limit (dBm)	Result		
	Low	21.09	18.57	22.00			
QPSK	Mid	21.34	18.50		PASS		
	High	21.09	18.57				
	Low	19.40	17.07	<33.00			
16QAM	Mid	19.70	17.17	1	PASS		
	High	19.37	17.33				

LTE Band 2-3MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dBm)	Result		
Modulation	Chamilei	Vertical	Horizontal	Lillii (dbill)	Nesuit		
	Low	20.89	18.17	22.00			
QPSK	Mid	21.21	18.49		PASS		
	High	20.87	18.41				
	Low	19.95	17.64	<33.00			
16QAM	Mid	20.01	17.46		PASS		
	High	19.40	17.46				

LTE Band 2-5MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dPm)	Result		
iviodulation	Channel	Vertical	Horizontal	Limit (dBm)			
	Low	21.79	19.04	20.00			
QPSK	Mid	22.03	18.89		PASS		
	High	21.92	19.00				
16QAM	Low	20.18	17.52	<33.00	PASS		
	Mid	20.37	17.58				
	High	20.00	17.69				

LTE Band 2-10MHz							
Modulation	Channel	EIRP	(dBm)	Lineit (dDne)	Result		
iviodulation	Channel	Vertical	Horizontal	Limit (dBm)	Resuit		
	Low	21.76	19.12	22.00			
QPSK	Mid	21.99	18.97		PASS		
	High	21.88	19.17				
	Low	20.15	17.64	<33.00			
16QAM	Mid	20.33	17.75		PASS		
	High	19.97	17.82				

Report No.: CHTEW19020096 Page: 22 of 39 Issued: 2019-02-22

LTE Band 2-15MHz							
Modulation	Channal	EIRP	(dBm)	Limit (dDm)	D !!		
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result		
	Low	21.47	18.64	20.00			
QPSK	Mid	21.78	18.90		PASS		
	High	21.56	18.93				
	Low	20.60	18.13	<33.00 - -			
16QAM	Mid	20.56	17.97		PASS		
	High	19.92	17.88				

LTE Band 2-20MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dRm)	Daguit		
iviodulation	Chamer	Vertical	Horizontal	Limit (dBm)	Result		
	Low	21.63	18.79	22.00			
QPSK	Mid	22.02	19.09		PASS		
	High	21.80	19.08				
	Low	20.83	18.45	<33.00	PASS		
16QAM	Mid	20.76	18.12				
	High	20.10	17.97				

Report No.: CHTEW19020096 Page: 23 of 39 Issued: 2019-02-22

LTE Band 4-1.4MHz							
	<u> </u>	EIRP (dl		1: "(15.)	- ·		
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result		
	Low	22.30	20.48	20.00			
QPSK	Mid	22.76	20.88		PASS		
	High	22.81	20.56				
	Low	20.05	18.83	<30.00			
16QAM	Mid	20.45	19.27		PASS		
	High	20.38	19.08				

LTE Band 4-3MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dPm)	Result		
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result		
	Low	22.72	20.48	20.00			
QPSK	Mid	22.67	20.64		PASS		
	High	22.49	20.41				
16QAM	Low	20.33	19.27	<30.00			
	Mid	20.66	18.76		PASS		
	High	20.68	19.29				

	LTE Band 4-5MHz							
Modulation	Channal	EIRP	(dBm)	Limit (dDm)	Decult			
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result			
	Low	23.32	21.01	20.00				
QPSK	Mid	23.60	21.39		PASS			
	High	23.61	21.11					
	Low	20.81	19.21	<30.00				
16QAM	Mid	21.12	20.17		PASS			
	High	20.94	19.37					

	LTE Band 4-10MHz							
Modulation	Channal	EIRP	(dBm)	Limit (dPm)	D !!			
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result			
	Low	22.88	20.85	20.00				
QPSK	Mid	23.24	21.22		PASS			
	High	23.27	20.90					
	Low	20.49	19.13	<30.00				
16QAM	Mid	20.83	19.53		PASS			
	High	20.70	19.30					

Report No.: CHTEW19020096 Page: 24 of 39 Issued: 2019-02-22

LTE Band 4-15MHz							
Modulation	Channal	EIRP	(dBm)	Limit (dDm)	Result		
Modulation	Channel	Vertical	Horizontal	Limit (dBm)			
	Low	23.33	20.80	20.00	PASS		
QPSK	Mid	23.17	20.95				
	High	22.97	20.74				
	Low	20.79	19.50	<30.00			
16QAM	Mid	21.06	19.30		PASS		
	High	21.01	19.46				

	LTE Band 4-20MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dBm)	Result			
Modulation	Chamilei	Vertical	Horizontal	Limit (dbin)				
	Low	23.39	20.86	20.00				
QPSK	Mid	23.41	21.05		PASS			
	High	23.17	20.79					
	Low	20.77	19.57	<30.00				
16QAM	Mid	21.29	19.24		PASS			
	High	21.26	19.63					

Report No.: CHTEW19020096 Page: 25 of 39 Issued: 2019-02-22

LTE Band 5-1.4MHz							
Modulation	Channel	ERP	(dBm)	Limit (dDm)	5 "		
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result		
	Low	22.17	20.86	00.50			
QPSK	Mid	22.45	21.15		PASS		
	High	22.42	21.09				
	Low	20.59	19.29	- <38.50 -			
16QAM	Mid	20.66	19.76		PASS		
	High	20.70	19.51				

	LTE Band 5-3MHz							
Modulation	Channel	ERP	(dBm)	Limit (dRm)	Pocult			
Modulation	Chamei	Vertical	Horizontal	Limit (dBm)	Result			
	Low	23.19	20.42	20.50				
QPSK	Mid	22.91	20.68		PASS			
	High	22.35	20.43					
	Low	20.66	19.86	<38.50 				
16QAM	Mid	20.78	19.55		PASS			
	High	20.81	19.33					

LTE Band 5-5MHz							
Modulation	Channel	ERP	(dBm)	Limit (dRm)	Result		
iviodulation	Channel	Vertical	Horizontal	Limit (dBm)			
	Low	22.81	20.66	20.50			
QPSK	Mid	22.65	20.93		PASS		
	High	22.14	20.56				
	Low	21.11	19.88	<38.50			
16QAM	Mid	21.00	20.15		PASS		
	High	20.95	20.00				

LTE Band 5-10MHz							
Modulation	Channel	ERP	(dBm)	Limit (dPm)	Result		
Modulation	Channel	Vertical	Horizontal	Limit (dBm)			
	Low	22.74	20.69	20.50			
QPSK	Mid	22.59	20.95		PASS		
	High	22.10	20.58				
	Low	20.98	19.49	<38.50	PASS		
16QAM	Mid	21.09	19.98				
	High	21.16	19.75				

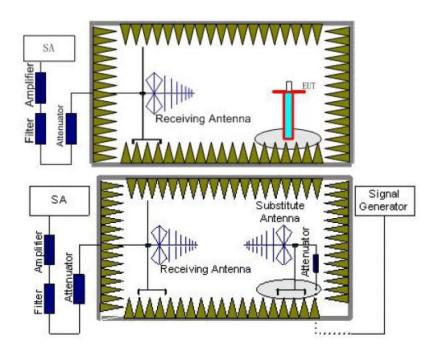
Report No.: CHTEW19020096 Page: 26 of 39 Issued: 2019-02-22

LTE Band 7-5MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dPm)	Result		
iviodulation	Channel	Vertical	Horizontal	Limit (dBm)			
	Low	21.30	19.44	22.00			
QPSK	Mid	21.47	19.43		PASS		
	High	21.34	19.05				
	Low	19.49	18.73	<33.00			
16QAM	Mid	19.67	18.67		PASS		
	High	19.57	18.66				

	LTE Band 7-10MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dPm)	Popult			
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result			
	Low	21.17	19.20	22.00	PASS			
QPSK	Mid	21.25	19.02					
	High	21.14	19.01					
	Low	19.91	18.82		PASS			
16QAM	Mid	19.88	18.57					
	High	19.83	18.45					

LTE Band 7-15MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dDm)	Result		
Modulation	Chamei	Vertical	Horizontal	Limit (dBm)			
	Low	21.17	19.27	22.00			
QPSK	Mid	21.33	19.42		PASS		
	High	21.19	19.28				
	Low	19.63	18.51	<33.00			
16QAM	Mid	19.80	18.42		PASS		
	High	19.69	18.42				

		LTE Band	7-20MHz		
Modulation	Channel	EIRP	(dBm)	Limit (dDm)	Dogult
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result
	Low	21.13	19.37	22.00	
QPSK	Mid	21.21	19.18		PASS
	High	21.10	19.18		
	Low	19.99	18.92	<33.00	
16QAM	Mid	20.24	19.02		PASS
	High	20.05	18.98		


Report No.: CHTEW19020096 Page: 27 of 39 Issued: 2019-02-22

5.9. Radiated Spurious Emission

LIMIT

LTE Band 2/4/5: -13dBm; LTE Band 7: -25dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. EUT was placed on a 0.8 meter for below 1GHz and 1.5 meter for above 1GHz high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.0m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz for above 1GHz and RBW=100kHz, VBW=300kHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest isconnected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.

Report No.: CHTEW19020096 Page: 28 of 39 Issued: 2019-02-22

- 6. The measurement results are obtained as described below:
 - Power(EIRP)=PMea- PAg Pcl + Ga
 - We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below:

Power(EIRP)=PMea- Pcl + Ga

- 7. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
 - ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

⊠ Passed	☐ Not Applicable
----------	------------------

Report No.: CHTEW19020096 Page: 29 of 39 Issued: 2019-02-22

	LTE Band 2-1.4MHz							
Channal	Frequency	Spurious	Emission	Limit (dDm)	D 1			
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result			
	3701.40	Vertical	-35.34					
	5552.10	V	-38.97	<-13.00	Pass			
Low	7402.80	V	-40.15					
LOW	3701.40	Horizontal	-37.19					
	5552.10	Н	-40.71	<-13.00	Pass			
	7402.80	Н	-41.62					
	3760.00	Vertical	-33.95	<-13.00				
	5640.00	V	-37.67		Pass			
Mid	7520.00	V	-38.93					
iviid	3760.00	Horizontal	-35.50					
	5640.00	Н	-39.34	<-13.00	Pass			
	7520.00	Н	-40.32					
	3818.60	Vertical	-31.58					
	5727.90	V	-35.52	<-13.00	Pass			
∐iah	7637.20	V	-36.89					
High	3818.60	Horizontal	-34.67					
	5727.90	Н	-38.56	<-13.00	Pass			
	7637.20	Н	-39.66					

	LTE Band 2-3MHz							
Channal	Frequency	ency Spurious Emission		Limeit (dDme)	D !!			
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result			
	3703.00	Vertical	-30.05					
	5554.50	V	-31.20	<-13.00	Pass			
Low	7406.00	V	-33.74					
LOW	3703.00	Horizontal	-30.93					
	5554.50	Н	-34.12	<-13.00	Pass			
	7406.00	Н	-37.34					
	3760.00	Vertical	-25.82	<-13.00	Pass			
	5640.00	V	-27.21					
Mid	7520.00	V	-29.39					
IVIIU	3760.00	Horizontal	-27.40					
	5640.00	Н	-31.65	<-13.00	Pass			
	7520.00	Н	-34.50					
	3817.00	Vertical	-21.95					
	5725.50	V	-24.40	<-13.00	Pass			
High	7634.00	V	-27.56					
riigii	3817.00	Horizontal	-23.69					
	5725.50	Н	-28.83	<-13.00	Pass			
	7634.00	Н	-29.53					

Report No.: CHTEW19020096 Page: 30 of 39 Issued: 2019-02-22

	LTE Band 2-5MHz							
Channal	Frequency	Spurious	Emission	Lineit (dDne)	D It			
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result			
	3705.00	Vertical	-17.79					
	5557.50	V	-18.09	<-13.00	Pass			
Low	7410.00	V	-22.82					
LOW	3705.00	Horizontal	-26.85					
	5557.50	Н	-34.46	<-13.00	Pass			
	7410.00	Н	-32.30					
	3760.00	Vertical	-19.82	<-13.00	Pass			
	5640.00	V	-21.86					
Mid	7520.00	V	-26.08					
iviid	3760.00	Horizontal	-31.55					
	5640.00	Н	-37.65	<-13.00	Pass			
	7520.00	Н	-34.74					
	3815.00	Vertical	-24.95					
	5722.50	V	-25.51	<-13.00	Pass			
∐iah	7630.00	V	-29.22					
High	3815.00	Horizontal	-35.23		_			
	5722.50	Н	-41.06	<-13.00	Pass			
	7630.00	Н	-37.34					

LTE Band 2-10MHz							
Channal	Frequency	Spurious	Emission	Lineit (dDne)	Desuit		
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result		
	3710.00	Vertical	-21.53				
	5565.00	V	-23.67	<-13.00	Pass		
Low	7420.00	V	-27.00				
LOW	3710.00	Horizontal	-40.44				
	5565.00	Н	-44.62	<-13.00	Pass		
	7420.00	Н	-41.44				
	3760.00	Vertical	-25.57	<-13.00	Pass		
	5640.00	V	-27.06				
Mid	7520.00	V	-31.07				
IVIIU	3760.00	Horizontal	-43.11				
	5640.00	Н	-48.59	<-13.00	Pass		
	7520.00	Н	-44.58				
	3810.00	Vertical	-27.08				
	5715.00	V	-30.44	<-13.00	Pass		
High	7620.00	V	-34.99				
riigii	3810.00	Horizontal	-39.89				
	5715.00	Н	-46.72	<-13.00	Pass		
	7620.00	Н	-42.08				

Report No.: CHTEW19020096 Page: 31 of 39 Issued: 2019-02-22

	LTE Band 2-15MHz							
Ohamal	Frequency	Spurious	Emission	Limit (dDms)	D !!			
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result			
	3715.00	Vertical	-24.34					
	5572.50	V	-27.96	<-13.00	Pass			
Low	7430.00	V	-32.34					
LOW	3715.00	Horizontal	-42.49					
	5572.50	Н	-49.17	<-13.00	Pass			
	7430.00	Н	-44.16					
	3760.00	Vertical	-26.29	<-13.00	Pass			
	5640.00	V	-29.80					
Mid	7520.00	V	-34.07					
iviid	3760.00	Horizontal	-40.02					
	5640.00	Н	-46.60	<-13.00	Pass			
	7520.00	Н	-42.71					
	3805.00	Vertical	-24.26					
	5707.50	V	-26.00	<-13.00	Pass			
∐iah	7610.00	V	-30.30					
High	3805.00	Horizontal	-43.25					
	5707.50	Н	-51.83	<-13.00	Pass			
	7610.00	Н	-48.09					

	LTE Band 2-20MHz							
Channel	Frequency	Spurious	Emission	Limit (dDm)	Result			
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result			
	3720.00	Vertical	-27.47					
	5580.00	V	-29.64	<-13.00	Pass			
Low	7440.00	V	-33.05					
LOW	3720.00	Horizontal	-43.69					
	5580.00	Н	-52.25	<-13.00	Pass			
	7440.00	Н	-48.44					
	3760.00	Vertical	-27.80		Pass			
	5640.00	V	-29.95	<-13.00				
Mid	7520.00	V	-33.34					
IVIIG	3760.00	Horizontal	-43.98		Pass			
	5640.00	Н	-52.49	<-13.00				
	7520.00	Н	-48.66					
	3800.00	Vertical	-25.47					
	5700.00	V	-26.82	<-13.00	Pass			
□iah	7600.00	V	-31.08					
High	3800.00	Horizontal	-44.29		_			
	5700.00	Н	-52.78	<-13.00	Pass			
	7600.00	Н	-48.91					

Remark:

- 1. Remark"---" means that the emission level is too low to be measured
- 2. The emission levels of below 1 GHz are very lower than the limit and not show in test report.

Report No.: CHTEW19020096 Page: 32 of 39 Issued: 2019-02-22

	LTE Band 4-1.4MHz							
Channel	Frequency	Spurious I	Emission	Limit (dDm)	Dooult			
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result			
	3421.40	Vertical	-31.63					
	5132.10	V	-37.84	<-13.00	Pass			
Low	6842.80	V	-36.49					
LOW	3421.40	Horizontal	-34.09					
	5132.10	Н	-40.15	<-13.00	Pass			
	6842.80	Н	-38.45					
	3465.00	Vertical	-29.79	<-13.00	Pass			
	5197.50	V	-36.11					
Mid	6930.00	V	-34.86					
IVIIG	3465.00	Horizontal	-31.84					
	5197.50	Н	-38.33	<-13.00	Pass			
	6930.00	Н	-36.72					
	3508.60	Vertical	-26.64					
	5262.90	V	-33.25	<-13.00	Pass			
High	7017.20	V	-32.14					
riigii	3508.60	Horizontal	-29.26					
	5262.90	Н	-35.88	<-13.00	Pass			
	7017.20	Н	-34.39					

LTE Band 4-3MHz							
Channal	Frequency	Spurious I	Emission	Limit (dDm)	Dooult		
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result		
	3423.00	Vertical	-30.58				
	5134.50	V	-36.77	<-13.00	Pass		
Low	6846.00	V	-35.62				
LOW	3423.00	Horizontal	-32.39				
	5134.50	Н	-40.84	<-13.00	Pass		
	6846.00	Н	-38.16				
	3465.00	Vertical	-34.70		Pass		
	5197.50	V	-40.89	<-13.00			
Mid	6930.00	V	-38.80				
IVIIU	3465.00	Horizontal	-40.29				
	5197.50	Н	-46.41	<-13.00	Pass		
	6930.00	Н	-44.63				
	3507.00	Vertical	-37.47				
	5260.50	V	-43.41	<-13.00	Pass		
Lliah	7014.00	V	-41.19				
High	3507.00	Horizontal	-44.11				
	5260.50	Н	-50.72	<-13.00	Pass		
	7014.00	Н	-47.77				

Report No.: CHTEW19020096 Page: 33 of 39 Issued: 2019-02-22

	LTE Band 4-5MHz							
Channal	Frequency	Spurious	Emission	Lineit (dDne)	D It			
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result			
	3425.00	Vertical	-42.53					
	5137.50	V	-47.13	<-13.00	Pass			
Low	6850.00	V	-46.23					
LOW	3425.00	Horizontal	-46.13					
	5137.50	Н	-52.62	<-13.00	Pass			
	6850.00	Н	-49.38					
	3465.00	Vertical	-44.05	<-13.00	Pass			
	5197.50	V	-48.56					
Mid	6930.00	V	-47.57					
iviid	3465.00	Horizontal	-47.91					
	5197.50	Н	-54.06	<-13.00	Pass			
	6930.00	Н	-50.75					
	3505.00	Vertical	-46.24					
	5257.50	V	-50.55	<-13.00	Pass			
Lligh	7010.00	V	-49.46					
High	3505.00	Horizontal	-49.34		_			
	5257.50	Н	-55.40	<-13.00	Pass			
	7010.00	Н	-51.89					

	LTE Band 4-10MHz							
Channal	Frequency	Spurious I	Emission	Limeit (dDms)	Dooult			
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result			
	3430.00	Vertical	-50.11					
	5145.00	V	-52.91	<-13.00	Pass			
Low	6860.00	V	-50.90					
LOW	3430.00	Horizontal	-49.60					
	5145.00	Н	-55.64	<-13.00	Pass			
	6860.00	Н	-52.10					
	3465.00	Vertical	-50.30	<-13.00	Pass			
	5197.50	V	-53.09					
Mid	6930.00	V	-51.43					
IVIIU	3465.00	Horizontal	-49.81					
	5197.50	Н	-55.81	<-13.00	Pass			
	6930.00	Н	-52.26					
	3500.00	Vertical	-50.56					
	5250.00	V	-53.33	<-13.00	Pass			
High	7000.00	V	-51.66					
riigri	3500.00	Horizontal	-50.01					
	5250.00	Н	-56.00	<-13.00	Pass			
	7000.00	Н	-52.42					

Report No.: CHTEW19020096 Page: 34 of 39 Issued: 2019-02-22

	LTE Band 4-15MHz							
Ob a mad	Frequency	Spurious	Emission	Limit (dDm)	.			
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result			
	3435.00	Vertical	-51.25					
	5152.50	V	-54.03	<-13.00	Pass			
Low	6870.00	V	-52.21					
LOW	3435.00	Horizontal	-53.09					
	5152.50	Н	-58.90	<-13.00	Pass			
	6870.00	Н	-57.78					
	3465.00	Vertical	-56.29	<-13.00	Pass			
	5197.50	V	-58.77					
Mid	6930.00	V	-56.66					
iviid	3465.00	Horizontal	-57.01					
	5197.50	Н	-62.07	<-13.00	Pass			
	6930.00	Н	-60.79					
	3495.00	Vertical	-60.00					
	5242.50	V	-62.14	<-13.00	Pass			
∐iah	6990.00	V	-59.87					
High	3495.00	Horizontal	-60.33		_			
	5242.50	Н	-65.19	<-13.00	Pass			
	6990.00	Н	-66.56					

		LTE Ban	d 4-20MHz		
Oh annal	Frequency	Spurious	Emission	Limit (dDay)	Danill
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	3440.00	Vertical	-78.33		
	5160.00	V	-66.31	<-13.00	Pass
Low	6880.00	V	-63.42		
LOW	3440.00	Horizontal	-63.85		
	5160.00	Н	-80.35	<-13.00	Pass
	6880.00	Н	-81.78		
	3465.00	Vertical	-94.65		Pass
	5197.50	V	-74.09	<-13.00	
Mid	6930.00	V	-70.73		
IVIIG	3465.00	Horizontal	-74.17		
	5197.50	Н	-90.92	<-13.00	Pass
	6930.00	Н	-87.47		
	3490.00	Vertical	-99.30		
	5235.00	V	-77.08	<-13.00	Pass
Lliah	6980.00	V	-73.45		
High	3490.00	Horizontal	-76.75		
	5235.00	Н	-93.37	<-13.00	Pass
	6980.00	Н	-89.80		

Remark:

- 1. Remark"---" means that the emission level is too low to be measured
- 2. The emission levels of below 1 GHz are very lower than the limit and not show in test report.

Report No.: CHTEW19020096 Page: 35 of 39 Issued: 2019-02-22

LTE Band 5-1.4MHz							
Channal	Frequency	Spurious	Emission	Limeit (dDms)	D It		
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result		
	1649.40	Vertical	-35.41				
	2474.10	V	-43.08	<-13.00	Pass		
Low	3298.80	V	-43.48				
Low	1649.40	Horizontal	-38.94				
	2474.10	Н	-47.24	<-13.00	Pass		
	3298.80	Н	-47.26				
	1673.00	Vertical	-34.36	<-13.00	Pass		
	2509.50	V	-42.10				
Mid	3346.00	V	-42.34				
iviiu	1673.00	Horizontal	-37.87				
	2509.50	Н	-46.23	<-13.00	Pass		
	3346.00	Н	-46.31				
	1696.60	Vertical	-33.16				
	2544.90	V	-41.13	<-13.00	Pass		
Lligh	3393.20	V	-41.42				
High	1696.60	Horizontal	-33.70		_		
	2544.90	Н	-40.63	<-13.00	Pass		
	3393.20	Н	-42.27				

LTE Band 5-3MHz						
Ohamal	Frequency	Spurious Emission		1: "(15)	D 11	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	1651.00	Vertical	-30.98		Pass	
	2476.50	V	-39.08	<-13.00		
Low	3302.00	V	-39.68			
LOW	1651.00	Horizontal	-32.27		Pass	
	2476.50	Н	-39.29	<-13.00		
	3302.00	Н	-41.13			
	1673.00	Vertical	-29.91	<-13.00	Pass	
	2509.50	V	-38.07			
Mid	3346.00	V	-38.73			
IVIIU	1673.00	Horizontal	-30.36		Pass	
	2509.50	Н	-37.74	<-13.00		
	3346.00	Н	-39.66			
	1695.00	Vertical	-27.55			
	2542.50	V	-35.93	<-13.00	Pass	
∐iah	3390.00	V	-36.69			
High	1695.00	Horizontal	-28.61			
	2542.50	Н	-36.09	<-13.00	Pass	
	3390.00	Н	-38.26			

Report No.: CHTEW19020096 Page: 36 of 39 Issued: 2019-02-22

		LTE Bar	nd 5-5MHz		
Channal	Frequency	Spurious Emission		1: ': (15)	D 1
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	1653.00	Vertical	-23.19		Pass
	2479.50	V	-33.22	<-13.00	
Low	3306.00	V	-33.11		
Low	1653.00	Horizontal	-29.66		Pass
	2479.50	Н	-37.08	<-13.00	
	3306.00	Н	-39.10		
	1673.00	Vertical	-23.98	<-13.00	Pass
	2509.50	V	-33.96		
Mid	3346.00	V	-33.81		
IVIIQ	1673.00	Horizontal	-29.81		Pass
	2509.50	Н	-37.20	<-13.00	
	3346.00	Н	-39.22		
	1693.00	Vertical	-24.95		Pass
	2539.50	V	-34.84	<-13.00	
Lliab	3386.00	V	-34.65		
High	1693.00	Horizontal	-28.00		
	2539.50	Н	-35.50	<-13.00	Pass
	3386.00	Н	-37.77		

LTE Band 5-10MHz						
Channal	Frequency	Spurious Emission		Livit (IDv)	D It	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	1658.00	Vertical	-23.72	<-13.00	Pass	
	2487.00	V	-33.79			
Low	3316.00	V	-33.76			
LOW	1658.00	Horizontal	-29.41		Pass	
	2487.00	Н	-36.82	<-13.00		
	3316.00	Н	-38.89	1		
	1673.00	Vertical	-24.78	<-13.00	Pass	
	2509.50	V	-34.78			
Mid	3346.00	V	-34.69			
IVIIG	1673.00	Horizontal	-29.60		Pass	
	2509.50	Н	-36.97	<-13.00		
	3346.00	Н	-39.04			
	1688.00	Vertical	-25.01			
	2532.00	V	-34.99	<-13.00	Pass	
∐iah	3376.00	V	-34.89			
High	1688.00	Horizontal	-29.78			
	2532.00	Н	-37.14	<-13.00	Pass	
	3376.00	Н	-39.18			

Remark:

- 1. Remark"---" means that the emission level is too low to be measured
- 2. The emission levels of below 1 GHz are very lower than the limit and not show in test report.

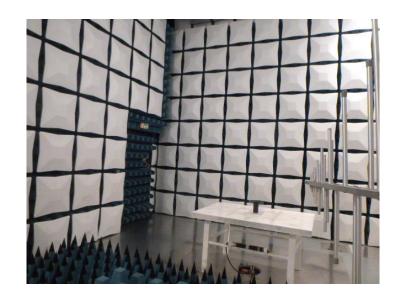
Report No.: CHTEW19020096 Page: 37 of 39 Issued: 2019-02-22

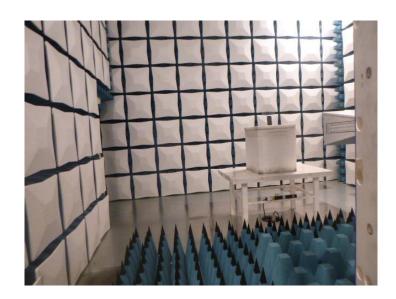
LTE Band 7-5MHz						
Channel	Frequency	Spurious Emission		L''(/ ID)	D !!	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	5005.00	Vertical	-36.14		Pass	
	7507.50	V	-40.36	<-25.00		
Low	10010.00	V	-40.70			
LOW	5005.00	Horizontal	-39.84		Pass	
	7507.50	Н	-44.90	<-25.00		
	10010.00	Н	-43.37			
	5070.00	Vertical	-34.27	<-25.00	Pass	
	7605.00	V	-37.60			
Mid	10140.00	V	-38.39			
IVIIG	5070.00	Horizontal	-34.75		Pass	
	7605.00	Н	-40.58	<-25.00		
	10140.00	Н	-40.48			
	5135.00	Vertical	-29.02			
	7702.50	V	-32.82	<-25.00	Pass	
High	10270.00	V	-33.85			
	5135.00	Horizontal	-31.26	<-25.00		
	7702.50	Н	-37.29		Pass	
	10270.00	Н	-37.69			

LTE Band 7-10MHz						
Channal	Frequency	Spurious Emission		Livin (ID a)	Б. И	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	5010.00	Vertical	-26.65		Pass	
	7515.00	V	-30.80	<-25.00		
Low	10020.00	V	-32.14			
LOW	5010.00	Horizontal	-33.24		Pass	
	7515.00	Н	-39.15	<-25.00		
	10020.00	Н	-39.27			
	5070.00	Vertical	-28.13	<-25.00	Pass	
	7605.00	V	-32.19			
Mid	10140.00	V	-33.45			
IVIIU	5070.00	Horizontal	-35.63	<-25.00	Pass	
	7605.00	Н	-41.09			
	10140.00	Н	-41.11			
	5130.00	Vertical	-30.56			
	7695.00	V	-34.40	<-25.00	Pass	
∐iah	10260.00	V	-35.55			
High	5130.00	Horizontal	-37.21	<-25.00		
	7695.00	Н	-42.57		Pass	
	10260.00	Н	-42.37			

Report No.: CHTEW19020096 Page: 38 of 39 Issued: 2019-02-22

LTE Band 7-15MHz						
Oh annal	Frequency	Spurious Emission		1: ': (15)	D "	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	5015.00	Vertical	-28.42		Pass	
	7522.50	V	-32.58	<-25.00		
Low	10030.00	V	-34.00			
LOW	5015.00	Horizontal	-40.52		Pass	
	7522.50	Н	-47.38	<-25.00		
	10030.00	Н	-47.07			
	5070.00	Vertical	-32.93	<-25.00	Pass	
	7605.00	V	-36.56			
Mid	10140.00	V	-36.91			
iviid	5070.00	Horizontal	-38.63	<-25.00	Pass	
	7605.00	Н	-45.85			
	10140.00	Н	-45.62			
	5125.00	Vertical	-30.61		Pass	
	7687.50	V	-34.45	<-25.00		
∐iah	10250.00	V	-34.91			
High	5125.00	Horizontal	-37.09	<-25.00		
	7687.50	Н	-44.40		Pass	
	10250.00	Н	-44.39			


LTE Band 7-20MHz						
Channel	Frequency	Spurious Emission		Lineit (dDne)	Danult	
	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	5020.00	Vertical	-28.33			
	7530.00	V	-31.60	<-25.00	Pass	
Low	10040.00	V	-32.49			
LOW	5020.00	Horizontal	-34.89		Pass	
	7530.00	Н	-42.34	<-25.00		
	10040.00	Н	-42.64			
	5070.00	Vertical	-26.68	<-25.00	Pass	
	7605.00	V	-30.05			
Mid	10140.00	V	-31.03			
iviiu	5070.00	Horizontal	-32.03	<-25.00	Pass	
	7605.00	Н	-40.02			
	10140.00	Н	-40.44			
	5120.00	Vertical	-28.09	<-25.00	Pass	
High	7680.00	V	-28.20			
	10240.00	V	-29.28			
	5120.00	Horizontal	-35.10			
	7680.00	Н	-42.90	<-25.00	Pass	
	10240.00	Н	-42.89			


Remark:

- 1. Remark"---" means that the emission level is too low to be measured
- 2. The emission levels of below 1 GHz are very lower than the limit and not show in test report.

Report No.: CHTEW19020096 Page: 39 of 39 Issued: 2019-02-22

6. TEST SETUP PHOTOS OF THE EUT

7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Refere to the test report No.: CHTEW19020094

8. APPENDIX REPORT