

TE	EST REPORT			
Report Reference No	TRE1807009504 F	R/C: 95680		
FCC ID:	ZSW-30-071			
Applicant's name:	b mobile HK Limited			
Address	Flat 18, 14/F Block 1, Golden Ind Street, Kwai Chung, New Territo			
Manufacturer	b mobile HK Limited			
Address:	Flat 18, 14/F Block 1, Golden Ind Street, Kwai Chung, New Territo			
Test item description:	Mobile Phone			
Trade Mark:	Bmobile			
Model/Type reference:	AX1074			
Listed Model(s)				
Standard:	FCC CFR Title 47 Part 15 Subp	oart C Section 15.247		
Date of receipt of test sample:	Jul.17 2018			
Date of testing	Jul.18 2018- Jul.27 2018			
Date of issue	Jul.30 2018			
Result	PASS			
Compiled by (position+printedname+signature):	File administrators Candy Liu	Jang hui . Thu		
Supervised by (position+printedname+signature):	Project Engineer Edward Pan	Aaron.Fang Homsty		
Approved by (position+printedname+signature):	Manager Hans Hu	Homsty		
Testing Laboratory Name:	Shenzhen Huatongwei Interna	tional Inspection Co., Ltd.		
Address:	1/F, Bldg 3, Hongfa Hi-tech Indu Tianliao, Gongming, Shenzhen,			
Shenzhen Huatongwei International	Inspection Co., Ltd. All rights res	served.		
This publication may be reproduced in Shenzhen Huatongwei International Ins of the material. Shenzhen Huatongwei not assume liability for damages resulti to its placement and context	spection Co., Ltd. is acknowledged International Inspection Co., Ltd. ta	as copyright owner and source akes no responsibility for and will		

The test report merely correspond to the test sample.

to its placement and context.

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT configuration	6
3.5.	Modifications	6
<u>4.</u>	TEST ENVIRONMENT	7
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Environmental conditions	8
4.4.	Statement of the measurement uncertainty	8
4.5.	Equipments Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
5.1.	Antenna requirement	11
5.2.	Conducted Emissions (AC Main)	12
5.3.	Conducted Peak Output Power	15
5.4.	Power Spectral Density	16
5.5.	6dB bandwidth	20
5.6.	Restricted band	24
5.7.	Band edge and Spurious Emissions (conducted)	28
5.8.	Spurious Emissions (radiated)	41
<u>6.</u>	TEST SETUP PHOTOS	48
<u>7.</u>	EXTERANAL AND INTERNAL PHOTOS	49

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10:2013: American National Standard forTesting Unlicensed Wireless Devices

<u>KDB 558074 D01 DTS Meas Guidance v04:</u> Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating under §15.247

1.2. Report version

Revision No.	Date of issue	Description
N/A	2018-07-30	Original

2. TEST DESCRIPTION

Test Item	FCC Rule	Result	Test Engineer
Antenna requirement	15.203/15.247(c)	PASS	Xiaokang Tan
Line Conducted Emissions (AC Main)	15.207	PASS	Tony Duan
Conducted Peak Output Power	15.247(b)(3)	PASS	Xiaokang Tan
Power Spectral Density	15.247(e)	PASS	Xiaokang Tan
6dB Bandwidth	15.247(a)(2)	PASS	Xiaokang Tan
Restricted band	15.247(d)/15.205	PASS	Xiaokang Tan
Spurious Emissions	15.247(d)/15.209	PASS	Xiaokang Tan

Note: The measurement uncertainty is not included in the test result.

Shenzhen Huatongwei International Inspection Co., Ltd.

3. <u>SUMMARY</u>

3.1. Client Information

Applicant:	b mobile HK Limited	
Address:	Flat 18, 14/F Block 1, Golden Industrial Building, 16-26 Kwai Tak Street, Kwa Chung, New Territories, Hong Kong.	
Manufacturer:	b mobile HK Limited	
Address:	Flat 18, 14/F Block 1, Golden Industrial Building, 16-26 Kwai Tak Street, Kwai Chung, New Territories, Hong Kong.	

3.2. Product Description

Name of EUT:	Mobile Phone	
Trade Mark:	Bmobile	
Model No.:	AX1074	
Listed Model(s):	-	
IMEI: Conducted: 362523432430513 Radiated: 362523432430604		
Power supply:	3.7V	
Adapter information: Input:100-240Va.c. 50-60Hz 0.2A Output:5.0Vd.c. 700mA		
Hardware version:	W4G01_MB_V3.0_20170406	
Software version:	Bmobile_AX1074_TIGO_CO_V001	
WIFI		
Supported type:	802.11b/802.11g/802.11n(HT20)	
Modulation:	DSSS for 802.11b OFDM for 802.11g/802.11n(HT20)	
Operation frequency: 2412MHz~2462MHz		
Channel number:	11	
Channel separation:	5MHz	
Antenna type:	PIFA	
Antenna gain:	-0.8dBi	

3.3. Operation state

Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

802.11b/g/n(HT20)			
Channel	Frequency (MHz)		
01	2412		
02	2417		
06	2437		
10	2457		
11	2462		

Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit (duty cycle>98%).

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated suprious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit(duty cycle>98%). The EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data Recorded in the report.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer

0	- supplied by the lab

	1	Manufacturer:	/
0	7	Model No.:	/
		Manufacturer:	/
0	7	Model No.:	/

3.5. Modifications

No modifications were implemented to meet testing criteria.

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

4.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files.

IC-Registration No.:5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No.: 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors in calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd. quality system according to ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Here after the best measurement capability for Shenzhen Huatongwei International Inspection Co., Ltd. is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.39 dB	(1)
Radiated Emissions 30~1000MHz	4.24 dB	(1)
Radiated Emissions 1~18GHz	5.16 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)

 This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.5. Equipments Used during the Test

Conduc	cted Emissions					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)
1	EMI Test Receiver	R&S	ESCI	101247	11/11/2017	11/10/2018
2	Artificial Mains	SCHWARZBECK	NNLK 8121	573	11/11/2017	11/10/2018
3	2-Line V- Network	R&S	ESH3-Z5	100049	11/11/2017	11/10/2018
4	Pulse Limiter	R&S	ESH3-Z2	101488	11/11/2017	11/10/2018
5	RF Connection Cable	HUBER+SUHNER	EF400	N/A	11/21/2017	11/20/2018
6	Test Software	R&S	ES-K1	N/A	N/A	N/A
Padiat	ed Emissions					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)
1	Semi- Anechoic Chamber	Albatross projects	SAC-3m-01	C11121	10/16/2016	10/15/2019
2	EMI Test Receiver	R&S	ESCI	100900	11/11/2017	11/10/2018
3	Loop Antenna	R&S	HFH2-Z2	100020	11/20/2017	11/19/2020
4	Ultra- Broadband Antenna	SCHWARZBECK	VULB9163	538	4/5/2017	4/4/2020
5	Horn Antenna	SCHWARZBECK	9120D	1011	3/27/2017	3/26/2020
6	Broadband Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170 472	3/27/2017	3/26/2020
7	Pre-amplifier	SCHWARZBECK	BBV 9743	9743-0022	10/18/2017	10/17/2018
8	Broadband Pre-amplifier	SCHWARZBECK	BBV 9718	9718-248	10/18/2017	10/17/2018
9	Spectrum Analyzer	R&S	FSP40	100597	11/11/2017	11/10/2018
10	RF Connection Cable	HUBER+SUHNE R	RE-7-FL	N/A	11/21/2017	11/20/2018
11	RF Connection Cable	HUBER+SUHNE R	RE-7-FH	N/A	11/21/2017	11/20/2018
12	Test Software	Audix	E3	N/A	N/A	N/A
13	Test Software	R&S	ES-K1	N/A	N/A	N/A
14	Turntable	Maturo Germany	TT2.0-1T	N/A	N/A	N/A
15	Antenna Mast	Maturo Germany	CAM-4.0-P-12	N/A	N/A	N/A

Shenzhen Huatongwei International Inspection Co., Ltd.

RF Con	RF Conducted Test													
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)								
1	Spectrum Analyzer	R&S	FSV40	100048	11/11/2017	11/10/2018								
2	EXA Signal Analyzer	Agilent	N9020A	184247	9/22/2017	9/21/2018								
3	Power Meter	Anritsu	ML249A	N/A	9/22/2017	9/21/2018								
4	OSP	R&S	OSP120	101317	N/A	N/A								

5. TEST CONDITIONS AND RESULTS

5.1. Antenna requirement <u>REQUIREMENT:</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

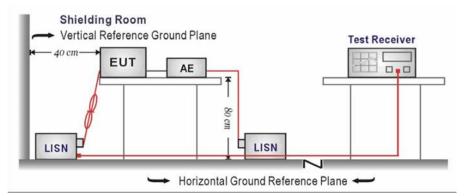
(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

TEST RESULTS

☑ Passed □ Not Applicable

The directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

5.2. Conducted Emissions (AC Main)


<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207:

	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

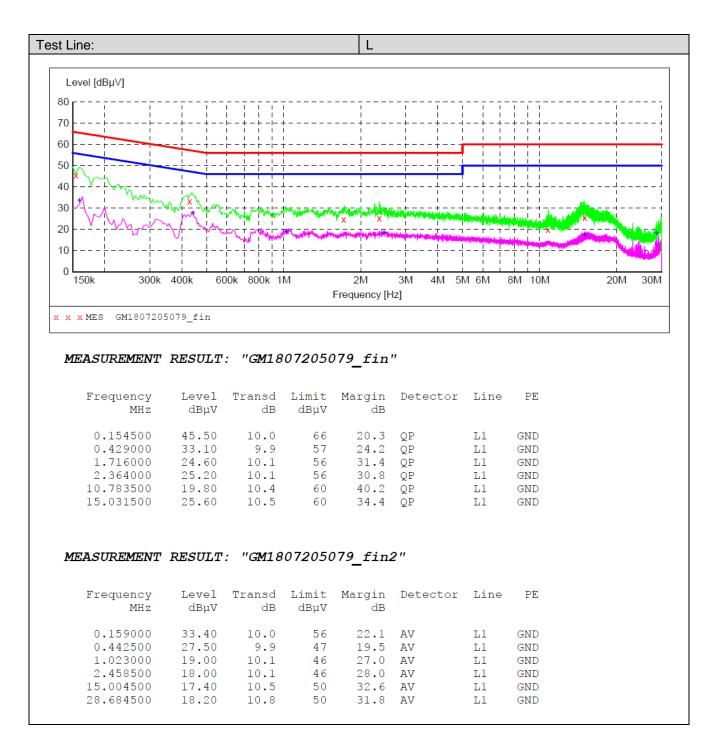
* Decreases with the logarithm of the frequency.

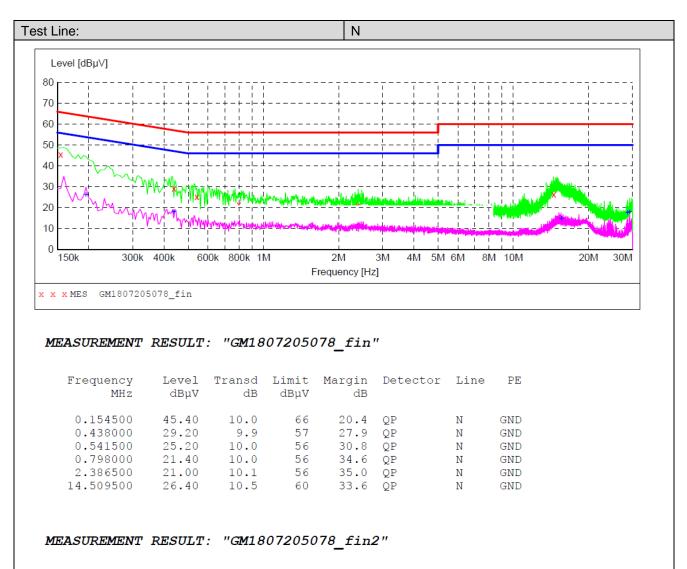
TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

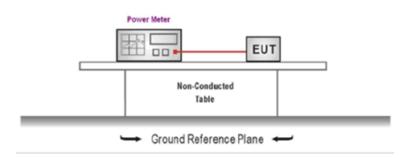

Please refer to the clause 3.3


TEST RESULTS

☑ Passed □ Not Applicable

Note:

- 1) Transd=Cable lose+ Pulse Limiter Factor + Artificial Mains Factor
- 2) Margin= Limit -Level



Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.195000	26.20	10.0	54	27.6	AV	Ν	GND
0.438000	17.90	9.9	47	29.2	AV	Ν	GND
2.454000	11.00	10.1	46	35.0	AV	Ν	GND
15.558000	14.60	10.5	50	35.4	AV	Ν	GND
28.684500	17.60	10.8	50	32.4	AV	Ν	GND
29.233500	17.70	10.9	50	32.3	AV	Ν	GND

5.3. Conducted Peak Output Power LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): 30dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10: 2013 and KDB 558074 D01 for compliance to FCC 47 CFR 15.247 requirements.
- 2. The maximum peak conducted output power may be measured using a broadband peak RF power meter.
- 3. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector
- 4. Record the measurement data.

TEST MODE:

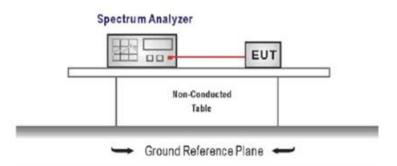
Please refer to the clause 3.3

TEST RESULTS

🛛 Passed

Not Applicable

Туре	Channel	Output power (dBm)	Limit (dBm)	Result	
	01	17.39			
802.11b	06	17.61	≤30.00	Pass	
	11	16.60			
	01	14.90			
802.11g	06	15.41	≤30.00	Pass	
	11	15.64			
	01	13.76			
802.11n(HT20)	06	14.22	≤30.00	Pass	
	11	14.85			


5.4. Power Spectral Density

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e):

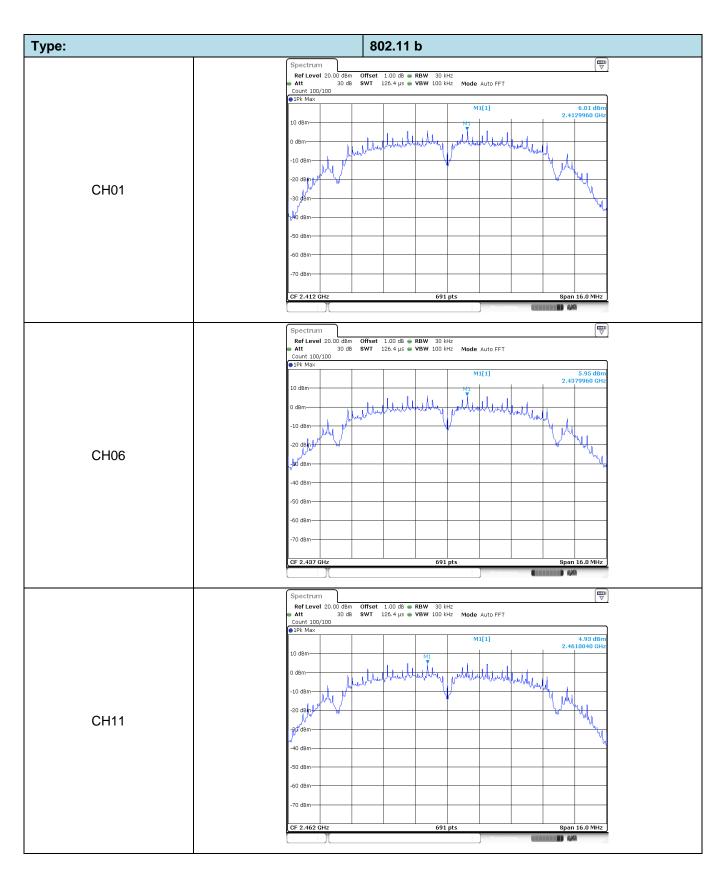
For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

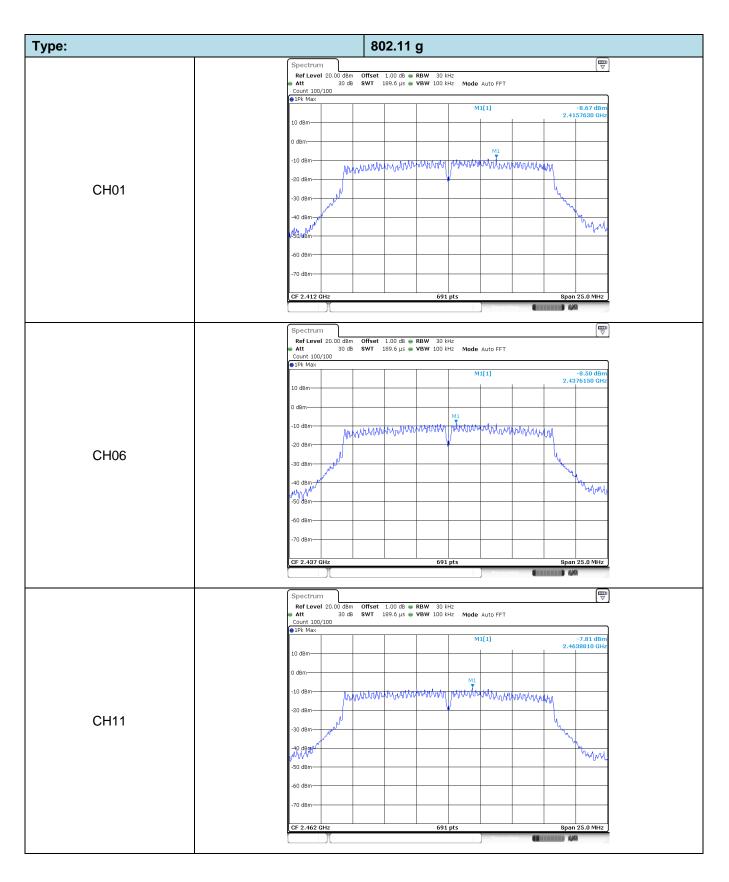
TEST CONFIGURATION

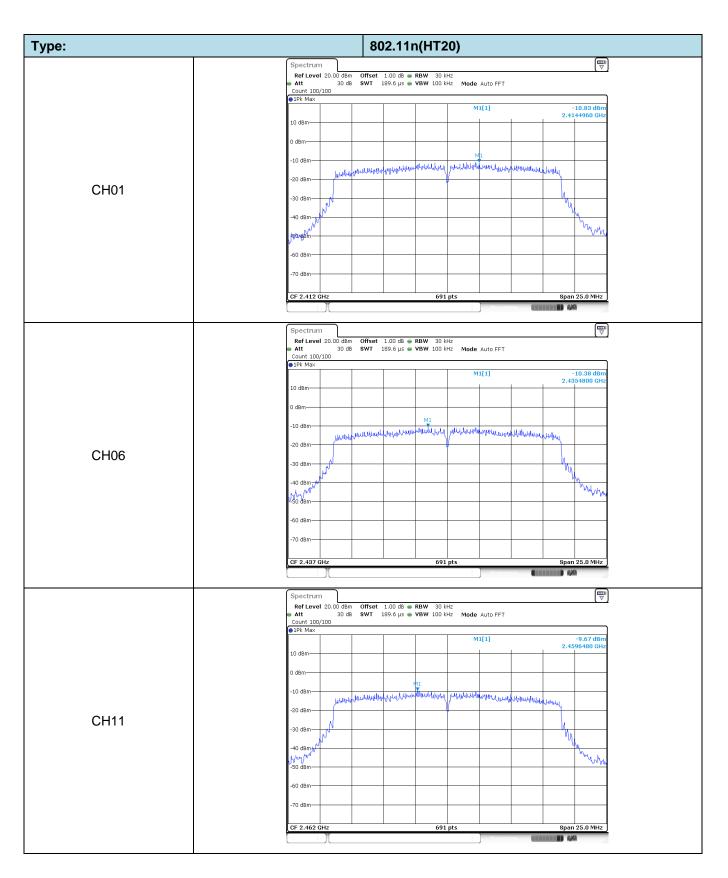
TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input,
- Configure the spectrum analyzer as shown below: Center frequency=DTS channel center frequency Span =1.5 times the DTS bandwidth RBW = 3 kHz ≤ RBW ≤ 100 kHz, VBW ≥ 3 × RBW Sweep time = auto couple Detector = peak Trace mode = max hold
- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 5. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST MODE:

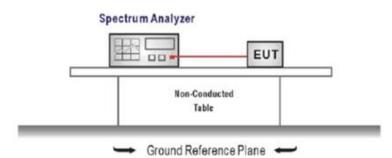

Please refer to the clause 3.3


TEST RESULTS


☑ Passed □ Not Applicable

Туре	Channel	Power Spectral Density (dBm/30KHz)	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
01		6.01	-3.99		
802.11b	06	5.95	-4.05	≤8.00	Pass
	11	4.93	-5.07		
	01	-8.67	-18.67		
802.11g	06	-8.50	-18.50	≤8.00	Pass
	11	-7.81	-17.81		
	01	-10.83	-20.83		
802.11n(HT20)	06	-10.38	-20.38	≤8.00	Pass
	11	-9.67	-19.67		

Test plot as follows:


5.5. 6dB bandwidth

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2):

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST CONFIGURATION

TEST PROCEDURE

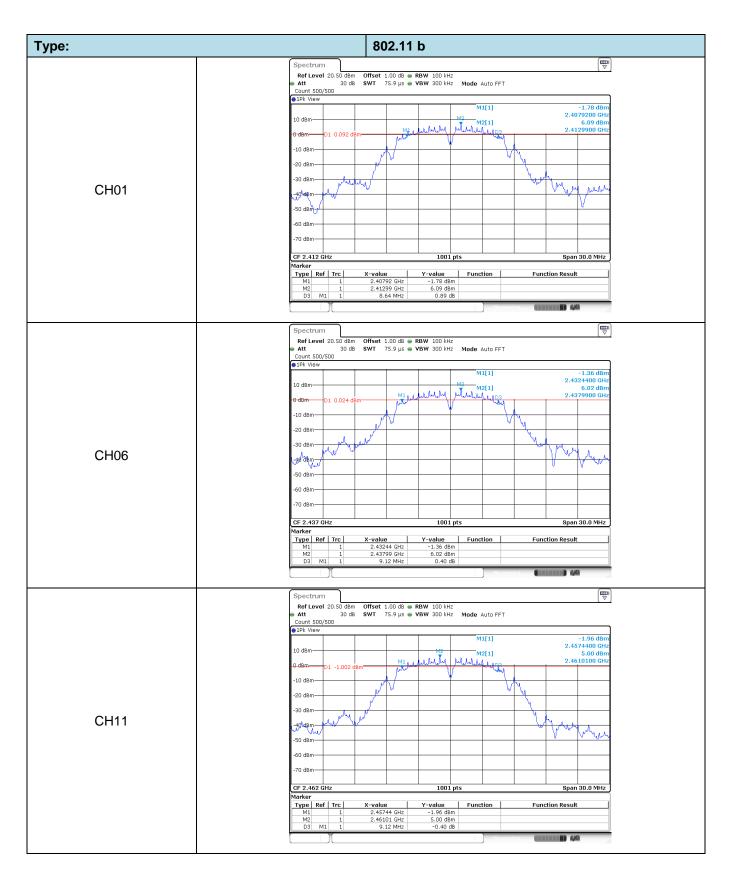
- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =DTS channel center frequency Span=2 x DTS bandwidth RBW = 100 kHz, VBW ≥ 3 × RBW Sweep time= auto couple Detector = Peak Trace mode = max hold

Not Applicable

- Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.

TEST MODE:


Please refer to the clause 3.3

TEST RESULTS

Passed

Туре	Channel	6dB Bandwidth (MHz)	Limit (kHz)	Result
	01	8.64		
802.11b	06	9.12	≥500	Pass
	11	9.12		
	01	16.11		
802.11g	06	15.12	≥500	Pass
	11	15.78		
	01	16.05		
802.11n(HT20)	06	16.77	≥500	Pass
	11	15.90		

Test plot as follows:

802.11 g Type: Spectrum
 Ref Level
 20.50 dBm
 Offset
 1.00 dB
 RBW
 100 kHz

 Att
 30 dB
 SWT
 75.9 μs
 VBW
 300 kHz
 Mode
 Auto FFT
 Count 500/500 -11.01 dB 10 dBm M2[1] -4.62 dB 2.4107400 GF 0 dBn J. м1 Annah 10 dB -20 dBn -30 dBn CH01 40 d**Bm**; -50 dBm -60 dBn -70 dBm CF 2.412 GHz Marker 1001 pts Span 30.0 MHz Type Ref Trc X-value 2.40408 GHz 2.41074 GHz 16.11 MHz Y-value -11.01 dBm -4.62 dBm -0.10 dB Function Function Result M2 D3 M1 ₽ Spectrum Ref Level 20.50 dBm Att 30 dB Count 500/500 Mode Auto FFT -10.69 dBn 2.4294400 GH: -3.49 dBn 2.4382600 GH: M1[1] 10 dBm M2[1] 0 dBn Ĭ. M1 atmul . . . л. -10 dBm D1 -9.494 -20 dBm -30 dBn CH06 -40 dBm 50 dBm -60 dBm 70 dBm CF 2.437 GH: 1001 pt Span 30.0 MHz Type Ref Trc
 Y-value
 Function

 -10.69 dBm
 -3.49 dBm

 -3.49 dBm
 -0.78 dB
 X-value 2.42944 GHz 2.43826 GHz 15.12 MHz Function Result M1 M2 D3 M1 ₿ Spectrum
 Ref Level
 20.50 dBm
 Offset
 1.00 dB
 RBW
 100 kHz

 Att
 30 dB
 SWT
 75.9 μs
 VBW
 300 kHz
 Mode
 Auto FFT
 Count 500/500 M1[1] -10.62 dBr 2.4538100 GH 10 dBm-M2[1] -3.44 dBr 2.4644900 GH 0 dBm internet Murhus abrinda -10 dBm 9.439 -20 dBm--30 dBm moun CH11 m -40.46 mor -50 dBm· -60 dBm· -70 dBm-CF 2.462 GHz 1001 pts Span 30.0 MHz Marker Type Ref Trc X-value 2.45381 GHz 2.46449 GHz 15.78 MHz Y-value -10.62 dBm -3.44 dBm -0.20 dB Function Function Result M2 D3 M1 **1**

802.11n(HT20) Type: Spectrum
 Ref Level
 20.50 dBm
 Offset
 1.00 dB
 RBW
 100 kHz

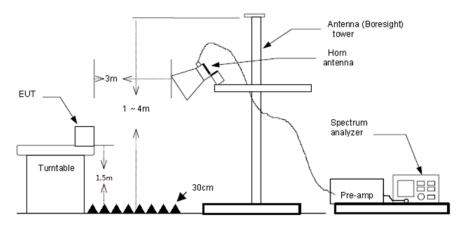
 Att
 30 dB
 SWT
 75.9 μs
 VBW
 300 kHz
 Mode
 Auto FFT
 Count 500/500 -12.31 dB 2.4044700 GF 10 dBm M2[1] -5.87 dP 2.4144900 GH 0 dBn Ţ -10 dBm dBm -11.87 -20 dBr -30 dBr CH01 40 dBn why -60 dBm 70 dBm CF 2.412 GHz Marker 1001 pts Span 30.0 MHz Type Ref Trc X-value 2.40447 GHz 2.41449 GHz 16.05 MHz Y-value -12.31 dBm -5.87 dBm 0.14 dB Function Function Result M2 D3 M1 ₽ Spectrum Ref Level 20.50 dBm Att 30 dB Count 500/500 P1Pk View Offset 1.00 dB ● RBW 100 kHz SWT 75.9 µs ● VBW 300 kHz Mode Auto FFT -12.16 dBn 2.4287500 GH: -5.39 dBn 2.4394900 GH: M1[1] 10 dBm· M2[1] 0 dBm M2 1 M1 Bmg/w -10 dBmwarded D1 -11.38 -20 dBm -30 dBm CH06 An , -50 dBm∙ -60 dBm 70 dBm CF 2.437 GH: 1001 pt Span 30.0 MHz Type Ref Trc X-value 2.42875 GHz 2.43949 GHz 16.77 MHz
 Y-value
 Function

 -12.16 dBm

 -5.39 dBm

 0.02 dB
 Function Result M1 M2 D3 M1 **1** ₿ Spectrum
 Ref Level
 20.50 dBm
 Offset
 1.00 dB
 RBW
 100 kHz

 Att
 30 dB
 SWT
 75.9 μs
 VBW
 300 kHz
 Mode
 Auto FFT
 Count 500/500 M1[1] -11.00 dBr 2.4536300 GH 10 dBm-M2[1] -4.58 dBr 2.4632600 GH 0 dBm Kand 10 dBm -10.58 -20 dBm--30 dBm CH11 -49, dBm-7 when -50 dBm· -60 dBm· -70 dBm-CF 2.462 GHz 1001 pts Span 30.0 MHz Marker Type Ref Trc X-value 2.45363 GHz 2.46326 GHz 15.9 MHz Y-value -11.00 dBm -4.58 dBm 0.17 dB Function Function Result M2 D3 M1 **11**


5.6. Restricted band

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, Radiated Emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the Radiated Emissions limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- 1) The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2) The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3) The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4) The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1MHz, VBW=3MHz PEAK detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

Note:

1) Final level= Read level + Antenna Factor+ Cable Loss- Preamp Factor

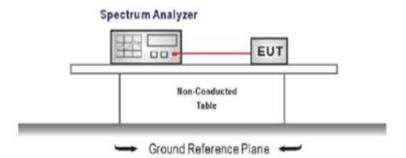
802.11b					CH01					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value	
2310.00	13.45	28.05	6.62	0.00	48.12	74.00	-25.88	Vertical	Peak	
2390.01	13.95	27.65	6.75	0.00	48.35	74.00	-25.65	Vertical	Peak	
2310.00	13.87	28.05	6.62	0.00	48.54	74.00	-25.46	Horizontal	Peak	
2390.01	14.28	27.65	6.75	0.00	48.68	74.00	-25.32	Horizontal	Peak	
2310.00	11.14	28.05	6.62	0.00	45.81	54.00	-8.19	Vertical	Average	
2390.01	10.74	27.65	6.75	0.00	45.14	54.00	-8.86	Vertical	Average	
2310.00	11.14	28.05	6.62	0.00	45.81	54.00	-8.19	Horizontal	Average	
2390.01	10.82	27.65	6.75	0.00	45.22	54.00	-8.78	Horizontal	Average	

802.11b					CH11					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value	
2483.44	14.34	27.27	6.83	0.00	48.44	74.00	-25.56	Vertical	Peak	
2500.00	12.60	27.20	6.84	0.00	46.64	74.00	-27.36	Vertical	Peak	
2483.57	14.35	27.26	6.83	0.00	48.44	74.00	-25.56	Horizontal	Peak	
2500.00	13.74	27.20	6.84	0.00	47.78	74.00	-26.22	Horizontal	Peak	
2483.49	10.71	27.26	6.83	0.00	44.80	54.00	-9.20	Vertical	Average	
2500.00	10.68	27.20	6.84	0.00	44.72	54.00	-9.28	Vertical	Average	
2483.49	10.78	27.26	6.83	0.00	44.87	54.00	-9.13	Horizontal	Average	
2500.00	10.69	27.20	6.84	0.00	44.73	54.00	-9.27	Horizontal	Average	

802.11g					CH01					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value	
2310.00	13.78	28.05	6.62	0.00	48.45	74.00	-25.55	Vertical	Peak	
2390.01	14.02	27.65	6.75	0.00	48.42	74.00	-25.58	Vertical	Peak	
2310.00	13.74	28.05	6.62	0.00	48.41	74.00	-25.59	Horizontal	Peak	
2390.01	14.63	27.65	6.75	0.00	49.03	74.00	-24.97	Horizontal	Peak	
2310.00	11.12	28.05	6.62	0.00	45.79	54.00	-8.21	Vertical	Average	
2390.01	11.36	27.65	6.75	0.00	45.76	54.00	-8.24	Vertical	Average	
2310.00	11.12	28.05	6.62	0.00	45.79	54.00	-8.21	Horizontal	Average	
2390.01	11.12	27.65	6.75	0.00	45.52	54.00	-8.48	Horizontal	Average	

802.11g					CH11					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value	
2483.57	15.33	27.26	6.83	0.00	49.42	74.00	-24.58	Vertical	Peak	
2499.96	15.79	27.20	6.84	0.00	49.83	74.00	-24.17	Vertical	Peak	
2483.57	15.15	27.26	6.83	0.00	49.24	74.00	-24.76	Horizontal	Peak	
2500.00	13.53	27.20	6.84	0.00	47.57	74.00	-26.43	Horizontal	Peak	
2483.49	11.26	27.26	6.83	0.00	45.35	54.00	-8.65	Vertical	Average	
2500.00	10.70	27.20	6.84	0.00	44.74	54.00	-9.26	Vertical	Average	
2483.49	12.38	27.26	6.83	0.00	46.47	54.00	-7.53	Horizontal	Average	
2500.00	10.70	27.20	6.84	0.00	44.74	54.00	-9.26	Horizontal	Average	

802.11n(HT	20)				CH01					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value	
2310.00	14.40	28.05	6.62	0.00	49.07	74.00	-24.93	Vertical	Peak	
2389.90	14.80	27.65	6.75	0.00	49.20	74.00	-24.80	Vertical	Peak	
2310.00	13.27	28.05	6.62	0.00	47.94	74.00	-26.06	Horizontal	Peak	
2390.01	13.11	27.65	6.75	0.00	47.51	74.00	-26.49	Horizontal	Peak	
2310.00	11.08	28.05	6.62	0.00	45.75	54.00	-8.25	Vertical	Average	
2390.01	11.05	27.65	6.75	0.00	45.45	54.00	-8.55	Vertical	Average	
2310.00	11.09	28.05	6.62	0.00	45.76	54.00	-8.24	Horizontal	Average	
2390.01	11.07	27.65	6.75	0.00	45.47	54.00	-8.53	Horizontal	Average	


802.11n(HT	20)				CH11					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value	
2483.53	14.87	27.26	6.83	0.00	48.96	74.00	-25.04	Vertical	Peak	
2500.00	13.22	27.20	6.84	0.00	47.26	74.00	-26.74	Vertical	Peak	
2483.57	15.59	27.26	6.83	0.00	49.68	74.00	-24.32	Horizontal	Peak	
2500.00	14.12	27.20	6.84	0.00	48.16	74.00	-25.84	Horizontal	Peak	
2483.49	12.50	27.26	6.83	0.00	46.59	54.00	-7.41	Vertical	Average	
2500.00	10.62	27.20	6.84	0.00	44.66	54.00	-9.34	Vertical	Average	
2483.49	11.79	27.26	6.83	0.00	45.88	54.00	-8.12	Horizontal	Average	
2500.00	10.68	27.20	6.84	0.00	44.72	54.00	-9.28	Horizontal	Average	

5.7. Band edge and Spurious Emissions (conducted)

FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Establish a reference level by using the following procedure

Center frequency=DTS channel center frequency The span = 1.5 times the DTS bandwidth. RBW = 100 kHz, VBW ≥ 3 x RBW Detector = peak, Sweep time = auto couple, Trace mode = max hold Allow trace to fully stabilize Use the peak marker function to determine the maximum PSD level

Note: the channel found to contain the maximum PSD level can be used to establish the reference level. Emission level measurement

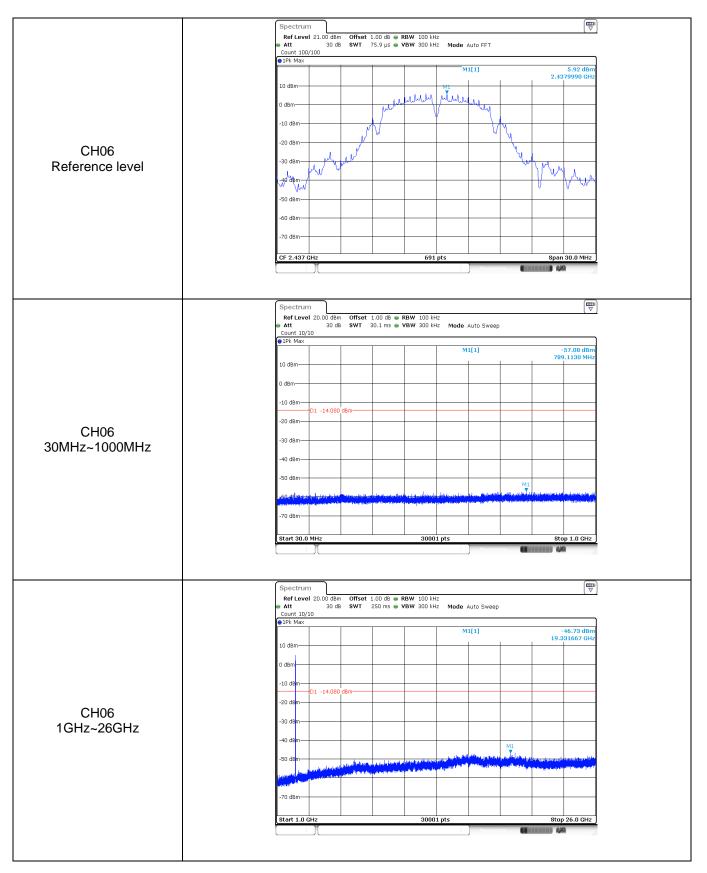
 Emission level measurement Set the center frequency and span to encompass frequency range to be measured RBW = 100 kHz, VBW ≥ 3 x RBW Detector = peak, Sweep time = auto couple, Trace mode = max hold Allow trace to fully stabilize Use the peak marker function to determine the maximum amplitude level.
 Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmit

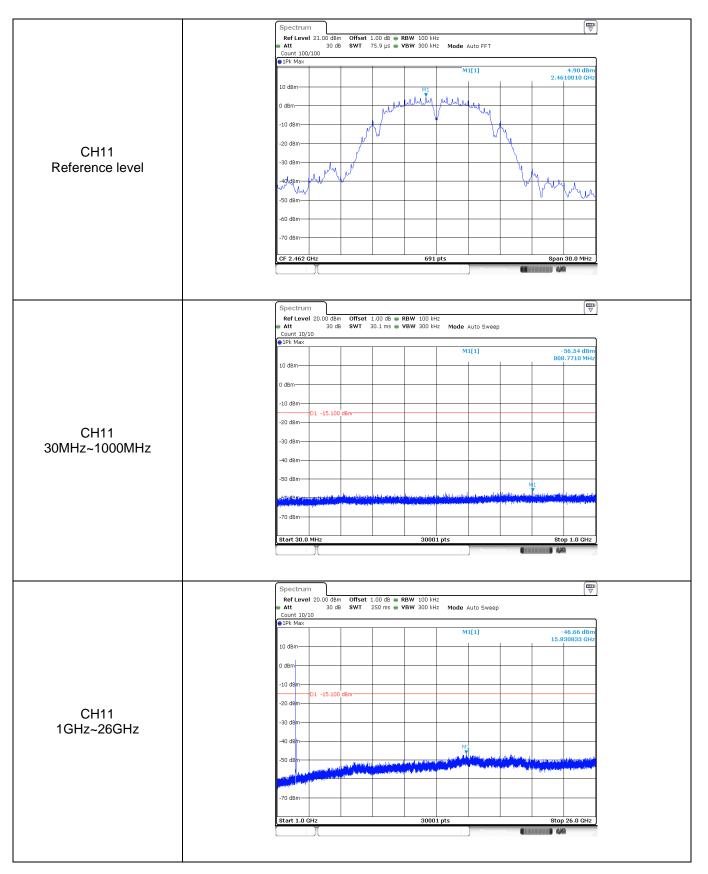
- 4. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- Ensure that the amplitude of all unwanted emission outside of the authorized frequency band excluding restricted frequency bands) are attenuated by at least the minimum requirements specified (at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz). Report the three highest emission relative to the limit.

TEST MODE:

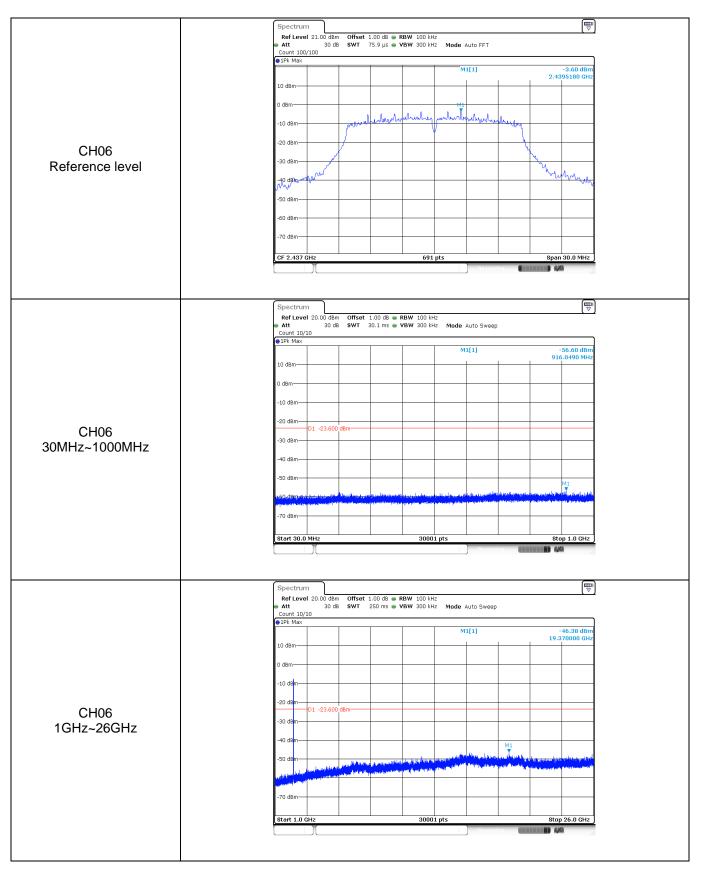
Please refer to the clause 3.3

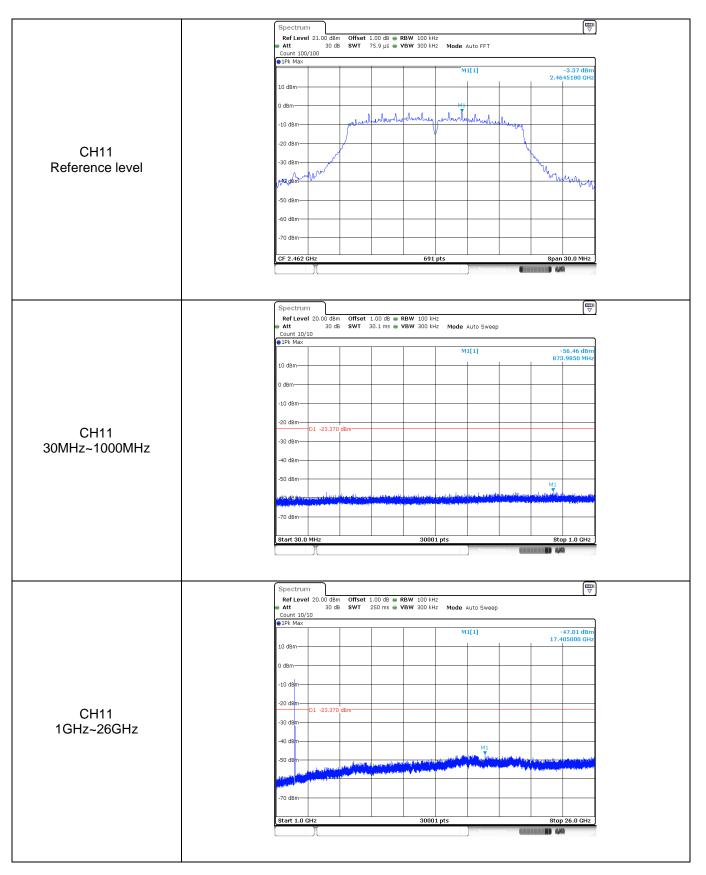
TEST RESULTS

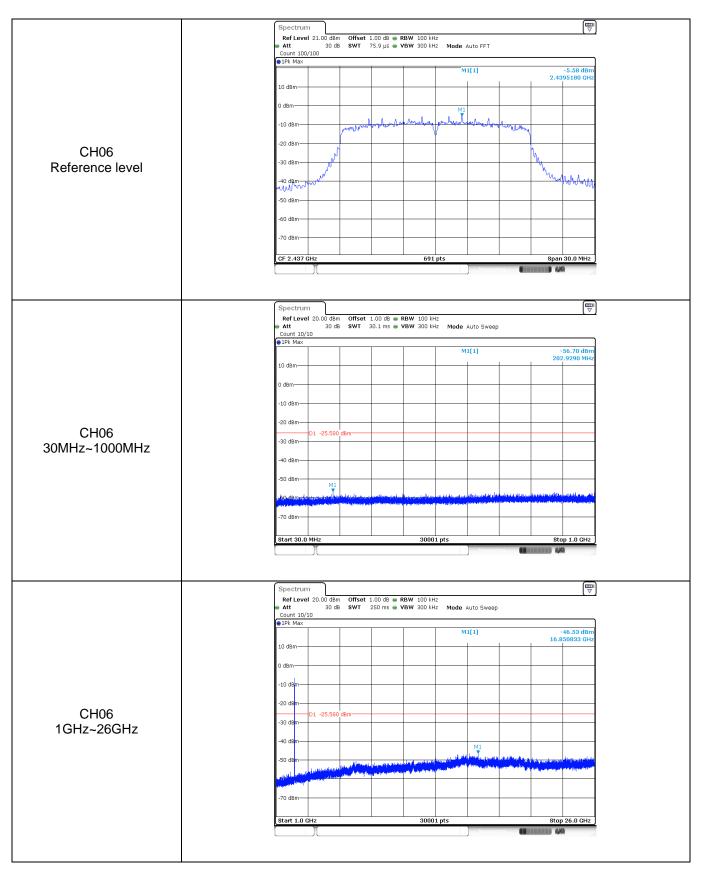

☑ Passed □ Not Applicable

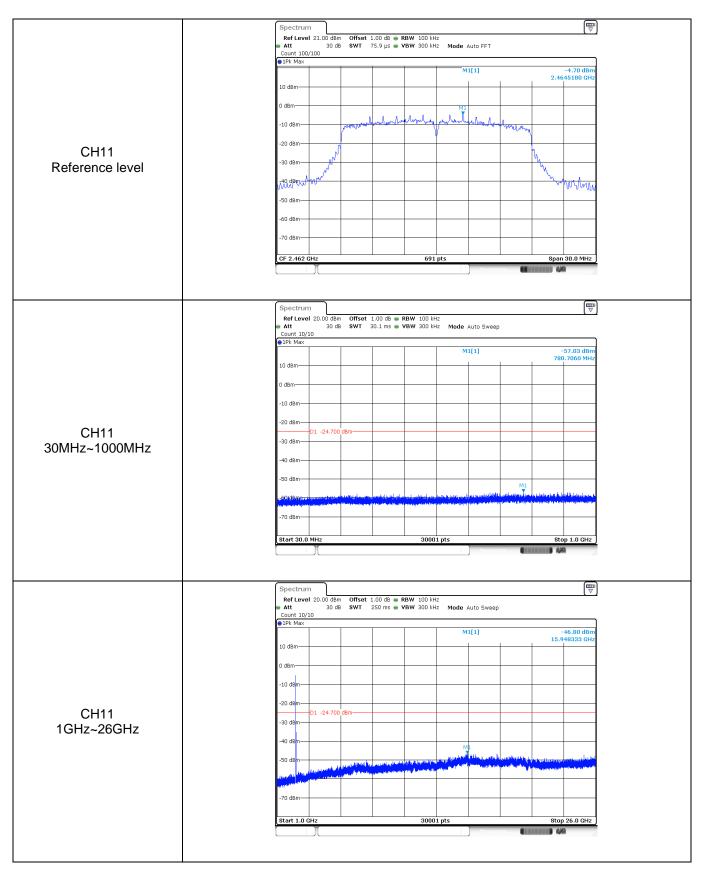

Test Item:	Bandedge	Туре	:	802.11 b
	👄 Att	vel 20.00 dBm Offset 1.00 d	B ● RBW 100 kHz S ● VBW 300 kHz Mode Auto FFT	
	● JPK M 10 dBm 0 dBm-		M1[1] M2[1]	5.95 dBm 2.41,900 GHz 53,723 dBm 240000 GHz
	-10 dBn -20 dBn -30 dBn	D1 -14.050 dBm		MS 12/04
CH01	-40 dBn -50 dBn 4 50 dBn -70 dBn -70 dBn		n an ge 20 an an de fait y littly and ge an	www.
	Marker	31 GHz Ref Trc X-value 1 2.413 GHz	691 pts Y-value Function 5.95 dBm	Stop 2.422 GHz
	(1) M2 M3 M4 M5	1 2.413 GHz 1 2.44 GHz 1 2.39 GHz 1 2.31 GHz 1 2.397977 GHz	-39.23 dBm -55.31 dBm -59.40 dBm	
	Spect Ref L	vel 20.00 dBm Offset 1.00 c	B ● RBW 100 kHz s ● VBW 300 kHz Mode Auto FFT	
		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	M1[1]	4.87 dBm 2.4609960 GHz
	0 dBm-	101 -15.130 dBm	M2[1]	-55.38 dBm 2.4835000 GHz
CH11	-20 da) -30 dan -40 dan		Monthe	
	-50 dBn -60 dBn -70 dBn			Murray marganet and the
	Marker <u>Type</u> M1	A52 GHz Ref Trc X-value 1 2.460996 GHz		Stop 2.5 GHz Function Result
	M2 M3 M4	1 2.4835 GHz 1 2.5 GHz 1 2.483513 GHz	-59.19 dBm	

est Item:	Bandedge		Туре:				8	802.1	1 g
	Ref State		et 1.00 dB 👄 Г 246.5 µs 👄			o FFT			
	• 19k 10 d8 0 d8n	Max			M1[1] M2[1]				-4.01 dBm +14460 GHz -41.50 dBm 400000 GHz
CH01	-10 d -20 d -30 d	Bm					MM	15/	
	-50 di *260 di -70 di	Bhrunna dan barana para	and a second and a s	691 pt	ung tatalan an a	m3	www.	Ston	2.422 GHz
	Marke	er Ref Trc X-v 1 1 2 1 2 3 1 4 1	alue .41446 GHz 2.4 GHz 2.39 GHz 2.31 GHz 399925 GHz	Y-value -4.01 dBm -41.50 dBm -56.21 dBm -59.40 dBm -39.83 dBm	Function	Measuring.		tion Result	t
	Ref Att Cour	30 dB SW 1 ht 300/300	et 1.00 dB 👄 F 113.8 µs 👄			o FFT			
	●1Pk 10 dB 0 dBn -10 dB	m M	1 Including for 1		M1[1] M2[1]				-3.58 dBm 544690 GHz -53.18 dBm 835000 GHz
CH11	-10 a -20 d -40 d	BmD1 -23.580 dBm		W. W. W. W. W.	M. Marine				
	-50 di -60 di -70 di	8m			· · ···,	MS	Monney	un julianse	- Unit may
	Marke	e Ref Trc X-v 1 1 2.4	alue 164469 GHz 2.4835 GHz	691 pt Y-value -3.58 dBm -53.18 dBm	Function		Func	Sto tion Result	op 2.5 GHz

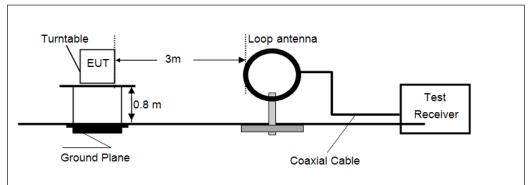

Test Item:	Bandedge	Туре:		802.11 n(HT20)
	Spectrum Ref Level Att Count 300/3	30 dB SWT 246.5 µs 👄	RBW 100 kHz VBW 300 kHz Mode Auto FFT	(₩)
CH01	0 dBm 0 dBm -10 dBm		M1[1]	-5.95 dBm 2.414460 GHz -43.73 dBm 2.400000 GHz
	-20 dBm	1 -25.950 dBm	المحتمد والمحتمد والمحتم	
	-70 dBm Start 2.31 G Marker Type Ref		691 pts Y-value Function	Stop 2.422 GHz
	M1 M2 M3 M4 M5	1 2.41446 GHz 1 2.4 GHz 1 2.4 GHz 1 2.30 GHz 1 2.399925 GHz	-5.95 dBm -43.73 dBm -56.29 dBm -58.96 dBm -41.96 dBm	
CH11	Att Count_300/3	20.00 dBm Offset 1.00 dB 30 dB SWT 113.8 μs 00	RBW 100 kHz VBW 300 kHz Mode Auto FFT	
	• 1Pk Max 10 dBm 0 dBm	mi numina i co	M1[1] M2[1]	-4.79 dBm 2.4607180 GHz -52.40 dBm 2.4835000 GHz
	7-30 dBm	1 -24.790 dBm		
	-40 dBm		White Marken	munder and the second and
	Start 2.452 Marker Type Ref M1 M2	Trc X-value 1 2.460718 GHz 1 2.4835 GHz	691 pts Y-value Function -4.79 dbm -52.40 dbm	Stop 2.5 GHz Function Result
	M3 M4	1 2.5 GHz 1 2.483513 GHz	-59.14 dBm -52.40 dBm	


Fest Item:	SE	Туре:	802.11 b
	Spectrum Ref Level • Att Count 100/ • IPK Max 10 dBm	21.00 dBm Offset 1.00 dB	5.97 dBm 2.4129990 GHz
CH01 Reference level	0 dBm	A Market A M	Wir wir
	-50 dBm -60 dBm -70 dBm -70 dBm	Hz 691 pts	Span 30.0 MHz
	Spectrum Ref Level	20.00 dBm Offset 1.00 dB @ RBW 100 kHz	
CH01 30MHz~1000MHz	● Att Count 10/1 ●1Pk Max	30 dB SWT 30.1 ms 🖷 VBW 300 kHz Mode Auto Sweep	-56.33 dBm 925.9750 MHz
	10 dBm		
	-10 dBm	D1 -14.030 dBm	
	-40 dBm		M1
	-70 dBm		
	Start 30.0	ИН2 30001 pts	Stop 1.0 GHz
CH01 1GHz~26GHz	👄 Att	20.00 dBm Offset 1.00 dB ● RBW 100 kHz 30 dB SWT 250 ms ● VBW 300 kHz Mode Auto Sweep	(m) V
	Count 10/1 ●1Pk Max	M1[1]	-47.25 dBm 16.767500 GHz
	10 dBm		
	-20 dBm	D1 -14.030 d8m	
	-30 dBm	M1	
	-70 dBm		
	Start 1.0 G	4z 30001 pts	Stop 26.0 GHz

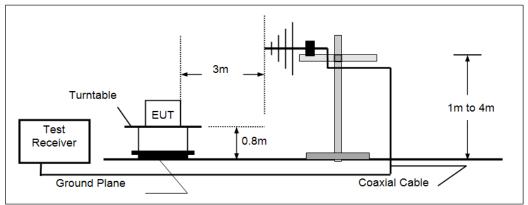



Test Item:	SE	Туре:	802.11 g
CH01 Reference level		Spectrum Ref Level 21.00 dBm Offset 1.00 dB = RBW 100 KHz Att 30 dB SWT 75.9 µs OTHER Mail Out 100/100 Mail Index Mail OdBm Mail Index	-4.08 dBm 2.4145180 GHz
CH01 30MHz~1000MHz		Spectrum Ref Level 20.00 dBm Offset 1.00 dB RBW 100 kHz Mode Auto Sweep Att 30 dB SWT 30.1 ms VBW 300 kHz Mode Auto Sweep Count 10/10 IPK Max MI[1] ID MI[1] ID dBm ID ID ID ID dBm ID ID dBm ID ID ID dBm ID ID dBm ID ID ID ID dBm ID ID	
CH01 1GHz~26GHz		Spectrum Ref Level 20.00 dbm Offset 1.00 db @ RBW 100 kHz Att 30 db @ SWT 250 ms VBW 300 kHz Mode Auto Sweep Count 10/10 IPk Max M1[1] Mode Auto Sweep M1[1] 10 dBm	

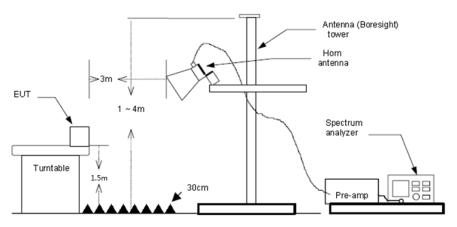
est Item:	SE	Туре:	802.11 n(HT20)
		Spectrum Ref Level 21.00 dBm Offset 1.00 dB RBW 100 kHz	
		Att 30 dB SWT 75.9 µs VBW 300 kHz Mode Auto FFT Count 100/100	
		PIPk Max M1[1]	-6.13 dBm
		10 dBm	2.4145180 GHz
		0 dBm	
		-10 dBm	home have
		-20 dBm	
CH01		-30 dBm	Nu.
Reference level		-40 dBm	
		-50 dBm	white
		-60 dBm	
		-70 dBm	
		GF 2.412 GHz 691 pts	Span 30.0 MHz
			- ////
		Spectrum	
		RefLevel 20.00 dBm Offset 1.00 dB RBW 100 kHz Att 30 dB SWT 30.1 ms VBW 300 kHz Mode Auto Sweep	[\]
		Count 10/10 PIPK Max]
		M1[1]	-56.19 dBm 664.2130 MHz
		10 dBm	
		0 dBm	
		-10 dBm	
CH01		-20 dBm	
30MHz~1000MHz		-30 dBm	
		-40 dBm	
		-50 dBm	
			a han di yana maran yana kanan di sana di sana di sana sa kanan sa kanan sa kanan sa kanan sa kanan sa kanan s Manan kanan sanan sa kanan sa k
		-70 dBm-	
		Start 30.0 MHz 30001 pts	Stop 1.0 GHz
		Measurin	a (111111) 499
		Spectrum	$\left[\begin{array}{c} \blacksquare \\ \bigtriangledown \end{array} \right]$
		Ref Level 20.00 dBm Offset 1.00 dB RBW 100 kHz Att 30 dB SWT 250 ms VBW 300 kHz Mode Auto Sweep Count 10/10 20 ms VBW 300 kHz Mode Auto Sweep	
		Our to to Max M1[1]	-47.13 dBm
		10 dBm	16.194167 GHz
		0 dBm	
		-10 dBm	
		-20 dgm	
CH01		-20 dBm	
1GHz~26GHz			
		-40 dēm	
			hand hand had been a second and the second se
		Contraction of the Contraction o	
		-70 dBm	
		Start 1.0 GHz 30001 pts	Stop 26.0 GHz
			···· · · · · · · · · · · · · · · · · ·


5.8. Spurious Emissions (radiated)

FCC CFR Title 47 Part 15 Subpart C Section 15.209


Frequency	Limit (dBuV/m @3m)	Value
30MHz-88MHz	40.00	Quasi-peak
88MHz-216MHz	43.50	Quasi-peak
216MHz-960MHz	46.00	Quasi-peak
960MHz-1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
	74.00	Peak

TEST CONFIGURATION


> 9kHz ~30MHz

> 30MHz ~ 1GHz

Above 1GHz

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:
 - RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
 - (3) From 1 GHz to 10th harmonic: RBW=1MHz, VBW=3MHz Peak detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE:

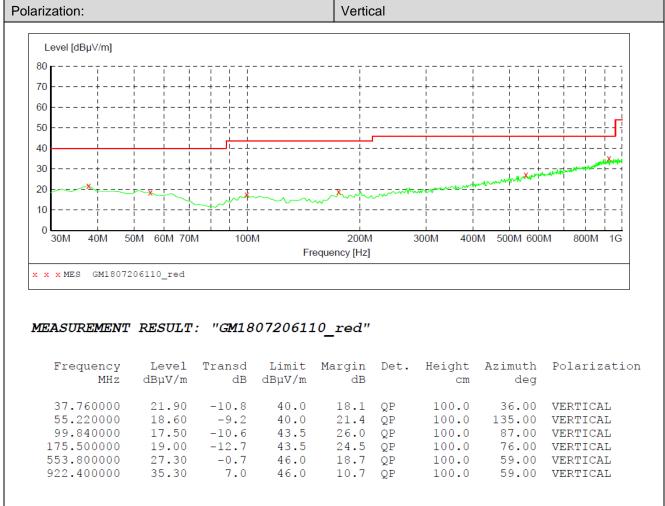
Please refer to the clause 3.3

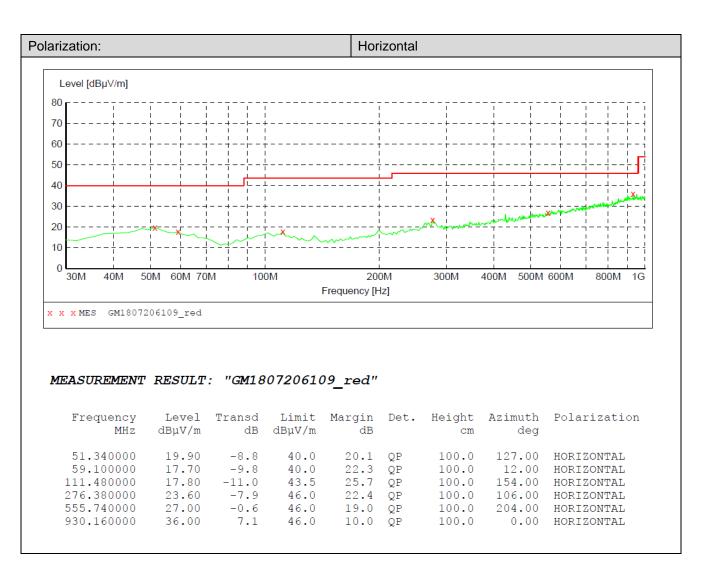
TEST RESULTS

☑ Passed □ Not Applicable

Note:

- 1) Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2) The emission levels of other frequencies are very lower than the limit and not show in test report.


➢ 9kHz ~ 30MHz


The EUT was pre-scanned the frequency band (9kHz~30MHz), found the radiated level lower than the limit, so don't show on the report.

➢ 30MHz ~1000MHz

Have pre-scan all modulation mode, found the 802.11b mode CH01 which it was worst case, so only the worst case's data on the test report.

> 30MHz ~ 1GHz

1 GHz ~ 25 GHz

802.11b					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1273.57	36.40	26.23	4.79	37.18	30.24	74.00	-43.76	Vertical	Peak
3200.50	35.73	28.80	7.72	37.40	34.85	74.00	-39.15	Vertical	Peak
4076.07	35.69	29.85	8.84	36.68	37.70	74.00	-36.30	Vertical	Peak
4821.76	35.16	31.56	9.55	35.69	40.58	74.00	-33.42	Vertical	Peak
1192.01	38.00	26.24	4.64	37.23	31.65	74.00	-42.35	Horizontal	Peak
3672.11	35.99	29.30	8.35	37.00	36.64	74.00	-37.36	Horizontal	Peak
4821.76	34.96	31.56	9.55	35.69	40.38	74.00	-33.62	Horizontal	Peak
6903.71	33.02	34.72	11.73	33.83	45.64	74.00	-28.36	Horizontal	Peak

802.11b					CH06				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/ m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
3018.50	35.03	28.64	7.50	37.56	33.61	74.00	-40.39	Vertical	Peak
3709.69	34.47	29.33	8.40	36.97	35.23	74.00	-38.77	Vertical	Peak
4332.85	33.82	30.30	9.07	36.44	36.75	74.00	-37.25	Vertical	Peak
7470.56	31.91	36.16	12.30	33.07	47.30	74.00	-26.70	Vertical	Peak
1711.05	35.97	25.22	5.79	37.31	29.67	74.00	-44.33	Horizontal	Peak
3681.47	35.57	29.30	8.36	37.00	36.23	74.00	-37.77	Horizontal	Peak
4871.10	34.09	31.46	9.59	35.61	39.53	74.00	-34.47	Horizontal	Peak
7319.96	32.81	36.30	11.99	33.32	47.78	74.00	-26.22	Horizontal	Peak

802.11b					CH11					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value	
1634.42	37.42	25.01	5.64	37.23	30.84	74.00	-43.16	Vertical	Peak	
3570.71	36.70	29.21	8.22	37.08	37.05	74.00	-36.95	Vertical	Peak	
4983.99	33.51	31.48	9.66	35.41	39.24	74.00	-34.76	Vertical	Peak	
7376.08	31.78	36.30	12.04	33.23	46.89	74.00	-27.11	Vertical	Peak	
1549.34	36.75	25.35	5.43	37.13	30.40	74.00	-43.60	Horizontal	Peak	
3883.62	34.72	29.68	8.62	36.84	36.18	74.00	-37.82	Horizontal	Peak	
5448.41	32.35	31.69	10.16	34.51	39.69	74.00	-34.31	Horizontal	Peak	
7394.88	33.15	36.30	12.06	33.20	48.31	74.00	-25.69	Horizontal	Peak	

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.

3. The emission levels of other frequencies(test frequency band is 1GHz to 25GHz) are very lower than the limit and not show in test report.

802.11g					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
3719.15	35.38	29.36	8.41	36.97	36.18	74.00	-37.82	Vertical	Peak
4223.95	35.63	30.05	8.96	36.54	38.10	74.00	-35.90	Vertical	Peak
6662.01	31.81	34.20	11.43	33.71	43.73	74.00	-30.27	Vertical	Peak
7413.73	32.42	36.27	12.11	33.16	47.64	74.00	-26.36	Vertical	Peak
1668.04	36.60	25.11	5.70	37.27	30.14	74.00	-43.86	Horizontal	Peak
3112.13	36.47	28.80	7.61	37.48	35.40	74.00	-38.60	Horizontal	Peak
4724.56	32.89	31.30	9.51	35.87	37.83	74.00	-36.17	Horizontal	Peak
6594.52	32.11	34.19	11.35	33.67	43.98	74.00	-30.02	Horizontal	Peak

802.11g					CH06				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1219.64	36.41	26.28	4.69	37.21	30.17	74.00	-43.83	Vertical	Peak
3507.65	35.01	29.02	8.13	37.13	35.03	74.00	-38.97	Vertical	Peak
5546.36	32.33	31.85	10.23	34.39	40.02	74.00	-33.98	Vertical	Peak
7301.36	32.10	36.30	11.97	33.35	47.02	74.00	-26.98	Vertical	Peak
3057.17	36.43	28.72	7.55	37.53	35.17	74.00	-38.83	Horizontal	Peak
5546.36	32.02	31.85	10.23	34.39	39.71	74.00	-34.29	Horizontal	Peak
6527.71	32.26	34.06	11.23	33.63	43.92	74.00	-30.08	Horizontal	Peak
7981.72	31.68	37.03	12.39	33.07	48.03	74.00	-25.97	Horizontal	Peak

802.11g					CH11					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value	
3010.83	36.51	28.62	7.49	37.57	35.05	74.00	-38.95	Vertical	Peak	
5099.49	32.85	31.90	9.75	35.18	39.32	74.00	-34.68	Vertical	Peak	
5806.41	33.37	32.11	10.59	34.25	41.82	74.00	-32.18	Vertical	Peak	
6594.52	32.79	34.19	11.35	33.67	44.66	74.00	-29.34	Vertical	Peak	
1689.41	36.31	25.17	5.74	37.29	29.93	74.00	-44.07	Horizontal	Peak	
3184.25	36.22	28.80	7.70	37.41	35.31	74.00	-38.69	Horizontal	Peak	
5060.69	32.83	31.74	9.72	35.26	39.03	74.00	-34.97	Horizontal	Peak	
6886.15	32.14	34.60	11.71	33.82	44.63	74.00	-29.37	Horizontal	Peak	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies(test frequency band is 1GHz to 25GHz) are very lower than the limit and not show in test report.

802.11n(HT	20)				CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1188.98	36.88	26.22	4.64	37.23	30.51	74.00	-43.49	Vertical	Peak
1728.56	36.21	25.26	5.82	37.33	29.96	74.00	-44.04	Vertical	Peak
3709.69	35.29	29.33	8.40	36.97	36.05	74.00	-37.95	Vertical	Peak
6267.19	31.63	33.03	11.00	33.86	41.80	74.00	-32.20	Vertical	Peak
1741.81	35.75	25.29	5.85	37.35	29.54	74.00	-44.46	Horizontal	Peak
3160.03	35.32	28.80	7.67	37.43	34.36	74.00	-39.64	Horizontal	Peak
4821.76	32.81	31.56	9.55	35.69	38.23	74.00	-35.77	Horizontal	Peak
6561.03	31.85	34.12	11.29	33.65	43.61	74.00	-30.39	Horizontal	Peak

802.11n(HT	20)				CH06					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value	
1182.94	36.05	26.17	4.62	37.23	29.61	74.00	-44.39	Vertical	Peak	
3579.82	34.84	29.24	8.24	37.08	35.24	74.00	-38.76	Vertical	Peak	
5448.41	31.25	31.69	10.16	34.51	38.59	74.00	-35.41	Vertical	Peak	
6662.01	31.21	34.20	11.43	33.71	43.13	74.00	-30.87	Vertical	Peak	
1216.53	37.19	26.28	4.69	37.21	30.95	74.00	-43.05	Horizontal	Peak	
4065.71	34.56	29.83	8.83	36.69	36.53	74.00	-37.47	Horizontal	Peak	
5490.18	33.25	31.86	10.19	34.44	40.86	74.00	-33.14	Horizontal	Peak	
6851.19	33.24	34.36	11.66	33.80	45.46	74.00	-28.54	Horizontal	Peak	

802.11n(HT	20)				CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1244.73	38.16	26.25	4.74	37.20	31.95	74.00	-42.05	Vertical	Peak
3607.26	35.23	29.30	8.28	37.05	35.76	74.00	-38.24	Vertical	Peak
5271.06	33.41	31.36	9.94	34.85	39.86	74.00	-34.14	Vertical	Peak
7547.01	31.40	36.15	12.55	33.02	47.08	74.00	-26.92	Vertical	Peak
1502.73	35.82	25.77	5.29	37.07	29.81	74.00	-44.19	Horizontal	Peak
3041.64	36.51	28.68	7.53	37.54	35.18	74.00	-38.82	Horizontal	Peak
3863.90	34.52	29.66	8.59	36.86	35.91	74.00	-38.09	Horizontal	Peak
6494.56	31.96	33.96	11.16	33.63	43.45	74.00	-30.55	Horizontal	Peak

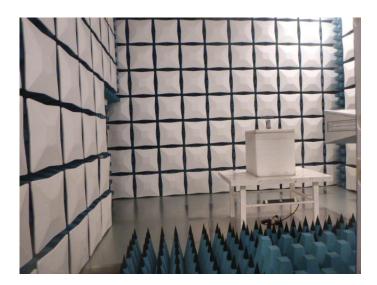
Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.

3. The emission levels of other frequencies(test frequency band is 1GHz to 25GHz) are very lower than the limit and not show in test report.

6. TEST SETUP PHOTOS


Conducted Emissions (AC Mains)

Radiated Emissions

7. EXTERANAL AND INTERNAL PHOTOS

Reference to the test report No.: TRE1807009501.

-----End of Report------