

wai Chung, N HK Limited 14/F Block 1, wai Chung, N Phone	Golden Indust lew Territories Golden Indust lew Territories	trial Building, 16-26 Kwai Tał
e HK Limited 14/F Block 1, wai Chung, N HK Limited 14/F Block 1, wai Chung, N Phone R Title 47 Pa 018	lew Territories Golden Indust lew Territories	s, Hong Kong trial Building, 16-26 Kwai Tał s, Hong Kong
I4/F Block 1, wai Chung, N HK Limited I4/F Block 1, wai Chung, N Phone R Title 47 Pa 018	lew Territories Golden Indust lew Territories	s, Hong Kong trial Building, 16-26 Kwai Tał s, Hong Kong
wai Chung, N HK Limited 14/F Block 1, wai Chung, N Phone R Title 47 Pa 018 018-Jul 24,20	lew Territories Golden Indust lew Territories	s, Hong Kong trial Building, 16-26 Kwai Tał s, Hong Kong
Advector Adv	lew Territories	s, Hong Kong
wai Chung, N Phone R Title 47 Pa 018 018-Jul 24,20	lew Territories	s, Hong Kong
R Title 47 Pa 018 018-Jul 24,20		C Section 15.247
)18)18-Jul 24,20		C Section 15.247
)18)18-Jul 24,20		C Section 15.247
)18)18-Jul 24,20		C Section 15.247
)18)18-Jul 24,20		C Section 15.247
)18-Jul 24,20 ⁻	18	
	18	
)18		
inistrators Silv	<i>v</i> ia Li	Silvia Li
ingineer Aaro	n Fang	Aaron.Fang
ager Hans Hu		Homsty
n Huatongw	ei Internatior	nal Inspection Co., Ltd.
	- , -	
J	3, Hongfa Hi	en Huatongwei Internatior 3, Hongfa Hi-tech Industria Gongming, Shenzhen, Chi

Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT configuration	6
3.5.	Modifications	6
<u>4.</u>	TEST ENVIRONMENT	7_
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Environmental conditions	8
4.4.	Statement of the measurement uncertainty	8
4.5.	Equipments Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
5.1.	Antenna requirement	11
5.2.	Conducted Emissions (AC Main)	12
5.3.	Conducted Peak Output Power	15
5.4.	Power Spectral Density	16
5.5.	6dB bandwidth	20
5.6.	Restricted band	24
5.7.	Band edge and Spurious Emissions (conducted)	28
5.8.	Spurious Emissions (radiated)	41
<u>6.</u>	TEST SETUP PHOTOS	47
<u>7.</u>	EXTERANAL AND INTERNAL PHOTOS	48

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10:2013: American National Standard forTesting Unlicensed Wireless Devices

<u>KDB 558074 D01 DTS Meas Guidance v04:</u> Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating under §15.247

1.2. Report version

Version No.	Date of issue	Description
N/A	2018-07-25	Original

2. TEST DESCRIPTION

Test Item	FCC Rule	Result	Test Engineer
Antenna requirement	15.203/15.247(c)	PASS	Xiaokang Tan
Line Conducted Emissions (AC Main)	15.207 PASS		Tony Duan
Conducted Peak Output Power	15.247(b)(3)	PASS	Xiaokang Tan
Power Spectral Density	15.247(e)	PASS	Xiaokang Tan
6dB Bandwidth	15.247(a)(2)	PASS	Xiaokang Tan
Restricted band	15.247(d)/15.205	PASS	Xiaokang Tan
Spurious Emissions	15.247(d)/15.209	PASS	Jiuru Pan

Note: The measurement uncertainty is not included in the test result.

3. <u>SUMMARY</u>

3.1. Client Information

Applicant:	b mobile HK Limited
Address:Flat 18, 14/F Block 1, Golden Industrial Building, 16-26 Kwai Tak Chung, New Territories, Hong Kong	
Manufacturer:	b mobile HK Limited
Address:	Flat 18, 14/F Block 1, Golden Industrial Building, 16-26 Kwai Tak Street, Kwai Chung, New Territories, Hong Kong

3.2. Product Description

•			
Name of EUT:	Mobile Phone		
Trade Mark:	Bmobile		
Model No.:	AX684		
Listed Model(s):	-		
IMEI:	Conducted: 358333068183519 Radiated: 358333068183493		
Power supply:	DC 3.7V		
Adapter information:	Input: 100-240Va.c., 50/60Hz, 0.15A Output: 5Vd.c., 500mA		
Hardware version:	WW871_MB_V2.1 or YX401P		
Software version:	Android 8.1		
WIFI			
Supported type:	802.11b/802.11g/802.11n(HT20)		
Modulation:	DSSS for 802.11b OFDM for 802.11g/802.11n(HT20)		
Operation frequency:	2412MHz~2462MHz		
Channel number:	11		
Channel separation:	5MHz		
Antenna type:	FPC Antenna		
Antenna gain:	1dBi		

3.3. Operation state

Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

802.11b/g/n(HT20)			
Channel Frequency (MHz)			
01	2412		
02	2417		
06	2437		
10	2457		
11	2462		

Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit (duty cycle>98%).

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated suprious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit(duty cycle>98%). The EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data Recorded in the report.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer

0	- supplied by the lab	

	1	Manufacturer:	/
0	/	Model No.:	/
		Manufacturer:	/
0	7	Model No.:	/

3.5. Modifications

No modifications were implemented to meet testing criteria.

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

4.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files.

IC-Registration No.:5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No.: 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors in calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd. quality system according to ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Here after the best measurement capability for Shenzhen Huatongwei International Inspection Co., Ltd. is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.39 dB	(1)
Radiated Emissions 30~1000MHz	4.24 dB	(1)
Radiated Emissions 1~18GHz	5.16 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)

 This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.5. Equipments Used during the Test

Condu	cted Emissions					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)
1	EMI Test Receiver	R&S	ESCI	101247	11/11/2017	11/10/2018
2	Artificial Mains	SCHWARZBECK	NNLK 8121	573	11/11/2017	11/10/2018
3	2-Line V- Network	R&S	ESH3-Z5	100049	11/11/2017	11/10/2018
4	Pulse Limiter	R&S	ESH3-Z2	101488	11/11/2017	11/10/2018
5	RF Connection Cable	HUBER+SUHNER	EF400	N/A	11/21/2017	11/20/2018
6	Test Software	R&S	ES-K1	N/A	N/A	N/A
Padiat	ed Emissions					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)
1	Semi- Anechoic Chamber	Albatross projects	SAC-3m-01	C11121	10/16/2016	10/15/2019
2	EMI Test Receiver	R&S	ESCI	100900	11/11/2017	11/10/2018
3	Loop Antenna	R&S	HFH2-Z2	100020	11/20/2017	11/19/2020
4	Ultra- Broadband Antenna	SCHWARZBECK	VULB9163	538	4/5/2017	4/4/2020
5	Horn Antenna	SCHWARZBECK	9120D	1011	3/27/2017	3/26/2020
6	Broadband Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170 472	3/27/2017	3/26/2020
7	Pre-amplifier	SCHWARZBECK	BBV 9743	9743-0022	10/18/2017	10/17/2018
8	Broadband Pre-amplifier	SCHWARZBECK	BBV 9718	9718-248	10/18/2017	10/17/2018
9	Spectrum Analyzer	R&S	FSP40	100597	11/11/2017	11/10/2018
10	RF Connection Cable	HUBER+SUHNE R	RE-7-FL	N/A	11/21/2017	11/20/2018
11	RF Connection Cable	HUBER+SUHNE R	RE-7-FH	N/A	11/21/2017	11/20/2018
12	Test Software	Audix	E3	N/A	N/A	N/A
13	Test Software	R&S	ES-K1	N/A	N/A	N/A
14	Turntable	Maturo Germany	TT2.0-1T	N/A	N/A	N/A
15	Antenna Mast	Maturo Germany	CAM-4.0-P-12	N/A	N/A	N/A

Shenzhen Huatongwei International Inspection Co., Ltd.

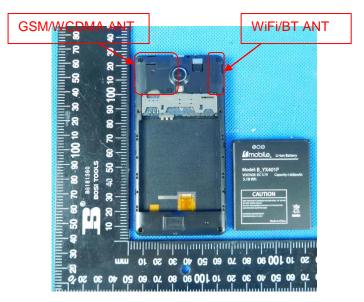
RF Con	ducted Test					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)
1	Spectrum Analyzer	R&S	FSV40	100048	11/11/2017	11/10/2018
2	EXA Signal Analyzer	Agilent	N9020A	184247	9/22/2017	9/21/2018
3	Power Meter	Anritsu	ML249A	N/A	9/22/2017	9/21/2018
4	OSP	R&S	OSP120	101317	N/A	N/A

5. TEST CONDITIONS AND RESULTS

5.1. Antenna requirement <u>REQUIREMENT:</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

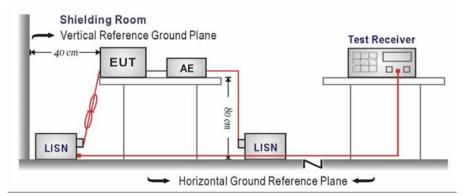
(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

TEST RESULTS

☑ Passed □ Not Applicable

The directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

5.2. Conducted Emissions (AC Main)


<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207:

	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

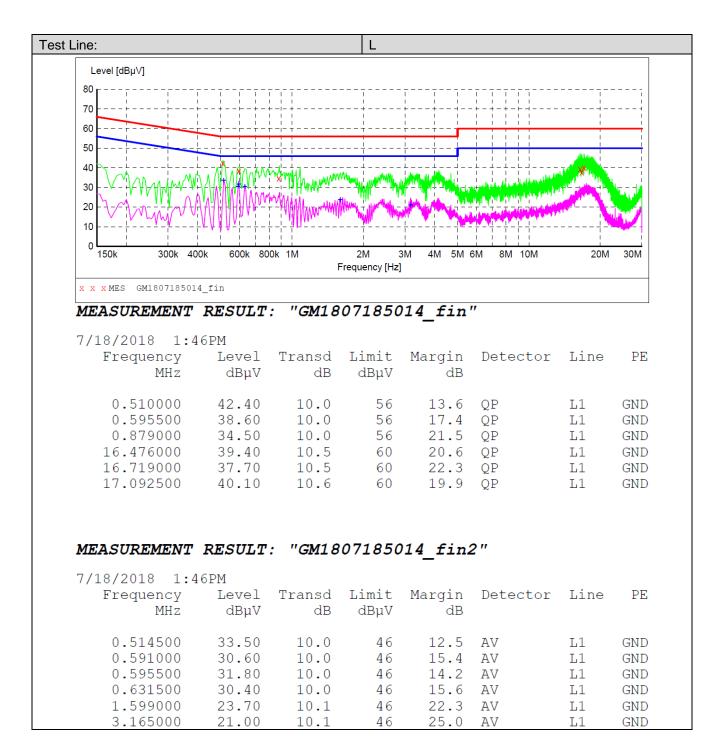
* Decreases with the logarithm of the frequency.

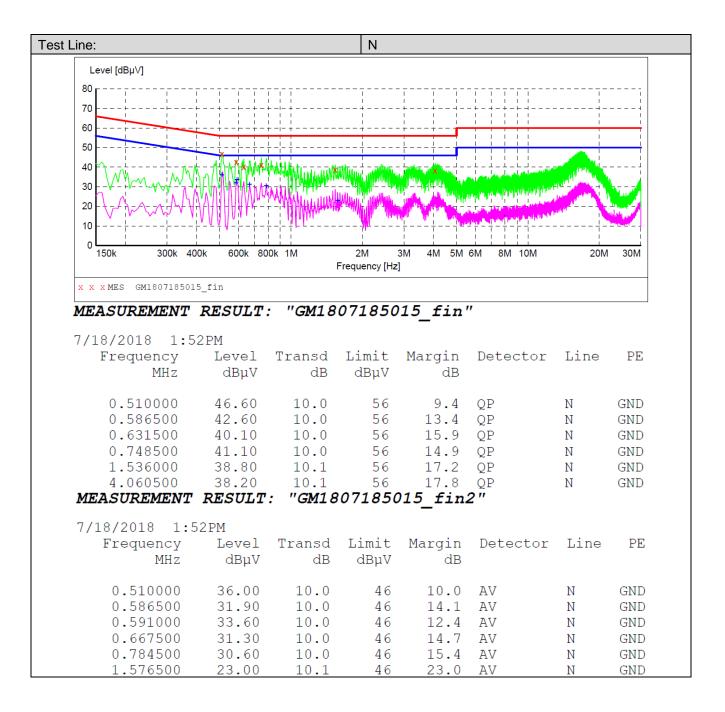
TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

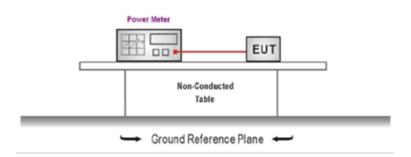

Please refer to the clause 3.3


TEST RESULTS

☑ Passed □ Not Applicable

Note:

- 1) Transd=Cable lose+ Pulse Limiter Factor + Artificial Mains Factor
- 2) Margin= Limit -Level



5.3. Conducted Peak Output Power LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): 30dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10: 2013 and KDB 558074 D01 for compliance to FCC 47 CFR 15.247 requirements.
- 2. The maximum peak conducted output power may be measured using a broadband peak RF power meter.
- 3. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector
- 4. Record the measurement data.

TEST MODE:

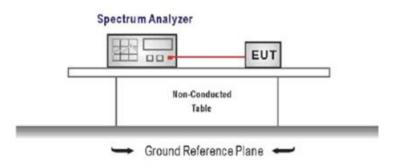
Please refer to the clause 3.3

TEST RESULTS

🛛 Passed

Not Applicable

Туре	Channel	Output power (dBm)	Limit (dBm)	Result	
	01	16.87			
802.11b	06	16.89	≤30.00	Pass	
	11	16.57			
	01	15.14			
802.11g	06	15.47	≤30.00	Pass	
	11	15.51			
	01	14.65			
802.11n(HT20)	06	14.98	≤30.00	Pass	
	11	14.81			


5.4. Power Spectral Density

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e):

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

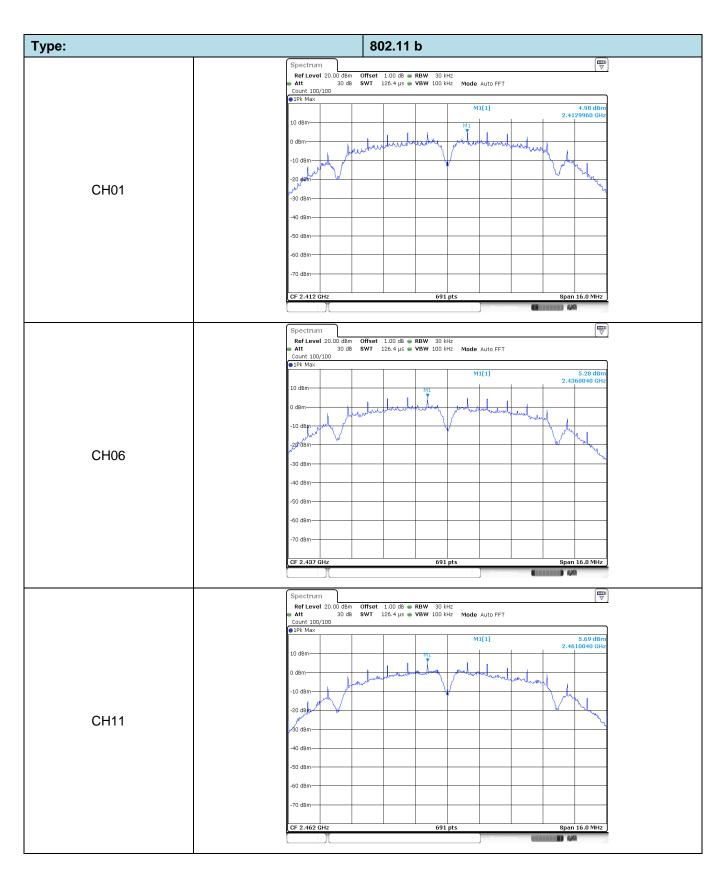
TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input,
- Configure the spectrum analyzer as shown below: Center frequency=DTS channel center frequency Span =1.5 times the DTS bandwidth RBW = 3 kHz ≤ RBW ≤ 100 kHz, VBW ≥ 3 × RBW Sweep time = auto couple Detector = peak Trace mode = max hold
- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 5. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST MODE:

Please refer to the clause 3.3


TEST RESULTS

☑ Passed □ Not Applicable

Туре	Channel	Power Spectral Density(dBm/3 0KHz)	Power Spectral Density(dBm/3 KHz)	Limit (dBm/3KHz)	Result	
802.11b	01	4.98	-5.02			
	06	5.28	-4.72	≤8.00	Pass	
	11	5.69	-4.31			
	01	-9.57	-19.57			
802.11g	06	-9.59	-19.59	≤8.00	Pass	
	11	-9.37	-19.37			
	01	-9.97	-19.97			
802.11n(HT20)	06	-9.92	-19.92	≤8.00	Pass	
	11	-9.38	-19.38			

PSD(3KHz RBW)= PSD(30KHz RBW)-10*log(30/3)= PSD(30KHz RBW)-10

Test plot as follows:

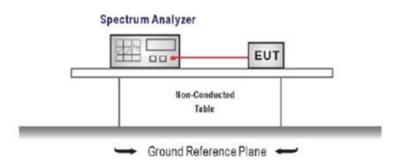
Туре:	802.11 g
	Spectrum Ref Level 20.00 dBm Offset 1.00 dB ● RBW 30 kHz ● Att 30 dB SWT 189.6 µs ● VBW 100 kHz Mode Auto FFT Count 100/100
	0 dBm
CH01	
	-50 dBm
	-70 dBm CF 2.412 GHz 691 pts Span 25.0 MHz
	Spectrum Image: Constraint of the sector of t
	Count 100/100 PIPk Max 10 dBm 10 dB
	0 dBm
CH06	-20 dBm
	-70 dBm
	Spectrum Image: Construction of the sector of
	Att 30 db SWI 199.0 jb VBW 100 kHz Miode Auto FFI Count 100/100 -9.37 dBm -9.37 dBm -9.37 dBm 2.463810 GHz 10 dBm - - - - -
	0 dBm
CH11	-20 dBm
	-50 dBm
	-70 dBm

Type: 802.11n(HT20) Spectrum
 Ref Level
 20.00 dBm
 Offset
 1.00 dB
 ■ RBW
 30 kHz

 Att
 30 dB
 SWT
 189.6 µs
 ■ VBW
 100 kHz
 Mode
 Auto FFT
 Count 100/100 M1[1] -9.97 dB 2.4182230 GF 10 dBm· 0 dBmmuniter mound would be and mound with the second -10 dBm -20 dBm CH01 30 dBn 40 dBm MAG , M. M ∮50 gBm -60 dBm 70 dBm· CF 2.412 G 691 pts Spar Spectrum
 Ref Level
 20.00 dBm
 Offset
 1.00 dB
 RBW
 30 kHz

 Att
 30 dB
 SWT
 189.6 µs
 VBW
 100 kHz
 Mode Auto FFT

 Count 100/100
 FPK Max
 SWT
 189.6 µs
 VBW
 100 kHz
 Mode Auto FFT
 M1[1] -9.92 dB 2.4357340 GF 10 dBm-0 dBm 1 manual and the solar market -10 dBm-Mary Mary Mary Mary Mary -20 dBm CH06 -30 dBm 40 dBmr • M Nph 50 dBm· -60 dBn 70 dBm CF 2.437 GH: 691 pts Span 25.0 MHz Spectrum • Att Count 100/100 • 1Pk Max M1[1] -9.38 dBr 2.4676080 GH 10 dBm-0 dBm--10 dBm--20 dBm-CH11 30 dBn make -40 dBm -50 dBm -60 dBm 70 dBm F 2.462 G 691 pts Spa III 48


5.5. 6dB bandwidth

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2):

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST CONFIGURATION

TEST PROCEDURE

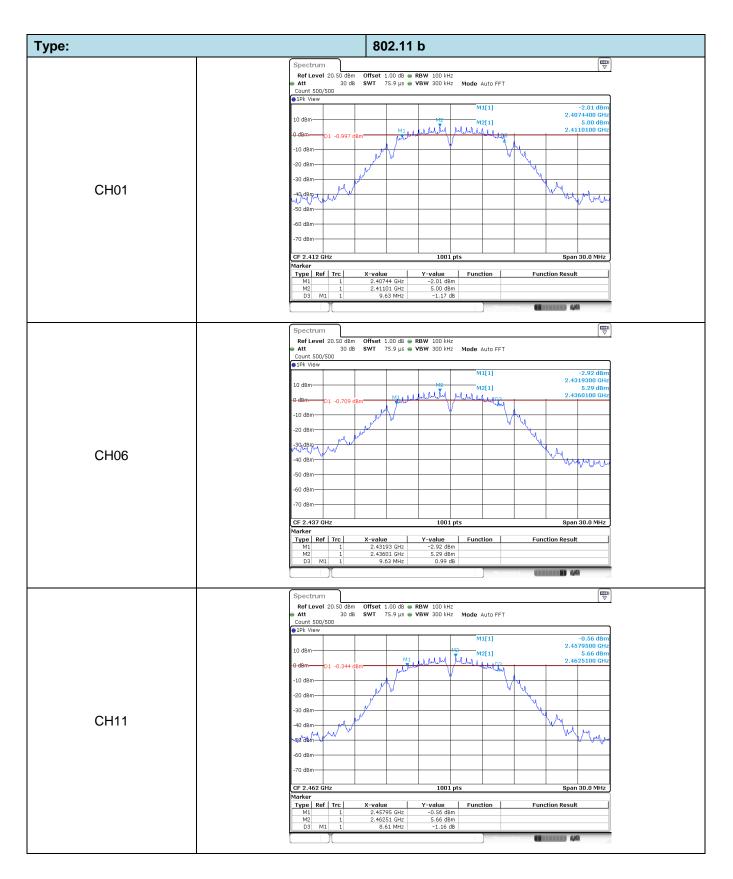
- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =DTS channel center frequency Span=2 x DTS bandwidth RBW = 100 kHz, VBW ≥ 3 × RBW Sweep time= auto couple Detector = Peak Trace mode = max hold

Not Applicable

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.

TEST MODE:


Passed

Please refer to the clause 3.3

TEST RESULTS

Туре	Channel	6dB Bandwidth (MHz)	Limit (kHz)	Result	
	01	9.63			
802.11b	06	9.63	≥500	Pass	
	11	8.61			
	01	16.41		Pass	
802.11g	06	16.41	≥500		
	11	16.38			
	01	17.64			
802.11n(HT20)	06 17.64		≥500 Pass		
	11	17.64			

Test plot as follows:

802.11 g Type: Spectrum
 Ref Level
 20.50 dBm
 Offset
 1.00 dB
 RBW
 100 kHz

 Att
 30 dB
 SWT
 75.9 μs
 VBW
 300 kHz
 Mode
 Auto FFT
 Count 500/500 -11.07 dB 2.4037800 Gł 10 dBm M2[1] -4.52 dB 2.4144900 GF 0 dBn J. M1 Λ. 10 dB -10.5: -20 dBn -30 dBn CH01 A 40 dBm--50 dBm -60 dBm -70 dBm CF 2.412 GHz Marker 1001 pts Span 30.0 MHz Type Ref Trc X-value 2.40378 GHz 2.41449 GHz 16.41 MHz Y-value -11.07 dBm -4.52 dBm 0.27 dB Function Function Result M2 D3 M1 ₽ Spectrum Ref Level 20.50 dBm Att 30 dB Count 500/500 Offset 1.00 dB ● RBW 100 kHz SWT 75.9 µs ● VBW 300 kHz Mode Auto FFT -10.96 dB M1[1] -10.96 dBr 2.4287800 GH -4.26 dBr 2.4394900 GH 10 dBm M2[1] 0 dBn L M1 В<mark>Точдоле</mark>ч 10 dBm 01 -10.26 -20 dBm -30 dBm unturner CH06 M 190 dBm -50 dBm -60 dBm 70 dBm CF 2.437 GH: 1001 pt Span 30.0 MHz Type Ref Trc X-value 2.42878 GHz 2.43949 GHz 16.41 MHz
 Y-value
 Function

 -10.96 dBm
 -4.26 dBm

 0.50 dB
 -4.26 dBm
 Function Result M1 M2 D3 M1 444 ₽ Spectrum
 Ref Level
 20.50 dBm
 Offset
 1.00 dB
 ●
 RBW
 100 kHz

 Att
 30 dB
 SWT
 75.9 μs
 ●
 VBW
 300 kHz
 Mode Auto FFT Count 500/500 M1[1] -10.13 dBr 2.4538100 GH 10 dBm-M2[1] -3.88 dBr 2.4644900 GH 0 dBm Aural μ, Annal. -10 dBm 9.885 -20 dBm--30 dBm m man 46786m CH11 -50 dBm· -60 dBm· -70 dBm-CF 2.462 GHz 1001 pts Span 30.0 MHz Marker Type Ref Trc X-value 2.45381 GHz 2.46449 GHz 16.38 MHz Y-value -10.13 dBm -3.88 dBm -0.03 dB Function Function Result M2 D3 M1 **1**

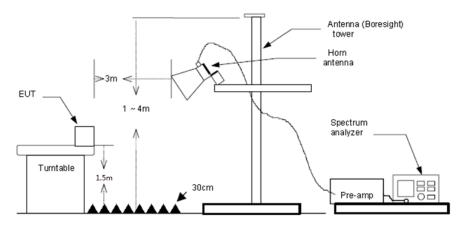
802.11n(HT20) Type: Spectrum
 Ref Level
 20.50 dBm
 Offset
 1.00 dB
 RBW
 100 kHz

 Att
 30 dB
 SWT
 75.9 μs
 VBW
 300 kHz
 Mode
 Auto FFT
 Count 500/500 -10.99 dB 2.4031800 GF 10 dBm M2[1] -4.94 dB 2.4144900 GF 0 dBn Ĭ. -10 dB -10.9 -20 dBr -30 dBn CH01 40 dBn በ _____ በ myn -50 dBm -60 dBm -70 dBm CF 2.412 GHz Marker 1001 pts Span 30.0 MHz Type Ref Trc X-value 2.40318 GHz 2.41449 GHz 17.64 MHz Y-value -10.99 dBm -4.94 dBm -1.16 dB Function Function Result M2 D3 M1 ₽ Spectrum Ref Level 20.50 dBm Att 30 dB Count 500/500 P1Pk View Mode Auto FFT -10.87 dB M1[1] -10.87 dBn 2.4281800 GH -4.80 dBn 2.4394900 GH 10 dBm· M2[1] 0 dBm untr -10 dBm D1 -10.79 -20 dBm -30 dBm CH06 -49 dBm have -50 dBm -60 dBm 70 dBm CF 2.437 GH: 1001 pt Span 30.0 MHz Type Ref Trc X-value 2.42818 GHz 2.43949 GHz 17.64 MHz
 Y-value
 Function

 -10.87 dBm
 -4.80 dBm

 -0.85 dB
 -0.85 dB
 Function Result M1 M2 D3 M1 **1** ₽ Spectrum
 Ref Level
 20.50 dBm
 Offset
 1.00 dB
 ●
 RBW
 100 kHz

 Att
 30 dB
 SWT
 75.9 μs
 ●
 VBW
 300 kHz
 Mode Auto FFT Count 500/500 M1[1] -11.16 dBr 2.4531800 GH 10 dBm-M2[1] -4.49 dBr 2.4644900 GH) dBm Ĭ. 10 dBm -10.4 -20 dBm--30 dBm Monny CH11 M 40.48.04 -50 dBm· -60 dBm· -70 dBm-CF 2.462 GHz 1001 pts Span 30.0 MHz Marker Type Ref Trc X-value 2.45318 GHz 2.46449 GHz 17.64 MHz Y-value -11.16 dBm -4.49 dBm -0.40 dB Function Function Result M2 D3 M1 **1**


5.6. Restricted band

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, Radiated Emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the Radiated Emissions limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- 1) The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2) The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3) The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4) The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1MHz, VBW=3MHz PEAK detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

Note:

1) Final level= Read level + Antenna Factor+ Cable Loss- Preamp Factor

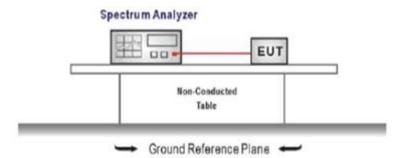
802.11b					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2310.00	17.17	28.05	6.62	0.00	51.84	74.00	-22.16	Vertical	Peak
2390.12	17.93	27.65	6.75	0.00	52.33	74.00	-21.67	Vertical	Peak
2310.00	16.78	28.05	6.62	0.00	51.45	74.00	-22.55	Horizontal	Peak
2390.12	18.25	27.65	6.75	0.00	52.65	74.00	-21.35	Horizontal	Peak
2310.00	11.25	28.05	6.62	0.00	45.92	54.00	-8.08	Vertical	Average
2390.01	10.95	27.65	6.75	0.00	45.35	54.00	-8.65	Vertical	Average
2310.00	11.23	28.05	6.62	0.00	45.90	54.00	-8.10	Horizontal	Average
2390.01	11.03	27.65	6.75	0.00	45.43	54.00	-8.57	Horizontal	Average

802.11b					CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2483.44	17.92	27.27	6.83	0.00	52.02	74.00	-21.98	Vertical	Peak
2499.96	18.20	27.20	6.84	0.00	52.24	74.00	-21.76	Vertical	Peak
2483.49	19.59	27.26	6.83	0.00	53.68	74.00	-20.32	Horizontal	Peak
2499.96	18.45	27.20	6.84	0.00	52.49	74.00	-21.51	Horizontal	Peak
2483.49	10.86	27.26	6.83	0.00	44.95	54.00	-9.05	Vertical	Average
2500.00	10.82	27.20	6.84	0.00	44.86	54.00	-9.14	Vertical	Average
2483.49	10.98	27.26	6.83	0.00	45.07	54.00	-8.93	Horizontal	Average
2500.00	10.84	27.20	6.84	0.00	44.88	54.00	-9.12	Horizontal	Average

802.11g					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2310.00	16.94	28.05	6.62	0.00	51.61	74.00	-22.39	Vertical	Peak
2390.01	18.11	27.65	6.75	0.00	52.51	74.00	-21.49	Vertical	Peak
2310.00	17.47	28.05	6.62	0.00	52.14	74.00	-21.86	Horizontal	Peak
2390.01	18.13	27.65	6.75	0.00	52.53	74.00	-21.47	Horizontal	Peak
2310.00	11.26	28.05	6.62	0.00	45.93	54.00	-8.07	Vertical	Average
2390.01	11.67	27.65	6.75	0.00	46.07	54.00	-7.93	Vertical	Average
2310.00	11.25	28.05	6.62	0.00	45.92	54.00	-8.08	Horizontal	Average
2390.01	11.13	27.65	6.75	0.00	45.53	54.00	-8.47	Horizontal	Average

802.11g					CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2483.49	20.67	27.26	6.83	0.00	54.76	74.00	-19.24	Vertical	Peak
2500.00	18.08	27.20	6.84	0.00	52.12	74.00	-21.88	Vertical	Peak
2483.40	20.57	27.27	6.83	0.00	54.67	74.00	-19.33	Horizontal	Peak
2500.00	17.06	27.20	6.84	0.00	51.10	74.00	-22.90	Horizontal	Peak
2483.49	14.28	27.26	6.83	0.00	48.37	54.00	-5.63	Vertical	Average
2500.00	10.94	27.20	6.84	0.00	44.98	54.00	-9.02	Vertical	Average
2483.49	16.07	27.26	6.83	0.00	50.16	54.00	-3.84	Horizontal	Average
2500.00	11.11	27.20	6.84	0.00	45.15	54.00	-8.85	Horizontal	Average

802.11n(HT	20)				CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2310.00	18.37	28.05	6.62	0.00	53.04	74.00	-20.96	Vertical	Peak
2390.01	17.57	27.65	6.75	0.00	51.97	74.00	-22.03	Vertical	Peak
2310.00	17.16	28.05	6.62	0.00	51.83	74.00	-22.17	Horizontal	Peak
2390.01	17.07	27.65	6.75	0.00	51.47	74.00	-22.53	Horizontal	Peak
2310.00	11.26	28.05	6.62	0.00	45.93	54.00	-8.07	Vertical	Average
2390.01	11.35	27.65	6.75	0.00	45.75	54.00	-8.25	Vertical	Average
2310.00	11.29	28.05	6.62	0.00	45.96	54.00	-8.04	Horizontal	Average
2390.01	11.19	27.65	6.75	0.00	45.59	54.00	-8.41	Horizontal	Average


802.11n(HT	20)				CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2483.49	23.21	27.26	6.83	0.00	57.30	74.00	-16.70	Vertical	Peak
2500.00	17.17	27.20	6.84	0.00	51.21	74.00	-22.79	Vertical	Peak
2483.49	22.28	27.26	6.83	0.00	56.37	74.00	-17.63	Horizontal	Peak
2500.00	17.32	27.20	6.84	0.00	51.36	74.00	-22.64	Horizontal	Peak
2483.49	16.72	27.26	6.83	0.00	50.81	54.00	-3.19	Vertical	Average
2500.00	11.03	27.20	6.84	0.00	45.07	54.00	-8.93	Vertical	Average
2483.49	17.14	27.26	6.83	0.00	51.23	54.00	-2.77	Horizontal	Average
2500.00	11.19	27.20	6.84	0.00	45.23	54.00	-8.77	Horizontal	Average

5.7. Band edge and Spurious Emissions (conducted)

FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Establish a reference level by using the following procedure

Center frequency=DTS channel center frequency The span = 1.5 times the DTS bandwidth. RBW = 100 kHz, VBW ≥ 3 x RBW Detector = peak, Sweep time = auto couple, Trace mode = max hold Allow trace to fully stabilize Use the peak marker function to determine the maximum PSD level

Note: the channel found to contain the maximum PSD level can be used to establish the reference level. Emission level measurement

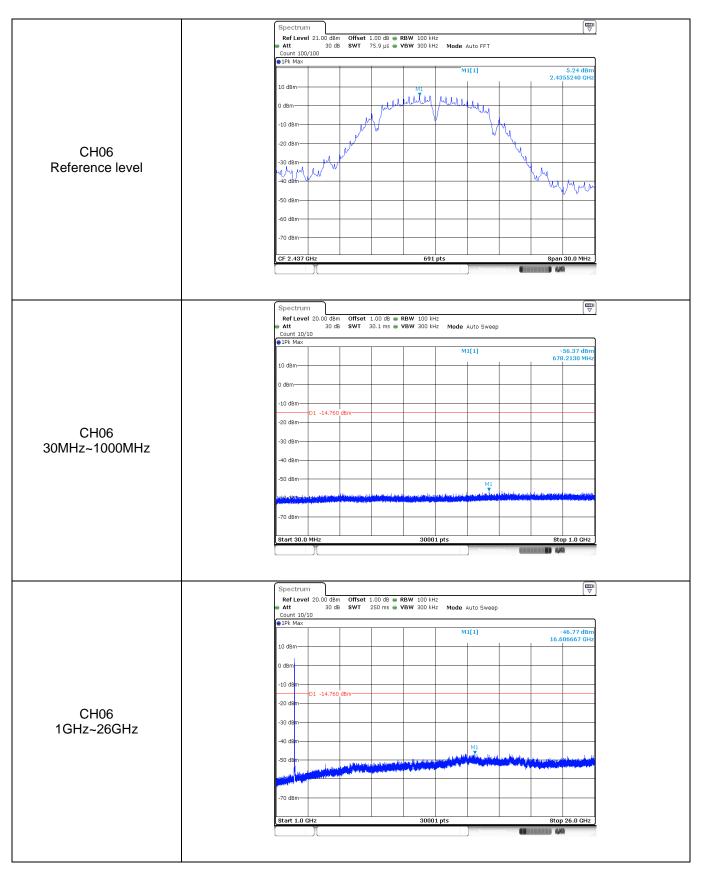
Emission level measurement
 Set the center frequency and span to encompass frequency range to be measured
 RBW = 100 kHz, VBW ≥ 3 x RBW
 Detector = peak, Sweep time = auto couple, Trace mode = max hold
 Allow trace to fully stabilize
 Use the peak marker function to determine the maximum amplitude level.
 Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmit

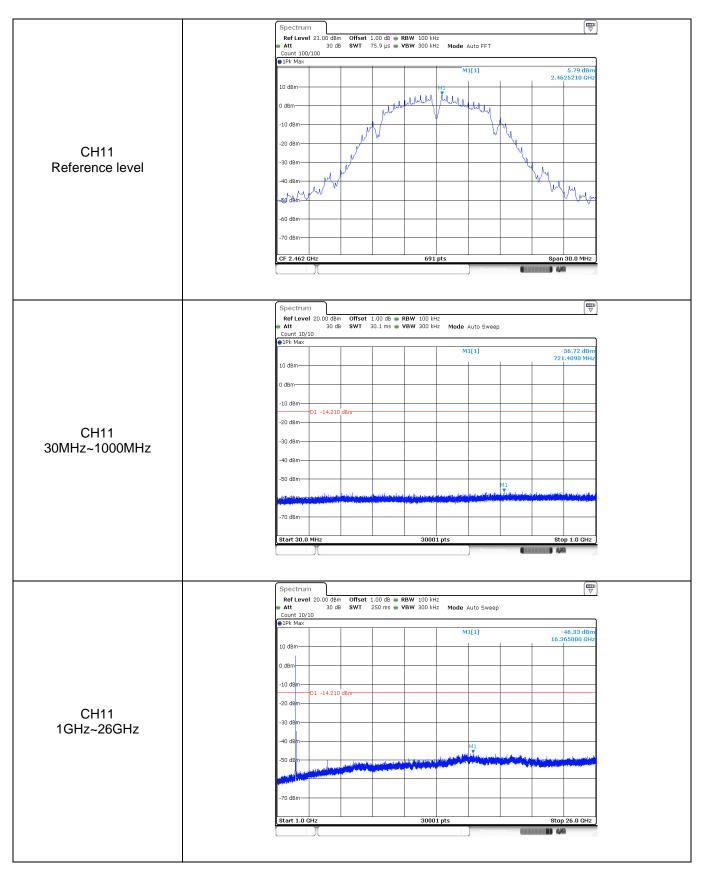
- 4. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- Ensure that the amplitude of all unwanted emission outside of the authorized frequency band excluding restricted frequency bands) are attenuated by at least the minimum requirements specified (at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz). Report the three highest emission relative to the limit.

TEST MODE:

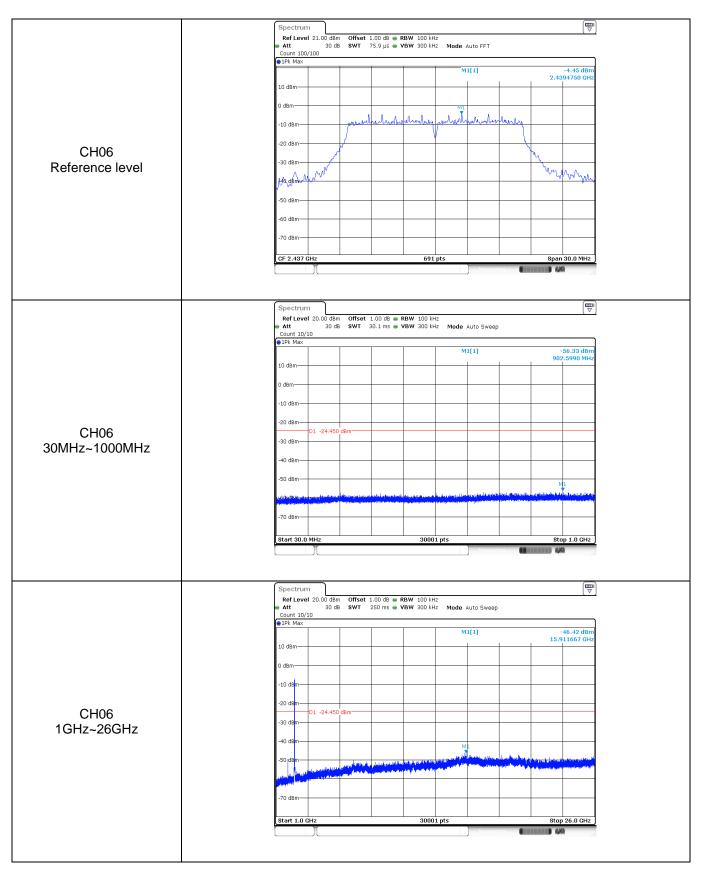
Please refer to the clause 3.3

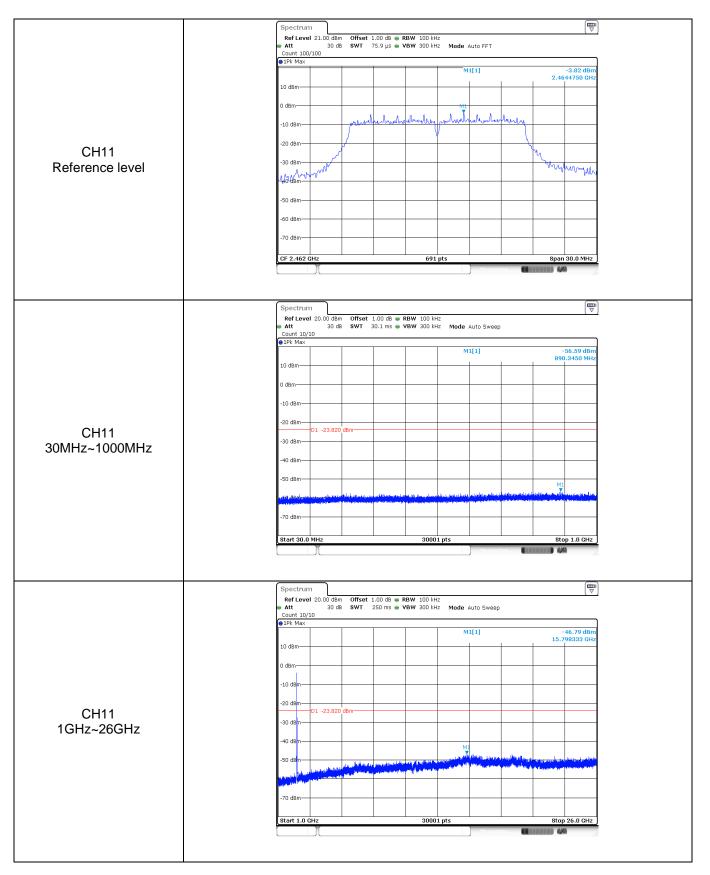
TEST RESULTS

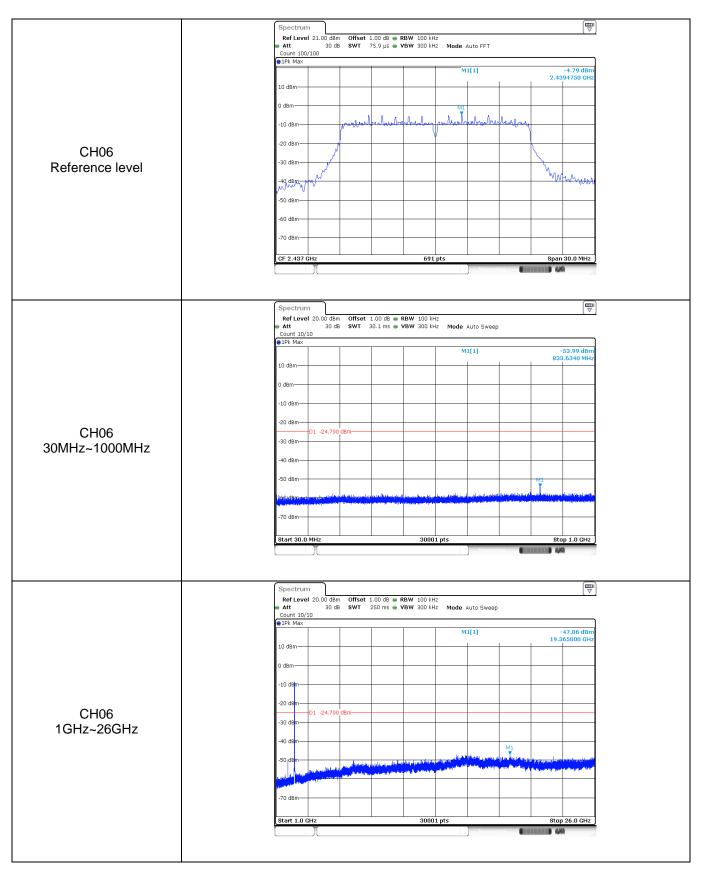

☑ Passed □ Not Applicable

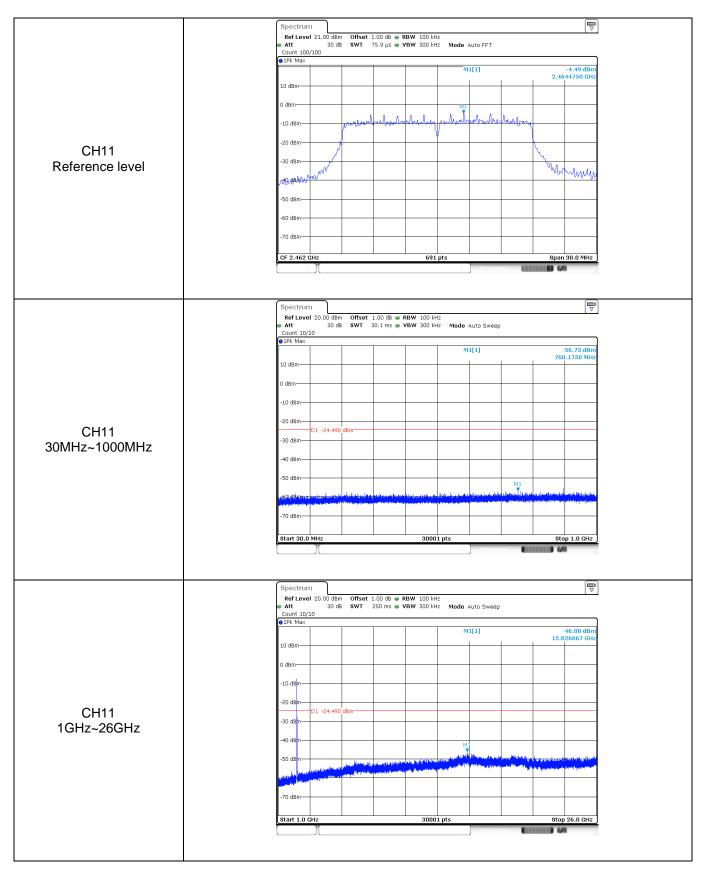

Test Item:	Bandedge		Type:			1	802.1	1 b
	👄 Att	evel 20.00 dBm O	ffset 1.00 dB ● ₩T 246.5 µs ●		Mode Auto FFT			
CH01	Count 3 ● 1Pk Ma 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -70 dBm -70 dBm -70 dBm	D1 -14.980 dBm	Mentengener	4. bot des.	M1[1] M2[1]	ME MI MI MI	A A A A A A A A A A A A A A A A A A A	5.02 dBm 41,1550 GHz 75,25 dBm 11,100 GHz
	Marker Type M1 M2	1	-value 2.41155 GHz 2.4 GHz	691 pts Y-value 5.02 dBm -43.25 dBm	5 Function	Fun	Stop Ction Resul	2.422 GHz
	M3 M4 M5		2.39 GHz 2.31 GHz 2.397977 GHz	-56.31 dBm -58.95 dBm -39.12 dBm	Measu	ring		0
CH11	👄 Att	evel 20.00 dBm O 30 dB S 300/300			Mode Auto FFT			
	10 dBm- 0 dBm-	www.hu	duerda		M1[1] M2[1]			5.64 dBm 509960 GHz -57.53 dBm 835000 GHz
	-10 d8m -20 dpM -30 d8m	VD1 -14.360 dBm-	V.					
	v ⁴ 0 dBm -50 dBm -60 dBm -70 dBm			Winy	Veren M2 +	si Iurreno	www	umung
	Start 2. Marker Type M1	.452 GHz Ref Trc X	-value	691 pts <u>Y-value</u> 5.64 dBm	5 Function	Fun	Sti Ction Resul	op 2.5 GHz
	M2 M3 M4	1	2.4835 GHz 2.5 GHz 4850435 GHz	-57.53 dBm -57.84 dBm -54.45 dBm	Measu	ring		9

Test Item:	Bandedge	Туре	e:	802.11 g
	Spectrun Ref Leve Att Count 300,	I 20.00 dBm Offset 1.00 30 dB SWT 246.5	dB ● RBW 100 kHz µs ● VBW 300 kHz Mode Auto	(₩) FFT
CH01	● 1Pk Max 10 dBm		M1[1] M2[1]	-4.45 dBm 2.414460 GHz -37.91 dBm
	0 dBm			2.40000 GHz
	-20 dBm	D1 -24.450 dBm		M3 MINNY M3 MINNY M3 MINNY
	-50 dBm	moneyman	un programmer my Mr	www.awa.awa.awa.awa.awa.awa.awa.awa.awa
	Start 2.31 Marker		691 pts	Stop 2.422 GHz
	Type Re M1 M2 M3 M4 M5	ff Trc X-value 1 2.41446 Gł 1 2.4346 Gł 1 2.439 Gł 1 2.31 Gł 1 2.398788 Gł	iz -37.91 dBm iz -47.27 dBm iz -57.67 dBm	Function Result
CH11		l 20.00 dBm Offset 1.00		
	● Att Count 300, ● 1Pk Max	30 dB SWT 113.8 /300	μs • VBW 300 kHz Mode Auto M1[1]	-3.92 dBm
	10 dBm	hudeshindery - hunderhidered	M2[1]	2.4644690 GHz -42.54 dBm 2.4835000 GHz
	-29 dBm	D1 -23.920 dBm		
	-40 d8m		and manufacture	123
	-60 dBm			
	Start 2.453 Marker			Stop 2.5 GHz
	M2	1 1 2.4835 GH		

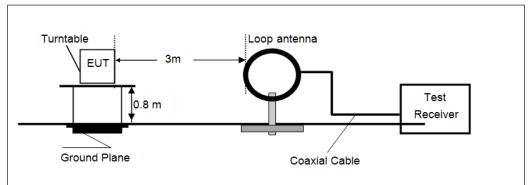

Test Item:	Bandedge	Type: 802.11 n(HT20)
		Spectrum Image: Constraint of the sector of t
		Court 300/300 @ IPk Max 10 dBm
		0 dBm 2.400000 CH2 -10 dBm 2.400000 CH2 -20 dBm 11111_1111
CH01		-30 dBm
		-50 dBm
		Start 2.31 GHz 691 pts Stop 2.422 GHz Marker Type Ref Trc X-value Function Function Result
		M1 1 2.41446 GHz -4.90 dBm M2 1 2.4 GHz -40.28 dBm M3 1 2.39 GHz -48.81 dBm M4 1 2.31 GHz -55.95 dBm M5 1 2.398951 GHz -41.76 dBm
		Spectrum (₩) Ref Level 20.00 dBm Offset 1.00 dB RBW 100 kHz Att 30 dB SWT 113.8 μs VBW 300 kHz Mode Auto FFT
		Count 300/300 IPIR Max MI[1] -4.58 dBm 10 dBm M2[1] -39.95 dBm ABM
		-19 stimbula hada daga hada hada hada hada hada had
CH11		01 -24.580 dBm MB -30 dBm Matkulane without the formation of the f
		-50 dam
		Start 2.452 CHz 691 pts Stop 2.5 CHz Marker Tores I def I zeo V using V using Constant I
		Type Ref Trc X-value Y-value Function Function Result M1 1 2.464450 GHz -4.55 dHm
	(


est Item:	SE	Туре:	802.11 b
		Spectrum RefLevel 21.00 dBm Offset 1.00 dB • RBW 100 kHz Att 30 dB SWT 75.9 µs • VBW 300 kHz	
		Count 100/100	5.25 dBm 2.4139970 GHz
		D dBm Mind Milling Mil	
CH01 Reference level		-10 dBm	
		-30 dem	W W WWWWWW
		-50 dBm	
		-70 dBm	
		CF 2.412 GHz 691 pts	Span 30.0 MHz
		Spectrum Ref Level 20.00 dBm Offset 1.00 dB @ RBW 100 kHz	
		Att 30 dB SWT 30.1 ms VBW 300 kHz Mode Auto Swe Count 10/10 ● <td>-56.84 dBm</td>	-56.84 dBm
		10 dBm	898.9460 MHz
		-10 dBm	
CH01 30MHz~1000MHz		-30 d8m-	
		-40 dBm	M
		-50 (Bin-ball), part di anti parte di parte de parte de parte de parte de parte de la parte de la parte de parte 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - -70 dBm	de belande med kulften ander med de soal typeter de state freier de specifiet de generatiet geben. Hennen men en state ferente begelet en men men state ander specifiet en men en state.
		Start 30.0 MHz 30001 pts	Stop 1.0 GHz
		Spectrum	
CH01 1GHz~26GHz		Ref Level 20.00 dBm Offset 1.00 dB RBW 100 kHz Att 30 dB SWT 250 ms VBW 300 kHz Mode Auto Swe Count 10/10 JPk Max 30 kHz Mode Auto Swe <	
		10 dBm	-46.07 dBm 16.183333 GHz
		0 dBm -10 dEm D1 -14.750 dBm	
		-20 dem	
		-40 dłm	
			a ta bar ya na
		-70 dBm	Stop 26.0 GHz
			auring (Internet) 🚧

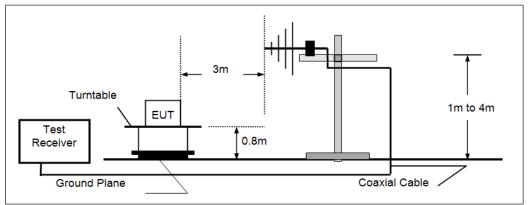



Test Item:	SE	Туре: 802.11 g
		Spectrum TTP Ref Level 21.00 dBm Offset 1.00 dB • RBW 100 kHz Image: Compare the second
CH01 Reference level		PIK Max MI[1] -4.51 dBm 2.4144750 GHz
		10 dBm
		-10 dBm paperlyaling the her particular the second
		-20 d8m
		-30 dBm
		Ad dem
		-60 d8m-
		-70 dBm-
		CF 2.412 CHz 691 pts Span 30.0 MHz
		Spectrum Imp RefLevel 20.00 d8m Offset 1.00 d8 ● RBW 100 kHz Att 30 d8 SWT 30.1 ms ● VBW 300 kHz Mode Auto Sweep
		Count 10/10 GIRk Max M1[1] -56.80 dBm
		10 dBm
		0 dBm
		-10 dBm
CH01 30MHz~1000MHz		-30 dBm-
3000 12~ 100000 12		-40 d8m
		-70 dBm
		Start 30.0 MHz 30001 pts Stop 1.0 GHz
		Spectrum □□ Ref Level 20.00 dBm Offset 1.00 dB ● RBW 100 kHz
CH01 1GHz~26GHz		An Level 20.00 delli of inser 20.00 km v 100 km2 Att 10/30 dB SWT 250 ms VBW 300 kH2 Mode Auto Sweep Count 10/30 IP/R Max
		10 dBm M1[1]46.14 dBm
		0 dBm
		-10 dtm
		-20 dtm D1 -24.510 dtm D2 -24.510 dtm D1 -24.510 dtmD1 -24.510 dtmD D1 -24.510 dt
		-40 dem Mi
		-70 dBm
		-/U dbm 30001 pts Stop 26.0 GHz

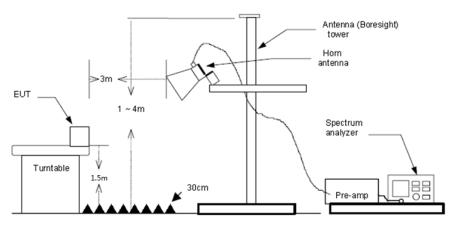
est Item:	SE	Туре:	802.11 n(HT20)
		Spectrum Ref Level 21.00 dBm Offset 1.00 dB • RBW 100 kHz Att 30 dB SWT 75.9 µs • VBW 300 kHz Mode Auto FFT	
		Count 100/100 Plk Max	
		M1[1]	-4.97 dBm 2.4144750 GHz
		10 dBm	
		10 dBm	And house.
		-20 dBm	
CH01		-30 dBm	
Reference level			
		-40 dbp	an man
		-60 dBm	
		-70 dBm	
		CF 2.412 GHz 691 pts	Span 30.0 MHz
		Measurin	··· (**********************************
		Spectrum Ref Level 20.00 dBm Offset 1.00 dB • RBW 100 kHz	
		Att 30 dB SWT 30.1 ms ♥ VBW 300 kHz Mode Auto Sweep Count 10/10 ● JPk Max	
		M1[1]	-55.42 dBm 848.4430 MHz
		10 dBm	
		0 dBm	
		-10 dBm	
CH01		-20 dBm 01 -24.970 dBm	
30MHz~1000MHz		-30 dBm-	
		القارمة والمنافعة القرم بالمربعة ويتلافين ومنتقا فالمنافع المتعارية والمالية والمتعادية ومنافع المرابع والمراجع	M1
		-70 dBm	
		Start 30.0 MHz 30001 pts	Stop 1.0 GHz
		ator solution and the solution of the solution	
		Spectrum Ref Level 20.00 dBm Offset 1.00 dB RBW 100 kHz	
		Att 30 dB SWT 250 ms VBW 300 kHz Mode Auto Sweep Count 10/10	
		PPk Max M1[1]	-46.37 dBm 16.555833 GHz
		10 dBm	
		0 dBm	
		-10 dEm	
CH01		-20 dBm	
1GHz~26GHz		-30 dem	
		-40 dBm M1	
		-50 dBm	
		-70 dBm	
		Start 1.0 GHz 30001 pts	Stop 26.0 GHz
		,	


5.8. Spurious Emissions (radiated) <u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209


Frequency	Limit (dBuV/m @3m)	Value
30MHz-88MHz	40.00	Quasi-peak
88MHz-216MHz	43.50	Quasi-peak
216MHz-960MHz	46.00	Quasi-peak
960MHz-1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
	74.00	Peak

TEST CONFIGURATION


> 9kHz ~30MHz

> 30MHz ~ 1GHz

Above 1GHz

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:
 - RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
 - (3) From 1 GHz to 10th harmonic: RBW=1MHz, VBW=3MHz Peak detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE:

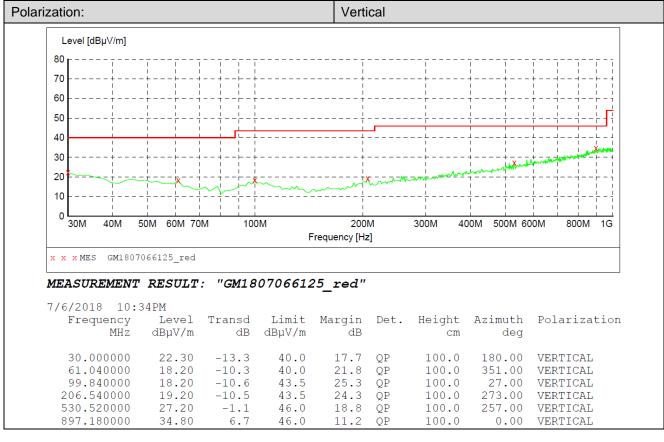
Please refer to the clause 3.3

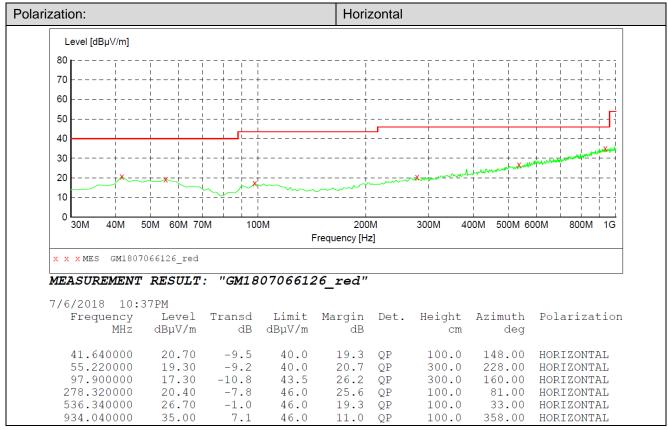
TEST RESULTS

☑ Passed □ Not Applicable

Note:

- 1) Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2) The emission levels of other frequencies are very lower than the limit and not show in test report.


> 9kHz ~ 30MHz


The EUT was pre-scanned the frequency band (9kHz~30MHz), found the radiated level lower than the limit, so don't show on the report.

➢ 30MHz ~1000MHz

Have pre-scan all modulation mode, found the 802.11b mode CH01 which it was worst case, so only the worst case's data on the test report.

> 30MHz ~ 1GHz

1 GHz ~ 25 GHz

802.11b					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1219.64	35.99	26.28	4.69	37.21	29.75	74.00	-44.25	Vertical	Peak
3160.03	34.38	28.80	7.67	37.43	33.42	74.00	-40.58	Vertical	Peak
5164.81	31.99	31.64	9.80	35.05	38.38	74.00	-35.62	Vertical	Peak
7643.68	30.85	36.16	12.84	33.03	46.82	74.00	-27.18	Vertical	Peak
1156.15	35.83	25.96	4.56	37.25	29.10	74.00	-44.90	Horizontal	Peak
3184.25	34.01	28.80	7.70	37.41	33.10	74.00	-40.90	Horizontal	Peak
5151.68	31.64	31.69	9.79	35.08	38.04	74.00	-35.96	Horizontal	Peak
7527.83	31.54	36.13	12.49	33.02	47.14	74.00	-26.86	Horizontal	Peak

802.11b					CH06				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1247.90	35.14	26.25	4.74	37.20	28.93	74.00	-45.07	Vertical	Peak
3200.50	33.89	28.80	7.72	37.40	33.01	74.00	-40.99	Vertical	Peak
5660.47	32.23	31.68	10.37	34.33	39.95	74.00	-34.05	Vertical	Peak
7900.86	30.85	36.70	12.78	33.06	47.27	74.00	-26.73	Vertical	Peak
1286.61	34.87	26.21	4.81	37.18	28.71	74.00	-45.29	Horizontal	Peak
3943.39	33.10	29.70	8.70	36.80	34.70	74.00	-39.30	Horizontal	Peak
4983.99	31.20	31.48	9.66	35.41	36.93	74.00	-37.07	Horizontal	Peak
6478.05	31.66	33.85	11.13	33.64	43.00	74.00	-31.00	Horizontal	Peak

802.11b	CH11										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value		
1222.74	35.08	26.28	4.70	37.21	28.85	74.00	-45.15	Vertical	Peak		
3299.78	34.12	28.20	7.84	37.31	32.85	74.00	-41.15	Vertical	Peak		
4809.50	31.99	31.58	9.55	35.72	37.40	74.00	-36.60	Vertical	Peak		
7357.33	31.02	36.30	12.03	33.26	46.09	74.00	-27.91	Vertical	Peak		
1222.74	35.08	26.28	4.70	37.21	28.85	74.00	-45.15	Horizontal	Peak		
3299.78	34.12	28.20	7.84	37.31	32.85	74.00	-41.15	Horizontal	Peak		
4809.50	31.99	31.58	9.55	35.72	37.40	74.00	-36.60	Horizontal	Peak		
7357.33	31.02	36.30	12.03	33.26	46.09	74.00	-27.91	Horizontal	Peak		

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.

3. The emission levels of other frequencies(test frequency band is 1GHz to 25GHz) are very lower than the limit and not show in test report.

802.11g					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1159.10	35.78	25.98	4.57	37.25	29.08	74.00	-44.92	Vertical	Peak
3160.03	34.38	28.80	7.67	37.43	33.42	74.00	-40.58	Vertical	Peak
5448.41	31.93	31.69	10.16	34.51	39.27	74.00	-34.73	Vertical	Peak
7451.57	31.05	36.20	12.24	33.10	46.39	74.00	-27.61	Vertical	Peak
1232.12	35.80	26.27	4.71	37.21	29.57	74.00	-44.43	Horizontal	Peak
3184.25	34.01	28.80	7.70	37.41	33.10	74.00	-40.90	Horizontal	Peak
5151.68	31.64	31.69	9.79	35.08	38.04	74.00	-35.96	Horizontal	Peak
6851.19	33.62	34.36	11.66	33.80	45.84	74.00	-28.16	Horizontal	Peak

802.11g					CH06				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1144.44	36.39	25.86	4.53	37.26	29.52	74.00	-44.48	Vertical	Peak
3700.26	33.63	29.30	8.39	36.98	34.34	74.00	-39.66	Vertical	Peak
5125.52	31.89	31.80	9.77	35.13	38.33	74.00	-35.67	Vertical	Peak
8042.90	31.86	37.06	12.40	33.06	48.26	74.00	-25.74	Vertical	Peak
1144.44	35.27	25.86	4.53	37.26	28.40	74.00	-45.60	Horizontal	Peak
3241.50	33.27	28.55	7.77	37.36	32.23	74.00	-41.77	Horizontal	Peak
4736.60	32.56	31.35	9.51	35.85	37.57	74.00	-36.43	Horizontal	Peak
6662.01	31.32	34.20	11.43	33.71	43.24	74.00	-30.76	Horizontal	Peak

802.11g					CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
3445.70	33.83	28.57	8.03	37.19	33.24	74.00	-40.76	Vertical	Peak
5099.49	32.26	31.90	9.75	35.18	38.73	74.00	-35.27	Vertical	Peak
6203.70	32.10	32.91	11.01	33.93	42.09	74.00	-31.91	Vertical	Peak
7585.53	30.47	36.19	12.67	33.03	46.30	74.00	-27.70	Vertical	Peak
3525.56	32.97	29.08	8.15	37.12	33.08	74.00	-40.92	Horizontal	Peak
4797.27	31.49	31.59	9.54	35.74	36.88	74.00	-37.12	Horizontal	Peak
6886.15	30.77	34.60	11.71	33.82	43.26	74.00	-30.74	Horizontal	Peak
7470.56	31.14	36.16	12.30	33.07	46.53	74.00	-27.47	Horizontal	Peak

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies(test frequency band is 1GHz to 25GHz) are very lower than the limit and not show in test report.

802.11n(HT	20)				CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
3184.25	33.50	28.80	7.70	37.41	32.59	74.00	-41.41	Vertical	Peak
4138.80	33.62	29.94	8.89	36.62	35.83	74.00	-38.17	Vertical	Peak
5112.49	32.91	31.85	9.76	35.16	39.36	74.00	-34.64	Vertical	Peak
7981.72	32.17	37.03	12.39	33.07	48.52	74.00	-25.48	Vertical	Peak
3168.08	33.60	28.80	7.68	37.42	32.66	74.00	-41.34	Horizontal	Peak
4594.10	31.69	30.89	9.45	36.11	35.92	74.00	-38.08	Horizontal	Peak
5099.49	31.44	31.90	9.75	35.18	37.91	74.00	-36.09	Horizontal	Peak
7761.32	30.42	36.10	13.16	33.05	46.63	74.00	-27.37	Horizontal	Peak

802.11n(HT	20)				CH06				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1210.36	35.34	26.29	4.68	37.22	29.09	74.00	-44.91	Vertical	Peak
3824.76	33.38	29.62	8.53	36.89	34.64	74.00	-39.36	Vertical	Peak
5821.21	31.29	32.14	10.60	34.24	39.79	74.00	-34.21	Vertical	Peak
8022.46	32.29	37.08	12.35	33.06	48.66	74.00	-25.34	Vertical	Peak
1182.94	34.43	26.17	4.62	37.23	27.99	74.00	-46.01	Horizontal	Peak
3607.26	31.93	29.30	8.28	37.05	32.46	74.00	-41.54	Horizontal	Peak
4234.72	32.23	30.07	8.97	36.53	34.74	74.00	-39.26	Horizontal	Peak
6396.13	31.69	33.29	10.99	33.73	42.24	74.00	-31.76	Horizontal	Peak

802.11n(HT	20)				CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
1672.30	33.72	25.12	5.71	37.27	27.28	74.00	-46.72	Vertical	Peak
3143.98	34.17	28.80	7.65	37.45	33.17	74.00	-40.83	Vertical	Peak
4772.91	31.67	31.49	9.53	35.78	36.91	74.00	-37.09	Vertical	Peak
7338.62	31.04	36.30	12.01	33.29	46.06	74.00	-27.94	Vertical	Peak
1124.23	38.30	25.70	4.49	37.27	31.22	74.00	-42.78	Horizontal	Peak
3873.75	32.36	29.67	8.60	36.85	33.78	74.00	-40.22	Horizontal	Peak
5125.52	32.40	31.80	9.77	35.13	38.84	74.00	-35.16	Horizontal	Peak
7663.17	31.48	36.14	12.89	33.04	47.47	74.00	-26.53	Horizontal	Peak

Remark:

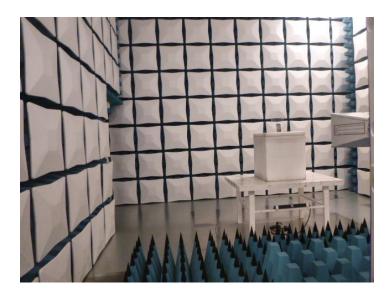
1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.

3. The emission levels of other frequencies(test frequency band is 1GHz to 25GHz) are very lower than the limit and not show in test report.

6. TEST SETUP PHOTOS

Conducted Emissions (AC Mains)



Radiated Emissions

Shenzhen Huatongwei International Inspection Co., Ltd.

7. EXTERANAL AND INTERNAL PHOTOS

Reference to the test report No.: TRE1807002001

-----End of Report------