1.6. D2450V2 Dipole Calibration Certificate

Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504

calibration E-mail: cttlachinattl.com

Http://www.chinattl.cn
Client CIO-SZ(Auden)
Certificate No: Z15-97070

CALIBRATION CERTIFICATE	
Object	D2450V2-SN: 884
Calibration Procedure(s)	TMC-OS-E-02-194 Calibration procedure for dipole validation kits
Calibration date:	September 1, 2015

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity<70\%.

Calibration Equipment used (M\&TE critical for calibration)

[^0]Page 1 of 8

Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86 -10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ctt@chinattl.com Http://www.chinatti.en

CALIBRATION No. L0570

Glossary:
TSL
tissue simulating liquid
ConvF
N/A sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinatti.com

Fax: +86-10-62304633-2504
Http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1 .

DASY system configuration, as far as not given on page 1.		
DASY Version	DASY52	52.8 .8 .1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$2450 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters
The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	39.2	$1.80 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$40.2 \pm 6 \%$	$1.84 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<1.0^{\circ} \mathrm{C}$	-	-

SAR result with Head TSL

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	250 mW input power	$13.1 \mathrm{~mW} / \mathrm{g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{5 2 . 1} \mathbf{~ m W} / \mathbf{g} \pm \mathbf{2 0 . 8} \%(\mathbf{k}=\mathbf{2})$
SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	250 mW input power	$6.17 \mathbf{~ m W} / \mathrm{g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 4 . 6} \mathbf{~ m W} / \mathbf{g} \pm \mathbf{2 0 . 4} \%(\mathbf{k}=\mathbf{2})$

Body TSL parameters
The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	52.7	$1.95 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$51.3 \pm 6 \%$	$2.00 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<1.0^{\circ} \mathrm{C}$	-	-

SAR result with Body TSL

SAR averaged over $\mathbf{1} \mathrm{cm}^{3}(\mathbf{1} \mathbf{g})$ of Body TSL	Condition	
SAR measured	250 mW input power	$13.1 \mathrm{~mW} / \mathrm{g}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{5 1 . 6} \mathbf{~ m W} / \mathbf{g} \pm \mathbf{2 0 . 8} \%(\mathbf{k}=\mathbf{2)}$
SAR averaged over $10 \mathrm{~cm}^{3}(\mathbf{1 0} \mathbf{g})$ of Body TSL	Condition	
SAR measured	250 mW input power	$6.11 \mathbf{~ m W} / \mathrm{g}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 4 . 2} \mathbf{~ m W} / \mathbf{g} \pm \mathbf{2 0 . 4} \% \mathbf{(k = 2)}$

Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$58.3 \Omega-0.76 \mathrm{j} \Omega$
Return Loss	-22.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$58.1 \Omega+2.61 \mathrm{j} \Omega$
Return Loss	-22.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.224 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 01.09.2015

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz ; Type: D2450V2; Serial: D2450V2-SN: 884

Communication System: UID 0, CW; Frequency: 2450 MHz ;Duty Cycle: 1:1
Medium parameters used: $\mathrm{f}=2450 \mathrm{MHz} ; \sigma=1.84 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=40.2 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Left Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)
DASY5 Configuration:

- Probe: ES3DV3 - SN3149; ConvF(4.48, 4.48, 4.48); Calibrated: 2014-09-05;
- Sensor-Surface: 3 mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2015-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6 .10 (7331)

System Performance Check at Frequencies above $1 \mathrm{GHz} / \mathrm{d}=10 \mathrm{~mm}$, Pin $=\mathbf{2 5 0} \mathbf{~ m W}$, dist $=3.0 \mathrm{~mm}$ (ES-Probe) $/$ Zoom Scan ($7 \times 7 \times 7$) (7x7x7)/Cube 0: Measurement grid: $d x=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=99.491 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.03 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=26.6 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=13.1 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=6.17 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=17.1 \mathrm{~W} / \mathrm{kg}$

Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: ctt@chinatti.com

Hittp://www.chinatti.cn

Impedance Measurement Plot for Head TSL

Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ctti@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 01.09.2015
Test Laboratory: CTTL, Beijing, China
DUT: Dipole 2450 MHz ; Type: D2450V2; Serial: D2450V2-SN: 884
Communication System: UID 0, CW; Frequency: 2450 MHz ;Duty Cycle: 1:1
Medium parameters used: $\mathrm{f}=2450 \mathrm{MHz} ; \sigma=1.988 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=51.25 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Center Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)
DASY5 Configuration:

- Probe: ES3DV3 - SN3149; ConvF(4.21, 4.21, 4.21); Calibrated: 2014-09-03;
- Sensor-Surface: 3 mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 2015-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/2
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies above $1 \mathrm{GHz} / \mathrm{d}=10 \mathrm{~mm}, \mathrm{Pin}=250 \mathrm{~mW}$, dist $=3.0 \mathrm{~mm}$ (ES-Probe)/Zoom Scan (7x7x7) (7×7×7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=96.180 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.05 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=27.6 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=13.1 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=6.11 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=17.4 \mathrm{~W} / \mathrm{kg}$

$0 \mathrm{~dB}=17.4 \mathrm{~W} / \mathrm{kg}=12.41 \mathrm{dBW} / \mathrm{kg}$

Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ctt@chinattl.com Http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Extended Dipole Calibrations

Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Head							
Date of measurement	Return-loss (dB)	Delta (\%)	Real Impedance $($ ohm $)$	Delta $($ ohm $)$	Imaginary impedance (ohm)	Delta $($ ohm $)$	
$2015-09-01$	-22.3		58.3		-0.76		
$2016-08-31$	-21.8	2.24	58.5	0.2	-0.68	0.08	

Body							
Date of measurement	Return-loss (dB)	Delta (\%)	Real Impedance $($ ohm $)$	Delta $($ ohm $)$	Imaginary impedance (ohm)	Delta $($ ohm $)$	
$2015-09-01$	-22.1		58.1		2.61		
$2016-08-31$	-21.5	2.71	59.0	0.9	2.36	-0.25	

The return loss is <-20dB, within 20% of prior calibration; the impedance is within 50 hm of prior calibration. Therefore the verification result should support extended calibration.

1.7. D2600V2 Dipole Calibration Certificate

Calibration Laboratory of Schmid \& Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client CIQ(Auden) Certificate No: D2600V2-1120_Feb16

CALIBRATION CERTIFICATE

Object	D2600V2-SN:		
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	ure for dipole validation kit	$00 \mathrm{MHz}$
Calibration date:	February 03, 20		
This calibration certificate docum The measurements and the unc	ts the traceability to na ainties with confidence	nal standards, which realize the physi bability are given on the following pa	measuremen part of the
All calibrations have been cond	d in the closed laborat	facility: environment temperature (22	humidity <
Calibration Equipment used (M8	critical for calibration)		
Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled
Power meter EPM-442A	GB37480704	07-Oct-15 (No. 217-02222)	Oct-16
Power sensor HP 8481A	US37292783	07-Oct-15 (No. 217-02222)	Oct-16
Power sensor HP 8481A	MY41092317	07-Oct-15 (No. 217-02223)	Oct-16
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe EX3DV4	SN: 7349	31-Dec-15 (No. EX3-7349_Dec15)	Dec-16
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID \#	Check Date (in house)	Scheduled
RF generator R\&S SMT-06	100972	15-Jun-15 (in house check Jun-15)	In house cha
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-15)	In house c
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	MWhes
Approved by:	Katja Pokovic	Technical Manager	

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Glossary:
TSL
ConvF
tissue simulating liquid
sensitivity in TSL / NORM x, y, z
Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz$)^{\prime \prime}$, March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$2600 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	39.0	$1.96 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$38.1 \pm 6 \%$	$2.01 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	----

SAR result with Head TSL

SAR averaged over $\mathbf{1} \mathrm{cm}^{\mathbf{3}}(\mathbf{1} \mathbf{g})$ of Head TSL	Condition	
SAR measured	250 mW input power	$13.7 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$53.9 \mathrm{~W} / \mathbf{k g} \pm 17.0 \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{\mathbf{3}}(\mathbf{1 0} \mathrm{g})$ of Head TSL	condition	
SAR measured	250 mW input power	$6.07 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 4 . 0} \mathrm{~W} / \mathbf{k g} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2})$

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	52.5	$2.16 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$51.6 \pm 6 \%$	$2.22 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$-\cdots--$	----

SAR result with Body TSL

SAR averaged over $\left.\mathbf{1} \mathrm{cm}^{\mathbf{3}} \mathbf{1} \mathbf{~ g}\right)$ of Body TSL	Condition	
SAR measured	250 mW input power	$13.2 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{5 2 . 0} \mathrm{~W} / \mathbf{k g} \pm \mathbf{1 7 . 0} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}}(\mathbf{1 0} \mathbf{~ g})$ of Body TSL	condition	
SAR measured	250 mW input power	$5.87 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 3 . 3} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$50.7 \Omega-5.6 \mathrm{j} \Omega$
Return Loss	-25.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$47.0 \Omega-4.5 \mathrm{j} \Omega$
Return Loss	-25.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.150 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the econd arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 22, 2015

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 2600 MHz ; Type: D2600V2; Serial: D2600V2 - SN: 1120
Communication System: UID 0 - CW; Frequency: 2600 MHz
Medium parameters used: $\mathrm{f}=2600 \mathrm{MHz} ; \sigma=2.01 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=38.1 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.49, 7.49, 7.49); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 $\mathbf{m W}$, $\mathbf{d = 1 0 m m}$ /Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=114.4 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=29.1 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{1 3 . 7} \mathrm{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=6.07 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR $($ measured $)=23.5 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 03.02.2
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 2600 MHz ; Type: D2600V2; Serial: D2600V2 - SN: 1120
Communication System: UID 0 - CW; Frequency: 2600 MHz
Medium parameters used: $\mathrm{f}=2600 \mathrm{MHz} ; \sigma=2.22 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=51.6 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.6, 7.6, 7.6); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=104.7 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=27.1 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=13.2 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=5.87 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR $($ measured $)=21.9 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Body TSL

Extended Dipole Calibrations

Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Head							
Date of measurement	Return-loss (dB)	Delta (\%)	Real Impedance $($ ohm $)$	Delta $($ ohm $)$	Imaginary impedance (ohm)	Delta $($ ohm $)$	
$2016-02-03$	-25.0		50.7		-5.6		
$2017-02-01$	-24.9	1.16	51.5	0.8	-5.2	0.4	

Body							
Date of measurement	Return-loss (dB)	Delta (\%)	Real Impedance $($ ohm $)$	Delta (ohm)	Imaginary impedance (ohm)	Delta $($ ohm $)$	
$2016-02-03$	-25.0		47.0		-4.5		
$2017-02-01$	-24.6	4.00	48.3	1.3	-4.0	0.5	

The return loss is <-20dB, within 20% of prior calibration; the impedance is within 50 hm of prior calibration. Therefore the verification result should support extended calibration.

1．8．DAE4 Calibration Certificate

In Collaboration with Add：No． 51 Xueyuan Road，Haidian District，Beijing，100191，China Tel：＋86－10－62304633－2218 Fax：＋86－10－62304633－2209 E－mail：cttl＠chinattl．com Http：／／www．chinattl．cn				中国 国际 校准 CALIB CNAS
Client ： $\mathrm{CIQ}($ Shenzhen）		Certificate	0：Z17－97109	
CALIBRATION CERTIFICATE				
Object DAE4－SN： 1315				
Calibration Procedure（s）	FF－Z1 Calibr （DAEx	Procedure for the Data Acqui	Electronics	
Calibration date：	Augus	2017		
This calibration Certificate documents the traceability to national standards，which realize the physical units of measurements（SI）．The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate．				
All calibrations have been conducted in the closed laboratory facility：environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$ ．				
Calibration Equipment used（M\＆TE critical for calibration）				
Primary Standards	ID \＃Ca	（Calibrated by，Certificate No．）	Scheduled Calib	tion
Process Calibrator 753	1971018	un－17（CTTL，No．J17X05859）	June－1	
Calibrated by：	Name	Function	Signature	
	Yu Zongying	SAR Test Engineer	$\frac{1}{5 \times 91}$	
Reviewed by：	Lin Hao	SAR Test Engineer	f	
Approved by：	Qi Dianyuan	SAR Project Leader		
This calibration certificate shall not be reproduced except in full without written approval of the laboratory．				

Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

DAE data acquisition electronics
Connector angle information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com Http://www.chinattl.cn

DC Voltage Measurement
A/D - Converter Resolution nominal
High Range: $\quad 1 \mathrm{LSB}=\quad 6.1 \mu \mathrm{~V}, \quad$ full range $=\quad-100 \ldots+300 \mathrm{mV}$

Low Range: $\quad 1 \mathrm{LSB}=\quad 61 \mathrm{nV}$, full range $=-1 \ldots \ldots .+3 \mathrm{mV}$
DASY measurement parameters: Auto Zero Time: 3 sec ; Measuring time: 3 sec

Calibration Factors	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
High Range	$405.175 \pm 0.15 \%(k=2)$	$405.013 \pm 0.15 \%(k=2)$	$404.971 \pm 0.15 \%(k=2)$
Low Range	$3.99087 \pm 0.7 \%(k=2)$	$3.98644 \pm 0.7 \%(k=2)$	$3.98913 \pm 0.7 \%(\mathrm{k}=2)$

Connector Angle

Connector Angle to be used in DASY system

[^0]: Certificate No: Z15-97070

