TEST REPORT

FCT通测检测 TESTING CENTRE TECHNOLOGY

> FCC ID:ZSW-30-029 Product: Mobile Phone Model No.: AX705 Additional Model No.: N/A Trade Mark: Bmobile Report No.: TCT160519E034 Issued Date: May 26, 2016

> > Issued for:

b mobile HK Limited Flat 18; 14/F Block 1; Golden Industrial Building; 16-26 Kwai Tak Street; Kwai Chung; New Territories; Hong Kong, China.

Issued By:

Shenzhen Tongce Testing Lab. 1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China TEL: +86-755-27673339 FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab. This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

TCT 通测检测 TESTING CENTRE TECHNOLOGY

	Certification					
2. Test	Result Summar	y	<u> </u>			
3. EUT I	Description					5
4. Gene	ra Information.					6
	est environment a					
4.2. D	escription of Supp	oort Units				6
5. Facili	ties and Accred	ditations	<u>)</u>	<u> (c) </u>		
5.1. Fa	acilities					7
5.2. Lo	ocation					7
5.3. M	easurement Unce	rtainty	<u>(6)</u>			7
6. Test	Results and Me	asurement Da	ata			8
	ntenna requireme					
6.2. C	onducted Emissio	n	2			9
6.3. C	onducted Output	Power				13
6.4. Eı	mission Bandwidt	h				14
6.5. Po	ower Spectral Den	sity				15
6.6. C	onducted Band Ed	dge and Spuriou	us Emission M	easureme	nt	16
6.7. R	adiated Spurious	Emission Meas	urement			18
Append	ix A: Test Resu	It of Conduct	ed Test			
Append	ix B: Photograp	ohs of Test Se	etup			
Append	ix C: Photograp	ohs of EUT				

TCT通测检测 1. Test Certification

Product:	Mobile Phone		
Model No.:	AX705		C
Additional Model No.:	N/A		S.
Applicant:	b mobile HK Limited		
Address:	Flat 18; 14/F Block 1; Golden Indus Street; Kwai Chung; New Territorie	0	
Manufacturer:	b mobile HK Limited	(\mathcal{C})	ķć
Address:	Flat 18; 14/F Block 1; Golden Indus Street; Kwai Chung; New Territorie	0.	
Date of Test:	May 19 –May 24, 2016	S S	
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart KDB 558074 D01 DTS Meas Guida		6
0)		(xO)	- XC

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Ś	Ś				
	Tested By:	SKY Luo	Date:	May 24, 2016	
	Reviewed By:	SKY Luo Jon Thom	Date:	May 26, 2016	_
	Approved By:	Joe Zhou	Date:	May 26, 2016	<u>(</u>
		Tomsin		Page	e 3 of 36

2. Test Result Summary

Report No.: TCT160519E034

	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	N/A
Conducted Peak Output Power	§15.247 (b)(3) §2.1046	PASS
6dB Emission Bandwidth	§15.247 (a)(2) §2.1049	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	1§5.247(d) §2.1051, §2.1057	PASS
Spurious Emission	§15.205/§15.209 §2.1053, §2.1057	PASS
 PASS: Test item meets the require Fail: Test item does not meet the N/A: Test case does not apply to 	e requirement.	
	the test object.	
 Fail: Test item does not meet the N/A: Test case does not apply to 	the test object.	
 Fail: Test item does not meet the N/A: Test case does not apply to 	the test object.	
 Fail: Test item does not meet the N/A: Test case does not apply to 	the test object.	
 Fail: Test item does not meet the N/A: Test case does not apply to 	the test object.	

3. EUT Description

Product Name:	Mobile Phone	
Model :	AX705	
Additional Model:	N/A	
Trade Mark:	Bmobile	
Hardware Version:	G3729_02	
Software Version:	MOLY.WR8.W1449.MD.WG.MP.V5.P7	
Operation Frequency:	2402MHz~2480MHz	
Channel Separation:	2MHz	
Number of Channel:	40	
Modulation Technology:	GFSK	
Antenna Type:	Internal Antenna	
Antenna Gain:	-0.82dBi	
Power Supply:	DC 3.8V from rechargeable lithium battery. Adapter information Input: AC 100-240V, 50/60Hz, 0.2A Output: DC 5V, 1A	

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
	()	(
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Page 5 of 36

4. Genera Information

CT通测检测 TESTING CENTRE TECHNOLOGY

4.1. Test environment and mode

Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar

Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations (The value of duty cycle is 98.46%)
-------------------	---

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations.. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	/		5) /	(c)

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

- FCC Registration No.: 572331
 - Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

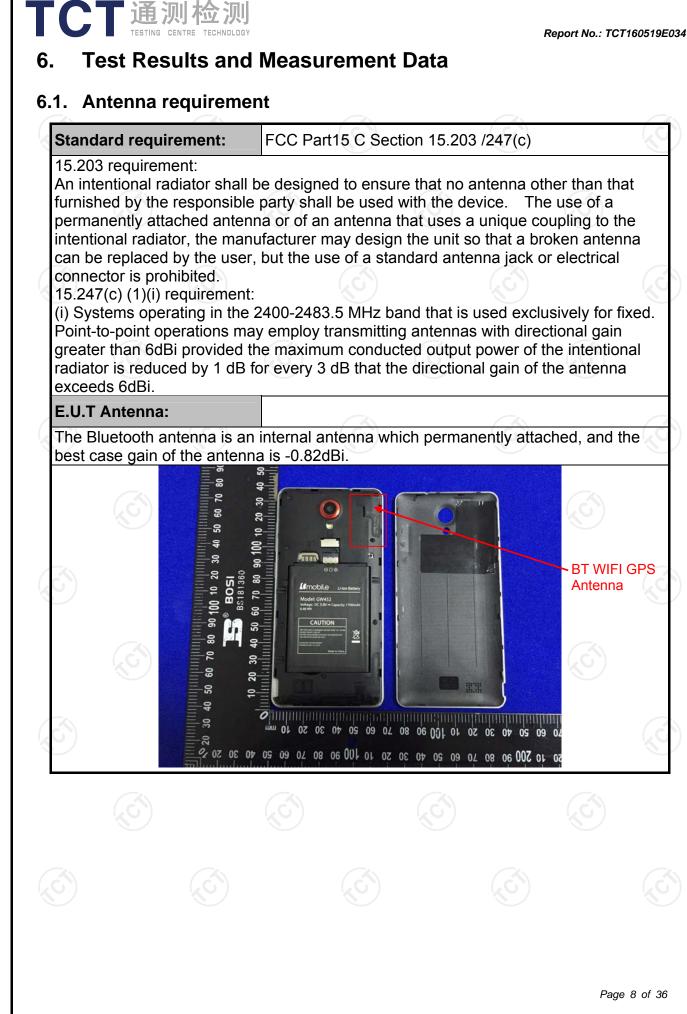
• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

CNAS - Registration No.: CNAS L6165

Shenzhen TCT Testing Technology Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6165.

5.2. Location


Shenzhen Tongce Testing Lab

Address: 1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China Tel: 86-755-36638142

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

6.2. Conducted Emission

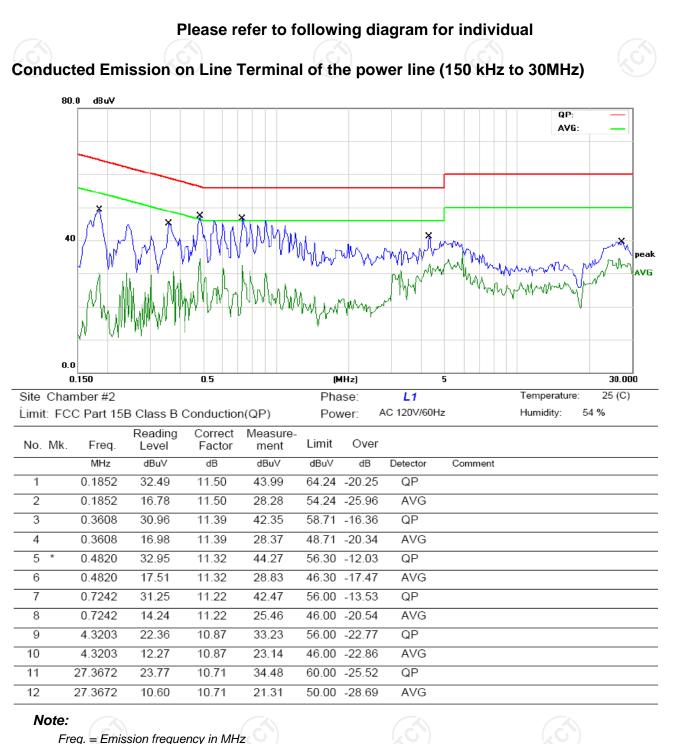
6.2.1. Test Specification

			(
Test Requirement:	FCC Part15 C Section	n 15.207				
Test Method:	ANSI C63.10:2013					
Frequency Range:	150 kHz to 30 MHz					
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto					
	Frequency range	Limit (dBuV)			
	(MHz)	Quasi-peak	Áverage			
Limits:	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	Reference	ce Plane				
Test Setup:	E.U.T AC power Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization N Test table height=0.8m	letwork	— AC power			
Test Mode:	Charging + Transmittin	ng Mode				
Test Procedure:	 The E.U.T and sim power through a lin (L.I.S.N.). This pr impedance for the n The peripheral device power through a L coupling impedance refer to the block photographs). Both sides of A.C conducted interfere emission, the relative 	e impedance stab ovides a 50ohm neasuring equipme ces are also conne ISN that provides e with 50ohm tern diagram of the . line are checkence. In order to fin ye positions of equ	pilization network /50uH coupling ent. ected to the main a 50ohm/50uH nination. (Please test setup and ed for maximum nd the maximum ipment and all o			
	the interface cable ANSI C63.10:2013					

Page 9 of 36

6.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)							
Equipment	Manufacturer	Model	Serial Number	Calibration Due			
EMI Test Receiver	R&S	ESCS30	100139	Sep. 11, 2016			
LISN	Schwarzbeck	NSLK 8126	8126453	Sep. 16, 2016			
Coax cable	тст	CE-05	N/A	Sep. 11, 2016			
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A			


Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 10 of 36

6.2.3. Test data

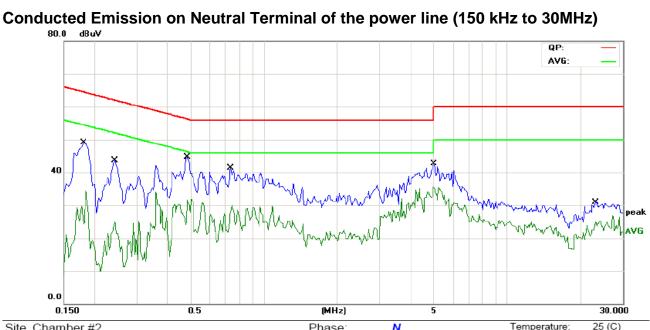
CT通测检测 TESTING CENTRE TECHNOLOGY

Reading level $(dB\mu V) = Receiver reading$

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement $(dB\mu V) = Reading \ level \ (dB\mu V) + Corr. \ Factor \ (dB)$

Limit (dB μ V) = Limit stated in standard


Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak

AVG =average

 * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Report No.: TCT160519E034

Site Chamb	oer #2				Phas	se:	N	Temperature	e: 25 (C)
Limit: FCC I	Part 15E	3 Class B C	onduction	(QP)	Powe	er:	AC 120V/60Hz	Humidity:	54 %
No. Mk.	Frea.	Reading Level	Correct Factor	Measure- ment	Limit	Ove	er		

No. Mk.	Freq.	Level	Factor	ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1812	33.80	11.50	45.30	64.43	-19.13	QP	
2	0.1812	19.01	11.50	30.51	54.43	-23.92	AVG	
3	0.2437	27.30	11.46	38.76	61.97	-23.21	QP	
4	0.2437	13.74	11.46	25.20	51.97	-26.77	AVG	
5 *	0.4820	30.62	11.32	41.94	56.30	-14.36	QP	
6	0.4820	18.45	11.32	29.77	46.30	-16.53	AVG	
7	0.7281	25.25	11.22	36.47	56.00	-19.53	QP	
8	0.7281	16.08	11.22	27.30	46.00	-18.70	AVG	
9	5.0156	25.22	10.62	35.84	60.00	-24.16	QP	
10	5.0156	14.59	10.62	25.21	50.00	-24.79	AVG	
11	23.2266	13.27	10.70	23.97	60.00	-36.03	QP	
12	23.2266	6.63	10.70	17.33	50.00	-32.67	AVG	

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = Antenna factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Lowest channel) was submitted only.

Report No.: TCT160519E034

6.3. Conducted Output Power

6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB 558074 D01 DTS Meas Guidance v03r05
Limit:	30dBm
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v03r05. Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level.
Test Result:	PASS

6.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 12, 2016
RF cable	тст	RE-06	N/A	Sep. 12, 2016
Antenna Connector	тст	RFC-01	N/A	Sep. 12, 2016

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 13 of 36

6.4. Emission Bandwidth

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB 558074 D01 DTS Meas Guidance v03r05
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v03r05. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

6.4.2. Test Instruments

RF Test Room								
Equipment	Manufacturer	Model Serial Numbe		Calibration Due				
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 12, 2016				
RF cable	су тст	RE-06	N/A	Sep. 12, 2016				
Antenna Connector	тст	RFC-01	N/A	Sep. 12, 2016				

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.5. Power Spectral Density

6.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074 D01 DTS Meas Guidance v03r05
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No.558074 D01 DTS Meas. Guidance v03r05 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS

6.5.2. Test Instruments

RF Test Room								
Equipment	Manufacturer	Model	Serial Number	Calibration Due				
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 12, 2016				
RF cable	тст	RE-06	N/A	Sep. 12, 2016				
Antenna Connector	тст	RFC-01	N/A	Sep. 12, 2016				

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 15 of 36

6.6. Conducted Band Edge and Spurious Emission Measurement

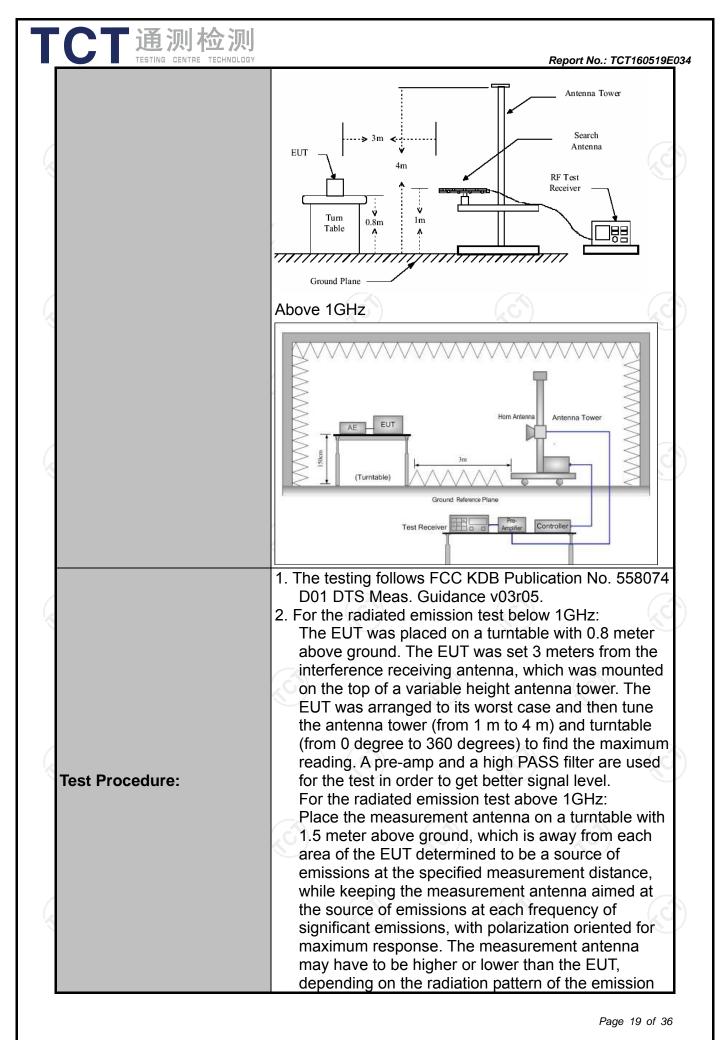
6.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)	
Test Method:	ANSI C63.10:2013	9
Limit:	In any 100 kHz bandwidth outside of the authorit frequency band, the emissions which fall in non-restricted bands shall be attenuated at least 20 c 30dB relative to the maximum PSD level in 100 kHz RF conducted measurement and radiated emissi- which fall in the restricted bands, as defined in Sec 15.205(a), must also comply with the radiated emissi- limits specified in Section 15.209(a).	the dB / z by ons tion
Test Setup:		
	Spectrum Analyzer EUT	
Test Mode:	Refer to item 4.1	
Test Procedure:	 The testing follows FCC KDB Publication No. 5580 D01 DTS Meas. Guidance v03r05. The RF output of EUT was connected to the spectr analyzer by RF cable and attenuator. The path los was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency ban shall be attenuated by at least 20 dB relative to th maximum in-band peak PSD level in 100 kHz whe maximum peak conducted output power procedur used. If the transmitter complies with the conducted power limits based on the use of RMS averaging of a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency ban 	rum ss or. nd e en re is ed over
Test Result:	PASS	

6.6.2. Test Instruments

RF Test Room								
Equipment	Manufacturer	Model	Serial Number	Calibration Due				
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 12, 2016				
RF cable	тст	RE-06	N/A	Sep. 12, 2016				
Antenna Connector	тст	RFC-01	N/A	Sep. 12, 2016				

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to


			vstem unit (SI).	international sy	

6.7. Radiated Spurious Emission Measurement

6.7.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10	ANSI C63.10: 2013							
Frequency Range:	9 kHz to 25 GHz								
Measurement Distance:	3 m	X			K	7			
Antenna Polarization:	Horizontal &	Horizontal & Vertical							
Operation mode:	Refer to item 4.1								
	Frequency 9kHz- 150kHz 150kHz-	Detector Quasi-peal Quasi-peal		VBW 1kHz 30kHz		Remark si-peak Value si-peak Value			
Receiver Setup:	30MHz 30MHz-1GHz Above 1GHz	Quasi-peal Peak Peak	k 100KHz 1MHz 1MHz	300KHz 3MHz 10Hz	Р	si-peak Value eak Value erage Value			
	Frequency		Field Stre (microvolts 2400/E/I	/meter)	Measurement Distance (meters)				
	0.009-0.4		2400/F(KHz) 24000/F(KHz)		300				
	1.705-30		30		30				
	30-88		100		3				
l insite	88-216		150 200			3			
Limit:	216-960 Above 960		500			3			
		00	500						
	Frequency		ld Strength ovolts/meter)	Measurer Distand (meter	ce	Detector			
	Above 1GHz	,	500		3				
			5000	3	2	Peak			
	For radiated emissions below 30MHz								
Test setup:	EUT Turn table								
	30MHz to 10		Fround Plane		L				

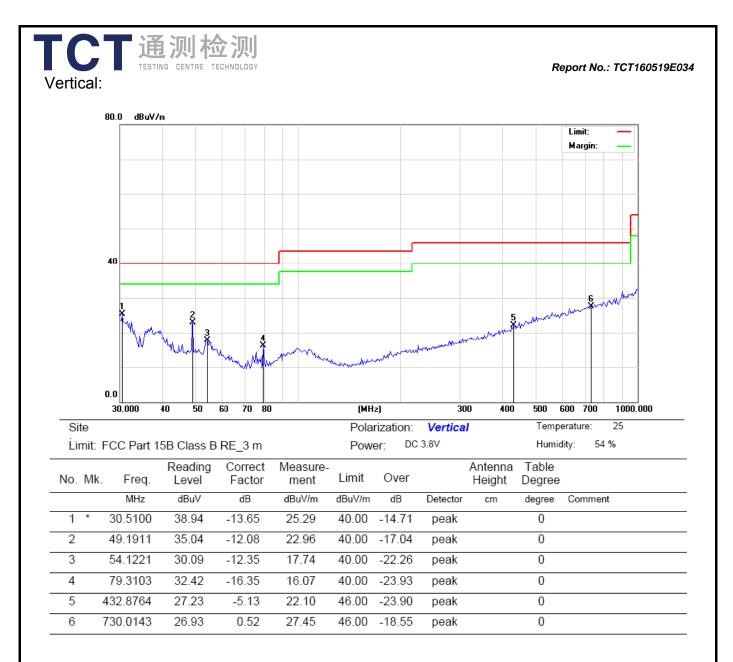
CT通测检测	
TESTING CENTRE TECHNOLOGY	Report No.: TCT160519E03
	 and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level 4. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 5. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum
Test mode:	power control level for the tested mode of operation. Refer to section 4.1 for details
Test results:	PASS

6.7.2. Test Instruments

TCT通测检测 TESTING CENTRE TECHNOLOGY

	Radiated Emission Test Site (966)								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due					
ESPI Test Receiver	ROHDE&SCHW ARZ	ESVD	100008	Sep. 11, 2016					
Spectrum Analyzer	ROHDE&SCHW ARZ	FSEM	848597/001	Sep. 11, 2016					
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 11, 2016					
Pre-amplifier	HP	8447D	2727A05017	Sep. 11, 2016					
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 13, 2016					
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 13, 2016					
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 13, 2016					
Horn Antenna	Schwarzbeck	BBHA 9170	373	Sep. 13, 2016					
Antenna Mast	CCS	CC-A-4M	N/A	N/A					
Coax cable	тст	RE-low-01	N/A	Sep. 11, 2016					
Coax cable	тст	RE-high-02	N/A	Sep. 11, 2016					
Coax cable	тст	RE-low-03	N/A	Sep. 11, 2016					
Coax cable	тст	RE-high-04	N/A	Sep. 11, 2016					
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A					

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


Page 21 of 36

6.7.3. Test Data

Page 22 of 36

Report No.: TCT160519E034

- **Note:** 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported
 - 2. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Lowest channel) was submitted only.

Above 1GHz

Low channe	el: 2402 N	1Hz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
2390	Н	43.88		-8.27	35.61		74	54	-18.39
4804	Н	45.27		0.66	45.93		74	54	-8.07
7206	Н	35.11		9.5	44.61		74	54	-9.39
	Н								
					(.G)		(\mathbf{c})	
2390	V	43.62		-8.27	35.35		74	54	-18.65
4804	V	45.67		0.66	46.33		74	54	-7.67
7206	V	40.58		9.5	50.08		74	54	-3.92
~~	V			(×		×		(
GI)		(\mathcal{O})			5)		(\mathcal{O})		2
Middle cha	nnel: 2440)MHz		J.					e e
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)

	V								
7320	V	38.99		9.87	48.86		74	54	-5.14
4880	V	44.74		0.99	45.73		74	54	-8.27
	H								
7320	H	38.97		9.87	48.84		74	54	-5.16
4880	(CH)	41.72	-420	0.99	42.71	20 1) -	74	54	-11.29

High channel: 2480 MHz

TCT通测检测 TESTING CENTRE TECHNOLOGY

i ngi i onaini		· · · · · · ·							
Frequency	Ant Pol	Peak	AV	Correction	Emissic	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading	reading	Factor	Peak	AV		$(dB\mu V/m)$	(dB)
()		(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	()	(()
2483.5	Н	45.58		-7.83	37.75		74	54	-16.25
4960	Н	47.94		1.33	49.27		74	54	-4.73
7440	Н	39.46		10.22	49.68		74	54	-4.32
)	Н			ý)				'
2483.5	V	47.82		-7.83	39.99		74	54	-14.01
4960	V	46.76		1.33	48.09		74	54	-5.91
7440	V	39.36	-+.0	10.22	49.58		74	54	-4.42
	V								

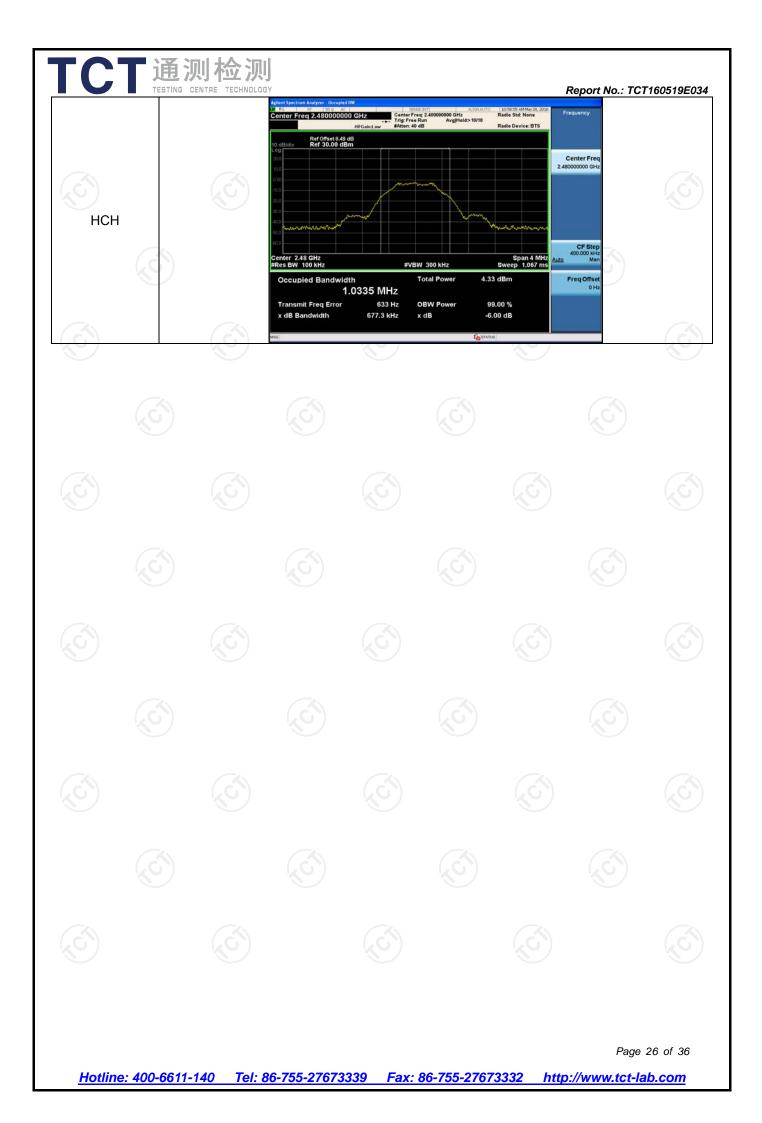
Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

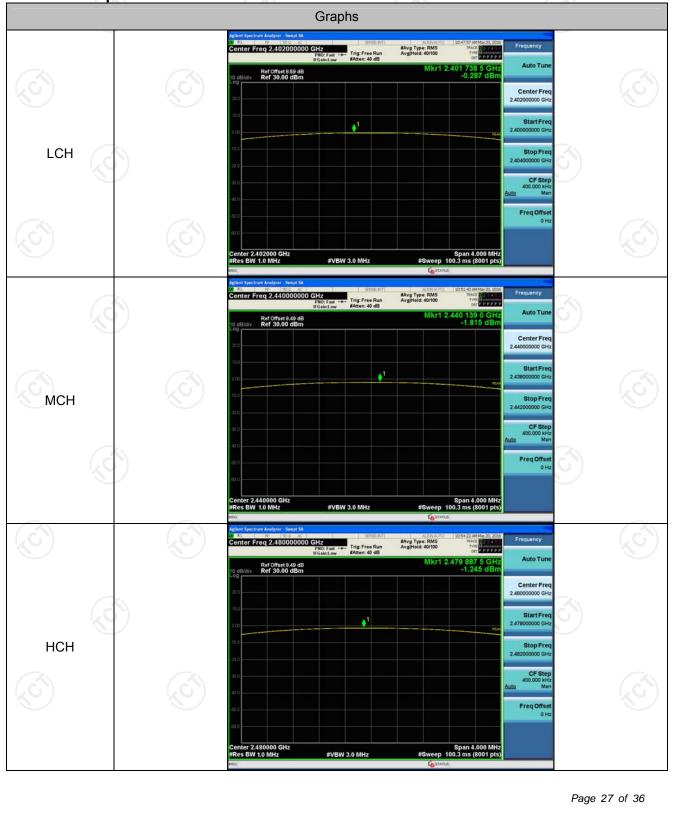

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

*****END OF REPORT*****

Appendix A: Test Result of Conducted Test

TCT通测检测 TEGTING CENTRE TECHNOLOGY

Test Result		6dB Occupied Bandw	vidth	
Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.6895	1.0288	PASS
BLE	MCH	0.6727	1.0311	PASS
BLE	HCH	0.6773	1.0335	PASS
Test Graph	5			
		Graphs		
		Agleta Spectran Analyzer: Occupied BW Or Rs 950 AC 1997 AC 19	Radio Std: None Radio Device: BTS Center Freq 2.402000000 GHz	
LCH		308 300 308 300 400 400 400	Span 4 MHz Auto Man	
		Occupied Bandwidth Total Power 1.0288 MHz Transmit Freq Error 533 Hz OBW Power x dB Bandwidth 689.5 kHz x dB	Sweep 1.067 ms 5.31 dBm 99.00 % -6.00 dB Contracts	No.
		Agilent Spectrum Analyzer - Occupied BW OT RL FP 1000 AC Center Freq 2.44000000 GHz FFGaint.cw ArgiNe Argina Conter Freq 2.44000000 GHz FFGaint.cw ArgiNe FFGaint.cw ArgiNe	ld: 10/10	
мсн		Aff Galaxie Atten: 40 dB 10 dB/delv Ref Offset8.49 dB 10 dB/delv Ref 30.00 dBm 10 dB/delv dB/delv	Radio Device: BTS Center Freq 2.44000000 GHz	
J J	Ś	Center 2.44 GHz #Res BW 100 kHz #VBW 300 kHz Occupied Bandwidth Total Power 1.0311 MHz Transmit Freq Error 417 Hz OBW Power x dB Bandwidth 672.7 kHz x dB	Span 4 MHz Sweep 1.067 ms 3.71 dBm 99.00 % -6.00 dB	Ś
Hotline: 400-66	11-140 Tel:	86-755-27673339 Fax: 86-755-	-	e 25 of 36



Conducted Peak Output Power

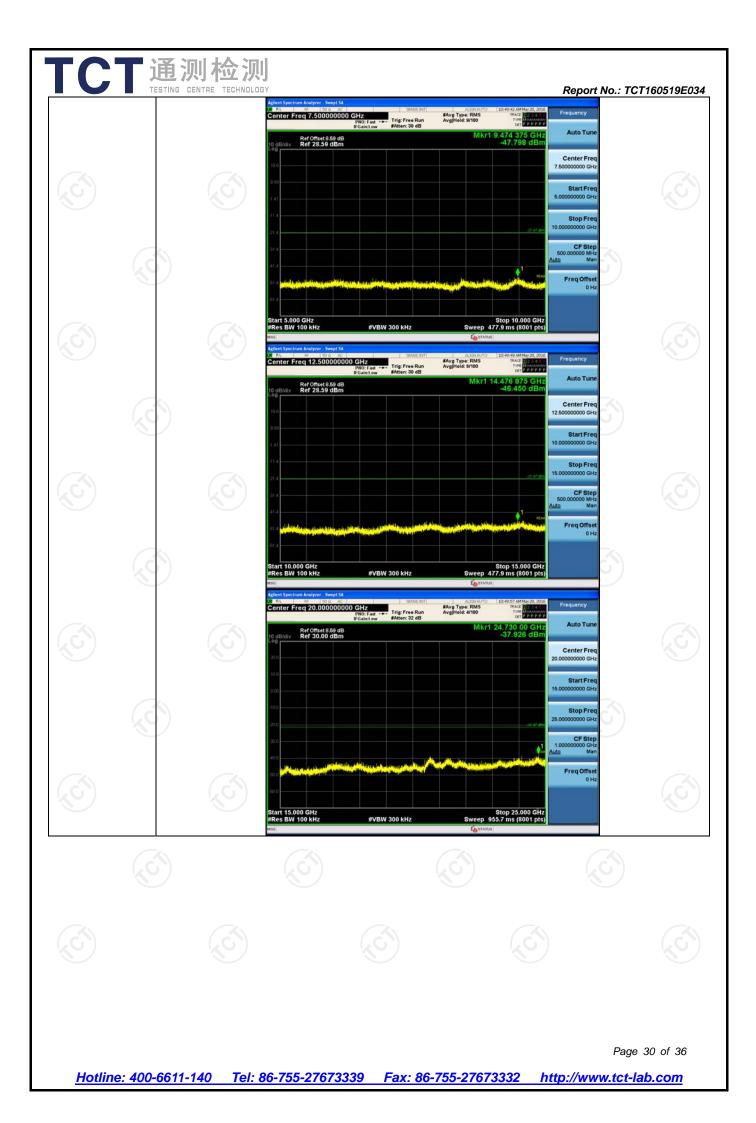
	Test	Result
--	------	--------

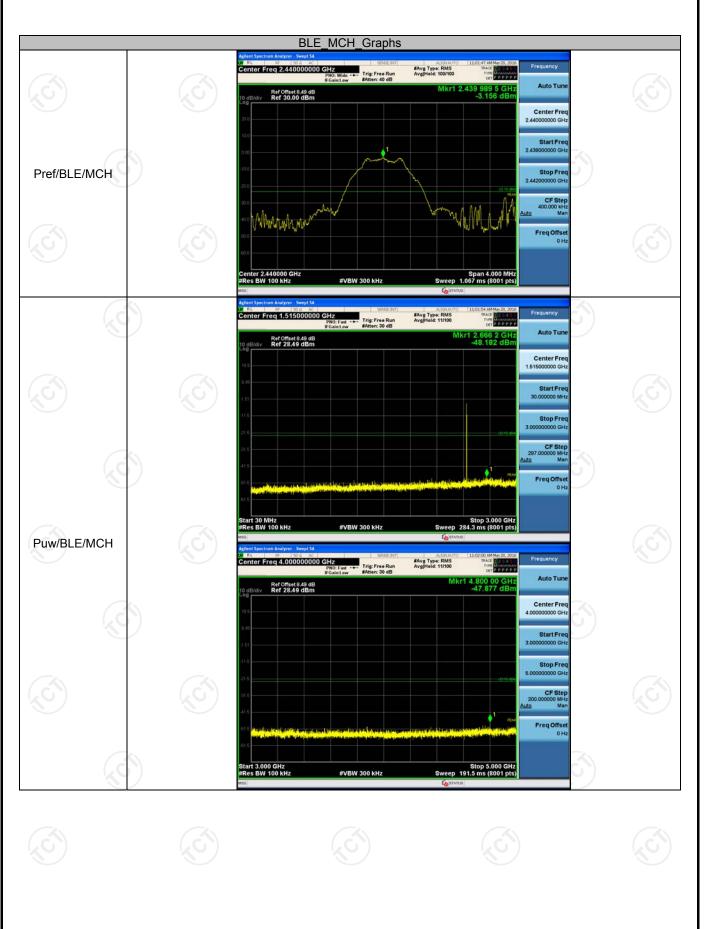
rootinooun			
Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-0.287	PASS
BLE	MCH	-1.815	PASS
BLE	HCH	-1.245	PASS

Test Graphs

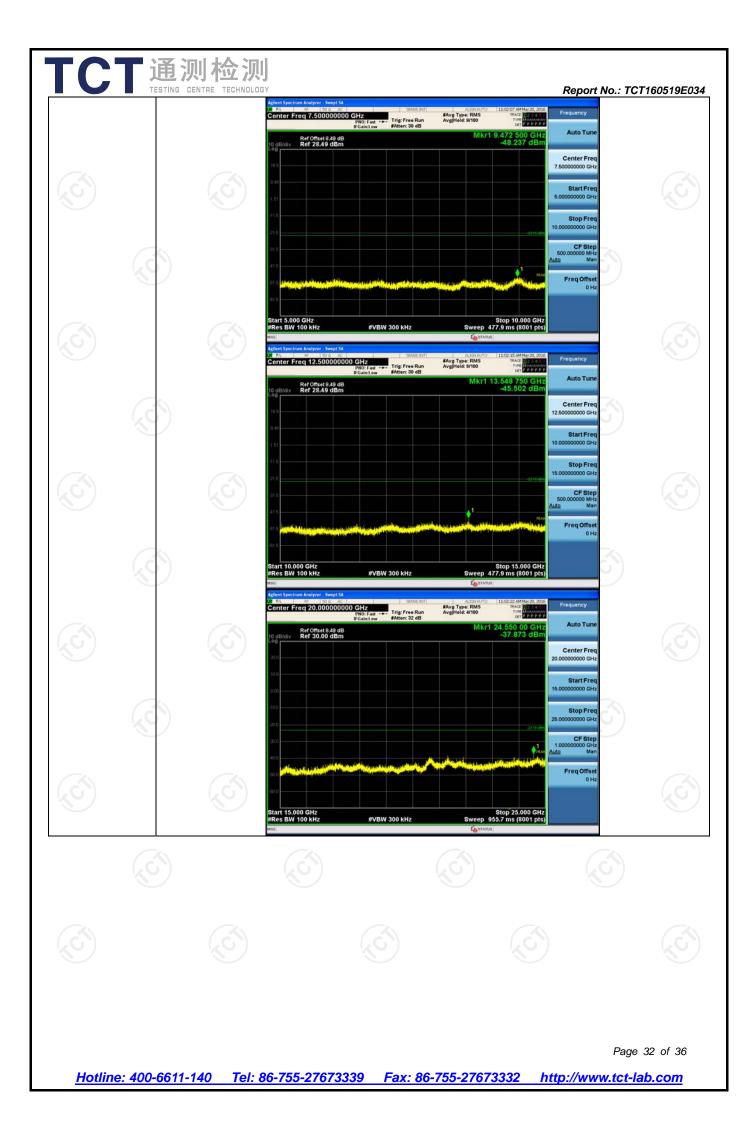
Band-edge for RF Conducted Emissions

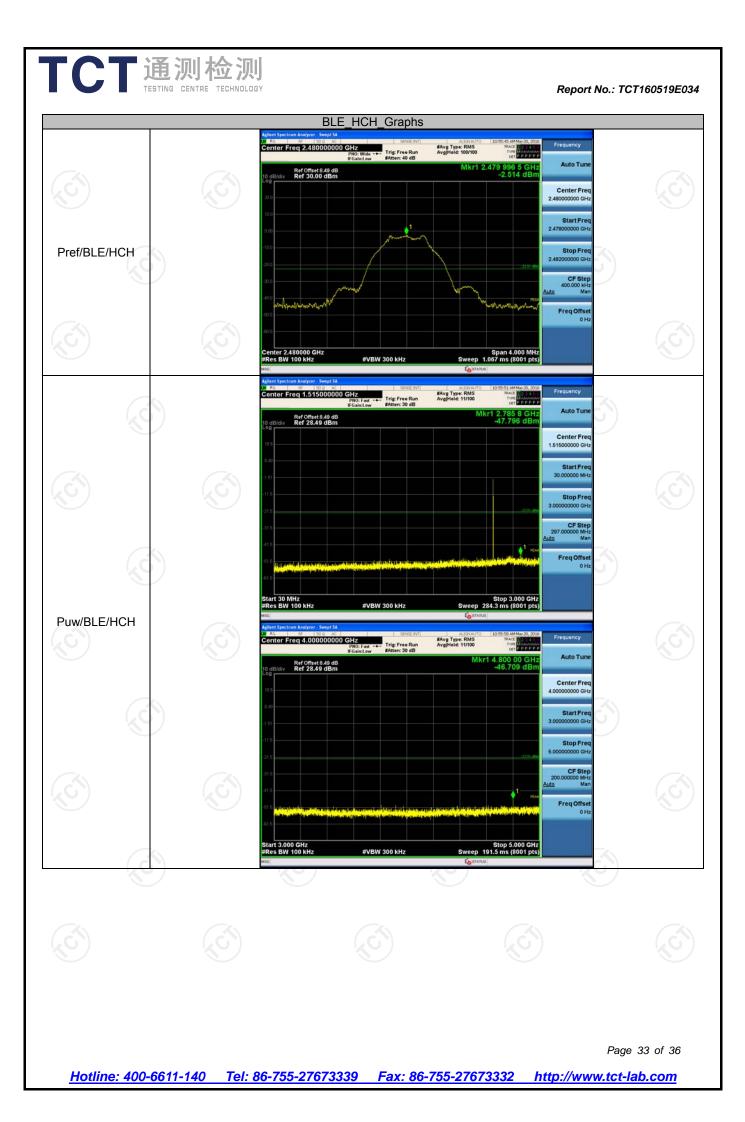
_			
Resi	ilt	Tab	le

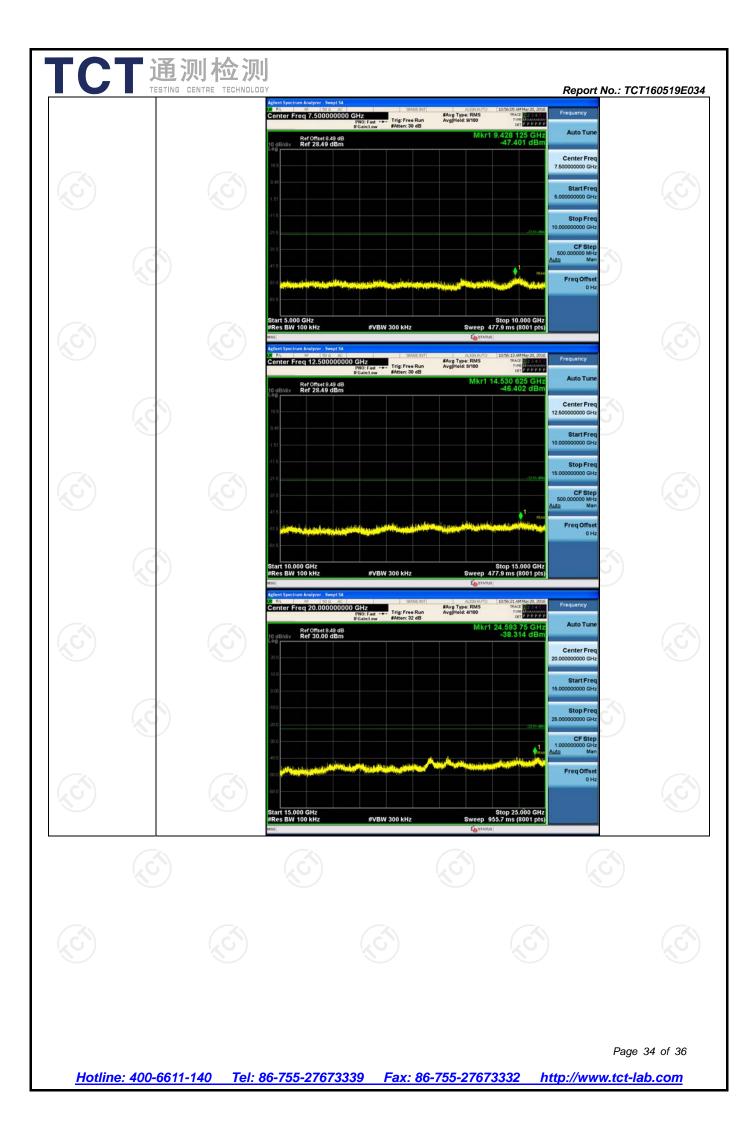

TCT通测检测 TESTING CENTRE TECHNOLOGY


Resu	It Table			May Courtain Land		
Mode	Channel	Carrie	r Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	120°)	-1.452	-41.315	-21.45	PASS
BLE	HCH Graphs		-2.456	-41.193	-22.46	PASS
1001	orapho		G	Graphs		
	<u>8</u> 7		Agilent Spectrum Analyzer - Swept SA	- 	MMwy20,2016 Frequency	
				h: Fast Trig: Free Run Avg[Hold: 100/100 10 in:Low #Atten: 40 dB D	а рарар	
			Ref Offset 8.59 dB 10 dB/div Ref 30.00 dBm 20 0	Mkr4 2.379 526 -41.3	15 dBm Center Freq	
			10.0		2.39000000 GHz	
			-10.0		Start Freq 2.375000000 GHz	
LCH			-30.0 -40.0 -50.0	$\cdots here main president the transmission of the second sec$	Stop Freq 2.40500000 GHz	
	(\vec{c})		Start 2.37500 GHz #Res BW 100 kHz	Stop 2.4 #VBW 300 kHz Sweep 3.200 ms (
			MRR MODE TRC SCL X	Y FUNCTION FUNCTION WOTH FUNCTION	ON VALUE O Auto Man	
			2 N 1 7 2.400 000 00 0 3 N 1 7 2.390 000 00 0 4 N 1 7 2.379 526 25 1 5	GHz -1.452 dBm GHz -4.582 dBm GHz -4.4832 dBm GHz -4.1315 dBm	Freq Offset 0 Hz	
			9 9 10			
			K MSG Agilent Spectrum Analyzer - Swept SA	Gatatus	*/	
			Center Freq 2.491000000 GHz	ERSE PTT ALIONAUTO 10:59:24 A	MMw20,2016 Frequency	
			Ref Offset 8,49 dB	Mkr4 2.497 828 -41.1		
			20.0		Center Freq 2.491000000 GHz	
					Start Freq 2.476000000 GHz	
нсн			300 400 500		Stop Freq	
			63 0 Start 2.47600 GHz	Stop 2.5	2.50600000 GHz 0600 GHz CF Step	
			Start 2.47600 GHz #Res BW 100 kHz MR01 M00E TRC SQL 1 N 1 P 2.480 001 26	#VBW 300 kHz Stop 2.50 y Sweep 3.200 ms (y Function gHz -2.456 dBm	3.000000 MHz NVALUE 2 Auto Man	
			2 N 1 f 2.483 500 00 0 3 N 1 f 2.500 000 0 4 N 1 f 2.497 828 75 1 5	GHz -2.456 dBm GHz -4.509 dBm GHz -44.256 dBm GHz -41.193 dBm	Freq Offset 0 Hz	
			7 8 9 10			
			MSG	Gastatus	>	
					Page	e 28 of 36
Hotline	: 400-6611-1	<u>40 Tel:</u>	86-755-27673339	Fax: 86-755-27673332	http://www.tct-l	lab.com

TCT通测检测 TESTING CENTRE TECHNOLOGY


Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-1.471	<limit< th=""><th>PASS</th></limit<>	PASS
BLE	MCH	-3.156	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	-2.514	<limit< td=""><td>PASS</td></limit<>	PASS
Test Gr				
		BLE_LCH_Graphs	- <u></u>	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Agilent Spectrum Analyzer - Swept SA	ALIZUATO 10:49:20 MMM/ 20, 2016	
		Center Freq 2.402000000 GHz PNO: Wide	Avg Type: RMS Avg[Hold: 100/100 rve	
		Ref Offset 8.59 dB	Mkr1 2.401 996 0 GHz -1.471 dBm	
		10 dB/div Ref 30.00 dBm	Center Freq	
		20.0	2.402000000 GHz	
		10.0	Start Free	
		200 minut	2.40000000 GHz	
Pref/BLE/LCH		-19.0	Stop Fred 2,40400000 GHz	
	(c)	-20.0	31.07.69	
		-30.0	CF Step 400.000 kHz Auto Man	
		10 0 martin and an and a start of the	Mar all another and	
		40.0	FreqOffset 0 Hz	
		40.0		
	(201)	Center 2.402000 GHz #Res BW 100 kHz #VBW 300 kHz	Span 4.000 MHz Sweep 1.067 ms (8001 pts)	(xC)
		MSS DW TOO KH2 #VBW 300 KH2	Sweep 1.067 ms (8001 pts)	
		Agilent Spectrum Analyzer - Swept SA	ALIGNAUTO 10:49:26 AM May 20, 2016 Frequency	
		Center Freq 1.515000000 GHz PND: Fast +	AvgiHold: 11/100 TYPE Cer Discourse	-2.
	.c	Ref Offset 8.59 dB 10 dB/div Ref 28.59 dBm	Mkr1 2.761 3 GHz -48.158 dBm	<u>6</u> )
		105	Center Freq	
		1.50	1.515000000 GHz	
			Start Freq 30.00000 MHa	
		71.4	Stop Fred	
		314	CF Step	
		41.4	297.000000 MHz Auto Man	
		514	Freq Offset	
	d)	51.4 a subtle b bool action of the descent stands for the second stands that a		G)
		Start 30 MHz #Res BW 100 kHz #VBW 300 kHz	Stop 3.000 GHz Sweep 284.3 ms (8001 pts)	
Puw/BLE/LCF	1	Mild Agillent Spectrum Analyzer - Swept SA	Co STATUS	
		Cepter Freq 4 00000000 GHz	AUXIVIAUTO 10:49:34 AMMiv 20, 2016 Avg Type: RMS THACE BEACT Avg[Hold: 9/100 THE DEP P P P P	
	KU)	IFGain:Low #Atten: 30 dB	Mkr1 4,800 00 GHz Auto Tune	K.
		Ref Offset 8.59 dB	-48.331 dBm	
		18.6	4.00000000 GHz	
	- K	8.59	Start Free	
	(°D)	-1.41	3.00000000 GHz	G`)
		-12.4	Stop Free	
		-21.4	5.00000000 GHz	
		-31.4	CF Step 200.000000 MHz	
		41.4	Auto Man	
	KU)		Freq Offset	
		61.4		
		Start 3.000 GHz	Stop 5.000 GHz	
		Start 3.000 GHz #Res BW 100 kHz #VBW 300 kHz	Sweep 191.5 ms (8001 pts)	
	1			



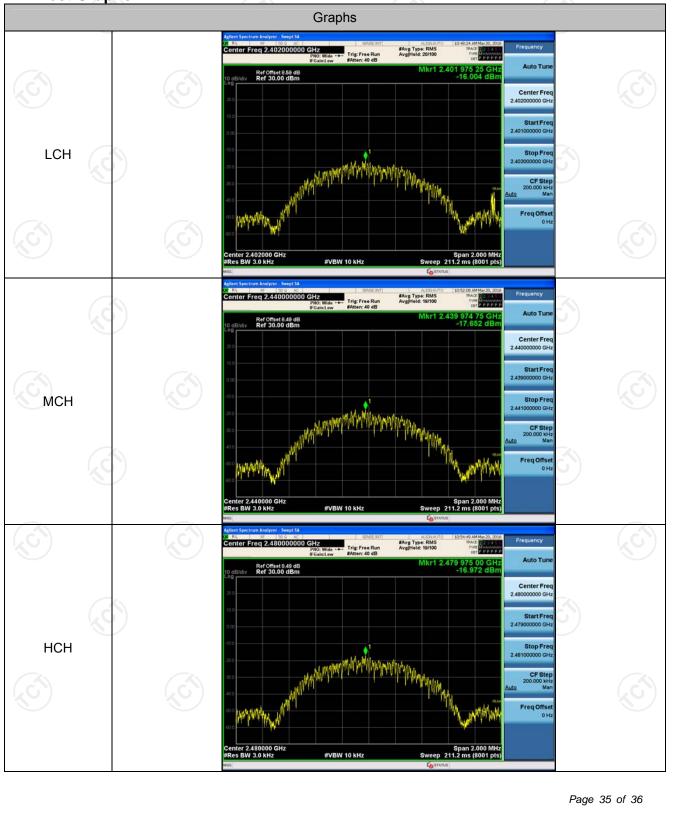

Page 31 of 36

Report No.: TCT160519E034








### **Power Spectral Density**

#### **Result Table**

TCT通测检测 TESTING CENTRE TECHNOLOGY

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-16.004	PASS
BLE	MCH	-17.652	PASS
BLE	НСН	-16.972	PASS

#### Test Graphs



		h <b>otograp</b> t TCT1605		si Selup		
Appen	dix C: Pl	hotograp	hs of EU	Т		
Refer to	test report	t TCT1605	19E019			