

Shenzhen Huatongwei International Inspection Co., Ltd.

Huatongwei Building, keji'nan 12th Road, High-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China

Tel:86-755-26715499 E-mail: cs@ szhtw.com.cn http://www.szhtw.com.cn

FCC REPORT

Report Reference No.....:: CHTEW21010027 Report Verification:

Project No..... SHT2012127201EW

FCC ID.....: ZSW-10-036

Applicant's name....: b mobile HK Limited

Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak Address....:

Street; Kwai Chung; New Territories; Hong Kong.

Test item description: MIFI

Trade Mark: **Bmobile**

Model/Type reference..... M₅L

Listed Model(s)

FCC CFR Title 47 Part 2 Standard:

FCC CFR Title 47 Part 24

FCC CFR Title 47 Part 27

Date of receipt of test sample..... Dec. 31, 2020

Date of testing..... Jan. 04, 2021- Jan. 11, 2021

Date of issue..... Jan. 12, 2021

Result....: **Pass**

Compiled by

File administrators Silvia Li (position+printedname+signature)...:

Supervised by

(position+printedname+signature)....: Project Engineer Aaron Fang Silvia Li Aaron.Fang

Approved by

(position+printedname+signature)....: Manager Hans Hu

Shenzhen Huatongwei International Inspection Co., Ltd. Testing Laboratory Name:

1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Address....:

Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Report No.: CHTEW21010027 Page: 2 of 34 Issued: 2021-01-12

Contents

<u>1.</u>	IEST STANDARDS AND REPORT VERSION	3
1.1.	Applicable Standards	3
1.2.	Report version information	3
<u>2.</u>	TEST DESCRIPTION	4
<u> </u>	TEST DESCRIPTION	
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT operation mode	7
3.5.	EUT configuration	7
3.6.	Modifications	7
<u>4.</u>	TEST ENVIRONMENT	8
4.1.	Testing Laboratory Information	8
4.2.	Equipments Used during the Test	8
4.3.	Environmental conditions	9
4.4.	Statement of the measurement uncertainty	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	10
5.1.	Conducted Output Power	10
5.2.	Peak-to-Average Ratio	11
5.3.	99% Occupied Bandwidth & 26 dB Bandwidth	12
5.4.	Band Edge	13
5.5.	Conducted Spurious Emissions	14
5.6.	Frequency stability VS Temperature measurement	15
5.7.	Frequency stability VS Voltage measurement	16
5.8.	ERP and EIRP	17
5.9.	Radiated Spurious Emission	24
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	3 4
<u>7.</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	34
<u>8.</u>	APPENDIX REPORT	34
_		

Report No.: CHTEW21010027 Page: 3 of 34 Issued: 2021-01-12

1. TEST STANDARDS AND REPORT VERSION

1.1. Applicable Standards

The tests were performed according to following standards:

FCC Rules Part 2: FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS

FCC Rules Part 24: PERSONAL COMMUNICATIONS SERVICES

FCC Rules Part 27: MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

ANSI C63.26: 2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

KDB 971168 D01 Power Meas License Digital Systems v03: MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

1.2. Report version information

Revision No.	Date of issue	Description
N/A	2021-01-12	Original

Report No.: CHTEW21010027 Page: 4 of 34 Issued: 2021-01-12

2. Test Description

Test Item	Section in CFR 47	Result	Test Engineer	
	Part 2.1046			
Conducted Output Power	Part 24.232(c)	Pass	Jiongsheng Feng	
	Part 27.50			
Dook to Average Datio	Part 24.232	Door	Kanaahaaa Faaa	
Peak-to-Average Ratio	Part 27.50	Pass	Jiongsheng Feng	
000/ 0	Part 2.1049			
99% Occupied Bandwidth & 26 dB Bandwidth	Part 24.238(b)	Pass	Jiongsheng Feng	
Bandwidth	Part 27.53			
	Part 2.1051			
Band Edge	Part 24.238	Pass	Jiongsheng Feng	
	Part 27.53			
	Part 2.1051		Jiongsheng Feng	
Conducted Spurious Emissions	Part 24.238	Pass		
	Part 27.53			
	Part 2.1055(a)(1)(b)		Jiongsheng Feng	
Frequency stability VS Temperature	Part 24.235	Pass		
	Part 27.54			
	Part 2.1055(d)(1)(2)			
Frequency stability VS Voltage	Part 24.235	Pass	Jiongsheng Feng	
	Part 27.54			
ERP and EIRP	Part 24.232(b)	Pass	Dan Via	
ERP and EIRP	Part 27.50	Pass	Pan Xie	
	Part 2.1053			
Radiated Spurious Emissions	Part 24.238	Pass	Pan Xie	
	Part 27.53			

Note: The measurement uncertainty is not included in the test result.

Report No.: CHTEW21010027 Page: 5 of 34 Issued: 2021-01-12

3. **SUMMARY**

3.1. Client Information

Applicant:	b mobile HK Limited			
Address: Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak Stre Chung; New Territories; Hong Kong.				
Manufacturer: b mobile HK Limited				
Address:	Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak Street; Kwai Chung; New Territories; Hong Kong.			

3.2. Product Description

<u>-</u>							
Name of EUT:	MIFI	MIFI					
Trade Mark:	Bmobile	Bmobile					
Model No.:	M5L						
Listed Model(s):	-						
SIM Information:	Support One SIM Card						
Power supply:	DC 3.8V						
Adapter information:	-						
Hardware version:	Bmobile_M5L_HW_V1.0						
Software version:	Bmobile_M5L_OM_LATA	M_V002					
4G							
Operation Band:	☑ FDD Band 2						
	⊠ FDD Band 7	☐ FDD Band 12 ☐ FDD Band 17					
	FDD Band 2:	1850.7 MHz – 1909.3 MHz					
Transmit frequency:	FDD Band 4:	1710.7 MHz – 1754.3 MHz					
	FDD Band 7:	2502.5 MHz – 2567.5 MHz					
	FDD Band 2:	1930.7 MHz – 1989.3 MHz					
Receive frequency:	FDD Band 4:	2110.7 MHz – 2154.3 MHz					
	FDD Band 7:	2622.5 MHz – 2687.5 MHz					
	FDD Band 2:	1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz					
Channel bandwidth:	FDD Band 4:	1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz					
	FDD Band 7:	5MHz, 10MHz, 15MHz, 20MHz					
Power Class:	Class 3						
Modulation type:	QPSK, 16QAM						
Antenna type	Inner antenna						
Antenna Gain	Band2:2.05dBi Band4:2.05dBi Band7:2.05dBi						

Report No.: CHTEW21010027 Page: 6 of 34 Issued: 2021-01-12

3.3. Operation state

Test frequency list

FDD Band 2 Test Frequency Bandwidth Nu Frequency of Uplink [MHz] No. No. Frequency of Uplink [MHz] No. No. Frequency of Uplink [MHz] No. No. Prequency of Uplink [MHz] No. N		T					
Low Range	FDD Band 2			NuL	Frequency of Uplink [MHz]	N _{DL}	Downlink
Low Range			1.4	18607	1850.7	607	1930.7
Low Range			3	18615	1851.5	615	1931.5
Cow Nange		11	5				
15 11 18675 1857.5 675 1937.5		Low Range					
Mid Range							
Mid Range							
High Range		Mid Range					
High Range				19193	1909 3	1193	1989 3
High Range							
High Range							
Test Frequency ID		High Range					
NOTE 1: Bandwidth for which a relaxation of the specified UE receiver sensitivity requirement (TS 36.101 [27] Clause 7.3) is allowed. Sacration of the specified UE receiver sensitivity requirement (TS 36.101 [27] Clause 7.3) is allowed. Test Frequency ID Bandwidth NuL Frequency of Uplink [MHz] NuL Sacration							
NOTE 1: Bandwidth for which a relaxation of the specified UE receiver sensitivity requirement (TS 36.101 [27] Clause 7.3) is allowed. Test Frequency ID Bandwidth [MHz] NuL Frequency of Uplink [MHz] Interpretation Nul Frequency of Uplink [MHz] Interpretation Nul Interpretation Interpretat							
Test Frequency ID							
MHz Uplink [MHz Downlink [MHz MHz MHz MHz MHz M	EDD Bond 4					l N	\
Low Range	FDD band 4	Test Frequency ID		NuL	Uplink [MHz]	NDL	Downlink
Low Range			1.4	19957	1710.7	1957	
Low Range		11	3	19965		1965	2111.5
Low Range		I I I I I I I I I I I I I I I I I I I					
15 20025 1717.5 2025 2117.5 20		Low Range					
Test Frequency ID Bandwidth NuL Frequency of Uplink (MHz) Low Range 1.0 2000							
Mid Range		11					
Test Frequency ID		Mid Range					
High Range		····a · ···ai···go					2154.3
High Range		11					
Test Frequency ID		11					
Test Frequency ID		High Range					
Test Frequency ID Bandwidth NuL Frequency of Uplink [MHz] NuL Frequency of Downlink [MHz] State		11					
FDD Band 7 Test Frequency ID		11					
MHz				20000		2000	21.10
Low Range 10 20800 2505 2800 2625 15 20825 2507.5 2825 2627.5 2019 20850 2510 2850 2630	FDD Band 7	Test Frequency ID		N _{UL}		N _{DL}	Downlink
Low Hange 15 20825 2507.5 2825 2627.5 20 19 20850 2510 2850 2630				20775		2775	2622.5
Low Range 15 20825 2507.5 2825 2627.5 20 19 20850 2510 2850 2630			10	20800	2505	2800	2625
20 ^[1] 20850 2510 2850 2630		Low Range		20825			
		Mid Range	5/10/15 20 ^[1]	21100	2535	3100	2655
5 21425 2567.5 3425 2687.5							
10 21400 2565 3400 2685		I I I I I I I I I I I I I I I I I I I				3400	2685
High Range 15 21375 2562.5 3375 2682.5		High Range	15			3375	2682.5
20 ^[1] 21350 2560 3350 2680			20 [1]				2680
NOTE 1: Bandwidth for which a relaxation of the specified UE receiver sensitivity requirement (TS 36.101 [27] Clause 7.3) is allowed.				of the speci		nsitivity requir	ement (TS

Report No.: CHTEW21010027 Page: 7 of 34 Issued: 2021-01-12

3.4. EUT operation mode

For RF test items

The EUT has been tested under typical operating condition. Testing was performed by configuring EUT to maximum output power status.

Tabliforna	Donal			Bandwid	th (MHz)			Modulation		RB#		
Test Items	Band	1.4	3	5	10	15	20	QPSK	16QAM	1	Half	Full
	2	0	0	0	0	0	0	0	0	0	0	0
Conducted Output Power	4	0	0	0	0	0	0	0	0	0	0	0
. 66.	7	-	-	0	0	0	0	0	0	0	0	0
D 1 4 A	2	0	0	0	0	0	0	0	0	0	1	0
Peak-to-Average Ratio	4	0	0	0	0	0	0	0	0	0	-	0
. tallo	7	-	-	0	0	0	0	0	0	0	-	0
99% Occupied	2	0	0	0	0	0	0	0	0	-	1	0
Bandwidth & 26	4	0	0	0	0	0	0	0	0	-	-	0
dB Bandwidth	7	-	-	0	0	0	0	0	0	-	-	0
	2	0	0	0	0	0	0	0	0	0	-	0
Band Edge	4	0	0	0	0	0	0	0	0	0	-	0
	7	-	-	0	0	0	0	0	0	0	-	0
	2	0	0	0	0	0	0	0	0	0	-	-
Conducted Spurious Emission	4	0	0	0	0	0	0	0	0	0	-	-
Op 3	7	-	-	0	0	0	0	0	0	0	-	-
	2	0	0	0	0	0	0	0	0	-	-	0
Frequency Stability	4	0	0	0	0	0	0	0	0	-	-	0
	7	-	-	0	0	0	0	0	0	-	-	0
	2	0	0	0	0	0	0	0	0	0	-	-
ERP and EIRP	4	0	0	0	0	0	0	0	0	0	-	-
	7	-	-	0	0	0	0	0	0	0	-	-
Dadiated Country	2	0	0	0	0	0	0	0	0	0	-	-
Radiated Spurious Emission	4	0	0	0	0	0	0	0	0	0	-	-
	7	-	-	0	0	0	0	0	0	0	-	-
Remark	1. The mark "o"means that this configuration is chosenfor testing 2. The mark "-"means that this bandwidth is not test. 3. The device is investigatedfrom 30MHz to10 times offundamental signal for radiated spurious emission test under different RB size/offset and modulations in exploratory test. Subsequently, only the worst case emissions are reported.											

3.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer

0	 supplied by the lab

	Manufacturer:	/
	Model No.:	/
	Manufacturer:	/
0	Model No.:	/

3.6. Modifications

No modifications were implemented to meet testing criteria.

Report No.: CHTEW21010027 Page: 8 of 34 Issued: 2021-01-12

4. TEST ENVIRONMENT

4.1. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.				
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China				
Connect information:	Tel: 86-755-26715499 E-mail: cs@szhtw.com.cn http://www.szhtw.com.cn				
Qualifications	Туре	Accreditation Number			
Qualifications	FCC	762235			

4.2. Equipments Used during the Test

7.2.	=qaipinoint	o ooca aariii	9 1110 1001					
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
•	Signal and spectrum Analyzer	R&S	HTWE0242	FSV40	100048	2020/10/19	2021/10/18	
•	Signal & Spectrum Analyzer	R&S	HTWE0262	FSW26	103440	2020/10/19	2021/10/18	
•	Spectrum Analyzer	Agilent	HTWE0286	N9020A	MY50510187	2020/10/19	2021/10/18	
•	Radio communication tester	R&S	HTWE0287	CMW500	137688-Lv	2020/10/19	2021/10/18	
•	Test software	Tonscend	N/A	JS1120	N/A	N/A	N/A	
•	Radiated Spu	rious Emission						
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	N/A	2018/09/27	2021/09/26	
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2020/10/20	2021/10/19	
•	Loop Antenna	R&S	HTWE0170	HFH2-Z2	100020	2018/04/02	2021/04/01	
•	Broadband Horn Antenna	SCHWARZBECK	HTWE0103	BBHA9170	BBHA9170472	2018/10/12	2021/10/11	
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0123	VULB9163	538	2018/04/04	2021/04/03	
•	Horn Antenna	SCHWARZBECK	HTWE0126	9120D	1011	2020/04/01	2023/03/31	
•	Pre-amplifier	CD	HTWE0071	PAP-0102	12004	2020/11/12	2021/11/11	
•	Broadband Preamplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2020/05/10	2021/05/09	
•	RF Connection Cable	HUBER+SUHNER	HTWE0120- 01	6m 18GHz S Serisa	N/A	2020/05/10	2021/05/09	
•	RF Connection Cable	HUBER+SUHNER	HTWE0120- 02	6m 3GHz RG Serisa	N/A	2020/05/10	2021/05/09	
•	RF Connection Cable	HUBER+SUHNER	HTWE0120- 03	6m 3GHz RG Serisa	N/A	2020/05/10	2021/05/09	
•	RF Connection Cable	HUBER+SUHNER	HTWE0120- 04	6m 3GHz RG Serisa	N/A	2020/05/10	2021/05/09	
•	RF Connection Cable	HUBER+SUHNER	HTWE0121- 01	6m 18GHz S Serisa	N/A	2020/05/10	2021/05/09	
•	EMI Test Software	Audix	N/A	E3	N/A	N/A	N/A	
Auxiliary Equipment								
Used	Test Equipment	Manufacturer	Equipment No.	Model No	o. Serial N	Last Cal. lo. Date (YY-MM-DE	Next Cal. Date (YY-MM-DI	
•	Climate chamber	ESPEC	HTWE0254	GPL-2	N/A	2020/10/21	2021/10/20	
•	DC Power Supply	Gwinstek	HTWE0274	SPS-241	5 GER835	793 N/A	N/A	

Report No.: CHTEW21010027 Page: 9 of 34 Issued: 2021-01-12

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

	VN=Nominal Voltage	DC 3.80V		
Voltage	VL=Lower Voltage	DC 3.60V		
	VH=Higher Voltage	DC 4.35V		
Tomporoturo	TN=Normal Temperature	25 °C		
Temperature	Extreme Temperature	From −30° to + 50° centigrade		
Humidity	30~60 %			
Air Pressure	950-1050 hPa			

4.4. Statement of the measurement uncertainty

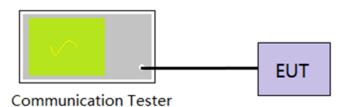
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01"Electromagnetic compatibilityand Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics;Part 1"and TR-100028-02 "Electromagnetic compatibilityand Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics;Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongweilaboratory is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.51 dB	(1)
Transmitter power Radiated	2.66dB for <1GHz 3.44dB for >1GHz	(1)
Conducted spurious emissions 9kHz~40GHz	0.51 dB	(1)
Radiated spurious emissions	2.66dB for <1GHz 3.44dB for >1GHz	(1)
Occupied Bandwidth	15Hz for <1GHz 70Hz for >1GHz	(1)
Frequency error	15Hz for <1GHz 70Hz for >1GHz	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: CHTEW21010027 Page: 10 of 34 Issued: 2021-01-12


5. TEST CONDITIONS AND RESULTS

5.1. Conducted Output Power

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

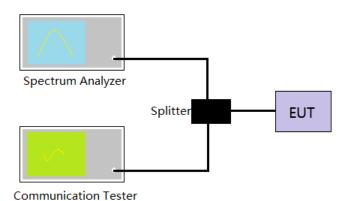
- 1. The EUT output port was connected to communication tester.
- 2. Set EUT at maximum power through communication tester.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure the maximum burst average power.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix A on the section 8 appendix report


Report No.: CHTEW21010027 Page: 11 of 34 Issued: 2021-01-12

5.2. Peak-to-Average Ratio

LIMIT

13dB

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. Center Frequency = Carrier frequency, RBW > Emission bandwidth of signal
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed.
 - i. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms.
 - ii. For bursttransmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that issynced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in whichthetransmitter is operating at maximum power
- 6. Record the maximum PAPR level associated with a probability of 0.1%.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix B on the section 8 appendix report

Report No.: CHTEW21010027 Page: 12 of 34 Issued: 2021-01-12

5.3. 99% Occupied Bandwidth & 26 dB Bandwidth

<u>LIMIT</u>

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. Spectrum analyzer setting as follow:

Center Frequency= Carrier frequency, RBW=1% to 5% of the anticipated OBW, VBW= 3 * RBW, Detector=Peak,

Trace maximum hold.

4. Record the value of 99% Occupied bandwidth and 26dB bandwidth.

TEST MODE:

Please refer to the clause 3.3

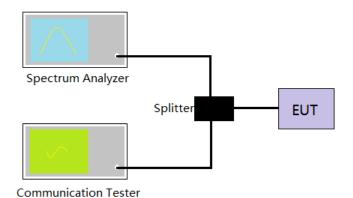
TEST RESULTS

Refer to appendix C on the section 8 appendix report

Report No.: CHTEW21010027 Page: 13 of 34 Issued: 2021-01-12

5.4. Band Edge

LIMIT


Part 24.238 and Part 27.53 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

LTE Band 7

Part 27.53 m(4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees. Limit <-25 dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- Set EUT in maximum power output.
- 3. The band edges of low and high channels were measured.
- Spectrum analyzer setting as follow:
 RBW= no less than 1% of the OBW, VBW =3 * RBW, Sweep time= Auto
- Record the test plot.

TEST MODE:

Please refer to the clause 3.3

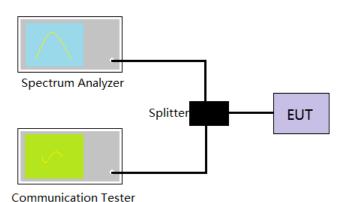
TEST RESULTS

Refer to appendix D on the section 8 appendix report

Report No.: CHTEW21010027 Page: 14 of 34 Issued: 2021-01-12

5.5. Conducted Spurious Emissions

LIMIT


Part 24.238 and Part 27.53 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

LTE Band 7

Part 27.53 m(4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees. Limit <-25 dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- Spectrum analyzer setting as follow:

Below 1GHz, RBW=100KHz, VBW = 300KHz, Detector=Peak, Sweep time= Auto Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peak, Sweep time= Auto Scan frequency range up to 10th harmonic.

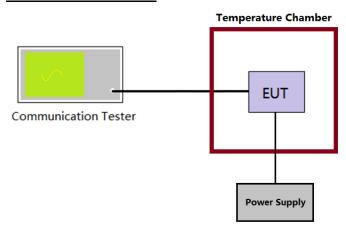
4. Record the test plot.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix E on the section 8 appendix report


Report No.: CHTEW21010027 Page: 15 of 34 Issued: 2021-01-12

5.6. Frequency stability VS Temperature measurement

LIMIT

2.5ppm

TEST CONFIGURATION

TEST PROCEDURE

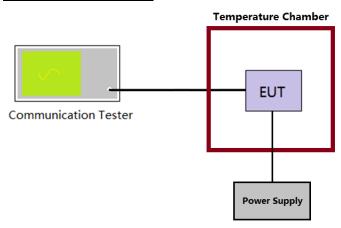
- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. The EUT output port was connected to communication tester.
- 3. The EUT was placed inside the temperature chamber.
- 4. Turn EUT off and set the chamber temperature to –30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- 5. Repeat step 4 measure with 10°C increased per stage until the highest temperature of +50°C reached.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix F on the section 8 appendix report


Report No.: CHTEW21010027 Page: 16 of 34 Issued: 2021-01-12

5.7. Frequency stability VS Voltage measurement

LIMIT

2.5ppm

TEST CONFIGURATION

TEST PROCEDURE

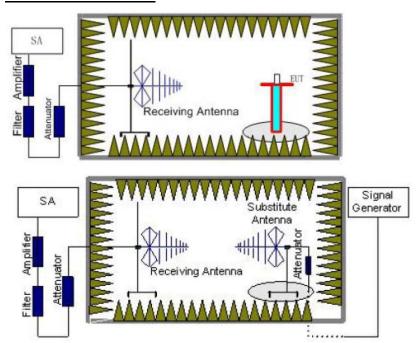
- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. The EUT output port was connected to communication tester.
- 3. The EUT was placed inside the temperature chamber at 25°C
- 4. The power supply voltage to the EUT was varied ±15% of the nominal value measured at the input to the EUT
- 5. Record the maximum frequency change.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix F on the section 8 appendix report


Report No.: CHTEW21010027 Page: 17 of 34 Issued: 2021-01-12

5.8. ERP and EIRP

LIMIT

LTE Band 2/7: 2W(33dBm) EIRP LTE Band 4: 1W(30dBm) EIRP

TEST CONFIGURATION

TEST PROCEDURE

- Place the EUT in the center of the turntable.
 - a) For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table at a nominal height of 80 cm above the reference ground plane
 - b) For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table at a nominal height of 1.5 m above the ground plane.
- 2. Unless the EUT uses an integral antenna, the EUT shall be terminated with a non-radiating transmitter load. In cases where the EUT uses an adjustable antenna, the antenna shall be adjusted through typical positions and lengths to maximize emissions levels.
- 3. The EUT shall be tested while operating on the frequency per manufacturer specification. Set the transmitter to operate in continuous transmit mode.
- 4. Receiver or Spectrum set as follow:

Below 1GHz, RBW=100kHz, VBW=300kHz, Detector=Peak, Sweep time=Auto

Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peck, Sweep time=Auto

- 5. Each emission under consideration shall be evaluated:
 - a) Raise and lower the measurement antenna from 1 m to 4 m, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.
 - b) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.
 - c) Return the turntable to the azimuth where the highest emission amplitude level was observed.
 - d) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.
 - e) Record the measured emission amplitude level and frequency
- 6. Repeat step 5 for each emission frequency with the measurement antenna oriented in both the horizontal

Report No.: CHTEW21010027 Page: 18 of 34 Issued: 2021-01-12

and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.

- Set-up the substitution measurement with the reference point of the substitution antenna located as near
 as possible to where the center of the EUT radiating element was located during the initial EUT
 measurement.
- 8. Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.
- 9. Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.
- 10. For each emission that was detected and measured in the initial test
 - a) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
 - b) Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step 5 and step 6.
 - c) Record the output power level of the signal generator when equivalence is achieved in step b).
- 11. Repeat step 8 through step 10 with the measurement antenna oriented in the opposite polarization.
- 12. Calculate the emission power in dBm referenced to a half-wave dipole using the following equation:

Pe = Ps(dBm) - cable loss (dB) + antenna gain (dBd)

where

Pe = equivalent emission power in dBm

Ps = source (signal generator) power in dBm

NOTE—dBd refers to the measured antenna gain in decibels relative to a half-wave dipole.

13. Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from:

gain (dBd) = gain (dBi) - 2.15 dB.

If necessary, the antenna gain can be calculated from calibrated antenna factor information

14. Provide the complete measurement results as a part of the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

 Report No.: CHTEW21010027 Page: 19 of 34 Issued: 2021-01-12

LTE Band 2-1.4MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dBm)	Result		
iviodulation	Channel	Vertical	Horizontal	LIIIII (UDIII)	Result		
	Low	20.54	18.11				
QPSK	Mid	20.74	18.05	20.00	PASS		
	High	20.39	18.06				
	Low	20.05	17.67	<33.00			
16QAM	Mid	20.26	17.67		PASS		
	High	19.90	17.71				

LTE Band 2-3MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dDm)	Dogult		
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result		
	Low	20.48	17.99				
QPSK	Mid	20.70	18.05	00.00	PASS		
	High	20.33	18.02				
	Low	20.21	17.84	<33.00			
16QAM	Mid	20.35	17.75		PASS		
	High	19.90	17.74				

LTE Band 2-5MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dBm)	Result		
Modulation	Chamer	Vertical	Horizontal	Limit (ubin)			
	Low	20.74	18.25				
QPSK	Mid	20.94	18.16	00.00	PASS		
	High	20.63	18.19				
	Low	20.28	17.80	<33.00			
16QAM	Mid	20.45	17.79		PASS		
	High	20.08	17.82		,		

LTE Band 2-10MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dBm)	Result		
iviodulation	Channel	Vertical	Horizontal	LIIIII (UDIII)			
	Low	20.73	18.27				
QPSK	Mid	20.93	18.19	.22.00	PASS		
	High	20.62	18.23				
	Low	20.27	17.83	<33.00			
16QAM	Mid	20.44	17.84		PASS		
	High	20.07	17.85				

Report No.: CHTEW21010027 Page: 20 of 34 Issued: 2021-01-12

LTE Band 2-15MHz							
	<u> </u>	EIRP	(dBm)		Result		
Modulation	Channel	Vertical	Horizontal	Limit (dBm)			
	Low	20.65	18.13	22.00			
QPSK	Mid	20.86	18.17		PASS		
	High	20.53	18.17				
	Low	20.40	17.98	<33.00			
16QAM	Mid	20.51	17.90		PASS		
	High	20.05	17.86				

LTE Band 2-20MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dPm)	Result		
Modulation	Channel	Vertical	Horizontal	Limit (dBm)			
	Low	20.69	18.17				
QPSK	Mid	20.93	18.22	22.00	PASS		
	High	20.60	18.21				
	Low	20.46	18.07	<33.00			
16QAM	Mid	20.57	17.94		PASS		
	High	20.10	17.89	-			

Report No.: CHTEW21010027 Page: 21 of 34 Issued: 2021-01-12

LTE Band 4-1.4MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dPm)	Result		
iviodulation	Channel	Vertical	Horizontal	Limit (dBm)			
	Low	21.62	19.98				
QPSK	Mid	21.91	20.23	20.00	PASS		
	High	21.82	19.93				
	Low	20.97	19.50	<30.00			
16QAM	Mid	21.24	19.76		PASS		
	High	21.12	19.51				

	LTE Band 4-3MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dDm)	Dogult			
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result			
	Low	21.74	19.98					
QPSK	Mid	21.88	20.16	00.00	PASS			
	High	21.73	19.89					
	Low	21.06	19.63	<30.00				
16QAM	Mid	21.30	19.61		PASS			
	High	21.21	19.57					

	LTE Band 4-5MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dDm)	Result			
Modulation	Channel	Vertical	Horizontal	Limit (dBm)				
	Low	21.92	20.13					
QPSK	Mid	22.15	20.38	20.00	PASS			
	High	22.05	20.09					
	Low	21.19	19.61	<30.00				
16QAM	Mid	21.43	20.02		PASS			
	High	21.28	19.59					

LTE Band 4-10MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dPm)	Dogult		
iviodulation	Channel	Vertical	Horizontal	Limit (dBm)	Result		
	Low	21.79	20.09				
QPSK	Mid	22.05	20.33	20.00	PASS		
	High	21.95	20.03				
	Low	21.10	19.59	<30.00			
16QAM	Mid	21.35	19.84		PASS		
	High	21.21	19.57				

Report No.: CHTEW21010027 Page: 22 of 34 Issued: 2021-01-12

LTE Band 4-15MHz							
Modulation	Channel	EIRP	(dBm)	Limit (dPm)	Result		
Modulation	Channel	Vertical	Horizontal	Limit (dBm)			
	Low	21.92	20.07				
QPSK	Mid	22.02	20.25	20.00	PASS		
	High	21.87	19.98				
	Low	21.19	19.70	<30.00			
16QAM	Mid	21.42	19.77		PASS		
	High	21.31	19.62				

	LTE Band 4-20MHz								
Modulation	Channel	EIRP	(dBm)	Limit (dDm)	Result				
iviodulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	21.93	20.09	20.00	PASS				
QPSK	Mid	22.09	20.28						
	High	21.93	20.00						
	Low	21.19	19.72	<30.00					
16QAM	Mid	21.48	19.75		PASS				
	High	21.38	19.67						

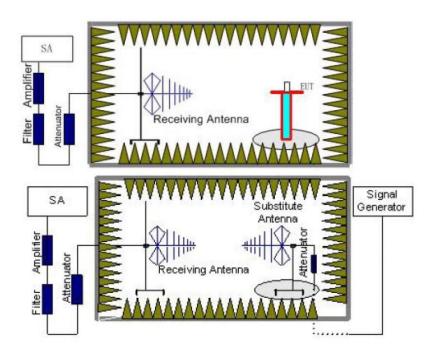
Report No.: CHTEW21010027 Page: 23 of 34 Issued: 2021-01-12

LTE Band 7-5MHz									
Modulation	Channal	EIRP (dBm)		Limit (dDm)	Dogult				
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	20.69	19.09						
QPSK	Mid	20.77	19.02		PASS				
	High	20.62	18.89	-22.00					
	Low	20.17	18.88	<33.00					
16QAM	Mid	20.25	18.80]	PASS				
	High	20.11	18.78						

	LTE Band 7-10MHz								
Modulation	Channal	EIRP	(dBm)	Limit (dDm)	Dogult				
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	20.65	19.01	-					
QPSK	Mid	20.70	18.90		PASS				
	High	20.56	18.88						
	Low	20.29	18.91	<33.00					
16QAM	Mid	20.31	18.77		PASS				
	High	20.18	18.72						

	LTE Band 7-15MHz								
Modulation	Channel	EIRP	(dBm)	Limit (dPm)	Result				
iviodulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	20.65	19.04						
QPSK	Mid	20.72	19.02		PASS				
	High	20.58	18.96	-22.00					
	Low	20.21	18.82	<33.00					
16QAM	Mid	20.28	18.73		PASS				
	High	20.14	18.71						

	LTE Band 7-20MHz								
Modulation	Channel	EIRP	(dBm)	Limit (dDm)	Popult				
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result				
	Low	20.64	19.06	00.00					
QPSK	Mid	20.69	18.95		PASS				
	High	20.55	18.93						
	Low	20.31	18.94	<33.00					
16QAM	Mid	20.41	18.90		PASS				
	High	20.25	18.87						


Report No.: CHTEW21010027 Page: 24 of 34 Issued: 2021-01-12

5.9. Radiated Spurious Emission

<u>LIMIT</u>

LTE Band 2/4: -13dBm; LTE Band 7: -25dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. Place the EUT in the center of the turntable.
 - a) For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table at a nominal height of 80 cm above the reference ground plane
 - b) For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table at a nominal height of 1.5 m above the ground plane.
- 2. Unless the EUT uses an integral antenna, the EUT shall be terminated with a non-radiating transmitter load. In cases where the EUT uses an adjustable antenna, the antenna shall be adjusted through typical positions and lengths to maximize emissions levels.
- 3. The EUT shall be tested while operating on the frequency per manufacturer specification. Set the transmitter to operate in continuous transmit mode.
- 4. Receiver or Spectrum set as follow:

Below 1GHz, RBW=100kHz, VBW=300kHz, Detector=Peak, Sweep time=Auto

Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peck, Sweep time=Auto

- 5. Each emission under consideration shall be evaluated:
 - a) Raise and lower the measurement antenna from 1 m to 4 m, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.
 - b) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.
 - c) Return the turntable to the azimuth where the highest emission amplitude level was observed.
 - d) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.
 - e) Record the measured emission amplitude level and frequency
- 6. Repeat step 5 for each emission frequency with the measurement antenna oriented in both the horizontal

Report No.: CHTEW21010027 Page: 25 of 34 Issued: 2021-01-12

and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.

- Set-up the substitution measurement with the reference point of the substitution antenna located as near
 as possible to where the center of the EUT radiating element was located during the initial EUT
 measurement.
- 8. Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.
- 9. Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.
- 10. For each emission that was detected and measured in the initial test
 - a) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
 - b) Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step 5 and step 6.
 - c) Record the output power level of the signal generator when equivalence is achieved in step b).
- 11. Repeat step 8 through step 10 with the measurement antenna oriented in the opposite polarization.
- 12. Calculate the emission power in dBm referenced to a half-wave dipole using the following equation:

Pe = Ps(dBm) - cable loss (dB) + antenna gain (dBd)

where

Pe = equivalent emission power in dBm

Ps = source (signal generator) power in dBm

NOTE—dBd refers to the measured antenna gain in decibels relative to a half-wave dipole.

13. Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from:

gain (dBd) = gain (dBi) - 2.15 dB.

If necessary, the antenna gain can be calculated from calibrated antenna factor information

14. Provide the complete measurement results as a part of the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Note: only show the worse case for QPSK modulation.

Report No.: CHTEW21010027 Page: 26 of 34 Issued: 2021-01-12

LTE Band 2-1.4MHz								
Channel	Frequency	Spurious	Emission	Limit (dDm)	Danielt			
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result			
	3701.40	Vertical	-35.63					
	5552.10	V	-39.31	<-13.00	Pass			
Low	7402.80	V	-40.39					
LOW	3701.40	Horizontal	-37.10					
	5552.10	Н	-40.69	<-13.00	Pass			
	7402.80	Н	-41.57					
	3760.00	Vertical	-34.52	<-13.00	Pass			
	5640.00	V	-38.27					
Mid	7520.00	V	-39.41					
IVIIU	3760.00	Horizontal	-35.75					
	5640.00	Н	-39.60	<-13.00	Pass			
	7520.00	Н	-40.53					
	3818.60	Vertical	-32.63					
	5727.90	V	-36.55	<-13.00	Pass			
∐iah	7637.20	V	-37.78					
High	3818.60	Horizontal	-35.09					
	5727.90	Н	-38.98	<-13.00	Pass			
	7637.20	Н	-40.00					

LTE Band 2-3MHz							
Channal	Frequency	Spurious	Emission	Limit (dDm)	Dogult		
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result		
	3703.00	Vertical	-31.41				
	5554.50	V	-33.10	<-13.00	Pass		
Low	7406.00	V	-35.27				
LOW	3703.00	Horizontal	-32.11				
	5554.50	Н	-35.44	<-13.00	Pass		
	7406.00	Н	-38.15				
	3760.00	Vertical	-28.04		Pass		
	5640.00	V	-29.92	<-13.00			
Mid	7520.00	V	-31.80				
IVIIU	3760.00	Horizontal	-29.30				
	5640.00	Н	-33.47	<-13.00	Pass		
	7520.00	Н	-35.89				
	3817.00	Vertical	-24.95				
	5725.50	V	-27.68	<-13.00	Pass		
Lliab	7634.00	V	-30.34				
High	3817.00	Horizontal	-26.34				
	5725.50	Н	-31.22	<-13.00	Pass		
	7634.00	Н	-31.92				

Report No.: CHTEW21010027 Page: 27 of 34 Issued: 2021-01-12

	LTE Band 2-5MHz							
Channal	Frequency	Spurious	Emission	Limeit (dDms)	Desuit			
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result			
	3705.00	Vertical	-21.63					
	5557.50	V	-22.65	<-13.00	Pass			
Low	7410.00	V	-26.56					
LOW	3705.00	Horizontal	-28.86					
	5557.50	Н	-35.71	<-13.00	Pass			
	7410.00	Н	-34.13					
	3760.00	Vertical	-23.25	<-13.00	Pass			
	5640.00	V	-25.66					
Mid	7520.00	V	-29.16					
IVIIQ	3760.00	Horizontal	-32.61					
	5640.00	Н	-38.25	<-13.00	Pass			
	7520.00	Н	-36.07					
	3815.00	Vertical	-27.34					
	5722.50	V	-28.57	<-13.00	Pass			
Lliah	7630.00	V	-31.67					
High	3815.00	Horizontal	-35.54					
	5722.50	Н	-40.97	<-13.00	Pass			
	7630.00	Н	-38.14	1				

LTE Band 2-10MHz							
Channal	Frequency	Spurious	Emission	Limit (dDm)	Dooult		
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result		
	3710.00	Vertical	-24.62				
	5565.00	V	-27.10	<-13.00	Pass		
Low	7420.00	V	-29.90				
LOW	3710.00	Horizontal	-39.70				
	5565.00	Н	-43.81	<-13.00	Pass		
	7420.00	Н	-41.41				
	3760.00	Vertical	-27.84	<-13.00	Pass		
	5640.00	V	-29.80				
Mid	7520.00	V	-33.15				
iviiu	3760.00	Horizontal	-41.83				
	5640.00	Н	-46.98	<-13.00	Pass		
	7520.00	Н	-43.91				
	3810.00	Vertical	-29.04				
	5715.00	V	-32.49	<-13.00	Pass		
Lliah	7620.00	V	-36.27				
High	3810.00	Horizontal	-39.26				
	5715.00	Н	-45.49	<-13.00	Pass		
	7620.00	Н	-41.92				

Report No.: CHTEW21010027 Page: 28 of 34 Issued: 2021-01-12

	LTE Band 2-15MHz							
Channal	Frequency	Spurious	Emission	Lineit (dDne)	D !!			
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result			
	3715.00	Vertical	-26.85					
	5572.50	V	-30.51	<-13.00	Pass			
Low	7430.00	V	-34.16					
LOW	3715.00	Horizontal	-41.33					
	5572.50	Н	-47.44	<-13.00	Pass			
	7430.00	Н	-43.58					
	3760.00	Vertical	-28.41	<-13.00	Pass			
	5640.00	V	-31.97					
Mid	7520.00	V	-35.54					
IVIIU	3760.00	Horizontal	-39.36					
	5640.00	Н	-45.39	<-13.00	Pass			
	7520.00	Н	-42.42					
	3805.00	Vertical	-26.79					
	5707.50	V	-28.94	<-13.00	Pass			
Lliah	7610.00	V	-32.53					
High	3805.00	Horizontal	-41.94					
	5707.50	Н	-49.56	<-13.00	Pass			
	7610.00	Н	-46.71	1				

LTE Band 2-20MHz							
Channal	Frequency	Spurious	Emission	Lineit (dDne)	Dooult		
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result		
	3720.00	Vertical	-29.35				
	5580.00	V	-31.85	<-13.00	Pass		
Low	7440.00	V	-34.72				
LOW	3720.00	Horizontal	-42.38				
	5580.00	Н	-49.98	<-13.00	Pass		
	7440.00	Н	-47.06				
	3760.00	Vertical	-29.68		Pass		
	5640.00	V	-32.16	<-13.00			
Mid	7520.00	V	-35.01				
iviid	3760.00	Horizontal	-42.67				
	5640.00	Н	-50.22	<-13.00	Pass		
	7520.00	Н	-47.28				
	3800.00	Vertical	-27.82				
	5700.00	V	-29.66	<-13.00	Pass		
Lliah	7600.00	V	-33.21				
High	3800.00	Horizontal	-42.98				
	5700.00	Н	-50.51	<-13.00	Pass		
	7600.00	Н	-47.53				

Remark:

- 1.
- Remark"---" means that the emission level is too low to be measured The emission levels of below 1 GHz are very lower than the limit and not show in test report.

Report No.: CHTEW21010027 Page: 29 of 34 Issued: 2021-01-12

LTE Band 4-1.4MHz								
Channal	Frequency	Spurious	Emission	Lineit (dDne)	D !!			
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result			
	3421.40	Vertical	-32.37					
	5132.10	V	-38.25	<-13.00	Pass			
Low	6842.80	V	-37.69					
LOW	3421.40	Horizontal	-34.33					
	5132.10	Н	-40.09	<-13.00	Pass			
	6842.80	Н	-39.25					
	3465.00	Vertical	-30.90		Pass			
	5197.50	V	-36.87	<-13.00				
Mid	6930.00	V	-36.39					
IVIIU	3465.00	Horizontal	-32.54		Pass			
	5197.50	Н	-38.64	<-13.00				
	6930.00	Н	-37.87					
	3508.60	Vertical	-28.39					
	5262.90	V	-34.59	<-13.00	Pass			
Lligh	7017.20	V	-34.22					
High	3508.60	Horizontal	-30.48					
	5262.90	Н	-36.68	<-13.00	Pass			
	7017.20	Н	-36.01					

LTE Band 4-3MHz						
Channal	Frequency	Spurious	Emission	Lineit (dDas)	Result	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)		
	3423.00	Vertical	-31.53			
	5134.50	V	-37.39	<-13.00	Pass	
Low	6846.00	V	-37.00			
LOW	3423.00	Horizontal	-32.98	<-13.00		
	5134.50	Н	-40.63		Pass	
	6846.00	Н	-39.02			
	3465.00	Vertical	-34.81	<-13.00	Pass	
	5197.50	V	-40.67			
Mid	6930.00	V	-39.54			
IVIIU	3465.00	Horizontal	-39.28			
	5197.50	Н	-45.07	<-13.00	Pass	
	6930.00	Н	-44.18			
	3507.00	Vertical	-37.02			
	5260.50	V	-42.68	<-13.00	Pass	
High	7014.00	V	-41.45			
	3507.00	Horizontal	-42.33			
	5260.50	Н	-48.51	<-13.00	Pass	
	7014.00	Н	-46.69	1		

Report No.: CHTEW21010027 Page: 30 of 34 Issued: 2021-01-12

LTE Band 4-5MHz						
Channal	Frequency Spu		Emission	Lineit (dDae)	D !!	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	3425.00	Vertical	-41.05			
	5137.50	V	-45.64	<-13.00	Pass	
Low	6850.00	V	-45.47			
LOW	3425.00	Horizontal	-43.94		Pass	
	5137.50	Н	-50.02	<-13.00		
	6850.00	Н	-47.98			
	3465.00	Vertical	-42.26	<-13.00	Pass	
	5197.50	V	-46.78			
Mid	6930.00	V	-46.54			
IVIIU	3465.00	Horizontal	-45.36			
	5197.50	Н	-51.17	<-13.00	Pass	
	6930.00	Н	-49.07			
	3505.00	Vertical	-44.00		Pass	
	5257.50	V	-48.37	<-13.00		
Lliah	7010.00	V	-48.05			
High	3505.00	Horizontal	-46.50			
	5257.50	Н	-52.24	<-13.00	Pass	
	7010.00	Н	-49.98			

LTE Band 4-10MHz						
Channel	Frequency	Spurious	Emission	Lineit (dDne)	Danult	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	3430.00	Vertical	-47.08			
	5145.00	V	-50.25	<-13.00	Pass	
Low	6860.00	V	-49.20			
LOW	3430.00	Horizontal	-46.76			
	5145.00	Н	-52.48	<-13.00	Pass	
	6860.00	Н	-50.19			
	3465.00	Vertical	-47.27	<-13.00	Pass	
	5197.50	V	-50.43			
Mid	6930.00	V	-49.73			
IVIIU	3465.00	Horizontal	-46.97			
	5197.50	Н	-52.65	<-13.00	Pass	
	6930.00	Н	-50.35			
	3500.00	Vertical	-47.53			
	5250.00	V	-50.67	<-13.00	Pass	
Lliab	7000.00	V	-49.96			
High	3500.00	Horizontal	-47.17			
	5250.00	Н	-52.84	<-13.00	Pass	
	7000.00	Н	-50.51			

Report No.: CHTEW21010027 Page: 31 of 34 Issued: 2021-01-12

LTE Band 4-15MHz						
Channal	Frequency	Spurious I	Spurious Emission		D !!	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	3435.00	Vertical	-48.22			
	5152.50	V	-51.37	<-13.00	Pass	
Low	6870.00	V	-50.51			
LOW	3435.00	Horizontal	-49.63			
	5152.50	Н	-55.15	<-13.00	Pass	
	6870.00	Н	-54.78			
	3465.00	Vertical	-52.24	<-13.00	Pass	
	5197.50	V	-55.15			
Mid	6930.00	V	-54.06			
IVIIU	3465.00	Horizontal	-52.75			
	5197.50	Н	-57.68	<-13.00	Pass	
	6930.00	Н	-57.18			
	3495.00	Vertical	-55.20			
	5242.50	V	-57.84	<-13.00	Pass	
High	6990.00	V	-56.62			
riigii	3495.00	Horizontal	-55.39			
	5242.50	Н	-60.16	<-13.00	Pass	
	6990.00	Н	-61.76			

LTE Band 4-20MHz						
Channel	Frequency	Spurious I	Emission	Limit (dDm)	Result	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)		
	3440.00	Vertical	-69.76			
	5160.00	V	-61.15	<-13.00	Pass	
Law	6880.00	V	-59.44			
Low	3440.00	Horizontal	-58.20			
	5160.00	Н	-72.25	<-13.00	Pass	
	6880.00	Н	-73.90			
	3465.00	Vertical	-82.78	<-13.00	Pass	
	5197.50	V	-67.35			
Mid	6930.00	V	-65.27			
iviid	3465.00	Horizontal	-66.43			
	5197.50	Н	-80.68	<-13.00	Pass	
	6930.00	Н	-78.44			
	3490.00	Vertical	-86.49			
	5235.00	V	-69.73	<-13.00	Pass	
High	6980.00	V	-67.44			
	3490.00	Horizontal	-68.49			
	5235.00	Н	-82.64	<-13.00	Pass	
	6980.00	Н	-80.30			

Remark:

- 1. Remark"---" means that the emission level is too low to be measured
- 2. The emission levels of below 1 GHz are very lower than the limit and not show in test report.

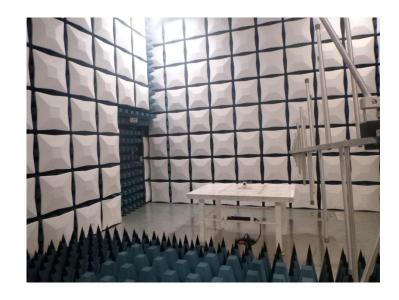
Report No.: CHTEW21010027 Page: 32 of 34 Issued: 2021-01-12

LTE Band 7-5MHz						
Channal	Frequency	Spurious I	Emission	1.1.1.1.(ID)	.	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	5005.00	Vertical	-36.43			
	7507.50	V	-40.78	<-25.00	Pass	
Low	10010.00	V	-41.16			
LOW	5005.00	Horizontal	-39.38		Pass	
	7507.50	Н	-44.40	<-25.00		
	10010.00	Н	-43.29			
	5070.00	Vertical	-34.94	<-25.00	Pass	
	7605.00	V	-38.58			
Mid	10140.00	V	-39.32			
IVIIG	5070.00	Horizontal	-35.32	<-25.00	Pass	
	7605.00	Н	-40.95			
	10140.00	Н	-40.98			
	5135.00	Vertical	-30.75			
	7702.50	V	-34.77	<-25.00	Pass	
Lliab	10270.00	V	-35.70			
High	5135.00	Horizontal	-32.53			
	7702.50	Н	-38.33	<-25.00	Pass	
	10270.00	Н	-38.75			

LTE Band 7-10MHz						
Channel	Frequency	Spurious	Emission	Limit (dDm)	Desult	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	5010.00	Vertical	-28.86			
	7515.00	V	-33.16	<-25.00	Pass	
Law	10020.00	V	-34.33			
Low	5010.00	Horizontal	-34.11		Pass	
	7515.00	Н	-39.81	<-25.00		
	10020.00	Н	-40.01			
	5070.00	Vertical	-30.04	<-25.00	Pass Pass	
	7605.00	V	-34.27			
Mid	10140.00	V	-35.38			
IVIIG	5070.00	Horizontal	-36.02			
	7605.00	Н	-41.35	<-25.00		
	10140.00	Н	-41.48			
	5130.00	Vertical	-31.98		Pass	
	7695.00	V	-36.03	<-25.00		
Lliab	10260.00	V	-37.06			
High	5130.00	Horizontal	-37.28			
	7695.00	Н	-42.53	<-25.00	Pass	
	10260.00	Н	-42.48			

Report No.: CHTEW21010027 Page: 33 of 34 Issued: 2021-01-12

LTE Band 7-15MHz						
Ohamad	Frequency	Spurious I	Emission	Limit (dDm)	Result	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)		
	5015.00	Vertical	-30.27			
	7522.50	V	-34.58	<-25.00	Pass	
Low	10030.00	V	-35.83			
LOW	5015.00	Horizontal	-39.92			
	7522.50	Н	-46.36	<-25.00	Pass	
	10030.00	Н	-46.23			
	5070.00	Vertical	-33.87	<-25.00	Pass	
	7605.00	V	-37.75			
Mid	10140.00	V	-38.15			
iviiu	5070.00	Horizontal	-38.42	<-25.00	Pass	
	7605.00	Н	-45.14			
	10140.00	Н	-45.07			
	5125.00	Vertical	-32.02			
	7687.50	V	-36.07	<-25.00	Pass	
∐iah	10250.00	V	-36.55			
High	5125.00	Horizontal	-37.19			
	7687.50	Н	-43.98	<-25.00	Pass	
	10250.00	Н	-44.09	1		


LTE Band 7-20MHz						
Channel	Frequency	Spurious	Emission	Lineit (dDree)	Danill	
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result	
	5020.00	Vertical	-30.20			
	7530.00	V	-33.80	<-25.00	Pass	
Law	10040.00	V	-34.62			
Low	5020.00	Horizontal	-35.44	<-25.00		
	7530.00	Н	-42.33		Pass	
	10040.00	Н	-42.69			
	5070.00	Vertical	-28.89	<-25.00	Pass	
	7605.00	V	-32.56			
Mid	10140.00	V	-33.46			
IVIIU	5070.00	Horizontal	-33.16			
	7605.00	Н	-40.48	<-25.00	Pass	
	10140.00	Н	-40.93			
	5120.00	Vertical	-27.27		Pass	
	7680.00	V	-31.09	<-25.00		
High	10240.00	V	-32.06			
	5120.00	Horizontal	-35.61			
	7680.00	Н	-42.78	<-25.00	Pass	
	10240.00	Н	-42.89			


Remark:

- 1.
- Remark"---" means that the emission level is too low to be measured The emission levels of below 1 GHz are very lower than the limit and not show in test report.

Report No.: CHTEW21010027 Page: 34 of 34 Issued: 2021-01-12

6. TEST SETUP PHOTOS OF THE EUT

7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Reference to the test report No. CHTEW21010026

8. APPENDIX REPORT