

Report No: JYTSZB-R12-2101561

FCC REPORT

Applicant:	SHENZHEN KENXINDA TECHNOLOGY CO., LTD		
Address of Applicant:	18TH FLOOR, FUCHUN ORIENT BUILDING, SHENNAN AV 7006, SHENZHEN, CHINA		
Equipment Under Test (B	EUT)		
Product Name:	Tablet		
Model No.:	X7		
Trade mark:	EL, E&L, KXD, Kenxinda, Ken mobile		
FCC ID:	ZSHX7		
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247		
Date of sample receipt:	13 Aug., 2021		
Date of Test:	14 Aug., 2021 to 11 Feb., 2022		
Date of report issued:	14 Feb., 2022		
Test Result:	PASS *		

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	14 Feb., 2022	Original

Tested by:

Janet Wei

Test Engineer

Date: 14 Feb., 2022

Reviewed by:

Winner Thang

Project Engineer

Date: 14 Feb., 2022

Project No.: JYTSZE2108052

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	
3		TENTS	
			_
4	TES	T SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5		-
	5.6 5.7	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.7 5.8	LABORATORY FACILITY	
	5.9	TEST INSTRUMENTS LIST	
6	TES	T RESULTS AND MEASUREMENT DATA	
•	6.1		
	6.2	CONDUCTED EMISSION	-
	6.3	CONDUCTED OUTPUT POWER	
	6.4	Occupy Bandwidth	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7 6.7.1	SPURIOUS EMISSION	
	6.7.1		
_	•		_
7	_	Г SETUP PHOTO	
8	EUT	CONSTRUCTIONAL DETAILS	29

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result		
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass		
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass		
Conducted Peak Output Power	15.247 (b)(3)	Appendix A - BLE	Pass		
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A - BLE	Pass		
Power Spectral Density	15.247 (e)	Appendix A - BLE	Pass		
Conducted Band Edge		Appendix A - BLE	Pass		
Radiated Band Edge	- 15.247 (d)	See Section 6.6.2	Pass		
Conducted Spurious Emission	15.205 & 15.209	Appendix A - BLE	Pass		
Radiated Spurious Emission	15.205 & 15.209	See Section 6.7.2	Pass		
 Remark: 1. Pass: The EUT complies with the essential requirements in the standard. 2. N/A: Not Applicable. 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer). 					
Test Method: ANSI C63. 10-2013 KDB 558074 D01 15.247	Meas Guidance v05r02				

5 General Information

5.1 Client Information

Applicant:	SHENZHEN KENXINDA TECHNOLOGY CO., LTD
Address:	18TH FLOOR, FUCHUN ORIENT BUILDING, SHENNAN AV 7006, SHENZHEN, CHINA
Manufacturer:	SHENZHEN EL COMMUNICATION CO., LTD
Address:	5F, Block A, Building 12, Shenzhen Bay Eco-Technology Park, Nanshan District, Shenzhen
Factory:	Sichuan Southwest Prosperity Communication Technology Limited Company
Address:	Southwest liansheng industrial park, 98 xintianwan road, lingang economic development zone, cuiping district, yibin city, sichuan province

5.2 General Description of E.U.T.

Product Name:	Tablet
Model No.:	X7
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.12 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V, 3500mAh
AC adapter:	Model: FYJH- R9
	Input: AC100-240V, 50/60Hz, 0.3A
	Output: DC 5.0V, 2000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and mode

Operating Environment:

Operating Environment.	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 150KHz) for V-AMN	3.11 dB
Conducted Emission (150kHz ~ 30MHz) for V-AMN	2.62 dB
Radiated Emission (9kHz ~ 30MHz electric field) for 3m SAC	3.13 dB
Radiated Emission (9kHz ~ 30MHz magnetic field) for 3m SAC	3.13 dB
Radiated Emission (30MHz ~ 1GHz) for 3m SAC	4.45 dB
Radiated Emission (1GHz ~ 18GHz) for 3m SAC	5.34 dB
Radiated Emission (18GHz ~ 40GHz) for 3m SAC	5.34 dB
Radiated Emission (30MHz ~ 1GHz) for 10m SAC	4.32 dB

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

5.9 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
3m SAC	ETS	RFD-100	Q1984	04-14-2021	04-13-2024	
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-044	03-07-2021	03-06-2022	
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	03-07-2021	03-06-2022	
Biconical Antenna	SCHWARZBECK	VUBA 9117	9117#359	06-17-2021	06-17-2022	
Horn Antenna	SCHWARZBECK	BBHA9120D	912D-916	03-07-2021	03-06-2022	
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	04-02-2021	04-01-2022	
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1068	04-02-2021	04-01-2022	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022	
Spectrum analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022	
Simulated Station	Anritsu	MT8820C	6201026545	03-03-2021	03-02-2022	
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	03-07-2021	03-06-2022	
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-18G-NN-8M	JYT3M-2	03-07-2021	03-06-2022	
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	03-07-2021	03-06-2022	
Cable	Bost	JYT3M-40G-SS-8M	JYT3M-4	04-02-2021	04-01-2022	
EMI Test Software	Tonscend	TS+		Version:3.0.0.1		
10m SAC	ETS	RFSD-100-F/A	Q2005	04-28-2021	04-27-2024	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	04-02-2021	04-01-2022	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	04-02-2021	04-01-2022	
EMI Test Receiver	R&S	ESR 3	102800	04-08-2021	04-07-2022	
EMI Test Receiver	R&S	ESR 3	102802	04-08-2021	04-07-2022	
Low Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-05-2022	
Low Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-05-2022	
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-1	04-02-2021	04-01-2022	
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-2	04-02-2021	04-01-2022	
Test Software	R&S	EMC32	١	/ersion: 10.50.4)	

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	03-03-2021	03-02-2022
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	03-18-2021	03-17-2022
LISN	Rohde & Schwarz	ESH3-Z5	843862/010	06-18-2020	06-17-2022
RF Switch	TOP PRECISION	RSU0301	N/A	03-03-2021	03-02-2022
Cable	Bost	JYTCE-1G-NN-2M	JYTCE-1	03-03-2021	03-02-2022
Cable	Bost	JYTCE-1G-BN-3M	JYTCE-2	03-03-2021	03-02-2022
EMI Test Software	AUDIX	E3	Version: 6.110919b		

Conducted method:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022	
Vector Signal Generator	Keysight	N5182B	MY59101009	10-27-2021	10-26-2022	
Analog Signal Generator	Keysight	N5173B	MY59100765	10-27-2021	10-26-2022	
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-19-2021	11-18-2022	
Simulated Station	Rohde & Schwarz	CMW270	102335	10-27-2021	10-26-2022	
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A	
PDU	MWRF-test	XY-G10	N/A	N/A	N/A	
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2023	
Temperature Humidity Chamber	Deli	8840	N/A	03-08-2021	03-07-2022	
Test Software	MWRF-tes	MTS 8310		Version: 2.0.0.0		

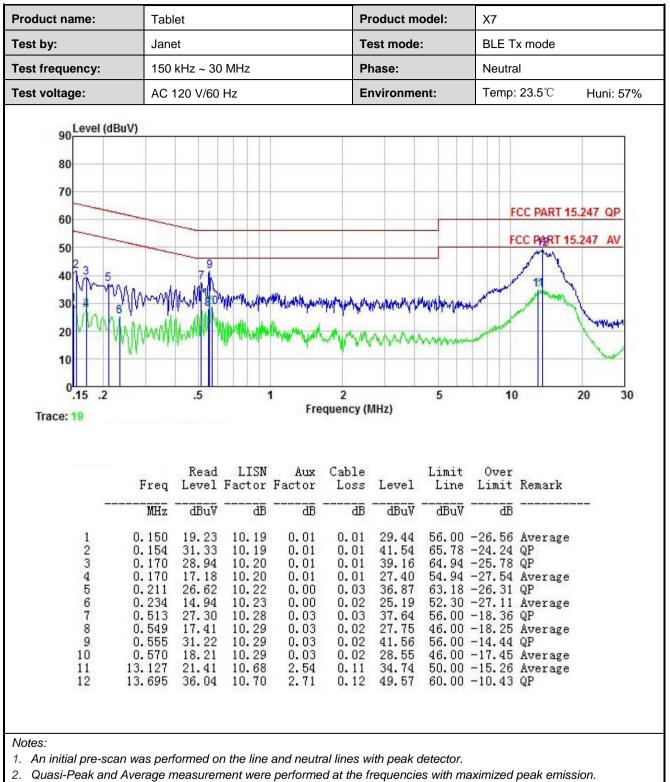
Test results and Measurement Data 6

6.1 Antenna requirement:

Standard requirement:	FCC Part 15 C Section 15.203 /247(b)						
15.203 requirement:							
responsible party shall be u antenna that uses a unique so that a broken antenna ca electrical connector is prohi 15.247(b) (4) requirement: (4) The conducted output pe antennas with directional ga section, if transmitting anter	ower limit specified in paragraph (b) of this section is based on the use of ains that do not exceed 6 dBi. Except as shown in paragraph (c) of this anas of directional gain greater than 6 dBi are used, the conducted output						
	power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1),						
(b)(2), and (b)(3) of this sec antenna exceeds 6 dBi.	tion, as appropriate, by the amount in dB that the directional gain of the						
E.U.T Antenna:							
The BLE antenna is an Interr antenna is 1.12 dBi.	The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 1.12 dBi.						

6.2 Conducted Emission

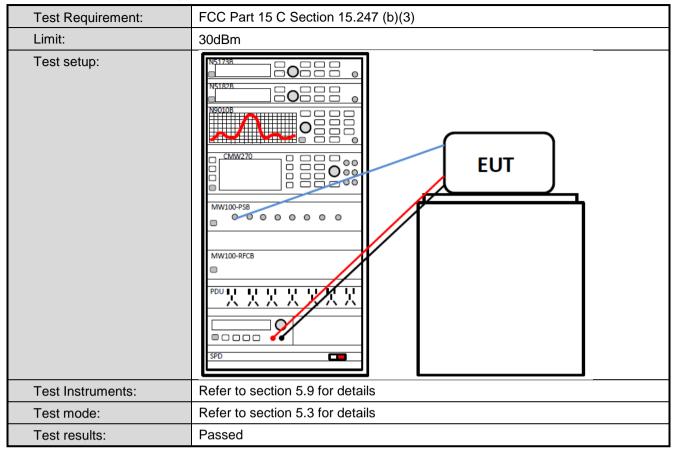
Test Requirement:	FCC Part 15 C Section 15.207	7						
Test Frequency Range:	150 kHz to 30 MHz							
Class / Severity:	Class B							
Receiver setup:	RBW=9kHz, VBW=30kHz							
Limit:	Frequency range (MHz)							
	· · · · · · · · · · · · · · · · · · ·	Quasi-peak	Average					
	0.15-0.5	66 to 56* 56	56 to 46*					
	0.5-5	46						
	5-30 * Decreases with the logarithm	60	50					
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 							
Test setup:	Reference	80cm Filter EMI Receiver	– AC power					
Test Instruments:	Refer to section 5.9 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							



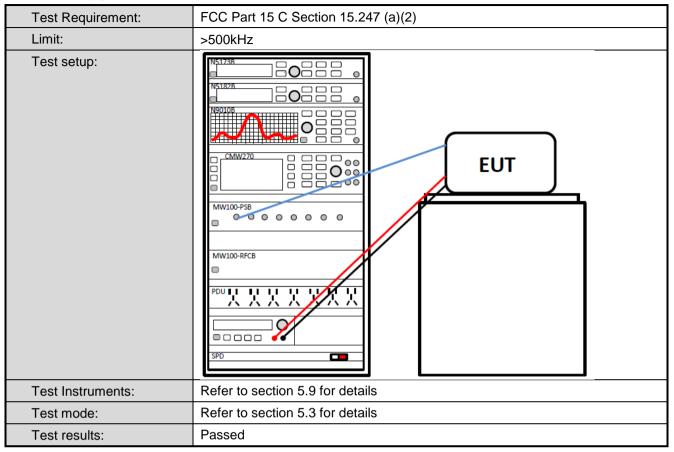
Measurement Data:

Test frequency: 14 Test voltage: Additional and the second	.5 Read) Hz	1 1 Fre		est mode hase: nvironme		Line Temp:	x mode 23.5°C CC PART 15 CC PART 15 CC PART 15	
Fest voltage: A	C 120 V/60) Hz	9W/w+++/// 1				Temp:	CC PART 15	5.247 QP
90 Level (dBuV) 80 70 60 50 40 35 40 35 40 35 40 10 0.15 .2 Trace: 17	.5 Read		9W/w+++/// 1	2			Fi Fi	CC PART 15	5.247 QP
90 80 70 60 50 40 35 40 35 40 35 40 40 40 40 40 40 40 40 40 40	.5 Read		9W/w+++/// 1	2			Fi	CC PART 15	5.247 AV
90 80 70 60 50 40 35 40 35 40 35 40 35 40 40 35 40 40 40 40 40 40 40 40 40 40	.5 Read		9W/w+++/// 1	2	лнz)	5	Fi	CC PART 15	5.247 AV
70 60 50 40 35 30 40 35 70 40 35 70 40 35 70 40 35 70 40 35 70 40 9 40 9 40 9 40 9 40 9 40 9 40 9 4	.5 Read		9W/w+++/// 1	2	лнz)		Fi	CC PART 15	5.247 AV
60 50 40 30 20 10 0.15 .2 Trace: 17 Free	.5 Read		9W/w+++/// 1	2	чичучурич УДДИЧ ЛНz)		Fi	CC PART 15	5.247 AV
60 50 40 30 20 10 0.15 .2 Trace: 17 Free	.5 Read		9W/w+++/// 1	2	чиллин Мили ЛНz)	5	Fi	CC PART 15	5.247 AV
50 40 30 20 10 0.15 .2 Trace: 17 Free	.5 Read		9W/w+++/// 1	2	чируру VVVVV ЛHz)	5	ann an Angalan An Anna An Angalan	1 miles	Lucion
40 30 20 10 0.15 .2 Trace: 17 Free	.5 Read		9W/w+++/// 1	2	чичучурич УДУДИ	5	ann an Angalan An Anna An Angalan	1 miles	Lucion
30 20 10 0.15 .2 Trace: 17 Free	.5 Read		9W/w+++/// 1	2	чилтрил VVVVV ЛHz)	5		2	1
20 10 0.15 .2 Trace: 17 Free	.5 Read		9W/w+++/// 1	2	чичучуни VVVVVV ЛHz)	5	10		1
20 10 0.15 .2 Trace: 17 Free	.5 Read		9W/w+++/// 1	2	MMMM AHz)	5	10)	1
10 0.15 .2 Trace: 17 Free	Read				AHz)	5	10)	1
0.15 .2 Trace: 17 Free	Read				ЛНz)	5	10)	20 30
Trace: 17 Free	Read				ЛНz)	5	10)	20 30
Trace: 17 Free	Read				MHz)	5	10)	20 30
Fre				ducine) (ii					
				Cable		Limit	0ver		
MH	q Level	Factor	Factor	Loss	Level	Line	Limit	Remark	
	z dBuV	dB	₫₿	₫₿	dBu∛	dBu∛	dB		
1 0.15				0.01	41.99		-24.01		
2 0.15 3 0.16				0.01 0.01	31.21 40.05	56.00 65.16	-24.79	Average QP	
4 0.17	0 19.15	10.22	-0.10	0.01	29.28	54.94	-25.66	Average	
5 0.18 6 0.38				0.01 0.03	38.39 34.57		-26.03		
7 0.49	7 19.17	10.29	-0.32	0.03	29.17	46.05	-16.88	Average	
8 0.56 9 0.56		10.29		0.02	40.07		-15.93		
10 1.03				0.02	34.82 27.84			Average Average	
11 13.62	3 34.07	10.73	3.21	0.12	48.13	60.00	-11.87	QP	
12 13.84	1 23.50	10.74	3.28	0.12	37.64	50.00	-12.36	Average	
Notes: 1. An initial pre-scan was p	erformed a	on the line	and nout	ral lines u	ith neek r	letector			
2. Quasi-Peak and Average					•		ovinoi	, .	sion

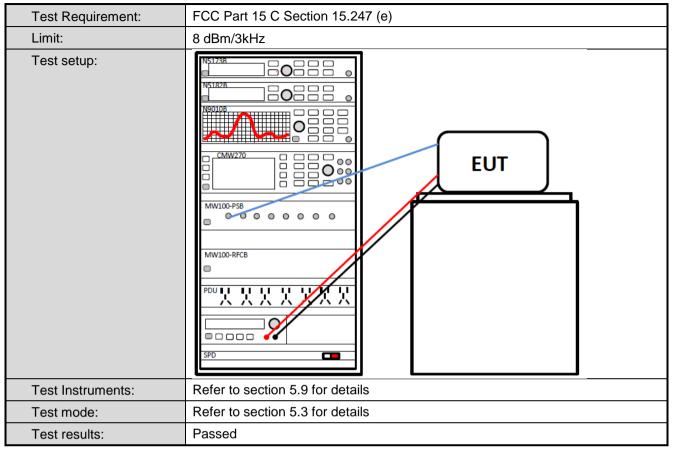
Project No.: JYTSZE2108052



3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.



6.3 Conducted Output Power

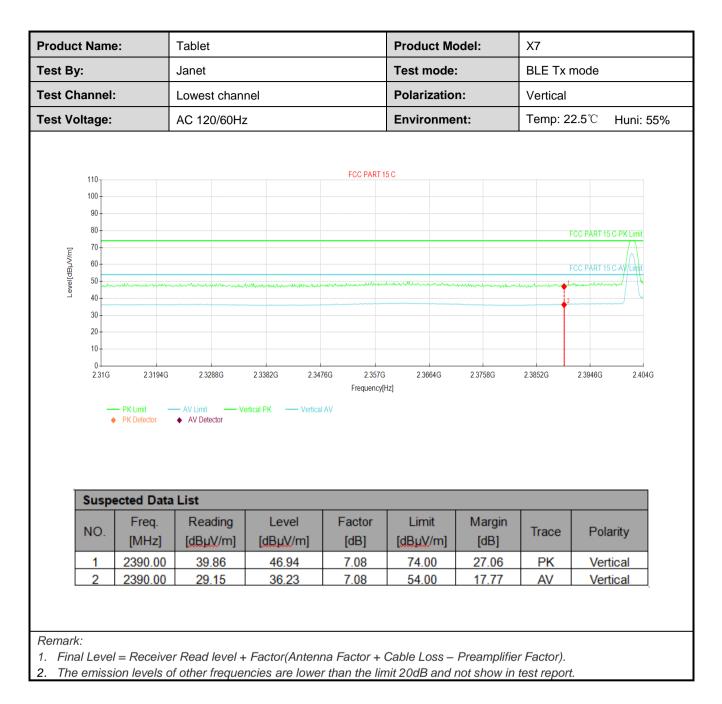


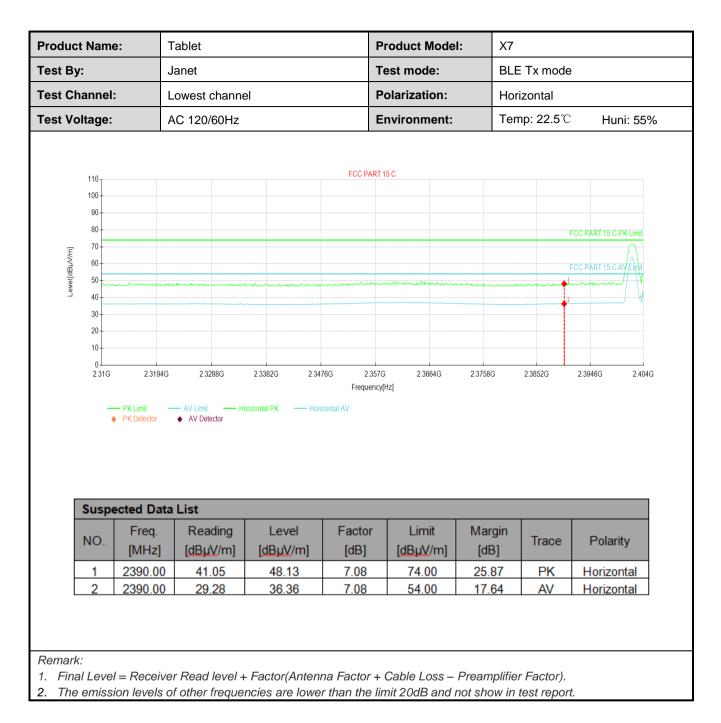
6.4 Occupy Bandwidth

6.5 Power Spectral Density

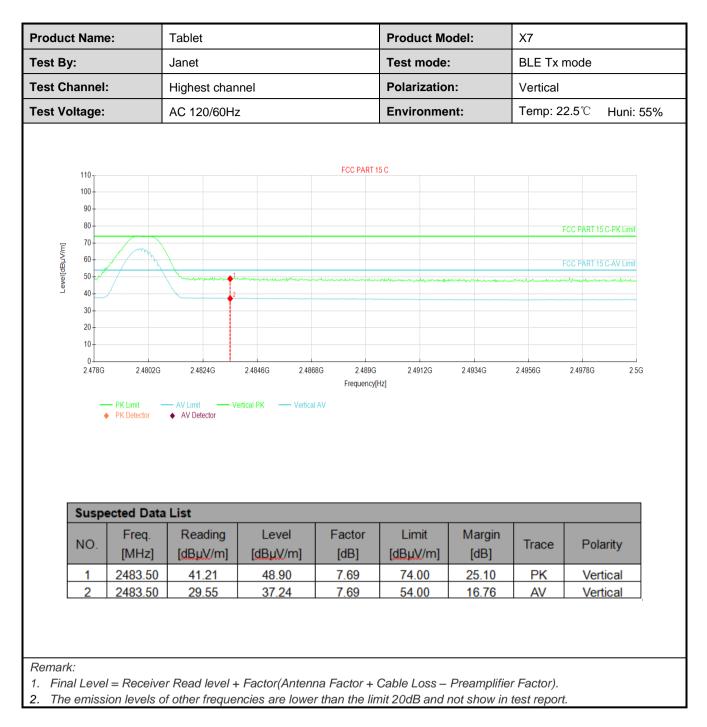
6.6 Band Edge

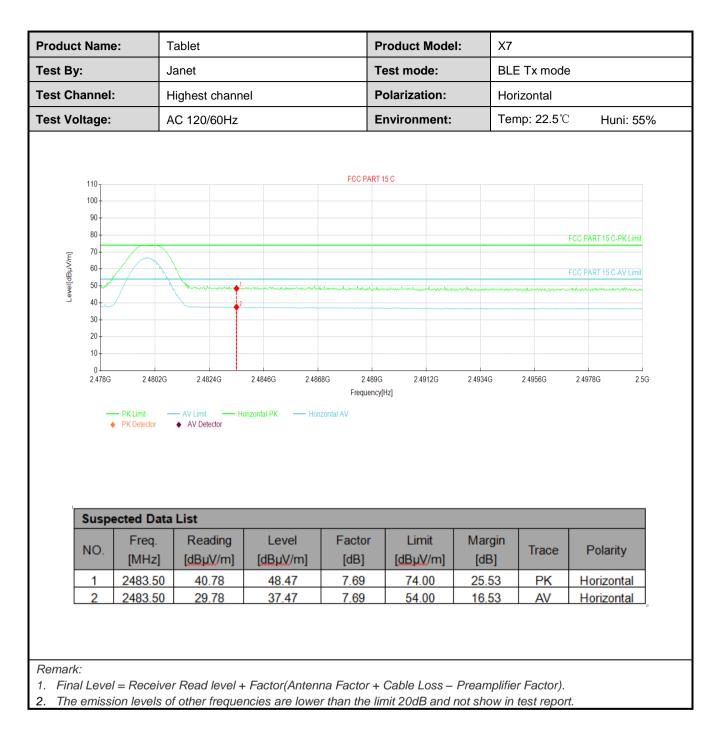
6.6.1 Conducted Emission Method


Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						


6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.205 and 15.209								
Test Frequency Range:	2310 MHz to 2390 MHz and 2483.5MHz to 2500 MHz								
Test Distance:	3m								
Receiver setup:	Frequency	Detector	RBW	VB\	W Remark				
	Above 1GHz	Peak	1MHz	3MF					
		RMS		3MF	Hz Average Value Remark				
Limit:	Frequen	Cy L	imit (dBuV/m @: 54.00	311)	Average Value				
	Above 10	GHz –	74.00		Peak Value				
Test Procedure:	 the groun to determ 2. The EUT antenna, y tower. 3. The anter the groun Both horiz make the 4. For each case and meters ar to find the 5. The test-r Specified 6. If the emist the limit s of the EU have 10 d 	d at a 3 meter ine the position was set 3 meter which was meter and height is d to determine contal and ver measurement suspected ent then the anter and the rota tall end tal	r camber. The ta on of the highest ters away from t bunted on the top varied from one r e the maximum v tical polarization it. hission, the EUT nna was tuned to ble was turned fro ading. m was set to Per ating. m was set to Per the EUT in peak testing could be ported. Otherwis uld be re-tested of	ble was radiation he interf o of a va meter to value of us of the was arra o heights om 0 deg ak Detect Id Mode wode w stopped se the er one by o	ference-receiving ariable-height antenna of our meters above the field strength. antenna are set to ranged to its worst as from 1 meter to 4 ogrees to 360 degrees ct Function and				
Test setup:		EUT urntable) Grou Test Receive	Horn Antenna 3m 	Antenna Tower					
Test Instruments:	Refer to sectio	n 5.9 for deta	ils						
Test mode:	Refer to sectio	n 5.3 for deta	ills						
Test results:	Passed								





6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.205 and 15.209								
Test Frequency Range:	9kHz to 25GHz								
Test Distance:	3m or 10m								
Receiver setup:	Frequency Detector RBW VBW						Remark		
	30MHz-1GHz	Quasi-pea			300KHz		Quasi-peak Value		
	Above 1GHz	Peak		1MHz	3M		Peak Value		
		RMS		1MHz 3M		Hz			
Limit:			Limi	it (dBuV/m @	10m)		Remark		
	30MHz-88M 88MHz-216M			<u> </u>			Quasi-peak Value Quasi-peak Value		
	216MHz-960N			36.0			luasi-peak Value		
	960MHz-1GHz 44.0 Quasi-peak Valu								
	Frequency		Lim	nit (dBuV/m @	3m)		Remark		
	Above 1GF	17		54.0			Average Value		
				74.0			Peak Value table 0.8m(below		
Test Procedure:	 1GHz)/1.5m(above 1GHz) above the ground at a 10 meter chamber (below 1GHz)or 3 meter chamber(above 1GHz). The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 10 meters(below 1GHz) or 3 meters(above 1GHz) away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi- peak or average method as specified and then reported in a data). The table was n of the highest eters(above 1GHz) nich was mounted four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 es to 360 degrees tect Function and a 10 dB lower than nd the peak values ssions that did not using peak, quasi-		
Test setup:		10m 4m 4m 0.8m 1m A 1m			S A RF	Antenna To earch untenna Test ceiver —)wer		

Project No.: JYTSZE2108052

	Above 1GHz
	AE EUT Horn Artenna Tower Horn Artenna Tower Ground Reference Plane Test Receiver Free Controller
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is lower than the limit 20dB, so only shows the data of above 30MHz in this report.

Measurement Data (worst case):

Below 1GHz:

	Tablet			Product I	Model:	X7			
Гest By:	Janet			Test mod	le:	BLE Tx mode			
Test Frequency:	30 MHz ~ 1 GHz			Polarizat	ion:	Vertical & H	Vertical & Horizontal		
Test Voltage:	AC 120/60Hz	2		Environn	nent:	Temp: 24 ℃	Temp: 24°C Huni: 57		
	50 60	80 100	Full Spec	trum	*		247.10m		
-	50 60			ncy in Hz					
Frequency	MaxPeak	Limit	(dB)	Height (cm)	Pol	Azimuth	Corr. (dB/m)		
Frequency (MHz) 38.245000	(dB	(dB µ V/m) 30.00	(dB) 4.23	Height (cm) 100.0	Pol V	(deg) 36.0	(dB/m)		
(MHz) 38.245000 63.465000	(dB µ V/m) 25.77 21.96	(dB µ V/m) 30.00 30.00	(dB) 4.23 8.04	(cm) 100.0 100.0	v v	(deg) 36.0 276.0	(dB/m) -16.0 -17.0		
(MHz) 38.245000 63.465000 211.972000	(dB µ V/m) 25.77 21.96 27.61	(dB µ V/m) 30.00 30.00 33.50	(dB) 4.23 8.04 5.89	(cm) 100.0 100.0 100.0	V V V	(deg) 36.0 276.0 352.0	(dB/m) -16.0 -17.0 -17.6		
(MHz) 38.245000 63.465000	(dB µ V/m) 25.77 21.96 27.61 21.21	(dB µ V/m) 30.00 30.00	(dB) 4.23 8.04	(cm) 100.0 100.0	v v	(deg) 36.0 276.0	(dB/m) -16.0 -17.0		

Above 1GHz

		Test ch	annel: Lowest cł	nannel					
			tector: Peak Valu						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4804.00	59.74	-9.60	50.14	74.00	23.86	Vertical			
4804.00	56.21	-9.60	46.61	74.00	27.39	Horizontal			
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4804.00	53.00	-9.60	43.40	54.00	10.60	Vertical			
4804.00	50.71	-9.60	41.11	54.00	12.89	Horizontal			
		Test ch	annel: Middle ch	annel					
		Det	tector: Peak Valu	le	1				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4884.00	59.70	-9.04	50.66	74.00	23.34	Vertical			
4884.00	56.16	-9.04	47.12	74.00	26.88	Horizontal			
	Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4884.00	53.39	-9.04	44.35	54.00	9.65	Vertical			
4884.00	50.30	-9.04	41.26	54.00	12.74	Horizontal			
	Test channel: Highest channel								
			tector: Peak Valu						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4960.00	59.65	-8.45	51.20	74.00	22.80	Vertical			
4960.00	56.37	-8.45	47.92	74.00	26.08	Horizontal			
			ctor: Average Va						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4960.00	52.58	-8.45	44.13	54.00	9.87	Vertical			
4960.00	50.39	-8.45	41.94	54.00	12.06	Horizontal			
Remark:	Receiver Read level			0.100	.2.00	- Honzontal			

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.