## FCC TEST REPORT

## FOR

## SHENZHEN KENXINDA TECHNOLOGY CO., LTD

## W45

## Model No.: W45

Additional Model No.: W40, W50, W55, W60, W70, W80, W10, W20, W30, W90

| Prepared for<br>Address                                                                                       | : | SHENZHEN KENXINDA TECHNOLOGY CO.,LTD<br>18TH FLOOR,FUCHUN ORIENT BUILDING, SHENNAN AV 7006,<br>SHENZHEN, China |
|---------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------|
| Prepared by                                                                                                   | : | Shenzhen LCS Compliance Testing Laboratory Ltd.                                                                |
| Address                                                                                                       | : | 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,<br>Bao'an District, Shenzhen, Guangdong, China     |
| Tel                                                                                                           | : | (+86)755-82591330                                                                                              |
| Fax                                                                                                           | : | (+86)755-82591332                                                                                              |
| Web                                                                                                           | : | www.LCS-cert.com                                                                                               |
| Mail                                                                                                          | : | webmaster@LCS-cert.com                                                                                         |
| Date of receipt of test sample<br>Number of tested samples<br>Serial number<br>Date of Test<br>Date of Report | : | May 23, 2018<br>1<br>Prototype<br>May 23, 2018~Jun 23, 2018<br>Jun 26, 2018                                    |

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 1 of 50

 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.
 FCC ID:ZSHW45

|                                                                    | FCC TEST REPORT                                                                                                                                                                                                                                                                     |  |  |  |  |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| FC                                                                 | C CFR 47 PART 15 C(15.247)                                                                                                                                                                                                                                                          |  |  |  |  |
| Report Reference No                                                | LCS180522040AEA                                                                                                                                                                                                                                                                     |  |  |  |  |
| Date of Issue:                                                     | Jun 26, 2018                                                                                                                                                                                                                                                                        |  |  |  |  |
| Testing Laboratory Name :                                          | Shenzhen LCS Compliance Testing Laboratory Ltd.                                                                                                                                                                                                                                     |  |  |  |  |
| Address :                                                          | 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,<br>Bao'an District, Shenzhen, Guangdong, China                                                                                                                                                                          |  |  |  |  |
| Testing Location/ Procedure :                                      | Full application of Harmonised standards ■<br>Partial application of Harmonised standards □<br>Other standard testing method □                                                                                                                                                      |  |  |  |  |
| Applicant's Name: :                                                | SHENZHEN KENXINDA TECHNOLOGY CO.,LTD                                                                                                                                                                                                                                                |  |  |  |  |
| Address :                                                          | 18TH FLOOR,FUCHUN ORIENT BUILDING, SHENNAN AV 7006, SHENZHEN, China                                                                                                                                                                                                                 |  |  |  |  |
| Test Specification                                                 |                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Standard:                                                          | FCC CFR 47 PART 15 C(15.247)                                                                                                                                                                                                                                                        |  |  |  |  |
| Test Report Form No :                                              | LCSEMC-1.0                                                                                                                                                                                                                                                                          |  |  |  |  |
| TRF Originator:                                                    | Shenzhen LCS Compliance Testing Laboratory Ltd.                                                                                                                                                                                                                                     |  |  |  |  |
| Master TRF :                                                       | Dated 2011-03                                                                                                                                                                                                                                                                       |  |  |  |  |
| Shenzhen LCS Compliance Testin                                     | g Laboratory Ltd. All rights reserved.                                                                                                                                                                                                                                              |  |  |  |  |
| Shenzhen LCS Compliance Testing the material. Shenzhen LCS Complia | in whole or in part for non-commercial purposes as long as the<br>Laboratory Ltd. is acknowledged as copyright owner and source of<br>ance Testing Laboratory Ltd. takes no responsibility for and will not<br>g from the reader's interpretation of the reproduced material due to |  |  |  |  |
| Test Item Description :                                            | W45                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Trade Mark:                                                        | KXD/EL/E&L/KENXINDA/Ken mobile                                                                                                                                                                                                                                                      |  |  |  |  |
| Model/ Type reference: :                                           |                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Ratings:                                                           | DC 3.7V by Li-ion battery(1700mAh)<br>Recharged by DC 5V/700mA Adapter                                                                                                                                                                                                              |  |  |  |  |
| Result                                                             | Positive                                                                                                                                                                                                                                                                            |  |  |  |  |

Compiled by:

Calvin Weng

Supervised by:

Approved by:

Grino Linoz

Calvin Weng/ Administrators

Leo Lee/ Technique principal

eo Jee

Gavin Liang/ Manager

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 50 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID:ZSHW45 Report No.: LCS180522040AEA

Г

# FCC -- TEST REPORT

| Test Report No. : LCS180522040AEA |                                         | <u>Jun 26, 2018</u><br>Date of issue   |
|-----------------------------------|-----------------------------------------|----------------------------------------|
|                                   |                                         |                                        |
| EUT                               | : W45                                   |                                        |
| Type / Model                      | : W45                                   |                                        |
| Applicant                         | : SHENZHEN KENXIND                      | A TECHNOLOGY CO.,LTD                   |
| Address                           |                                         | N ORIENT BUILDING, SHENNAN AV 7006,    |
| Telephone                         | :                                       |                                        |
| Fax                               | :                                       |                                        |
| Manufacturer                      | : SHENZHEN KENXIND                      | A TECHNOLOGY CO.,LTD                   |
| Address                           | : 18TH FLOOR, FUCHUI<br>SHENZHEN, China | N ORIENT BUILDING, SHENNAN AV 7006,    |
| Telephone                         | :                                       |                                        |
| Fax                               | :                                       |                                        |
| Factory                           | : SHENZHEN KENXIND                      | A TECHNOLOGY CO.,LTD                   |
| Address                           | •                                       | econd Industrial Zone, Dalang Clothing |
|                                   | Base, Longhua New Di                    | strict, Shenzhen, China                |
| Telephone                         | :                                       |                                        |
| Fax                               | :                                       |                                        |

### **Test Result**

Positive

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

# **Revision History**

| Revision | Issue Date   | Revisions     | Revised By  |  |
|----------|--------------|---------------|-------------|--|
| 000      | Jun 26, 2018 | Initial Issue | Gavin Liang |  |
|          |              |               |             |  |
|          |              |               |             |  |

FCC ID:ZSHW45 Report No.: LCS180522040AEA

# TABLE OF CONTENTS

| Description                                                                        | Page |
|------------------------------------------------------------------------------------|------|
| 1. GENERAL INFORMATION                                                             | 6    |
| 1.1 Description of Device (EUT)                                                    | 6    |
| 1.2. Host System Configuration List and Details                                    | 6    |
| 1.3. External I/O Cable                                                            |      |
| 1.4. Description of Test Facility<br>1.5. Statement of the Measurement Uncertainty |      |
| 1.6. Measurement Uncertainty                                                       |      |
| 1.7 Description of Test Modes                                                      |      |
| 2. TEST METHODOLOGY                                                                | 9    |
| 2.1 EUT Configuration                                                              | 9    |
| 2.2 EUT Exercise                                                                   |      |
| 2.3 General Test Procedures                                                        |      |
| 3. SYSTEM TEST CONFIGURATION                                                       |      |
| 3.1 Justification                                                                  |      |
| 3.2 EUT Exercise Software                                                          |      |
| 3.4 Block Diagram/Schematics                                                       |      |
| 3.5 Equipment Modifications                                                        |      |
| 3.6 Test Setup                                                                     |      |
| 4. SUMMARY OF TEST RESULTS                                                         | 11   |
| 5. SUMMARY OF TEST EQUIPMENT                                                       | 12   |
| 6. ANTENNA PORT MEASUREMENT                                                        |      |
| 6.1 Peak Power                                                                     |      |
| 6.2 Frequency Separation and 20 dB Bandwidth                                       |      |
| 6.3 Number of Hopping Frequency<br>6.4 Time of Occupancy (Dwell Time)              |      |
| 6.5 Conducted Spurious Emissions and Band Edges Test                               |      |
| 7. RADIATED MEASUREMENT                                                            |      |
| 8. POWER LINE CONDUCTED EMISSIONS                                                  |      |
| 9. RESTRICT-BAND BAND-EDGE MEASUREMENTS FOR RADIATED EMISS                         |      |
| 10. ANTENNA REQUIREMENT                                                            |      |
| 11. TEST SETUP PHOTOGRAPHS OF EUT                                                  |      |
| 12. EXTERIOR PHOTOGRAPHS OF THE EUT                                                |      |
|                                                                                    |      |
| 13. INTERIOR PHOTOGRAPHS OF THE EUT                                                |      |

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 5 of 50

## **1. GENERAL INFORMATION**

## 1.1 Description of Device (EUT)

| Name of EUT                               | W45                                                   |
|-------------------------------------------|-------------------------------------------------------|
| Model Number                              | W45, W40, W50, W55, W60, W70, W80, W10, W20, W30, W90 |
| Modulation Type                           | GMSK for GSM/GPRS, QPSK for UMTS                      |
|                                           | 0.8 (max.) For GSM 850; 0.8 (max.) For GSM 900;       |
|                                           | 0.8 (max.) For DCS 1800; 0.8 (max.) For PCS 1900;     |
| Antenna Gain                              | 0.8 (max.) For WCDMA Band II;                         |
|                                           | 0.8 (max.) For WCDMA Band V;                          |
|                                           | 1.0 (max.) For BT, 2.4G WLAN                          |
| Hardware version                          | S9B-80MB-V3.0                                         |
| Software version                          | S9_80_kxd_wangzhe_O1_V01_20180606                     |
| GSM/EDGE/GPRS Operation<br>Frequency Band | GSM850/PCS1900/GPRS850/GPRS1900                       |
| UMTS Operation Frequency<br>Band          | UMTS FDD Band II/V                                    |
| LTE Operation Frequency Band              | Not supported                                         |
| GSM/EDGE/GPRS                             | Supported GSM/GPRS                                    |
| GSM Release Version                       | R99                                                   |
| GSM/EDGE/GPRS Power                       |                                                       |
| Class                                     | GSM850:Power Class 4/ PCS1900:Power Class 1           |
| GPRS/EDGE Multislot Class                 | GPRS: Multi-slot Class 12                             |
| GPRS operation mode                       | Class B                                               |
| WCDMA Release Version                     | R99                                                   |
| HSDPA Release Version                     | Release 8                                             |
| HSUPA Release Version                     | Release 6                                             |
| DC-HSUPA Release Version                  | Not Supported                                         |
| LTE Release Version                       | Not Supported                                         |
| LTE/UMTS Power Class                      | Class 3                                               |
|                                           | IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK)                   |
| WI AN ECC Medulation Type                 | IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)          |
| WLAN FCC Modulation Type                  | IEEE 802.11n HT20:OFDM (64QAM, 16QAM, QPSK,BPSK)      |
|                                           | IEEE 802.11n HT40:OFDM (64QAM, 16QAM, QPSK,BPSK)      |
|                                           | IEEE 802.11b:2412-2462MHz                             |
| WLAN FCC Operation                        | IEEE 802.11g:2412-2462MHz                             |
| frequency                                 | IEEE 802.11n HT20:2412-2462MHz                        |
|                                           | IEEE 802.11n HT40:2422-2452MHz                        |
| Antenna Type                              | PIFA Antenna for BT/WIFI/2G/3G/GPS                    |
| BT Modulation Type                        | GFSK,8-DPSK,π/4-DQPSK(BT V4.0)                        |
| Extreme temp. Tolerance                   | -30°C to +50°C                                        |
| GPS function                              | Support and only RX                                   |
| NFC Function                              | Not Supported                                         |
| RFID function                             | Not Supported                                         |
| Extreme vol. Limits                       | 3.40VDC to 4.20VDC (nominal: 3.70VDC)                 |

# **1.2. Host System Configuration List and Details**

| Manufacturer                                    | Description        | Model          | Serial Number | Certificate |
|-------------------------------------------------|--------------------|----------------|---------------|-------------|
| SHENZHENSHI<br>HONGGUANGDE<br>TECHNOLOGY CO,LTD | ADAPTER for<br>EUT | HWT-2.5W-5050G |               | FCC VoC     |

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 6 of 50

## 1.3. External I/O Cable

| I/O Port Description | Quantity | Cable |
|----------------------|----------|-------|
| USB Port             | 1        | N/A   |
| Earphone             | 1        | N/A   |

## **1.4. Description of Test Facility**

FCC Registration Number is 254912.

Industry Canada Registration Number is 9642A-1.

ESMD Registration Number is ARCB0108.

UL Registration Number is 100571-492.

TUV SUD Registration Number is SCN1081.

TUV RH Registration Number is UA 50296516-001

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

## 1.5. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

| Test Item              |   | Frequency Range | Uncertainty | Note |
|------------------------|---|-----------------|-------------|------|
|                        |   | 9KHz~30MHz      | ±3.10dB     | (1)  |
|                        |   | 30MHz~200MHz    | ±2.96dB     | (1)  |
| Radiation Uncertainty  | : | 200MHz~1000MHz  | ±3.10dB     | (1)  |
| -                      |   | 1GHz~26GHz      | ±3.70dB     | (1)  |
|                        |   | 26GHz~40GHz     | ±3.90dB     | (1)  |
| Conduction Uncertainty | : | 150kHz~30MHz    | ±1.63dB     | (1)  |
| Power disturbance      | : | 30MHz~300MHz    | ±1.60dB     | (1)  |

## 1.6. Measurement Uncertainty

(1) The uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

### 1.7 Description of Test Modes

Bluetooth operates in the unlicensed ISM Band at 2.4GHz. With basic data rate feature, the data rates can be up to 1 Mb/s by modulating the RF carrier using GFSK techniques. The EUT works in the X-axis, Y-axis, Z-axis. The following operating modes were applied for the related test items. All test modes were tested, only the result of the worst case was recorded in the report.

| Mode of Operations     | Frequency Range<br>(MHz) | Data Rate<br>(Mbps) |  |  |
|------------------------|--------------------------|---------------------|--|--|
|                        | 2402                     | 1/2/3               |  |  |
| BT V 3.0               | 2441                     | 1/2/3               |  |  |
|                        | 2480                     | 1/2/3               |  |  |
| For Conducted Emission |                          |                     |  |  |
| Test Mode              |                          | TX Mode             |  |  |
|                        | For Radiated Emission    |                     |  |  |
| Test Mode              |                          | TX Mode             |  |  |

Worst-case mode and channel used for 150 KHz-30 MHz power line conducted emissions was the mode and channel with the highest output power that was determined to be TX (3Mbps).

Worst-case mode and channel used for 9kHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be TX(3Mbps-High Channel).

AC conducted emission pre-test at both at AC 120V/60Hz and AC 240V/50Hz modes, recorded worst case;

AC conducted emission pre-test at both at power adapter and power from PC modes, recorded worst case;

Bluetooth V3.0 (DSS) frequency & channel list:

| Channel | Frequency(MHz) | Channel | Frequency(MHz) |  |  |
|---------|----------------|---------|----------------|--|--|
| 0       | 2402           | 40      | 2442           |  |  |
| 1       | 2403           | 41      | 2443           |  |  |
|         |                |         |                |  |  |
| 37      | 2439           | 77      | 2479           |  |  |
| 38      | 2440           | 78      | 2480           |  |  |
| 39      | 2441           |         |                |  |  |

#### FCC ID:ZSHW45

# 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR PART 15C 15.207, 15.209, 15.247 and DA 00-705.

## 2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

## 2.2 EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209, 15.247 under the FCC Rules Part 15 Subpart C.

## 2.3 General Test Procedures

### 2.3.1 Conducted Emissions

The EUT is directly placed on the ground. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

#### 2.3.2 Radiated Emissions

The EUT is placed on a turntable, which is directly placed on the ground. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013.

## **3. SYSTEM TEST CONFIGURATION**

### 3.1 Justification

The system was configured for testing in a continuous transmits condition.

### 3.2 EUT Exercise Software

The sample will be controlled by dialing \*#\*#3646633#\*#\* to enter RF test mode to control sample change channel, modulation and so on;

#### 3.3 Special Accessories

| No. | Equipment     | Manufacturer | Model No. | Serial No. | Length | shielded/<br>unshielded | Notes |
|-----|---------------|--------------|-----------|------------|--------|-------------------------|-------|
| 1   | PC            | Lenovo       | Ideapad   | A131101550 | /      | /                       | DOC   |
| 2   | Power adapter | Lenovo       | CPA-A090  | 36200414   | 1.00m  | unshielded              | DOC   |

### 3.4 Block Diagram/Schematics

Please refer to the related document.

### 3.5 Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

### 3.6 Test Setup

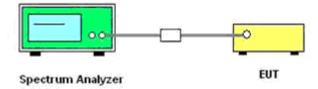
Please refer to the test setup photo.

# **4. SUMMARY OF TEST RESULTS**

|                     | Applied Standard: FCC Part 15 Subpart C          |           |
|---------------------|--------------------------------------------------|-----------|
| FCC Rules           | Description of Test                              | Result    |
| §15.247(b)(1)       | Maximum Conducted Output Power                   | Compliant |
| §15.247(c)          | Frequency Separation And 20 dB Bandwidth         | Compliant |
| §15.247(a)(1)(ii)   | Number Of Hopping Frequency                      | Compliant |
| §15.247(a)(1)(iii)  | Time Of Occupancy (Dwell Time)                   | Compliant |
| §15.209, §15.205    | Conducted Spurious Emissions and Band Edges Test | Compliant |
| §15.209, §15.247(d) | Radiated and Conducted Spurious Emissions        | Compliant |
| §15.205             | Emissions at Restricted Band                     | Compliant |
| §15.207(a)          | Conducted Emissions                              | Compliant |
| §15.203             | Antenna Requirements                             | Compliant |
| §15.247(i)§2.1093   | RF Exposure                                      | Compliant |

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 11 of 50

# **5. SUMMARY OF TEST EQUIPMENT**


| Item | Equipment                                                | Manufacturer   | Model No.       | Serial No.          | Last Cal.  | Next Cal.  |
|------|----------------------------------------------------------|----------------|-----------------|---------------------|------------|------------|
| 1    | Power Meter                                              | R&S            | NRVS            | 100444              | 2018-06-16 | 2019-06-15 |
| 2    | Power Sensor                                             | R&S            | NRV-Z81         | 100458              | 2018-06-16 | 2019-06-15 |
| 3    | Power Sensor                                             | R&S            | NRV-Z32         | 10057               | 2018-06-16 | 2019-06-15 |
| 4    | EPM Series Power<br>Meter                                | Agilent        | E4419B          | MY45104493          | 2018-06-16 | 2019-06-15 |
| 5    | E-SERIES AVG<br>POWER SENSOR                             | Agilent        | E9301H          | MY41495234          | 2018-06-16 | 2019-06-15 |
| 6    | ESA-E SERIES<br>SPECTRUM<br>ANALYZER                     | Agilent        | E4407B          | MY41440754          | 2017-11-18 | 2018-11-17 |
| 7    | MXA Signal Analyzer                                      | Agilent        | N9020A          | MY49100040          | 2018-06-16 | 2019-06-15 |
| 8    | SPECTRUM<br>ANALYZER                                     | R&S            | FSP             | 100503              | 2018-06-16 | 2019-06-15 |
| 9    | 3m Semi Anechoic<br>Chamber                              | SIDT FRANKONIA | SAC-3M          | 03CH03-HY           | 2018-06-16 | 2019-06-15 |
| 10   | Positioning Controller                                   | MF             | MF-7082         | /                   | 2018-06-16 | 2019-06-15 |
| 11   | EMI Test Software                                        | AUDIX          | E3              | N/A                 | 2018-06-16 | 2019-06-15 |
| 12   | EMI Test Receiver                                        | R&S            | ESR 7           | 101181              | 2018-06-16 | 2019-06-15 |
| 13   | AMPLIFIER                                                | QuieTek        | QTK-A2525G      | CHM10809065         | 2017-11-18 | 2018-11-17 |
| 14   | Active Loop Antenna                                      | SCHWARZBECK    | FMZB 1519B      | 00005               | 2018-06-22 | 2019-06-21 |
| 15   | By-log Antenna                                           | SCHWARZBECK    | VULB9163        | 9163-470            | 2018-05-01 | 2019-04-30 |
| 16   | Horn Antenna                                             | EMCO           | 3115            | 6741                | 2018-06-22 | 2019-06-21 |
| 17   | RF Cable-R03m                                            | Jye Bao        | RG142           | CB021               | 2018-06-16 | 2019-06-15 |
| 18   | RF Cable-HIGH                                            | SUHNER         | SUCOFLEX<br>106 | 03CH03-HY           | 2018-06-16 | 2019-06-15 |
| 19   | TEST RECEIVER                                            | R&S            | ESCI            | 101142              | 2018-06-16 | 2019-06-15 |
| 20   | RF Cable-CON                                             | UTIFLEX        | 3102-26886-4    | CB049               | 2018-06-16 | 2019-06-15 |
| 21   | 10dB Attenuator                                          | SCHWARZBECK    | MTS-IMP136      | 261115-001-003<br>2 | 2018-06-16 | 2019-06-15 |
| 22   | Artificial Mains                                         | R&S            | ENV216          | 101288              | 2018-06-16 | 2019-06-15 |
| 23   | X-series USB Peak and<br>Average Power Sensor<br>Aglient |                | U2021XA         | MY54080022          | 2017-10-27 | 2018-10-26 |
| 24   | 4 CH. Simultaneous<br>Sampling 14 Bits<br>2MS/s          | Agilent        | U2531A          | MY54080016          | 2017-10-27 | 2018-10-26 |
| 25   | Test Software                                            | Ascentest      | AT890-SW        | 20160630            | N/A        | N/A        |
| 26   | RF Control Unit                                          | Ascentest      | AT890-RFB       | N/A                 | 2018-06-16 | 2019-06-15 |
| 27   | Universal Radio<br>Communication Tester                  | R&S            | CMU 200         | 105788              | 2018-06-16 | 2019-06-15 |
| 28   | WIDEBAND RADIO<br>COMMUNICATION<br>TESTER                | R&S            | CMW 500         | 103818              | 2018-06-16 | 2019-06-15 |
| 29   | RF Control Unit                                          | Tonscend       | JS0806-1        | N/A                 | 2018-06-16 | 2019-06-15 |
| 30   | DC Power Supply                                          | Agilent        | E3642A          | N/A                 | 2017-11-18 | 2018-11-17 |
| 31   | LTE Test Software                                        | Tonscend       | JS1120-1        | N/A                 | N/A        | N/A        |
| 32   | Broadband Horn<br>Antenna                                | SCHWARZBECK    | BBHA 9170       | 791                 | 2017-09-21 | 2018-09-20 |
| 33   | Broadband Preamplifier                                   | SCHWARZBECK    | BBV 9719        | 9719-025            | 2017-09-21 | 2018-09-20 |

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 12 of 50

## 6. ANTENNA PORT MEASUREMENT

### 6.1 Peak Power

6.1.1 Block Diagram of Test Setup



#### 6.1.2 Limit

According to §15.247(b)(1), For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping system in the 2400–2483.5 MHz band: 0.125 watts.

#### 6.1.3 Test Procedure

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW > the 20 dB bandwidth of the emission being measured

 $\mathsf{VBW} \geq \mathsf{RBW}$ 

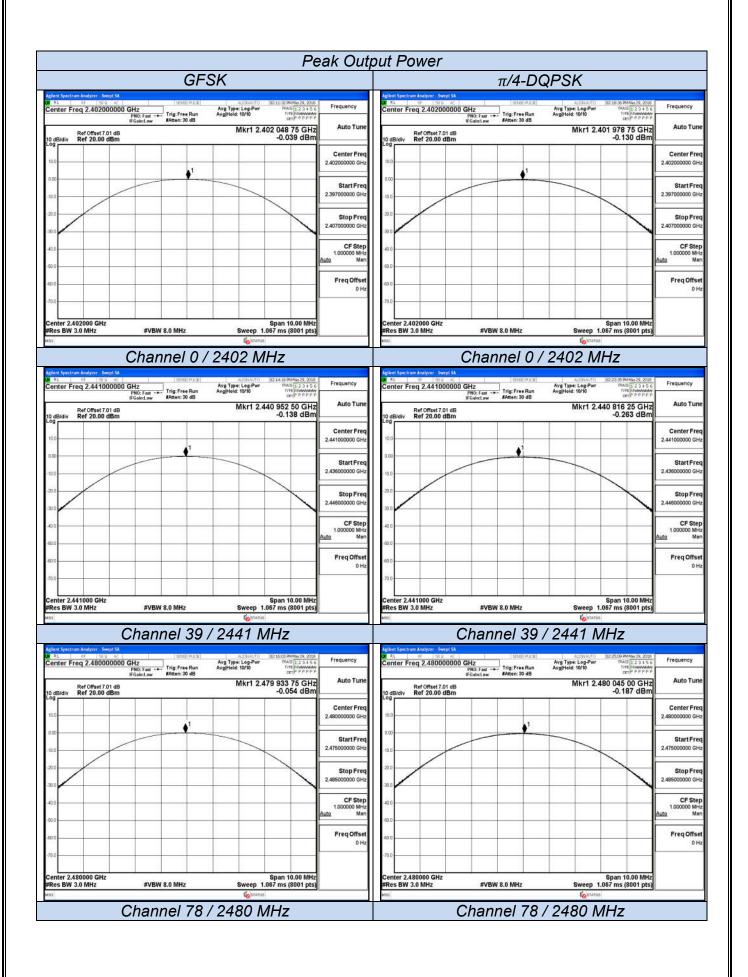
Sweep = auto

Detector function = peak

Trace = max hold

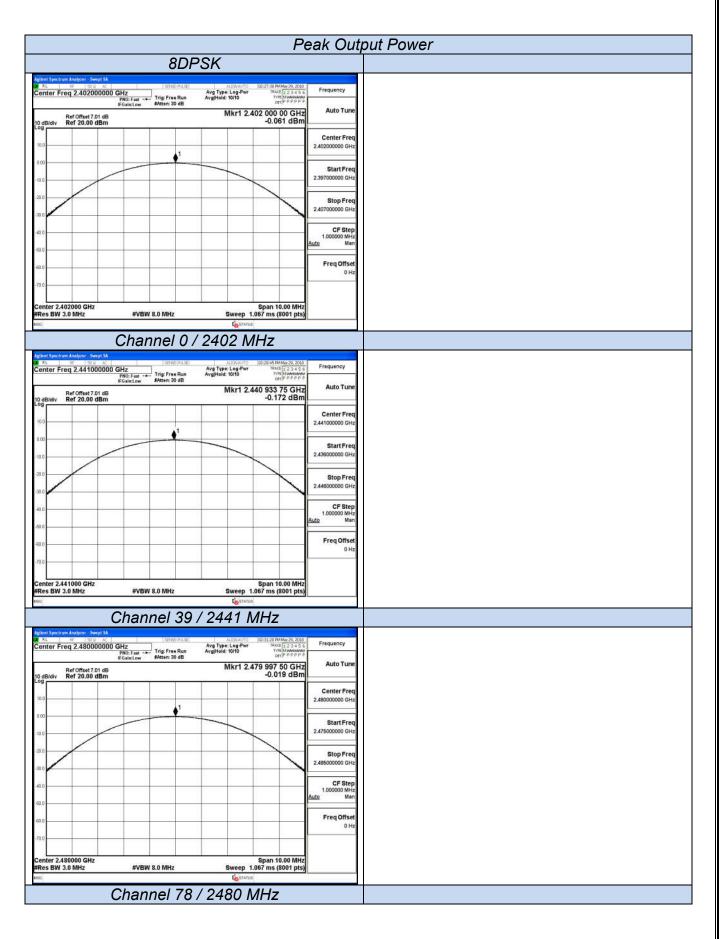
Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power

| Test Mode | Channel Frequency |       | Measured Maximum Power<br>(dBm) |         | Limits | Verdict |
|-----------|-------------------|-------|---------------------------------|---------|--------|---------|
|           |                   | (MHz) | Peak                            | Average | (dBm)  |         |
|           | 0                 | 2402  | -0.039                          | -0.053  | 21.00  |         |
| GFSK      | 39                | 2441  | -0.138                          | -0.145  |        | PASS    |
|           | 78                | 2480  | -0.054                          | -0.069  |        |         |
|           | 0                 | 2402  | -0.130                          | -0.149  | 21.00  | PASS    |
| π/4DQPSK  | 39                | 2441  | -0.263                          | -0.291  |        |         |
|           | 78                | 2480  | -0.187                          | -0.206  |        |         |
|           | 0                 | 2402  | -0.061                          | -0.093  |        |         |
| 8DPSK     | 39                | 2441  | -0.172                          | -0.202  | 21.00  | PASS    |
|           | 78                | 2480  | -0.019                          | -0.051  |        |         |


6.1.4 Test Results

### Remark:

- 1. Test results including cable loss;
- 2. Measured output power at difference Packet Type for each mode and recorded worst case for each mode.
- 3. Worst case data at DH5 for GFSK, 2DH5 for  $\pi$ /4DQPSK, 3DH5 for 8DPSK modulation type;
- 4. Average power is for reporting only, Please refer to following test plots for peak power.


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 13 of 50

Report No.: LCS180522040AEA

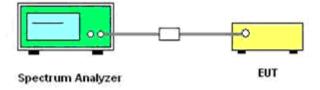


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 14 of 50

Report No.: LCS180522040AEA



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 15 of 50


## 6.2 Frequency Separation and 20 dB Bandwidth

#### 6.2.1 Limit

§ 15.247(a) (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

According to §15.247(c) or A8.1(a), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

6.2.2 Block Diagram of Test Setup



#### 6.2.3 Test Procedure

Frequency separation test procedure :

1). Place the EUT on the table and set it in transmitting mode.

2). Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.

3). Set center frequency of Spectrum Analyzer = middle of hopping channel.

4). Set the Spectrum Analyzer as RBW = 100 KHz, VBW = 300 KHz, Span = wide enough to capture the peaks of two adjacent channels, Sweep = auto.

5). Max hold, mark 2 peaks of hopping channel and record the 2 peaks frequency.

20dB bandwidth test procedure :

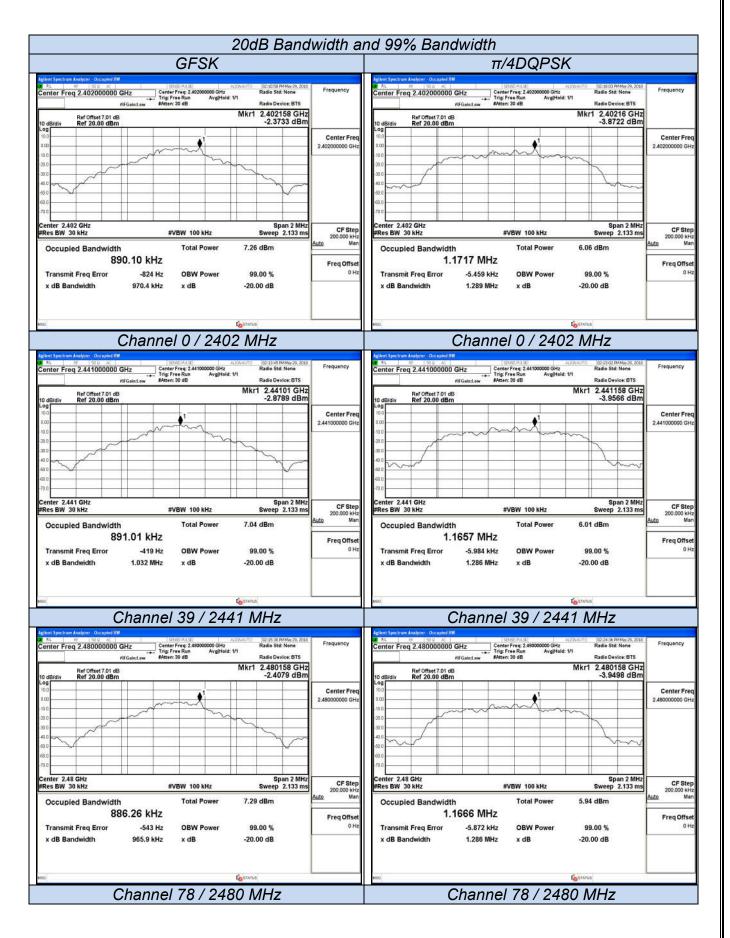
1). Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel.

2). RBW = 30 KHz, VBW = 100 KHz.

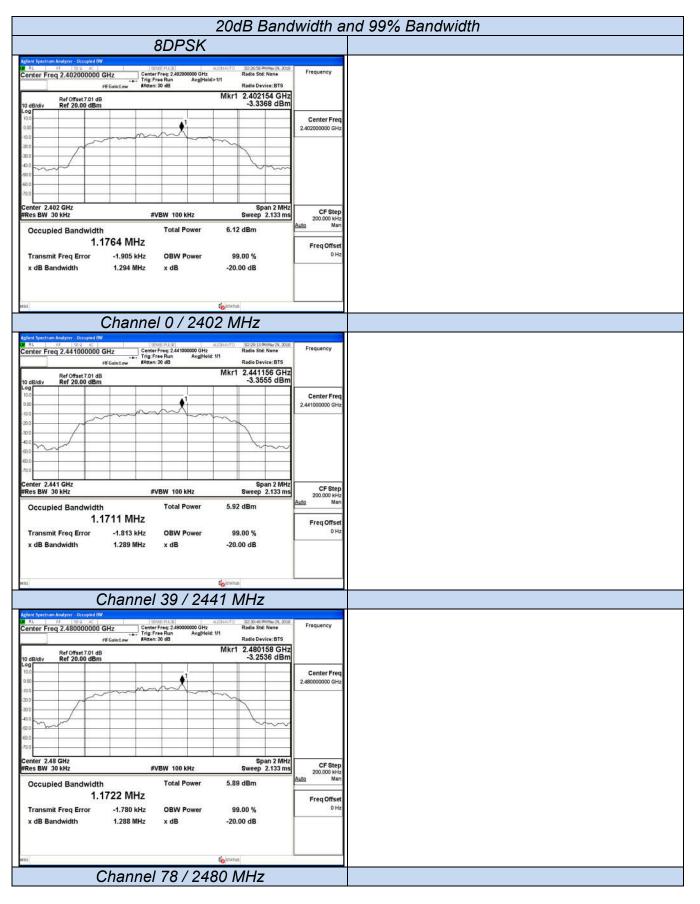
3). Detector function = peak.

4). Trace = max hold.

#### 6.2.4 Test Results


#### 6.2.4.1 20dB Bandwidth

| Temperature   | <b>23.5</b> ℃ | Humidity       | 52.6% |
|---------------|---------------|----------------|-------|
| Test Engineer | Wilson Hong   | Configurations | BT    |


| Test Mode  | Channel | Channel Frequency |        | ndwidth (MHz) | Limits    | Verdict |
|------------|---------|-------------------|--------|---------------|-----------|---------|
| Test would | Channel | (MHz)             | 99%    | 20dB          | (MHz)     | verdict |
|            | 0       | 2402              | 0.8901 | 0.9704        |           |         |
| GFSK       | 39      | 2441              | 0.8910 | 1.032         | No Limits | PASS    |
|            | 78      | 2480              | 0.8863 | 0.9659        |           |         |
|            | 0       | 2402              | 1.1717 | 1.289         |           | PASS    |
| π/4DQPSK   | 39      | 2441              | 1.1657 | 1.286         | No Limits |         |
|            | 78      | 2480              | 1.1666 | 1.286         |           |         |
|            | 0       | 2402              | 1.1764 | 1.294         |           |         |
| 8DPSK      | 39      | 2441              | 1.1711 | 1.289         | No Limits | PASS    |
|            | 78      | 2480              | 1.1722 | 1.288         |           |         |

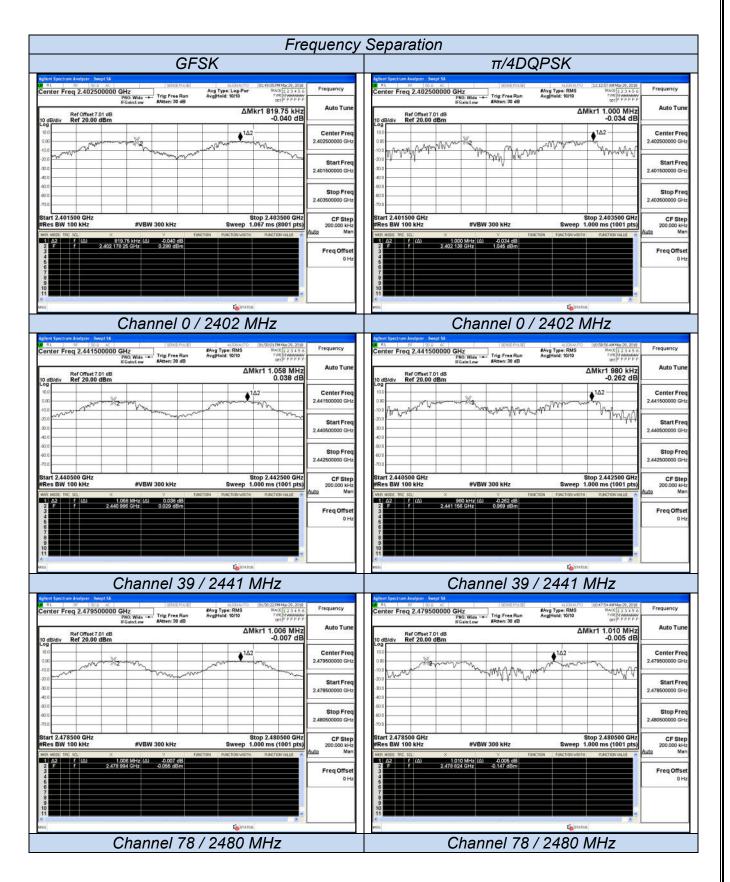
Remark:

- 1. Test results including cable loss;
- 2. Measured 20dB and occupied bandwidth at difference Packet Type for each mode and recorded worst case for each mode.
- 3. Worst case data at DH5 for GFSK, 2DH5 for  $\pi$ /4DQPSK, 3DH5 for 8DPSK modulation type;
- 4. Please refer following test plots;



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 18 of 50




This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 19 of 50

| The Measurement Result With 1Mbps For GFSK Modulation |                                                                 |                             |                  |        |  |  |  |
|-------------------------------------------------------|-----------------------------------------------------------------|-----------------------------|------------------|--------|--|--|--|
| Channel                                               | 20dB Bandwidth<br>(MHz)                                         | Channel Separation<br>(MHz) | Limit<br>(KHz)   | Result |  |  |  |
| Low                                                   | 0.9704                                                          | 0.820                       | ≥0.6469          | PASS   |  |  |  |
| Middle                                                | 1.032                                                           | 1.058                       | ≥0.6880          | PASS   |  |  |  |
| High                                                  | 0.9659                                                          | 1.006                       | ≥0.6439          | PASS   |  |  |  |
| The                                                   | The Measurement Result With 2Mbps For $\pi$ /4-DQPSK Modulation |                             |                  |        |  |  |  |
| Channel                                               | 20dB Bandwidth<br>(MHz)                                         | Channel Separation<br>(MHz) | Limit<br>(KHz)   | Result |  |  |  |
| Low                                                   | 1.289                                                           | 1.000                       | ≥0.8593          | PASS   |  |  |  |
| Middle                                                | 1.286                                                           | 0.980                       | ≥0.8573          | PASS   |  |  |  |
| High                                                  | 1.286                                                           | 1.010                       | ≥0.8573          | PASS   |  |  |  |
| Th                                                    | e Measurement Res                                               | ult With 3Mbps For 8        | -DPSK Modulation | า      |  |  |  |
| Channel                                               | 20dB Bandwidth<br>(MHz)                                         | Channel Separation<br>(MHz) | Limit<br>(KHz)   | Result |  |  |  |
| Low                                                   | 1.294                                                           | 1.116                       | ≥0.8627          | PASS   |  |  |  |
| Middle                                                | 1.289                                                           | 1.254                       | ≥0.8593          | PASS   |  |  |  |
| High                                                  | 1.288                                                           | 1.210                       | ≥0.8587          | PASS   |  |  |  |

#### 6.2.4.2 Frequency Separation

Remark:

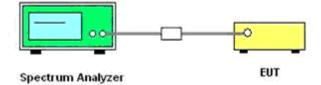
- 1. Test results including cable loss;
- 2. Please refer to following plots;
- 3. Measured at difference Packet Type for each mode and recorded worst case for each mode.
- 4. Worst case data at DH5 for GFSK, 2DH5 for  $\pi$ /4-DQPSK, 3DH5 for 8DPSK modulation type;



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 21 of 50

| Fre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | quency                             | Separation |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------|
| 8DPSK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |            |
| Aginer Spectrum Anelyzer Swept SA<br>M R1 H2 100 AC 1925/EP3.32 ALIONA/70 (000132/MMb; 00,0018<br>Center Free 2.4025500000 GHz<br>14/vg Type: RMS (1905/E):3.4.5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Frequency                          |            |
| PRO: Wide Trig: Free Run Avg Hold: 10/10 TVE Average<br>#FGain:Low #Atten: 30 dB ter: PPPPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |            |
| Ref Offset7.01 dB         ΔMkr1 1.116 MHz           10 dB/div         Ref 20.00 dBm         0.235 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Auto Tune                          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Center Freq<br>2.402500000 GHz     |            |
| 100 manual Marine and an and Marine 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Start Freq                         |            |
| 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.401500000 GHz                    |            |
| 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stop Freq<br>2.403500000 GHz       |            |
| 300         Start 2.401500 GHz         Stop 2.403500 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CF Step                            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200.000 kHz<br>Auto Man            |            |
| 1 Δ2 f (Δ) 1.116 MHz (Δ) 0.236 dB<br>2 F f 2.402 019 GHz -2.036 dBm<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Freq Offset<br>0 Hz                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UTIL.                              |            |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |            |
| e x<br>Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |            |
| Channel 0 / 2402 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |            |
| Agent Spectrum Analyzer X-Avapit XA<br>■ RL # Sop AC Spectrum Analyzer X-Avapit XA<br>Center Freq 2.4415000000 GHz<br>FWG: Wdg →→<br>FWG: Wdg →→<br>FWG | Frequency                          |            |
| Rer Offset 7.01 dB ΔMkr1 1.254 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Auto Tune                          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Center Freq                        |            |
| 000 man Mar many man and man many many many many many many many                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.441500000 GHz                    |            |
| 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Start Freq<br>2.440500000 GHz      |            |
| 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stop Freq                          |            |
| 400<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.442500000 GHz                    |            |
| Start 2.440500 GHz         Stop 2.442500 GHz           #Res BW 100 kHz         #VBW 300 kHz         Sweep 1.000 ms (1001 pts)           WOR WIRE MS LSL         X         Y         Function         Function water set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CF Step<br>200.000 kHz<br>Auto Man |            |
| 1 Δ2 F f (Δ) 1.254 MHz (Δ) -0.915 dB<br>2 F f 2.440 626 GHz -1.494 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Freq Offset                        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 Hz                               |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |            |
| e so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |            |
| Channel 39 / 2441 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |            |
| Applied Spectrum Analyzer / Swipt SA. [100/06/07 ] AL00/07/10 (0006/55/HVApr.cd) 2026<br>A 1 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 2020 / 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Frequency                          |            |
| PRO Wide Ing Free Auto everyment 2 Note to the PPPPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Auto Tune                          |            |
| Ref Offset 7.01 dB         ΔMkr1 1.210 MHz           10 dB/div         Ref 20,00 dBm         3.417 dB           10 0         100         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CenterFree                         |            |
| 100 100 100 100 100 100 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Center Freq<br>2.479500000 GHz     |            |
| -0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Start Freq<br>2.478500000 GHz      |            |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |            |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stop Freq<br>2.480500000 GHz       |            |
| Start 2.478500 GHz Stop 2.480500 GHz<br>#Res BW 100 kHz #VBW 300 kHz Sweep 1.000 ms (1001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CF Step<br>200.000 kHz             |            |
| αντι κάρι, της εξ         ×         γ         Function         runction watch           1         Δ2         f         (Δ)         3.117 dB         3.177 dB           2         F         2.478 955 GHz         -4.698 dBm         4.698 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Auto Man                           |            |
| 3 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Freq Offset<br>0 Hz                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |            |
| 10<br>11<br>e<br>sol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |            |
| Channel 78 / 2480 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |            |

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 22 of 50


FCC ID:ZSHW45

### 6.3 Number of Hopping Frequency

#### 6.3.1 Limit

According to §15.247(a)(1)(ii) or A8.1 (d), Frequency hopping systems operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels.

6.3.2 Block Diagram of Test Setup

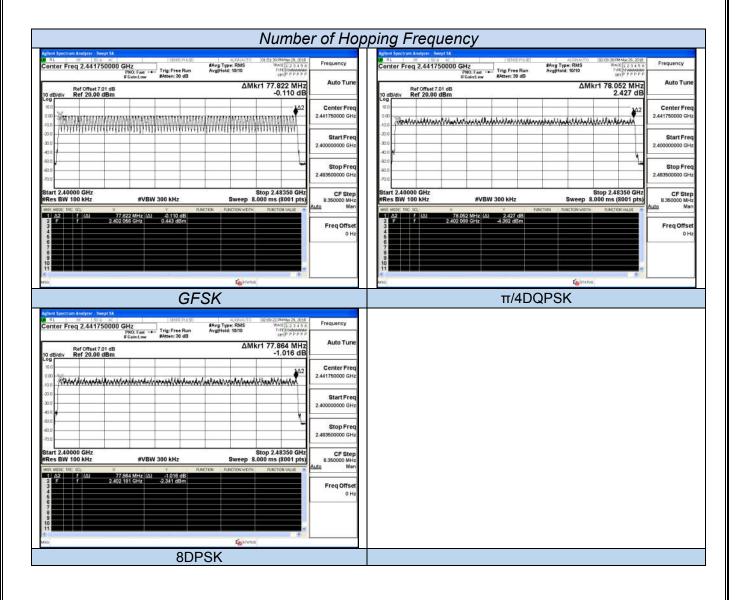


#### 6.3.3 Test Procedure

1). Place the EUT on the table and set it in transmitting mode.

2). Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.

- 3). Set Spectrum Analyzer Start=2400MHz, Stop = 2483.5MHz, Sweep = auto.
- 4). Set the Spectrum Analyzer as RBW = 1 MHz, VBW=1MHz.
- 5). Max hold, view and count how many channel in the band.


#### 6.3.4 Test Results

| Temperature   | <b>23.5</b> ℃ | Humidity       | 52.6% |
|---------------|---------------|----------------|-------|
| Test Engineer | Wilson Hong   | Configurations | BT    |

| Test Mode | Measurement Result<br>(No. of Channels) | Limit<br>(No. of Channels) | Result |
|-----------|-----------------------------------------|----------------------------|--------|
| GFSK      | 79                                      | ≥15                        | PASS   |
| π/4DQPSK  | 79                                      | ≥15                        | PASS   |
| 8DPSK     | 79                                      | ≥15                        | PASS   |

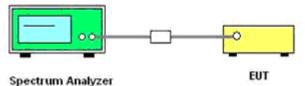
#### Remark:

- 1. Test results including cable loss;
- 2. Measured output power at difference Packet Type for each mode and recorded worst case for each mode.
- 3. Worst case data at DH5 for GFSK, 2DH5 for  $\pi$ /4DQPSK, 3DH5 for 8DPSK modulation type;
- 4. Record test plots only for GFSK;
- 5. Please refer following test plots;



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 24 of 50

FCC ID:ZSHW45


Report No.: LCS180522040AEA

## 6.4 Time of Occupancy (Dwell Time)

## 6.4.1 Limit

According to §15.247(a)(1)(iii) or A8.1 (d), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

6.4.2 Block Diagram of Test Setup



### 6.4.3 Test Procedure

1). Place the EUT on the table and set it in transmitting mode.

- 2). Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.
- 3). Set center frequency of Spectrum Analyzer = operating frequency.
- 4). Set the Spectrum Analyzer as RBW, VBW=1MHz, Span = 0Hz, Sweep = auto.
- 5). Repeat above procedures until all frequency measured was complete.

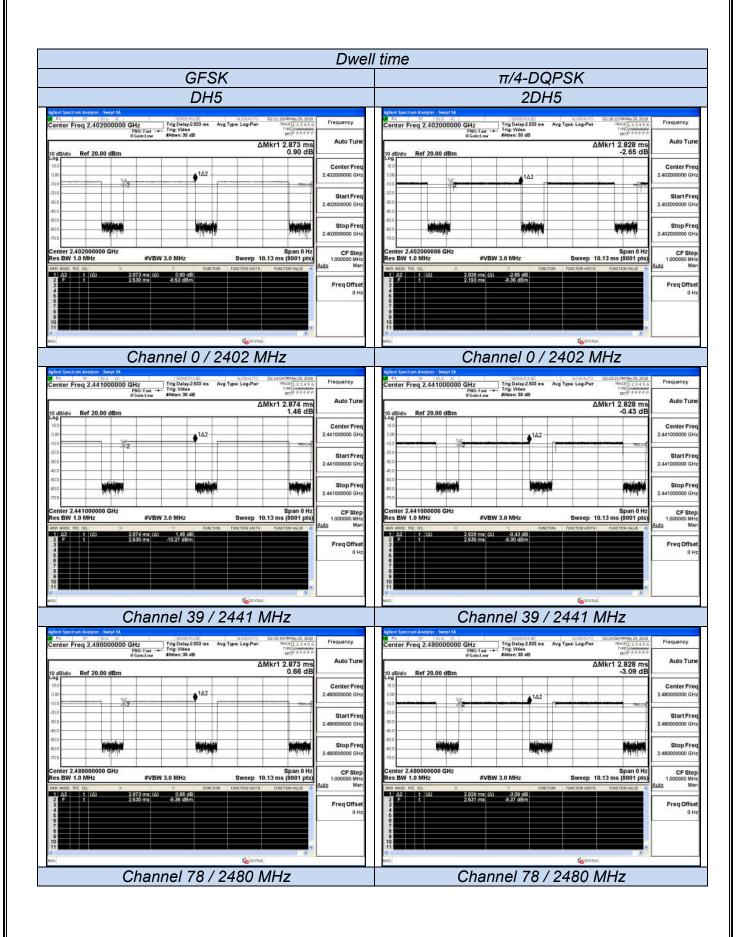
## 6.4.4 Test Results

The Dwell Time=Burst Width\*Total Hops. The detailed calculations are showed as follows:

The duration for dwell time calculation: 0.4[s]\*hopping number=0.4[s]\*79[ch] =31.6[s\*ch];

The burst width [ms/hop/ch], which is directly measured, refers to the duration on one channel hop. The hops per second for all channels: The selected EUT Conf uses a slot type of 5-Tx&1-Rx and a hopping rate of 1600 [ch\*hop/s] for all channels. So the final hopping rate for all channels is 1600/6=266.67 [ch\*hop/s]

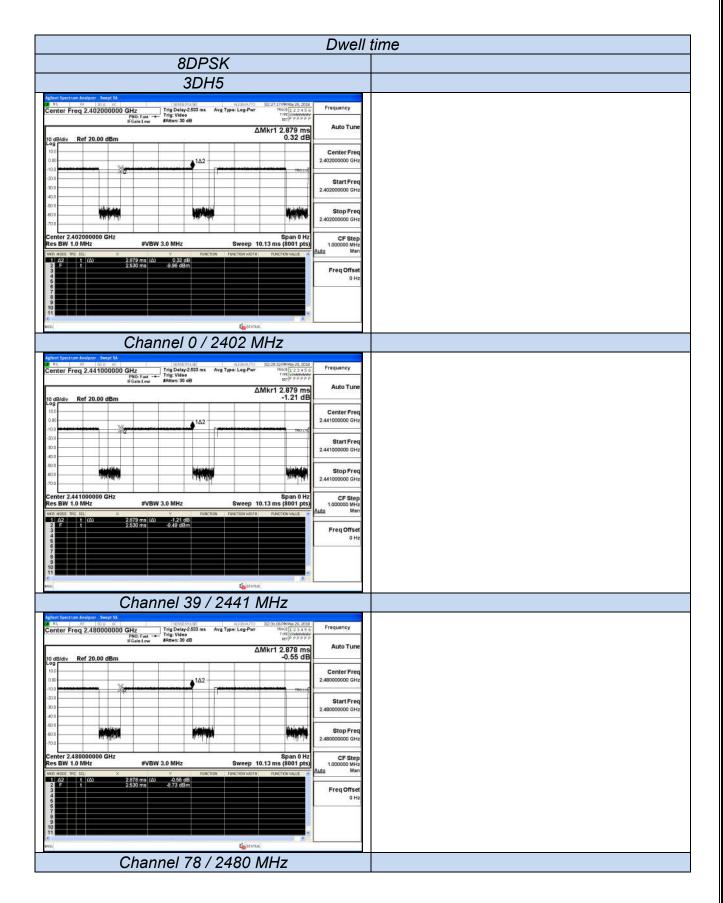
The hops per second on one channel: 266.67 [ch\*hops/s]/79 [ch] =3.38 [hop/s];


The total hops for all channels within the dwell time calculation duration: 3.38 [hop/s]\*31.6[s\*ch]=106.67 [hop\*ch];

The dwell time for all channels hopping: 106.67 [hop\*ch]\*Burst Width [ms/hop/ch].

| Mode      | Burst Type | Frequency<br>(MHz) | Pulse Width<br>(ms) | Dwell Time<br>(S) | Limit<br>(S) | Verdict |
|-----------|------------|--------------------|---------------------|-------------------|--------------|---------|
|           |            | 2402               | 2.87                | 0.306             | 0.4          | PASS    |
| GFSK      | DH5        | 2441               | 2.87                | 0.306             | 0.4          | PASS    |
|           |            | 2480               | 2.87                | 0.306             | 0.4          | PASS    |
|           |            | 2402               | 2.83                | 0.302             | 0.4          | PASS    |
| π/4-DQPSK | 2DH5       | 2441               | 2.83                | 0.302             | 0.4          | PASS    |
|           |            | 2480               | 2.83                | 0.302             | 0.4          | PASS    |
|           |            | 2402               | 2.88                | 0.307             | 0.4          | PASS    |
| 8DPSK     | 3DH5       | 2441               | 2.88                | 0.307             | 0.4          | PASS    |
|           |            | 2480               | 2.88                | 0.307             | 0.4          | PASS    |

### Remark:


- 1. Test results including cable loss;
- 2. Please refer to following plots;
- 3. Measured at difference Packet Type for each mode and recorded worst case for each mode.
- 4. Dwell Time Calculate formula: DH1: Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second DH3: Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second DH5: Dwell time=Pulse Time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second
- 5. Measured at low, middle and high channel, recorded worst at middle channel;

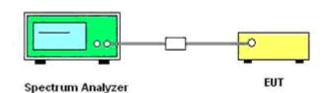


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 26 of 50

FCC ID:ZSHW45

Report No.: LCS180522040AEA




This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 27 of 50

### 6.5 Conducted Spurious Emissions and Band Edges Test

#### 6.5.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

6.5.2 Block Diagram of Test Setup



#### 6.5.3 Test Procedure

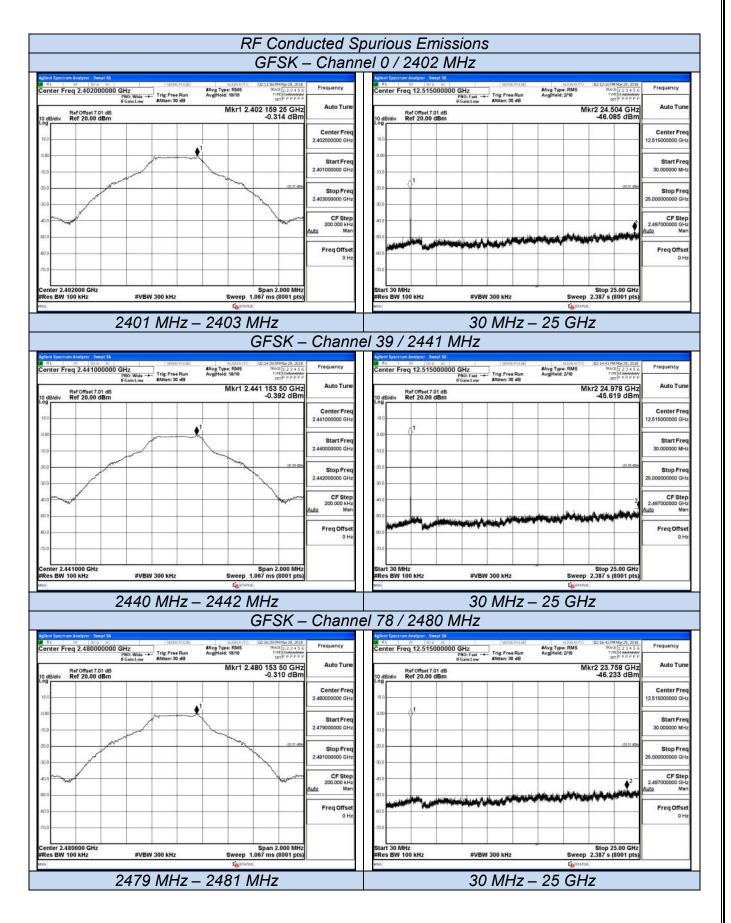
Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 KHz. The video bandwidth is set to 300 KHz.

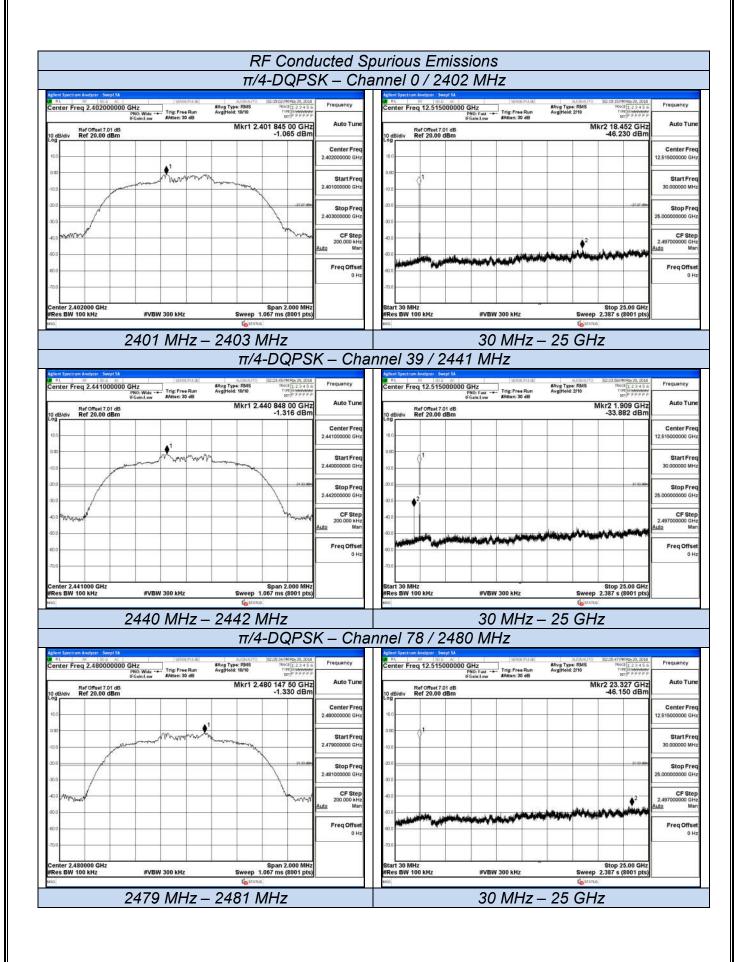
Measurements are made over the 9 KHz to 25GHz range with the transmitter set to the lowest, middle, and highest channels

6.5.4 Test Results of Conducted Spurious Emissions

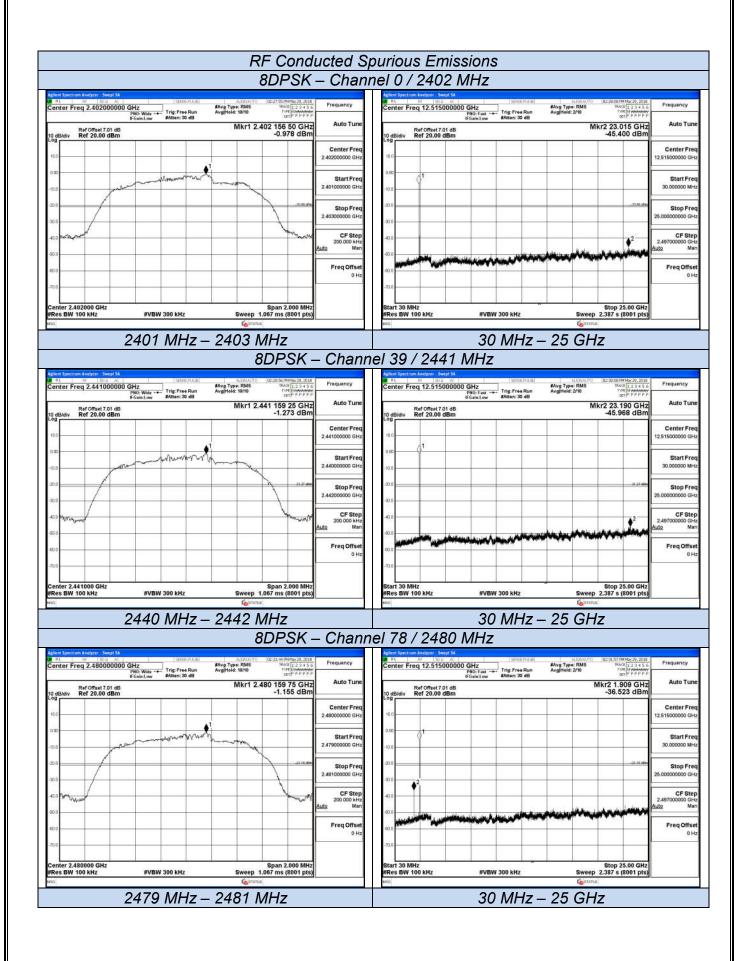
No non-compliance noted. For test data please refer to the following page.


| Temperature   | <b>23.5</b> ℃ | Humidity       | 52.6% |
|---------------|---------------|----------------|-------|
| Test Engineer | Wilson Hong   | Configurations | BT    |

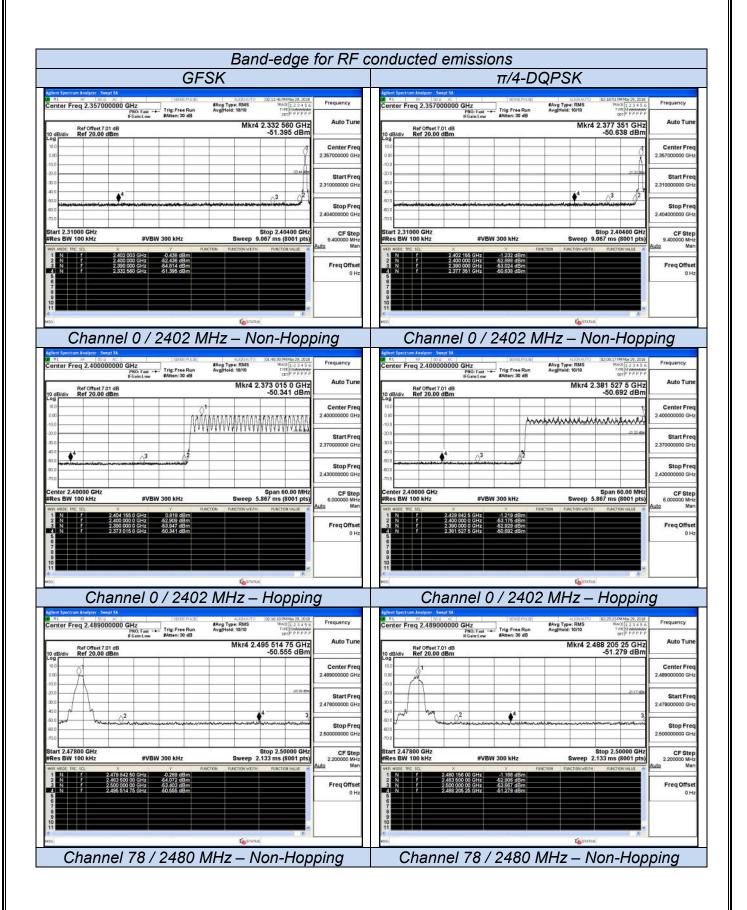
| Test Mode | Channel | Frequency<br>(MHz) | Spurious RF Conducted Emission<br>(dBc) | Limits<br>(dBc) | Verdict |
|-----------|---------|--------------------|-----------------------------------------|-----------------|---------|
|           | 0       | 2402               | <-20                                    |                 |         |
| GFSK      | 39      | 2441               | <-20                                    | -20             | PASS    |
|           | 78      | 2480               | <-20                                    |                 |         |
|           | 0       | 2402               | <-20                                    |                 |         |
| π/4-DQPSK | 39      | 2441               | <-20                                    | -20             | PASS    |
|           | 78      | 2480               | <-20                                    |                 |         |
|           | 0       | 2402               | <-20                                    |                 |         |
| 8DPSK     | 39      | 2441               | <-20                                    | -20             | PASS    |
|           | 78      | 2480               | <-20                                    |                 |         |


#### Remark:

- 1. Test results including cable loss;
- 2. Please refer to following plots;
- 3. Measured at difference Packet Type for each mode and recorded worst case for each mode.
- 4. Worst case data at DH5 for GFSK, 2DH5 for  $\pi$ /4-DQPSK, 3DH5 for 8DPSK modulation type;
- 5. For frequency below 30MHz, no emission was found, therefore, it's not recorded.


*This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 28 of 50* 

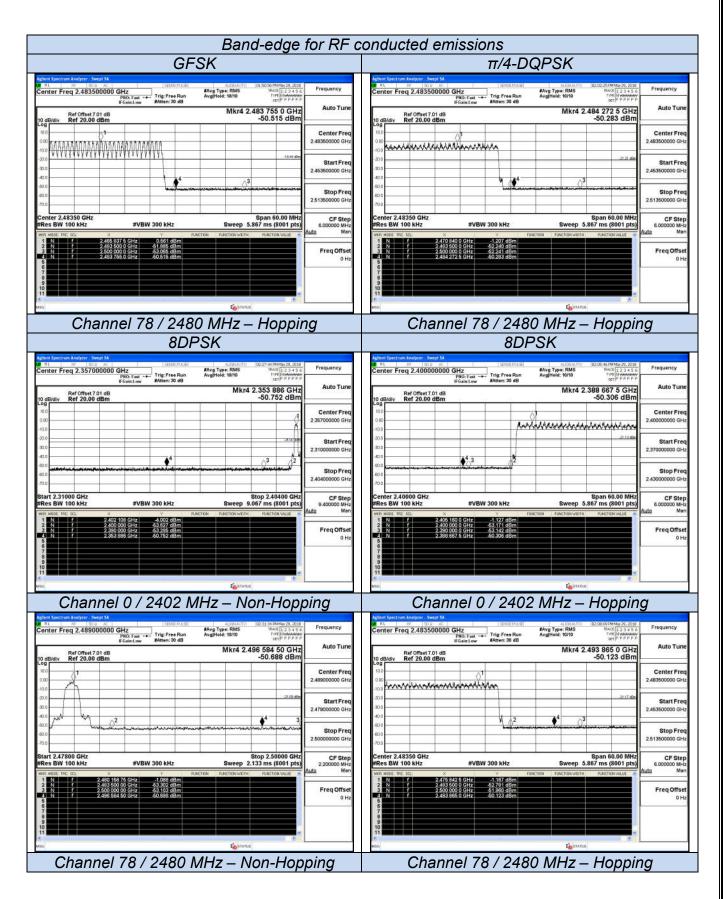



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 29 of 50



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 30 of 50

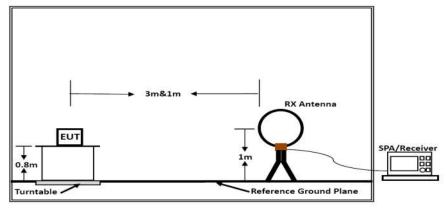



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 31 of 50

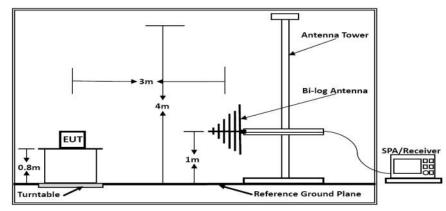


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 32 of 50

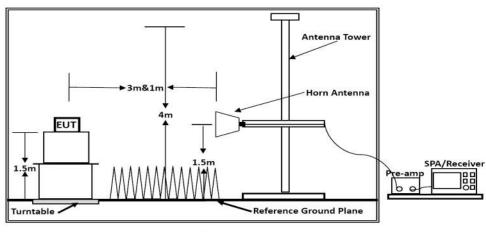
FCC ID:ZSHW45


Report No.: LCS180522040AEA




This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 33 of 50

## 7. RADIATED MEASUREMENT


#### 7.1 Block Diagram of Test Setup







Below 1GHz



Above 1GHz

Above 18 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.

Distance extrapolation factor = 20 log (specific distanc [3m] / test distance [1.5m]) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 34 of 50

#### 7.2 Restricted Band Emission Limit

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

| MHz               | MHz                 | MHz           | GHz         |
|-------------------|---------------------|---------------|-------------|
| 0.090-0.110       | 16.42-16.423        | 399.9-410     | 4.5-5.15    |
| \1\ 0.495-0.505   | 16.69475-16.69525   | 608-614       | 5.35-5.46   |
| 2.1735-2.1905     | 16.80425-16.80475   | 960-1240      | 7.25-7.75   |
| 4.125-4.128       | 25.5-25.67          | 1300-1427     | 8.025-8.5   |
| 4.17725-4.17775   | 37.5-38.25          | 1435-1626     | 9.0-9.2     |
| 4.20725-4.20775   | 73-74.6             | 1645.5-1646.5 | 9.3-9.5     |
| 6.215-6.218       | 74.8-75.2           | 1660-1710     | 10.6-12.7   |
| 6.26775-6.26825   | 108-121.94          | 1718.8-1722.2 | 13.25-13.4  |
| 6.31175-6.31225   | 123-138             | 2200-2300     | 14.47-14.5  |
| 8.291-8.294       | 149.9-150.05        | 2310-2390     | 15.35-16.2  |
| 8.362-8.366       | 156.52475-156.52525 | 2483.5-2500   | 17.7-21.4   |
| 8.37625-8.38675   | 156.7-156.9         | 2690-2900     | 22.01-23.12 |
| 8.41425-8.41475   | 162.0125-167.17     | 3260-3267     | 23.6-24.0   |
| 12.29-12.293.     | 167.72-173.2        | 3332-3339     | 31.2-31.8   |
| 12.51975-12.52025 | 240-285             | 3345.8-3358   | 36.43-36.5  |
| 12.57675-12.57725 | 322-335.4           | 3600-4400     | (\2\)       |
| 13.36-13.41       |                     |               |             |

\1\ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

\2\ Above 38.6

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Frequencies<br>(MHz) | Field Strength<br>(microvolts/meter) | Measurement Distance<br>(meters) |
|----------------------|--------------------------------------|----------------------------------|
| 0.009~0.490          | 2400/F(KHz)                          | 300                              |
| 0.490~1.705          | 24000/F(KHz)                         | 30                               |
| 1.705~30.0           | 30                                   | 30                               |
| 30~88                | 100                                  | 3                                |
| 88~216               | 150                                  | 3                                |
| 216~960              | 200                                  | 3                                |
| Above 960            | 500                                  | 3                                |

### 7.3 Instruments Setting

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

| Spectrum Parameter                        | Setting                                           |
|-------------------------------------------|---------------------------------------------------|
| Attenuation                               | Auto                                              |
| Start Frequency                           | 1000 MHz                                          |
| Stop Frequency                            | 10 <sup>th</sup> carrier harmonic                 |
| RB / VB (Emission in restricted band)     | 1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average |
| RB / VB (Emission in non-restricted band) | 1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average |

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 35 of 50

| Receiver Parameter     | Setting                                    |
|------------------------|--------------------------------------------|
| Attenuation            | Auto                                       |
| Start ~ Stop Frequency | 9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG  |
| Start ~ Stop Frequency | 150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB/VB 120kHz/1MHz for QP   |

7.4 Test Procedures

#### 1) Sequence of testing 9 kHz to 30 MHz

#### Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a W45op system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

#### **Premeasurement:**

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 0.8 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

#### **Final measurement:**

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

# 2) Sequence of testing 30 MHz to 1 GHz

## Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a W45op system, a table with 0.8 m height is used, which is placed on the ground plane.

- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

### **Premeasurement:**

--- The turntable rotates from 0° to 315° using 45° steps.

- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

#### Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position ( $\pm$  45°) and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

# 3) Sequence of testing 1 GHz to 18 GHz

## Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a W45op system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

### **Premeasurement:**

--- The turntable rotates from 0° to 315° using 45° steps.

- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

#### **Final measurement:**

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position  $(\pm 45^{\circ})$  and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

# 4) Sequence of testing above 18 GHz

# Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a W45op system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

### **Premeasurement:**

--- The antenna is moved spherical over the EUT in different polarizations of the antenna.

### **Final measurement:**

--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

#### 7.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

#### 7.6 Test Results

Radiated Emissions (9 KHz~30MHz)

| Temperature   | <b>23.6</b> ℃ | Humidity       | 53.1% |
|---------------|---------------|----------------|-------|
| Test Engineer | Wilson Hong   | Configurations | BT    |

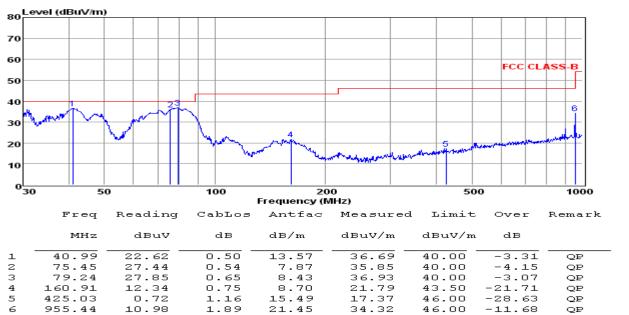
| Freq. | Level  | Over Limit | Over Limit | Remark   |
|-------|--------|------------|------------|----------|
| (MHz) | (dBuV) | (dB)       | (dBuV)     |          |
| -     | -      | -          | -          | See Note |

#### Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor.

# PASS.

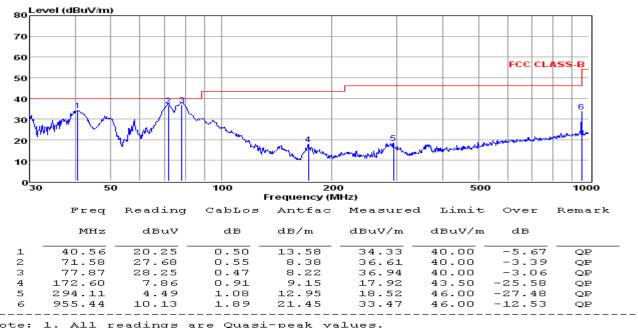

Pre-scan all modes and recorded the worst case results in this report (TX-High Channel (3Mbps)). The test data please refer to following page.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 39 of 50

FCC ID:ZSHW45

#### Below 1GHz (Worst case: 3Mbps, High Channel)






Note: 1. All readings are Quasi-peak values.

2. Measured= Reading + Antenna Factor + Cable Loss

3. The emission that ate 20db blow the offficial limit are not reported

#### Horizontal:



Note: 1. All readings are Quasi-peak values. 2. Measured= Reading + Antenna Factor + Cable Loss

3. The emission that ate 20db blow the offficial limit are not reported

#### Note:

1). Pre-scan all modes and recorded the worst case results in this report (3Mbps (High Channel)). Emission level (dBuV/m) = 20 log Emission level (uV/m).

2). Corrected Reading: Antenna Factor + Cable Loss + Read Level = Level.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 40 of 50

#### Above 1GHz

Note: Only recorded the worst test result.

The worst test result for GFSK, Channel 0 / 2402 MHz:

| Freq.<br>MHz | Reading<br>dBuV | Ant.<br>Fac<br>dB/m | Pre.<br>Fac.<br>dB | Cab.<br>Loss<br>dB | Measured<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Remark  | Pol.       |
|--------------|-----------------|---------------------|--------------------|--------------------|--------------------|-----------------|--------------|---------|------------|
| 4804.00      | 46.73           | 33.06               | 35.04              | 3.94               | 48.69              | 74.00           | -25.31       | Peak    | Horizontal |
| 4804.00      | 33.57           | 33.06               | 35.04              | 3.94               | 35.53              | 54.00           | -18.47       | Average | Horizontal |
| 4804.00      | 49.52           | 33.06               | 35.04              | 3.94               | 51.48              | 74.00           | -22.52       | Peak    | Vertical   |
| 4804.00      | 33.37           | 33.06               | 35.04              | 3.94               | 35.33              | 54.00           | -18.67       | Average | Vertical   |

The worst test result for GFSK, Channel 39 / 2441 MHz:

| Freq.<br>MHz | Reading<br>dBuV | Ant.<br>Fac<br>dB/m | Pre.<br>Fac.<br>dB | Cab.<br>Loss<br>dB | Measured<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Remark  | Pol.       |
|--------------|-----------------|---------------------|--------------------|--------------------|--------------------|-----------------|--------------|---------|------------|
| 4882.00      | 49.33           | 33.16               | 35.15              | 3.96               | 51.30              | 74.00           | -22.70       | Peak    | Horizontal |
| 4882.00      | 33.32           | 33.16               | 35.15              | 3.96               | 35.29              | 54.00           | -18.71       | Average | Horizontal |
| 4882.00      | 50.87           | 33.16               | 35.15              | 3.96               | 52.84              | 74.00           | -21.16       | Peak    | Vertical   |
| 4882.00      | 36.75           | 33.16               | 35.15              | 3.96               | 38.72              | 54.00           | -15.28       | Average | Vertical   |

#### The worst test result for GFSK, Channel 78 / 2480 MHz:

| Freq.<br>MHz | Reading<br>dBuV | Ant.<br>Fac<br>dB/m | Pre.<br>Fac<br>dB | Cab.<br>Los<br>dB | Measured<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Remark  | Pol.       |
|--------------|-----------------|---------------------|-------------------|-------------------|--------------------|-----------------|--------------|---------|------------|
| 4960.00      | 48.11           | 33.26               | 35.14             | 3.98              | 50.21              | 74.00           | -23.79       | Peak    | Horizontal |
| 4960.00      | 32.71           | 33.26               | 35.14             | 3.98              | 34.81              | 54.00           | -19.19       | Average | Horizontal |
| 4960.00      | 51.42           | 33.26               | 35.14             | 3.98              | 53.52              | 74.00           | -20.48       | Peak    | Vertical   |
| 4960.00      | 35.20           | 33.26               | 35.14             | 3.98              | 37.30              | 54.00           | -16.70       | Average | Vertical   |

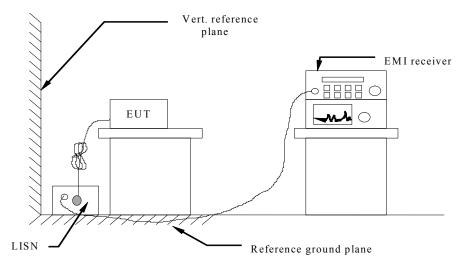
#### Notes:

1). Measuring frequencies from 9 KHz - 10<sup>th</sup> harmonic (ex. 26GHz), No emission found between lowest internal used/generated frequency to 30 MHz.

2). Radiated emissions measured in frequency range from 9 KHz - 10<sup>th</sup> harmonic (ex. 26GHz) were made with an instrument using Peak detector mode.

3). 18~25GHz at least have 20dB margin. No recording in the test report.

# 8. POWER LINE CONDUCTED EMISSIONS

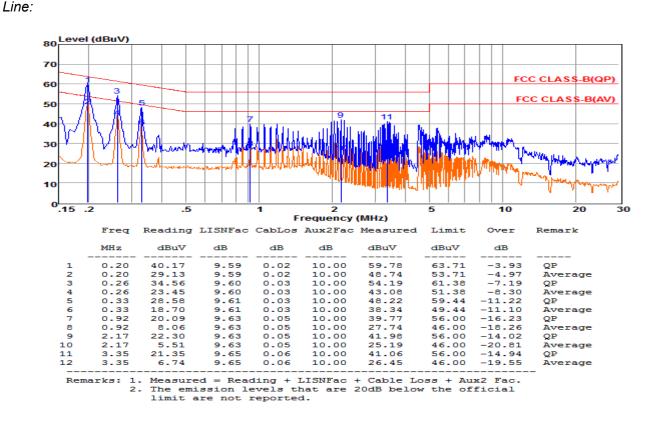

### 8.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 KHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

| Frequency Range | Limits (dBµV) |          |  |  |  |  |
|-----------------|---------------|----------|--|--|--|--|
| (MHz)           | Quasi-peak    | Average  |  |  |  |  |
| 0.15 to 0.50    | 66 to 56      | 56 to 46 |  |  |  |  |
| 0.50 to 5       | 56            | 46       |  |  |  |  |
| 5 to 30         | 60            | 50       |  |  |  |  |

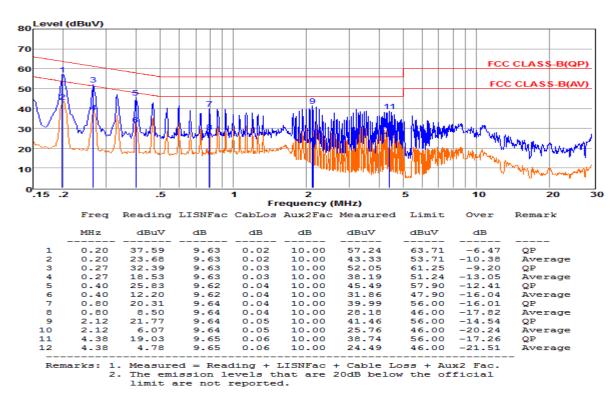
### \* Decreasing linearly with the logarithm of the frequency

# 8.2 Block Diagram of Test Setup




#### 8.3 Test Results

# PASS.


The test data please refer to following page.

| Temperature   | <b>23.8</b> ℃ | Humidity       | 52.3% |
|---------------|---------------|----------------|-------|
| Test Engineer | Wilson Hong   | Configurations | BT    |



#### AC Conducted Emission of power adapter @ AC 120V/60Hz @ 3Mbps (worst case)

#### Neutral:

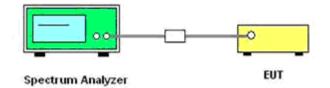


\*\*\*Note: Pre-scan all modes and recorded the worst case results in this report;

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 43 of 50

# 9. RESTRICT-BAND BAND-EDGE MEASUREMENTS FOR RADIATED EMISSIONS

## 9.1 Standard Applicable


Per the requirement of ANSI C63.10:2013 §6.10.5, Restricted-band band-edge tests shall be performed as radiated measurements, however, §12.7.2 that allowed a converted method from conducted measurement function, for conducted measurements above 1000 MHz, EIRP shall be computed as specified in §12.7.4.2, and then field strength shall be computed as follows:

1) E  $[dBuV/m] = EIRP[dBm] - 20 \log (d[m]) + 104.77$ , where E is field strength and d is distance at which the field strength limit is specified in the applicable requirements.

2) E [dBuV/m] = EIRP[dBm] + 95.2, for d = 3 m.

Then the radiated field strength E can be calculated as E=EIRP [dBm] + 95.2

# 9.2 Block Diagram of Test Setup



9.3 Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of Spectrum Analyzer.

# 9.4. Test Procedures

- 1. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 2. Repeat above procedures until all measured frequencies were complete.
- 3. Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- 4. Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see 12.2.5 for guidance on determining the applicable antenna gain)
- Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies ≤ 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).
- 6. For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).
- 7. Compare the resultant electric field strength level to the applicable regulatory limit.
- 8. Perform radiated spurious emission test duress until all measured frequencies were complete.
- Spectrum analyzer setup: Resolution bandwidth: 1MHz Video bandwidth: 3 × RBW Detector: Peak and average above 1 GHz

|                    |                             |                          | GFSK – Nor                             | n-Hopping                                        |          |                   |         |
|--------------------|-----------------------------|--------------------------|----------------------------------------|--------------------------------------------------|----------|-------------------|---------|
| Frequency<br>(MHz) | Conducted<br>Power<br>(dBm) | Antenna<br>Gain<br>(dBi) | Ground<br>Reflection<br>Factor<br>(dB) | Convert<br>Radiated E<br>Level At 3m<br>(dBuV/m) | Detector | Limit<br>(dBuV/m) | Verdict |
| 2310.000           | -43.72                      | 2.00                     | 0.00                                   | 53.51                                            | Peak     | 74.00             | PASS    |
| 2310.000           | -54.60                      | 2.00                     | 0.00                                   | 42.63                                            | Average  | 54.00             | PASS    |
| 2390.000           | -43.26                      | 2.00                     | 0.00                                   | 53.97                                            | Peak     | 74.00             | PASS    |
| 2390.000           | -54.46                      | 2.00                     | 0.00                                   | 42.77                                            | Average  | 54.00             | PASS    |
| 2483.500           | -43.45                      | 2.00                     | 0.00                                   | 53.78                                            | Peak     | 74.00             | PASS    |
| 2483.500           | -54.15                      | 2.00                     | 0.00                                   | 43.08                                            | Average  | 54.00             | PASS    |
| 2500.000           | -44.66                      | 2.00                     | 0.00                                   | 52.57                                            | Peak     | 74.00             | PASS    |
| 2500.000           | -54.10                      | 2.00                     | 0.00                                   | 43.13                                            | Average  | 54.00             | PASS    |

### 9.5. Test Results

| π/4DQPSK – Non-Hopping |                             |                          |                                        |                                                  |          |                   |         |  |  |  |
|------------------------|-----------------------------|--------------------------|----------------------------------------|--------------------------------------------------|----------|-------------------|---------|--|--|--|
| Frequency<br>(MHz)     | Conducted<br>Power<br>(dBm) | Antenna<br>Gain<br>(dBi) | Ground<br>Reflection<br>Factor<br>(dB) | Convert<br>Radiated E<br>Level At 3m<br>(dBuV/m) | Detector | Limit<br>(dBuV/m) | Verdict |  |  |  |
| 2310.000               | -44.70                      | 2.00                     | 0.00                                   | 52.53                                            | Peak     | 74.00             | PASS    |  |  |  |
| 2310.000               | -54.73                      | 2.00                     | 0.00                                   | 42.50                                            | Average  | 54.00             | PASS    |  |  |  |
| 2390.000               | -44.57                      | 2.00                     | 0.00                                   | 52.66                                            | Peak     | 74.00             | PASS    |  |  |  |
| 2390.000               | -54.37                      | 2.00                     | 0.00                                   | 42.86                                            | Average  | 54.00             | PASS    |  |  |  |
| 2483.500               | -45.18                      | 2.00                     | 0.00                                   | 52.05                                            | Peak     | 74.00             | PASS    |  |  |  |
| 2483.500               | -54.12                      | 2.00                     | 0.00                                   | 43.11                                            | Average  | 54.00             | PASS    |  |  |  |
| 2500.000               | -43.24                      | 2.00                     | 0.00                                   | 53.99                                            | Peak     | 74.00             | PASS    |  |  |  |
| 2500.000               | -54.11                      | 2.00                     | 0.00                                   | 43.12                                            | Average  | 54.00             | PASS    |  |  |  |

|                    | 8DPSK – Non-Hopping         |                          |                                        |                                                  |          |                   |         |  |  |  |  |
|--------------------|-----------------------------|--------------------------|----------------------------------------|--------------------------------------------------|----------|-------------------|---------|--|--|--|--|
| Frequency<br>(MHz) | Conducted<br>Power<br>(dBm) | Antenna<br>Gain<br>(dBi) | Ground<br>Reflection<br>Factor<br>(dB) | Convert<br>Radiated E<br>Level At 3m<br>(dBuV/m) | Detector | Limit<br>(dBuV/m) | Verdict |  |  |  |  |
| 2310.000           | -44.23                      | 2.00                     | 0.00                                   | 53.00                                            | Peak     | 74.00             | PASS    |  |  |  |  |
| 2310.000           | -54.68                      | 2.00                     | 0.00                                   | 42.55                                            | Average  | 54.00             | PASS    |  |  |  |  |
| 2390.000           | -44.03                      | 2.00                     | 0.00                                   | 53.20                                            | Peak     | 74.00             | PASS    |  |  |  |  |
| 2390.000           | -54.32                      | 2.00                     | 0.00                                   | 42.91                                            | Average  | 54.00             | PASS    |  |  |  |  |
| 2483.500           | -42.61                      | 2.00                     | 0.00                                   | 54.62                                            | Peak     | 74.00             | PASS    |  |  |  |  |
| 2483.500           | -54.10                      | 2.00                     | 0.00                                   | 43.13                                            | Average  | 54.00             | PASS    |  |  |  |  |
| 2500.000           | -43.99                      | 2.00                     | 0.00                                   | 53.24                                            | Peak     | 74.00             | PASS    |  |  |  |  |
| 2500.000           | -54.02                      | 2.00                     | 0.00                                   | 43.21                                            | Average  | 54.00             | PASS    |  |  |  |  |

Remark:

1. Measured at difference Packet Type for each mode and recorded worst case for each mode.

2. Worst case data at DH5 for GFSK, 2DH5 for  $\pi$ /4DQPSK, 3DH5 for 8DPSK modulation type;

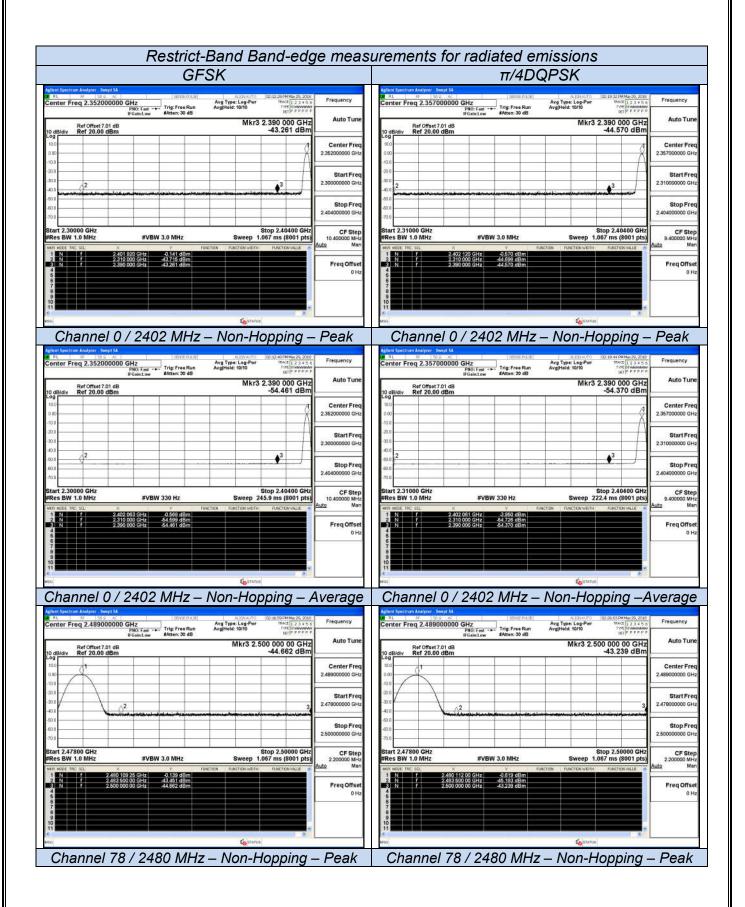
3. Measured at Hopping and Non-Hopping mode, recorded worst at Non-Hopping mode.

4. The other emission levels were very low against the limit.

5. The average measurement was not performed when the peak measured data under the limit of average detection.

6. Detector AV is setting spectrum/receiver. RBW=1MHz/VBW=330Hz/Sweep time=Auto/Detector=Peak;

7. Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the

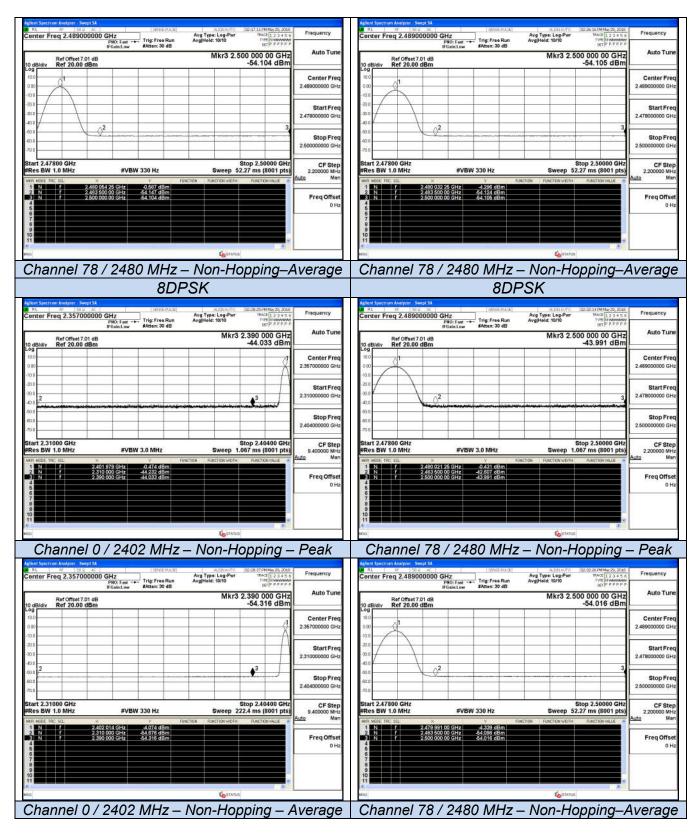

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 45 of 50

FCC ID:ZSHW45 Report 1

Report No.: LCS180522040AEA

measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.

8. Please refer to following test plots;




This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 47 of 50

#### SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID:ZSHW45

Report No.: LCS180522040AEA



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 48 of 50

#### FCC ID:ZSHW45

# **10. ANTENNA REQUIREMENT**

## 10.1 Standard Applicable

According to antenna requirement of §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

# 10.2 Antenna Connected Construction

### 10.2.1. Standard Applicable

According to § 15.203 & RSS-Gen, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

# 10.2.2. Antenna Connector Construction

The antenna gain used for transmitting is 1dBi, and the antenna is a PIFA antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details. The WLAN and BT share same antenna;

10.2.3. Results: Compliance.

# **11. TEST SETUP PHOTOGRAPHS OF EUT**

Please refer to separate file for test setup photos.

# **12. EXTERIOR PHOTOGRAPHS OF THE EUT**

Please refer to separate file for exterior photos of eut.

# **13. INTERIOR PHOTOGRAPHS OF THE EUT**

Please refer to separate file for interior photos of eut.

-----THE END OF REPORT------