SHENZHEN KENXINDA TECHNOLOGY CO.,LTD

GSM&WCDMA MOBILE PHONE

Model: S-502

28 September, 2011 Report No.: 11070066-FCC 15.247 (This report supersedes NONE)

Modifications made to the product : None				
thority of:				
Spring show				
Spring Zhou				
Compliance Engineer Technical Manager				

This test report may be reproduced in full only. Test result presented in this test report is applicable to the representative sample only.

То

11070066-FCC 15.247 Serial# 28 September, 2011 2 of 62 Issue Date: Page www.siemic.com.cn

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management through out a project. Our extensive experience with China, Asia Pacific, North America, European, and international compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Accreditation Body	Scope
USA	FCC, A2LA	EMC, RF/Wireless, Telecom
Canada	IC, A2LA, NIST	EMC, RF/Wireless, Telecom
Taiwan	BSMI, NCC, NIST	EMC, RF, Telecom , Safety
Hong Kong	OFTA , NIST	RF/Wireless ,Telecom
Australia	NATA, NIST	EMC, RF, Telecom , Safety
Korea	KCC/RRA, NIST	EMI, EMS, RF, Telecom, Safety
Japan	VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom
Mexico	NOM, COFETEL, Caniety	Safety, EMC , RF/Wireless, Telecom
Europe	A2LA, NIST	EMC, RF, Telecom , Safety

Accreditations for Product Certifications

Country	Accreditation Body	Scope
USA	FCC TCB, NIST	EMC , RF , Telecom
Canada	IC FCB , NIST	EMC , RF , Telecom
Singapore	iDA, NIST	EMC, RF, Telecom
EU	NB	EMC & R&TTE Directive

 Serial#:
 11070066-FCC 15.247

 Issue Date:
 28 September, 2011

 Page:
 3 of 62

 www.siemic.com.cn

This page has been left blank intentionally.

CONTENTS

1	EXECUTIVE SUMMARY & EUT INFORMATION	.5
2	TECHNICAL DETAILS	.6
3	MODIFICATION	.7
4	TEST SUMMARY	.8
5	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	.9
ANN	EX A. TEST INSTRUMENT & METHOD	44
ANN	EX B. EUT AND TEST SETUP PHOTOGRAPHS	48
ANN	EX C. TEST SETUP AND SUPPORTING EQUIPMENT	56
ANN	EX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART LIST	60
ANN	EX E. SIEMIC ACCREDITATION CERTIFICATES	61

Title: RF Test Report for GSM&WCDMA MOBILE PHONE Model: S-502 To: FCC 15.247:2010

11070066-FCC 15.247 Issue Date: 28 September, 2011 Page: 5 of 62 www.siemic.com.cn

Executive Summary & EUT information 1

The purpose of this test programme was to demonstrate compliance of the SHENZHEN KENXINDA TECHNOLOGY CO., LTD GSM&WCDMA MOBILE PHONE, and model S-502 against the current Stipulated Standards. The GSM&WCDMA MOBILE PHONE has demonstrated compliance with the FCC 15.247:2010.

EUT Information

EUT Description Model No Serial No	:	GSM&WCDMA MOBILE PHONE S-502 N/A Powered by Power Adapter
Input Power	•	Trade Name.: ti.phone Input: AC100-240V, 50/60Hz, 0.25A Output: DC5.0V, 500mA Li-ion Battery Model No.: BL-4D Rating: 3.7V, 1200mAh Restrictive Voltage: 4.2V
Classification Per Stipulated Test Standard	:	Spread Spectrum System/Device

 Serial#:
 11070066-FCC 15.247

 Issue Date:
 28 September, 2011

 Page:
 6 of 62
 www.siemic.com.cn

2 TECHNICAL DETAILS

	Compliance testing of
Purpose	GSM&WCDMA MOBILE PHONE with stipulated standard
Applicant / Client	SHENZHEN KENXINDA TECHNOLOGY CO.,LTD 18th FLOOR, FUCHUN ORIENT BUILDING,SHENNAN AV7006,FUTIAN DISTRICT,SHENZHEN,P.R.CHINA
Manufacturer	SHENZHEN KENXINDA TECHNOLOGY CO.,LTD BAO'AN BRANCH 1-6 FLOOR,NO.105 WORK SHOP&1-5 FLOOR,NO.104 WORK SHOP,XINWEIHUANING ROAD,DALANG COMMUNITY,DALANG STREET,BAO'AN DISTRICT,SHENZHEN,P.R.CHINA
Laboratory performing the tests	SIEMIC Nanjing (China) Laboratories NO.2-1,Longcang Dadao, Yuhua Economic Development Zone, Nanjing, China Tel:+86(25)86730128/86730129 Fax:+86(25)86730127 <u>Email:info@siemic.com</u>
Test report reference number	11070066-FCC 15.247
Date EUT received	25 September, 2011
Standard applied	FCC 15.247:2010
Dates of test (from – to)	26 September, 2011
No of Units:	#1
Equipment Category:	DTS
Trade Name:	SEFTON
Model :	S-502
RF Operating Frequency (ies)	GSM850 TX : 824.2 ~ 848.8 MHz RX :869.2 ~ 893.8 MHz PCS1900 TX : 1850.2 ~ 1909.8 MHz RX :1930.2 ~ 1989.8 MHz UMTS Band V TX : 826.4 ~ 846.6 MHz RX :871.4 ~ 891.6 MHz UMTS Band II TX : 1852.4 ~ 1907.6 MHz RX :1932.4 ~ 1987.6 MHz BT:2402MHz-2480MHz WIFI:2.4GHz band: 802.11b/g: 2412MHz-2462MHz
Number of Channels :	300 (PCS1900) and 125 (PCS850) BT: 79CH WIFI:2.4GHz band: 802.11b/g-20MHz 11CH
Modulation:	GSM / GPRS/ EGPRS : GMSK, 8PSK WCDMA:QPSK BT: GFSK, π/4 DPSK, 8DPSK WIFI:DSSS
FCC ID:	ZSHS-502

 Serial#:
 11070066-FCC 15.247

 Issue Date:
 28 September, 2011

 Page:
 7 of 62

 www.siemic.com.cn

MODIFICATION 3

NONE

Serial#: 11070066-FCC 15:2-Issue Date: 28 September, 2011 Page: 8 of 62

11070066-FCC 15.247 www.siemic.com.cn

TEST SUMMARY 4

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

Spread Spectrum System/Device

Test Results Summary

Test Standard	Description	Pass / Fail
CFR 47 Part 15.247: 2010		
15.203	Antenna Requirement	Pass
15.205	Restricted Band of Operation	Pass
15.207(a)	Conducted Emissions Voltage	Pass
15.247(a)(1)	Channel Separation	N/A
15.247(a)(1)	Occupied Bandwidth	Pass
15.247(a)(2)	6dB Bandwidth	Pass
15.247(a)(1)	Number of Hopping Channels	N/A
15.247(a)(1)	Time of Occupancy	N/A
15.247(b)	Output Power	Pass
15.247(c)	Antenna Gain > 6 dBi	Pass
15.247(d)	Conducted Spurious Emissions	Pass
15.209; 15.247(d)	Radiated Spurious Emissions	Pass
15.247(e)	Power Spectral Density	Pass
15.247(f)	Hybrid System Requirement	N/A
15.247(g)	Hopping Capability	N/A
15.247(h)	Hopping Coordination Requirement	N/A
15.247(i)	RF Exposure requirement	Pass

ANSI C63.4: 2009

PS: All measurement uncertainties are not taken into consideration for all presented test result.

 Serial#:
 11070066-FCC 15.247

 Issue Date:
 28 September, 2011

 Page:
 9 of 62

 www.siemic.com.cn

5 MEASUREMENTS, EXAMINATION AND DERIVED RESULTS

5.1 Antenna Requirement

Requirement(s): 47 CFR §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna requirement must meet at least one of the following:

- a) Antenna must be permanently attached to the device.
- b) Antenna must use a unique type of connector to attach to the device.
- c) Device must be professionally installed. Installer shall be responsible for ensuring that the correct antenna is employed with the device.

The EUT antenna is using a unique type of connector. Antenna maximum gain is 2dBi.

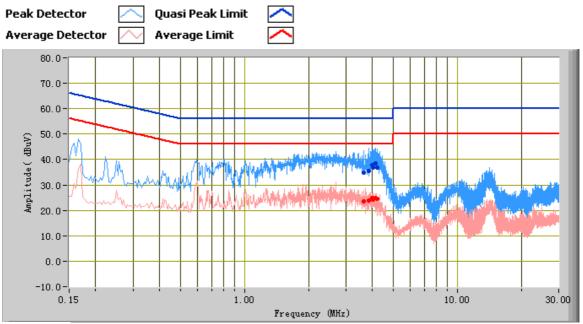
5.2 Conducted Emissions Voltage

Requirement:

	Conducted limit (dBµV)	
Frequency of emission (MHz)	Quasi-peak	Average
0.15–0.5	66 to 56*	56 to 46*
0.5–5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

Procedures:


- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR and Average detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- <u>Conducted Emissions Measurement Uncertainty</u> All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 9kHz – 30MHz (Average & Quasi-peak) is ±3.5dB.
- 4. Environmental Conditions Tempe Relativ

Temperature Relative Humidity Atmospheric Pressure 16°C 50% 1019mbar

5. Test date : 26 September, 2011 Tested By : Andy Wang

Note: Other modes were verified, only 802.11g-20MHz 2.4GHz band mode presented in this report as the worst case.

Test Data

Line

Frequency (MHz)	Quasi Peak	Limit (dBuV)	Margin (dB)	Average (dBuV)	Limit (dBuV)	Margin (dB)	Factors (dB)
3.85	(dBuV) 35.63	56.00	-20.37	24.04	46.00	-21.96	10.46
4.14	38.54	56.00	-17.46	24.78	46.00	-21.22	10.48
4.19	36.73	56.00	-19.27	24.62	46.00	-21.38	10.47
4.01	36.83	56.00	-19.17	24.08	46.00	-21.92	10.51
3.97	37.77	56.00	-18.23	24.82	46.00	-21.18	10.50
3.65	34.75	56.00	-21.25	23.58	46.00	-22.42	10.40

Quasi Peak Limit Peak Detector $\overline{\sim}$ Average Detector Average Limit 80.0-70.0-60.0-50.0-Amplitude(dBuV) 40.0-١Å 30.0 Ally at 20.0 10.0-0.0- $-10.0 - \frac{1}{10}$ 0.15 1.00 10.00 30.00 Frequency (MHz)

Test Data

Neutral

Frequency (MHz)	Quasi Peak (dBuV)	Limit (dBuV)	Margin (dB)	Average (dBuV)	Limit (dBuV)	Margin (dB)	Factors (dB)
4.24	36.79	56.00	-19.21	22.75	46.00	-23.25	10.47
4.09	38.28	56.00	-17.72	25.70	46.00	-20.30	10.49
4.04	37.88	56.00	-18.12	25.18	46.00	-20.82	10.50
2.87	38.44	56.00	-17.56	27.43	46.00	-18.57	10.20
3.81	34.93	56.00	-21.07	23.63	46.00	-22.37	10.45
3.19	37.34	56.00	-18.66	26.45	46.00	-19.55	10.26

 Serial#:
 11070066-FCC 15.247

 Issue Date:
 28 September, 2011

 Page:
 13 of 62

 www.siemic.com.cn

5.3 6dB Occupied Bandwidth

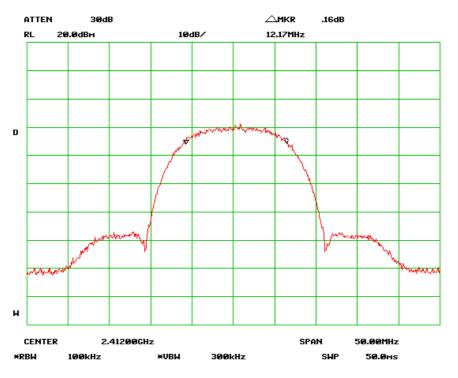
- 1. Conducted Measurement EUT was set for low, mid, high channel with modulated mode and highest RF output power. The spectrum analyzer was connected to the antenna terminal. 16°C 2. **Environmental Conditions** Temperature Relative Humidity 50% Atmospheric Pressure 1019mbar 3. **Conducted Emissions Measurement Uncertainty** All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz – 40GHz is ±1.5dB. 4. Test date : 26 September, 2011
- Tested By : Andy Wang

Requirement(s): 47 CFR § 15.247(a)(1)

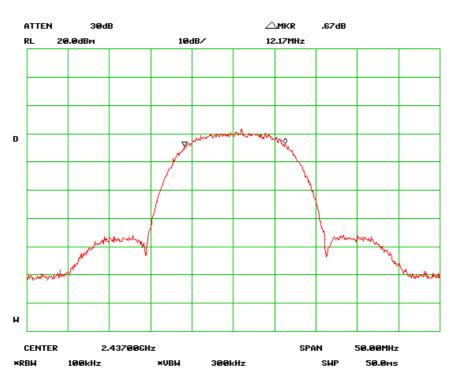
Procedures: The 6dB Bandwidths were measured conducted using a spectrum analyzer at low, mid, and hi channels. 6dB Bandwidth Limit: >500kHz.

2.4GHz band

Protocol	Channel	Channel Frequency (MHz)	6dB Occupied Bandwidth Limit (MHz)	6dB Channel Bandwidth (MHz)
802.11b	Low	2412	0.5	12.17
802.11b	Mid	2437	0.5	12.17
802.11b	High	2462	0.5	12.25
802.11g	Low	2412	0.5	16.83
802.11g	Mid	2437	0.5	16.83
802.11g	High	2462	0.5	16.75


 Serial#:
 11070066-FCC 15.247

 Issue Date:
 28 September, 2011


 Page:
 14 of 62

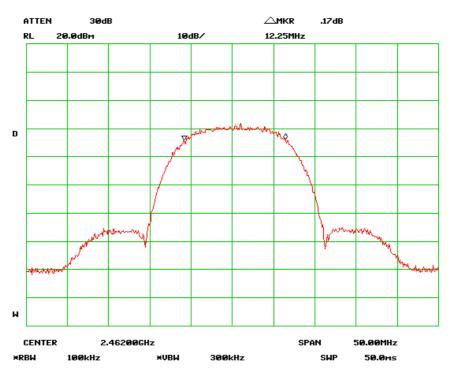
 www.siemic.com.cn

Refer to the attached plots. **2.4GHz band**

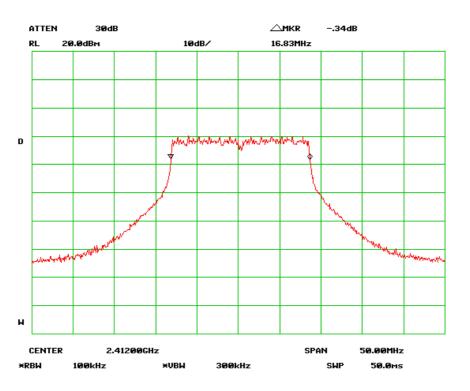
6dB Bandwidth - Low Channel (802.11b)

6dB Bandwidth – Mid Channel (802.11b)

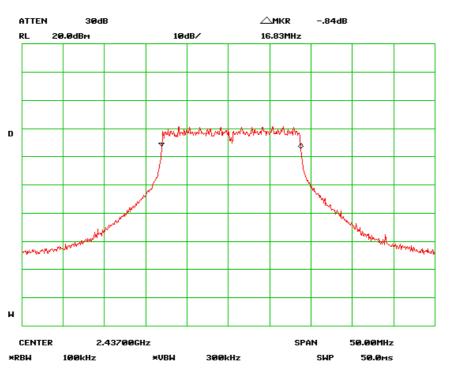
SIEMIC, INC. Accessing global markets
 Title:
 RF Test Report for GSM&WCDMA MOBILE PHONE


 Model:
 S-502

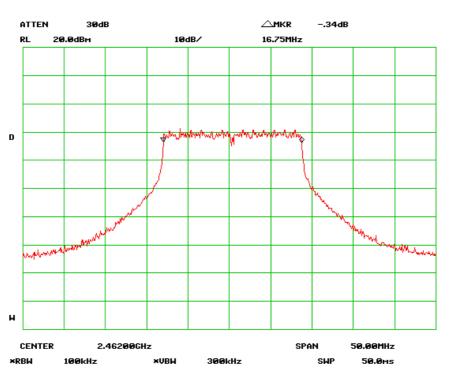
 To:
 FCC 15.247:2010



 Serial#:
 11070066-FCC 15.247


 Issue Date:
 28 September, 2011

 Page:
 15 of 62
 www.siemic.com.cn


6dB Bandwidth – High Channel (802.11b)

6dB Bandwidth – Low Channel (802.11g)

6dB Bandwidth - Mid Channel (802.11g)

6dB Bandwidth – High Channel (802.11g)

 Serial#:
 11070066-FCC 15.247

 Issue Date:
 28 September, 2011

 Page:
 17 of 62

 www.siemic.com.cn

50% 1019mbar

5.4 Power Spectral Density

1. <u>Conducted Measurement</u>

EUT was set for low, mid, high channel with modulated mode and highest RF output power. The spectrum analyzer was connected to the antenna terminal. Environmental Conditions Temperature 16°C

2.	Environmental Conditions	Temperature
		Relative Humidity
		Atmospheric Pressure

 Conducted Emissions Measurement Uncertainty All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz – 40GHz is ±1.5dB.

4. Test date : 26 September, 2011 Tested By : Andy Wang

Requirement(s): 47 CFR § 15.247(e)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3KHz band during any time interval of continuous transmission.

Procedures: The power spectral density measurement was taken conducted using a spectrum analyzer.

RBW=3KHz, VBW>RBW, Sweep time to SPAN/RBW(s).

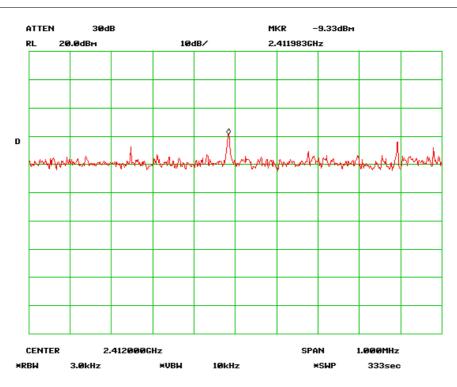
The result:

2.4GHz band

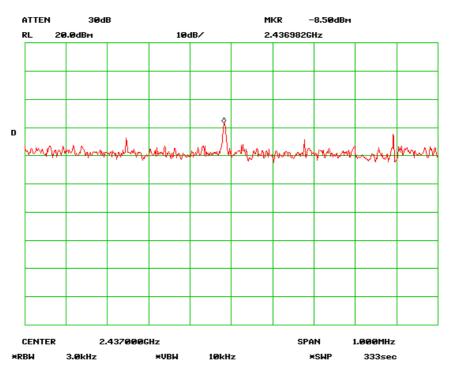
Protocol	Channel	Channel Frequency (MHz)	Peak Spectral Density Limit (dBm/3KHz)	Peak Spectral Density (dBm/3KHz)
802.11b	Low	2412	8	-9.33
802.11b	Mid	2437	8	-8.50
802.11b	High	2462	8	-7.83
802.11g	Low	2412	8	-11.17
802.11g	Mid	2437	8	-10.50
802.11g	High	2462	8	-9.33

Refer to the attached plots. **2.4GHz band**

SIEMIC, INC. Accessing global markets

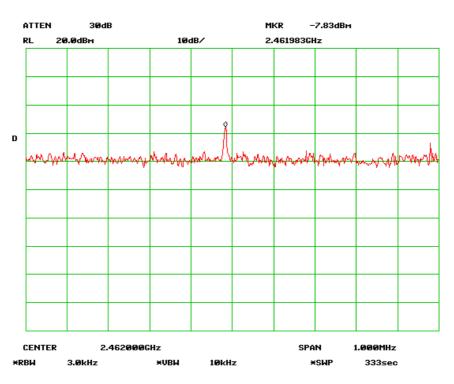

Title: RF Test Report for GSM&WCDMA MOBILE PHONE Model: S-502 To: FCC 15.247:2010

 Serial#:
 11070066-FCC 15.247

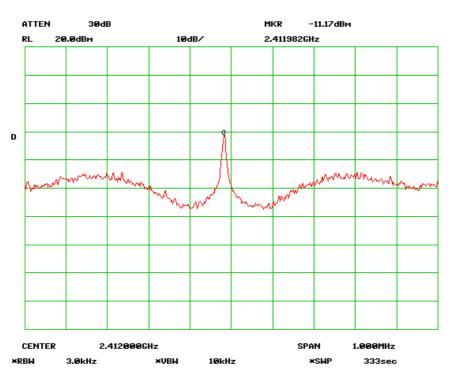

 Issue Date:
 28 September, 2011

 Page:
 18 of 62

 www.siemic.com.cn



PSD - Mid Channel (802.11b)

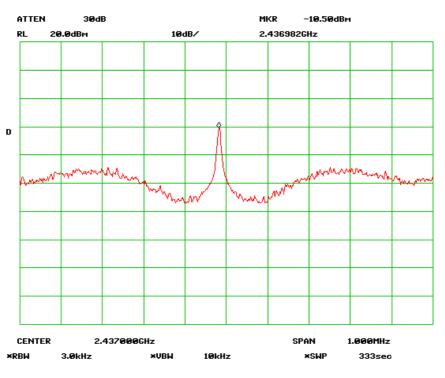


 Serial#:
 11070066-FCC 15.247

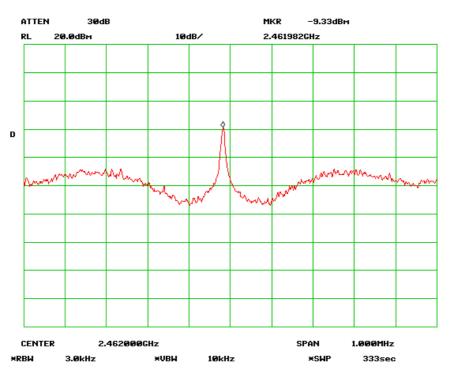
 Issue Date:
 28 September, 2011

 Page:
 19 of 62
 www.siemic.com.cn

PSD - High Channel (802.11b)



PSD - Low Channel (802.11g)



 Serial#:
 11070066-FCC 15.247

 Issue Date:
 28 September, 2011

 Page:
 20 of 62
 www.siemic.com.cn

PSD - Mid Channel (802.11g)

PSD - High Channel (802.11g)

 Serial#:
 11070066-FCC 15.247

 Issue Date:
 28 September, 2011

 Page:
 21 of 62

 www.siemic.com.cn

5.5 Peak Output Power

1.	Conducted Measurement				
	EUT was set for low, mid, high channel with modulated mode and highest RF output powe				
	The spectrum analyzer was connected to the antenna terminal.				
2.	Conducted Emissions Measurement Uncertainty				
	All test measurements carried out are traceable to national standards. The uncertainty of the				
	measurement at a confidence level of approximately 95% (in the case where distributions a				
	normal), with a coverage factor of 2, in the range 30MHz – 40GHz is ±1.5dB.				
3.	Environmental Conditions	Temperature	16°C		
		Relative Humidity	50%		
		Atmospheric Pressure	1019mbar		
4.	Test date : 26 September, 2011				
	Tested By : Andy Wang				

Standard Requirement: 47 CFR § 15.247(b)

Procedures: The peak output power was measured conducted using a spectrum analyzer at low, mid, and hi channels. Peak detector was set to measure the power output. The power is converted from watt to dBm, therefore, 1 watt = 30 dBm. The highest antenna gain that will be used is 2dBi.

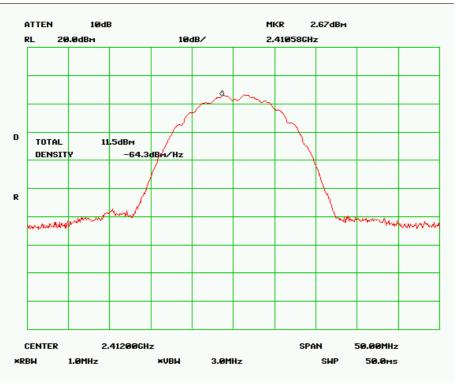
Test Result:

2.4GHz band

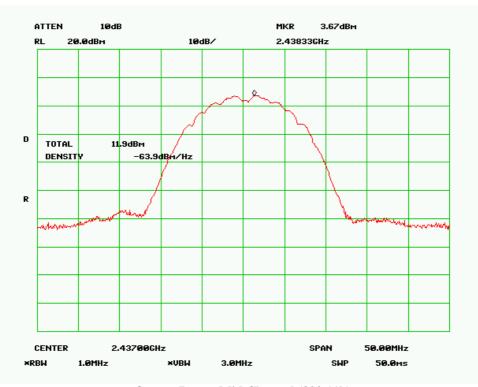
Protocol	Channel	Channel Frequency (MHz)	Peak Output Power Limit (dBm)	Measured Output Power (dBm)
802.11b	Low	2412	30	11.50
802.11b	Mid	2437	30	11.90
802.11b	High	2462	30	11.80
802.11g	Low	2412	30	10.00
802.11g	Mid	2437	30	10.10
802.11g	High	2462	30	10.50

Refer to the attached plots. **2.4GHz band**

SIEMIC, INC. Accessing global markets


Title: RF Test Report for GSM&WCDMA MOBILE PHONE Model: S-502 To: FCC 15.247:2010

 Serial#:
 11070066-FCC 15.247

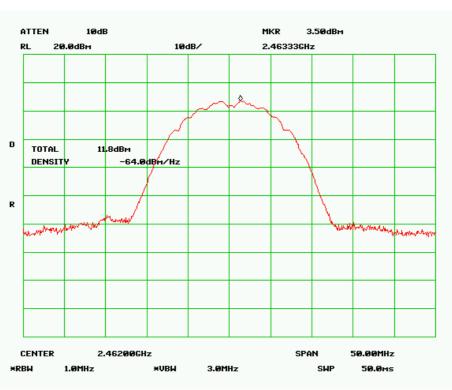

 Issue Date:
 28 September, 2011

 Page:
 22 of 62

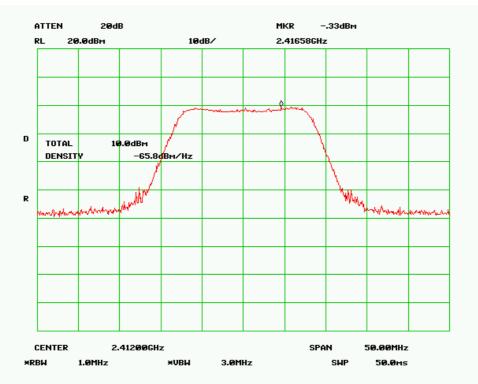
 www.siemic.com.cn

Output Power Mid Channel (802.11b)

Accessing global markets
 Title:
 RF Test Report for GSM&WCDMA MOBILE PHONE


 Model:
 S-502

 To:
 FCC 15.247:2010

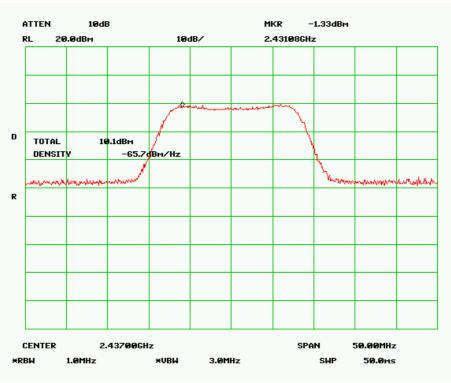


 Serial#:
 11070066-FCC 15.247

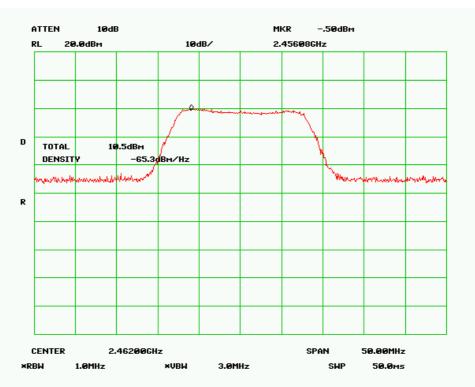
 Issue Date:
 28 September, 2011

 Page:
 23 of 62
 www.siemic.com.cn

Output Power High Channel (802.11b)


Accessing global markets Title: RF Test Report for GSM&WCDMA MOBILE PHONE Model: S-502 To: FCC 15.247:2010

 Serial#:
 11070066-FCC 15.247


 Issue Date:
 28 September, 2011

 Page:
 24 of 62

 www.siemic.com.cn

Output Power Mid Channel (802.11g)

Output Power High Channel (802.11g)

 Serial#:
 11070066-FCC 15.247

 Issue Date:
 28 September, 2011

 Page:
 25 of 62

 www.siemic.com.cn

5.6 Antenna Port Emission

1. Conducted Measurement EUT was set for low, mid, high channel with modulated mode and highest RF output power. The spectrum analyzer was connected to the antenna terminal. 2. Conducted Emissions Measurement Uncertainty All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 40GHz is ±1.5dB. **Environmental Conditions** 16°C 3. Temperature 50% Relative Humidity Atmospheric Pressure 1019mbar

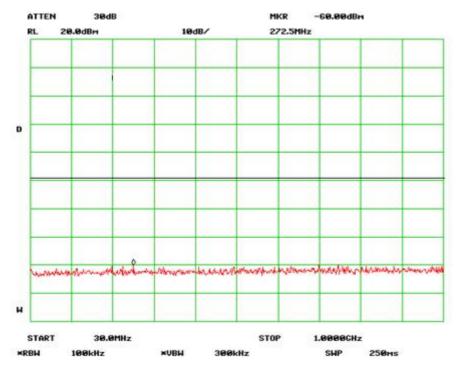
4. Test date : 26 September, 2011 Tested By : Andy Wang

Standard Requirement: Radiated emission limits: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the modulation products of the spreading sequence, the information sequence and the carrier frequency shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

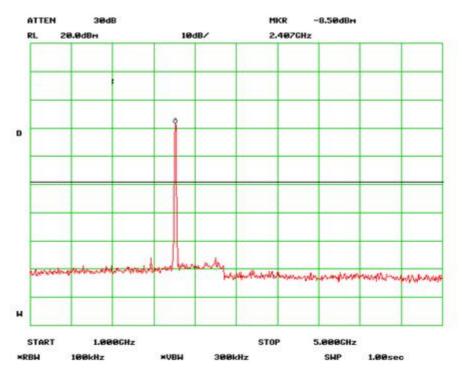
Procedures: The conducted spurious emissions were measured conducted using a spectrum analyzer at low, mid, and hi channels. The limit was determined by attenuating 20 dB of the RF peak power output.

Test Result:

Title: Mode To:


Accessing global markets Title: RF Test Report for GSM&WCDMA MOBILE PHONE Model: S-502 To: FCC 15.247:2010

 Serial#:
 11070066-FCC 15.247


 Issue Date:
 28 September, 2011

 Page:
 26 of 62

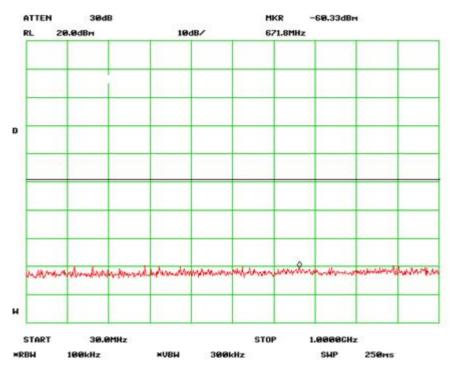
 www.siemic.com.cn

Antenna Port Emission Low Channel -1(802.11b)

Antenna Port Emission Low Channel -2(802.11b)

Accessing global markets
Title: RF Test Report for GSM&WCDMA MOBILE PHONE
Model: S-502
To: FCC 15.247:2010

 Serial#:
 11070066-FCC 15.247


 Issue Date:
 28 September, 2011

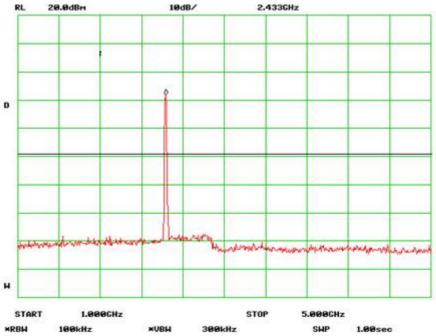
 Page:
 27 of 62

 www.siemic.com.cn

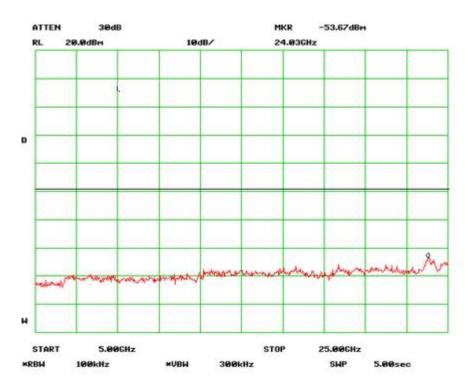
Antenna Port Emission Low Channel -3(802.11b)

ATTEN

SIEMIC, INC. Accessing global markets Title: RF Test Report for GSM&WCDMA MOBILE PHONE Model: S-502 To: FCC 15.247:2010

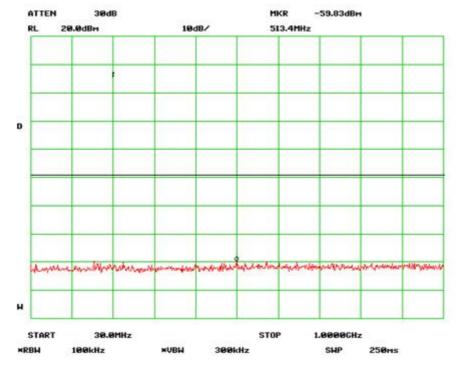

30dB

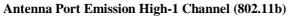
 Serial#:
 11070066-FCC 15.247

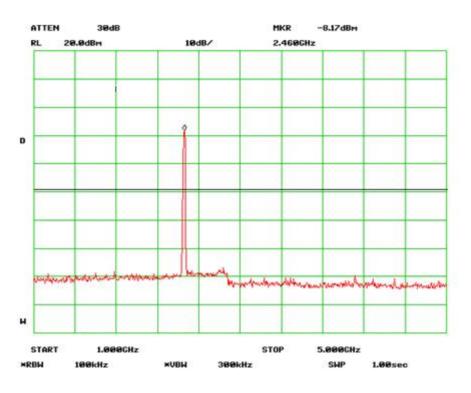

 Issue Date:
 28 September, 2011

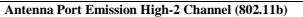
 Page:
 28 of 62
 www.siemic.com.cn

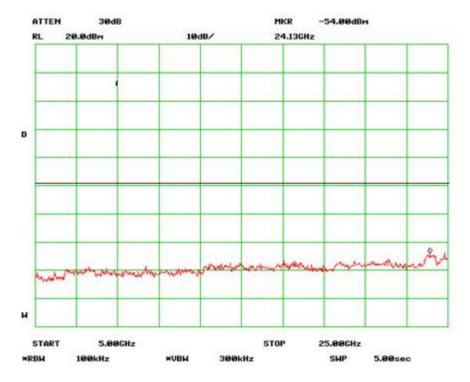
MKR -8.17dBH 2.433GHz




Antenna Port Emission Mid-2 Channel (802.11b)

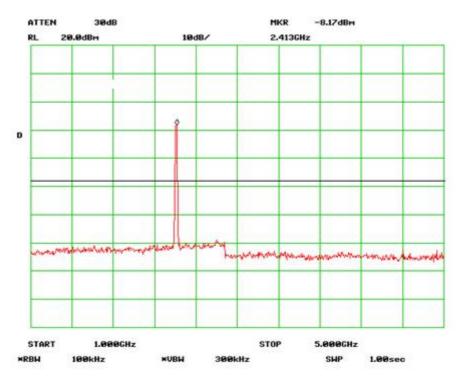






Antenna Port Emission High-3 Channel (802.11b)

D

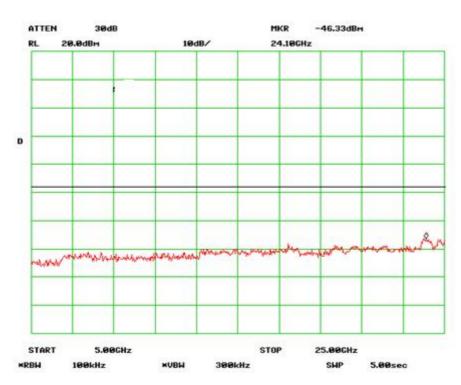

Accessing global markets Title: RF Test Report for GSM&WCDMA MOBILE PHONE Model: S-502 To: FCC 15.247:2010

11070066-FCC 15.247 Issue Date: 28 September, 2011 Page: 31 of 62 www.siemic.com.cn

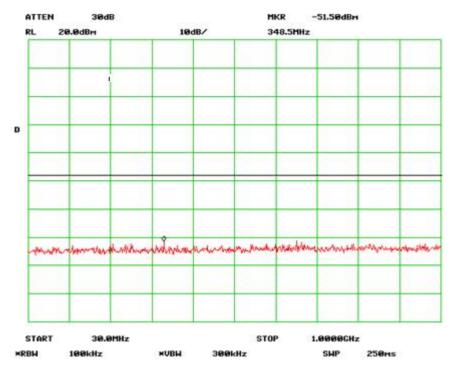
Page:

ATTEN 30dB MKR -51.50dBH RL 20.0dBm 10d8/ 715.5MHz all a require the conversion of the second of the second second water the second second and the second s START 30.0MHz STOP 1.0000CHz RBH 100kHz NUBH 300kHz SHP 250Hs

Antenna Port Emission Low-1 Channel (802.11g)


Accessing global markets Title: RF Test Report for GSM&WCDMA MOBILE PHONE Model: S-502 To: FCC 15.247:2010

 Serial#:
 11070066-FCC 15.247

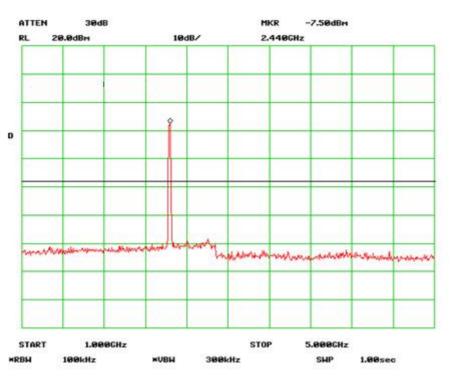

 Issue Date:
 28 September, 2011

 Page:
 32 of 62

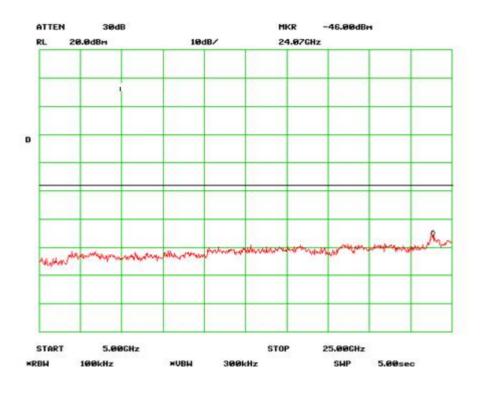
 www.siemic.com.cn

Antenna Port Emission Low-3 Channel (802.11g)

Antenna Port Emission Mid-1 Channel (802.11g)



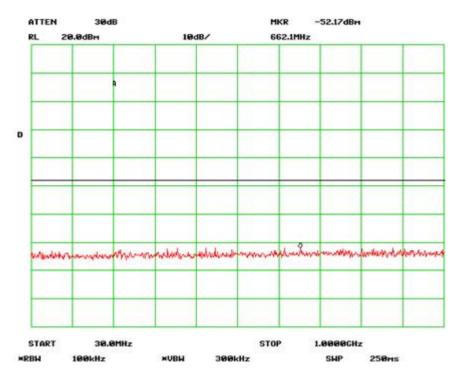
Title: RF Test Report for GSM&WCDMA MOBILE PHONE Model: S-502 To: FCC 15.247:2010

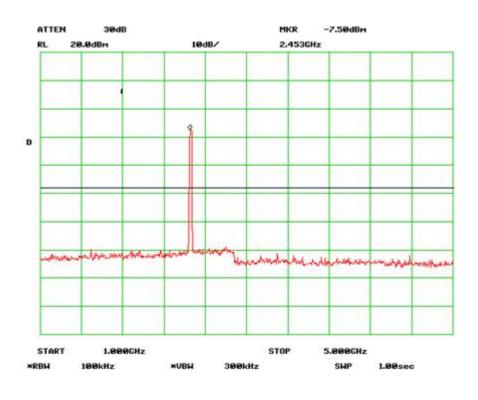


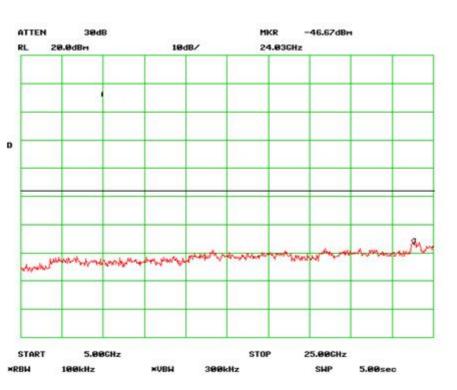
 Serial#:
 11070066-FCC 15.247

 Issue Date:
 28 September, 2011

 Page:
 33 of 62
 www.siemic.com.cn


Antenna Port Emission Mid-2 Channel (802.11g)





Antenna Port Emission High-2 Channel (802.11g)

Antenna Port Emission High-3 Channel (802.11g)

5.7 Radiated Spurious Emission < 1GHz

 All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.
 A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
 Radiated Emissions Measurement Uncertainty All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz – 1GHz & 1GHz above (3m & 10m) is +/-6dB.

4. Environmental Conditions

Temperature Relative Humidity Atmospheric Pressure 16°C 50% 1019mbar

11070066-FCC 15.247

28 September, 2011 35 of 62

www.siemic.com.cn

Serial#: Issue Date:

Page:

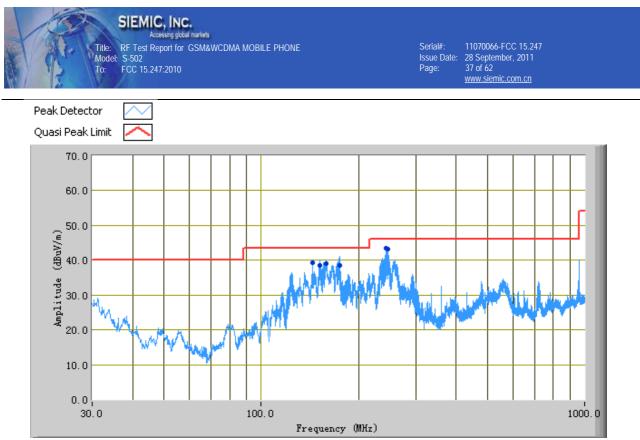
5. Test date : 26 September, 2011 Tested By : Andy Wang

Standard Requirement: The emissions from the Low-power radio-frequency devices shall not exceed the field strength levels specified in the following table and the level of any unwanted emissions shall not exceed the level of the fundamental emission. The tighter limit applies at the band edges.

 Serial#:
 11070066-FCC 15.247

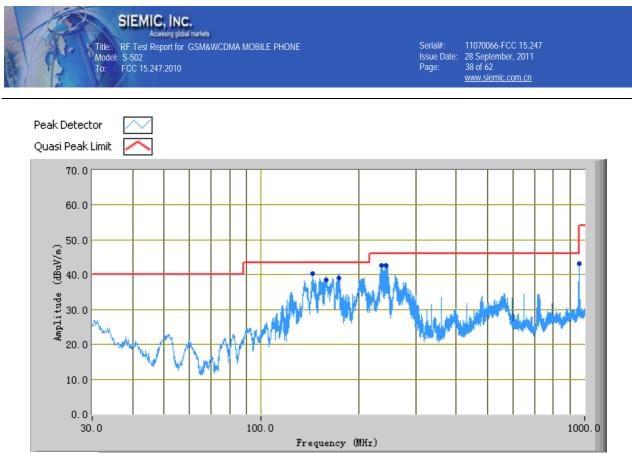
 Issue Date:
 28 September, 2011

 Page:
 36 of 62


 www.siemic.com.cn

Test Result:

2.4GHz band


Mode: 802.11b

Radiated Emission Plot

Test Data

Frequency (MHz)	Quasi Peak (dBuV/m)	Azimuth	Polarity(H /V)	Height (cm)	Factors (dB)	Limit (dBuV/m)	Margin (dB)
174.68	38.49	7.00	Н	124.00	-33.86	43.50	-5.01
245.68	43.21	348.00	Н	124.00	-32.66	46.00	-2.79
151.49	38.50	2.00	Н	207.00	-32.25	43.50	-5.00
158.25	39.16	354.00	Н	177.00	-32.17	43.50	-4.34
242.65	43.42	346.00	Н	124.00	-33.73	46.00	-2.58
144.00	39.26	355.00	V	210.00	-32.49	43.50	-4.24

Test Data

Frequency (MHz)	Quasi Peak (dBuV/m)	Azimuth	Polarity(H /V)	Height (cm)	Factors (dB)	Limit (dBuV/m)	Margin (dB)
243.80	42.63	352.00	Н	122.00	-34.46	46.00	-3.37
174.30	39.12	12.00	Н	172.00	-33.78	43.50	-4.38
234.75	42.76	359.00	Н	141.00	-30.94	46.00	-3.24
143.99	40.26	4.00	V	206.00	-32.49	43.50	-3.24
959.99	43.23	57.00	Н	101.00	-19.50	46.00	-2.77
158.62	38.56	8.00	Н	155.00	-32.17	43.50	-4.94

 Serial#:
 11070066-FCC 15.247

 Issue Date:
 28 September, 2011

 Page:
 39 of 62

 www.siemic.com.cn

5.8 Radiated Spurious Emissions > 1GHz & Band Edge

- 1. <u>All possible modes of operation were investigated</u>. <u>Only the 6 worst case emissions measured</u>, <u>using the correct CISPR detectors, are reported</u>. <u>All other emissions were relatively insignificant</u>.
- <u>A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.</u>
 <u>Radiated Emissions Measurement Uncertainty</u> All test measurements carried out are traceable to national standards. The uncertainty of the
 - All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz 1GHz & 1GHz above (3m & 10m) is +/-6dB.
- 4. Environmental Conditions

Temperature Relative Humidity Atmospheric Pressure 16°C 50% 1019mbar

5. Test date : 26 September, 2011 Tested By : Andy Wang

Standard Requirement: The emissions from the Low-power radio-frequency devices shall not exceed the field strength levels specified in the following table and the level of any unwanted emissions shall not exceed the level of the fundamental emission. The tighter limit applies at the band edges.

Test Result:

Serial#: 11070066-FCC 15.247 Issue Date: 28 September, 2011 Page: 40 of 62 www.siemic.com.cn

2.4GHz band

Mode: 802.11b

<u>@ 2412MHz @ 3 Meter</u>									
Frequency	Direction	Height	Polar	Cable loss	Amplifier	Corrected Reading	15.247/15.209	15.247/15.209	
GHz	Degree	Meter	H/V	(dB)	(dB)	(dBuV/m)	Limit (dBuV/m)	Margin	Comments
4.824	9.00	1.07	V	5.15	55.00	55.4	74.00	-18.6	Peak
4.824	12.00	1.10	h	5.15	55.00	51.8	74.00	-22.2	Peak
4.824	9.00	1.07	V	5.15	55.00	42.6	54.00	-11.4	Ave
4.824	12.00	1.10	h	5.15	55.00	40.6	54.00	-13.4	Ave
7.236	5.30	1.12	V	7.23	55.00	65.6	74.00	-8.4	Peak
7.236	6.11	1.15	h	7.23	55.00	63.7	74.00	-10.3	Peak
7.236	5.30	1.12	V	7.23	55.00	49.5	54.00	-4.5	Ave
7.236	6.11	1.15	h	7.23	55.00	47.9	54.00	-6.1	Ave
9.648	31.0	1.26	V	8.56	55.00	55.1	74.00	-18.9	Peak
9.648	3.0	1.34	h	8.56	55.00	54.3	74.00	-19.7	Peak
9.648	31.0	1.26	V	8.56	55.00	44.3	54.00	-9.7	Ave
9.648	3.0	1.34	h	8.56	55.00	43.2	54.00	-10.8	Ave

@ 2412MHz @ 3 Meter

Emission was scanned up to 25GHz.

Frequency	Direction	Height	Polar	Cable loss	Amplifier	Corrected Reading	15.247/15.209	15.247/15.209	
GHz	Degree	Meter	H/V	(dB)	(dB)	(dBuV/m)	Limit (dBuV/m)	Margin	Comments
4.874	31.00	1.10	V	5.16	55.00	56.5	74.00	-17.6	Peak
4.874	25.00	1.00	h	5.16	55.00	53.1	74.00	-20.9	Peak
4.874	31.00	1.10	V	5.16	55.00	44.9	54.00	-9.1	Ave
4.874	25.00	1.00	h	5.16	55.00	43.6	54.00	-10.4	Ave
7.311	13.00	1.20	V	7.31	55.00	68.1	74.00	-5.9	Peak
7.311	4.00	1.03	h	7.31	55.00	66.4	74.00	-7.6	Peak
7.311	13.00	1.20	V	7.31	55.00	50.5	54.00	-3.5	Ave
7.311	4.00	1.03	h	7.31	55.00	50.1	54.00	-3.9	Ave
9.748	22.0	1.30	V	8.66	55.00	57.6	74.00	-16.4	Peak
9.748	7.0	1.00	h	8.66	55.00	56.0	74.00	-18.0	Peak
9.748	22.0	1.30	V	8.66	55.00	44.3	54.00	-9.7	Ave
9.748	7.0	1.00	h	8.66	55.00	45.2	54.00	-8.8	Ave

@ 2437MHz @ 3Meter

Emission was scanned up to 25GHz.

@ 2462MHz @ 3Meter

Frequency	Direction	Height	Polar	Cable loss	Amplifier	Corrected Reading	15.247/15.209	15.247/15.209	
GHz	Degree	Meter	H/V	(dB)	(dB)	(dBuV/m)	Limit (dBuV/m)	Margin	Comments
4.924	15.00	1.07	V	5.17	55.00	54.3	74.00	-19.7	Peak
4.924	25.00	1.10	h	5.17	55.00	53.1	74.00	-20.9	Peak
4.924	15.00	1.07	V	5.17	55.00	44.5	54.00	-9.5	Ave
4.924	25.00	1.10	h	5.17	55.00	42.6	54.00	-11.4	Ave
7.386	0	1.20	V	7.36	55.00	66.4	74.00	-7.6	Peak
7.386	3.00	1.00	h	7.36	55.00	64.4	74.00	-9.6	Peak
7.386	0	1.20	V	7.36	55.00	48.9	54.00	-5.1	Ave
7.386	3.00	1.00	h	7.36	55.00	48.2	54.00	-5.8	Ave
9.848	6.00	1.10	V	8.74	55.00	55.3	74.00	-18.7	Peak
9.848	21.00	1.08	h	8.74	55.00	54.8	74.00	-19.2	Peak
9.848	6.00	1.10	V	8.74	55.00	43.3	54.00	-10.7	Ave
9.848	21.00	1.08	h	8.74	55.00	45.2	54.00	-8.8	Ave

Emission was scanned up to 25GHz.

Mode: 802.11g

				w.	2412MH7	z @ 3 Meter			
Frequency	Direction	Height	Polar	Cable loss	Amplifier	Corrected Reading	15.247/15.209	15.247/15.209	
GHz	Degree	Meter	H/V	(dB)	(dB)	(dBuV/m)	Limit (dBuV/m)	Margin	Comments
4.824	9.00	1.07	V	5.15	55.00	54.7	74.00	-19.3	Peak
4.824	12.00	1.10	h	5.15	55.00	51.6	74.00	-22.4	Peak
4.824	9.00	1.07	V	5.15	55.00	41.4	54.00	-12.6	Ave
4.824	12.00	1.10	h	5.15	55.00	40.0	54.00	-14.0	Ave
7.236	5.30	1.12	V	7.23	55.00	64.2	74.00	-9.8	Peak
7.236	6.11	1.15	h	7.23	55.00	62.8	74.00	-11.2	Peak
7.236	5.30	1.12	V	7.23	55.00	48.1	54.00	-5.9	Ave
7.236	6.11	1.15	h	7.23	55.00	47.4	54.00	-6.6	Ave
9.648	31.0	1.26	V	8.56	55.00	54.6	74.00	-19.4	Peak
9.648	3.0	1.34	h	8.56	55.00	53.5	74.00	-20.5	Peak
9.648	31.0	1.26	V	8.56	55.00	42.8	54.00	-11.2	Ave
9.648	3.0	1.34	h	8.56	55.00	41.9	54.00	-12.1	Ave

@ 2412MHz @ 3 Meter

Emission was scanned up to 25GHz.

Frequency	Direction	Height	Polar	Cable loss	Amplifier	Corrected Reading	15.247/15.209	15.247/15.209	
GHz	Degree	Meter	H/V	(dB)	(dB)	(dBuV/m)	Limit (dBuV/m)	Margin	Comments
4.874	31.00	1.10	V	5.16	55.00	54.6	74.00	-19.4	Peak
4.874	25.00	1.00	h	5.16	55.00	52.2	74.00	-21.8	Peak
4.874	31.00	1.10	V	5.16	55.00	43.5	54.00	-10.5	Ave
4.874	25.00	1.00	h	5.16	55.00	42.6	54.00	-11.4	Ave
7.311	13.00	1.20	V	7.31	55.00	64.7	74.00	-9.3	Peak
7.311	4.00	1.03	h	7.31	55.00	63.1	74.00	-10.9	Peak
7.311	13.00	1.20	V	7.31	55.00	48.2	54.00	-5.8	Ave
7.311	4.00	1.03	h	7.31	55.00	47.6	54.00	-6.4	Ave
9.748	22.0	1.30	V	8.66	55.00	55.1	74.00	-18.9	Peak
9.748	7.0	1.00	h	8.66	55.00	53.2	74.00	-20.8	Peak
9.748	22.0	1.30	V	8.66	55.00	41.3	54.00	-12.7	Ave
9.748	7.0	1.00	h	8.66	55.00	43.6	54.00	-10.4	Ave

@ 2437MHz @ 3Meter

Emission was scanned up to 25GHz.

@ 2462MHz @ 3Meter

Frequency	Direction	Height	Polar	Cable loss	Amplifier	Corrected Reading	15.247/15.209	15.247/15.209	
GHz	Degree	Meter	H/V	(dB)	(dB)	(dBuV/m)	Limit (dBuV/m)	Margin	Comments
4.924	15.00	1.07	V	5.17	55.00	51.9	74.00	-22.1	Peak
4.924	25.00	1.10	h	5.17	55.00	52.8	74.00	-21.2	Peak
4.924	15.00	1.07	V	5.17	55.00	45.6	54.00	-8.4	Ave
4.924	25.00	1.10	h	5.17	55.00	43.1	54.00	-10.9	Ave
7.386	0	1.20	V	7.36	55.00	63.6	74.00	-10.4	Peak
7.386	3.00	1.00	h	7.36	55.00	62.0	74.00	-12.0	Peak
7.386	0	1.20	V	7.36	55.00	47.7	54.00	-6.3	Ave
7.386	3.00	1.00	h	7.36	55.00	46.4	54.00	-7.6	Ave
9.848	6.00	1.10	V	8.74	55.00	54.3	74.00	-19.7	Peak
9.848	21.00	1.08	h	8.74	55.00	52.8	74.00	-21.2	Peak
9.848	6.00	1.10	V	8.74	55.00	41.5	54.00	-12.5	Ave
9.848	21.00	1.08	h	8.74	55.00	43.1	54.00	-10.9	Ave

Emission was scanned up to 25GHz.

Band Edge

2.4GHz band

Frequency	Direction	Height	Polar	Cable loss	Amplifier	Corrected Reading	15.247/15.209	15.247/15.209	
GHz	Degree	Meter	H/V	(dB)	(dB)	(dBuV/m)	Limit (dBuV/m)	Margin	Comments
2.400	2	1.06	V	5.15	55.00	60.3	74.00	-13.7	Peak
2.4835	5	1.18	h	5.15	55.00	57.6	74.00	-16.4	Peak
2.400	2	1.06	V	5.15	55.00	49.2	54.00	-4.8	Ave
2.4835	5	1.18	h	5.15	55.00	47.9	54.00	-6.1	Ave

Mode: 802.11b

Mode: 802.11g

Frequency	Direction	Height	Polar	Cable loss	Amplifier	Corrected Reading	15.247/15.209	15.247/15.209	
GHz	Degree	Meter	H/V	(dB)	(dB)	(dBuV/m)	Limit (dBuV/m)	Margin	Comments
2.400	0	1.03	V	5.15	55.00	58.2	74.00	-15.8	Peak
2.4835	11	1.20	h	5.15	55.00	56.9	74.00	-17.1	Peak
2.400	0	1.03	V	5.15	55.00	48.6	54.00	-5.4	Ave
2.4835	11	1.20	h	5.15	55.00	47.3	54.00	-6.7	Ave
5.850	5	1.18	h	5.15	55.00	57.6	74.00	-16.4	Peak
5.725	2	1.06	V	5.15	55.00	49.2	54.00	-4.8	Ave
5.850	5	1.18	h	5.15	55.00	47.9	54.00	-6.1	Ave

Annex A. TEST INSTRUMENT & METHOD

TEST INSTRUMENTATION & GENERAL PROCEDURES Annex A.i.

Instrument	Model	Calibration Due
AC Conducted Emissions		
R&S EMI Test Receiver	ESPI3	05/25/2012
R&S LISN	LI-115	05/25/2012
R&S LISN	LI-115	05/25/2012
Universal Radio Communication Tester	CMU200	02/22/2012
Radiated Emissions		
Spectrum Analyzer	8563E	01/10/2012
EMI Receiver	ESPI3	05/18/2012
Antenna(1 ~18GHz)	3115	6/2/2012
Antenna (30MHz~2GHz)	JB1	05/25/2012
Chamber	3m	4/13/2012
Pre-Amplifier(1 ~ 18GHz)	AMF-7D-00101800-30-10P	5/25/2012
Horn Antenna (18~40GHz)	AH-840	7/23/2013
Microwave Pre-Amp (18~40GHz)	PA-840	Every 2000 Hours
Universal Radio Communication Tester	CMU200	02/22/2012
Signal Analyzer	8665B	1/21/2012
Temperature/Humidity Chamber	1007H	06/08/2012

Note: Functional Verification

Annex A.ii. CONDUCTED EMISSIONS TEST DESCRIPTION

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table, as shown in <u>Annex B</u>.
- 2. The power supply for the EUT was fed through a $50\Omega/50\mu$ H EUT LISN, connected to filtered mains.
- 3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
- 4. All other supporting equipments were powered separately from another main supply.

Test Method

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- 2. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver.
- 3. High peaks, relative to the limit line, were then selected.
- 4. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 KHz. For FCC tests, only Quasi-peak measurements were made; while for CISPR/EN tests, both Quasi-peak and Average measurements were made.
- 5. Steps 2 to 4 were then repeated for the LIVE line (for AC mains) or DC line (for DC power).

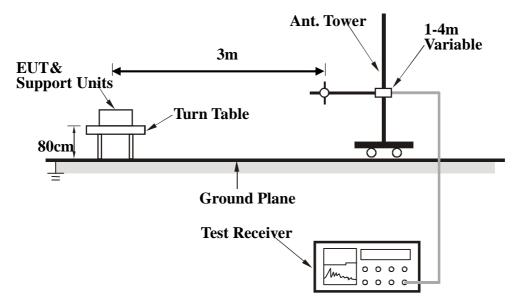
Sample Calculation Example

At 20 MHz	limit = 250 μ V = 47.96 dB μ V
Transducer factor of LISN, pulse limiter & cable los	ss at 20 MHz = 11.20 dB
Q-P reading obtained directly from EMI Receiver =	= 40.00 dBμV (Calibrated for system losses)
Therefore, Q-P margin = 47.96 – 40.00 = 7.96	i.e. 7.96 dB below limit

Serial# Issue Date: 46 of 62 Page:

11070066-FCC 15.247 28 September, 2011 www.siemic.com.cn

RADIATED EMISSIONS TEST DESCRIPTION Annex A. iii


EUT Characterisation

EUT characterisation, over the frequency range from 30MHz to 10th Harmonic, was done in order to minimise radiated emissions testing time while still maintaining high confidence in the test results.

The EUT was placed in the chamber, at a height of about 0.8m on a turntable. Its radiated emissions frequency profile was observed, using a spectrum analyzer /receiver with the appropriate broadband antenna placed 3m away from the EUT. Radiated emissions from the EUT were maximised by rotating the turntable manually, changing the antenna polarisation and manipulating the EUT cables while observing the frequency profile on the spectrum analyzer / receiver. Frequency points at which maximum emissions occurred, clock frequencies and operating frequencies were then noted for the formal radiated emissions test at the Open Area Test Site (OATS).

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- 3. The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

 Serial#:
 11070066-FCC 15.247

 Issue Date:
 28 September, 2011

 Page:
 47 of 62

 www.siemic.com.cn

Test Method

The following procedure was performed to determine the maximum emission axis of EUT:

1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.

2. With the receiving antenna is V polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.

3. Compare the results derived from above two steps. So, the axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.

Final Radiated Emission Measurement

1. Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function.

2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site. As the same purpose, for emission frequencies measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.

3. For emission frequencies measured below and above 1 GHz, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.

4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from $0 \circ to 360 \circ$ with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading.

5. Repeat step 4 until all frequencies need to be measured were complete.

6. Repeat step 5 with search antenna in vertical polarized orientations.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	Peak	100 kHz	100 kHz
Above 1000	Peak	1 MHz	1 MHz
	Average	1 MHz	10 Hz

Sample Calculation Example

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. For the limit is employed average value, therefore the peak value can be transferred to average value by subtracting the duty factor. The basic equation with a sample calculation is as follows: Peak = Reading + Corrected Factor

where

Corr. Factor = Antenna Factor + Cable Factor - Amplifier Gain (if any) And the average value is

Average = Peak Value + Duty Factor or Set RBW = 1MHz, VBW = 10Hz.

Note :

If the measured frequencies are fall in the restricted frequency band, the limit employed must be quasi peak value when frequencies are below or equal to 1 GHz. And the measuring instrument is set to quasi peak detector function.

Serial#: 11070066-FCC 15:2-7 Issue Date: 28 September, 2011 Page: 48 of 62 11070066-FCC 15.247

Annex B. EUT AND TEST SETUP PHOTOGRAPHS

Photograph 1: EUT External Photo Annex B.i.

Front View of EUT

 Serial#:
 11070066-FCC 15.247

 Issue Date:
 28 September, 2011

 Page:
 49 of 62
 www.siemic.com.cn

Rear View of EUT

Top View of EUT

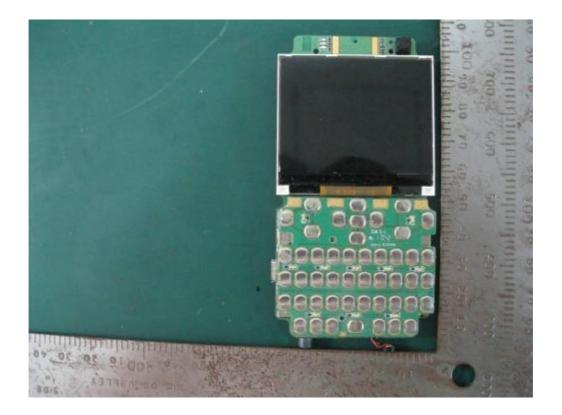
 Serial#:
 11070066-FCC 15.247

 Issue Date:
 28 September, 2011

 Page:
 50 of 62
 www.siemic.com.cn

Bottom View of EUT

Annex B.ii. Photograph 2: EUT Internal Photo


SIEMIC, INC.

Accessing global markets Title: RF Test Report for GSM&WCDMA MOBILE PHONE Model: S-502 To: FCC 15.247:2010

Serial#: Issue Date: Page: 11070066-FCC 15.247 28 September, 2011 51 of 62 www.siemic.com.cn

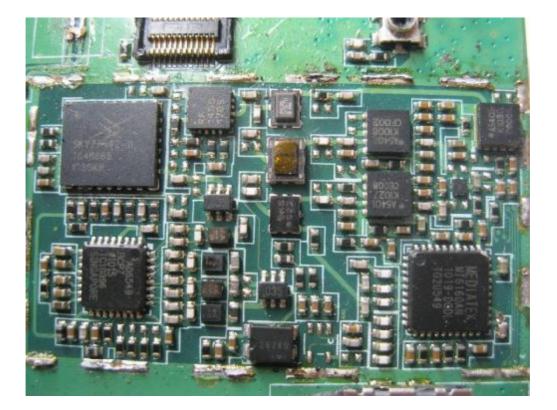
 Serial#:
 11070066-FCC 15.247

 Issue Date:
 28 September, 2011

 Page:
 52 of 62

 www.siemic.com.cn

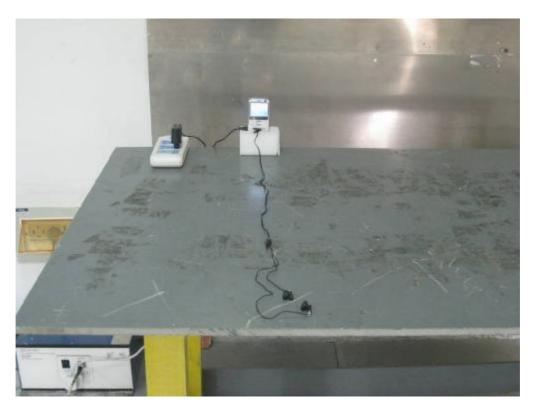



 Serial#:
 11070066-FCC 15.247

 Issue Date:
 28 September, 2011

 Page:
 53 of 62

 www.siemic.com.cn

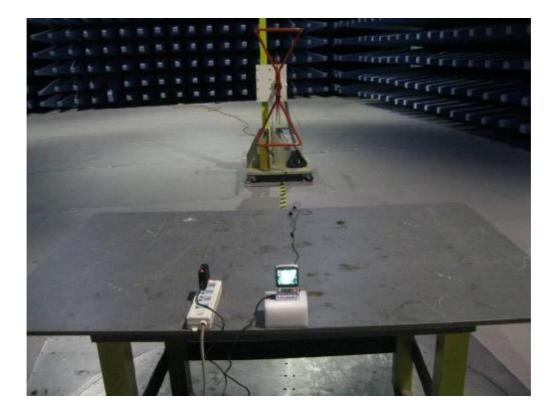

SIEMIC, INC. Accessing global m

Serial#: Issue Date: Page:

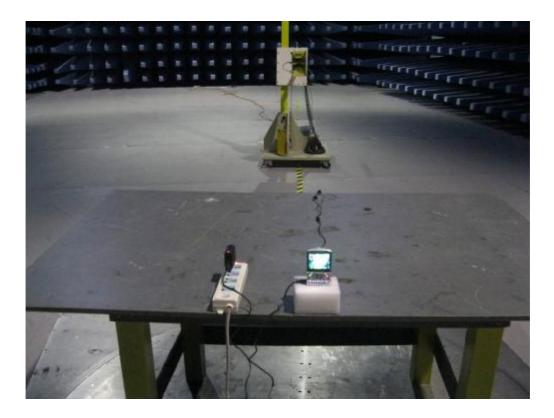
11070066-FCC 15.247 28 September, 2011 54 of 62 www.siemic.com.cn

Photograph 3: Test Setup Photo Annex B.iii.

Conducted Emissions Test Setup Front View



Conducted Emissions Test Setup Side View



Serial#: Issue Date: Page:

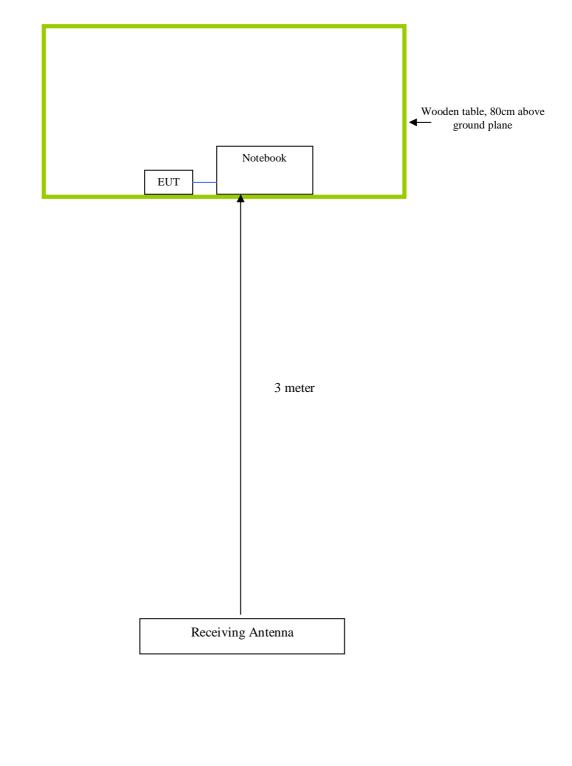
11070066-FCC 15.247 28 September, 2011 55 of 62 www.siemic.com.cn

Radiated Emission Test Setup Front View below 1GHz

Radiated Emission Test Setup Front View above 1GHz

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

EUT TEST CONDITIONS


Annex C. i. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Equipment Description (Including Brand Name)	Model & Serial Number	Cable Description (List Length, Type & Purpose)
Gateway Laptop	MS2288 & LXWHF02013951C3CA92200	N/A

Block Configuration Diagram for Radiated Emission

 Serial#:
 11070066-FCC 15.247

 Issue Date:
 28 September, 2011

 Page:
 59 of 62
 www.siemic.com.cn

Annex C.ii. EUT OPERATING CONDITIONS

The following is the description of how the EUT is exercised during testing.

Test	Description Of Operation	
Emissions	The EUT was continuously transmitting to stimulate the worst case.	

 Serial#:
 11070066-FCC 15.247

 Issue Date:
 28 September, 2011

 Page:
 60 of 62

 www.siemic.com.cn

Annex D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART LIST

Please see attachment

Serial#: 11070066-FCC 15.247 Issue Date: 28 September, 2011 Page: 61 of 62

www.siemic.com.cn

Annex E. SIEMIC ACCREDITATION CERTIFICATES

SIEMIC ACREDITATION DETAILS: FCC Test Site Registration No. 986914

FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046

April 19, 2011

Registration Number: 986914

SIEMIC Nanjing (China) Laboratories 2-1 Longcang Avenue, Yuhua Economic and Technology Development Park, Nanjing, 210039 China

Attention: Leslie Bai,

Re:

Measurement facility located at 2-1 Longcang Avenue, Nanjing, China Anechoic chamber (3 meters) and 3&10 meter OATS Date of Renewal: April 19, 2011

Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website <u>www.fcc.gov</u> under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Sincerely,

Phyllis Parrish Industry Analyst

11070066-FCC 15.247 Serial#: Issue Date: 28 September, 2011 Page: 62 of 62 www.siemic.com.cn

SIEMIC ACREDITATION DETAILS: Industry of Canada Test Site Registration No. 4842B

Ander State Canada

January 25, 2011

To:

OUR FILE: 46405-4842 Submission No: 145222

Siemic Nanjing (China) Laboratories 2-1 Longcang Avenue Yuhua Economic & Technology Dev. Park, Nanjing China

Attention: Leslie Bai

Dear Sir/Madame:

The Bureau has received your application for the registration of a 3/10m OATS. Be advised that the information received was satisfactory to Industry Canada. The following number(s) is now associated to the site(s) for which registration / renewal was sought (Site# 4842B-2). Please reference the appropriate site number in the body of test reports containing measurements performed on the site. In addition, please keep for your records the following information;

- The company address code associated to the site(s) located at the above address is: 4842B

Furthermore, to obtain or renew a unique site number, the applicant shall demonstrate that the site has been accredited to ANSI C63.4-2003 or later. A scope of accreditation indicating the accreditation by a recognized accreditation body to ANSI C63.4-2003 or later shall be accepted. Please indicate in a letter the previous assigned site number if applicable and the type of site (example: 3 metre OATS or 3 metre chamber). If the test facility is not accredited to ANSI C63.4-2003 or later, the test facility shall submit test data demonstrating full compliance with the ANSI standard. The Bureau will evaluate the filing to determine if recognition shall be granted.

The frequency for re-validation of the test site and the information that is required to be filed or retained by the testing party shall comply with the requirements established by the accrediting organization. However, in all cases, test site re-validation shall occur on an interval not to enceed three years. There is no fee or form associated with an OATS filing. OATS submissions are encouraged to be submitted electronically to the Bureau using the following URL;

http://strategis.ic.gc.ca/epic/internet/inceb-bhst.nsf/en/h_tt00052e.html.

If you have any questions, you may contact the Bureau by e-mail at certification bureau@ic.gc.ca Please reference our file and submission number above for all correspondence.

Yours sincerely,

Delander

Delwinder Cill For: Wireless Laboratory Manager Certification and Engineering Bureau 3701 Carling Ave., Building 94 P.O. Box 11490, Station "H Otawa, Ontario \$211852 firmit datwinder gillidie go en Tel. No. (611) 998-8141 Fax, No. (613) 990-4752