

RADIO TEST REPORT FCC ID: ZSHA8

Product: Mobile Phone Trade Mark: KXD Model No.: A8 Family Model: A1 Report No.: STR190910001003E Issue Date: 28 Sep. 2019

Prepared for

SHENZHEN KENXINDA TECHNOLOGY CO.,LTD 18TH FLOOR, FUCHUN ORIENT BUILDING, SHENNAN AV 7006, SHENZHEN, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

TABLE OF CONTENTS

ACCREDITED

Certificate #4298.01

	TEST RESULT CERTIFICATION	
2	SUMMARY OF TEST RESULTS	4
3	FACILITIES AND ACCREDITATIONS	5
3.1	1 FACILITIES	5
3.2		
3.3		
4	GENERAL DESCRIPTION OF EUT	6
5	DESCRIPTION OF TEST MODES	8
6	SETUP OF EQUIPMENT UNDER TEST	10
6.1		
6.2		
6.3	3 EQUIPMENTS LIST FOR ALL TEST ITEMS	
7	TEST REQUIREMENTS	14
7.1		
7.2		
7.3	• •====:=:=:	
7.4		
7.5		
7.6		
7.7		
7.8		
7.9		
8	TEST RESULTS	
8.1		
8.2	2 MAXIMUM CONDUCTED OUTPUT POWER	
8.3		
8.4		
8.5		
8.6	6 CONDUCTED RF SPURIOUS EMISSION	

TEST RESULT

Complied

1 TEST RESULT CERTIFICATION

Applicant's name:	SHENZHEN KENXINDA TECHNOLOGY CO.,LTD
Address:	18TH FLOOR, FUCHUN ORIENT BUILDING, SHENNAN AV 7006, SHENZHEN, China
Manufacturer's Name:	SHENZHEN KENXINDA TECHNOLOGY CO.,LTD
Address:	18TH FLOOR, FUCHUN ORIENT BUILDING, SHENNAN AV 7006, SHENZHEN, China
Product description	
Product name:	Mobile Phone
Model and/or type reference:	A8
Family Model:	A1

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE

FCC 47 CFR Part 2, Subpart J

FCC 47 CFR Part 15, Subpart C

KDB 174176 D01 Line Conducted FAQ v01r01

ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	: 11 Sep. 2019 ~ 28 Sep. 2019	
Testing Engineer	Aven lin	
	(Allen Liu)	
Technical Manager	Jason chen	
5	(Jason Chen)	
	Sam. chen	
Authorized Signatory	• • • • • • • • • • • • • • • • • • •	
	(Sam Chen)	

	EST RESULTS FCC Part15 (15.247), Subpart	С		
Standard Section Test Item Verdict Remark				
15.207 Conducted Emission PASS				
15.247 (a)(2) 6dB Bandwidth PASS				
15.247 (b) Peak Output Power PASS				
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS		
15.247 (e)	Power Spectral Density	PASS		
15.247 (d)	Band Edge Emission	PASS		
15.247 (d)	Spurious RF Conducted Emission	PASS		
15.203	Antenna Requirement	PASS		
	een tested and complied with the requiren		ny deviation d art 15, Subpa	
This EUT has also b	een tested and complied with the requiren		-	
	een tested and complied with the requiren		-	

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Laboratory has been assessed and proved to be in compliance with
	CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)
	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
Name of Firm	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
	 Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
Site Location	Street, Bao'an District, Shenzhen 518126 P.R. China.
	Sueel, bao an District, Shenzhen 310120 F.N. Child.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment	Mobile Phone			
Trade Mark	KXD			
FCC ID	ZSHA8			
Model No.	A8			
Family Model	A1			
Model Difference	All models are the same circuit and RF module, except the model name.			
Operating Frequency	2402MHz~2480MHz			
Modulation	GFSK			
Number of Channels	40 Channels			
Bluetooth Version	BT V4.0			
Antenna Type	PIFA Antenna			
Antenna Gain	0.7dBi			
	DC supply: 3.85V/2520mAh from Battery or DC 5V from USB Port.			
Power supply	Adapter supply: Model: K12S Input: 100-240V~50/60Hz 0.25A Output: 5V1A			
HW Version	J413_80MB_D3V1.2			
SW Version	J413_80_kxd_20190151_A8M_MZ_V03			

AC

Certificate #4298.01

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

ACCREDITED

Certificate #4298.01

Revision History					
Report No.	Version	Description	Issued Date		
STR190910001003E	Rev.01	Initial issue of report	Sep 28, 2019		

5 DESCRIPTION OF TEST MODES

NTEK II:测

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

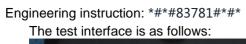
Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

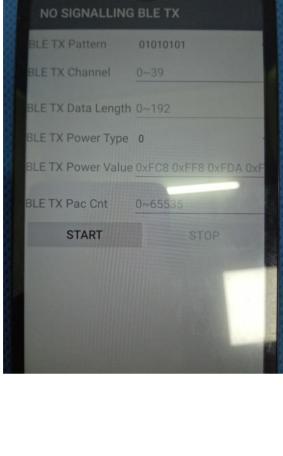
Note: fc=2402MHz+kx2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases			
Test Item	Data Rate/ Modulation		
	Bluetooth 4.0_LE / GFSK		
AC Conducted Emission	Mode 1: normal link mode		
	Mode 1: normal link mode		
Radiated Test	Mode 2: Bluetooth Tx Ch00_2402MHz_1Mbps		
Cases	Mode 3: Bluetooth Tx Ch19_2440MHz_1Mbps		
	Mode 4: Bluetooth Tx Ch39_2480MHz_1Mbps		
Conducted Test	Mode 2: Bluetooth Tx Ch00_2402MHz_1Mbps		
Conducted Test	Mode 3: Bluetooth Tx Ch19_2440MHz_1Mbps		
Cases	Mode 4: Bluetooth Tx Ch39_2480MHz_1Mbps		

Note:


1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.


2. AC power line Conducted Emission was tested under maximum output power.

3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

4. EUT built-in battery-powered, the battery is fully-charged.

く北辺	Certificate #4298.01

NTEK北测	ACCREDITED Certificate #4298.01	Report No.: STR190910001003E
6 SETUP OF EQUIPMENT U		
6.1 BLOCK DIAGRAM CONFIGU		M
For AC Conducted Emission Mode		
	AC PLUG	
EUT -		
For Radiated Test Cases		
EUT		
For Conducted Test Cases		
Measurement C-1	r I	
Note:The temporary antenna connected tests and this temporary antenna co	ector is soldered on the P(nnector is listed in the equ	CB board in order to perform conducted upment list.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

uululle	na conducted i	est equipment				-	
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2019.05.13	2020.05.12	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2019.08.28	2020.08.27	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2019.08.28	2020.08.27	1 year
4	Test Receiver	R&S	ESPI7	101318	2019.05.13	2020.05.12	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2019.04.15	2020.04.14	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2018.05.19	2020.05.18	2 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2019.04.15	2020.04.14	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2018.12.11	2019.12.10	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2019.08.06	2020.08.05	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2018.12.11	2019.12.10	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2019.08.06	2020.08.05	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2017.04.21	2020.04.20	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2017.04.21	2020.04.20	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2017.04.21	2020.04.20	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2017.04.21	2020.04.20	3 year
16	Filter	TRILTHIC	2400MHz	29	2017.04.19	2020.04.18	3 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	onduction Test	equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2019.05.13	2020.05.12	1 year
2	LISN	R&S	ENV216	101313	2019.08.28	2020.08.27	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2019.05.13	2020.05.12	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2019.05.13	2020.05.12	2 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2017.04.21	2020.04.20	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2017.04.21	2020.04.20	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2017.04.21	2020.04.20	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

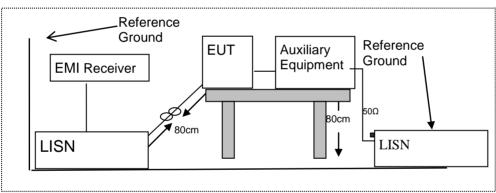
7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a) and KDB 174176 D01 Line Conducted FAQ v01r01

7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	


Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

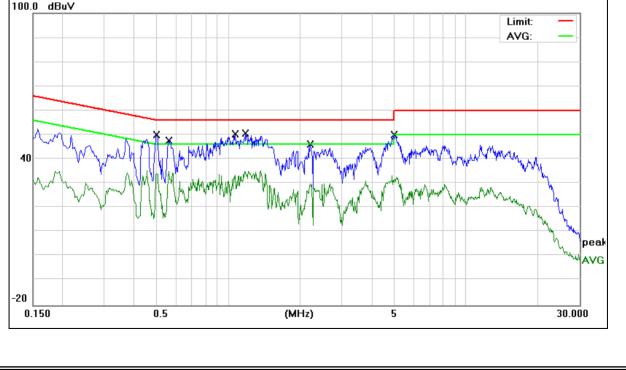
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

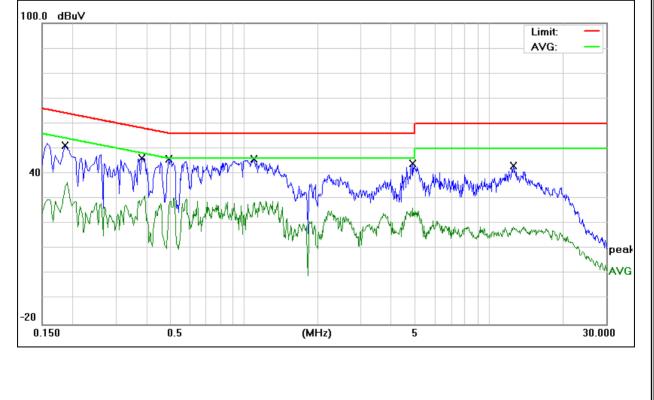
7.1.6 Test Results


EUT:	Mobile Phone	Model Name :	A8
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.498	40.35	9.74	50.09	56.03	-5.94	QP
0.498	25.54	9.74	35.28	46.03	-10.75	AVG
0.562	37.97	9.74	47.71	56.00	-8.29	QP
0.562	27.41	9.74	37.15	46.00	-8.85	AVG
1.066	40.51	9.74	50.25	56.00	-5.75	QP
1.066	30.38	9.74	40.12	46.00	-5.88	AVG
1.182	40.79	9.74	50.53	56.00	-5.47	QP
1.182	24.33	9.74	34.07	46.00	-11.93	AVG
2.202	36.23	9.78	46.01	56.00	-9.99	QP
2.202	26.42	9.78	36.20	46.00	-9.80	AVG
4.978	40.24	9.87	50.11	56.00	-5.89	QP
4.978	23.26	9.87	33.13	46.00	-12.87	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

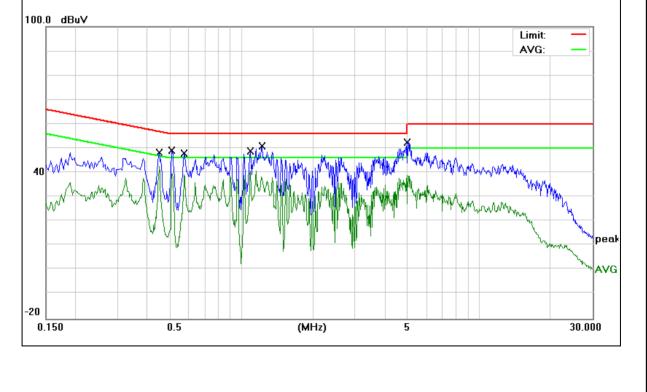

EUT:	Mobile Phone	Model Name :	A8
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	N
	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demorile
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.186	41.43	9.73	51.16	64.21	-13.05	QP
0.186	26.79	9.73	36.52	54.21	-17.69	AVG
0.382	36.30	9.75	46.05	58.23	-12.18	QP
0.382	26.58	9.75	36.33	48.23	-11.90	AVG
0.494	36.14	9.75	45.89	56.10	-10.21	QP
0.494	25.50	9.75	35.25	46.10	-10.85	AVG
1.098	35.97	9.75	45.72	56.00	-10.28	QP
1.098	25.27	9.75	35.02	46.00	-10.98	AVG
4.890	34.25	9.94	44.19	56.00	-11.81	QP
4.890	16.29	9.94	26.23	46.00	-19.77	AVG
12.530	33.04	10.07	43.11	60.00	-16.89	QP
12.530	8.92	10.07	18.99	50.00	-31.01	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

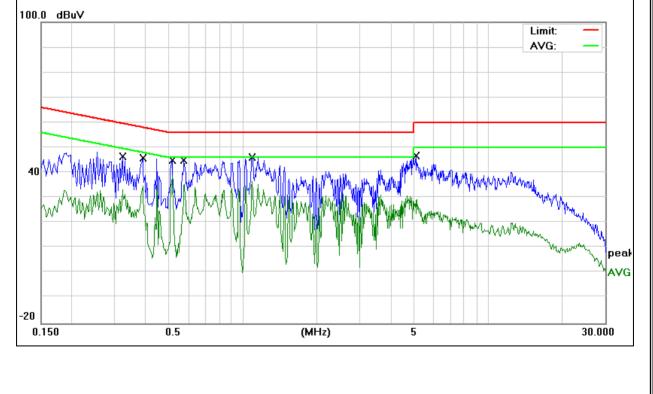

EUT:	Mobile Phone	Model Name :	A8
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 240V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demonstr
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	- Remark
0.450	38.39	9.74	48.13	56.87	-8.74	QP
0.450	28.38	9.74	38.12	46.87	-8.75	AVG
0.510	39.35	9.74	49.09	56.00	-6.91	QP
0.510	32.88	9.74	42.62	46.00	-3.38	AVG
0.574	38.12	9.74	47.86	56.00	-8.14	QP
0.574	27.67	9.74	37.41	46.00	-8.59	AVG
1.090	39.02	9.74	48.76	56.00	-7.24	QP
1.090	28.59	9.74	38.33	46.00	-7.67	AVG
1.218	41.11	9.74	50.85	56.00	-5.15	QP
1.218	31.13	9.74	40.87	46.00	-5.13	AVG
4.990	42.67	9.87	52.54	56.00	-3.46	QP
4.990	29.08	9.87	38.95	46.00	-7.05	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	Mobile Phone	Model Name :	A8
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	Ν
	DC 5V from Adapter AC 240V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demerik
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.322	36.65	9.74	46.39	59.65	-13.26	QP
0.322	29.28	9.74	39.02	49.65	-10.63	AVG
0.390	35.95	9.75	45.70	58.06	-12.36	QP
0.390	25.58	9.75	35.33	48.06	-12.73	AVG
0.514	35.11	9.75	44.86	56.00	-11.14	QP
0.514	24.91	9.75	34.66	46.00	-11.34	AVG
0.574	35.16	9.75	44.91	56.00	-11.09	QP
0.574	25.70	9.75	35.45	46.00	-10.55	AVG
1.090	36.41	9.75	46.16	56.00	-9.84	QP
1.090	26.66	9.75	36.41	46.00	-9.59	AVG
5.058	36.70	9.94	46.64	60.00	-13.36	QP
5.058	21.13	9.94	31.07	50.00	-18.93	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to FOC Fait 15.200, Restricted bands						
MHz	MHz	MHz	GHz			
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46			
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75			
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5			
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7			
6.26775-6.26825	123-138	2200-2300	14.47-14.5			
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4			
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5			
12.57675-12.57725	322-335.4	3600-4400	(2)			
13.36-13.41						

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

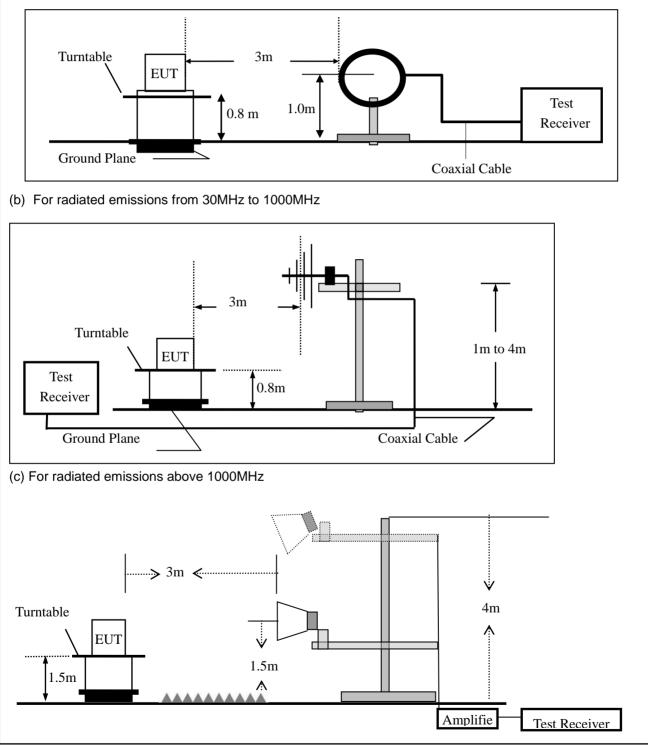
	Frequency(MHz)	Class B (dBuV/m) (at 3M)		
		PEAK	AVERAGE	
	Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.


7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

N

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting			
Attenuation	Auto			
Start Frequency	1000 MHz			
Stop Frequency	10th carrier harmonic			
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average			

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested

and performed pretest to three orthogonal axis. The worst case emissions were reported During the radiated emission test, the Spectrum Analyzer was set with the following configurations: For peak measurement:

Set RBW=120 kHz for f < 1 GHz; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f≥1 GHz

For average measurement:

VBW = 10 Hz, when duty cycle is no less than 98 percent.

VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:							
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth				
30 to 1000	QP	120 kHz	300 kHz				
Above 1000	Peak	1 MHz	1 MHz				
Above 1000	Average	1 MHz	10 Hz				

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

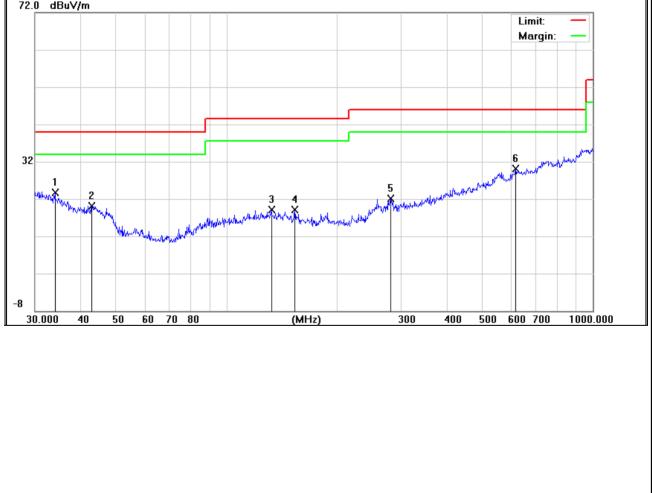
Spurious Emission below 30MHz (9KHz to 30MHz)						
EUT: Mobile Phone Model No.: A8						
Temperature:	20 ℃	Relative Humidity:	48%			
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu			

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3	m(dBuV/m)	Over	r(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz)

All the modulation	modes have been tes	ted, and the worst	result was repor	t as below:


EUT:	Mobile Phone	Model Name :	A8
Temperature:	20 ℃	Relative Humidity:	48%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	DC 3.85V		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	34.036	6.91	16.77	23.68	40.00	-16.32	QP
V	42.900	7.96	12.24	20.20	40.00	-19.80	QP
V	132.685	6.32	12.72	19.04	43.50	-24.46	QP
V	153.738	7.17	11.92	19.09	43.50	-24.41	QP
V	281.008	6.15	15.87	22.02	46.00	-23.98	QP
V	616.372	7.21	22.89	30.10	46.00	-15.90	QP

Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	93.769	7.44	10.55	17.99	43.50	-25.51	QP
Н	117.773	5.76	12.49	18.25	43.50	-25.25	QP
Н	253.837	6.55	14.11	20.66	46.00	-25.34	QP
Н	281.995	6.71	15.50	22.21	46.00	-23.79	QP
Н	452.720	7.30	18.94	26.24	46.00	-19.76	QP
H Remark:	672.844	8.24	23.08	31.32	46.00	-14.68	QP
	Level= Reading	Level+ Facto	r. Margin= A	Absolute Level	- Limit		
72.0 dBi		2010111 40101	, margin <i>i</i>		2		
						Limit: -	-
						Margin: -	-
							4
		₁					
							-
22					-multi militari dan	6	Horn
32					5	Were Madament with the	1
L				3 4	when the Month	M4"	
ANNO MARK	Winster	1	2	Straffame	Martin Andrew		
	Warden warden Walanderster anderer	a when the work with	when the set of the property o	when when you will be			
	Martin Martin Contractor	Water Mar					
8			(MHz)	301	0 400 500	600 700 10	00.000
8 30.000	40 50 60	70 80	(00.000
	40 50 60	70 80					
	40 50 60	70 80					
	40 50 60	70 80					
	40 50 60	70 80					
	<u>40 50 60</u>	70 80					
	40 50 60	70 80					
	40 50 60	70 80					
	<u>40 50 60</u>	70 80					
	40 50 60	70 80					
	<u>40 50 60</u>	70 80					

Spurious	Emissio	n Above ²	1GHz (1Gl	Hz to	25GF	lz)						
EUT:	EUT: Mobile Phone I							A8				
Temperature	emperature: 20 °C					Relative Humidity:			48%			
Test Mode:		Mode2/N	/lode3/Mo	de4	Test	Bv:		Alle	n Liu			
		1110002/1				<i></i>		/				
Frequency	Read Level	Cable loss	Antenna Factor		amp ctor	Emission Level	Limi	its	Margin	Remark	Comment	
(MHz)	(dBµV)	(dB)	dB/m		lΒ)	(dBµV/m)	(dBµ∖	//m)	(dB)			
			Low	Chan	nel (24	102 MHz)-A	bove '	1G				
4803.390	59.70	5.21	35.59	44	.30	56.20	74.0	00	-17.80	Pk	Vertical	
4803.390	41.54	5.21	35.59	44	.30	38.04	54.0	00	-15.96	AV	Vertical	
7206.289	61.89	6.48	36.27	44	.60	60.04	74.0	00	-13.96	Pk	Vertical	
7206.289	39.75	6.48	36.27	44	.60	37.90	54.0	00	-16.10	AV	Vertical	
4803.667	61.14	5.21	35.55	44	.30	57.60	74.0	00	-16.40	Pk	Horizontal	
4803.667	40.00	5.21	35.55	44	.30	36.46	54.0	00	-17.54	AV	Horizontal	
7205.952	60.15	6.48	36.27	44	.52	58.38	74.0	00	-15.62	Pk	Horizontal	
7205.952	40.49	6.48	36.27	44	.52	38.72	54.0	00	-15.28	AV	Horizontal	
Mid Channel (2440 MHz)-Above 1G												
4879.336	59.67	5.21	35.66	44	.20	56.34	74.0	00	-17.66	Pk	Vertical	
4879.336	41.78	5.21	35.66	44	.20	38.45	54.0	00	-15.55	AV	Vertical	
7320.133	61.84	7.10	36.50	44	.43	61.01	74.0	00	-12.99	Pk	Vertical	
7320.133	40.85	7.10	36.50	44	.43	40.02	54.0	00	-13.98	AV	Vertical	
4880.143	60.51	5.21	35.66	44	.20	57.18	74.(00	-16.82	Pk	Horizontal	
4880.143	39.67	5.21	35.66	44	.20	36.34	54.0	00	-17.66	AV	Horizontal	
7320.976	60.16	7.10	36.50	44	.43	59.33	74.(00	-14.67	Pk	Horizontal	
7320.976	39.65	7.10	36.50	44	.43	38.82	54.0	00	-15.18	AV	Horizontal	
			High	Chan	nel (24	180 MHz)- A	Above	1G				
4960.528	61.55	5.21	35.52	44	.21	58.07	74.0	00	-15.93	Pk	Vertical	
4960.528	39.63	5.21	35.52	44	.21	36.15	54.0	00	-17.85	AV	Vertical	
7439.538	62.30	7.10	36.53	44	.60	61.33	74.0	00	-12.67	Pk	Vertical	
7439.538	40.72	7.10	36.53	44	.60	39.75	54.0	00	-14.25	AV	Vertical	
4960.449	60.32	5.21	35.52	44	.21	56.84	74.0	00	-17.16	Pk	Horizontal	
4960.449	41.22	5.21	35.52	44	.21	37.74	54.0	00	-16.26	AV	Horizontal	
7440.926	61.58	7.10	36.53	44	.60	60.61	74.0	00	-13.39	Pk	Horizontal	
7440.926	40.68	7.10	36.53	44	.60	39.71	54.0	00	-14.29	AV	Horizontal	

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz							
EUT: Mobile Phone Model No.: A8							
Temperature:	20 ℃	Relative Humidity:	48%				
Test Mode:	Mode2/ Mode4	Test By:	Allen Liu				

Frequenc v	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
				GF	SK				
2310.00	61.84	2.97	27.80	43.80	48.81	74	-25.19	Pk	Horizontal
2310.00	40.28	2.97	27.80	43.80	27.25	54	-26.75	AV	Horizontal
2310.00	61.15	2.97	27.80	43.80	48.12	74	-25.88	Pk	Vertical
2310.00	40.71	2.97	27.80	43.80	27.68	54	-26.32	AV	Vertical
2390.00	61.02	3.14	27.21	43.80	47.57	74	-26.43	Pk	Vertical
2390.00	39.66	3.14	27.21	43.80	26.21	54	-27.79	AV	Vertical
2390.00	61.30	3.14	27.21	43.80	47.85	74	-26.15	Pk	Horizontal
2390.00	39.61	3.14	27.21	43.80	26.16	54	-27.84	AV	Horizontal
2483.50	60.97	3.58	27.70	44.00	48.25	74	-25.75	Pk	Vertical
2483.50	42.31	3.58	27.70	44.00	29.59	54	-24.41	AV	Vertical
2483.50	60.45	3.58	27.70	44.00	47.73	74	-26.27	Pk	Horizontal
2483.50	40.45	3.58	27.70	44.00	27.73	54	-26.27	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

	Spurious Emi	ission	in F	Restricted	d Band 32	260MHz-1	8000MHz						
EU	EUT: Mobile Phone					Model N	Model No.:			A8			
Ter	mperature:	2	20 °C	2		Relative	e Humidity:		48%	, D			
Tes	st Mode:	ſ	Mod	e2/ Mod	e4	Test By	:		Alle	n Liu			
	Frequenc y	Read g Le		Cable Loss	Antenn a	Preamp Factor	Emission Level	Lin	nits	Margin	Detecto r		
	(MHz)	(dBµ	JV)	(dB)	dB/m	(dB)	(dBµ V/m)	(dl V/i	3μ m)	(dB)	Туре	Comment	
	3260	60.6	64	4.04	29.57	44.70	49.55	7	4	-24.45	Pk	Vertical	
	3260	50.7	71	4.04	29.57	44.70	39.62	5	4	-14.38	AV	Vertical	
	3260	60.7	71	4.04	29.57	44.70	49.62	7	4	-24.38	Pk	Horizontal	
	3260	51.4	41	4.04	29.57	44.70	40.32	5	4	-13.68	AV	Horizontal	
	3332	59.7	77	4.26	29.87	44.40	49.50	7	4	-24.50	Pk	Vertical	
	3332	48.7	77	4.26	29.87	44.40	38.50	5	4	-15.50	AV	Vertical	
	3332	61.7	74	4.26	29.87	44.40	51.47	7	4	-22.53	Pk	Horizontal	
	3332	48.5	57	4.26	29.87	44.40	38.30	5	4	-15.70	AV	Horizontal	
	17797	41.8	37	10.99	43.95	43.50	53.31	7	4	-20.69	Pk	Vertical	
	17797	30.7	70	10.99	43.95	43.50	42.14	5	4	-11.86	AV	Vertical	
	17788	41.5	58	11.81	43.69	44.60	52.48	7	4	-21.52	Pk	Horizontal	
	17788	30.6	<u> 59</u>	11.81	43.69	44.60	41.59	5	4	-12.41	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit.

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Mobile Phone	Model No.:	A8
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on}/T_{total}

7.4.6 Test Results

EUT:	Mobile Phone	Model No.:	A8
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.5 PEAK OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Mobile Phone	Model No.:	A8
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5*DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Mobile Phone	Model No.:	A8
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Mobile Phone	Model No.:	A8
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Allen Liu

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequeny range from 9KHz to 26.5GHz.

7.8.5 Test Results

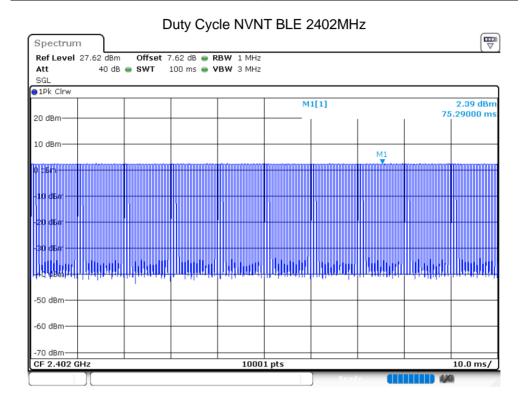
Remark: The measurement frequency range is from 9KHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

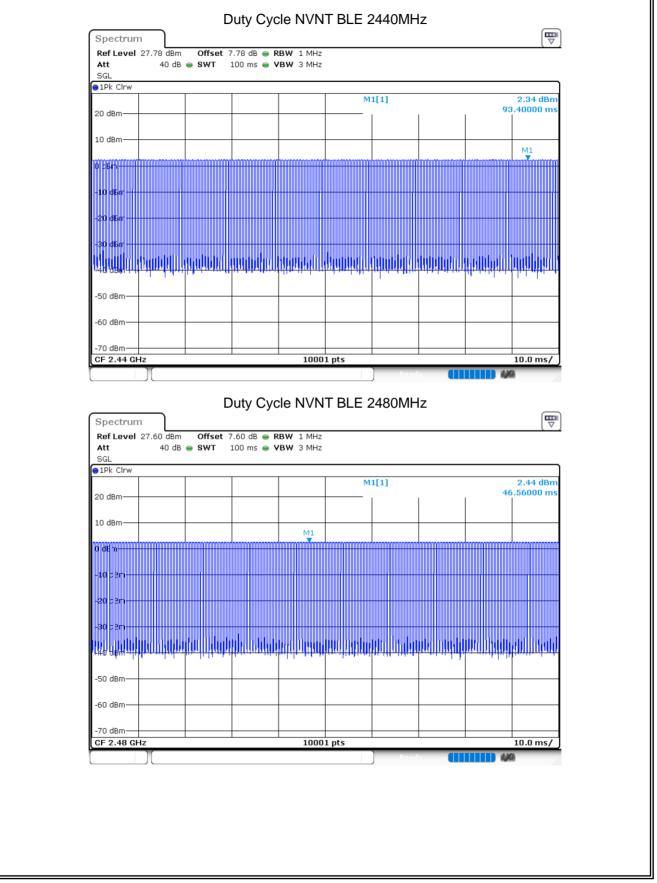
7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

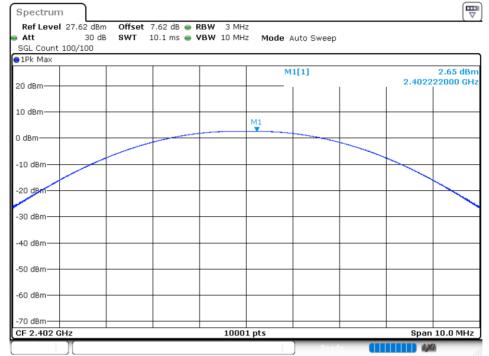

The EUT antenna is permanent attached PIFA antenna (Gain: 0.7dBi). It comply with the standard requirement.

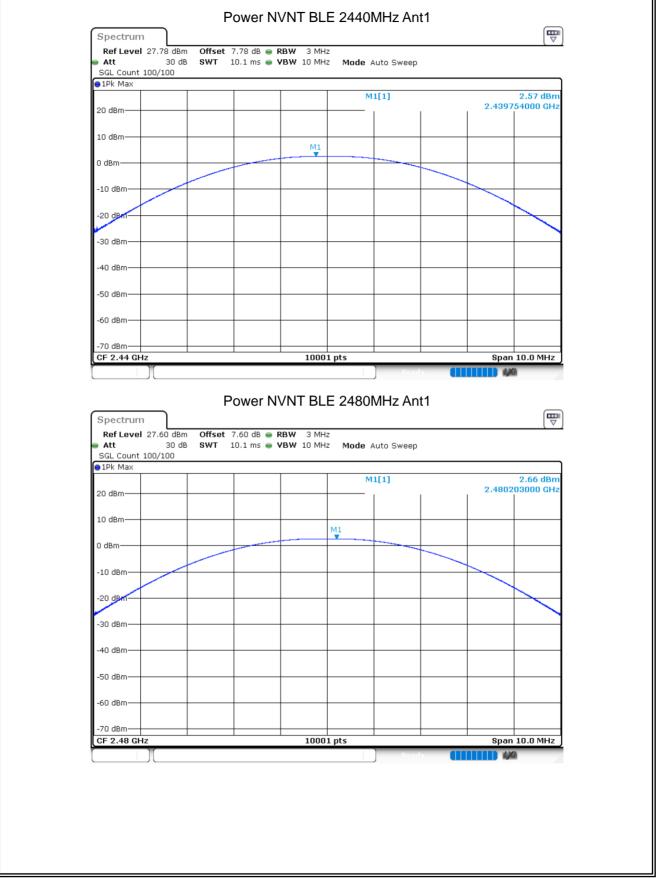

8 TEST RESULTS

8.1 DUTY CYCLE

Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)
NVNT	BLE	2402	96.86	0.14
NVNT	BLE	2440	97.83	0.1
NVNT	BLE	2480	97.48	0.11

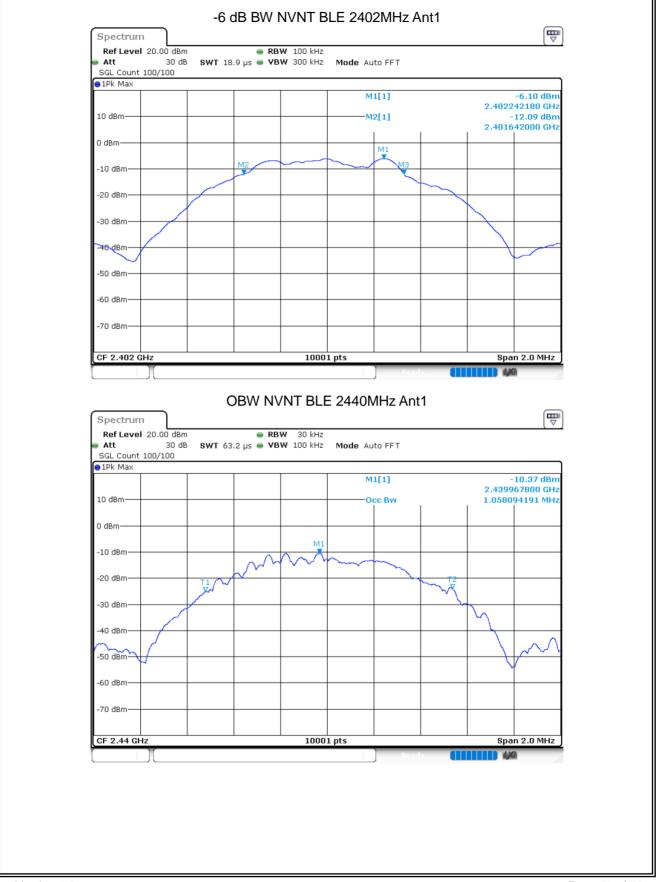
ACCREDITED


Certificate #4298.01

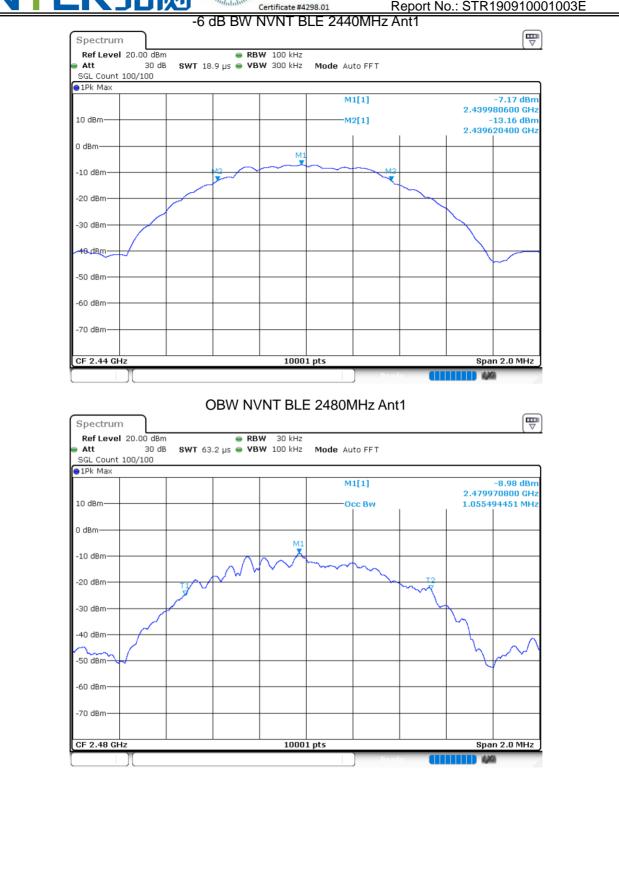

8.2 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant 1	2.649	30	Pass
NVNT	BLE	2440	Ant 1	2.566	30	Pass
NVNT	BLE	2480	Ant 1	2.656	30	Pass

Power NVNT BLE 2402MHz Ant1



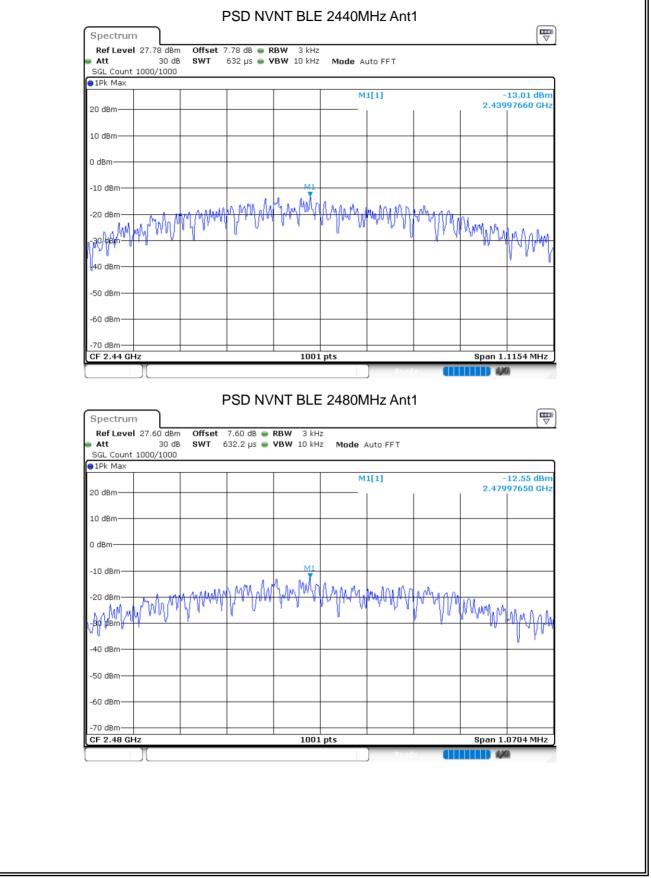
Version.1.3



			Cert	ificate #4298.01	Report No	<u>.: STR190910001</u>	003E
8.3 OCC		HANNEL BAN	DWIDTH	99%	-6 dB	Limit -6 dB	
Condition	Mode	Frequency	Antenna	99% OBW	-6 0B Bandwidth	Bandwidth	Verdict
Jonation	woue	(MHz)	Antenna	(MHz)	(MHz)	(MHz)	veruic
NVNT	BLE	2402	Ant 1	1.0563	0.6878	≥0.5	Pass
NVNT	BLE	2440	Ant 1	1.0581	0.7436	≥0.5	Pass
NVNT	BLE	2480	Ant 1	1.0555	0.7136	≥0.5	Pass
	I		I		I		
			OBW NVN	T BLE 2402	MHz Ant1		
	Spectru	m el 20.00 dBm	RBW	20 kHz			
	🕳 Att	30 dB SWT 6		100 kHz Mode Ai	uto FFT		
	SGL Coun 91Pk Max	t 100/100]	
				M	11[1]	-9.14 dBm 2.401972400 GHz	
	10 dBm			o	CCBW	1.056294371 MHz	
	0 dBm						
	10 -10			M1			
	-10 dBm—		m	\sim			
	-20 dBm—	TIA					
	-30 dBm—						
	10.10	~				\mathcal{N}	
	-40 dBm—						
	-50 dBm						
	-60 dBm—						
	-70 dBm—						
	CF 2.402	GHz		10001 pts		Span 2.0 MHz	
					Ready		
araian 1.0							000 44 -1
ersion.1.3						P	age 41 of

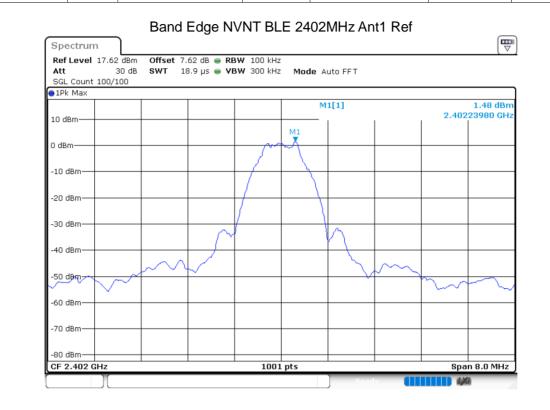


ACCREDITED

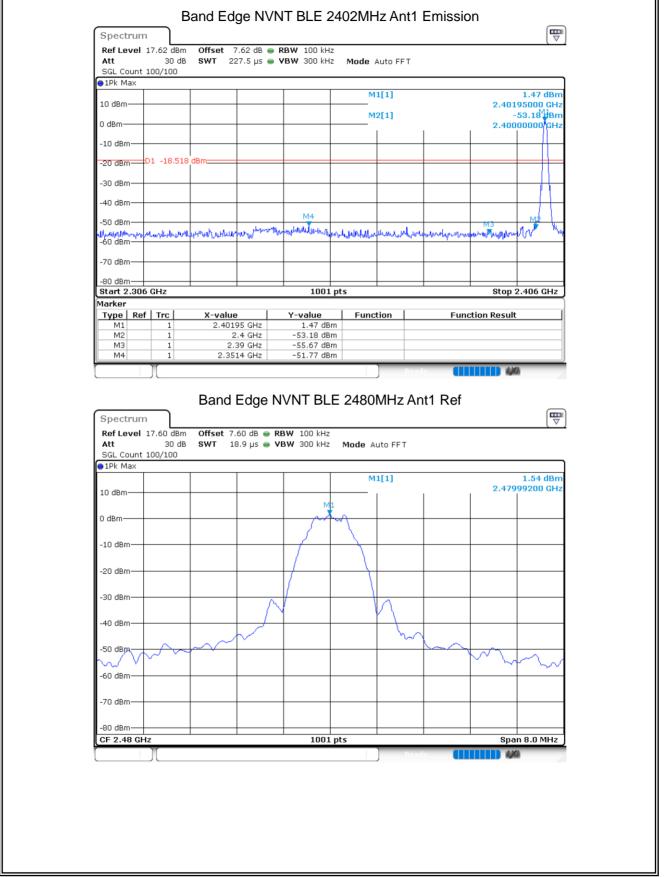

ACCREDITED

Certificate #4298.01

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdic
NVNT	BLE	2402	Ant 1	-12.927	8	Pass
NVNT	BLE	2440	Ant 1	-13.007	8	Pass
NVNT	BLE	2480	Ant 1	-12.549	8	Pass
	🕳 Att	vel 27.62 dBm Offset 7.6 30 dB SWT 632. nt 1000/1000 000	2 dB • RBW 3 k 1 µs • VBW 10 k	Hz Mode Auto FFT	-12.93 dBm 2.40197625 GHz	
	-60 dBm-					
	CF 2.402	2 GHz	100)1 pts	Span 1.0317 MHz	
				Ready		

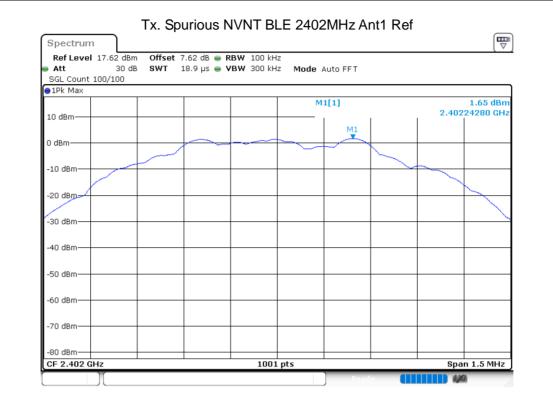


Version.1.3

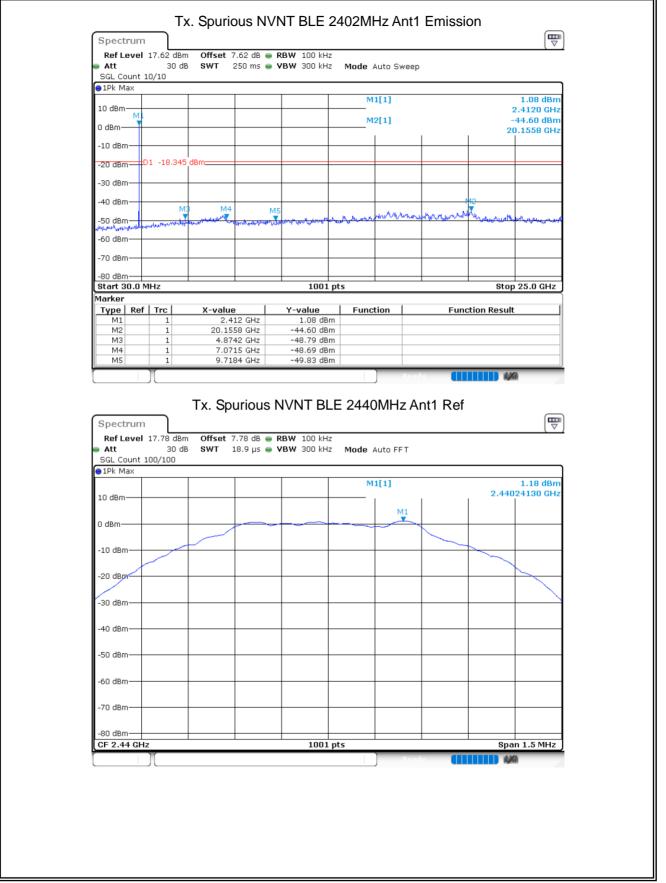


8.5 BAND EDGE

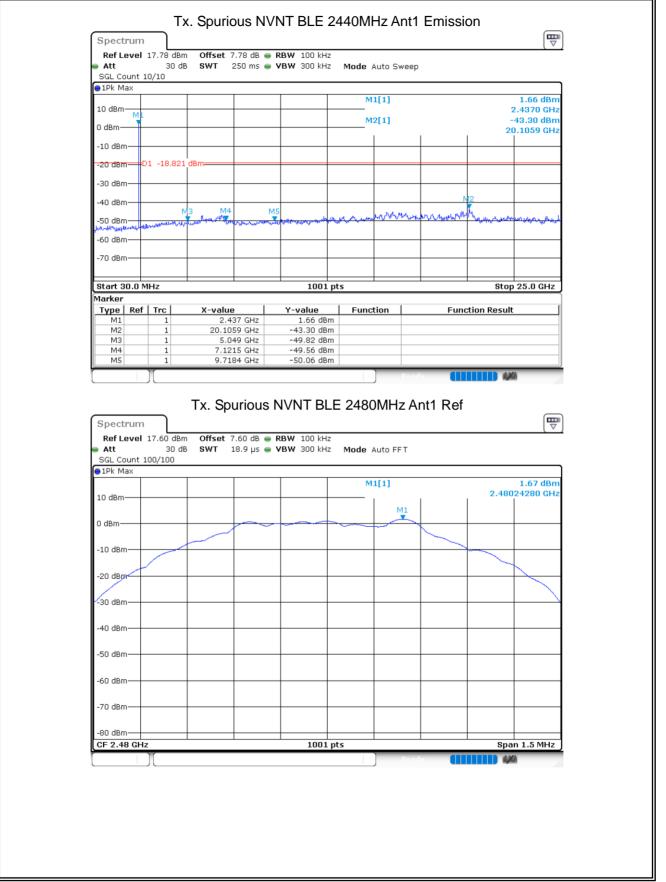
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-53.24	-20	Pass
NVNT	BLE	2480	Ant 1	-54.97	-20	Pass



Spect		L										[₩
	vel 1	7.60 dB			-	/ 100 kH						
Att		30 c	18 SWT 2	27.5 µs	VBV	/ 300 kH	z Mo	de A	uto FFT			
SGL Co		00/100										
∋1Pk Ma	ax I							M 1	[1]			1.91 dBm
10 dBm·									.[1]		2,480	25000 GHz
M1								M	2[1]			54.26 dBm
0 døm–											2.483	50000 GHz
-10 dBm												
-20 dBm	D	1 -18.4	57 dBm									
2000												
-30 dBm												
11												
-40 dBm	-							-		+		
-so den	12 M	4										
po any	Sund 1	distantian de	M3 ՆՆՆ Մանգենություն	a da shipu	maria	n i dat bele	land m	Na	and the state	Mathematics de 14	AL WMMMW	Mar at a land late
-60 dBm	-T W	a (0.2000).	and a stratter to	000000	· [🌳	. 000 000- 010	to suffices	. 0 W D	ware of the other			- hundrood was
-70 dBm	_			-								
-80 dBm												
Start 2		GHz				1001	nts				Ston 2	2.576 GHz
Marker						1001	pts				0100	
Type	Ref	Tre	X-valu	e	Y	value	I F	unct	ion	Eun	ction Result	
M1	1.01	1		25 GHz		1.91 dB		uno			otion nosuit	
M2		1		35 GHz	-	54.26 dB	m					
MЗ		1		2.5 GHz	-	56.34 dB	m					
M4		1	2.48	876 GHz	-	53.43 dB	m					



8.6 CONDUCTED RF SPURIOUS EMISSION


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-46.24	-20	Pass
NVNT	BLE	2440	Ant 1	-44.47	-20	Pass
NVNT	BLE	2480	Ant 1	-46.04	-20	Pass

opeci	rum								
	evel 17.60			dB 👄 RBW 100 k					
Att		30 dB	SWT 250 r	ns 👄 VBW 300 k	Hz	Mode Auto SV	veep		
SGL Co	ount 10/10								
JIPK M	ax					M1[1]			1.03 dBm
10 dBm					_	milii			2.4870 GHz
	M					M2[1]			-44.37 dBm
0 dBm—									20.2058 GHz
-10 dBrr)								
-20 dBr	D1 -18	3.333 dB	3m						
-30 dBrr	<u></u>								
50 abii									
-40 dBm	י ו רי								
	· •				_			42	
		мз	M4	M5	the second	munner	Murry Horal	www.tyna	, mushout by real
-50 dBm Ատակտու	n	MB	Mª	M5	دريمهال	mante	where have	Mrwh-Highers	an and the stand of the stand o
Manya	workerthan	MB	Ma	N 5	<u>مرين ميناني</u>	your work	whenterhyllylyl	Mark Hulling	an a
-60 dBrr	7	M3	Manne	M 5	ultyre _{at t} er	yn were were were were were were were wer	Marrianthala	A2 M/W/-HL	wine and the state of the state
կտուղութ -60 dBm	7	M3	MA MANNAM MANNAM	M 5 Andrew Construction	میرسیالی	www.a.hov?hov	wheenexhiptional	A2 MARKAR	www.andatustaplana
հետումեն -60 dBm -70 dBm	1	MB	Ma Manual Manuan	N 5 John Standy Constraints	مر _ی میں	ynun mini	when the hold of the	H2 MAN HILLO	with the state of
460 dBm -60 dBm -70 dBm <u>-80 dBm</u>	1	MB	Ma and marked M. (Marken	angeneration and a second and a s	D1 pts		wheen have been a second	42 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ალი 25.0 GHz
400 dBm -60 dBm -70 dBm -80 dBm Start 3	1 1 1 1 0.0 MHz		and high and the state of the s	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	D1 pts				•
-60 dBm -70 dBm -80 dBm Start 3 larker Type	0.0 MHz		X-value	100 Y-value				Function	•
-60 dBm -70 dBm -80 dBm Start 3 Tarker Type M1	0.0 MHz		X-value 2.487 G	100 Y-value 12 1.03 c	dBm				•
-60 dBm -70 dBm -80 dB	0.0 MHz		X-value 2.487 G 20.2058 G	100 Y-value 12 -44.37 c	dBm dBm				•
-60 dBm -70 dBm -80 dBm Start 3 Tarker Type M1	0.0 MHz		X-value 2.487 G	100 Y-value 12 1.03 c 12 -44.37 c 12 -50.00 c	JBm JBm JBm				•

END OF REPORT