

RADIO TEST REPORT FCC ID: ZSH6C

Product:Mobile PhoneTrade Mark:KXD, Kenxinda, EL, E&L, Ken mobileModel No.:6CFamily Model:N/AReport No.:STR190909001002EIssue Date:25 Sep. 2019

Prepared for

SHENZHEN KENXINDA TECHNOLOGY CO.,LTD 18TH FLOOR,FUCHUN ORIENT BUILDING, SHENNAN AV 7006, SHENZHEN, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

TABLE OF CONTENTS

ACCREDITED

Certificate #4298.01

1	TES	ST RESULT CERTIFICATION	.3				
2	SUN	IMARY OF TEST RESULTS	.4				
3	FAC	FACILITIES AND ACCREDITATIONS5					
	3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	.5 .5				
4	GE	NERAL DESCRIPTION OF EUT	.6				
5	DES	SCRIPTION OF TEST MODES	.8				
6	SET	TUP OF EQUIPMENT UNDER TEST	.9				
	6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	.9 10 11				
7	TES	ST REQUIREMENTS	13				
	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10	CONDUCTED EMISSIONS TEST	18 27 28 29 31 32 33 34 35				
8	TES	ST RESULTS	36				
	8.1 8.2 8.3 8.4 8.5 8.6 8.7	DWELL TIME 3 MAXIMUM CONDUCTED OUTPUT POWER. 4 OCCUPIED CHANNEL BANDWIDTH. 4 CARRIER FREQUENCIES SEPARATION. 5 NUMBER OF HOPPING CHANNEL 5 BAND EDGE. 5 CONDUCTED RF SPURIOUS EMISSION. 5	41 46 51 56 57				

NTEK北测

I

ilac-MR

ACCREDITED

Certificate #4298.01

	CATION		
Applicant's name:	SHENZHEN KENXINDA TECHNOLOGY CO.,LTD		
Address:	18TH FLOOR,FUCHUN ORIENT BUILDING, SHENNAN AV 7006, SHENZHEN, China		
Manufacturer's Name:	SHENZHEN KEN	(INDA TECHNOLOGY CO.,LT	ГD
Address:	18TH FLOOR,FU SHENZHEN, China		SHENNAN AV 7006,
Product description			
Product name:	Mobile Phone		
Model and/or type reference:	6C		
Family Model:	N/A		
Measurement Procedure Used:	APPLICABLE	STANDARDS	
STANDARD/ TEST PR	OCEDURE	TEST RES	SULT
FCC 47 CFR Part 2, S FCC 47 CFR Part 15, S KDB 174176 D01 Line Conduc ANSI C63.10-20 KDB 558074 D01 15.247 Meas	ubpart C ted FAQ v01r01 13	Complie	əd
This device described above has b results show that the equipment u applicable only to the tested sampl This report shall not be reproduce Technology Co., Ltd., this documen Ltd., personnel only, and shall be n	under test (EUT) is e identified in the re d except in full, with nt may be altered or loted in the revision	in compliance with the FCC port. nout the written approval of S revised by Shenzhen NTEK of the document.	requirements. And it is Shenzhen NTEK Testing Testing Technology Co.,
The test results of this report relate	only to the tested s	ample identified in this report.	
Date of Test	:1	0 Sep. 2019 ~ 23 Sep. 2019	

Date of Test	•	10 Sep. 2019 ~ 25 Sep. 2019
Testing Engineer	:	Mary. Hu
		(Mary Hu)
Technical Manager	:	Jason chen
		(Jason Chen)
		Sam. Chew
Authorized Signatory	:	
		(Sam Chen)

NTEK北测

2 SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C				
Standard Section	Test Item	Verdict	Remark	
15.207	Conducted Emission	PASS		
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS		
15.247(a)(1)	Hopping Channel Separation	PASS		
15.247(b)(1)	Peak Output Power	PASS		
15.247(a)(iii)	Number of Hopping Frequency	PASS		
15.247(a)(iii)	Dwell Time	PASS		
15.247(a)(1)	Bandwidth	PASS		
15.247 (d)	Band Edge Emission	PASS		
15.247 (d)	Spurious RF Conducted Emission	PASS		
15.203	Antenna Requirement	PASS		

ACC

Certificate #4298.01

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

 All test items were verified and recorded according to the standards and without any deviation during the test.

3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Laboratory has been assessed and proved to be in compliance with
	CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)
	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

NTEK北测

4 GENERAL DESCRIPTION OF EUT

	Product Feature and Specification
Equipment	Mobile Phone
Trade Mark	KXD, Kenxinda, EL, E&L, Ken mobile
FCC ID	ZSH6C
Model No.	6C
Family Model	N/A
Model Difference	N/A
Operating Frequency	2402MHz~2480MHz
Modulation	GFSK, π/4-DQPSK, 8-DPSK
Bluetooth Version	BT V2.1
Number of Channels	79 Channels
Antenna Type	PIFA Antenna
Antenna Gain	1.31dBi
	DC supply: DC 3.8V/2500mAh from Battery or DC 5V from USB Port.
Power supply	Adapter supply: Model: K12S Input: 100-240V~50/60Hz 0.25A Output: 5V1A
HW Version	J407_32EMB_D3V1.1
SW Version	J407_kxd_6C_gelunbiya_MZ_V01_09102019

ACCRED

Certificate #4298.01

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

ACCREDITED

Certificate #4298.01

Report No.	Version	Description	Issued Date
STR190909001002E	Rev.01	Initial issue of report	Sep 25, 2019

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78(k is the Channel)

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	For AC Conducted Emission
Final Test Mode	Description
Mode 1	normal link mode

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	

Note: For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases		
Description		
CH00(2402MHz)		
CH39(2441MHz)		
CH78(2480MHz)		
Hopping mode		

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6 SETUP OF EQUIPMENT UNDER TEST	
6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM For AC Conducted Emission Mode	
AC PLUG	
For Radiated Test Cases	
EUT	
For Conducted Test Cases	
Measurement C-1 EUT	
 Note: 1. The temporary antenna connector is soldered on the PCB board in order and this temporary antenna connector is listed in the equipment list. 2. EUT built-in battery-powered, the battery is fully-charged. 	er to perform conducted tests

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK北测

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

	estequipment					
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
Spectrum Analyzer	Aglient	E4407B	MY45108040	2019.05.13	2020.05.12	1 year
Spectrum Analyzer	Agilent	N9020A	MY49100060	2019.08.28	2020.08.27	1 year
Spectrum Analyzer	R&S	FSV40	101417	2019.08.28	2020.08.27	1 year
Test Receiver	R&S	ESPI7	101318	2019.05.13	2020.05.12	1 year
Bilog Antenna	TESEQ	CBL6111D	31216	2019.04.15	2020.04.14	1 year
50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2018.05.19	2020.05.18	2 year
Horn Antenna	EM	EM-AH-1018 0	2011071402	2019.04.15	2020.04.14	1 year
Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2018.12.11	2019.12.10	1 year
Amplifier	EMC	EMC051835 SE	980246	2019.08.06	2020.08.05	1 year
Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2018.12.11	2019.12.10	1 year
Power Meter	DARE	RPR3006W	15I00041SN 084	2019.08.06	2020.08.05	1 year
Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2017.04.21	2020.04.20	3 year
Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2017.04.21	2020.04.20	3 year
High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2017.04.21	2020.04.20	3 year
High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2017.04.21	2020.04.20	3 year
Filter	TRILTHIC	2400MHz	29	2017.04.19	2020.04.18	3 year
temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A
	Equipment Spectrum Analyzer Spectrum Analyzer Spectrum Analyzer Test Receiver Bilog Antenna 50Ω Coaxial Switch Horn Antenna Broadband Horn Antenna Broadband Horn Antenna Amplifier Active Loop Antenna Power Meter Test Cable (9KHz-30MHz) Test Cable (30MHz-1GHz) High Test Cable(1G-40G Hz) High Test Cable(1G-40G Hz) Filter temporary antenna connector	EquipmentManufacturerSpectrum AnalyzerAglientSpectrum AnalyzerAgilentSpectrum AnalyzerR&STest ReceiverR&SBilog AntennaTESEQ500 Coaxial SwitchAnritsuHorn AntennaEMBroadband Horn AntennaSCHWARZBE CKAmplifierEMCActive Loop AntennaSCHWARZBE CKPower MeterDARETest Cable (30MHz-1GHz)N/AHigh Test Cable(1G-40G Hz)N/AHigh Test Cable(1G-40G Hz)N/AFilterTRILTHICtemporary antenna connectorNTS	EquipmentManufacturerType No.Spectrum AnalyzerAglientE4407BSpectrum AnalyzerAgilentN9020ASpectrum AnalyzerR&SFSV40Test ReceiverR&SESPI7Bilog AntennaTESEQCBL6111D50Ω Coaxial SwitchAnritsuMP59BHorn AntennaEMEM-AH-1018 0Broadband Horn AntennaSCHWARZBE CKBBHA 9170AmplifierEMCEMC051835 SEActive Loop AntennaSCHWARZBE CKFMZB 1519 BPower MeterDARERPR3006WTest Cable (9KHz-30MHz)N/AR-01Test Cable (30MHz-1GHz)N/AR-02High Test Cable(1G-40G Hz)N/AR-03High Test Cable(1G-40G Hz)N/AR-04FilterTRILTHIC2400MHztemporary antenna connectorNTSR001	EquipmentManufacturerType No.Serial No.Spectrum AnalyzerAglientE4407BMY45108040Spectrum AnalyzerAglientN9020AMY49100060Spectrum AnalyzerR&SFSV40101417Test ReceiverR&SESPI7101318Bilog AntennaTESEQCBL6111D3121650Ω Coaxial SwitchAnritsuMP59B6200983705Horn AntennaEMEM-AH-1018 02011071402Broadband Horn AntennaSCHWARZBE CKBBHA 9170803AmplifierEMCEMC051835 SE980246Active Loop AntennaSCHWARZBE CKFMZB 1519 B055Power MeterDARERPR3006W15100041SN 084Test Cable (30MHz-1GHz)N/AR-01N/AHigh Test Cable(1G-40G Hz)N/AR-03N/AHigh Test Cable(1G-40G Hz)N/AR-03N/AFilterTRILTHIC2400MHz29temporary antenna connectorNTSR001N/A	EquipmentManufacturerType No.Serial No.calibrationSpectrum AnalyzerAglientE4407BMY451080402019.05.13Spectrum AnalyzerAgilentN9020AMY491000602019.08.28Spectrum AnalyzerR&SFSV401014172019.08.28Spectrum AnalyzerR&SESPI71013182019.05.13Bilog AntennaTESEQCBL6111D312162019.04.15S0Ω Coaxial SwitchAnritsuMP59B62009837052018.05.19Horn AntennaEMEM-AH-1018 020110714022019.04.15Broadband Horn AntennaSCHWARZBE CKBBHA 91708032018.12.11AmplifierEMCEMC051835 SE9802462019.08.06Active Loop AntennaSCHWARZBE CKFMZB 15190552018.12.11Power MeterDARERPR3006W15100041SN O842019.08.06Test Cable (30MHz-1GHz)N/AR-01N/A2017.04.21High Test Cable(1G-40GN/AR-03N/A2017.04.21High Test Cable(1G-40GN/AR-04N/A2017.04.21High Test 	Equipment Manufacturer Type No. Serial No. calibration until Spectrum Analyzer Aglient E4407B MY45108040 2019.05.13 2020.05.12 Spectrum Analyzer Aglient N9020A MY49100060 2019.08.28 2020.08.27 Spectrum Analyzer R&S FSV40 101417 2019.08.28 2020.08.27 Test Receiver R&S ESPI7 101318 2019.05.13 2020.05.12 Bilog Antenna TESEQ CBL6111D 31216 2019.04.15 2020.05.12 Bilog Antenna TESEQ CBL6111D 31216 2019.04.15 2020.05.18 Horn Antenna EM MP59B 6200983705 2018.05.19 2020.05.18 Horn Antenna EM EM-AH-1018 0 2011071402 2019.04.15 2020.04.14 Broadband Horn Antenna SCHWARZBE SE BBHA 9170 803 2018.12.11 2019.12.10 Amplifier EMC EMC051835 SE 980246 2019.08.06 2020.08.05 Active Loop Antenna

ACC

Certificate #4298.01

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2019.05.13	2020.05.12	1 year
2	LISN	R&S	ENV216	101313	2019.04.15	2020.04.14	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2019.05.13	2020.05.12	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2018.05.19	2020.05.18	2 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2017.04.21	2020.04.20	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2017.04.21	2020.04.20	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2017.04.21	2020.04.20	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

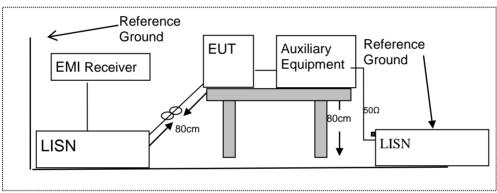
7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a) and KDB 174176 D01 Line Conducted FAQ v01r01

7.1.2 Conformance Limit


Fraguaday/(MHz)	Conducted Emission Limit				
Frequency(MHz)	Quasi-peak	Average			
0.15-0.5	66-56*	56-46*			
0.5-5.0	56	46			
5.0-30.0	60	50			

Note: 1. *Decreases with the logarithm of the frequency

2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

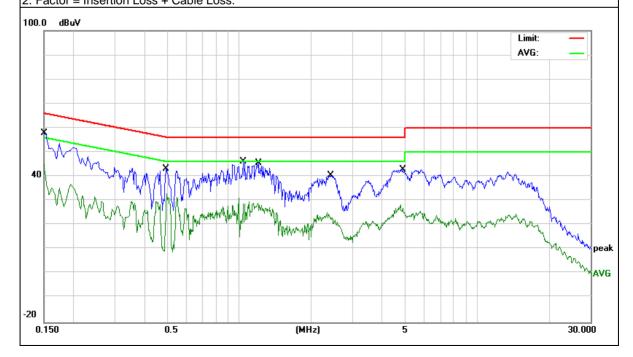
7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.5 Test Results

Pass


7.1.6 Test Results

EUT:	Mobile Phone	Model Name :	6C
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

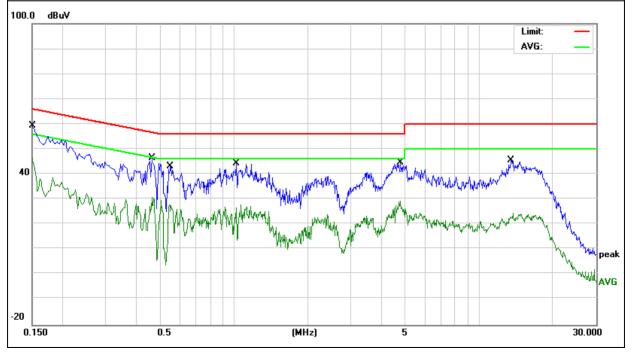
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1516	47.76	9.75	57.51	65.91	-8.40	QP
0.1516	35.49	9.75	45.24	55.91	-10.67	AVG
0.4900	33.53	9.74	43.27	56.17	-12.90	QP
0.4940	23.16	9.74	32.90	46.10	-13.20	AVG
1.0420	36.30	9.74	46.04	56.00	-9.96	QP
1.0420	21.40	9.74	31.14	46.00	-14.86	AVG
1.1980	35.73	9.74	45.47	56.00	-10.53	QP
1.1980	19.26	9.74	29.00	46.00	-17.00	AVG
2.4180	30.60	9.79	40.39	56.00	-15.61	QP
2.4180	15.24	9.79	25.03	46.00	-20.97	AVG
4.8219	32.87	9.87	42.74	56.00	-13.26	QP
4.8219	18.55	9.87	28.42	46.00	-17.58	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

EUT:	Mobile Phone	Model Name :	6C
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

ACCREDITED


Certificate #4298.01

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1500	49.70	9.74	59.44	65.99	-6.55	QP
0.1500	36.62	9.74	46.36	55.99	-9.63	AVG
0.4620	36.63	9.75	46.38	56.66	-10.28	QP
0.4620	21.12	9.75	30.87	46.66	-15.79	AVG
0.5500	33.39	9.75	43.14	56.00	-12.86	QP
0.5500	18.18	9.75	27.93	46.00	-18.07	AVG
1.0260	34.65	9.75	44.40	56.00	-11.60	QP
1.0260	17.09	9.75	26.84	46.00	-19.16	AVG
4.7819	34.64	9.94	44.58	56.00	-11.42	QP
4.7819	19.35	9.94	29.29	46.00	-16.71	AVG
13.4859	35.44	10.07	45.51	60.00	-14.49	QP
13.4859	14.37	10.07	24.44	50.00	-25.56	AVG
	•					

Remark:

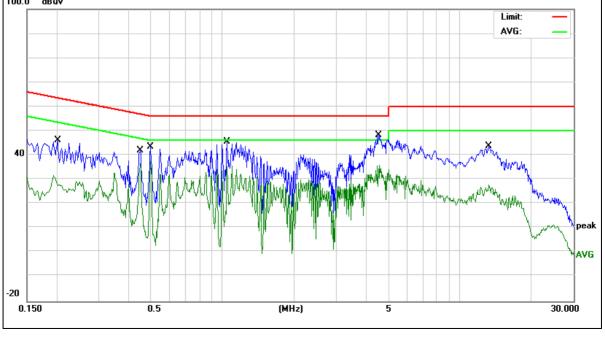
1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

EUT:	Mobile Phone	Model Name :	6C
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 240V/60Hz	Test Mode:	Mode 1

ACCREDITED

Certificate #4298.01


Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	
	<u> </u>				-	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	
0.2020	36.54	9.76	46.30	63.52	-17.22	QP
0.2020	22.08	9.76	31.84	53.52	-21.68	AVG
0.4500	32.08	9.74	41.82	56.87	-15.05	QP
0.4500	26.87	9.74	36.61	46.87	-10.26	AVG
0.4980	33.75	9.74	43.49	56.03	-12.54	QP
0.4980	27.82	9.74	37.56	46.03	-8.47	AVG
1.0460	35.85	9.74	45.59	56.00	-10.41	QP
1.0460	26.06	9.74	35.80	46.00	-10.20	AVG
4.5259	38.31	9.87	48.18	56.00	-7.82	QP
4.5259	26.12	9.87	35.99	46.00	-10.01	AVG
13.2379	33.70	10.07	43.77	60.00	-16.23	QP
13.2379	17.66	10.07	27.73	50.00	-22.27	AVG

Remark:

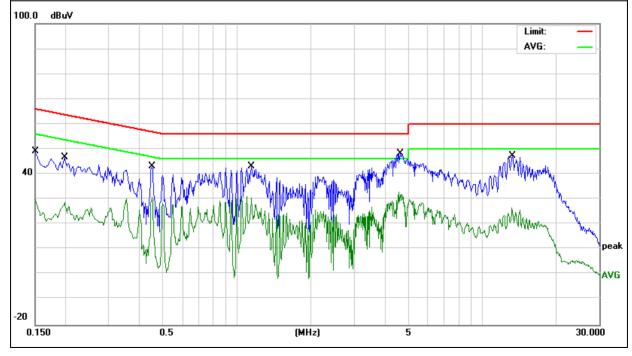
1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

100.0 dBuV

EUT:	Mobile Phone	Model Name :	6C
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 240V/60Hz	Test Mode:	Mode 1

ACCREDITED


Certificate #4298.01

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	
	-				-	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	
0.1500	39.44	9.74	49.18	65.99	-16.81	QP
0.1500	20.52	9.74	30.26	55.99	-25.73	AVG
0.1980	37.07	9.73	46.80	63.69	-16.89	QP
0.1980	18.87	9.73	28.60	53.69	-25.09	AVG
0.4500	33.27	9.75	43.02	56.87	-13.85	QP
0.4500	21.25	9.75	31.00	46.87	-15.87	AVG
1.1420	33.36	9.75	43.11	56.00	-12.89	QP
1.1420	21.55	9.75	31.30	46.00	-14.70	AVG
4.6379	38.35	9.94	48.29	56.00	-7.71	QP
4.6379	19.88	9.94	29.82	46.00	-16.18	AVG
13.2739	37.13	10.07	47.20	60.00	-12.80	QP
13.2739	16.50	10.07	26.57	50.00	-23.43	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to FOC Fait 13.200, Restricted bands						
MHz	MHz	MHz	GHz			
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46			
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75			
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5			
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7			
6.26775-6.26825	123-138	2200-2300	14.47-14.5			
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4			
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5			
12.57675-12.57725	322-335.4	3600-4400	(2)			
13.36-13.41						

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/m) (at 3M)		
	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz:

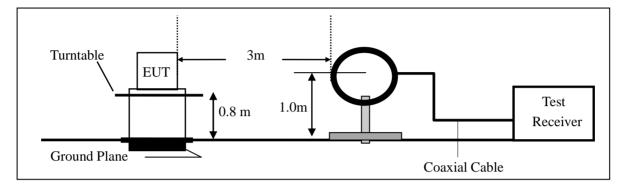
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

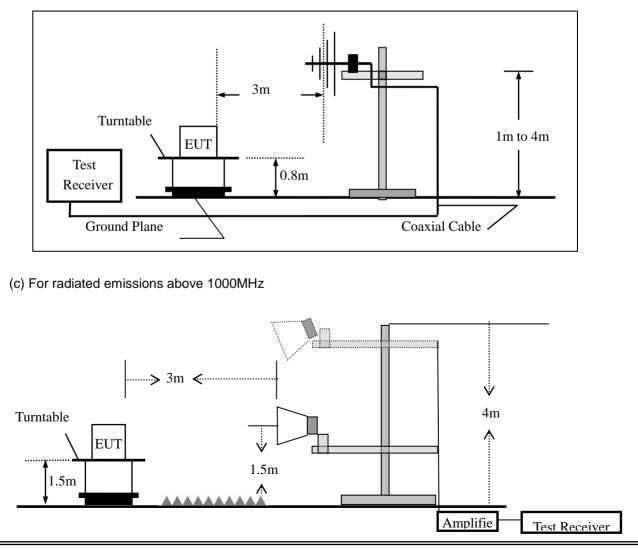
Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration


(a) For radiated emissions below 30MHz

ACC

Certificate #4298.01

(b) For radiated emissions from 30MHz to 1000MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:					
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth		
30 to 1000	QP	120 kHz	300 kHz		
Above 1000	Peak	1 MHz	1 MHz		
Above 1000	Average	1 MHz	10 Hz		

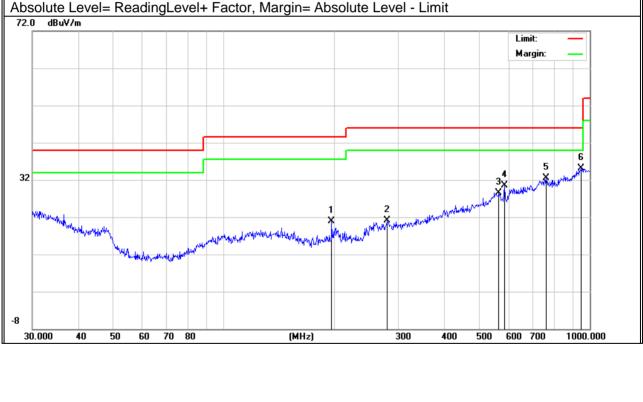
Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

EUT:	Mobile Phone	Model No.:	6C
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.


Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

EUT:	Mobile Phone	Model Name :	6C
Temperature:	20 ℃	Relative Humidity:	48%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	DC 3.8V		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	197.2001	12.02	8.86	20.88	43.50	-22.62	QP
V	280.0237	4.93	16.24	21.17	46.00	-24.83	QP
V	564.6389	6.26	22.29	28.55	46.00	-17.45	QP
V	584.7895	8.77	21.77	30.54	46.00	-15.46	QP
V	760.7036	6.98	25.45	32.43	46.00	-13.57	QP
V	948.7609	6.45	28.68	35.13	46.00	-10.87	QP

Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 dBuV/m	(H/V) (MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) (dB) H 219.8449 11.61 11.01 22.62 46.00 -23.38 QF H 413.2706 7.48 18.64 26.12 46.00 -19.88 QF H 556.7744 6.77 22.74 29.51 46.00 -16.49 QF H 787.8513 7.17 25.16 32.33 46.00 -13.67 QF H 857.0247 7.09 26.45 33.54 46.00 -12.46 QF H 962.1622 7.29 28.73 36.02 54.00 -17.98 QF Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 1.00 <t< th=""></t<>
H 413.2706 7.48 18.64 26.12 46.00 -19.88 QP H 556.7744 6.77 22.74 29.51 46.00 -16.49 QP H 787.8513 7.17 25.16 32.33 46.00 -13.67 QP H 857.0247 7.09 26.45 33.54 46.00 -12.46 QP H 962.1622 7.29 28.73 36.02 54.00 -17.98 QP Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 dBuV/m Margin:	H 413.2706 7.48 18.64 26.12 46.00 -19.88 QF H 556.7744 6.77 22.74 29.51 46.00 -16.49 QF H 787.8513 7.17 25.16 32.33 46.00 -13.67 QF H 857.0247 7.09 26.45 33.54 46.00 -12.46 QF H 962.1622 7.29 28.73 36.02 54.00 -17.98 QF Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 dBuV/m dBuV/m dBuv/m 45 5
H 413.2706 7.48 18.64 26.12 46.00 -19.88 QP H 556.7744 6.77 22.74 29.51 46.00 -16.49 QP H 787.8513 7.17 25.16 32.33 46.00 -13.67 QP H 857.0247 7.09 26.45 33.54 46.00 -12.46 QP H 962.1622 7.29 28.73 36.02 54.00 -17.98 QP Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 dBuV/m dBuV/	H 413.2706 7.48 18.64 26.12 46.00 -19.88 QF H 556.7744 6.77 22.74 29.51 46.00 -16.49 QF H 787.8513 7.17 25.16 32.33 46.00 -13.67 QF H 857.0247 7.09 26.45 33.54 46.00 -12.46 QF H 962.1622 7.29 28.73 36.02 54.00 -17.98 QF Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 dBuV/m dBuV/
H 787.8513 7.17 25.16 32.33 46.00 -13.67 QP H 857.0247 7.09 26.45 33.54 46.00 -12.46 QP H 962.1622 7.29 28.73 36.02 54.00 -17.98 QP Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit Imit: Margin: M	H 787.8513 7.17 25.16 32.33 46.00 -13.67 QF H 857.0247 7.09 26.45 33.54 46.00 -12.46 QF H 962.1622 7.29 28.73 36.02 54.00 -17.98 QF Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 dBuV/m dBuV/m dimit:
H 857.0247 7.09 26.45 33.54 46.00 -12.46 QP H 962.1622 7.29 28.73 36.02 54.00 -17.98 QP Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit The second secon	H 857.0247 7.09 26.45 33.54 46.00 -12.46 QF H 962.1622 7.29 28.73 36.02 54.00 -17.98 QF Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 dBuV/m dBuV/m dimit: Margin: dimit: <
H 962.1622 7.29 28.73 36.02 54.00 -17.98 QP Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 dBuV/m Imit: Margin: - Margin: - Margin: - - - Absolute Level - Limit	H 962.1622 7.29 28.73 36.02 54.00 -17.98 QF Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 dBuV/m
Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 dBuV/m	Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 dBuV/m Limit: Margin: Margin: J Margin: J Mar
Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 dBuV/m	Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 dBuV/m
Manung de martin and an	
	30.000 40 50 60 70 80 (MHz) 300 400 500 600 700 1000.000

EUT:		Mobile Ph	one	Model	No.:	6C			
Temperature:		20 ℃		Relativ	e Humidity:	48%			
Test Mode:		Mode2/Mo	ode3/Mode4	1 Test By	y:	Mary	Hu		
All the modula	ation mod	des have b	een tested,	and the v	vorst result	was repo	rt as below	/:	
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m) (dB)		
Low Channel (2402 MHz)(8-DPSK)Above 1G									
4804.966	62.54	5.21	35.59	44.30	59.04	74.00	-14.96	Pk	Vertical
4804.966	42.45	5.21	35.59	44.30	38.95	54.00	-15.05	AV	Vertical
7206.903	60.06	6.48	36.27	44.60	58.21	74.00	-15.79	Pk	Vertical
7206.903	41.36	6.48	36.27	44.60	39.51	54.00	-14.49	AV	Vertical
4804.732	60.48	5.21	35.55	44.30	56.94	74.00	-17.06	Pk	Horizonta
4804.732	42.69	5.21	35.55	44.30	39.15	54.00	-14.85	AV	Horizonta
7206.760	59.58	6.48	36.27	44.52	57.81	74.00	-16.19	Pk	Horizonta
7206.760	48.64	6.48	36.27	44.52	46.87	54.00	-7.13	AV	Horizonta
Mid Channel (2441 MHz)(8-DPSK)Above 1G									
4883.075	65.62	5.21	35.66	44.20	62.29	74.00	-11.71	Pk	Vertical
4883.075	45.74	5.21	35.66	44.20	42.41	54.00	-11.59	AV	Vertical
7323.678	62.80	7.10	36.50	44.43	61.97	74.00	-12.03	Pk	Vertical
7323.678	46.36	7.10	36.50	44.43	45.53	54.00	-8.47	AV	Vertical
4882.821	62.65	5.21	35.66	44.20	59.32	74.00	-14.68	Pk	Horizonta
4882.821	51.35	5.21	35.66	44.20	48.02	54.00	-5.98	AV	Horizonta
7323.735	61.85	7.10	36.50	44.43	61.02	74.00	-12.98	Pk	Horizonta
7323.735	47.84	7.10	36.50	44.43	47.01	54.00	-6.99	AV	Horizonta
	-	Hi	gh Channel	(2480 MH	z)(8-DPSK)) Above	1G		-
4960.831	64.59	5.21	35.52	44.21	61.11	74.00	-12.89	Pk	Vertical
4960.831	44.34	5.21	35.52	44.21	40.86	54.00	-13.14	AV	Vertical
7440.815	65.84	7.10	36.53	44.60	64.87	74.00	-9.13	Pk	Vertical
7440.815	42.32	7.10	36.53	44.60	41.35	54.00	-12.65	AV	Vertical
4960.721	65.51	5.21	35.52	44.21	62.03	74.00	-11.97	Pk	Horizonta
4960.721	52.25	5.21	35.52	44.21	48.77	54.00	-5.23	AV	Horizonta
7440.873	63.54	7.10	36.53	44.60	62.57	74.00	-11.43	Pk	Horizonta
7440.873	46.67	7.10	36.53	44.60	45.70	54.00	-8.3	AV	Horizonta

ACCRED

Certificate #4298.01

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Report No.: STR190909001002E

EUT:		Mobile P	hone	Mode	el No.:	6	SC			
Temperatu	ire:	20 ℃		Rela	tive Humidi	ty: 4	18%			
Test Mode):	Mode2/ I	Mode4	Test	By:	Ν	Mary	/ Hu		
All the mo	dulation m	odes have	e been test	ed, and th	e worst res	ult was	rep	ort as belo	SW:	
Frequenc	Meter	Cable	Antenna	Preamp	Emission	Limit	c	Margin	Detector	
у	Reading	Loss	Factor	Factor	Level			ů.		Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)		/m)	(dB)	Туре	
					PSK)-hoppir	. <u> </u>				
2310.00	68.20	2.97	27.80	43.80	55.17	74		-18.83	Pk	Horizonta
2310.00	49.93	2.97	27.80	43.80	36.90	54		-17.1	AV	Horizonta
2310.00	69.92	2.97	27.80	43.80	56.89	74		-17.11	Pk	Vertical
2310.00	48.83	2.97	27.80	43.80	35.80	54		-18.2	AV	Vertical
2390.00	67.24	3.14	27.21	43.80	53.79	74		-20.21	Pk	Vertical
2390.00	50.31	3.14	27.21	43.80	36.86	54		-17.14	AV	Vertical
2390.00	67.54	3.14	27.21	43.80	54.09	74		-19.91	Pk	Horizonta
2390.00	51.03	3.14	27.21	43.80	37.58	54		-16.42	AV	Horizonta
2483.50	70.15	3.58	27.70	44.00	57.43	74		-16.57	Pk	Vertical
2483.50	50.62	3.58	27.70	44.00	37.90	54		-16.1	AV	Vertical
2483.50	67.21	3.58	27.70	44.00	54.49	74		-19.51	Pk	Horizonta
2483.50	49.83	3.58	27.70	44.00	37.11	54		-16.89	AV	Horizonta
			3Mb	ps(8-DPSI	K)- Non-hop	ping				
2310.00	68.04	2.97	27.80	43.80	55.01	74		-18.99	Pk	Horizonta
2310.00	49.92	2.97	27.80	43.80	36.89	54		-17.11	AV	Horizonta
2310.00	71.06	2.97	27.80	43.80	58.03	74		-15.97	Pk	Vertical
2310.00	49.97	2.97	27.80	43.80	36.94	54		-17.06	AV	Vertical
2390.00	67.28	3.14	27.21	43.80	53.83	74		-20.17	Pk	Vertical
2390.00	48.75	3.14	27.21	43.80	35.30	54		-18.70	AV	Vertical
2390.00	67.37	3.14	27.21	43.80	53.92	74		-20.08	Pk	Horizonta
2390.00	49.95	3.14	27.21	43.80	36.50	54		-17.5	AV	Horizonta
2483.50	69.23	3.58	27.70	44.00	56.51	74		-17.49	Pk	Vertical
2483.50	47.88	3.58	27.70	44.00	35.16	54		-18.84	AV	Vertical
2483.50	68.28	3.58	27.70	44.00	55.56	74		-18.44	Pk	Horizonta
2483.50	49.99	3.58	27.70	44.00	37.27	54		-16.73	AV	Horizonta

Note: (1) All other emissions more than 20dB below the limit.

UT:		Mob	ile Phon	е	Model N	No.:	6C			
Temp	erature:	20 °C	С		Relative	Relative Humidity: 48%				
Test N	/lode:	Mod	le2/ Mod	e4	Test By	:	Ma	ry Hu		
All th	e modulatio	n modes	have be	en tested	, and the v	worst resul	t was re	eport as b	elow:	
	Frequenc	Readin	Cable	Antenn	Preamp	Emission	Limits	Margin	Detecto	
	у	g Level	Loss	а	Factor	Level	Linits	margin	r	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµ V/m)	(dBµ V/m)	(dB)	Туре	ooninoit
	3260	60.58	4.04	29.57	44.70	49.49	74	-24.51	Pk	Vertical
	3260	48.36	4.04	29.57	44.70	37.27	54	-16.73	AV	Vertical
	3260	55.84	4.04	29.57	44.70	44.75	74	-29.25	Pk	Horizontal
	3260	43.22	4.04	29.57	44.70	32.13	54	-21.87	AV	Horizontal
	3332	61.27	4.26	29.87	44.40	51.00	74	-23.00	Pk	Vertical
	3332	43.65	4.26	29.87	44.40	33.38	54	-20.62	AV	Vertical
	3332	60.56	4.26	29.87	44.40	50.29	74	-23.71	Pk	Horizontal
	3332	47.34	4.26	29.87	44.40	37.07	54	-16.93	AV	Horizontal
	17797	47.96	10.99	43.95	43.50	59.40	74	-14.60	Pk	Vertical
	17797	37.23	10.99	43.95	43.50	48.67	54	-5.33	AV	Vertical
	17788	53.34	11.81	43.69	44.60	64.24	74	-9.76	Pk	Horizontal
	17788	38.18	11.81	43.69	44.60	49.08	54	-4.92	AV	Horizontal

ACCREDI

Certificate #4298.01

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

VBW ≥ RBW

Sweep = auto

Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Mobile Phone	Model No.:	6C
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Mary Hu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Measurement Bandwidth or Channel Separation RBW: Start with the RBW set to approximately 3% of the channel spacing; adjust as necessary to best identify the center of each individual channel. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	Mobile Phone	Model No.:	6C
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	Mobile Phone	Model No.:	6C
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4 DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Mobile Phone	Model No.:	6C
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW \geq the 20 dB bandwidth of the emission being measured VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Mobile Phone	Model No.:	6C
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Mobile Phone	Model No.:	6C
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Mary Hu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 9KHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

The worst mode is GFSK mode, and the report only show the worst mode data.

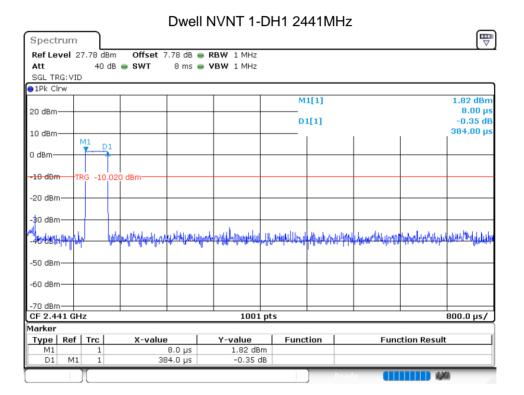
7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

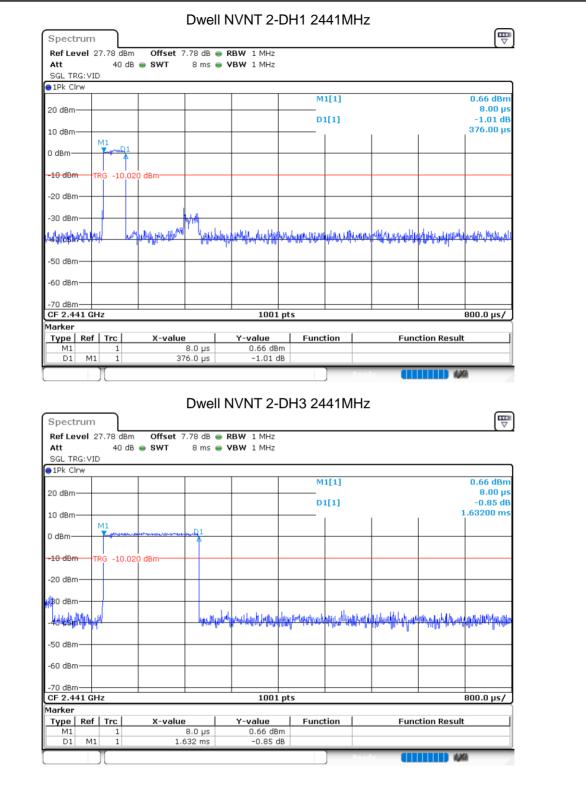
7.10.2 Result

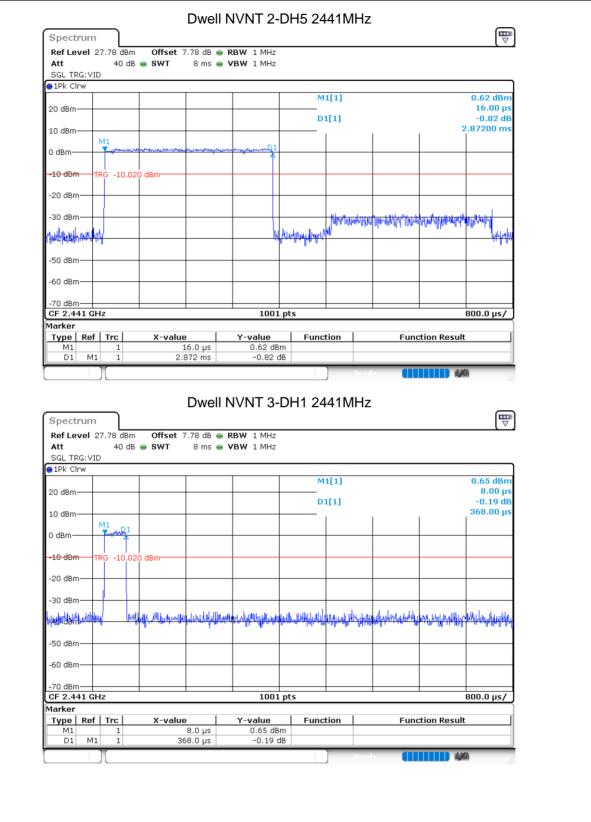
The EUT antenna is permanent attached PIFA antenna (Gain: 1.31dBi). It comply with the standard requirement.


ACCRED

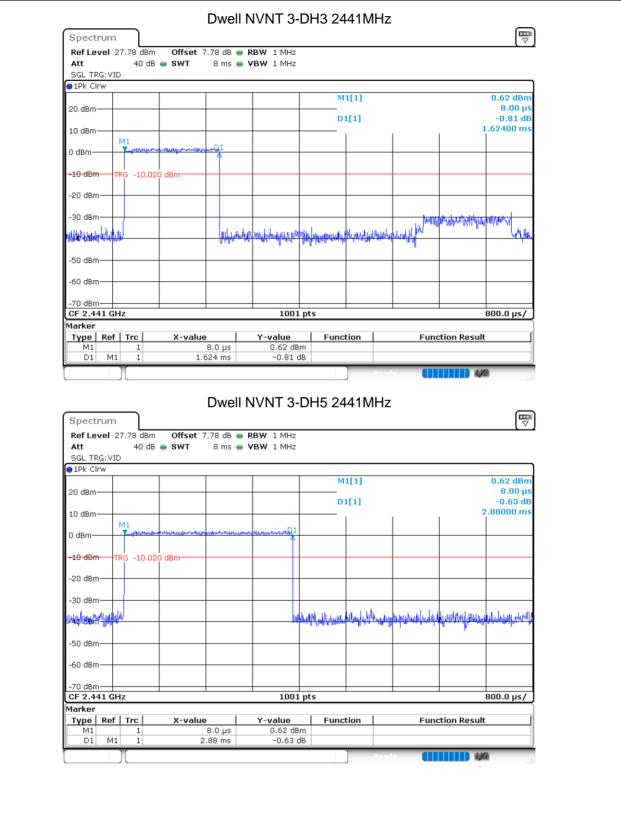
8 TEST RESULTS

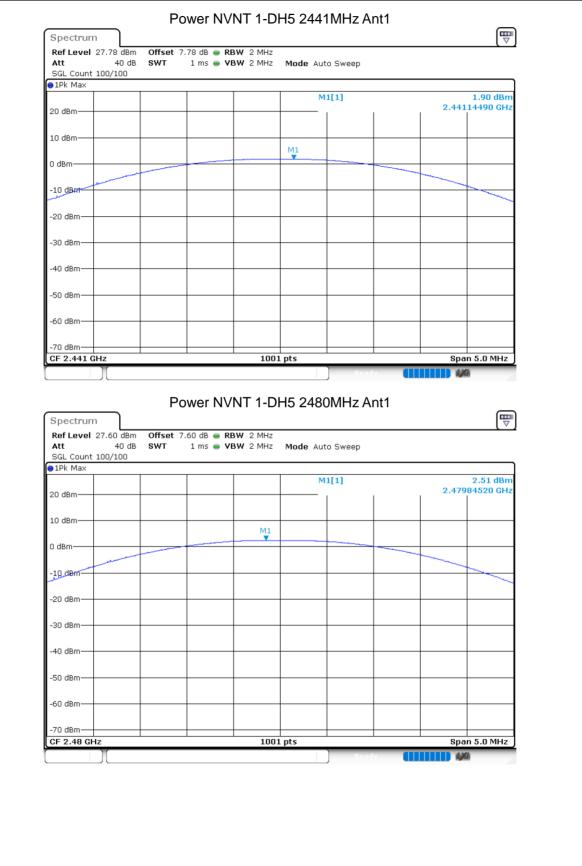
8.1 DWELL TIME


Condition	Mode	Frequency	Pulse Time	Total Dwell	Period Time	Limit	Verdict
		(MHz)	(ms)	Time (ms)	(ms)	(ms)	
NVNT	1-DH1	2441	0.384	122.88	31600	400	Pass
NVNT	1-DH3	2441	1.64	262.4	31600	400	Pass
NVNT	1-DH5	2441	2.896	308.907	31600	400	Pass
NVNT	2-DH1	2441	0.376	120.32	31600	400	Pass
NVNT	2-DH3	2441	1.632	261.12	31600	400	Pass
NVNT	2-DH5	2441	2.872	306.347	31600	400	Pass
NVNT	3-DH1	2441	0.368	117.76	31600	400	Pass
NVNT	3-DH3	2441	1.624	259.84	31600	400	Pass
NVNT	3-DH5	2441	2.88	307.2	31600	400	Pass

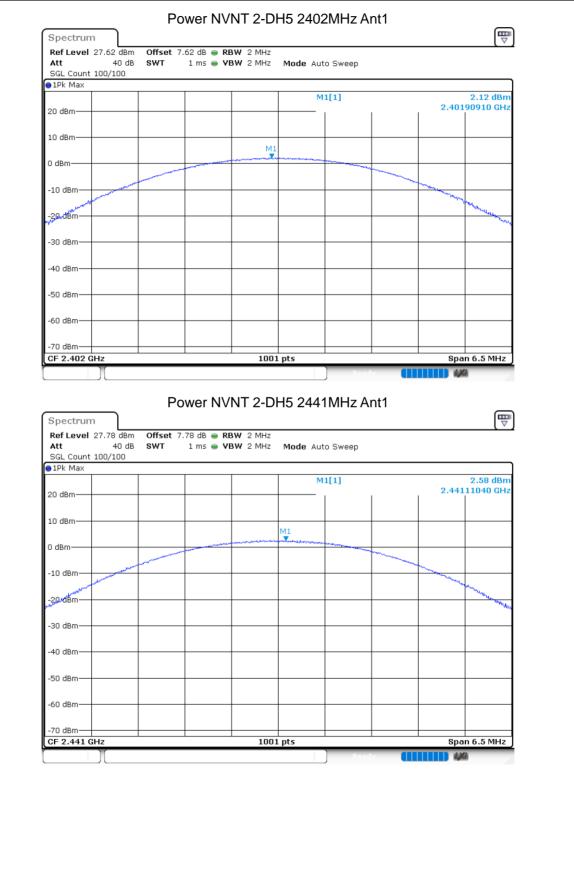


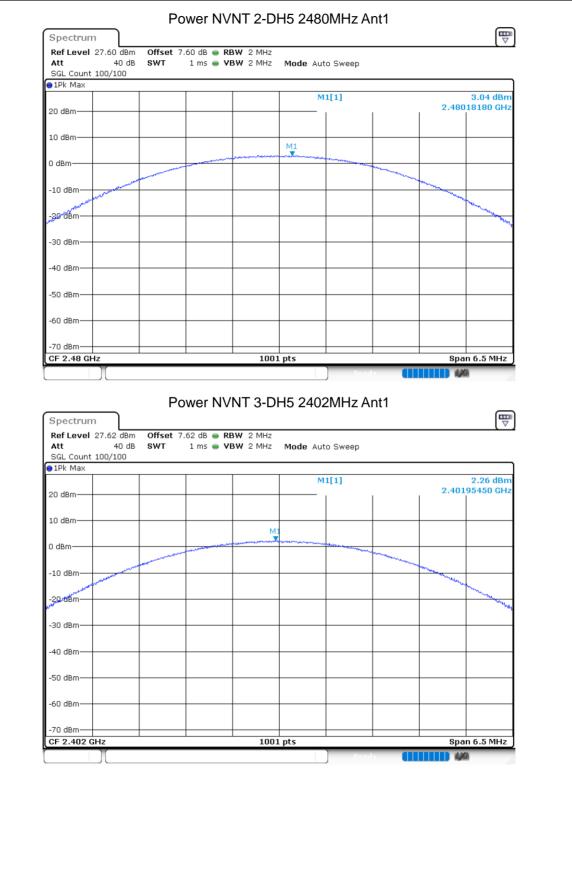
Att 40 dB SWT SGL TRG: VID	8 ms 😑 VBW 1 MHz			_
●1Pk Clrw		M1[1]	1.73 dBn	n
20 dBm		D1[1]	8.00 μ -0.26 dl	
10 dBm			1.64000 m	
0 dBm	D1			-
-10 dBm TRG -10.020 dBm				_
-20 dBm				_
-30 dBm				
-so ashi	A shire final dalikate as maraita beate	and water and the state of the	when we have the state of the strate dealled	he
	<u></u>	. Ibo Month a nove - 1 1, 10, 10, 100, 100,		~
-50 dBm				
-60 dBm				
-70 dBm CF 2.441 GHz	1001 pt:	<u> </u>	800.0 µs/	
Marker				1
	alue Y-value	Function	Function Result	4
Type Ref Trc X-v M1 1 1 1	8.0 μs 1.73 dBm			_
M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm Offs	0.26 dB Dwell NVNT 1-DF et 7.78 dB • RBW 1 MHz	H5 2441MHz		-
M1 1 D1 M1 1 Spectrum	0.26 dB Dwell NVNT 1-DF et 7.78 dB • RBW 1 MHz	H5 2441MHz	(U) (U) (U) (U) (U) (U) (U) (U) (U) (U)	
M1 1 D1 M1 1 Spectrum Image: Constraint of the second se	0.26 dB Dwell NVNT 1-DF et 7.78 dB • RBW 1 MHz	H5 2441MHz	1.73 dBr	
M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm Offs Att 40 dB SWT SGL TRG:VID	0.26 dB Dwell NVNT 1-DF et 7.78 dB • RBW 1 MHz		1.73 dBr 8.00 μ -0.34 dl	n s B
M1 1 D1 M1 1 Spectrum Image: Constraint of the second se	1.64 ms -0.26 dB	M1[1]	1.73 dBr 8.00 µ	n s B
M1 1 D1 M1 1 Spectrum Image: Constraint of the second se	0.26 dB Dwell NVNT 1-DF et 7.78 dB • RBW 1 MHz	M1[1]	1.73 dBr 8.00 μ -0.34 dl	n s B
M1 1 D1 M1 1 D1 M1 1 Spectrum Image: Constraint of the second s	1.64 ms -0.26 dB	M1[1]	1.73 dBr 8.00 μ -0.34 dl	n s B
M1 1 D1 M1 1 D1 M1 1 Spectrum Image: Constraint of the second s	1.64 ms -0.26 dB	M1[1]	1.73 dBr 8.00 μ -0.34 dl	n s B
M1 1 D1 M1 1 D1 M1 1 Spectrum Image: Construction of the second	1.64 ms -0.26 dB	M1[1] D1[1] 	1.73 dBr 8.00 µ -0.34 dl 2.89600 m	n s B
M1 1 D1 M1 1 D1 M1 1 Spectrum Image: Construction of the second	1.64 ms -0.26 dB	M1[1] D1[1] 	1.73 dBr 8.00 μ -0.34 dl	n s B
M1 1 D1 M1 1 D1 M1 1 Spectrum Image: Construction of the second	1.64 ms -0.26 dB	M1[1] D1[1] 	1.73 dBr 8.00 µ -0.34 dl 2.89600 m	n s B
M1 1 D1 M1 1 D1 M1 1 Spectrum Gamma Offs Ref Level 27.78 dBm Offs Att 40 dB SwT SGL TRG 40 dB SwT SGL TRG VID 10 dBm 10 dBm M1 0 0 dBm -10 dBm TRG -10.020 dBm -20 dBm -20 dBm -30 dBm -10.020 dBm -30 dBm	1.64 ms -0.26 dB	M1[1] D1[1] 	1.73 dBr 8.00 µ -0.34 dl 2.89600 m	n s B
M1 1 D1 M1 1 D1 M1 1 Spectrum Offs Ref Level 27.78 dBm Offs Att 40 dB SwT SGL TRG: VID IPk Clrw 20 dBm 0 M1 0 dBm M1 0 -10 dBm TRG -10.020 dBm -20 dBm -30 dBm	1.64 ms -0.26 dB	M1[1] D1[1] 	1.73 dBr 8.00 µ -0.34 dl 2.89600 m	n s B
M1 1 D1 M1 1 D1 M1 1 Spectrum Offs Ref Level 27.78 dBm Offs Att 40 dB SWT SGL TRG: VID Image: SWT IPk Clrw 20 dBm Image: SWT 10 dBm M1 Image: SWT -10 dBm M1 Image: SWT -20 dBm Image: SWT Image: SWT -30 dBm Image: SWT Image: SWT -50 dBm Image: SWT Image: SWT -60 dBm Image: SWT Image: SWT -70 dBm	1.64 ms -0.26 dB		1.73 dBr 8.00 µ -0.34 dl 2.89600 m	n s B
M1 1 D1 M1 1 D1 M1 1 Ref Level 27.78 dBm Offs Att 40 dB SWT SGL TRG: VID Image: SWT IPk Cirw 20 dBm 10 dBm M1 0 dBm M1 -10 dBm TRG -20 dBm -10.020 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	1.64 ms -0.26 dB Dwell NVNT 1-DF et 7.78 dB ● RBW 1 MHz 8 ms ● VBW 1 MHz D1 D1 D1 D1 D1		1.73 dBr 8.00 µ -0.34 dl 2.89600 m 2.89600 m	n s B



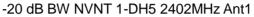

8.2 MAXIMUM CONDUCTED OUTPUT POWER

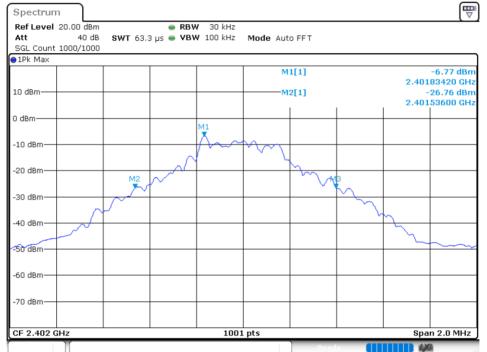
Condition	Mode	Frequency	Antenna	Conducted	Duty	Total	Limit	Verdict
		(MHz)		Power (dBm)	Factor	Power	(dBm)	
					(dB)	(dBm)		
NVNT	1-DH5	2402	Ant 1	2.19	0	2.19	30	Pass
NVNT	1-DH5	2441	Ant 1	1.90	0	1.90	30	Pass
NVNT	1-DH5	2480	Ant 1	2.52	0	2.52	30	Pass
NVNT	2-DH5	2402	Ant 1	2.12	0	2.12	20.97	Pass
NVNT	2-DH5	2441	Ant 1	2.58	0	2.58	20.97	Pass
NVNT	2-DH5	2480	Ant 1	3.04	0	3.04	20.97	Pass
Condition NVNT NVNT NVNT NVNT NVNT NVNT NVNT NVN	3-DH5	2402	Ant 1	2.26	0	2.26	20.97	Pass
	3-DH5	2441	Ant 1	2.86	0	2.86	20.97	Pass
NVNT	3-DH5	2480	Ant 1	3.48	0	3.48	20.97	Pass

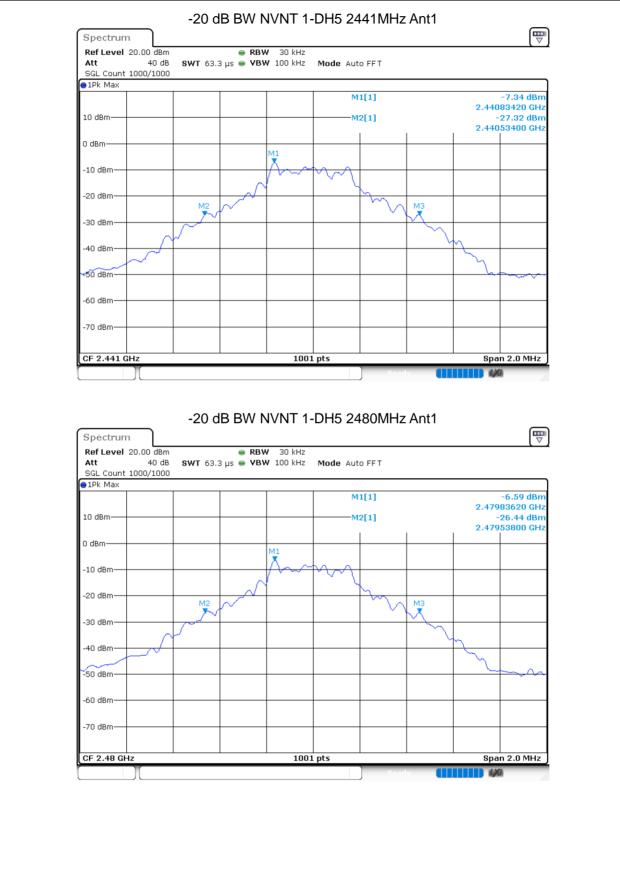

Power NVNT 1-DH5 2402MHz Ant1



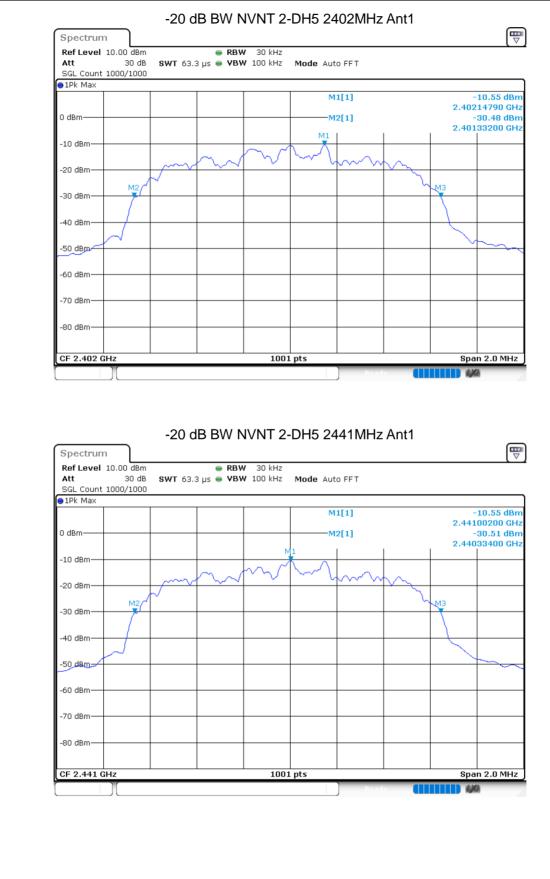


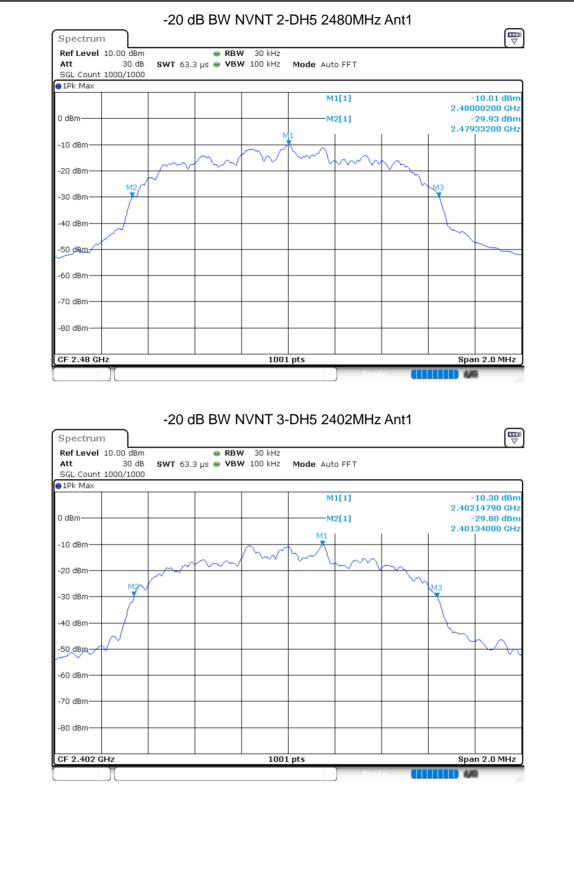


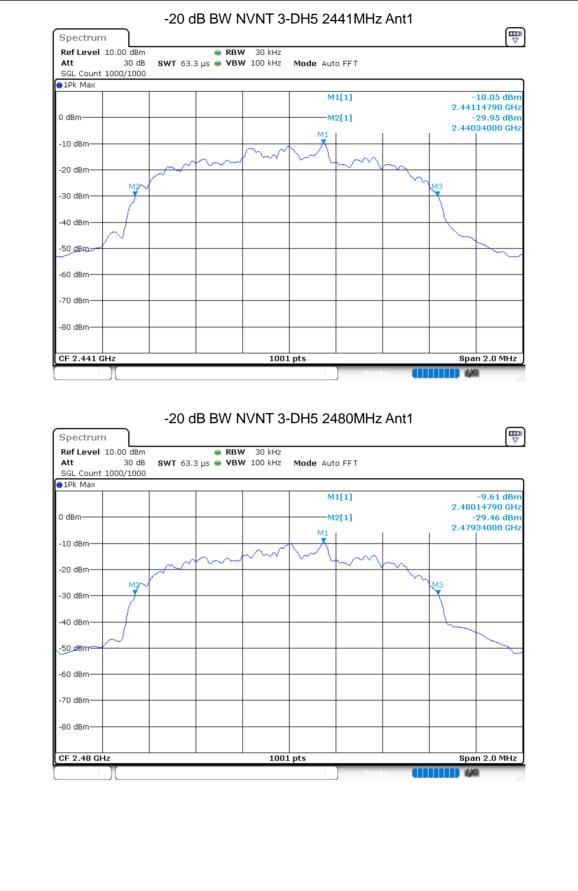


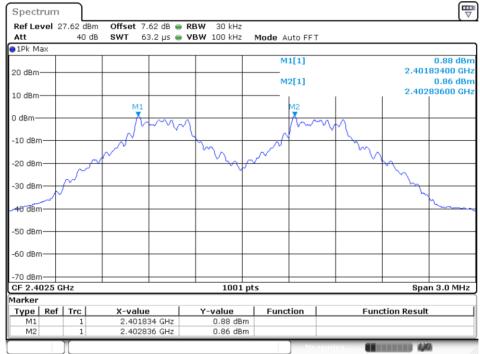

8.3 OCCUPIED CHANNEL BANDWIDTH

0.5 0000						
Condition	Mode	Frequency	Antenna	-20 dB Bandwidth	Limit -20 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	1-DH5	2402	Ant 1	0.862	N/A	Pass
NVNT	1-DH5	2441	Ant 1	0.922	N/A	Pass
NVNT	1-DH5	2480	Ant 1	0.918	N/A	Pass
NVNT	2-DH5	2402	Ant 1	1.314	N/A	Pass
NVNT	2-DH5	2441	Ant 1	1.312	N/A	Pass
NVNT	2-DH5	2480	Ant 1	1.314	N/A	Pass
NVNT	3-DH5	2402	Ant 1	1.298	N/A	Pass
NVNT	3-DH5	2441	Ant 1	1.296	N/A	Pass
NVNT	3-DH5	2480	Ant 1	1.298	N/A	Pass







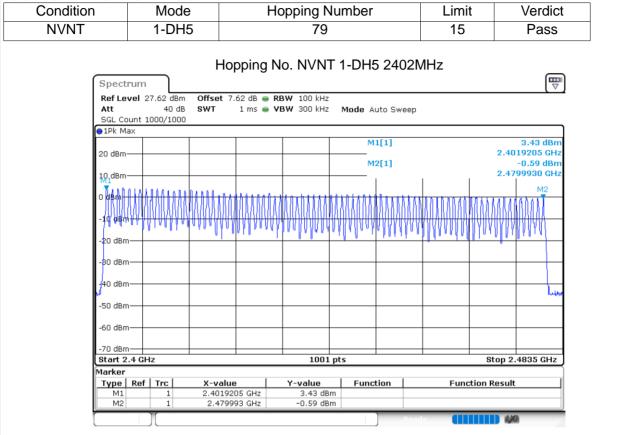

8.4 CARRIER FREQUENCIES SEPARATION

Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
	(MHz)	(MHz)	(MHz)	(MHz)	
1-DH5	2401.834	2402.836	1.002	0.862	Pass
1-DH5	2440.834	2441.836	1.002	0.922	Pass
1-DH5	2478.834	2479.836	1.002	0.918	Pass
2-DH5	2402.002	2403.001	0.999	0.876	Pass
2-DH5	2441.002	2442.001	0.999	0.875	Pass
2-DH5	2478.999	2480.004	1.005	0.876	Pass
3-DH5	2402.146	2403.148	1.002	0.865	Pass
3-DH5	2441.146	2442.148	1.002	0.864	Pass
3-DH5	2479.146	2480.148	1.002	0.865	Pass
	1-DH5 1-DH5 2-DH5 2-DH5 2-DH5 3-DH5 3-DH5	(MHz)1-DH52401.8341-DH52440.8341-DH52478.8342-DH52402.0022-DH52441.0022-DH52478.9993-DH52402.1463-DH52441.146	Image:	(MHz)(MHz)(MHz)1-DH52401.8342402.8361.0021-DH52440.8342441.8361.0021-DH52478.8342479.8361.0022-DH52402.0022403.0010.9992-DH52441.0022442.0010.9992-DH52478.9992480.0041.0053-DH52441.1462442.1481.002	(MHz)(MHz)(MHz)(MHz)1-DH52401.8342402.8361.0020.8621-DH52440.8342441.8361.0020.9221-DH52478.8342479.8361.0020.9182-DH52402.0022403.0010.9990.8762-DH52441.0022442.0010.9990.8752-DH52478.9992480.0041.0050.8763-DH52402.1462403.1481.0020.8653-DH52441.1462442.1481.0020.864

ACCREDITED

Certificate #4298.01

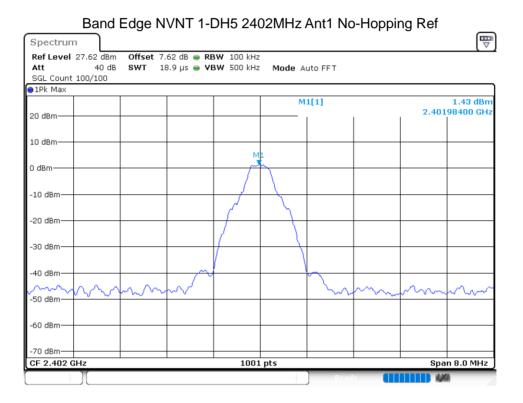

CFS NVNT 1-DH5 2402MHz



Report No.: STR190909001002E

8.5 NUMBER OF HOPPING CHANNEL

ACCREDITED


Certificate #4298.01

NTEK北测

8.6 BAND EDGE

Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH5	2402	Ant 1	No-Hopping	-43.37	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-42.05	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-44.52	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-44.27	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-42	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-40.25	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-43.78	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-41.31	-20	Pass
NVNT	3-DH5	2402	Ant 1	No-Hopping	-41.11	-20	Pass
NVNT	3-DH5	2402	Ant 1	Hopping	-41.21	-20	Pass
NVNT	3-DH5	2480	Ant 1	No-Hopping	-42.29	-20	Pass
NVNT	3-DH5	2480	Ant 1	Hopping	-40.4	-20	Pass

Band Edge NVNT 1-DH5 2402MHz Ant1 No-Hopping Emission Spectrum Ref Level 27.62 dBm Offset 7.62 dB . RBW 100 kHz 40 dB SWT 227.5 µs 😑 VBW 500 kHz Mode Auto FFT Att SGL Count 100/100 ⊖1Pk Max M1[1] 1.93 dBn 20 dBm-2.40185000 GHz M2[1] -46.89 dBm 10 dBm 2.40000000 GHz 0 dBm -10 dBm -20 dBm D1 -18.574 dBm -30 dBm ма 40 dBm· a makele and we allow M3 M2 alord de faller สาวาาเมตะว่า แล manon usu have no asheld a wood No. Mr. Salar -50 dBm· -60 dBm -70 dBm· Stop 2.406 GHz Start 2.306 GHz 1001 pts Marker Y-value 1.93 dBm Function Function Result Type | Ref | Trc X-value 2.40185 GHz M1 1 M2 46.89 dBm 2.4 GHz 1 ΜЗ 2.39 GHz -46.66 dBm 1 M4 1 2.3486 GHz -41.94 dBm 440 Band Edge(Hopping) NVNT 1-DH5 2402MHz Ant1 Hopping Ref ₽ Spectrum Ref Level 27.62 dBm Offset 7.62 dB 👄 RBW 100 kHz 40 dB SWT 18.9 µs 😑 VBW 300 kHz Att Mode Auto FFT SGL Count 1000/1000 ●1Pk Max M1[1] 1.43 dBm 2.40198400 GHz 20 dBm·

 20 dBm
 M1[1]
 1.43 dBm

 20 dBm
 2.40198400 GHz

 10 dBm
 M1

 0 dBm
 M1

 -10 dBm
 M1

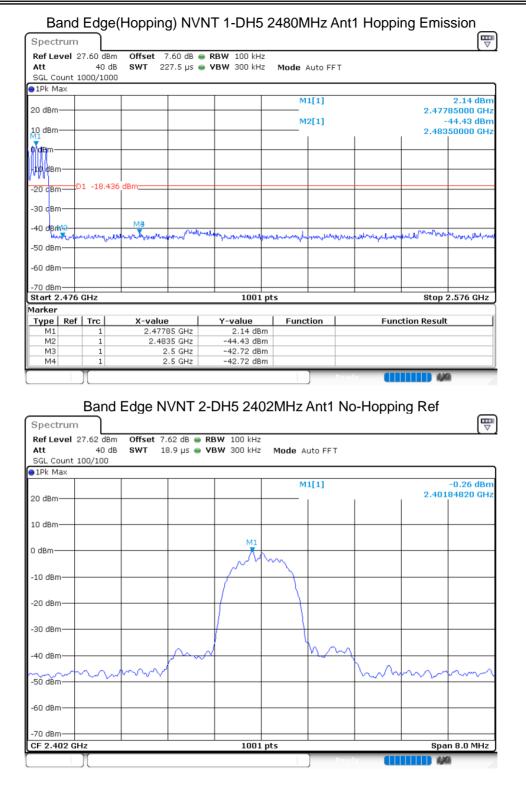
 -20 dBm
 -30 dBm

 -30 dBm
 -40 dBm

 -50 dBm
 -50 dBm

 -60 dBm
 -70 dBm

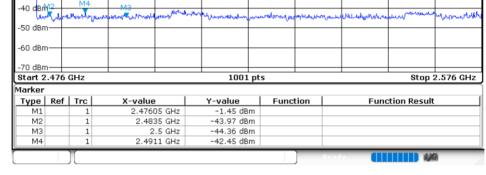
 -70 dBm
 1001 pts



Band Edge(Hopping) NVNT 1-DH5 2402MHz Ant1 Hopping Emission ₽ Spectrum Ref Level 27.62 dBm Offset 7.62 dB 👄 RBW 100 kHz 40 dB SWT 227.5 μs 😑 VBW 300 kHz Mode Auto FFT Att SGL Count 1000/1000 ⊖1Pk Max M1[1] 1.94 dBn 20 dBm· 2.40485000 GHz -45.54 dBn 2.40000000 GH M2[1] 10 dBm 0 dBm -10 dBm IWI -20 dBm D1 -18.570 dBm -30 dBm ма 40 dBm· mann N MAR A bly mouther alle مستقصيات when you we that you the love the warred the production of the ashe are -50 dBm -60 dBm -70 dBm· Stop 2.406 GHz Start 2.306 GHz 1001 pts Marker Y-value 1.94 dBm Function Function Result Type Ref Trc X-value 2.40485 GHz M1 1 M2 -45.54 dBm 2.4 GHz 1 ΜЗ 2.39 GHz -45.52 dBm 1 M4 1 2.3481 GHz -40.63 dBm 4,0 Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref ඐ Spectrum Ref Level 27.60 dBm Offset 7.60 dB 👄 RBW 100 kHz 40 dB SWT 18.9 µs 💿 VBW 300 kHz Att Mode Auto FFT SGL Count 100/100 ●1Pk Max M1[1] 1.50 dBm 2.48004800 GHz 20 dBm· 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm· -70 dBm Span 8.0 MHz CF 2.48 GHz 1001 pts

Spectrum Ref Level 2 Att	27.60 dBm 40 dB			RBW 100 kH VBW 300 kH		Auto FFT			
SGL Count 1 91Pk Max	100/100								
					М	1[1]			1.46 dB
20 dBm					м	2[1]			985000 GF -46.91 dB
10 dBm					···				350000 GH
0 dBm									
-10 dBm									
)1 -18.496	d8m							
-20 dBm	/1 -10.490	ubm							
-30 dBm									
-40 dBm	M4	MI3	م با الحد					8 86 August	
կատ) <mark>ն∿π‡</mark> կով) -50 dBm —	who when	M. M. M. M. Market	holes North M	monument	un with the fight	hhand ATPU	www.www.	wardwy or wea	marsuluse
-60 dBm									
-70 dBm Start 2.476	GHz			100	L pts			Ston	2.576 GH
Marker									
Type Ref	1 Trc	X-value 2,4798	35 GHz	Y-value 1.46 dB	Func	tion	Fu	nction Resul	t
M2	1	2.483	35 GHz	-46.91 dE	Sm				
M3 M4	1		.5 GHz 37 GHz	-45.66 dE -43.03 dE					
Spectrum) R SOMH2	z Ant1 He	opping R	۵ Cef
Spectrum Ref Level 2 Att	27.60 dBm 40 dB	Offset 7.	60 dB 😑 I	IVNT 1-E RBW 100 kHz VBW 300 kHz	:		z Ant1 He	opping R	
Spectrum Ref Level 2	27.60 dBm 40 dB	Offset 7.	60 dB 😑 I	RBW 100 kHz	:		z Ant1 He	opping R	
Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max	27.60 dBm 40 dB	Offset 7.	60 dB 😑 I	RBW 100 kHz	: Mode A		z Ant1 He		1.56 dB
Spectrum Ref Level 2 Att SGL Count 1	27.60 dBm 40 dB	Offset 7.	60 dB 😑 I	RBW 100 kHz	: Mode A	uto FFT	z Ant1 He		1.56 dB
Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max	27.60 dBm 40 dB	Offset 7.	60 dB 😑 I	RBW 100 kHz	: Mode A	uto FFT	z Ant1 He		1.56 dB
Spectrum Ref Level 2 Att SGL Count 1 9 1Pk Max 20 dBm	27.60 dBm 40 dB	Offset 7.	60 dB 😑 I	RBW 100 kHz	: Mode A	uto FFT	z Ant1 He		1.56 dB
Spectrum Ref Level 2 Att SGL Count 1 9 1Pk Max 20 dBm	27.60 dBm 40 dB	Offset 7 SWT 18	60 dB 😑 I	RBW 100 kHz	: Mode A	uto FFT	z Ant1 He		1.56 dB
Spectrum Ref Level 2 Att SGL Count 1 ●1Pk Max 20 dBm 10 dBm /8, dBm	27.60 dBm 40 dB	Offset 7 SWT 18	60 dB 😑 I	RBW 100 kHz	: Mode A	uto FFT	z Ant1 He		
Spectrum Ref Level 2 Att SGL Count 1 ●1Pk Max 20 dBm 10 dBm	27.60 dBm 40 dB	Offset 7 SWT 18	60 dB 😑 I	RBW 100 kHz	: Mode A	uto FFT	z Ant1 He		1.56 dB
Spectrum Ref Level 2 Att SGL Count 1 ●1Pk Max 20 dBm 10 dBm /8, dBm	27.60 dBm 40 dB	Offset 7 SWT 18	60 dB 😑 I	RBW 100 kHz	: Mode A	uto FFT	z Ant1 He		1.56 dB
Spectrum Ref Level 2 Att SGL Count 1 P1Pk Max 20 dBm 10 dBm -10 dBm	27.60 dBm 40 dB	Offset 7 SWT 18	60 dB 😑 I	RBW 100 kHz	: Mode A	uto FFT	z Ant1 He		1.56 dB
Spectrum Ref Level 2 Att SGL Count 1 P1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	27.60 dBm 40 dB	Offset 7 SWT 18	60 dB 😑 I	RBW 100 kHz	: Mode A	uto FFT	z Ant1 He		1.56 dB
Spectrum Ref Level 2 Att SGL Count 1 PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	27.60 dBm 40 dB	Offset 7 SWT 18	60 dB 😑 I	RBW 100 kHz	: Mode A	uto FFT	z Ant1 He		1.56 dB
Spectrum Ref Level 2 Att SGL Count 1 P1PK Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -40 dBm	27.60 dBm 40 dB	Offset 7 SWT 18	60 dB 😑 I	RBW 100 kHz	: Mode A	uto FFT	z Ant1 He		1.56 dB
Spectrum Ref Level 2 Att SGL Count 1 P1PK Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -40 dBm	27.60 dBm 40 dB	Offset 7 SWT 18	60 dB 😑 I	RBW 100 kHz	: Mode A	uto FFT	z Ant1 He		1.56 dB
Spectrum Ref Level 2 Att SGL Count 1 P1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm	27.60 dBm 40 dB	Offset 7 SWT 18	60 dB 😑 I	RBW 100 kHz	: Mode A	uto FFT	z Ant1 He		1.56 dB
Spectrum Ref Level 2 Att SGL Count 1 ● 1Pk Max 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	27.60 dBm 40 dB 1000/1000	Offset 7 SWT 18	60 dB 😑 I	RBW 100 kHz	Mode A	uto FFT	z Ant1 He	2.471	1.56 dB

Spectrui		-		5 2402N					R
-	1 27.62 dBm	Offset 7	7.62 dB 👄 R	BW 100 kHz					
Att	40 dB	SWT 22	27.5 µs 👄 V	'BW 300 kHz	Mode /	Auto FFT			
SGL Coun	t 100/100								
●1Pk Max					м	1[1]			-2.14 dBr
20 dBm	-					1[1]		2.402	215000 GH
					M	2[1]			-46.93 dBr
10 dBm						I	I	2.400	00000 GH
0 dBm									M1
-10 dBm—									
-20 dBm	D1 -20.261	dBm							
-30 dBm—									
-40 dBm—			M4					мэ	
NHU WHUL	perturnation work	munum	whenthe	working	non-hipportectual	hermontapped	un war war	workhed the whole	my mp h
-50 dBm—									
-60 dBm—							-		
-70 dBm—									
Start 2.30	D6 GHz			1001	pts			Stop	1 2.406 GHz
Marker									
Type Ro	ef Trc	X-value	15 GHz	Y-value -2.14 dBr	Func	tion	Fund	tion Result	t
M1 M2	1		.4 GHz	-46.93 dBr					
MЗ	1		39 GHz	-44.71 dBr					
M4	1	2.342	29 GHz	-42.27 dBn	n				
B		ge(Hopp	bing) N\	/NT 2-D) 2MHz A	Ant1 Ho	oping R	ef
Spectrui Ref Level Att	m I 27.62 dBm 40 dB	Offset 7.	62 dB 👄 RE				Ant1 Ho	oping R	
Spectrui Ref Level Att SGL Coun	m I 27.62 dBm	Offset 7.	62 dB 👄 RE	/NT 2-D	H5 240		Ant1 Ho	oping R	
Spectrui Ref Level Att SGL Coun	m I 27.62 dBm 40 dB	Offset 7.	62 dB 👄 RE	/NT 2-D	H5 240 Mode A	uto FFT	Ant1 Ho	oping R	
Spectrui Ref Level Att SGL Coun 1Pk Max	m I 27.62 dBm 40 dB	Offset 7.	62 dB 👄 RE	/NT 2-D	H5 240 Mode A		Ant1 Ho		
Spectrui Ref Level Att SGL Coun 1Pk Max	m I 27.62 dBm 40 dB	Offset 7.	62 dB 👄 RE	/NT 2-D	H5 240 Mode A	uto FFT	Ant1 Ho		-0.56 dBr
Spectrui Ref Level Att SGL Coun 1Pk Max	m I 27.62 dBm 40 dB	Offset 7.	62 dB 👄 RE	/NT 2-D	H5 240 Mode A	uto FFT	Ant1 Ho		-0.56 dBr
Spectrui Ref Level Att SGL Coun 1Pk Max 20 dBm-	m I 27.62 dBm 40 dB	Offset 7.	62 dB 👄 RE	/NT 2-D	H5 240 Mode A	uto FFT	Ant1 Ho		-0.56 dBi 883620 GH
Spectrui Ref Level Att SGL Coun 1Pk Max 20 dBm-	m I 27.62 dBm 40 dB	Offset 7.	62 dB 👄 RE	/NT 2-D	H5 240 Mode A	uto FFT	Ant1 Ho		-0.56 dBr
Spectrun Ref Level Att SGL Coun 1Pk Max 20 dBm- 10 dBm- 0 dBm-	m I 27.62 dBm 40 dB	Offset 7.	62 dB 👄 RE	/NT 2-D	H5 240 Mode A	uto FFT	Ant1 Ho		-0.56 dBi 883620 GH
Spectrun Ref Level Att SGL Coun 1Pk Max 20 dBm- 10 dBm-	m I 27.62 dBm 40 dB	Offset 7.	62 dB 👄 RE	/NT 2-D	H5 240 Mode A	uto FFT	Ant1 Ho		-0.56 dBi 883620 GH
Spectrui Ref Level Att SGL Coun 1Pk Max 20 dBm	m I 27.62 dBm 40 dB	Offset 7.	62 dB 👄 RE	/NT 2-D	H5 240 Mode A	uto FFT	Ant1 Ho		-0.56 dBi 883620 GH
Spectrun Ref Level Att SGL Coun 1Pk Max 20 dBm- 10 dBm- 0 dBm-	m I 27.62 dBm 40 dB	Offset 7.	62 dB 👄 RE	/NT 2-D	H5 240 Mode A	uto FFT	Ant1 Ho		-0.56 dBi 883620 GH
Spectrui Ref Level Att SGL Coun 1Pk Max 20 dBm	m I 27.62 dBm 40 dB	Offset 7.	62 dB 👄 RE	/NT 2-D	H5 240 Mode A	uto FFT	Ant1 Ho		-0.56 dBi 883620 GH
Spectrui Ref Level Att SGL Coun 1Pk Max 20 dBm	m I 27.62 dBm 40 dB	Offset 7.	62 dB 👄 RE	/NT 2-D	H5 240 Mode A	uto FFT	Ant1 Ho		-0.56 dBi 883620 GH
Spectrui Ref Level Att SGL Coun 1Pk Max 20 dBm	m I 27.62 dBm 40 dB	Offset 7.	62 dB 👄 RE	/NT 2-D	H5 240 Mode A	uto FFT	Ant1 Ho		-0.56 dBi 883620 GH
Spectrui Ref Level Att SGL Coun PIPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	m I 27.62 dBm 40 dB	Offset 7.	62 dB 👄 RE	/NT 2-D	H5 240 Mode A	uto FFT			-0.56 dBi 883620 GH
Spectrui Ref Level Att SGL Coun PIPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	m I 27.62 dBm 40 dB	Offset 7.	62 dB 👄 RE	/NT 2-D	H5 240 Mode A	uto FFT			-0.56 dBi 883620 GH
Spectrui Ref Level Att SGL Coun • 1Pk Max 20 dBm	m I 27.62 dBm 40 dB	Offset 7.	62 dB 👄 RE	/NT 2-D	H5 240 Mode A	uto FFT			-0.56 dBi 883620 GH
Spectrui Ref Level Att SGL Coun PIPk Max 20 dBm	m I 27.62 dBm 40 dB	Offset 7.	62 dB 👄 RE	/NT 2-D	H5 240 Mode A	uto FFT			-0.56 dBi 883620 GH
Spectrui Ref Level Att SGL Coun • 1Pk Max 20 dBm	m I 27.62 dBm 40 dB	Offset 7.	62 dB 👄 RE	/NT 2-D	H5 240 Mode A	uto FFT			-0.56 dBi 883620 GH


Band Edge(Hopping) NVNT 2-DH5 2402MHz Ant1 Hopping Emission ₽ Spectrum Ref Level 27.62 dBm Offset 7.62 dB 👄 RBW 100 kHz 40 dB SWT 227.5 μs 😑 VBW 300 kHz Mode Auto FFT Att SGL Count 1000/1000 ⊖1Pk Max M1[1] -0.35 dBn 20 dBm· 2.40495000 GHz M2[1] -44.76 dBm 2.4000000 GHz 10 dBm 0 dBm wy. -10 dBm 20 dBm D1 -20.564 dBr -30 dBm м4 40 dBm· a police www.www.w ald a tola ير ار م almost have been the mark many others -50 dBm -60 dBm -70 dBm· Stop 2.406 GHz Start 2.306 GHz 1001 pts Marker Y-value -0.35 dBm Function Function Result Type | Ref | Trc X-value 2.40495 GHz M1 1 M2 -44.76 dBm 2.4 GHz 1 ΜЗ 2.39 GHz -44.59 dBm 1 M4 1 2.3492 GHz -40.81 dBm 4,0 Band Edge NVNT 2-DH5 2480MHz Ant1 No-Hopping Ref ඐ Spectrum Ref Level 27.60 dBm Offset 7.60 dB 👄 RBW 100 kHz 40 dB SWT 18.9 µs 💿 VBW 300 kHz Att Mode Auto FFT SGL Count 100/100 ●1Pk Max M1[1] 0.20 dBm 2.47985610 GHz 20 dBm· 10 dBm M 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm· -70 dBm Span 8.0 MHz CF 2.48 GHz 1001 pts

Ref Level Att SGL Count	n 27.60 dBm 40 dB 100/100			(BW 100 kHz /BW 300 kHz		Auto FFT			U
 1Pk Max 									
20 dBm					М	1[1]		2.470	0.28 dBn 95000 GH
					M	2[1]		-	45.49 dBn
10 dBm						I	I	2.483	50000 GH
0 dem									
-10 cBm									
-20 dBm-	D1 -19.800	dBm							
-30 dBm									
-40 dBm 2	what has been	M3 	un alwayahu	Michael March	MUNICH MAN IN	data no	Marine	ward Murgar	and much and
-50 dBm	الاستعلم تحتيد فعمه	-1.min - and the second	0× W	de angel a	ու ուսեստ, ու դեպես	- Batan - Angel		- VIC	A A A
-60 dBm									
-70 dBm									
Start 2.47	6 GHz			1001	pts			Stop	2.576 GHz
Marker Type Re	fitre	X-value	1	Y-value	Func	tion	Fund	ction Result	
M1	1	2.4799	95 GHz	0.28 dBr	m		1 410		-
M2 M3	1		35 GHz .5 GHz	-45.49 dBr -45.37 dBr					
			38 GHz	-43.58 dBr					
Spectrun Ref Level	n 27.60 dBm	ge(Hopp	Ding) N\ 60 db - Re	/NT 2-D			Ant1 Ho	pping R	ef
B Spectrun Ref Level Att SGL Count	and Edg	ge(Hopp	Ding) N\ 60 db - Re	/NT 2-D			Ant1 Ho	pping R	
B Spectrun Ref Level Att	and Edg 27.60 dBm 40 dB	ge(Hopp	Ding) N\ 60 db - Re	/NT 2-D	Mode A	uto FFT	Ant1 Ho	pping R	
B Spectrun Ref Level Att SGL Count	and Edg 27.60 dBm 40 dB	ge(Hopp	Ding) N\ 60 db - Re	/NT 2-D	Mode A		Ant1 Ho		
B Spectrun Ref Level Att SGL Count • 1Pk Max	and Edg 27.60 dBm 40 dB	ge(Hopp	Ding) N\ 60 db - Re	/NT 2-D	Mode A	uto FFT	Ant1 Ho		-1.14 dBn
B Spectrun Ref Level Att SGL Count • 1Pk Max	and Edg 27.60 dBm 40 dB	ge(Hopp	Ding) N\ 60 db - Re	/NT 2-D	Mode A	uto FFT	Ant1 Ho		-1.14 dBn
B Spectrun Ref Level Att SGL Count SGL Count 10 dBm	and Edg 27.60 dBm 40 dB	ge(Hopp	Ding) N\ 60 db - Re	/NT 2-D	Mode A	uto FFT	Ant1 Ho		-1.14 dBn
B Spectrun Ref Level Att SGL Count SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	and Edg 27.60 dBm 40 dB	ge(Hopp offset 7. swr 18	Ding) N\ 60 dB - RE	/NT 2-D	Mode A	uto FFT	Ant1 Ho		-1.14 dBn
B Spectrun Ref Level Att SGL Count SGL Count 10 dBm	and Edg 27.60 dBm 40 dB	ge(Hopp offset 7. swr 18	Ding) N\ 60 dB - RE	/NT 2-D	Mode A	uto FFT	Ant1 Ho		-1.14 dBn
B Spectrun Ref Level Att SGL Count SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	and Edg 27.60 dBm 40 dB	ge(Hopp offset 7. swr 18	Ding) N\ 60 dB - RE	/NT 2-D	Mode A	uto FFT	Ant1 Ho		-1.14 dBn
B Spectrun Ref Level Att SGL Count SGL Count 10 dBm- 10 dBm- 0 dBm- -10 dBm-	and Edg 27.60 dBm 40 dB	ge(Hopp offset 7. swr 18	Ding) N\ 60 dB - RE	/NT 2-D	Mode A	uto FFT	Ant1 Ho		-1.14 dBn
B Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	and Edg 27.60 dBm 40 dB	ge(Hopp offset 7. swr 18	Ding) N\ 60 dB - RE	/NT 2-D	Mode A	uto FFT	Ant1 Ho		-1.14 dBn
B Spectrun Ref Level Att SGL Count • 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	and Edg 27.60 dBm 40 dB	ge(Hopp offset 7. swr 18	Ding) N\ 60 dB - RE	/NT 2-D	Mode A	uto FFT	Ant1 Ho		-1.14 dBn
B Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	and Edg 27.60 dBm 40 dB	ge(Hopp offset 7. swr 18	Ding) N\ 60 dB - RE	/NT 2-D	Mode A	uto FFT	Ant1 Ho		-1.14 dBn
B Spectrun Ref Level Att SGL Count • 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	and Edg 27.60 dBm 40 dB	ge(Hopp offset 7. swr 18	Ding) N\ 60 dB - RE	/NT 2-D	Mode A	uto FFT	Ant1 Ho		-1.14 dBn
Bi Spectrun Ref Level Att SGL Count I GBM 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	and Edg 27.60 dBm 40 dB	ge(Hopp offset 7. swr 18	Ding) N\ 60 dB - RE	/NT 2-D	Mode A	uto FFT	Ant1 Ho		-1.14 dBn
B: Spectrun Ref Level Att SGL Count • 1Pk Max 20 dBm	and Edg 27.60 dBm 40 dB 1000/1000	ge(Hopp offset 7. swr 18	Ding) N\ 60 dB - RE	/NT 2-D	Mode A	uto FFT	Ant1 Ho	2.477	-1.14 dBn

Band	`	Hoppin	g) NVN	Г 2-DH5 :	2480M	Hz Ant'	I Hoppi	ng Emis	sion
Ref Level			_	BW 100 kHz					
Att SGL Count	40 dB 1000/1000	SWT 2	27.5 µs 🖷 V	' BW 300 kHz	Mode A	uto FFT			
😑 1Pk Max									
20 dBm					M1	[1]			-1.45 dBm
20 UBIII					M2	[1]			05000 GHz 43.97 dBm
10 dBm								2.483	50000 GHz
1 0 dBm									
MAAK									
-10 dBm									
-20 cBm-	D1 -21.143	dBm 							
-30 dBm									

Band Edge NVNT 3-DH5 2402MHz Ant1 No-Hopping Ref

Spectrun	n]								- E
Ref Level	27.62 dBm	Offset 7	7.62 dB 🔵 R	BW 100 kH	z				
Att	40 dB	SWT 22	27.5 µs 👄 ۷	'BW 300 kH	z Mode /	Auto FFT			
SGL Count	: 100/100								
⊖1Pk Max	1					4541			0.10.45
20 dBm					M	1[1]		2 401	-0.19 dBi 185000 GH
20 0011					M	2[1]			-46.25 dBi
10 dBm									00000 GH
0 -10									M1
0 dBm									Å
-10 dBm									+ 0
00 JD									1 11
-20 dBm-	D1 -19.723	dBm-							
-30 dBm									
			M4						
-40 dBm—		o. 18 1 .	11. Anderen	4 porte the two w	- استار ال			M3	M
\ եփեֆրթնելչ ո -50 dBm—	purchander	mallinghalph	hollon a willing	Julia a contragon	NUMPERATION	wayawaya	adher warden	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ungulut h
-60 dBm—									
-70 dBm									
Start 2.30	6 GHz			1001	pts			Ston	2.406 GHz
Marker									
Type Re	ef Trc	X-value		Y-value	Func	tion	Fun	ction Result	t
M1	1	2.4018	85 GHz	-0.19 dB					
M2	1		.4 GHz	-46.25 dB					
M3 M4	1		39 GHz	-46.67 dB					
В			Ding) N\	-40.83 de) 2MHz /	h 🚺	pping R	
B Spectrur Ref Level	and Edg	ge(Hopp offset 7.	Ding) N\	/NT 3-D	0H5 240		Ant1 Ho	pping R	ef
B Spectrum Ref Level Att	and Edg 27.62 dBm 40 dB	ge(Hopp offset 7.	bing) N\	/NT 3-D	0H5 240		Ant1 Ho	pping R	
B Spectrum Ref Level Att	and Edg	ge(Hopp offset 7.	Ding) N\	/NT 3-D	0H5 240		Ant1 Ho	pping R	
B Spectrum Ref Level Att SGL Count	and Edg 27.62 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 3-D	0H5 240 Mode A		Ant1 Ho	pping R	
B Spectrum Ref Level Att SGL Count	and Edg 27.62 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 3-D	0H5 240 Mode A	uto FFT	Ant1 Ho		Ē
B Spectrum Ref Level Att SGL Count • 1Pk Max	and Edg 27.62 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 3-D	0H5 240 Mode A	uto FFT	Ant1 Ho		0.21 dBi
B Spectrum Ref Level Att SGL Count • 1Pk Max	and Edg 27.62 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 3-D	0H5 240 Mode A	uto FFT	Ant1 Ho		0.21 dBi
B Spectrun Ref Level Att SGL Count • 1Pk Max 20 dBm-	and Edg 27.62 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 3-D	0H5 240 Mode A	uto FFT			0.21 dBi
B Spectrun Ref Level Att SGL Count • 1Pk Max 20 dBm-	and Edg 27.62 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 3-D	0H5 240 Mode A	uto FFT	Ant1 Ho		0.21 dBi
B Spectrum Ref Level Att SGL Count SGL Count PIPk Max 20 dBm	and Edg 27.62 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 3-D	0H5 240 Mode A	uto FFT			0.21 dBi
B Spectrum Ref Level Att SGL Count SGL Count 1Pk Max 20 dBm	and Edg 27.62 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 3-D	0H5 240 Mode A	uto FFT			0.21 dBi
B Spectrum Ref Level Att SGL Count SGL Count PIPk Max 20 dBm	and Edg 27.62 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 3-D	0H5 240 Mode A	uto FFT			0.21 dBi
B Spectrum Ref Level Att SGL Count SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm-	and Edg 27.62 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 3-D	0H5 240 Mode A	uto FFT			0.21 dBi
B Spectrum Ref Level Att SGL Count SGL Count 1Pk Max 20 dBm	and Edg 27.62 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 3-D	0H5 240 Mode A	uto FFT			0.21 dBi
B Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	and Edg 27.62 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 3-D	0H5 240 Mode A	uto FFT			0.21 dBi
B Spectrum Ref Level Att SGL Count SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm-	and Edg 27.62 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 3-D	0H5 240 Mode A	uto FFT			0.21 dBi
B Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	and Edg 27.62 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 3-D	0H5 240 Mode A	uto FFT			0.21 dBi
B Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	and Edg 27.62 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 3-D	0H5 240 Mode A	uto FFT			0.21 dBi
B Spectrum Ref Level Att SGL Count 10 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	and Edg 27.62 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 3-D	0H5 240 Mode A	uto FFT			0.21 dBi
B Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	and Edg 27.62 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 3-D	0H5 240 Mode A	uto FFT			0.21 dBi
B Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	and Edg 27.62 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 3-D	0H5 240 Mode A	uto FFT			0.21 dBi
B Spectrum Ref Level Att SGL Count 10 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	and Edg 27.62 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 3-D	0H5 240 Mode A	uto FFT			0.21 dBi
B Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	and Edg 27.62 dBm 40 dB	ge(Hopp offset 7.	Ding) N\	/NT 3-D	0H5 240 Mode A	uto FFT			0.21 dBi

Band Edge(Hopping) NVNT 3-DH5 2402MHz Ant1 Hopping Emission ₽ Spectrum Ref Level 27.62 dBm Offset 7.62 dB 👄 RBW 100 kHz 40 dB SWT 227.5 μs 😑 VBW 300 kHz Mode Auto FFT Att SGL Count 1000/1000 ⊖1Pk Max M1[1] -0.68 dBn 20 dBm· 2.40595000 GHz M2[1] -45.37 dBm 10 dBm 2.4000000 GHz 0 dBm MM -10 dBm -20 dBm D1 -19.788 dBi -30 dBm M4 40 dBm two manuludant Mahm mountinguile ปะสามเหมือ -50 dBm -60 dBm -70 dBm· Stop 2.406 GHz Start 2.306 GHz 1001 pts Marker Y-value -0.68 dBm Function **Function Result** Type Ref Trc X-value 2.40595 GHz M1 1 M2 -45.37 dBm 2.4 GHz 1 ΜЗ 2.39 GHz -44.61 dBm 1 M4 1 2.3503 GHz -41.01 dBm 4,0 Band Edge NVNT 3-DH5 2480MHz Ant1 No-Hopping Ref ඐ Spectrum Ref Level 27.60 dBm Offset 7.60 dB 👄 RBW 100 kHz 40 dB SWT 18.9 µs 💿 VBW 300 kHz Att Mode Auto FFT SGL Count 100/100 ●1Pk Max M1[1] -1.25 dBm 2.47993610 GHz 20 dBm· 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm·

1001 pts

-70 dBm

CF 2.48 GHz

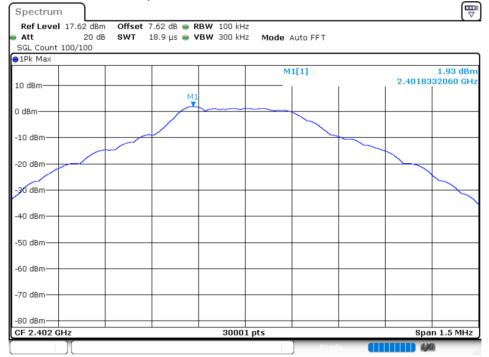
Span 8.0 MHz

Att	27.60 dBm 40 dB			BW 100 kH: BW 300 kH:		Auto FFT			
SGL Count	100/100								
-					м	1[1]			-1.18 dBn
20 dBm					м	2[1])15000 GH -47.26 dBn
10 dBm									350000 GH
0 dgm									
-10 dBm									
00 - 0									
	D1 -21.247	dBm							
-30 dBm									
-40 dBm-	M4	M3	. A. Muldunghow	monthender	the set second set	Louble and set	منبعا بابلاء	wel Maryting	WA LLAN ANA.
-50 dBm	and and a second of the	and the second	drad	· ~~~~	ֈաղջադրայուներ	an a second come	wyww.prower	opose erre	- And - Markened
-60 dBm									
-70 dBm									
Start 2.47	6 GHz		1	1001	pts	1		Stop	1 2.576 GHz
Marker Type Rei	f Tre	X-value	, 1	Y-value	Func	tion	Fue	tion Result	•
M1	1	2.480	15 GHz	-1.18 dB	m		i ull		
M2	1		35 GHz	-47.26 dB -46.97 dB					
M3	1	2							
M4 Ba Spectrum		2.488 ge(Hopp Offset 7.	Ding) N	-43.55 dB /NT 3-D 3W 100 kHz 3W 300 kHz	m 0H5 248		xnt1 Hoj	oping R	ef
M4 Spectrum Ref Level Att SGL Count	and Edg	2.488 ge(Hopp Offset 7.	Ding) N	-43.55 dB /NT 3-D 3W 100 kHz	m 0H5 248		ant1 Hop	oping R	
M4 Ba Spectrum Ref Level Att	and Edg	2.488 ge(Hopp Offset 7.	Ding) N	-43.55 dB /NT 3-D 3W 100 kHz	m 0H5 248 Mode A		ant1 Hop	oping R	
M4 Spectrum Ref Level Att SGL Count	and Edg	2.488 ge(Hopp Offset 7.	Ding) N	-43.55 dB /NT 3-D 3W 100 kHz	m 0H5 248 Mode A	uto FFT	ant1 Hop		
M4 Spectrum Ref Level Att SGL Count 9 1Pk Max 20 dBm	and Edg	2.488 ge(Hopp Offset 7.	81 GHz Ding) N\ 60 dB ● RE	-43.55 dB /NT 3-D 3W 100 kHz	m 0H5 248 Mode A	uto FFT	ant1 Hop		-1.93 dBn
M4 Spectrum Ref Level Att SGL Count • 1Pk Max	and Edg	2.488 ge(Hopp Offset 7.	81 GHz Ding) N\ 60 dB ● RE	-43.55 dB /NT 3-D 3W 100 kHz	m 0H5 248 Mode A	uto FFT	Ant1 Hop		-1.93 dBn
M4 Spectrum Ref Level Att SGL Count 9 1Pk Max 20 dBm	and Edg	2.488 ge(Hopp Offset 7.	Ding) N	-43.55 dB /NT 3-D 3W 100 kHz	m 0H5 248 Mode A	uto FFT	Ant1 Hop		-1.93 dBn
M4 Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm- 10 dBm- 0 dBm-	and Edg	2.488 ge(Hopp Offset 7.	B1 GHz Ding) N\ 60 dB ● RE 3.9 µs ● VI	-43.55 dB /NT 3-D 3W 100 kHz	m 0H5 248 Mode A	uto FFT	Ant1 Hop		-1.93 dBn
M4 Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm- 10 dBm-	and Edg	2.488 ge(Hopp Offset 7.	B1 GHz Ding) N\ 60 dB ● RE 3.9 µs ● VI	-43.55 dB /NT 3-D 3W 100 kHz 3W 300 kHz	m 0H5 248 Mode A	uto FFT	xnt1 Hor		-1.93 dBn
M4 Spectrum Ref Level Att SGL Count O dBm 0 dBm 0 dBm	and Edg	2.488 ge(Hopp Offset 7.	В1 GHz Ding) N\ 60 dB ● RE 3.9 µs ● VI	-43.55 dB /NT 3-D 3W 100 kHz 3W 300 kHz	m 0H5 248 Mode A	uto FFT	Ant1 Hop		-1.93 dBn
M4 Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm	and Edg	2.488 ge(Hopp Offset 7.	В1 GHz Ding) N\ 60 dB ● RE 3.9 µs ● VI	-43.55 dB /NT 3-D 3W 100 kHz 3W 300 kHz	m 0H5 248 Mode A	uto FFT	Ant1 Hop		-1.93 dBn
M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm	and Edg	2.488 ge(Hopp Offset 7.	В1 GHz Ding) N\ 60 dB ● RE 3.9 µs ● VI	-43.55 dB /NT 3-D 3W 100 kHz 3W 300 kHz	m 0H5 248 Mode A	uto FFT	Ant1 Hop		-1.93 dBn
M4 Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm	and Edg	2.488 ge(Hopp Offset 7.	В1 GHz Ding) N\ 60 dB ● RE 3.9 µs ● VI	-43.55 dB /NT 3-D 3W 100 kHz 3W 300 kHz	m 0H5 248 Mode A	uto FFT	xnt1 Hor		-1.93 dBn
M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	and Edg	2.488 ge(Hopp Offset 7.	В1 GHz Ding) N\ 60 dB ● RE 3.9 µs ● VI	-43.55 dB /NT 3-D 3W 100 kHz 3W 300 kHz	m 0H5 248 Mode A	uto FFT	Ant1 Hop		-1.93 dBn
M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	and Edg	2.488 ge(Hopp Offset 7.	В1 GHz Ding) N\ 60 dB ● RE 3.9 µs ● VI	-43.55 dB /NT 3-D 3W 100 kHz 3W 300 kHz	m 0H5 248 Mode A	uto FFT	Ant1 Hop		-1.93 dBn
M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm	and Edg	2.488 ge(Hopp Offset 7.	В1 GHz Ding) N\ 60 dB ● RE 3.9 µs ● VI	-43.55 dB /NT 3-D 3W 100 kHz 3W 300 kHz	m 0H5 248 Mode A	uto FFT			-1.93 dBn
M4 Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	and Edg	2.488 ge(Hopp Offset 7.	В1 GHz Ding) N\ 60 dB ● RE 3.9 µs ● VI	-43.55 dB /NT 3-D 3W 100 kHz 3W 300 kHz	m 0H5 248 Mode A	uto FFT			-1.93 dBn
M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm	1 and Edg 27.60 dBm 40 dB 1000/1000	2.488 ge(Hopp Offset 7.	В1 GHz Ding) N\ 60 dB ● RE 3.9 µs ● VI	-43.55 dB /NT 3-D 3W 100 kHz 3W 300 kHz	Mode A	uto FFT		2.476	-1.93 dBn

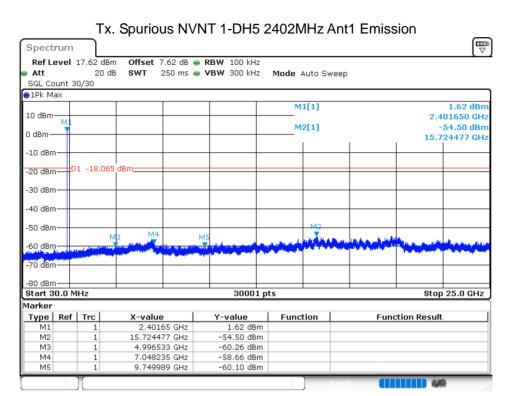
Band Edge(Hopping) NVNT 3-DH5 2480MHz Ant1 Hopping Emission

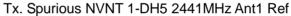
20 dBm 2.47895000 10 dBm M2[1] 2.48350000 0 dBm 0 dBm 0 dBm -20 cBm -20 cBm 0 1 -21.928 dBm -30 dBm -40 dBm ² -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm <th>Spectrun</th> <th>n</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Spectrun	n								
SGL Count 1000/1000 M1[1] -1.38 d 20 dBm 2.47895000 2.47895000 10 dBm 2.48350000 M2[1] -43.91 d 10 dBm 2.48350000 2.48350000 M1[1] -43.91 d 10 dBm 2.48350000 100 d 100 d 100 d 100 d -10 dBm -10 dBm -10 d -10 d 100 d 10 d 10 d </td <td>Ref Level</td> <td>27.60 di</td> <td>Bm Offset</td> <td>7.60 dB 🧉</td> <td>• RBW 100 kHz</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Ref Level	27.60 di	Bm Offset	7.60 dB 🧉	• RBW 100 kHz					
• 1Pk Max • 11k Max 20 dBm • 11 (1) • 1.38 d 20 dBm • 11 (1) • 1.38 d 10 dBm • 12 (1) • 43.91 d 0 dBm • 12 (1) • 43.91 d 0 dBm • 10 (2) • 10 (2) • 10 (2) • 10 (2) • 10 (2) • 20 (2) • 10 (2) • 10 (2) • 20 (2) • 10 (2) • 10 (2) • 20 (2) • 10 (2) • 10 (2) • 20 (2) • 10 (2) • 10 (2) • 20 (2) • 10 (2) • 10 (2) • 10 (2) • 10 (2) • 10 (2) • 10 (2) • 10 (2) • 10 (2) • 50 (2) • 10 (2) • 10 (2) • 50 (2) • 10 (2) • 10 (2) • 10 (2) • 10 (2) • 10 (2) • 10 (2) • 10 (2) • 10 (2) • 10 (2) • 10 (2) • 10 (2) • 10 (2) • 10 (2) • 10 (2) • 10 (2) • 10 (2) • 10 (2) • 10 (2)	Att	40	dB SWT 2	227.5 µs 🧉	• VBW 300 kHz	Mode .	Auto FF	т		
20 dBm	SGL Count	1000/10	100							
20 dBm 2.47895000 10 dBm M2[1] 2.48350000 M1 2.48350000 0 dBm 2.48350000 40 dBm/2 40 dBm/2 -40 dBm/2 M42 -50 dBm 40 dBm/2 -70 dBm 40 dBm/2 <t< td=""><td>⊖1Pk Max</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	⊖1Pk Max									
10 dBm M2[1] -43.91 d 0 dBm 2.48350000 d 0 dBm 0 -10 dBm 0 -20 dBm 0 -20 dBm 0 -30 dBm 0 -50 dBm 0 -60 dBm 0 -70 dBm<						M	1[1]			-1.38 dBm
10 dBm 2.48350000 d 0 dBm 2.48350000 d -10 dBm 2.48350000 d -20 dBm 01 -21.928 dBm -30 dBm -20 dBm -40 dBm ¹² Mfa -50 dBm -20 dBm -30 dBm -20 dBm -50 dBm -20 dBm -50 dBm -20 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	20 dBm								2.47	
M1 0.dem 0.dem 10 cBm 0.dem 0.dem -20 cBm D1 -21.928 dBm 0.dem -30 cBm 0.dem 0.dem -40 dBm ¹² M42 0.dem -50 dBm 0.dem 0.dem -60 dBm 0.dem 0.dem -70 dBm 0.dem 0.dem Start 2.476 GHz 1001 pts Stop 2.576 G Marker Type Ref Trc	10.10					M	2[1]			-43.91 dBm
0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -60 dBm -70 d									2.48	3350000 GHz
-20 cBm D1 -21.928 dBm -30 dBm -30 dBm -40 dBm ¹² -40 dBm ¹² -50 dBm -40 dBm ¹² -70 dBm -40 dBm ¹² <td></td>										
-10 dBm -20 dBm 01 -21.928 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -40 dBm ¹² -40 dBm ¹² -40 dBm ¹² -50 dBm -30 dBm -30 dBm -50 dBm -30 dBm -30 dBm -50 dBm -30 dBm -30 dBm -60 dBm -30 dBm -30 dBm -70 dBm <										
-30 dBm -40 dBm -50 dBm -50 dBm -70							<u> </u>			
-30 dBm -40 dBm -50 dBm -50 dBm -70										
-30 dBm -40 dBm ¹² M45 -50 dBm -50 dBm -60 dBm -70	-20 dBm	D1 -21.9	928 dBm							
-40 Bm ¹² Mto Image: Start 2.476 GHz Mto Image: Start 2.476 GHz Storp 2.576 G Marker Type Ref Trc X-value Y-value Function Function Function Result										
-50 dBm -60 dBm -70 dBm -70 dBm Start 2.476 GHz Type Ref Trc X-value Y-value Function Function Result	-30 dBm									
-50 dBm -60 dBm -70	-40 dBM2		Mda							
-50 dBm -60 dBm -70 dBm -70 dBm Start 2.476 GHz Type Ref Trc X-value Y-value Function Function Result	- Unit do	under	hurren and realised	walder	Nursey under station pe	mouthersauge	murt	munn	polandarm Wellarge	we have been and
-70 dBm Start 2.476 GHz 1001 pts Stop 2.576 G Marker Type Ref Trc X-value Y-value Function Function Result			-							
-70 dBm Start 2.476 GHz 1001 pts Stop 2.576 G Marker Type Ref Trc X-value Y-value Function Function Result										
Start 2.476 GHz 1001 pts Stop 2.576 G Marker	-60 dBm									
Start 2.476 GHz 1001 pts Stop 2.576 G Marker										
Marker Type Ref Trc X-value Y-value Function Function Result					1001					- 0.536.011-
Type Ref Trc X-value Y-value Function Function Result		6 GHZ			1001	ns			sto	0 2.576 GHZ
		<u> </u>				1 -				
							tion	l	-unction Resu	llt
M1 1 2.47895 GHZ -1.38 dBm M2 1 2.4835 GHz -43.91 dBm		1								
M2 1 2.4835 GHZ -43.91 dBm M3 1 2.5 GHz -44.16 dBm										
M4 1 2.4991 GHz -42.33 dBm		_								
			E. 1.		.2100 001	• 1	_	1		

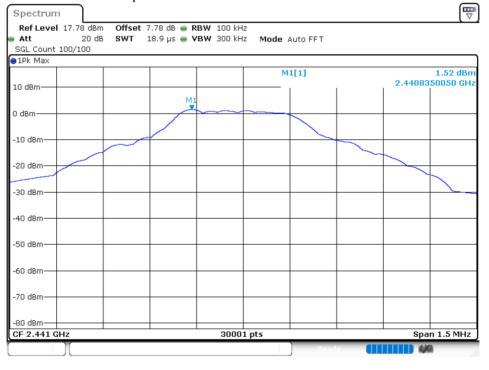
Report No.: STR190909001002E

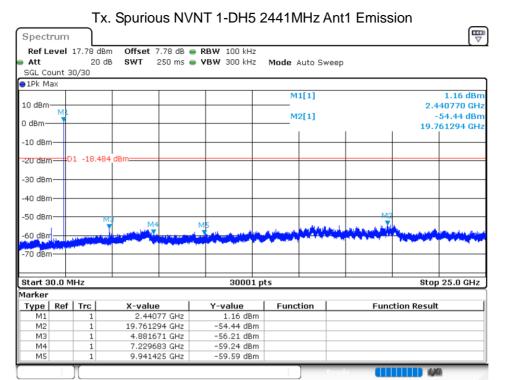

8.7 CONDUCTED RF SPURIOUS EMISSION

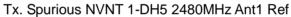
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-56.43	-20	Pass
NVNT	1-DH5	2441	Ant 1	-55.96	-20	Pass
NVNT	1-DH5	2480	Ant 1	-46.68	-20	Pass
NVNT	2-DH5	2402	Ant 1	-53.74	-20	Pass
NVNT	2-DH5	2441	Ant 1	-53.54	-20	Pass
NVNT	2-DH5	2480	Ant 1	-53.08	-20	Pass
NVNT	3-DH5	2402	Ant 1	-47.29	-20	Pass
NVNT	3-DH5	2441	Ant 1	-49.77	-20	Pass
NVNT	3-DH5	2480	Ant 1	-52.13	-20	Pass

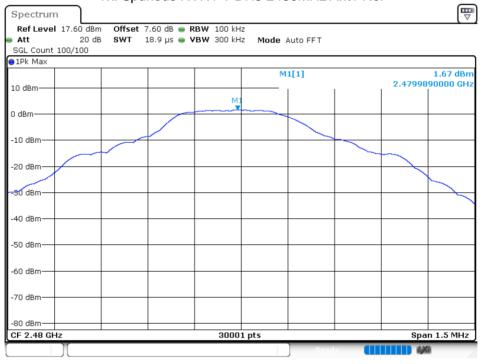

ACCREDITED

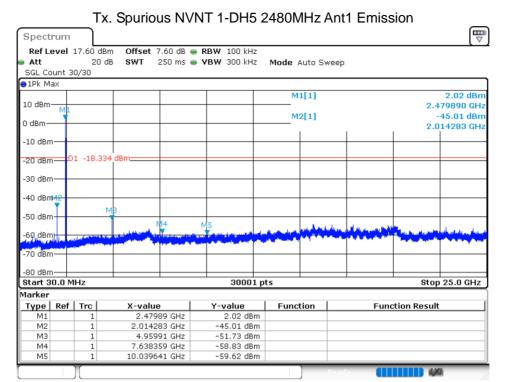

Certificate #4298.01

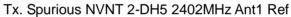

Tx. Spurious NVNT 1-DH5 2402MHz Ant1

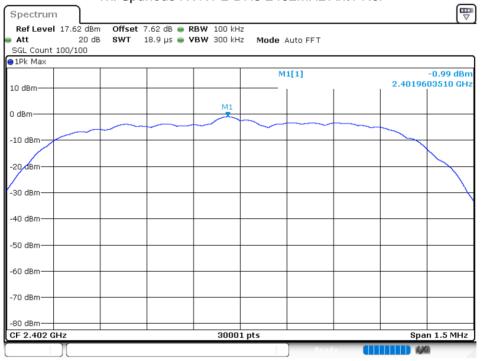




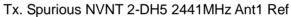


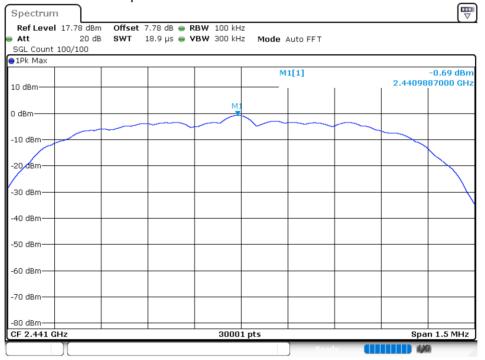


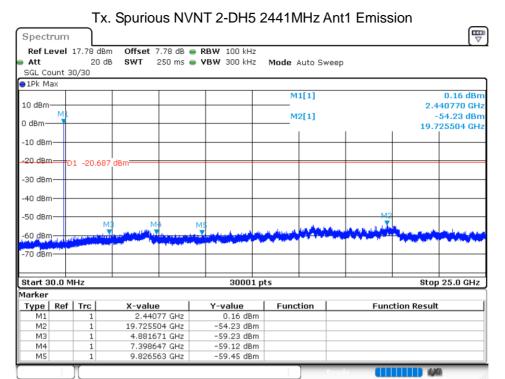


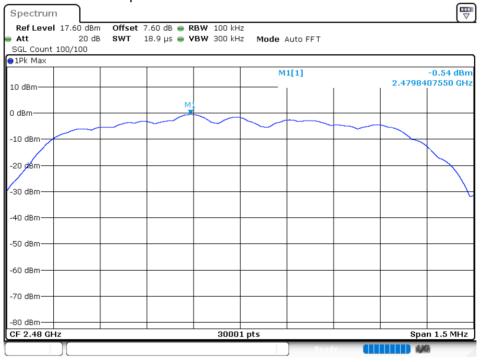


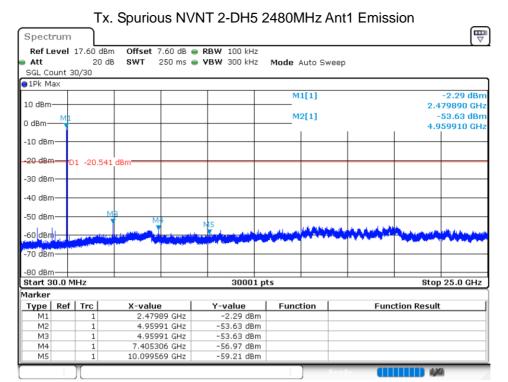


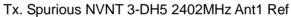


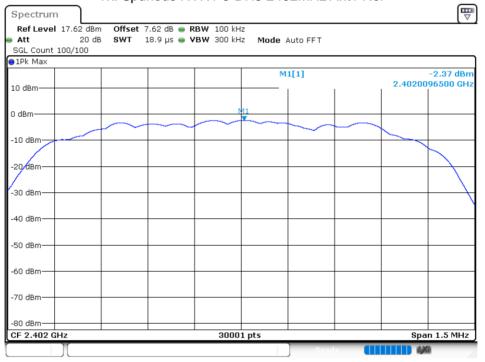


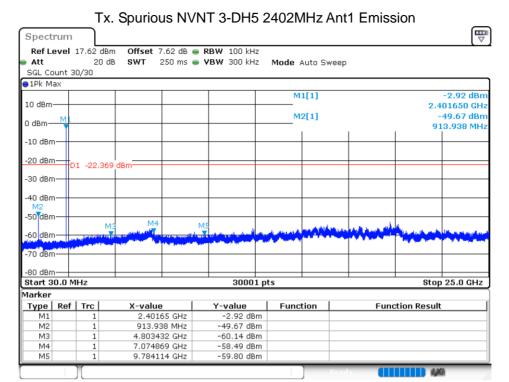


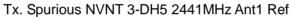


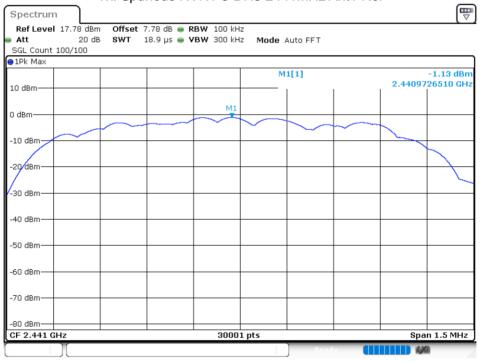


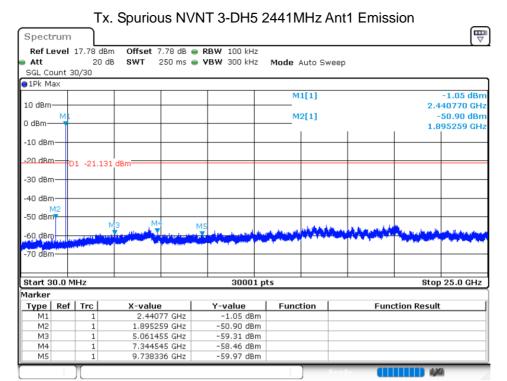


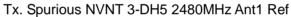


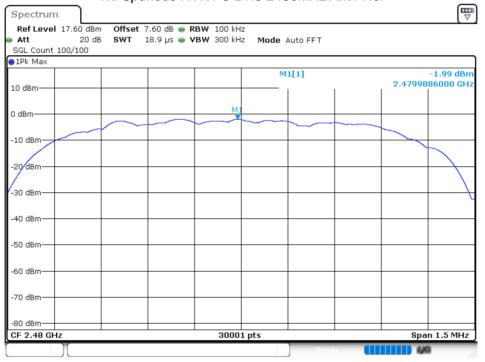


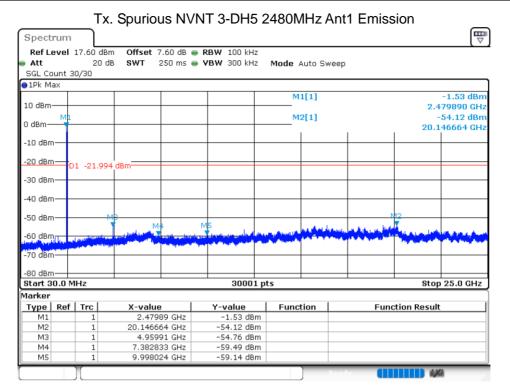












END OF REPORT