

SAR TEST REPORT

Equipment Under Test	: Chatter Box
Model No.	: X1 Slim
Applicant	: Vigor Sports, Inc.
Address of Applicant	: 16918 Edwards Road Cerritos, CA 90703, USA
FCC ID	: ZSFX1SLIM
Device Category	: Portable Device
Exposure Category	: Occupational/Controlled Exposure
Date of Receipt	: 2011-09-14
Date of Test(s)	: 2011-09-15~ 2011-09-16
Date of Issue	: 2011-12-06
Max. SAR	: 0.780 W/kg (Head), 0.867W/kg (Body)

Standards:

**FCC OET Bulletin 65 supplement C
IEEE 1528, 2003
ANSI/IEEE C95.1, C95.3**

In the configuration tested, the EUT complied with the standards specified above.

Remarks:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Testing Korea Co., Ltd. or testing done by SGS Testing Korea Co., Ltd. in connection with distribution or use of the product described in this report must be approved by SGS Testing Korea Co., Ltd. in writing.

Tested by	: Fred Jeong		2011-12-06
Approved by	: Charles Kim		2011-12-06

Contents

1. General Information

1.1	Testing Laboratory.....	3
1.2	Details of Applicant.....	3
1.3	Version of Report.....	3
1.4	Description of EUT(s).....	3
1.5	Test Environment.....	4
1.6	Operation description.....	4
1.7	Evaluation procedures.....	5
1.8	The SAR Measurement System.....	6
1.9	System Components.....	8
1.10	SAR System Verification.....	9
1.11	Tissue Simulant Fluid for the Frequency Band.....	11
1.12	Test Standards and Limits.....	12

2. Instruments List.....	14
---------------------------------	----

3. Summary of Results.....	15
-----------------------------------	----

APPENDIX

A. DASY4 SAR Report
B. Uncertainty Analysis
C. Calibration certificate

1. General Information

1.1 Testing Laboratory

SGS Korea Co., Ltd.
Wireless Div. 2FL, 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea 435-040
Telephone : +82 +31 428 5700
FAX : +82 +31 427 2371
Homepage : www.ee.sgs.com/Korea

1.2 Details of Applicant

Manufacturer	: Vigor Sports, Inc.
Address	: 16918 Edwards Road Cerritos, CA 90703, USA
Contact Person	: Mike Lee
Phone No.	: +1 +562 407 2184(x311)
Fax No.	: +1 +213 949 4190
E-mail	: mikev@vsiproducts.com

1.3 Version of Report

Version Number	Date	Revision
00	2011-09-23	Initial issue
01	2011-12-06	Revision 01

1.4 Description of EUT(s)

EUT Type	: Chatter Box
Model	: X1 Slim
Serial Number	: N/A
Mode of Operation	: GMRS, FRS
Body worn Accessory	: Helmet Clip
Tx Frequency Range	: GMRS (462.5750 MHz ~ 462.7250 MHz) FRS (462.5625 MHz ~ 467.7125 MHz)
Antenna	: Fixed Type
Max. Conducted RF Power	: GMRS (462.6250 MHz : 0.86 W) FRS (467.5625 MHz : 0.29 W)
Battery Type	: DC 3.7V (Li-ion Battery)

1.5 Test Environment

Ambient temperature	: (22 \pm 2) °C
Tissue Simulating Liquid	: (22 \pm 2) °C
Relative Humidity	: (55 \pm 5) % R.H.

1.6 Operation Configuration

Reference Positions for Handheld Radio Transmitters

In general handheld radio transmitters like GMRS/FRS/LMR devices are used in held to face position or with a speaker/microphone combination as body-worn configuration.

Held to face position

For held to face position the flat section of a SAM Phantom or a flat phantom is used. The center of the radiating structure is to set on the middle position of the flat phantom. The distance between sample and flat phantom is 1.5 cm.

For the measurement head tissue simulating liquid is used.

Belt Clip/Holster Configuration

Test configurations for body-worn operated EUTs are carried out while the belt-clip and/or holster is attached to the EUT and placed against a flat phantom in a regular configuration. An EUT with a headset output is tested with a headset connected to the device.

Body dielectric parameters are used.

There are two categories for accessories for body-worn operation configurations:

1. accessories not containing metallic components
2. accessories containing metallic components.

When the EUT is equipped with accessories not containing metallic components the tests are done with the accessory that dictates the closest spacing to the body. For accessories containing metallic parts a test with each one is implemented. If the multiple accessories share an identical metallic component (e.g. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that has the closest spacing to the body is tested.

In case that a EUT authorized to be body-worn is not supplied or has no options to be operated with any accessories, a test configuration where a separation distance between the back of the device and the flat phantom is used. All test position spacings are documented.

Transmitters operating in front of a person's face (e.g. push-to-talk configurations) are tested for SAR compliance with the front of the device positioned to face the flat platform. SAR Compliance tests for shoulder, waist or chest-worn transmitters are carried out with the accessories including headsets and microphones attached to the device and placed against a flat phantom in a regular configuration.

The SAR measurements are performed to investigate the worst-case positioning. This is documented and used to perform Body SAR testing. [2]. Body tissue simulating liquid is used.

1.7 EVALUATION PROCEDURES

- Power Reference Measurement Procedures

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 4 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 2.7 mm for an ET3DV6 probe type).

- The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

1. The extraction of the measured data (grid and values) from the Zoom Scan.
2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
3. The generation of a high-resolution mesh within the measured volume
4. The interpolation of all measured values from the measurement grid to the high-resolution grid
5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
6. The calculation of the averaged SAR within masses of 1g and 10g.

The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extreme of the SAR distribution. The uncertainty on the locations of the extreme is less than 1/20 of the grid size. Only local maximum within -2 dB of the global maximum are searched and passed for the Cube Scan measurement. In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5mm.

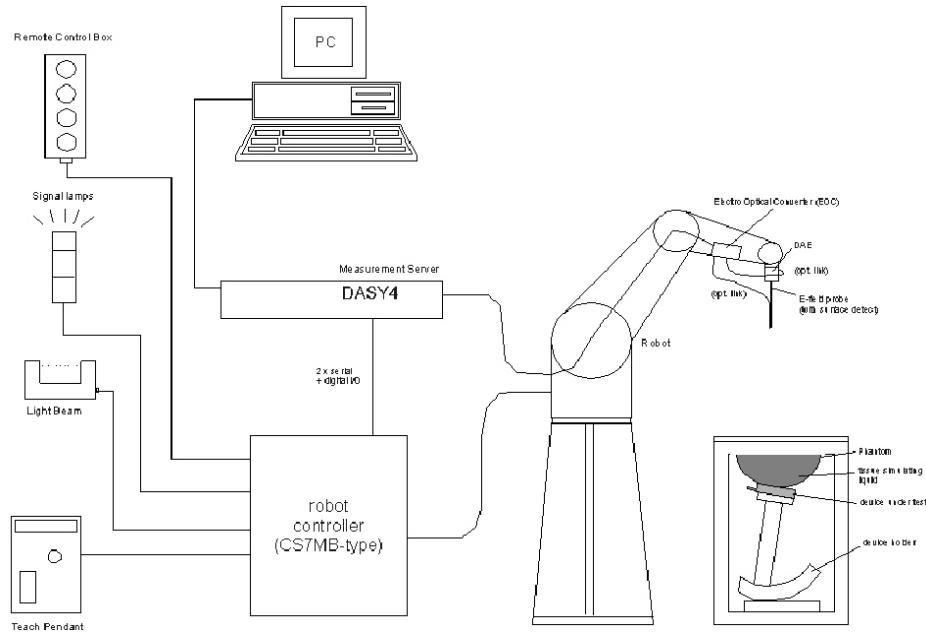
The maximum search is automatically performed after each area scan measurement. It is based on splines in

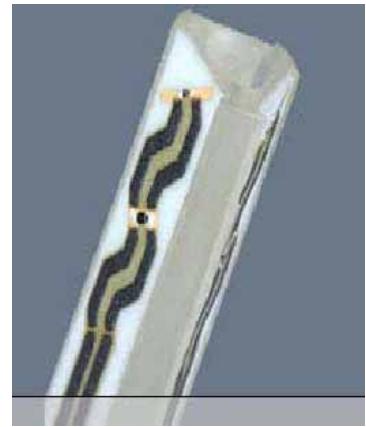
two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1g and 10g peak evaluations are only available for the predefined cube 7x7x7 scans. The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 30x30x30mm contains about 30g of tissue. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume. In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is moved around until the highest averaged SAR is found. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

1.8 The SAR Measurement System

A photograph of the SAR measurement System is given in Fig. a. This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (Speag Dasy 4 professional system). A Model ET3DV6 1782 E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation $SAR = \sigma (|E_i|^2) / \rho$ where σ and ρ are the conductivity and mass density of the tissue-simulant. The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Staubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimeter probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.




Fig a. The microwave circuit arrangement used for SAR system verification

- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

1.9 System Components

ET3DV6 E-Field Probe

Construction	: Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g. glycol).
Calibration	: In air from 10 MHz to 2.5 GHz In brain simulating tissue (accuracy $\pm 8\%$)
Frequency	: 10 MHz to >6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz)
Directivity	: ± 0.2 dB in brain tissue (rotation around probe axis) ± 0.4 dB in brain tissue (rotation normal to probe axis)
Dynamic Range	: 5 μ W/g to >100 mW/g; Linearity: ± 0.2 dB
Srfce. Detect	: ± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces
Dimensions	: Overall length: 330 mm Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm
Application	: General dosimetry up to 3 GHz Compliance tests of mobile phone

ET3DV6 E-Field Probe

NOTE:

1. The Probe parameters have been calibrated by the SPEAG. Please reference "APPENDIX C" for the Calibration Certification Report.

SAM Phantom

Construction:

The SAM Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot

Shell Thickness:

2.0 ± 0.1 mm

Filling Volume:

Approx. 25 liters

SAM Phantom

DEVICE HOLDER

Construction

In combination with the Twin SAM PhantomV4.0/V4.0C or Twin SAM, the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device Holder

1.10 SAR System Verification

The microwave circuit arrangement for system verification is sketched in Fig. b. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within $\pm 10\%$ from the target SAR values. This test was done at 450 MHz. The test for EUT was conducted within 24 hours after each validation. The obtained result from the system accuracy verification is displayed in the table 1 (SAR values are normalized to 1W forward power delivered to the dipole). During the test, the ambient temperature of the laboratory was in the range $(22 \pm 2)^\circ\text{C}$, the relative humidity was in the range $(55 \pm 5)\%$ R.H. and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the result is within acceptable tolerance of the reference value.

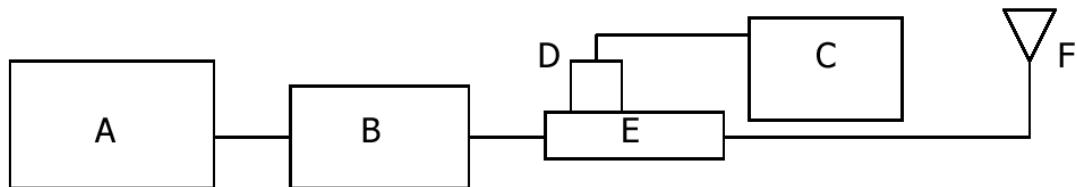


Fig b. The microwave circuit arrangement used for SAR system verification

- A. Agilent Model E4421B Signal Generator
- B. EMPOWER Model 2001-BBS3Q7ECK Amplifier
- C. Agilent Model E4419B Power Meter
- D. Agilent Model 9300H Power Sensor
- E. Agilent Model 777D/778D Dual directional coupling
- F. Reference dipole Antenna

Photo of the dipole Antenna

System Validation Results

Validation Kit	Tissue	Target SAR 1g from Calibration Certificate (398 mW)	Measured SAR 1 g (398 mW)	Deviation (%)	Date	Liquid Temp. (°C)
D450V2 S/N: 1015	450 MHz Head	1.95 mW/g	1.92 mW/g	-1.54	2011-09-16	22.1
D450V2 S/N: 1015	450 MHz Body	1.89 mW/g	1.90 mW/g	0.53	2011-09-15	22.1

Table 1. Results system validation

1.11 Tissue Simulant Fluid for the Frequency Band

The dielectric properties for this simulant fluid were measured by using the Agilent Model 85070D Dielectric Probe (rates frequency band 200 MHz to 20 GHz) in conjunction with Agilent E5070B Network Analyzer(300 KHz-3000 MHz) by using a procedure detailed in Section V.

f (MHz)	Tissue type	Limits / Measured	Dielectric Parameters		
			Permittivity	Conductivity	Simulated Tissue Temp()
450	Head	Measured, 2011-09-16	44.9	0.83	22.1
		Recommended Limits	43.5	0.87	21.0 ~ 23.0
		Deviation(%)	3.22	-4.60	-
	Body	Measured, 2011-09-15	55.6	0.95	22.1
		Recommended Limits	56.7	0.94	21.0 ~ 23.0
		Deviation(%)	-1.94	1.06	-

The composition of the brain tissue simulating liquid

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients (% by weight)	Frequency (MHz)									
	450		835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.5	56.7	41.5	55.2	42.0	56.8	40.0	53.3	39.2	52.7
Conductivity (S/m)	0.87	0.94	0.90	0.97	1.0	1.07	1.40	1.52	1.80	1.95

Salt: 99⁺% Pure Sodium Chloride

Sugar: 98⁺% Pure Sucrose

Water: De-ionized, 16 MΩ⁺ resistivity

HEC: Hydroxyethyl Cellulose

DGBE: 99⁺% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

1.12 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (“SAR”) in Section 4.2 of “IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz,” ANSI/IEEE C95.3–2003, Copyright 2003 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in “Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields,” NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter. Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

(1) Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over an 10 grams of tissue (defined as a tissue volume in the shape of a cube). Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.

(2) Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not exercise control over their exposure. Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section.(Table .4)

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Partial Peak SAR (Partial)	1.60 m W/g	8.00 m W/g
Partial Average SAR (Whole Body)	0.08 m W/g	0.40 m W/g
Partial Peak SAR (Hands/Feet/Ankle/Wrist)	4.00 m W/g	20.00 m W/g

Table .4 RF exposure limits

2. Instruments List

Manufacturer	Device	Type	Serial Number	Due date of Calibration
Stäubli	Robot	RX90BL	F03/5W05A1/A/01	N/A
Schmid& Partner Engineering AG	Dosimetric E-Field Probe	ET3DV6	1782	April 13, 2012
Schmid& Partner Engineering AG	450 MHz System Validation Dipole	D450V2	1015	August 21, 2013
Schmid& Partner Engineering AG	Data acquisition Electronics	DAE3	567	January 26, 2012
Schmid& Partner Engineering AG	Software	DASY 4 V4.7	-	N/A
Schmid& Partner Engineering AG	Phantom	SAM Phantom V4.0	TP-1645 TP-1300	N/A
Agilent	Network Analyzer	E5070B	MY42100282	March 30, 2012
Agilent	Dielectric Probe Kit	85070D	2184	N/A
Agilent	Power Meter	E4419B	GB43311125	July 03, 2012
Agilent	Power Sensor	E9300H	MY41495307	September 29, 2012
			MY41495308	September 29, 2012
Agilent	Signal Generator	E4421B	MY43350132	July 03, 2012
Empower RF Systems	Power Amplifier	2001-BBS3Q7ECK	1032 D/C 0336	March 30, 2012
Agilent	Dual Directional Coupler	778D	50454	July 06, 2012
Microlab	LP Filter	LA-07N	N/A	October 01, 2012

3. Summary of Results

* Conducted Power Table

Mode	Power Level (W)	Channel	Frequency(MHz)	Output Power(W)
FRS	0.5	1	462.5625	0.23
		2	462.5875	0.23
		3	462.6125	0.22
		4	462.6375	0.21
		5	462.6625	0.21
		6	462.6875	0.21
		7	462.7125	0.23
GMRS	2.0	8	462.5750	0.66
		9	462.6250	0.86
		10	462.6250	0.79
		11	462.5500	0.75
		12	462.6000	0.76
		13	462.6500	0.77
		14	462.7000	0.78
		15	462.7250	0.70
FRS	0.5	16	467.5625	0.29
		17	467.5875	0.29
		18	467.6125	0.29
		19	467.6375	0.26
		20	467.6625	0.27
		21	467.6875	0.21
		22	467.7125	0.22

Ambient Temperature (°C)	22 ± 2
Liquid Temperature (°C)	22 ± 2
Date	2011-09-15 ~ 2011-09-16

Head & Body SAR

Mode	Position	EUT Side	Distance from Phantom (cm)	Traffic Channel		Power Drift (dB)	1g SAR (100 % Duty Cycle)	1 g SAR Limits (W/kg)
				Frequency (MHz)	Channel			
GMRS (2W)	Head	Face Up	1.5	462.575	8	-0.120	0.628	1.6
				462.550	11	-0.028	0.761	
				462.725	15	-0.129	0.780	
	Body	Face Down	0 (Helmet clip)	462.575	8	-0.195	0.867	
				462.550	11	0.130	0.828	
				462.725	15	0.036	0.841	
FRS (0.5W)	Head	Face Up	1.5	462.563	1	-0.166	0.364	1.6
				467.563	16	0.119	0.335	
				462.712	22	-0.084	0.384	
	Body	Face Down	0 (Helmet Clip)	462.563	1	0.126	0.436	
				467.563	16	0.102	0.438	
				462.712	22	0.061	0.474	

* The EUT is fitted with helmet clip accessory and placed directly against a phantom (no gap) in case of Face Down side.

* The EUT was tested in Low, Middle and High channel at each mode as the general case. Please refer to the above conducted power table for verifying the channels.

* This test was conducted in reference to KDB447498 D01 and KDB643646 D01.

* Even if the measured SAR value was low, Low, Middle and High channels were tested at both modes for a reference.

Appendix

List

Appendix A	DASY4 Report (Plots of the SAR Measurements)	- 450 MHz Validation Test - Head/Body Test
Appendix B	Uncertainty Analysis	
Appendix C	Calibration Certificate	- PROBE - DAE3 - DIPOLE

Appendix A

Test Plot - DASY4 Report

450 MHz Head Validation Test

Date: 2011-09-16

Test Laboratory: SGS Korea (Guppo Laboratory)
File Name: [Validation450Mhz_Head.da4](#)

Input Power : 398 mW

DUT: Dipole 450 MHz; Type: D450V2; Serial: D450V2 - SN:1015

Program Name: Validation_450MHz

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

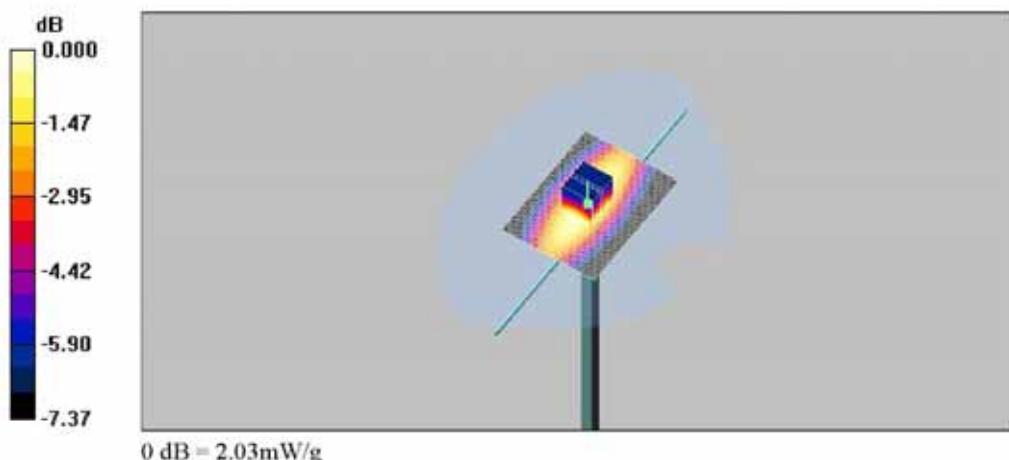
Medium parameters used: $f = 450$ MHz; $\sigma = 0.827$ mho/m; $\epsilon_r = 44.9$; $\rho = 1000$ kg/m³

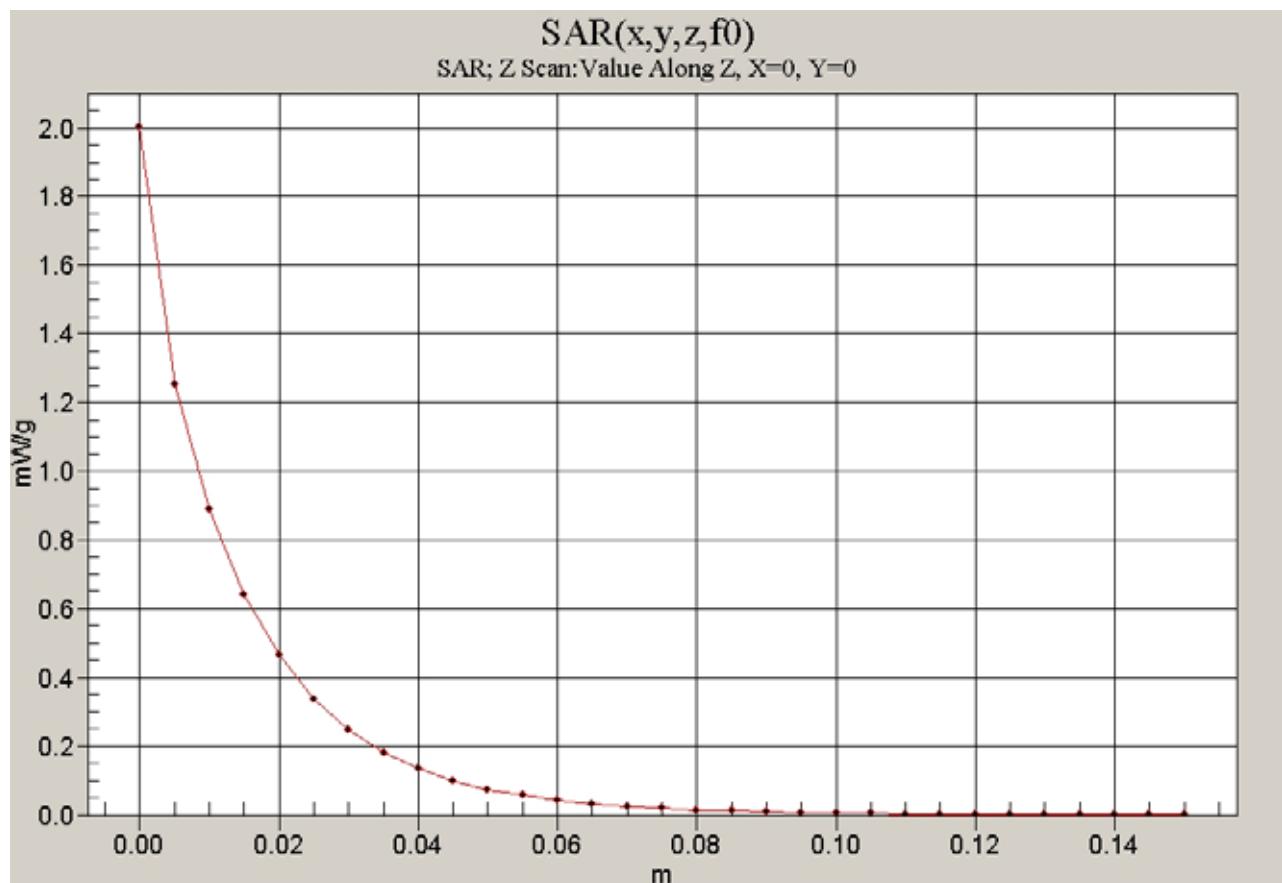
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(6.89, 6.89, 6.89); Calibrated: 2011-04-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_Right; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Validation_450MHz/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 2.00 mW/g


Validation_450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 49.5 V/m; Power Drift = 0.058 dB

Peak SAR (extrapolated) = 2.93 W/kg

SAR(1 g) = 1.92 mW/g; SAR(10 g) = 1.35 mW/g

Maximum value of SAR (measured) = 2.03 mW/g

Z Scan

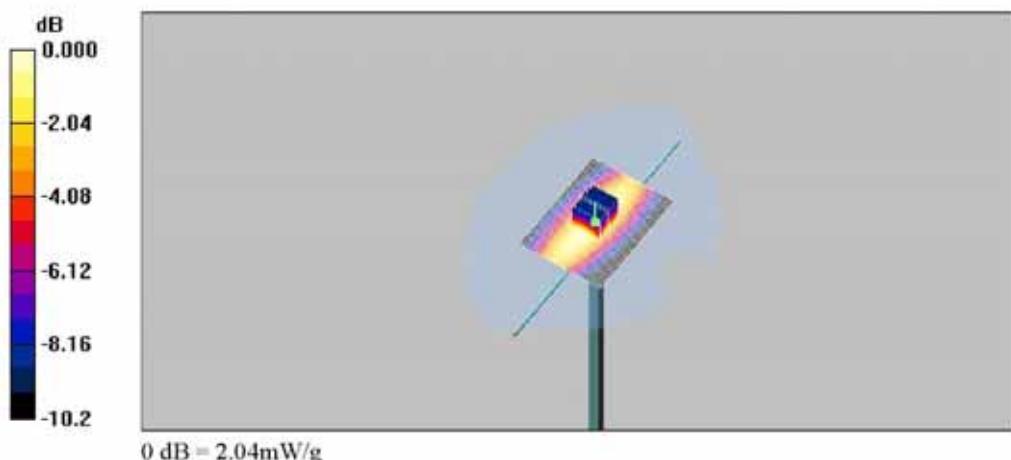
450 MHz Body Validation Test

Date: 2011-09-15

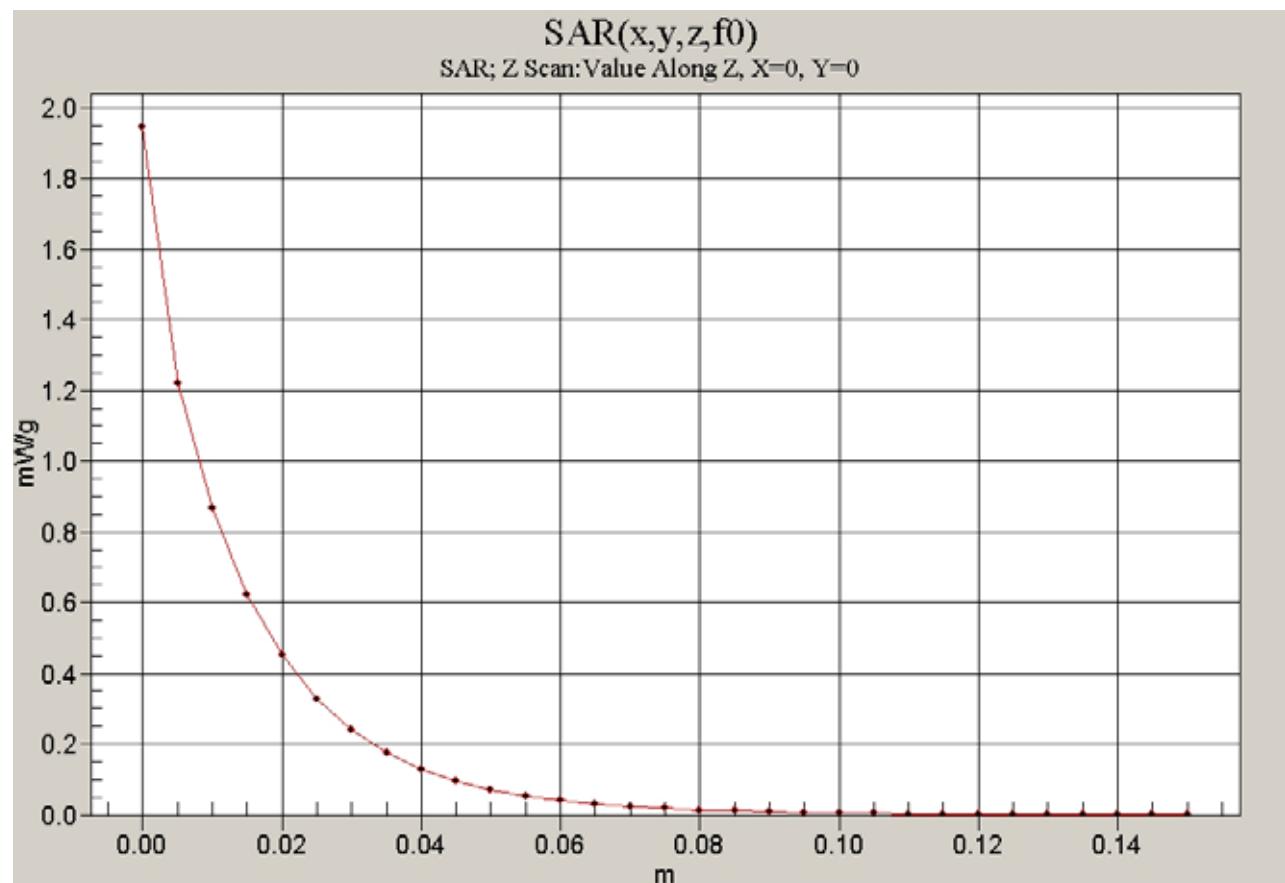
Test Laboratory: SGS Korea (Guppo Laboratory)
File Name: Validation450Mhz_Body.da4

Input Power : 398 mW

DUT: Dipole 450 MHz; Type: D450V2; Serial: D450V2 - SN:1015
Program Name: Validation_450MHz


Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 450$ MHz; $\sigma = 0.953$ mho/m; $\epsilon_r = 55.6$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

DASY4 Configuration:


- Probe: ET3DV6 - SN1782; ConvF(7.49, 7.49, 7.49); Calibrated: 2011-04-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_Right; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Validation_450MHz/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 2.00 mW/g

Validation_450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 46.4 V/m; Power Drift = -0.075 dB
Peak SAR (extrapolated) = 3.32 W/kg
SAR(1 g) = 1.9 mW/g; SAR(10 g) = 1.2 mW/g
Maximum value of SAR (measured) = 2.04 mW/g

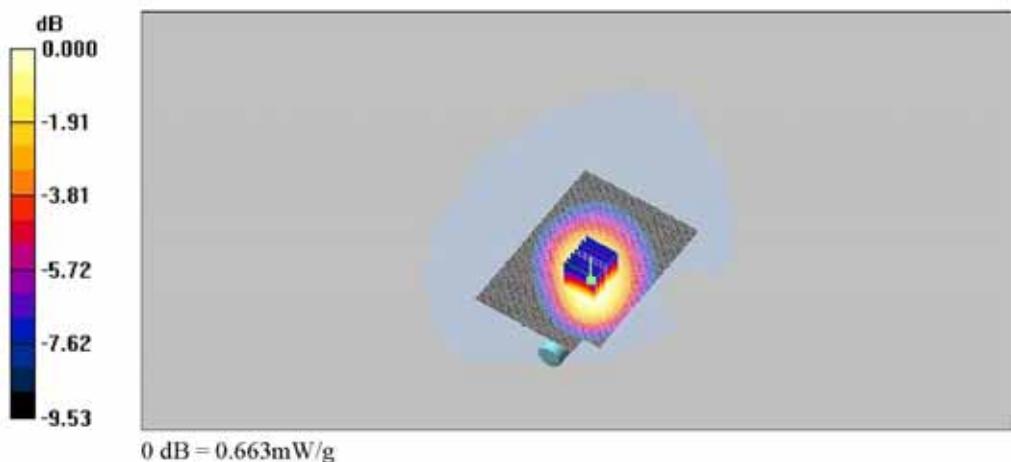
Z Scan

SAR Test Plot

Date: 2011-09-16

Test Laboratory: SGS Korea (Guppo Laboratory)
File Name: [450Mhz_Head\(GMRS\).da4](#)

DUT: X1 Slim_Front; Type: Chatter Box; Serial: N/A
Program Name: Head


Communication System: Handheld Transceiver; Frequency: 462.575 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 462.575$ MHz; $\sigma = 0.838$ mho/m; $\epsilon_r = 44.7$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(6.89, 6.89, 6.89); Calibrated: 2011-04-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_Right; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

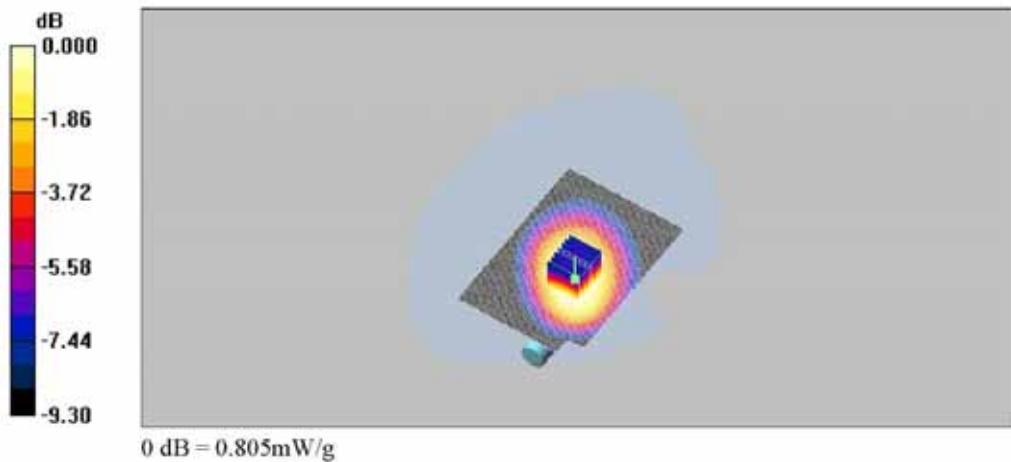
Head_Front_Ch.8_15 mm gap/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.720 mW/g

Head_Front_Ch.8_15 mm gap/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 20.4 V/m; Power Drift = -0.120 dB
Peak SAR (extrapolated) = 0.910 W/kg
SAR(1 g) = 0.628 mW/g; SAR(10 g) = 0.439 mW/g
Maximum value of SAR (measured) = 0.663 mW/g

Date: 2011-09-16

Test Laboratory: SGS Korea (Guppo Laboratory)
File Name: [450Mhz_Head\(GMRS\).da4](#)

DUT: X1 Slim_Front; Type: Chatter Box; Serial: N/A
Program Name: Head


Communication System: Handheld Transceiver; Frequency: 462.55 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 462.55$ MHz; $\sigma = 0.838$ mho/m; $\epsilon_r = 44.7$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(6.89, 6.89, 6.89); Calibrated: 2011-04-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_Right; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

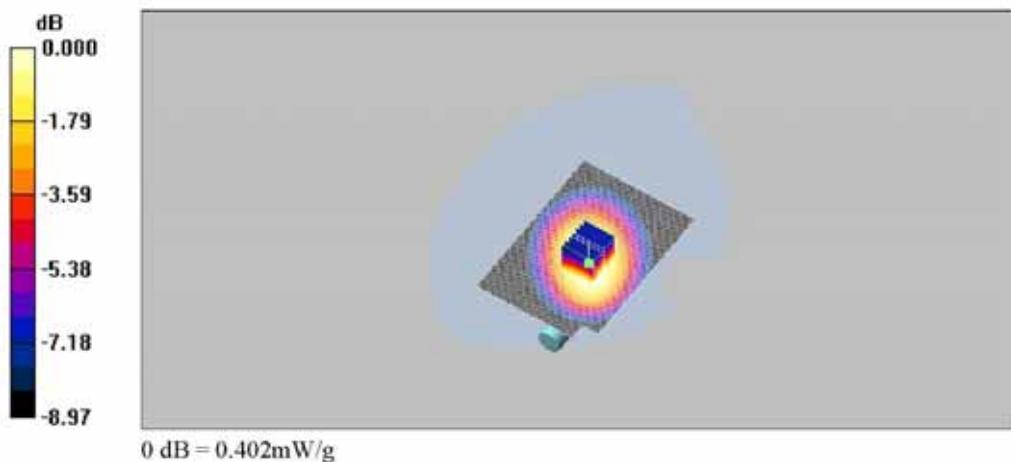
Head_Front_Ch.11_15 mm gap/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.891 mW/g

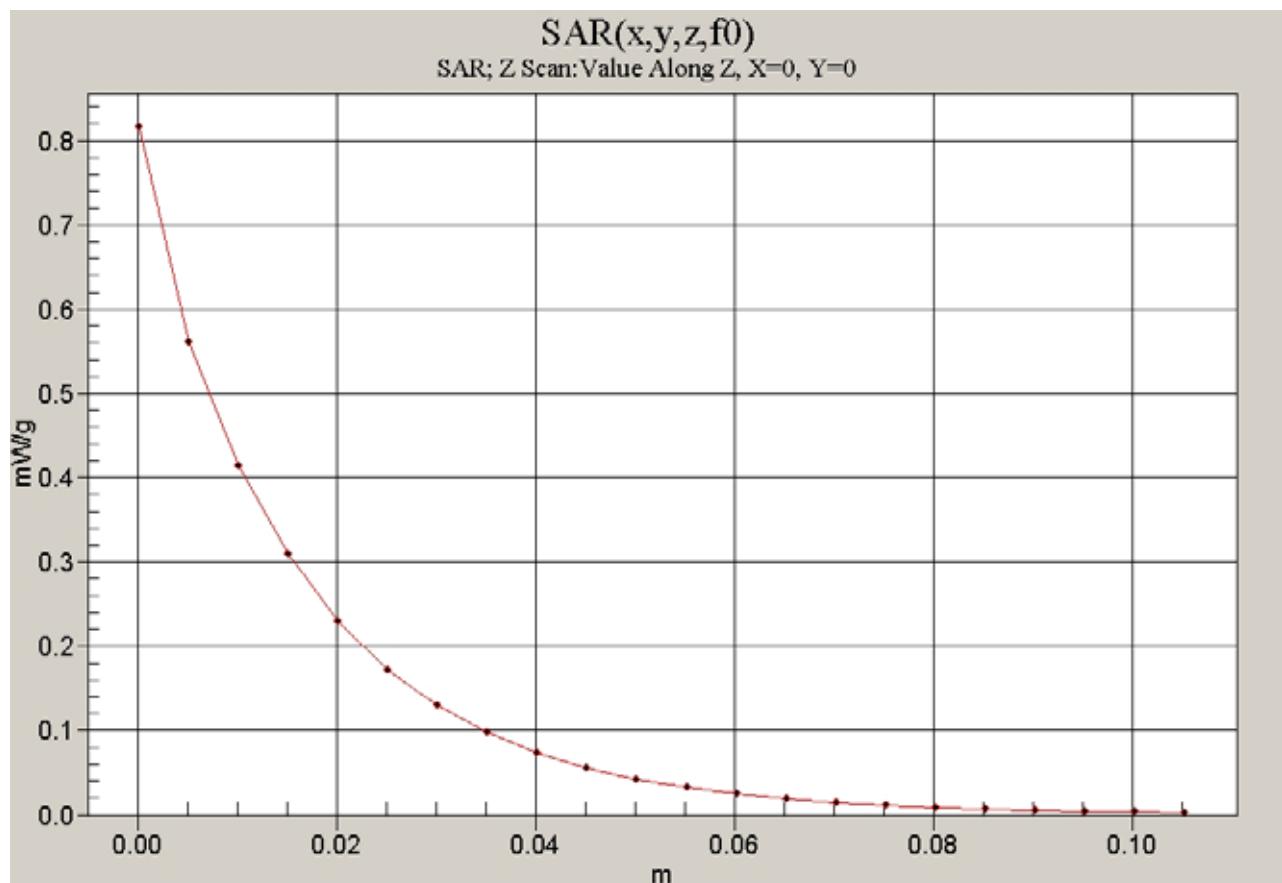
Head_Front_Ch.11_15 mm gap/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 24.0 V/m; Power Drift = -0.028 dB
Peak SAR (extrapolated) = 1.10 W/kg
SAR(1 g) = 0.761 mW/g; SAR(10 g) = 0.536 mW/g
Maximum value of SAR (measured) = 0.805 mW/g

Date: 2011-09-16

Test Laboratory: SGS Korea (Guppo Laboratory)
File Name: [450Mhz_Head\(GMRS\).da4](#)

DUT: X1 Slim_Front; Type: Chatter Box; Serial: N/A
Program Name: Head


Communication System: Handheld Transceiver; Frequency: 462.725 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 462.725$ MHz; $\sigma = 0.838$ mho/m; $\epsilon_r = 44.7$; $\rho = 1000$ kg/m³
Phantom section: Flat Section


DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(6.89, 6.89, 6.89); Calibrated: 2011-04-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_Right; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Head_Front_Ch.15_15 mm gap/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.432 mW/g

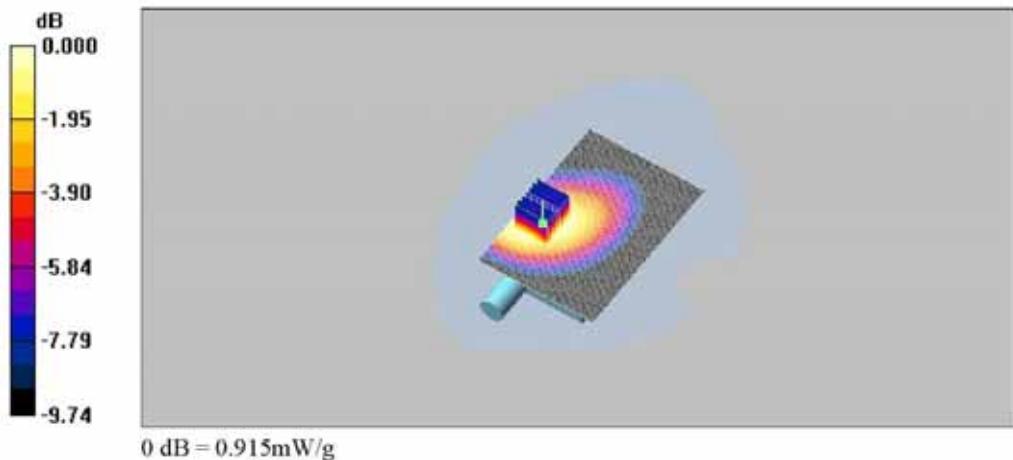
Head_Front_Ch.15_15 mm gap/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 18.0 V/m; Power Drift = -0.129 dB
Peak SAR (extrapolated) = 0.557 W/kg
SAR(1 g) = 0.780 mW/g; SAR(10 g) = 0.267 mW/g
Maximum value of SAR (measured) = 0.402 mW/g

Z Scan

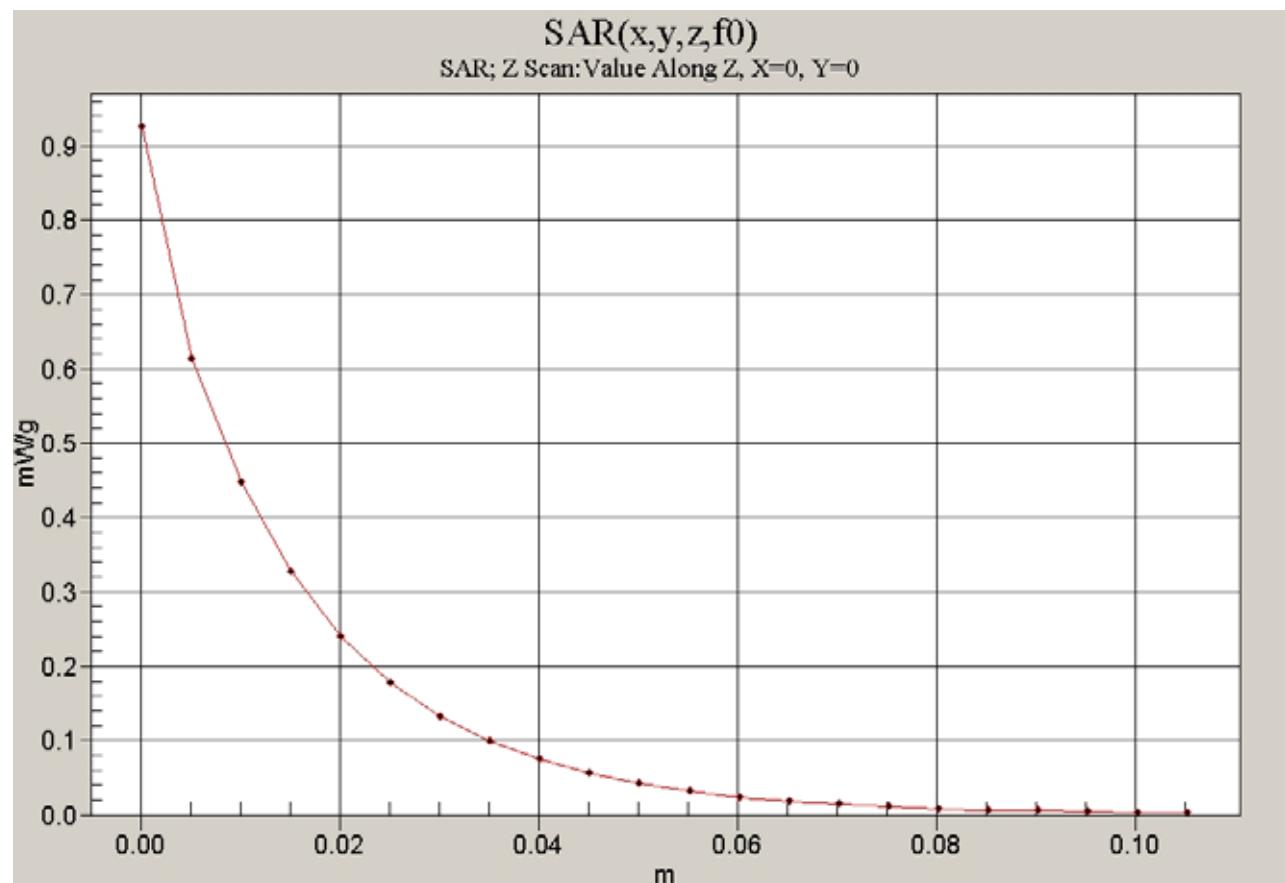
Date: 2011-09-15

Test Laboratory: SGS Korea (Guppo Laboratory)
File Name: [450Mhz_Body\(GMRS\).da4](#)

DUT: X1 Slim_Back; Type: Chatter Box; Serial: N/A
Program Name: Body


Communication System: Handheld Transceiver; Frequency: 462.575 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 462.575$ MHz; $\sigma = 0.964$ mho/m; $\epsilon_r = 55.5$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

DASY4 Configuration:


- Probe: ET3DV6 - SN1782; ConvF(7.49, 7.49, 7.49); Calibrated: 2011-04-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_Right; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body_Back_Ch.8_Helmet Clip/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.946 mW/g

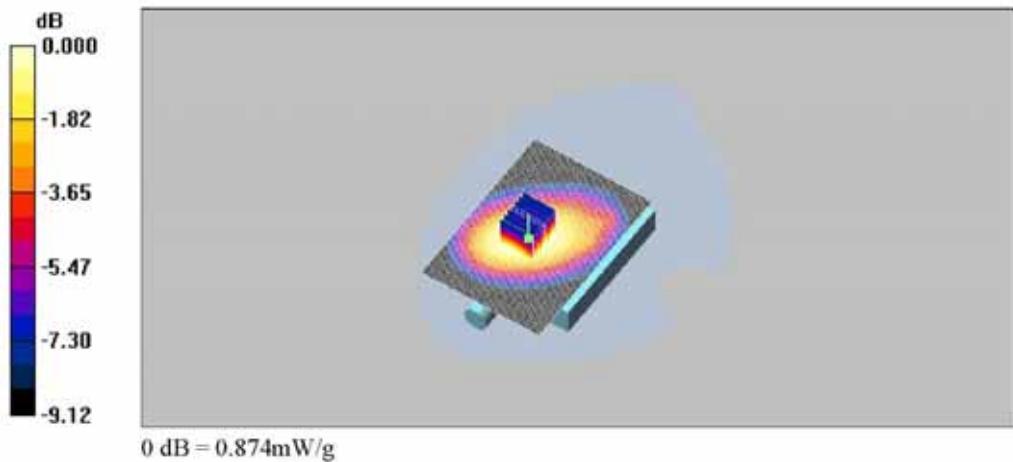
Body_Back_Ch.8_Helmet Clip/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 23.9 V/m; Power Drift = -0.195 dB
Peak SAR (extrapolated) = 1.33 W/kg
SAR(1 g) = 0.867 mW/g; SAR(10 g) = 0.595 mW/g
Maximum value of SAR (measured) = 0.915 mW/g

Z Scan

Date: 2011-09-15

Test Laboratory: SGS Korea (Guppo Laboratory)
File Name: [450Mhz_Body\(GMRS\).da4](#)

DUT: X1 Slim_Back; Type: Chatter Box; Serial: N/A
Program Name: Body


Communication System: Handheld Transceiver; Frequency: 462.55 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 462.55$ MHz; $\sigma = 0.964$ mho/m; $\epsilon_r = 55.5$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(7.49, 7.49, 7.49); Calibrated: 2011-04-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_Right; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

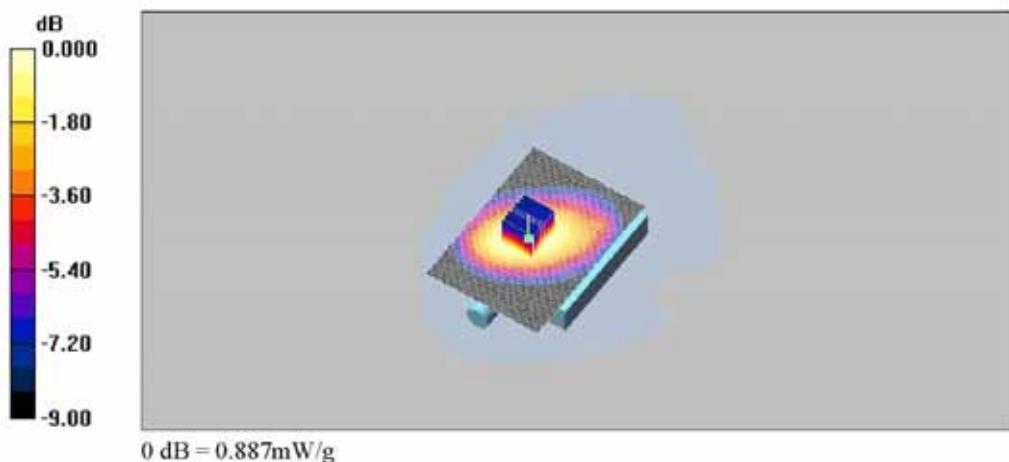
Body_Back_Ch.11_Helmet Clip/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.926 mW/g

Body_Back_Ch.11_Helmet Clip/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 24.6 V/m; Power Drift = 0.130 dB
Peak SAR (extrapolated) = 1.24 W/kg
SAR(1 g) = 0.828 mW/g; SAR(10 g) = 0.576 mW/g
Maximum value of SAR (measured) = 0.874 mW/g

Date: 2011-09-15

Test Laboratory: SGS Korea (Guppo Laboratory)
File Name: [450Mhz_Body\(GMRS\).da4](#)

DUT: X1 Slim_Back; Type: Chatter Box; Serial: N/A
Program Name: Body


Communication System: Handheld Transceiver; Frequency: 462.725 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 462.725$ MHz; $\sigma = 0.964$ mho/m; $\epsilon_r = 55.5$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(7.49, 7.49, 7.49); Calibrated: 2011-04-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_Right; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

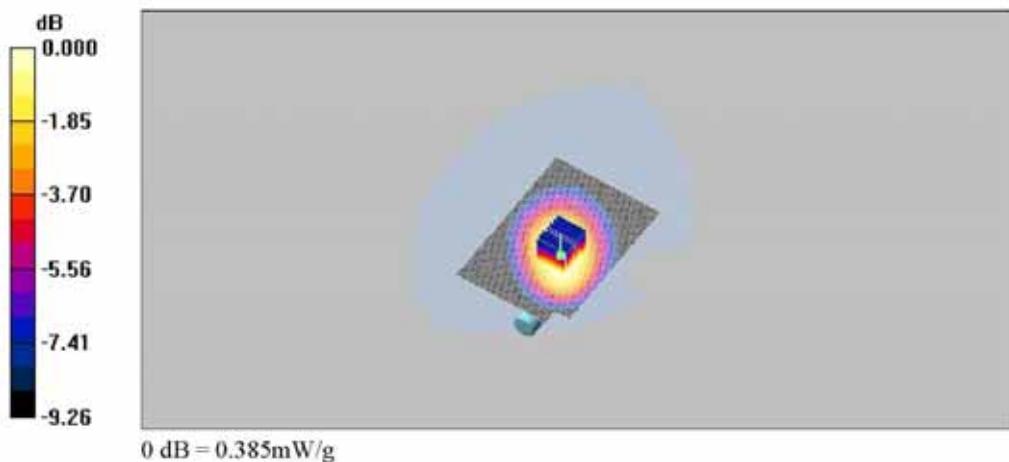
Body_Back_Ch.15_Helmet Clip/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.934 mW/g

Body_Back_Ch.15_Helmet Clip/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 25.1 V/m; Power Drift = 0.036 dB
Peak SAR (extrapolated) = 1.26 W/kg
SAR(1 g) = 0.841 mW/g; SAR(10 g) = 0.586 mW/g
Maximum value of SAR (measured) = 0.887 mW/g

Date: 2011-09-16

Test Laboratory: SGS Korea (Gungo Laboratory)
File Name: [450Mhz_Head\(FRS\).da4](#)

DUT: X1 Slim_Front; Type: Chatter Box; Serial: N/A
Program Name: Head


Communication System: Handheld Transceiver; Frequency: 462.563 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 462.563$ MHz; $\sigma = 0.838$ mho/m; $\epsilon_r = 44.7$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(6.89, 6.89, 6.89); Calibrated: 2011-04-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_Right; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

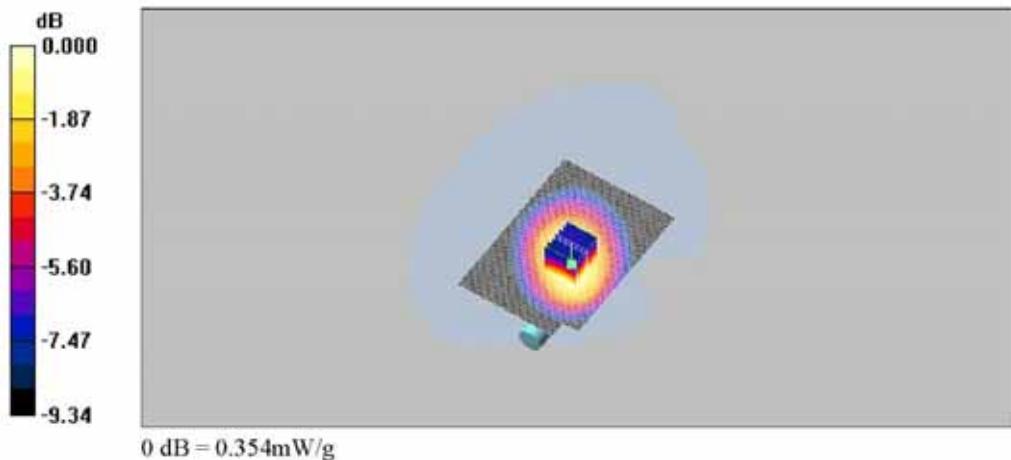
Head_Front_Ch.1_15 mm gap/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.391 mW/g

Head_Front_Ch.1_15 mm gap/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 15.2 V/m; Power Drift = -0.166 dB
Peak SAR (extrapolated) = 0.542 W/kg
SAR(1 g) = 0.364 mW/g; SAR(10 g) = 0.253 mW/g
Maximum value of SAR (measured) = 0.385 mW/g

Date: 2011-09-16

Test Laboratory: SGS Korea (Gungo Laboratory)
File Name: [450Mhz_Head\(FRS\).da4](#)

DUT: X1 Slim_Front; Type: Chatter Box; Serial: N/A
Program Name: Head


Communication System: Handheld Transceiver; Frequency: 467.563 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 467.563$ MHz; $\sigma = 0.843$ mho/m; $\epsilon_r = 44.5$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(6.89, 6.89, 6.89); Calibrated: 2011-04-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_Right; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

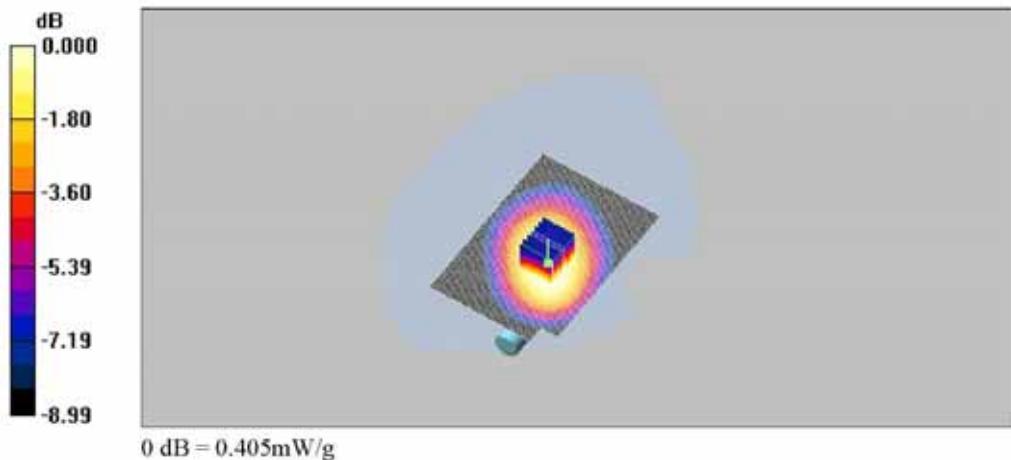
Head_Front_Ch.16_15 mm gap/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.350 mW/g

Head_Front_Ch.16_15 mm gap/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 14.1 V/m; Power Drift = 0.119 dB
Peak SAR (extrapolated) = 0.499 W/kg
SAR(1 g) = 0.335 mW/g; SAR(10 g) = 0.232 mW/g
Maximum value of SAR (measured) = 0.354 mW/g

Date: 2011-09-16

Test Laboratory: SGS Korea (Gungo Laboratory)
File Name: [450Mhz_Head\(FRS\).da4](#)

DUT: X1 Slim_Front; Type: Chatter Box; Serial: N/A
Program Name: Head


Communication System: Handheld Transceiver; Frequency: 467.712 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 467.712$ MHz; $\sigma = 0.838$ mho/m; $\epsilon_r = 44.7$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(6.89, 6.89, 6.89); Calibrated: 2011-04-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_Right; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

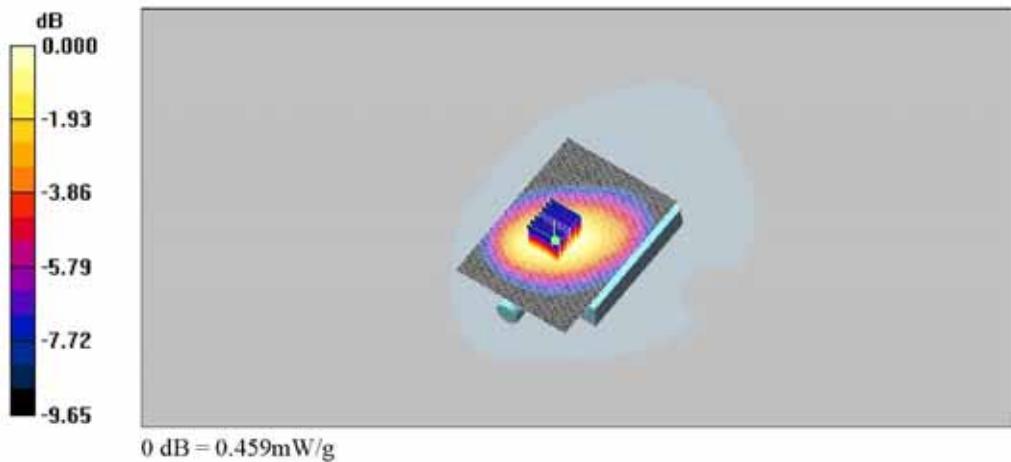
Head_Front_Ch.22_15 mm gap/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.449 mW/g

Head_Front_Ch.22_15 mm gap/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 17.6 V/m; Power Drift = -0.084 dB
Peak SAR (extrapolated) = 0.556 W/kg
SAR(1 g) = 0.384 mW/g; SAR(10 g) = 0.270 mW/g
Maximum value of SAR (measured) = 0.405 mW/g

Date: 2011-09-15

Test Laboratory: SGS Korea (Gungo Laboratory)
File Name: [450Mhz_Body\(FRS\).da4](#)

DUT: X1 Slim_Back; Type: Chatter Box; Serial: N/A
Program Name: Body


Communication System: Handheld Transceiver; Frequency: 462.563 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 462.563$ MHz; $\sigma = 0.964$ mho/m; $\epsilon_r = 55.5$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(7.49, 7.49, 7.49); Calibrated: 2011-04-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_Right; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

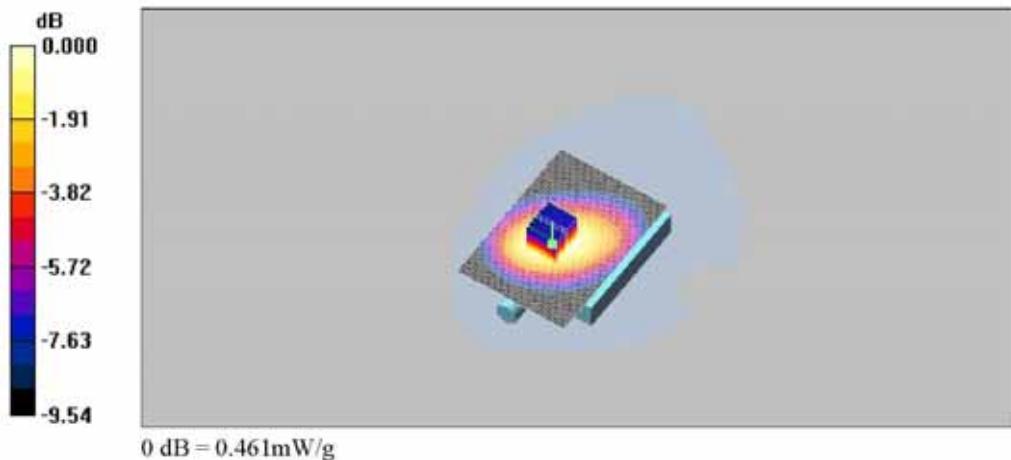
Body_Back_Ch.1_Helmet Clip/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.488 mW/g

Body_Back_Ch.1_Helmet Clip/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 16.5 V/m; Power Drift = 0.126 dB
Peak SAR (extrapolated) = 0.680 W/kg
SAR(1 g) = 0.436 mW/g; SAR(10 g) = 0.297 mW/g
Maximum value of SAR (measured) = 0.459 mW/g

Date: 2011-09-15

Test Laboratory: SGS Korea (Gungo Laboratory)
File Name: [450Mhz_Body\(FRS\).da4](#)

DUT: X1 Slim_Back; Type: Chatter Box; Serial: N/A
Program Name: Body


Communication System: Handheld Transceiver; Frequency: 467.563 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 467.563$ MHz; $\sigma = 0.968$ mho/m; $\epsilon_r = 55.5$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(7.49, 7.49, 7.49); Calibrated: 2011-04-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_Right; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

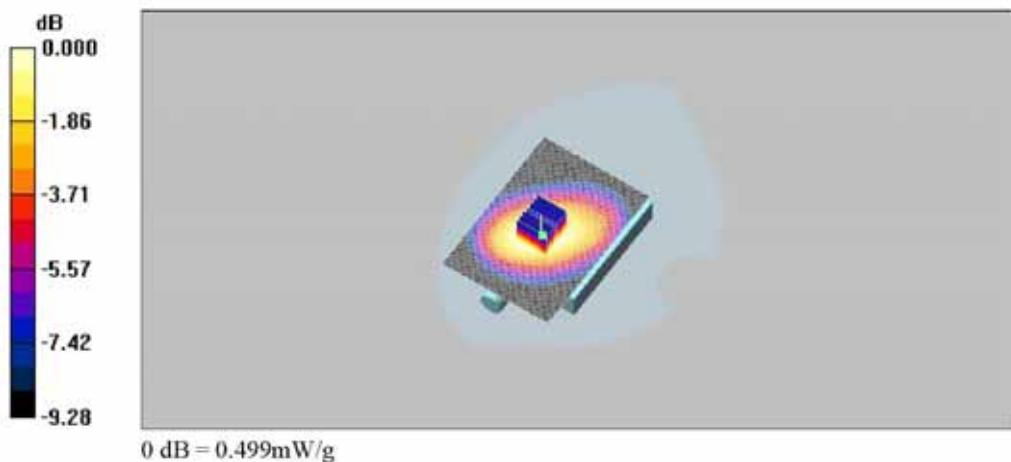
Body_Back_Ch.16_Helmet Clip/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.481 mW/g

Body_Back_Ch.16_Helmet Clip/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 17.1 V/m; Power Drift = 0.102 dB
Peak SAR (extrapolated) = 0.680 W/kg
SAR(1 g) = 0.438 mW/g; SAR(10 g) = 0.301 mW/g
Maximum value of SAR (measured) = 0.461 mW/g

Date: 2011-09-15

Test Laboratory: SGS Korea (Gungo Laboratory)
File Name: [450Mhz_Body\(FRS\).da4](#)

DUT: X1 Slim_Back; Type: Chatter Box; Serial: N/A
Program Name: Body


Communication System: Handheld Transceiver; Frequency: 467.712 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 467.712$ MHz; $\sigma = 0.964$ mho/m; $\epsilon_r = 55.5$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(7.49, 7.49, 7.49); Calibrated: 2011-04-14
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2011-01-27
- Phantom: SAM MIC #2000-93 with CRP_Right; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body_Back_Ch.22_Helmet Clip/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.522 mW/g

Body_Back_Ch.22_Helmet Clip/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 18.4 V/m; Power Drift = 0.061 dB
Peak SAR (extrapolated) = 0.710 W/kg
SAR(1 g) = 0.474 mW/g; SAR(10 g) = 0.328 mW/g
Maximum value of SAR (measured) = 0.499 mW/g

Appendix B

Uncertainty Analysis

a	b	c	d	e = f(d,k)	g	i = cxg/e	k
Uncertainty Component	Section in P1528	Tol (%)	Prob . Dist.	Div.	Ci (1g)	1g ui (%)	Vi (Veff)
Probe calibration	E.2.1	6.3	N	1	1	6.30	
Axial isotropy	E.2.2	0.5	R	1.73	0.71	0.20	
hemispherical isotropy	E.2.2	2.6	R	1.73	0.71	1.06	
Boundary effect	E.2.3	0.8	R	1.73	1	0.46	
Linearity	E.2.4	0.6	R	1.73	1	0.35	
System detection limit	E.2.5	0.25	R	1.73	1	0.14	
Readout electronics	E.2.6	0.3	N	1	1	0.30	
Response time	E.2.7	0	R	1.73	1	0.00	
Integration time	E.2.8	2.6	R	1.73	1	1.50	
RF ambient Condition -Noise	E.6.1	3	R	1.73	1	1.73	
RF ambient Condition - reflections	E.6.1	3	R	1.73	1	1.73	
Probe positioning- mechanical tolerance	E.6.2	1.5	R	1.73	1	0.87	
Probe positioning - with respect to phantom	E.6.3	2.9	R	1.73	1	1.67	
Max. SAR evaluation	E.5.2	1	R	1.73	1	0.58	
Test sample positioning	E.4.2	2.3	N	1	1	2.30	9
Device holder uncertainty	E.4.1	3.6	N	1	1	3.60	
Output power variation -SAR drift measurement	6.62	5	R	1.73	1	2.89	
Phantom uncertainty (shape and thickness tolerances)	E.3.1	4	R	1.73	1	2.31	
Liquid conductivity - deviation from target values	E.3.2	5	R	1.73	0.64	1.85	
Liquid conductivity - measurement uncertainty	E.3.2	1.2	N	1	0.64	0.77	5
Liquid permittivity - deviation from target values	E.3.3	5	R	1.73	0.6	1.73	
Liquid permittivity - measurement uncertainty	E.3.3	1.1	N	1	0.6	0.66	5
Combined standard uncertainty				RSS		9.63	2754
Expanded uncertainty (95% CONFIDENCE INTERVAL)				K=2		19.27	

Appendix C

Calibration Certificate

- PROBE

- DAE3

- 450 MHz Dipole

- PROBE Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **SGS (Dymstec)**

Certificate No: **ET3-1782_Apr11**

CALIBRATION CERTIFICATE

Object **ET3DV6 - SN:1782**

Calibration procedure(s) **QA CAL-01.v7, QA CAL-12.v6, QA CAL-23.v4, QA CAL-25.v3**
Calibration procedure for dosimetric E-field probes

Calibration date: **April 14, 2011**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41495277	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5066 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11
DAE4	SN: 654	23-Apr-10 (No. DAE4-654_Apr10)	Apr-11
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-09 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by:	Name Jelos Kastrati	Function Laboratory Technician	Signature
Approved by:	Name Katja Pokovic	Function Technical Manager	Signature

Issued: April 14, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization β	β rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\beta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}:** Assessed for E-field polarization $\beta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM_{x,y,z} are only intermediate values, i.e., the uncertainties of NORM_{x,y,z} does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM_f_{x,y,z} = NORM_{x,y,z} * frequency_response** (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z:** DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR:** PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- A_{x,y,z}; B_{x,y,z}; C_{x,y,z}** are numerical linearization parameters in dB assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media.
- VR:** VR is the validity range of the calibration related to the average diode voltage or DAE voltage in mV.
- ConvF and Boundary Effect Parameters:** Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORM_{x,y,z} * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical Isotropy (3D deviation from isotropy):** in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset:** The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

ET3DV6 – SN:1782

April 14, 2011

Probe ET3DV6

SN:1782

Manufactured: April 15, 2003
Calibrated: April 14, 2011

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

ET3DV6-SN:1782

April 14, 2011

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1782

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μ V/(V/m) ²) ^A	2.07	1.66	1.92	\pm 10.1 %
DCP (mV) ^B	96.4	96.6	97.6	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^C (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	111.1	\pm 1.9 %
			Y	0.00	0.00	1.00	141.0	
			Z	0.00	0.00	1.00	145.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^C Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ET3DV6- SN:1782

April 14, 2011

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1782**Calibration Parameter Determined in Head Tissue Simulating Media**

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^g	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	6.89	6.89	6.89	0.21	2.29	± 13.4 %
835	41.5	0.90	6.22	6.22	6.22	0.88	1.63	± 12.0 %
1750	40.1	1.37	5.14	5.14	5.14	0.57	2.53	± 12.0 %
1900	40.0	1.40	4.95	4.95	4.95	0.58	2.54	± 12.0 %
2450	39.2	1.80	4.37	4.37	4.37	0.80	1.93	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

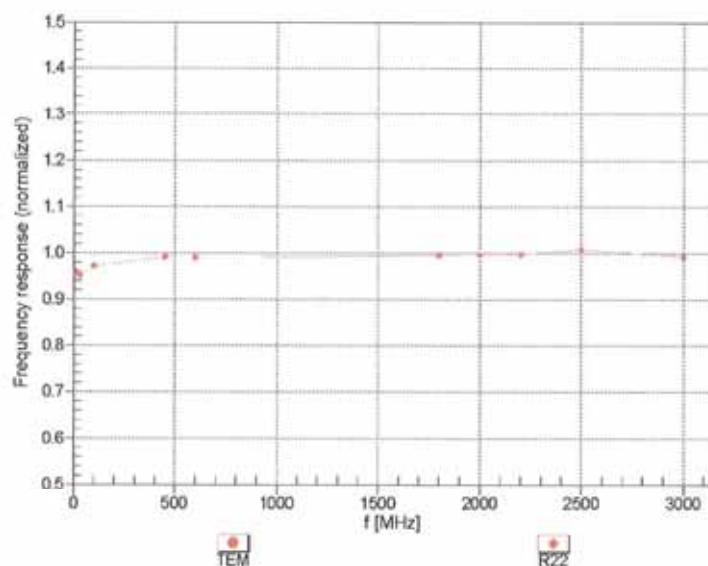
^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

ET3DV6- SN:1782

April 14, 2011

DASY/EASY - Parameters of Probe: ET3DV6- SN:1782**Calibration Parameter Determined in Body Tissue Simulating Media**

f (MHz) ^c	Relative Permittivity ^e	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	7.49	7.49	7.49	0.16	2.34	± 13.4 %
835	55.2	0.97	6.03	6.03	6.03	0.85	1.72	± 12.0 %
1750	53.4	1.49	4.54	4.54	4.54	0.64	2.70	± 12.0 %
1900	53.3	1.52	4.34	4.34	4.34	0.63	2.57	± 12.0 %
2450	52.7	1.95	3.94	3.94	3.94	0.99	1.21	± 12.0 %

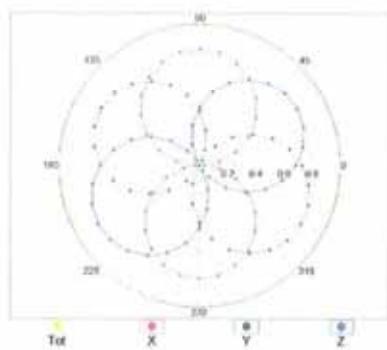

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^e At frequencies below 3 GHz, the validity of tissue parameters (ϵ and α) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and α) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

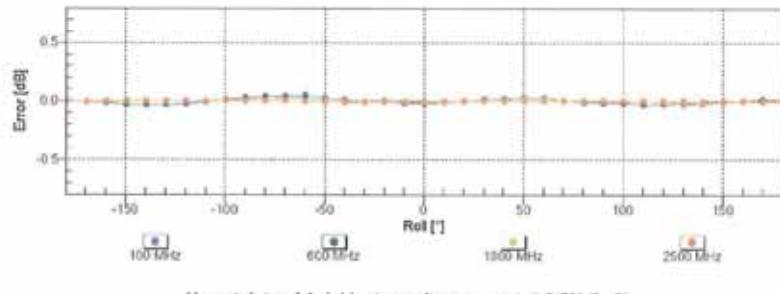
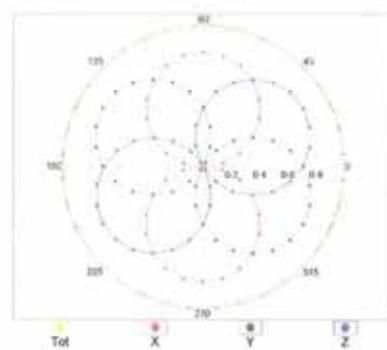
ET3DV6- SN:1782

April 14, 2011

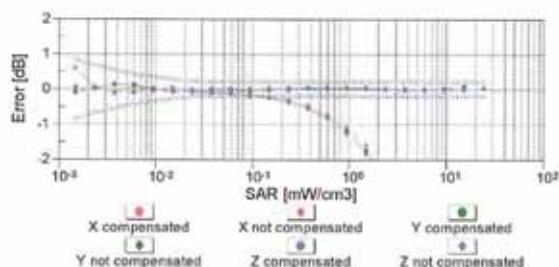
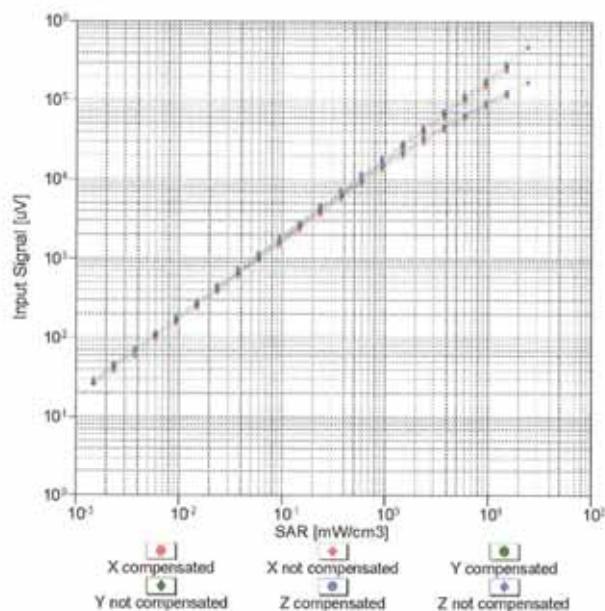
Frequency Response of E-Field
(TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

ET3DV6- SN:1782



April 14, 2011

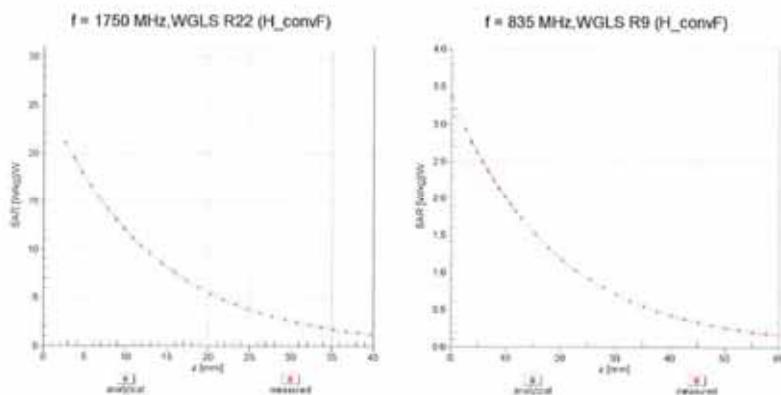
Receiving Pattern (ϕ), $\theta = 0^\circ$



f=600 MHz, TEM

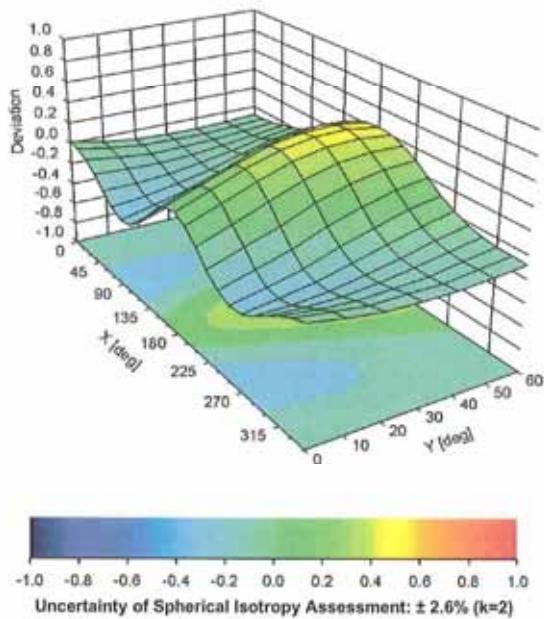
f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)

Dynamic Range f(SAR_{head})
(TEM cell , f = 900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)


ET3DV6- SN:1782

April 14, 2011

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ, β), $f = 900 \text{ MHz}$

ET3DV6- SN:1782

April 14, 2011

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1782

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

-DAE Calibration Certificate (DAE3)

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client SGS (Dymstec)

Certificate No: DAE3-567_Jan11

CALIBRATION CERTIFICATE

Object DAE3 - SD 000 D03 AA - SN: 567

Calibration procedure(s) QA CAL-06.v22
Calibration procedure for the data acquisition electronics (DAE)

Calibration date: January 27, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	28-Sep-10 (No:10376)	Sep-11
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Calibrator Box V1.1	SE UMS 006 AB 1004	07-Jun-10 (in house check)	In house check: Jun-11

Calibrated by: Name Andrea Guntli Function Technician Signature

Approved by: Fin Bomholt Function R&D Director Signature

Issued: January 27, 2011
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary

DAE	data acquisition electronics
Connector angle	information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement*: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - *DC Voltage Measurement Linearity*: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - *Common mode sensitivity*: Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation*: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - *AD Converter Values with inputs shorted*: Values on the internal AD converter corresponding to zero input voltage
 - *Input Offset Measurement*: Output voltage and statistical results over a large number of zero voltage measurements.
 - *Input Offset Current*: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - *Input resistance*: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - *Low Battery Alarm Voltage*: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption*: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = $6.1\mu\text{V}$, full range = -100...+300 mV
Low Range: 1LSB = 61nV , full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$404.644 \pm 0.1\% \text{ (k=2)}$	$404.400 \pm 0.1\% \text{ (k=2)}$	$404.475 \pm 0.1\% \text{ (k=2)}$
Low Range	$3.94940 \pm 0.7\% \text{ (k=2)}$	$3.96974 \pm 0.7\% \text{ (k=2)}$	$3.94828 \pm 0.7\% \text{ (k=2)}$

Connector Angle

Connector Angle to be used in DASY system	$5.5^\circ \pm 1^\circ$
---	-------------------------

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200011.1	0.86	0.00
Channel X + Input	20005.53	5.63	0.03
Channel X - Input	-19994.55	6.05	-0.03
Channel Y + Input	200012.0	3.19	0.00
Channel Y + Input	19998.16	-0.94	-0.00
Channel Y - Input	-19999.31	0.89	-0.00
Channel Z + Input	200007.6	-0.57	-0.00
Channel Z + Input	20000.62	1.02	0.01
Channel Z - Input	-19997.10	3.20	-0.02

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	1999.6	-0.43	-0.02
Channel X + Input	200.86	0.86	0.43
Channel X - Input	-198.93	1.07	-0.54
Channel Y + Input	2000.2	0.40	0.02
Channel Y + Input	200.07	0.07	0.03
Channel Y - Input	-199.81	0.09	-0.05
Channel Z + Input	1999.8	-0.29	-0.01
Channel Z + Input	199.45	-0.75	-0.38
Channel Z - Input	-200.35	-0.25	0.12

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	3.83	1.88
	-200	0.20	-2.32
Channel Y	200	0.69	-0.01
	-200	-1.13	-1.19
Channel Z	200	4.39	4.66
	-200	-6.15	-6.31

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	2.13	-0.21
Channel Y	200	3.01	-	3.24
Channel Z	200	1.69	-1.11	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16333	16454
Channel Y	16169	16436
Channel Z	15951	16115

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	-0.23	-1.40	0.68	0.42
Channel Y	-0.84	-2.05	0.49	0.41
Channel Z	-0.76	-1.62	0.54	0.38

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

- 450MHz Dipole Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client **SGS (Dymstec)**

Certificate No: D450V2-1015_Aug11

CALIBRATION CERTIFICATE

Object D450V2 - SN: 1015

Calibration procedure(s) QA CAL-15.v6
Calibration procedure for dipole validation kits below 700 MHz

Calibration date: August 22, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4410B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Type-N mismatch combination	SN: 5047.3 / 06327	29-Mar-11 (No. 217-01168)	Apr-12
Reference Probe ET3DV6	SN: 1507	30-Apr-10 (No. ET3-1507_Apr10)	Apr-11
DAE4	SN: 654	3-May-11 (No. DAE4-654_May11)	May-12

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by:	Name	Function	Signature
	Jeton Kastrati	Laboratory Technician	

Approved by:	Name	Function	Signature
	Katja Pokovic	Technical Manager	

Issued: August 24, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Flat Phantom V4.4	Shell thickness: 6 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	$dx, dy, dz = 5$ mm	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	44.5 ± 6 %	0.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	398 mW input power	1.95 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	4.97 mW /g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	398 mW input power	1.30 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	3.30 mW /g ± 17.6 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.5 ± 6 %	0.94 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	398 mW input power	1.89 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	4.73 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	398 mW input power	1.26 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	3.16 mW / g ± 17.6 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.9 Ω - 9.1 $j\Omega$
Return Loss	- 20.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.1 Ω - 10.1 $j\Omega$
Return Loss	- 20.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.356 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 30, 2003

DASY5 Validation Report for Head TSL

Date: 22.08.2011

Test Laboratory: SPEAG

DUT: Dipole 450 MHz; Type: D450V2; Serial: D450V2 - SN: 1015

Communication System: CW; Frequency: 450 MHz

Medium parameters used: $f = 450$ MHz; $\sigma = 0.94$ mho/m; $\epsilon_r = 55.5$; $\rho = 1000$ kg/m³

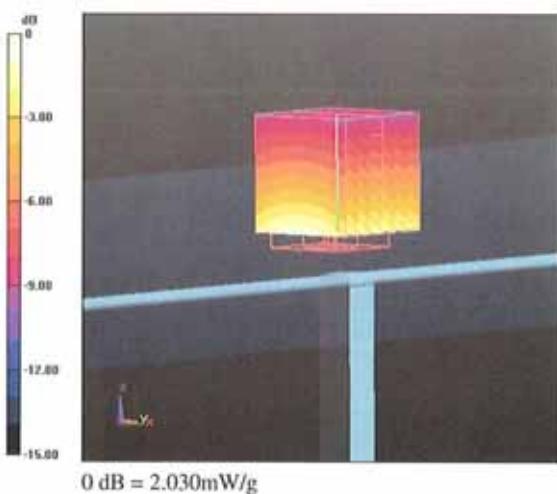
Phantom section: Flat Section

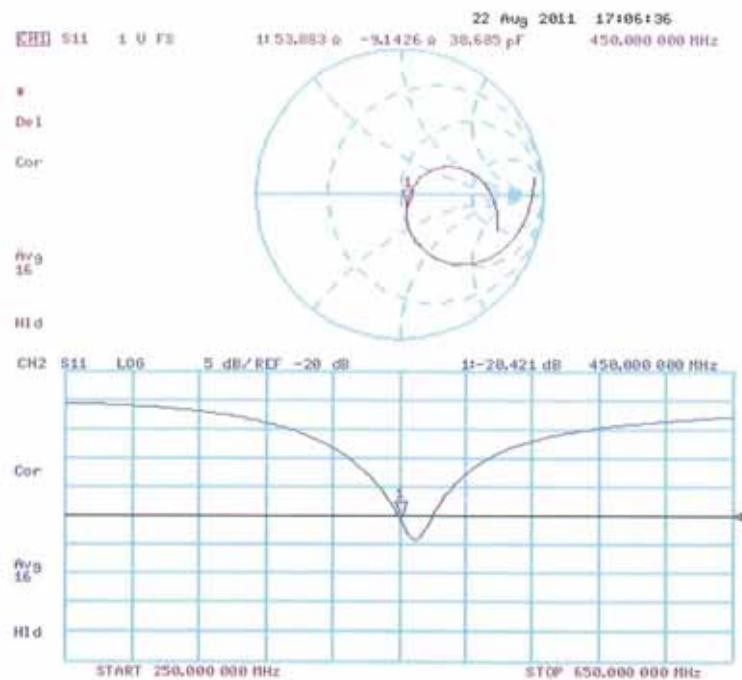
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(7.05, 7.05, 7.05); Calibrated: 29.04.2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 03.05.2011
- Phantom: Flat Phantom 4.4 ; Type: Flat Phantom 4.4; Serial: 1002
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 46.322 V/m; Power Drift = -0.0035 dB

Peak SAR (extrapolated) = 2.964 W/kg

SAR(1 g) = 1.89 mW/g; SAR(10 g) = 1.26 mW/g

Maximum value of SAR (measured) = 2.026 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 22.08.2011

Test Laboratory: SPEAG

DUT: Dipole 450 MHz; Type: D450V2; Serial: D450V2 - SN: 1015

Communication System: CW; Frequency: 450 MHz

Medium parameters used: $f = 450$ MHz; $\sigma = 0.94$ mho/m; $\epsilon_r = 55.5$; $\rho = 1000$ kg/m³

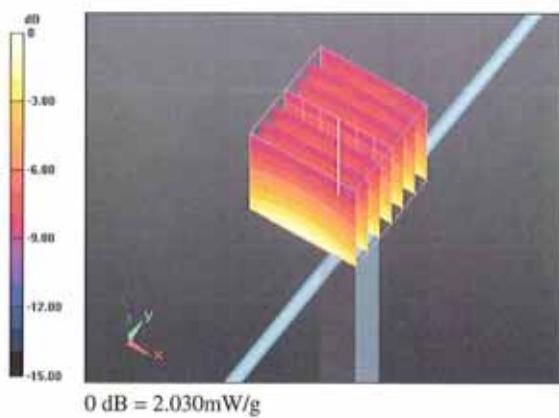
Phantom section: Flat Section

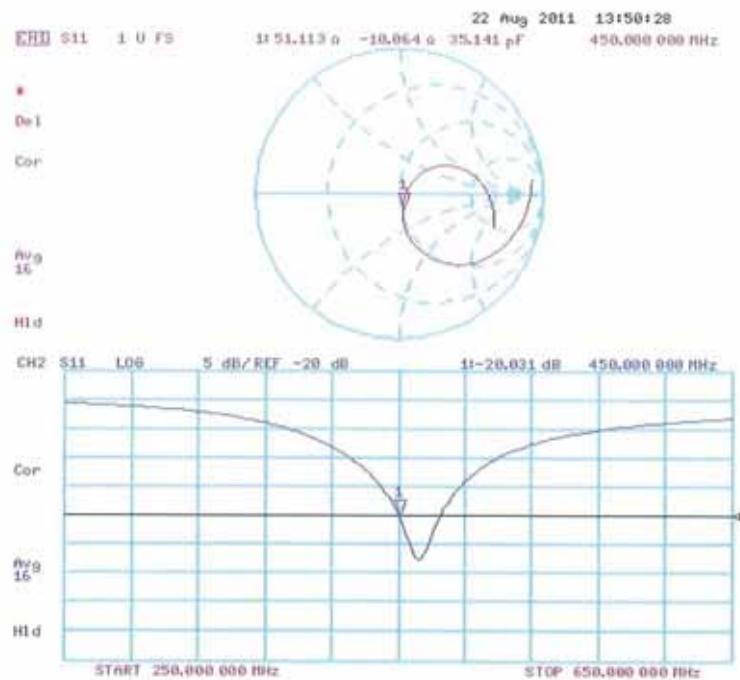
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(7.05, 7.05, 7.05); Calibrated: 29.04.2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 03.05.2011
- Phantom: Flat Phantom 4.4 ; Type: Flat Phantom 4.4; Serial: 1002
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/d=15mm, Pin=398mW/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 46.322 V/m; Power Drift = -0.0035 dB

Peak SAR (extrapolated) = 2.964 W/kg

SAR(1 g) = 1.89 mW/g; SAR(10 g) = 1.26 mW/g

Maximum value of SAR (measured) = 2.026 mW/g

Impedance Measurement Plot for Body TSL