FCC Test Report

Report No.: AGC01680170434FE01

FCC ID	: ZRQ-KB3				
APPLICATION PURPOSE	: Original Equipment				
PRODUCT DESIGNATION	: Mini Keyboard				
BRAND NAME	: Penclic				
MODEL NAME	: KB3				
CLIENT	: Penclic AB				
DATE OF ISSUE	: Jun.20, 2017				
STANDARD(S)	: FCC Part 15 Subpart B				
REPORT VERSION	: V1.0				
Attestation of Global Compliance (Shenzhen) Co., Ltd					
CAUTION:					
This report shall not be reproduced except in full without the written permission of the					
test laboratory and shall not be quoted out of context.					

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Jun.20, 2017	Valid	Original Report

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	4
2. SYSTEM DESCRIPTION	5
3. MEASUREMENT UNCERTAINTY	5
4. PRODUCT INFORMATION	6
5. SUPPORT EQUIPMENT	7
6. TEST FACILITY	8
7. TEST EQUIPMENT LIST	8
8. FCCLINE CONDUCTED EMISSION TEST	
8.1. LIMITS OF LINE CONDUCTED EMISSION TEST	
8.2. BLOCK DIAGRAM OF TEST SETUP	
8.3. PROCEDURE OF LINE CONDUCTED EMISSION TEST	
8.4. TEST RESULT OF LINE CONDUCTED EMISSION TEST	
9. FCC RADIATED EMISSION TEST 1	
9.1. LIMITS OF RADIATED EMISSION TEST	
9.2. BLOCK DIAGRAM OF TEST SETUP	
9.3. PROCEDURE OF RADIATED EMISSION TEST	
9.4. TEST RESULT OF RADIATED EMISSION TEST	-
APPENDIX A: PHOTOGRAPHS OF TEST SETUP 2	0
APPENDIX B: PHOTOGRAPHS OF EUT 2	2

	-	
Applicant	Penclic AB	
Address	Vendev. 90, Danderyd, Sweden, 182 32	
Manufacturer	Shenzhen Hastech Industries Co., Ltd.	
Address	3F/4F A1 BLDG, 1F/2F A2 BLDG, G AREA, DEMOCRACY WEST INDUSTRY PARK, SHAJING TOWN, BAOAN DISTRICT, SHENZHEN, CHINA	
Product Designation	Mini Keyboard	
Brand Name	Penclic	
Test Model	КВЗ	
Date of test	Apr.28, 2017 to May 06, 2017	
Deviation	None	
Condition of Test Sample	Normal	
Report Template	AGCRT-US-IT/AC	

1. VERIFICATION OF CONFORMITY

The above equipment was tested by Dongguan Precise Testing Service Co., Ltd. for compliance with the requirements set forth in the FCC Rules and Regulations Part 15, the measurement procedure according to ANSI C63.4:2014. This said equipment in the configuration described in this report shows the maximum emission levels emanating from equipment are within the compliance requirements.

The test results of this report relate only to the tested sample identified in this report.

Harry Zhang Tested By Henry Zhang(Zhang Zhuorui) May 06, 2017 Forvest en **Reviewed By** Forrest Lei(Lei Yonggang) Jun.20, 2017 Solya shary Approved By Solger Zhang(Zhang Hongyi)

Authorized Officer

Jun.20, 2017

2. SYSTEM DESCRIPTION

EUT set up procedure:

- 1. Connect the EUT with PC.
- 2. Make sure the EUT operates normally during the test.

Test Mode

TEST MODE DESCRIPTION				
NO.	NO. TEST MODE DESCRIPTION WORST			
1	Data Transmission(USB) V			
Note: V means EMI worst mode				

3. MEASUREMENT UNCERTAINTY

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO.

Conducted measurement: +/- 2.75dB

Radiated measurement: +/- 3.2dB

Summary Of Test Results

FCC Rules	Description Of Test	Result
§15.107	Conduction Emission	Compliant
§15.109	Radiated Emission	Compliant

4. PRODUCT INFORMATION

Housing Type	Plastic and metal
Voltage	DC 3.7V by battery

I/O Port Information (Applicable Internation I/O Port Information I/O Po

I/O Port of EUT					
I/O Port Type Q'TY Cable Tested with					
USB Port	1	0	1		

5. SUPPORT EQUIPMENT

Device Type	Manufacturer	Model Name	Serial No.	Power Cable
PC	SONY	E1412AYCW	A.E	N/A
PC Adapter	SONY	VGP-AC19V36	A.E	3m unshielded

Note: All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.

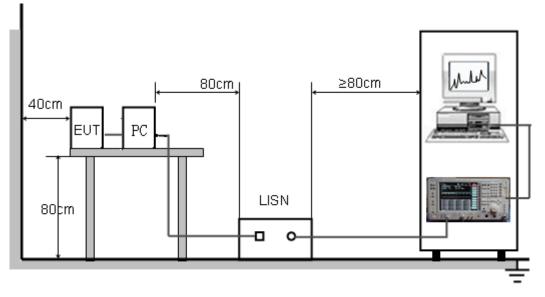
6. TEST FACILITY

Site	Dongguan Precise Testing Service Co., Ltd.		
Location	Building D, Baoding Technology Park, Guangming Road2, Dongcheng District, Dongguan, Guangdong, China,		
FCC Registration No.	stration No. 371540		
Description The test site is constructed and calibrated to meet the FCC requirements in documents ANSI C63.4:2014.			

7. TEST EQUIPMENT LIST

TEST EQUIPMENT LIST					
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
EMI Test Receiver	ROHDE & SCHWARZBECK	ESCI	101417	July 4, 2016	July 3, 2017
Trilog Broadband Antenna (25M-1GHz)	SCHWARZBECK	VULB9160	9160-3355	July 4, 2016	July 3, 2017
Horn Antenna (1G-18GHz)	SCHWARZBECK	BBHA9120D	9120D-1246	July 11, 2016	July 10, 2017
Signal Amplifier	SCHWARZBECK	BBV 9475	9745-0013	July 4, 2016	July 3, 2017
RF Cable	SCHWARZBECK	AK9515E	96221	July 4, 2016	July 3, 2017
3m Anechoic Chamber	CHENGYU	966	PTS-001	June 6, 2016	June 5, 2017
MULTI-DEVICE Positioning Controller	MAX-FULL	MF-7802	MF780208339	N/A	N/A
Active loop antenna (9K-30MHz)	SCHWARZBECK	FMZB1519	1519-038	June 6, 2016	June 5, 2017
Spectrum analyzer	AGILENT	E4407B	MY46185649	June 6, 2016	June 5, 2017
Spectrum Analyzer	AGILENT	E4411B	MY4511453	July 4, 2016	July 3, 2017
Signal Amplifier	SCHWARZBECK	BBV 9718	9718-269	July 4, 2016	July 3, 2017
RF Cable	SCHWARZBECK	AK9515H	96220	July 4, 2016	July 3, 2017
Artificial Mains Network	NARDA	L2-16B	000WX31025	July 8, 2016	July 7, 2017
Artificial Mains Network (AUX)	NARDA	L2-16B	000WX31026	July 8, 2016	July 7, 2017
RF Cable	SCHWARZBECK	AK9515E	96222	July 4, 2016	July 3, 2017
Shielded Room	CHENGYU	843	PTS-002	June 6, 2016	June 5, 2017
Conduction Cable	MXT	SE1	S003	June 6, 2016	June 5, 2017

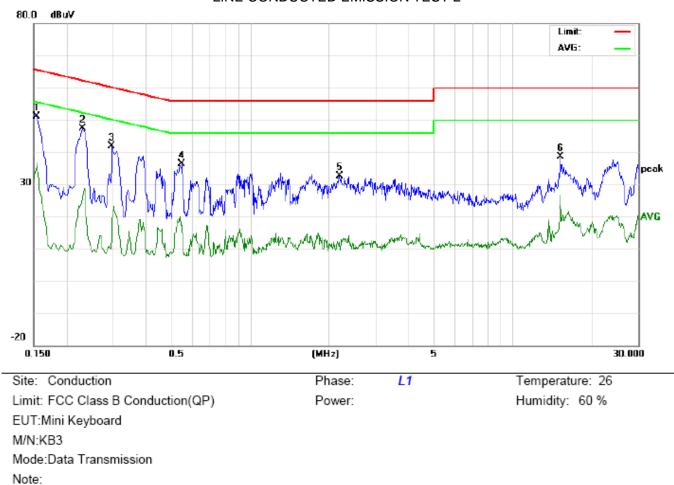
8. FCCLINE CONDUCTED EMISSION TEST 8.1. LIMITS OF LINE CONDUCTED EMISSION TEST


Fromuenou	Maximum RF Line Voltage		
Frequency	Q.P.(dBuV)	Average(dBuV)	
150kHz-500kHz	66-56	56-46	
500kHz-5MHz	56	46	
5MHz-30MHz	60	50	

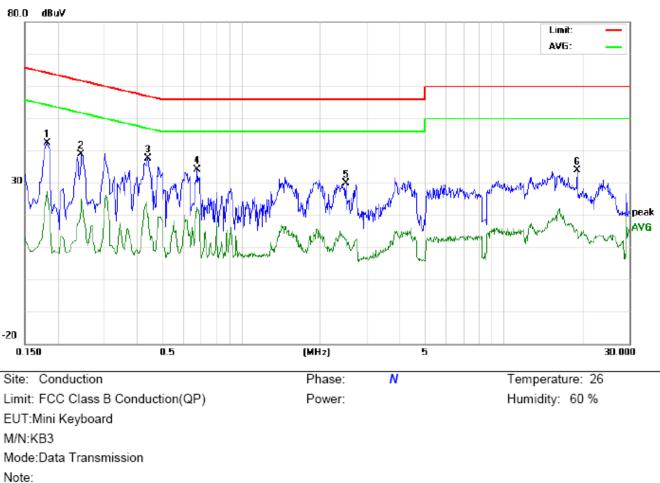
Note:

1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50MHz.


8.2. BLOCK DIAGRAM OF TEST SETUP

8.3. PROCEDURE OF LINE CONDUCTED EMISSION TEST


- (1) The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- (2) Support equipment, if needed, was placed as per ANSI C63.4.
- (3) All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- (4) The EUT received charging voltage by adapter which receive AC120V/60Hz power from a LISN.
- (5) The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- (6) Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- (7) During the above scans, the emissions were maximized by cable manipulation.
- (8) A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions.
- (9) Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.

The test data of the worst case condition (mode 1) was reported on the Summary Data page.

8.4. TEST RESULT OF LINE CONDUCTED EMISSION TEST LINE CONDUCTED EMISSION TEST-L

No.	Freq.	Reading_Level (dBuV)		Correct Factor	Measurement (dBuV)			Limit (dBuV)		Margin (dB)		P/F	Comment	
	(MHz)	Peak	QP	AVG	dB	Peak	QP	AVG	QP	AVG	QP	AVG		
1	0.1547	41.67		21.69	10.17	51.84		31.86	65.74	55.74	-13.90	-23.88	Ρ	
2	0.2300	37.18		15.84	10.25	47.43		26.09	62.45	52.45	-15.02	-26.36	Ρ	
3	0.2979	31.69		9.07	10.29	41.98		19.36	60.30	50.30	-18.32	-30.94	Ρ	
4	0.5500	26.09		6.42	10.35	36.44		16.77	56.00	46.00	-19.56	-29.23	Ρ	
5	2.1939	22.40		1.81	10.30	32.70		12.11	56.00	46.00	-23.30	-33.89	Ρ	
6	15.1898	28.57		16.53	10.12	38.69		26.65	60.00	50.00	-21.31	-23.35	Ρ	

LINE CONDUCTED EMISSION TEST-N

No.	Freq.	Reading_Level (dBuV)			Correct Factor	Measurement (dBuV)			Limit (dBuV)		Margin (dB)		P/F	Comment
	(MHz)	Peak	QP	AVG	dB	Peak	QP	AVG	QP	AVG	QP	AVG		
1	0.1819	32.24		17.16	10.20	42.44		27.36	64.39	54.39	-21.95	-27.03	Р	
2	0.2460	28.62		14.82	10.27	38.89		25.09	61.89	51.89	-23.00	-26.80	Р	
3	0.4420	27.36		9.10	10.36	37.72		19.46	57.02	47.02	-19.30	-27.56	Р	
4	0.6820	22.38		2.45	10.34	32.72		12.79	56.00	46.00	-23.28	-33.21	Р	
5	2.5100	19.39		2.10	10.43	29.82		12.53	56.00	46.00	-26.18	-33.47	Р	
6	19.0259	23.78		5.04	10.12	33.90		15.16	60.00	50.00	-26.10	-34.84	Р	

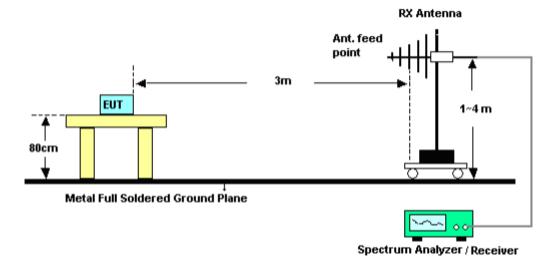
RESULT: PASS

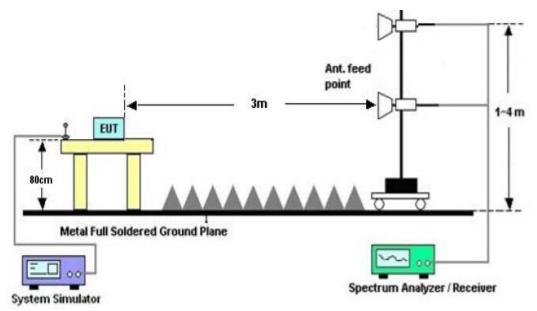
9. FCC RADIATED EMISSION TEST

9.1. LIMITS OF RADIATED EMISSION TEST

Frequency (MHz)	Distance (m)	Maximum Field Strength Limit (dBuV/m/ Q.P.)				
30~88	3	40.0				
88~216	3	43.5				
216~960	3	46.0				
960~1000	3	54.0				

Note: The lower limit shall apply at the transition frequency.


9.1.1 The following table is the setting of spectrum analyzer and receiver:


Spectrum Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP
	1GHz~13GHz
Start ~Stop Frequency	RBW 1MHz/ VBW 3MHz for Peak,
	RBW 1MHz/VBW 10Hz for Average

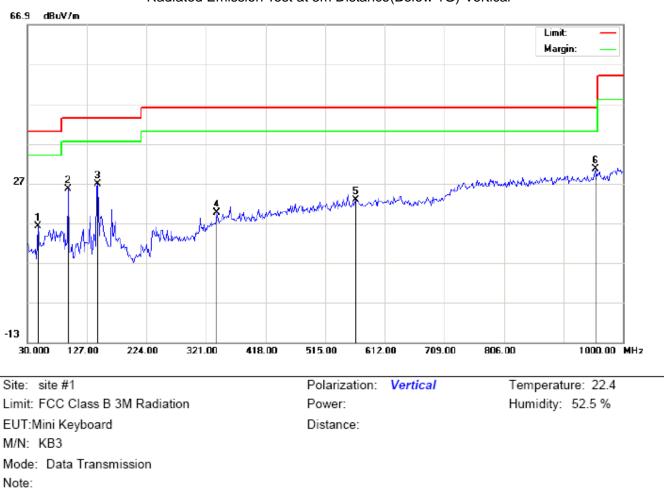
Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP

9.2. BLOCK DIAGRAM OF TEST SETUP

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

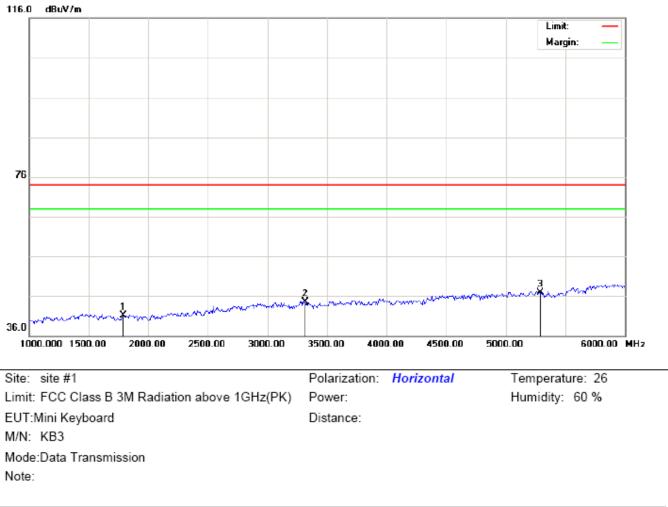
RADIATED EMISSION TEST SETUP ABOVE 1000MHz

9.3. PROCEDURE OF RADIATED EMISSION TEST

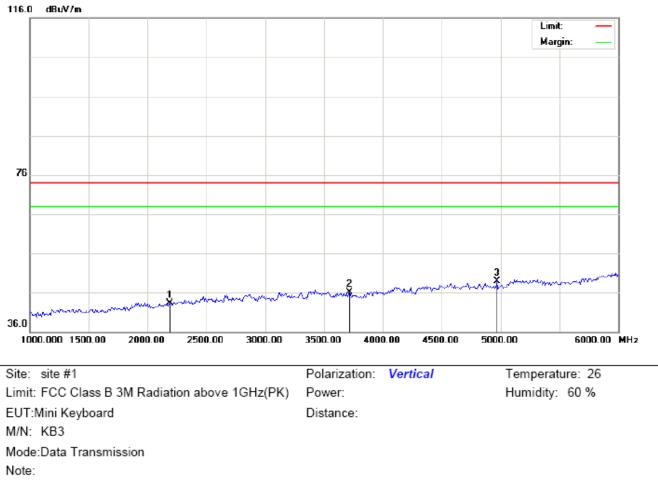

- 1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.

66.9 dBuV/m Limit: Margin: 27 monthing m -13 30.000 806.00 1000.00 MHz 127.00 224.00 321.00 418.00 515.00 612.00 709.00 Site: site #1 Polarization: Horizontal Temperature: 22.4 Limit: FCC Class B 3M Radiation Power: Humidity: 52.5 % EUT:Mini Keyboard Distance: M/N: KB3 Mode: Data Transmission Note:

9.4. TEST RESULT OF RADIATED EMISSION TEST


Radiated Emission Test at 3m Distance(Below 1G)-Horizontal

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	51.0167	12.48	10.15	22.63	40.00	-17.37	peak			
2		96.2833	17.55	6.77	24.32	43.50	-19.18	peak			
3		143.1667	9.89	14.43	24.32	43.50	-19.18	peak			
4		191.6667	5.94	11.61	17.55	43.50	-25.95	peak			
5		335.5500	5.60	17.78	23.38	46.00	-22.62	peak			
6		961.2000	1.25	29.89	31.14	54.00	-22.86	peak			


Radiated Emission Test at 3m Distance(Below 1G)-Vertical

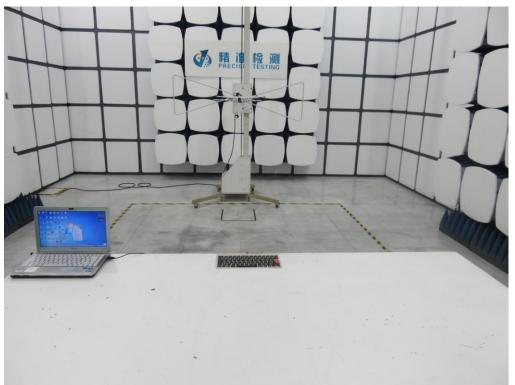
No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		47.7832	7.78	8.39	16.17	40.00	-23.83	peak			
2		96.2833	25.57	0.05	25.62	43.50	-17.88	peak			
3		144.7833	11.58	15.23	26.81	43.50	-16.69	peak			
4		338.7833	1.54	17.99	19.53	46.00	-26.47	peak			
5		565.1167	0.25	22.56	22.81	46.00	-23.19	peak			
6	*	954.7333	0.69	29.95	30.64	46.00	-15.36	peak			

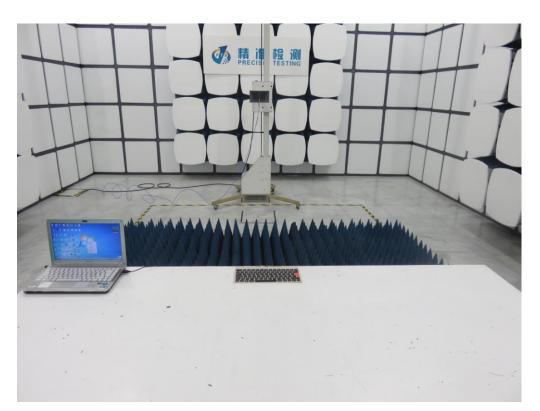
Radiated Emission Test at 3m Distance(Above 1G)-Horizontal

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBu∀	dB/m	dBu∀/m	dBu∨/m	dB		cm	degree]
1		1791.667	33.40	7.69	41.09	74.00	-32.91	peak			
2		3316.667	32.56	11.94	44.50	74.00	-29.50	peak			
3	*	5291.667	44.62	2.36	46.98	74.00	-27.02	peak			


Radiated Emission Test at 3m Distance(Above 1G)-Vertical

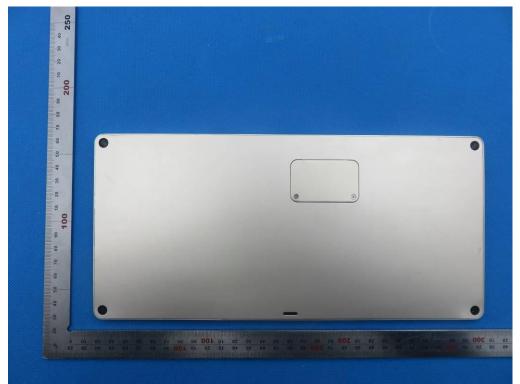
No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∨	dB/m	dBu\//m	dBuV/m	dB		cm	degree	1
1		2191.667	33.17	10.09	43.26	74.00	-30.74	peak			
2		3716.667	32.72	13.44	46.16	74.00	-27.84	peak			
3	*	4966.667	40.89	8.11	49.00	74.00	-25.00	peak			


RESULT: PASS


Note: Measurement = Reading + Factor, Over = Measurement – Limit. 6~13GHz at least have 20dB margin. No recording in the test report.

APPENDIX A: PHOTOGRAPHS OF TEST SETUP FCC LINE CONDUCTED EMISSION TEST SETUP

FCC RADIATED EMISSION TEST SETUP



APPENDIX B: PHOTOGRAPHS OF EUT

TOP VIEW OF EUT

BOTTOM VIEW OF EUT

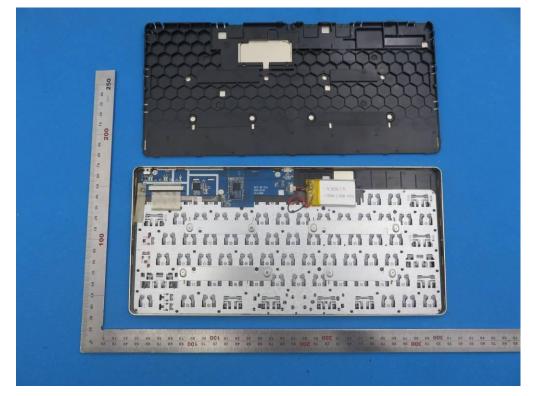
FRONT VIEW OF EUT

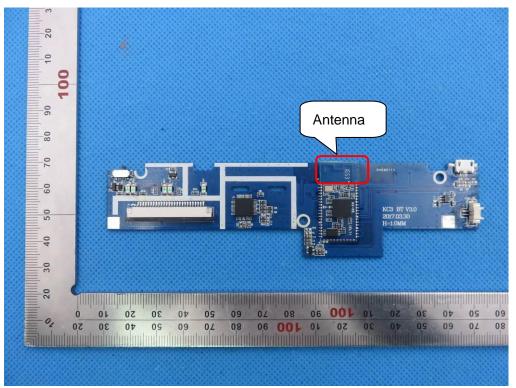
BACK VIEW OF EUT

Report No.: AGC01680170434FE01 Page 24 of 27

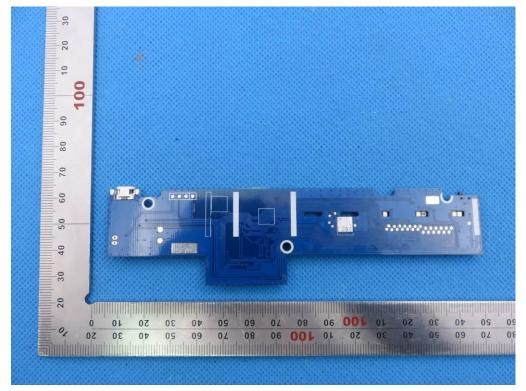
30 50 100 30 20 OL

RIGHT VIEW OF EUT


LEFT VIEW OF EUT


Report No.: AGC01680170434FE01 Page 25 of 27

VIEW OF EUT (PORT)


OPEN VIEW OF EUT

INTERNAL VIEW OF EUT-1

INTERNAL VIEW OF EUT-2

INTERNAL VIEW OF EUT-3

----END OF REPORT----