

FCC TEST REPORT

According to

47 CFR, Part 2, Part 15, CISPR PUB. 22 ICES 003 Issue 6

Applicant : Suzhou Switek Electronics&Technology Co, Ltd.

Address No.86, South WuSong Road, Luzhi Town, Wuzhong

District, Suzhou City.

Equipment: KVM SWITCH

KS-3104(KT-150),KS-3104(KT-250)

Model No. : KS-3108(KT-150), KS-3108(KT-250)

KS-3116(KT-150),KS-3116(KT-250)

FCC ID : ZQXKS-3116

I HEREBY CERTIFY THAT:

The sample was received on Sep 07, 2018 and the testing was carried out on Sep 17, 2018 at Cerpass Technology Corp. The test result refers exclusively to the test presented test model / sample. Without written approval of Cerpass Technology Corp., the test report shall not be reproduced except in full.

Issued Date : Sep 20, 2018

: 1 of 23

Page No.

Approved by

Kero Kuo / EMC & RF Manager

FCC TEST REPORT

Report No.:TEFD1809102

Issued by:

Cerpass Technology Co.,Ltd

No.10, Lane 2, Lianfu Street, Luzhu Township, Taoyuan County 33848, Taiwan(R.O.C.)

Tel: 886-3-3226-888

Fax: 886-3-3226-881

The test record, data evaluation & Equipment. Under Test configurations represented herein are true and accurate accounts of the measurements of the samples EMC characteristics under the conditions specified in this report.

Laboratory Accreditation:

Cerpass Technology Corporation Test Laboratory

TAF LAB Code: 1439

Cerpass Technology Corp.

Report format Revision 01 Page No. : 2 of 23

Issued Date : Sep 20, 2018

Report No.:TEFD1809102

Issued Date : Sep 20, 2018

: 3 of 23

Page No.

Contents

1.	Summ	nary of Test Procedure and Test Result	5
	1.1.	Applicable Standards	5
2.	Test C	Configuration of Equipment under Test	6
	2.1.	Feature of Equipment under Test	6
	2.2.	Test Manner	7
	2.3.	Description of Test System	8
	2.4.	Connection Diagram of Test System	9
	2.5.	General Information of Test	10
	2.6.	Measurement Uncertainty	10
3.	Test o	of Conducted Emission	11
	3.1.	Test Limit	11
	3.2.	Test Procedures	11
	3.3.	Typical test Setup	12
	3.4.	Measurement Equipment	12
	3.5.	Test Result and Data	13
4.	Test o	f Radiated Emission	15
	4.1.	Test Limit	15
	4.2.	Test Procedures	16
	4.3.	Typical test Setup	18
	4.4.	Measurement Equipment	19
	4.5.	Test Result and Data (30MHz~1GHz)	20
	4.6	Test Posult and Data (1GHz ~18GHz)	22

History of this test report

Report No.:TEFD1809102

■ ORIGINAL.

 $\hfill\square$ Additional attachment as following record:

Report No	Version	Date	Description
TEFD1809102	Rev 01	Sep 20, 2018	Initial Issue

Report format Revision 01

Issued Date : Sep 20, 2018

Page No. : 4 of 23

1. Summary of Test Procedure and Test Result

1.1. Applicable Standards

The measurements shown in this test report were made in accordance with the procedures given in ANSI C63.4 – 2014 and the energy emitted by this equipment was passed Part 2, Part 15, CISPR PUB. 22.

Report No.:TEFD1809102

The energy emitted by this equipment was passed both Radiated and Conducted Emissions Class A limits.

Test Item	Normative References	Test Result	Remarks
			Meets Class A Limit
Conducted Emission	ANSI C63.4-2014	PASS	Minimum passing
Conducted Emission	FCC Part 15 Subpart B ICES 003 Issue 6		margin(QP) is -33.39 dB at
			0.1500 MHz
			Meets Class A Limit
Radiated Emission	ANSI C63.4-2014	PASS	Minimum passing
Radiated Emission	FCC Part 15 Subpart B ICES 003 Issue 6		margin(peak) is -7.08 dB
			at 207.5099 MHz

Cerpass Technology Corp.

Report format Revision 01 Page No. : 5 of 23

Issued Date : Sep 20, 2018

2. Test Configuration of Equipment under Test

2.1. Feature of Equipment under Test

Product Name:	KVM SWITCH				
Model Name:	KS-3104(KT-150),KS-3104(KT-250) KS-3108(KT-150),KS-3108(KT-250) KS-3116(KT-150),KS-3116(KT-250)				
	Model:	FJ-SW1260901000DU			
Adapter	Input:	100-240V~ 50/60Hz 0.4A Max			
	Output:	9V, 1000mA			

Report No.:TEFD1809102

Note: Please refer to user manual.

Model Different:

Туре		4 Port 8 Port		16 Port		
Model		KS-3104(KT-150)	KS-3108(KT-150)	KS-3116(KT-150)		
Model		KS-3104(KT-250)	KS-3108(KT-250)	KS-3116(KT-250)		
Computer	Direct Connects	4	8	16		
Connection	Direct Connects	4	0	10		
	Operating	-10-50°C				
Operating	temperature					
Operating Environment	Storage	-20-60°C				
Environment	temperature					
	Humidity	0-80%RH, No Condensation				
Dhysical	Housing	Metal				
Physical	Dimension	432 x 155 x 44 mm				
Properties	Weight	0.8kg	0.8kg	0.8kg		

Cerpass Technology Corp.

Report format Revision 01 Page No. : 6 of 23

Issued Date : Sep 20, 2018

2.2. Test Manner

a. During testing, the interface cables and equipment positions were varied according to ANSI C63.4.

Report No.:TEFD1809102

- b. Turn on the power of all equipment.
- c. The complete test system included PC, PS/2 Keyboard, USB Keyboard, USB Mouse, PS/2 Mouse, Monitor, LAN to VGA + USB Docking and EUT for EMI test.
- d. The test mode as follow:
 - Mode 1: Full system for KS-3116(KT-150)
 - Mode 2: Full system for KS-3116(KT-250)
 - Mode 3: Full system for KS-3104(KT-150)
 - Mode 4: Full system for KS-3104(KT-250)
 - Mode 5: Full system for KS-3108(KT-150)
 - Mode 6: Full system for KS-3108(KT-250)

The "Test Mode 1 were reported as final data.

Report format Revision 01

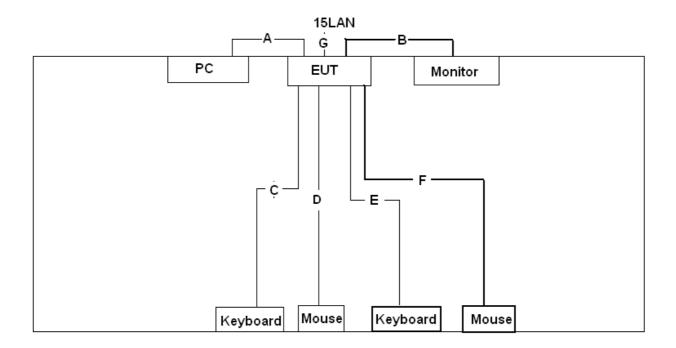
Issued Date : Sep 20, 2018

Page No. : 7 of 23

2.3. Description of Test System

No.	Device	Manufacturer	Model No.	Description
1	PC	HP	HP Compaq Elite 8200	Non-Shielded ,1.8m
1	PC	ПР	MTPC	Non-Sillelaea , i.om
2	PS/2 Keyboard	ASUS	PK1100	N/A
3	USB Keyboard	DELL	SK-8115	N/A
4	USB Mouse	DELL	G0K02XYK	N/A
5	PS/2 Mouse	FOXQUEEN	HM518	N/A
6	Monitor	Lenovo	L2364wA	R33B65
7	LAN to VGA +	OTECH	DT-5002A	N/A
	USB Docking	OTECH	D1-3002A	

Report No.:TEFD1809102


Report format Revision 01

Issued Date : Sep 20, 2018

Page No. : 8 of 23

2.4. Connection Diagram of Test System

No.	Cable	Quantity	Description
Α	LAN to VGA + USB Cable	1	Non-Shielded, 0.5m
В	VGA Cable	1	Non-Shielded, 1.8m,with two ferrite core bonded
С	USB Cable	1	Non-Shielded, 1.8m, with one ferrite core bonded
D	USB Cable	1	Non-Shielded, 1.5m
Е	PS/2 Cable	1	Non-Shielded, 1.5m, with one ferrite core
F	PS/2 Cable	1	Non-Shielded, 1.5m
G	LAN Cable	15	Non-Shielded, 1.5m

Report format Revision 01

Issued Date : Sep 20, 2018

Page No. : 9 of 23

2.5. General Information of Test

T + 0"				
Test Site :	Cerpass Technology Corporation Test Laboratory			
	Address: No.10, Ln. 2, Lianfu St., Luzhu Dist., Taoyuan City			
	33848, Taiwan (R.O.C.)			
	Tel:+886-3-3226-888			
	Fax:+886-3-3226-881			
	Address: No.68-1, Shihbachongsi, Shihding Township,			
	New Taipei City 223, Taiwan, R.O.C.			
	Tel: +886-2-2663-8582			
FCC Registration Number :	TW1079, TW1061			
IC Pegistration Number:	4934E-1, 4934E-2			
IC Registration Number :	49346-1, 49346-2			
	T-2205 for Telecommunication Test			
VCCI	C-4663 for Conducted emission test			
VCCI	R-4218 for Radiated emission test			
	G-10812 for radiated disturbance above 1GHz			
Frequency Range	Conducted Emission Test: from 150 kHz to 30 MHz			
Investigated :	Radiated Emission Test: from 30 MHz to 18,000 MHz			
	The test distance of radiated emission below 1GHz from			
To d Distance	antenna to EUT is 10 M.			
Test Distance :	The test distance of radiated emission above 1GHz from			
	antenna to EUT is 3 M.			
<u> </u>				

Report No.:TEFD1809102

2.6. Measurement Uncertainty

Measurement Item	Measurement Frequency	Polarization	Uncertainty
Conducted Emission	9 kHz ~ 30 MHz	LINE / NEUTRAL	3.25 dB
Dedicted Emission	30 MHz ~ 1,000 MHz	Vertical / Horizontal	3.93 dB
Radiated Emission	1,000 MHz ~ 18,000 MHz	Vertical / Horizontal	5.18 dB

Report format Revision 01

Issued Date : Sep 20, 2018

Page No. : 10 of 23

3. Test of Conducted Emission

3.1. Test Limit

Conducted Emissions were measured from 150 kHz to 30 MHz with a bandwidth of 9 KHz on the 120 VAC power and return leads of the EUT according to the methods defined in ANSI C63.4-2014 Section 3.1. The EUT was placed on a nonmetallic stand in a shielded room 0.8 meters above the ground plane as shown in section 2.2. The interface cables and equipment positioning were varied within limits of reasonable applications to determine the position produced maximum conducted emissions.

Report No.:TEFD1809102

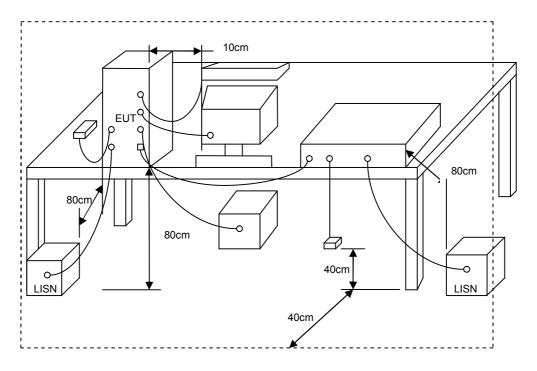
Conducted Emission Limits:

Frequency range	Class A Equipment		Class B Equipment		
(MHz)	Quasi Peak Average		Quasi Peak	Average	
0.15 to 0.50	79	66	66 to 56*	56 to 46*	
0.50 to 5	73	60	56	46	
5. to 30.	73	60	60	50	

^{*}The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5MHz.

3.2. Test Procedures

- a. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- b. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- c. All the support units are connecting to the other LISN.
- d. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- e. The FCC states that a 50 ohm, 50 micro-Henry LISN should be used.
- f. Both sides of AC line were checked for maximum conducted interference.
- g. The frequency range from 150 kHz to 30 MHz was searched.
- h. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.


Cerpass Technology Corp.

Report format Revision 01 Page No. : 11 of 23

Issued Date : Sep 20, 2018

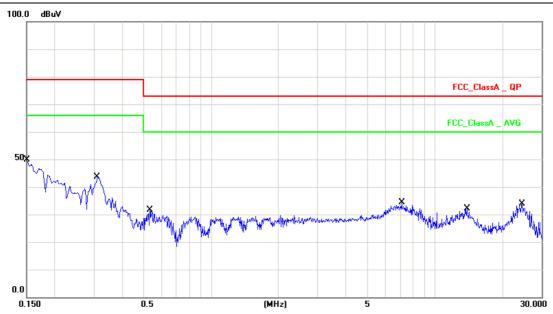
3.3. Typical test Setup

3.4. Measurement Equipment

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date
EMI Receiver	R&S	ESCI3	100821	2018/9/8	2019/9/7
Line Impedance					
Stabilization	Schwarzbeck	NSLK 8127	8127-516	2018/9/12	2019/9/11
Network					
Line Impedance					
Stabilization	Schwarzbeck	NSLK 8127	8127-568	2018/2/26	2019/2/25
Network					
Pulse Limiter	R&S	ESH3-Z2	101934	2018/2/22	2019/2/21
Software	Farad	Ez-EMC	ver.ct3a1	N/A	N/A

Report format Revision 01

Issued Date : Sep 20, 2018


Page No. : 12 of 23

3.5. Test Result and Data

Test Mode: Mode 1: Full system for KS-3116(KT-150)

AC Power: AC 120V/60Hz Phase: LINE Temperature: 24°C Humidity: 53%

Pressure(mbar): 1002 Date: 2018/09/16

Report No.:TEFD1809102

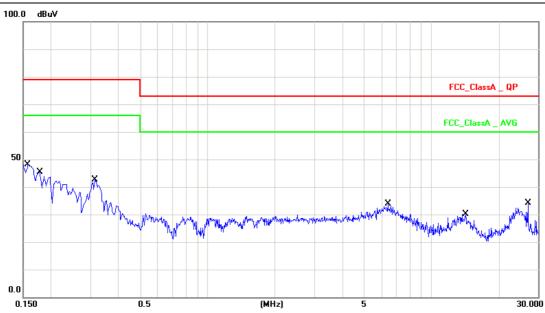
No.	Frequency	Factor	Reading	Level	Limit	Margin	Detector
	(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)	
1	0.1500	9.97	35.64	45.61	79.00	-33.39	QP
2	0.1500	9.97	18.46	28.43	66.00	-37.57	AVG
3	0.3100	9.97	29.64	39.61	79.00	-39.39	QP
4	0.3100	9.97	22.14	32.11	66.00	-33.89	AVG
5	0.5340	9.98	16.06	26.04	73.00	-46.96	QP
6	0.5340	9.98	9.63	19.61	60.00	-40.39	AVG
7	7.1220	10.20	18.37	28.57	73.00	-44.43	QP
8	7.1220	10.20	11.06	21.26	60.00	-38.74	AVG
9	13.9300	10.38	18.97	29.35	73.00	-43.65	QP
10	13.9300	10.38	13.78	24.16	60.00	-35.84	AVG
11	24.5820	10.60	20.84	31.44	73.00	-41.56	QP
12	24.5820	10.60	14.23	24.83	60.00	-35.17	AVG

Note: Measurement Level = Reading Level + Correct Factor

Report format Revision 01

Issued Date : Sep 20, 2018

Page No. : 13 of 23


Report No.:TEFD1809102

Test Mode: Mode 1: Full system for KS-3116(KT-150)

AC Power: AC 120V/60Hz Phase: NEUTRAL

Temperature: 24°C Humidity: 53%

Pressure(mbar): 1002 Date: 2018/09/16

No.	Frequency	Factor	Reading	Level	Limit	Margin	Detector
	(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)	
1	0.1580	9.97	35.15	45.12	79.00	-33.88	QP
2	0.1580	9.97	18.84	28.81	66.00	-37.19	AVG
3	0.1780	9.97	32.73	42.70	79.00	-36.30	QP
4	0.1780	9.97	15.63	25.60	66.00	-40.40	AVG
5	0.3140	9.97	28.77	38.74	79.00	-40.26	QP
6	0.3140	9.97	21.81	31.78	66.00	-34.22	AVG
7	6.4020	10.18	16.19	26.37	26.37 73.00 -46.63		QP
8	6.4020	10.18	8.76	18.94	60.00	-41.06	AVG
9	14.2340	10.39	13.79	24.18	73.00	-48.82	QP
10	14.2340	10.39	7.04	17.43	60.00	-42.57	AVG
11	27.0900	10.66	20.30	30.96	73.00	-42.04	QP
12	27.0900	10.66	14.01	24.67	60.00	-35.33	AVG

Note: Measurement Level = Reading Level + Correct Factor

Test engineer:

Cerpass Technology Corp.

Report format Revision 01

Issued Date : Sep 20, 2018

Page No. : 14 of 23

4. Test of Radiated Emission

4.1. Test Limit

Below 1GHz (for digital device)

For unintentional device, according to CISPR PUB.22, for Class B digital devices, the general requirement of field strength of radiated emissions from intentional radiators at a distance of 10 meters shall not exceed the below table.

Report No.:TEFD1809102

FREQUENCY (MHz)	dBuV/m (At 10m)			
PREQUENCT (MHZ)	Class A	Class B		
30 ~ 230	40	30		
230 ~ 1000	47	37		

Limit tables for non-digital device:

Class A Radiated Emission limit at 10m (for others)

Frequency (MHZ)	Field Strength Limit (uV/m)Q.P.	Field Strength Limit (dBuV/m)Q.P.
30 - 88	90	39
88 - 216	150	43.5
216 – 960	210	46.4
Above 960	300	49.5

Class B Radiated Emission limit at 3m (for others)

Frequency (MHZ)	Field Strength Limit (uV/m)Q.P.	Field Strength Limit (dBuV/m)Q.P.
30 - 88	100	40
88 - 216	150	43.5
216 – 960	200	46
Above 960	500	54

Above 1GHz(for all device)

	Class A (dBu	V/m) (At 10m)	Class B (dBuV/m) (At 3m)		
Frequency (MHZ)	Average	Average Peak		Peak	
Above 1000	49.5	69.5	54	74	

NOTE: (1) The lower limit shall apply at the transition frequencies.

- (2) Emission level (dBuV/m) = 20 log Emission level (uV/m).
- (3) The measurement above 1GHz is at close-in distances 3m, and determine the limit L2 corresponding to the close-in distance d2 by applying the following relation: L2 = L1 (d1/d2), where L1 is the specified limit in microvolts per metre (uV/m) at the distance d1 (10m), L2 is the new limit for distance d2 (3m).

So the new Class A limit above 1GHz at 3m is as following table:

Cerpass Technology Corp. Issued Date : Sep 20, 2018 Page No. : 15 of 23

	Class A (dBuV/m) (At 3m)		
Frequency (MHZ)	Average	Peak	
Above 1000	60	80	

Report No.:TEFD1809102

According to FCC Part 15.33 (b), for an unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.75	30
1.75-108	1000
108-500	2000
500-1000	5000
Above 1000	5 th harmonic of the highest frequency or 40GHz, whichever is lower

4.2. Test Procedures

Procedure of Preliminary Test

- The equipment was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane. When the EUT is a floor standing equipment, it is placed on the ground plane which has a 15 cm non-conductive covering to insulate the EUT from the ground plane.
- Support equipment, if needed, was placed as per ANSI C63.4.
- All I/O cables were positioned to simulate typical usage as per ANSI C63.4.
- The EUT received AC 120VAC/60Hz power source from the outlet socket under the turntable. All support equipment power received from another socket under the turntable.
- The antenna was placed at 3 or 10 meter away from the EUT as stated in ANSI C63.4. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.
- The Analyzer / Receiver quickly scanned from 30MHz to 40GHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.

Cerpass Technology Corp. Issued Date: Sep 20, 2018 Page No. : 16 of 23

Report format Revision 01

Set the spectrum analyzer/ Receiver in the following setting as:

Below 1GHz:

RBW=120KHz / VBW=300KHz / Sweep=AUTO

Above 1GHz:

Peak: RBW=1MHz, VBW=3MHz / Sweep=AUTO Average: RBW=1MHz / VBW=1.6Hz / Sweep=AUTO

 The worst configuration of EUT and cable of the above highest emission level were recorded for reference of the final test.

Report No.:TEFD1809102

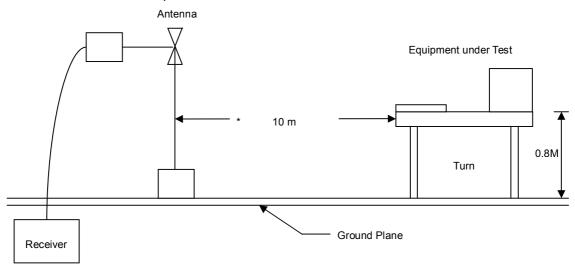
Procedure of Final Test

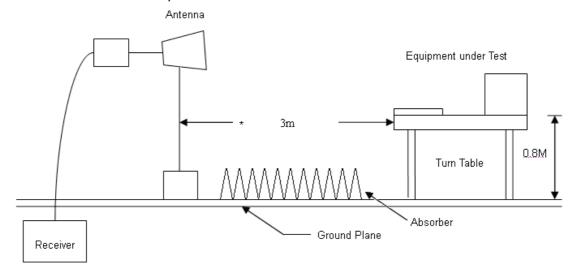
- EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.
- The Analyzer / Receiver scanned from 30MHz to 40GHz. Emissions were scanned and
 measured rotating the EUT to 360 degrees, varying cable placement and positioning the
 antenna 1 or 1 to 4 meters above the ground plane, in both the vertical and the horizontal
 polarization, to maximize the emission reading level.
- Recording at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. Below 1GHz the QP. reading and above 1GHz the Peak and Average reading are presented.
- The test data of the worst-case condition(s) was recorded.

Cerpass Technology Corp.

Report format Revision 01

Issued Date : Sep 20, 2018


Page No. : 17 of 23


4.3. Typical test Setup

Below 1GHz Test Setup

CERPASS TECHNOLOGY CORP.

Above 1GHz Test Setup

Report format Revision 01

Issued Date : Sep 20, 2018

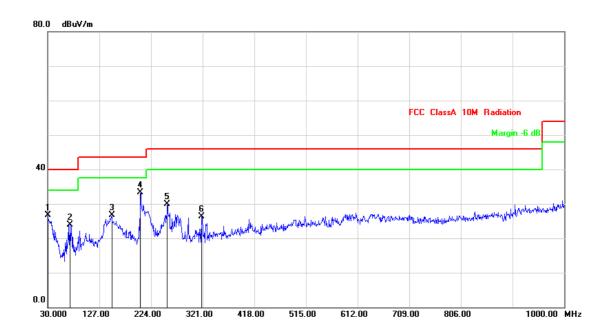
Page No. : 18 of 23

Report No.:TEFD1809102

4.4. Measurement Equipment

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date
Bilog Antenna	Sunol	JB1	A020514-1	2018/2/23	2019/2/22
Bilog Antenna	Sunol	JB1	A020514-2	2018/3/20	2019/3/19
EMI Receiver	R&S	ESCI3	101402	2018/2/23	2019/2/22
EMI Receiver	R&S	ESCI7	100963	2018/3/15	2019/3/14
Preamplifier	EM Electronics corp.	EM330	60610	2018/3/8	2019/3/7
Preamplifier	EM Electronics corp.	EM330	60611	2018/2/26	2019/2/25
Horn Antenna	Schwarzbeck	BBHA 9120 D	9120D-1785	2017/9/27	2018/9/26
Spectrum Analyzer	R&S	FSP40	100047	2018/3/20	2019/3/19
Preamplifier	EM Electronics corp.	EM01G18G	60700	2018/09/01	2019/08/31
Software	E3	AUDIX	Version: 8.14.806b	N/A	N/A

Report format Revision 01


Issued Date : Sep 20, 2018

Page No. : 19 of 23

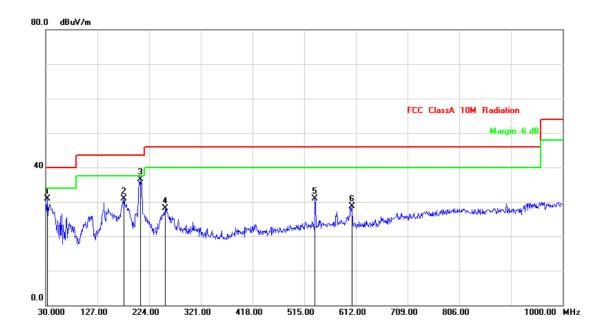
4.5. Test Result and Data (30MHz~1GHz)

Test Mode :	Mode 1: Full system for KS-3116(KT-150)				
AC Power :	AC 120V/60Hz Ant. Polarization: Horizontal				
Temp:	25°C	Humidity:	52%		
Pressure(mbar) :	1002	Date:	2018/09/17		

Report No.:TEFD1809102

No.	Frequency	Factor	Reading	Level	Limit	Margin	Det.	Height	Azimuth
	(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)
1	30.0000	-6.50	33.27	26.77	40.00	-13.23	peak	100	184
2	71.7099	-17.25	41.25	24.00	40.00	-16.00	peak	100	52
3	150.2800	-11.83	38.48	26.65	43.50	-16.85	peak	400	226
4	204.5999	-13.13	46.50	33.37	43.50	-10.13	peak	400	36
5	255.0399	-11.64	41.50	29.86	46.00	-16.14	peak	200	118
6	319.0600	-8.99	35.36	26.37	46.00	-19.63	peak	200	78

Note: Measurement Level = Reading Level + Correct Factor


Report format Revision 01

Issued Date : Sep 20, 2018

Page No. : 20 of 23

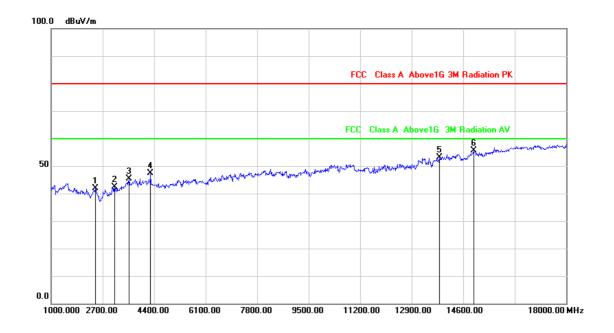
Test Mode :	Mode 1: Full system for KS-3116(KT-150)				
AC Power :	AC 120V/60Hz Ant. Polarization: Vertical				
Temp :	25°C	Humidity:	52%		
Pressure(mbar):	1002	Date:	2018/09/17		

Report No.:TEFD1809102

No.	Frequency	Factor	Reading	Level	Limit	Margin	Det.	Height	Azimuth
	(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)
1	32.9099	-8.07	38.92	30.85	40.00	-9.15	peak	100	61
2	176.4698	-12.71	43.71	31.00	43.50	-12.50	peak	100	151
3	207.5099	-13.05	49.47	36.42	43.50	-7.08	peak	400	128
4	255.0399	-11.64	39.69	28.05	46.00	-17.95	peak	200	223
5	535.3700	-3.26	34.09	30.83	46.00	-15.17	peak	200	25
6	604.2400	-1.78	30.50	28.72	46.00	-17.28	peak	400	117

Note: Measurement Level = Reading Level + Correct Factor

Report format Revision 01


Issued Date : Sep 20, 2018
Page No. : 21 of 23

0

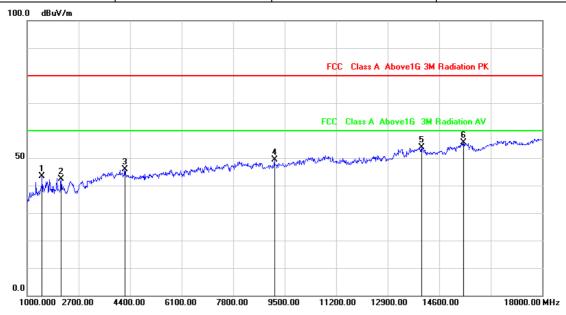
4.6. Test Result and Data (1GHz ~18GHz)

Test Mode :	Mode 1: Full system for KS-3116(KT-150)				
AC Power :	AC 120V/60Hz	Ant. Polarization:	Horizontal		
Temp :	25°C	Humidity:	52%		
Pressure(mbar) :	1002	Date:	2018/09/17		

Report No.:TEFD1809102

No.	Frequency	Factor	Reading	Level	Limit	Margin	Det.	Height	Azimuth
	(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)
1	2462.000	-1.97	43.93	41.96	80.00	-38.04	peak	200	185
2	3091.000	-0.72	42.98	42.26	80.00	-37.74	peak	100	227
3	3567.000	1.81	43.45	45.26	80.00	-34.74	peak	200	204
4	4281.000	3.02	44.36	47.38	80.00	-32.62	peak	100	78
5	13818.000	20.82	32.41	53.23	80.00	-26.77	peak	100	300
6	14940.000	22.14	33.40	55.54	80.00	-24.46	peak	189	360

Note: Measurement Level = Reading Level + Correct Factor


Report format Revision 01

Issued Date : Sep 20, 2018

Page No. : 22 of 23

Test Mode :	Mode 1: Full system for KS-3116(KT-150)					
AC Power :	AC 120V/60Hz	Ant. Polarization:	Vertical			
Temp :	25°C	Humidity :	52%			
Pressure(mbar) :	1002	Date:	2018/09/17			

Report No.:TEFD1809102

No.	Frequency	Factor	Reading	Level	Limit	Margin	Det.	Height	Azimuth
	(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)
1	1493.000	-5.83	49.21	43.38	80.00	-36.62	peak	169	360
2	2122.000	-3.24	45.65	42.41	80.00	-37.59	peak	200	328
3	4230.000	3.10	42.87	45.97	80.00	-34.03	peak	200	2
4	9160.000	9.12	40.30	49.42	80.00	-30.58	peak	200	141
5	14022.000	21.72	32.11	53.83	80.00	-26.17	peak	100	191
6	15399.000	22.23	33.29	55.52	80.00	-24.48	peak	100	274

Note: Measurement Level = Reading Level + Correct Factor

	Magina	
Test engineer:	J	

Cerpass Technology Corp.

Report format Revision 01

: 23 of 23

Page No.