

FCC TEST REPORT

According to

47 CFR, Part 2, Part 15, CISPR PUB. 22 ICES 003 Issue 6

Applicant :	Suzhou Switek Electronics&Technology Co, Ltd.
Address :	No.86, South WuSong Road, Luzhi Town, Wuzhong District, Suzhou City.
Equipment :	LCD KVM SWITCH
Model No. :	AS7104TLS(AS7100ULS(TLS)-F+KB+TLSC04) AS9104TLS(AS9100ULS(TLS)-F+KB+TLSC04) AS7108TLS(AS7100ULS(TLS)-F+KB+TLSC08) AS9108TLS(AS9100ULS(TLS)-F+KB+TLSC08) AS7116TLS(AS7100ULS(TLS)-F+KB+TLSC16) AS9116TLS(AS9100ULS(TLS)-F+KB+TLSC16)
FCC ID :	ZQXAS-9116TLS

I HEREBY CERTIFY THAT :

The sample was received on Aug 09, 2018 and the testing was carried out on Aug 22, 2018 at Cerpass Technology Corp. The test result refers exclusively to the test presented test model / sample. Without written approval of Cerpass Technology Corp., the test report shall not be reproduced except in full.

Approved by

Kero Kuo / EMC & RF Manager

FCC TEST REPORT

Issued by:

Cerpass Technology Co.,Ltd

No.10, Lane 2, Lianfu Street, Luzhu Township, Taoyuan County 33848, Taiwan(R.O.C.)

Tel: 886-3-3226-888

Fax: 886-3-3226-881

The test record, data evaluation & Equipment. Under Test configurations represented herein are true and accurate accounts of the measurements of the samples EMC characteristics under the conditions specified in this report.

Laboratory Accreditation:

Cerpass Technology Corporation Test Laboratory

TAF LAB Code: 1439

Contents

1.	Summ	ary of Test Procedure and Test Result	5
	1.1.	Applicable Standards	5
2.	Test C	onfiguration of Equipment under Test	6
	2.1.	Feature of Equipment under Test	6
	2.2.	Test Manner	8
	2.3.	Description of Test System	9
	2.4.	Connection Diagram of Test System	10
	2.5.	General Information of Test	11
	2.6.	Measurement Uncertainty	11
3.	Test of	f Conducted Emission	12
	3.1.	Test Limit	12
	3.2.	Test Procedures	12
	3.3.	Typical test Setup	13
	3.4.	Measurement Equipment	13
	3.5.	Test Result and Data	14
4.	Test of	f Radiated Emission	18
	4.1.	Test Limit	18
	4.2.	Test Procedures	19
	4.3.	Typical test Setup	21
	4.4.	Measurement Equipment	22
	4.5.	Test Result and Data (30MHz~1GHz)	23
	4.6.	Test Result and Data (1GHz ~18GHz)	27

History of this test report

■ ORIGINAL.

□ Additional attachment as following record:

Report No	Version	Date	Description
TEFD1808263	Rev 01	Aug 26, 2018	Initial Issue

1. Summary of Test Procedure and Test Result

1.1. Applicable Standards

The measurements shown in this test report were made in accordance with the procedures given in ANSI C63.4 - 2014 and the energy emitted by this equipment was passed Part 2, Part 15, CISPR PUB. 22.

The energy emitted by this equipment was passed both Radiated and Conducted Emissions Class A limits.

Test Item	Normative References	Test Result	Remarks
			Meets Class A Limit
Conducted Emission	ANSI C63.4-2014	DV66	Minimum passing
	ICES 003 Issue 6	FA00	margin(QP) is -21.07 dB at
			0.5020 MHz
			Meets Class A Limit
Padiated Emission	ANSI C63.4-2014	PASS	Minimum passing
	FCC Part 15 Subpart B		margin(peak) is -3.35 dB
			at 75.5899 MHz

2. Test Configuration of Equipment under Test

2.1. Feature of Equipment under Test

Product Name:	LCD KVM SWITCH		
Model Name:	AS7104TLS(AS AS9104TLS(AS AS7108TLS(AS AS9108TLS(AS AS7116TLS(AS AS9116TLS(AS	7100ULS(TLS)-F+KB+TLSC04) 9100ULS(TLS)-F+KB+TLSC04) 7100ULS(TLS)-F+KB+TLSC08) 9100ULS(TLS)-F+KB+TLSC08) 7100ULS(TLS)-F+KB+TLSC16) 9100ULS(TLS)-F+KB+TLSC16)	
Adapter	Model:	FJ-SW1204000 100-240V~ 50/60Hz 1.5A MAX	
	Output:	12V, 4000mA	

Note: Please refer to user manual.

Model Different:

Туре		4 Port	8 Port	16 Port	
		AS7104TLS(A	AS7108TLS(A	AS7116TLS(A	
		S7100ULS(TL	S7100ULS(TL	S7100ULS(TL	
		S)-F+KB+TLS	S)-F+KB+TLS	S)-F+KB+TLS	
Madal		C04),	C08) ,	C16) ,	
Woder		AS9104TLS(A	AS9108TLS(A	AS9116TLS(A	
		S9100ULS(TL	S9100ULS(TL	S9100ULS(TL	
		S)-F+KB+TLS	S)-F+KB+TLS	S)-F+KB+TLS	
		C04)	C08)	C16)	
Computer	Direct Connecto	4	8	16	
Connection	Direct Connects	4	0	16	
Operating	Operating temperature	-10-50°C			
	Storage temperature	-20-60°C			
Environment	Humidity	0-80%RH, No Condensation			
	Housing	Metal			
Physical Properties	Dimension	148.4*445*45m	m		
	Weight	2.25kg	2.74kg	3.80kg	

Remark: AS7104TLS(AS7100ULS(TLS)-F+KB+TLSC04) is 17inch LCD Monitor, AS7108TLS(AS7100ULS(TLS)-F+KB+TLSC08) is 17inch LCD Monitor, AS7116TLS(AS7100ULS(TLS)-F+KB+TLSC16) is 17inch LCD Monitor AS9104TLS(AS9100ULS(TLS)-F+KB+TLSC04) is 19inch LCD Monitor, AS9108TLS(AS9100ULS(TLS)-F+KB+TLSC08) is 19inch LCD Monitor AS9116TLS(AS9100ULS(TLS)-F+KB+TLSC16) is 19inch LCD Monitor

2.2. Test Manner

- a. During testing, the interface cables and equipment positions were varied according to ANSI C63.4.
- b. Turn on the power of all equipment.
- c. The complete test system included Computer, USB Keyboard, USB Mouse, LAN to VGA + USB Docking and EUT for EMI test.
- d. The test mode as follow:
 - Mode 1: Full system for AS7104TLS(AS7100ULS(TLS)-F+KB+TLSC04) With 3 LAN
 - Mode 2: Full system for AS9104TLS(AS9100ULS(TLS)-F+KB+TLSC04) With 3 LAN
 - Mode 3: Full system for AS7108TLS(AS7100ULS(TLS)-F+KB+TLSC08) With 7 LAN
 - Mode 4: Full system for AS9108TLS(AS9100ULS(TLS)-F+KB+TLSC08) With 7 LAN
 - $Mode \ 5: \quad Full \ system \ for \ AS7116TLS (AS7100ULS (TLS)-F+KB+TLSC16) \ With \ 15 \ LAN$

Mode 6: Full system for AS9116TLS(AS9100ULS(TLS)-F+KB+TLSC16) With 15 LAN The "Test Mode 5,6" were reported as final data.

2.3. Description of Test System

No.	Device	Manufacturer	Model No.	Description
1	DC	ЦП	HP Compaq Elite 8200	Non Shieldod, 1.9m
	PC	ПР	MTPC	Non-Shielded , I.om
2	USB Keyboard	DELL	SK-8115	N/A
3	USB Mouse	DELL	G0K02XYK	N/A
4	USB Mouse	DELL	G0K02XYK	N/A
5	LAN to VGA +	Switck	KT 150	N/A
	USB Docking	Switch		

2.4. Connection Diagram of Test System

No.	Cable	Quantity	Description
А	LAN to VGA + USB Cable	1	Shielded, 0.5m
В	USB Cable	1	Shielded, 1.8m, with one ferrite core bonded
С	USB Cable	1	Shielded, 1.5m
D	USB Cable	1	Shielded, 1.5m,
Е	LAN Cable	15	Non-Shielded, 1.5m

2.5. General Information of Test

Test Site :	Cerpass Technology Corporation Test Laboratory Address: No.10, Ln. 2, Lianfu St., Luzhu Dist., Taoyuan City 33848, Taiwan (R.O.C.) Tel:+886-3-3226-888 Fax:+886-3-3226-881 Address: No.68-1, Shihbachongsi, Shihding Township, New Taipei City 223, Taiwan, R.O.C. Tel: +886-2-2663-8582
FCC Registration Number :	TW1079, TW1061, TW1439
IC Registration Number :	4934E-1, 4934E-2
VCCI	T-2205 for Telecommunication Test C-4663 for Conducted emission test R-4218 for Radiated emission test G-10812 for radiated disturbance above 1GHz
Frequency Range Investigated :	Conducted Emission Test: from 150 kHz to 30 MHz Radiated Emission Test: from 30 MHz to 18,000 MHz
Test Distance :	The test distance of radiated emission below 1GHz from antenna to EUT is 10 M. The test distance of radiated emission above 1GHz from antenna to EUT is 3 M.

2.6. Measurement Uncertainty

Measurement Item	Measurement Frequency	Polarization	Uncertainty
Conducted Emission	9 kHz ~ 30 MHz	LINE / NEUTRAL	3.25 dB
Dedicted Emission	30 MHz ~ 1,000 MHz	Vertical / Horizontal	3.93 dB
Radiated Emission	1,000 MHz ~ 18,000 MHz	Vertical / Horizontal	5.18 dB

3. Test of Conducted Emission

3.1. Test Limit

Conducted Emissions were measured from 150 kHz to 30 MHz with a bandwidth of 9 KHz on the 120 VAC power and return leads of the EUT according to the methods defined in ANSI C63.4-2014 Section 3.1. The EUT was placed on a nonmetallic stand in a shielded room 0.8 meters above the ground plane as shown in section 2.2. The interface cables and equipment positioning were varied within limits of reasonable applications to determine the position produced maximum conducted emissions.

Conducted Emission Limits:

Frequency range	Class A E	quipment	Class B Equipment		
(MHz)	Quasi Peak	Average	Quasi Peak	Average	
0.15 to 0.50	79	66	66 to 56*	56 to 46*	
0.50 to 5	73	60	56	46	
5. to 30.	73	60	60	50	
*The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to					

*The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5MHz.

3.2. Test Procedures

- a. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- b. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- c. All the support units are connecting to the other LISN.
- d. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- e. The FCC states that a 50 ohm, 50 micro-Henry LISN should be used.
- f. Both sides of AC line were checked for maximum conducted interference.
- g. The frequency range from 150 kHz to 30 MHz was searched.
- h. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

3.3. Typical test Setup

3.4. Measurement Equipment

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date
EMI Receiver	R&S	ESCI3	100821	2017/9/8	2018/9/7
Line Impedance					
Stabilization	Schwarzbeck	NSLK 8127	8127-516	2017/9/12	2018/9/11
Network					
Line Impedance					
Stabilization	Schwarzbeck	NSLK 8127	8127-568	2018/2/26	2019/2/25
Network					
Pulse Limiter	R&S	ESH3-Z2	101934	2018/2/22	2019/2/21
Software	Farad	Ez-EMC	ver.ct3a1	N/A	N/A

Test Mode :	Mode 5: Full system for AS7116TLS(AS7100ULS(TLS)-F+KB+TLSC16)			
	With 15 LAN			
AC Power :	AC 120V/60Hz	Phase :	LINE	
Temperature :	24°C	Humidity :	53%	
Pressure(mbar) :	1002	Date:	2018/08/22	

3.5. Test Result and Data

No.	Frequency	Factor	Reading	Level	Limit	Margin	Detector
	(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)	
1	0.1500	9.97	33.87	43.84	79.00	-35.16	QP
2	0.1500	9.97	17.14	27.11	66.00	-38.89	AVG
3	0.1620	9.97	33.39	43.36	79.00	-35.64	QP
4	0.1620	9.97	18.26	28.23	66.00	-37.77	AVG
5	0.1860	9.97	29.42	39.39	79.00	-39.61	QP
6	0.1860	9.97	14.82	24.79	66.00	-41.21	AVG
7	0.2300	9.97	24.92	34.89	79.00	-44.11	QP
8	0.2300	9.97	13.54	23.51	66.00	-42.49	AVG
9	0.5140	9.98	33.34	43.32	73.00	-29.68	QP
10	0.5140	9.98	28.09	38.07	60.00	-21.93	AVG
11	1.9460	10.03	19.83	29.86	73.00	-43.14	QP
12	1.9460	10.03	14.76	24.79	60.00	-35.21	AVG

Tes	st Mode :	Mode 5:	Mode 5: Full system for AS7116TLS(AS7100ULS(TLS)-F+KB+TLSC16)				3+TLSC16)
		With 15	With 15 LAN				
AC	Power :	AC 120	AC 120V/60Hz Phase :			UTRAL	
Ter	nperature :	24°C		Humidity	: 53	%	
Pre	essure(mbar) :	1002		Date:	20	18/08/22	
10	0.0 dBuV					Î.	
						FCC_ClassA _ G	IP.
						FCC_ClassA _ AV	/G
ļ		×					
	V LAGAN	A. A.	× .	u X		. lober nich	
		when a mouthly	department warden der menter warden	M. M	man and a second second second	after where the state of the state	how
0	.0						
0	.0	0.5	(MHz)	5		30.000
o No.	.0 0.150 Frequency	0.5 Factor	Reading	MHz)	5 Limit	Margin	30.000 Detector
No.	0.150 Frequency (MHz)	0.5 Factor (dB)	(Reading (dBuV)	Level (dBuV)	5 Limit (dBuV)	Margin (dB)	30.000 Detector
0 No. 1	0.150 Frequency (MHz) 0.1660	0.5 Factor (dB) 9.97	(Reading (dBuV) 33.41	MHz) Level (dBuV) 43.38	5 Limit (dBuV) 79.00	Margin (dB) -35.62	30.000 Detector QP
No.	0.150 Frequency (MHz) 0.1660 0.1660	0.5 Factor (dB) 9.97 9.97	(Reading (dBuV) 33.41 16.80	MHz) Level (dBuV) 43.38 26.77	⁵ Limit (dBuV) 79.00 66.00	Margin (dB) -35.62 -39.23	30.000 Detector QP AVG
No. 1 2 3	0.150 Frequency (MHz) 0.1660 0.1660 0.1819	0.5 Factor (dB) 9.97 9.97 9.97	(Reading (dBuV) 33.41 16.80 30.45	MHz) Level (dBuV) 43.38 26.77 40.42	5 Limit (dBuV) 79.00 66.00 79.00	Margin (dB) -35.62 -39.23 -38.58	30.000 Detector QP AVG QP
No. 1 2 3 4	0.150 Frequency (MHz) 0.1660 0.1660 0.1819 0.1819	0.5 Factor (dB) 9.97 9.97 9.97 9.97	(Reading (dBuV) 33.41 16.80 30.45 13.20	MHz) Level (dBuV) 43.38 26.77 40.42 23.17	⁵ Limit (dBuV) 79.00 66.00 79.00 66.00	Margin (dB) -35.62 -39.23 -38.58 -42.83	30.000 Detector QP AVG QP AVG
No. 1 2 3 4 5	0.10 0.150 Frequency (MHz) 0.1660 0.1660 0.1819 0.1819 0.2460	0.5 Factor (dB) 9.97 9.97 9.97 9.97 9.97	(Reading (dBuV) 33.41 16.80 30.45 13.20 25.15	MHz) Level (dBuV) 43.38 26.77 40.42 23.17 35.12	5 Limit (dBuV) 79.00 66.00 79.00 66.00 79.00	Margin (dB) -35.62 -39.23 -38.58 -42.83 -43.88	30.000 Detector QP AVG QP AVG QP AVG QP
No. 1 2 3 4 5 6	0.1 0.150 Frequency (MHz) 0.1660 0.1660 0.1819 0.2460 0.2460	0.5 Factor (dB) 9.97 9.97 9.97 9.97 9.97 9.97 9.97	(Reading (dBuV) 33.41 16.80 30.45 13.20 25.15 13.81	MHz) Level (dBuV) 43.38 26.77 40.42 23.17 35.12 23.78	⁵ Limit (dBuV) 79.00 66.00 79.00 66.00 79.00 66.00	Margin (dB) -35.62 -39.23 -38.58 -42.83 -43.88 -43.88	30.000 Detector QP AVG QP AVG QP AVG QP AVG
No. 1 2 3 4 5 6 7	0 0 0.150 Frequency (MHz) 0 0.1660 0 0.1660 0 0.1819 0 0.2460 0 0.2460 0 0.5060 0	0.5 Factor (dB) 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97	Reading (dBuV) 33.41 16.80 30.45 13.20 25.15 13.81 32.69	MHz) Level (dBuV) 43.38 26.77 40.42 23.17 35.12 23.78 42.67	5 Limit (dBuV) 79.00 66.00 79.00 66.00 79.00 66.00 79.00 66.00 79.00 66.00 79.00	Margin (dB) -35.62 -39.23 -38.58 -42.83 -43.88 -42.22 -30.33	30.000 Detector QP AVG QP AVG QP AVG QP AVG QP
No. 1 2 3 4 5 6 7 8	0.10 0.150 Frequency (MHz) 0.1660 0.1660 0.1819 0.2460 0.2460 0.5060 0.5060	0.5 Factor (dB) 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.98 9.98	Reading (dBuV) 33.41 16.80 30.45 13.20 25.15 13.81 32.69 28.10	MHz) Level (dBuV) 43.38 26.77 40.42 23.17 35.12 23.78 42.67 38.08	5 Limit (dBuV) 79.00 66.00 79.00 66.00 79.00 66.00 79.00 66.00 79.00 66.00 79.00 66.00 79.00 66.00 73.00 60.00	Margin (dB) -35.62 -39.23 -38.58 -42.83 -43.88 -42.22 -30.33 -21.92	30.000 Detector QP AVG QP AVG QP AVG QP AVG QP AVG QP AVG
No. 1 2 3 4 5 6 7 8 9	0.10 0.150 Frequency (MHz) 0.1660 0.1660 0.1819 0.2460 0.2460 0.5060 0.5060 1.1860	0.5 Factor (dB) 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.98 9.98 10.01	Reading (dBuV) 33.41 16.80 30.45 13.20 25.15 13.81 32.69 28.10 15.21	MHz) Level (dBuV) 43.38 26.77 40.42 23.17 35.12 23.78 42.67 38.08 25.22	5 Limit (dBuV) 79.00 66.00 79.00 66.00 79.00 66.00 79.00 66.00 79.00 66.00 73.00 60.00 73.00	Margin (dB) -35.62 -39.23 -38.58 -42.83 -42.83 -43.88 -42.22 -30.33 -21.92 -47.78	30.000 Detector QP AVG QP
No. 1 2 3 4 5 6 7 8 9 10	.0 0.150 Frequency (MHz) 0.1660 0.1660 0.1660 0.1819 0.2460 0.5060 0.5060 1.1860	0.5 Factor (dB) 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.98 9.98 10.01 10.01	Reading (dBuV) 33.41 16.80 30.45 13.20 25.15 13.81 32.69 28.10 15.21 9.84	MHz) Level (dBuV) 43.38 26.77 40.42 23.17 35.12 23.78 42.67 38.08 25.22 19.85	5 Limit (dBuV) 79.00 66.00 79.00 66.00 79.00 66.00 79.00 66.00 79.00 66.00 79.00 66.00 73.00 60.00	Margin (dB) -35.62 -39.23 -38.58 -42.83 -43.88 -42.22 -30.33 -21.92 -47.78 -40.15	30.000 Detector QP AVG
No. 1 2 3 4 5 6 7 8 9 10 11	0.150 Frequency (MHz) 0.1660 0.1660 0.1660 0.1819 0.2460 0.2460 0.5060 1.1860 1.1860 2.2460	0.5 Factor (dB) 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 10.01 10.01 10.04	Reading (dBuV) 33.41 16.80 30.45 13.20 25.15 13.81 32.69 28.10 15.21 9.84 17.95	MHz) Level (dBuV) 43.38 26.77 40.42 23.17 35.12 23.78 42.67 38.08 25.22 19.85 27.99	5 Limit (dBuV) 79.00 66.00 79.00 66.00 79.00 66.00 79.00 66.00 79.00 66.00 79.00 66.00 73.00 60.00 73.00 60.00 73.00	Margin (dB) -35.62 -39.23 -38.58 -42.83 -42.83 -43.88 -42.22 -30.33 -21.92 -47.78 -40.15 -45.01	30.000 Detector QP AVG AVG QP AVG QP AVG AVG AVG QP AVG AVG AVG AVG AVG AVG AVG AV

Т	est Mode :	Mode	6: Full system	m for AS9116T	LS(AS9100U	LS(TLS)-F+KE	B+TLSC16)
		With 1	15 LAN				
A	C Power :	AC 12	20V/60Hz	Phase :	LI	NE	
Т	emperature :	24°C		Humidity	v: 53	3%	
P	ressure(mbar)	: 1002		Date:	20)18/08/22	
	100.0 dBuV						
						FCC_ClassA _	QP
						FCC ClassA A	WG
	50	×					
	WW	A				. iAu	
	٧٢	MANNI M	1 May My My may	physioper market the second	Warmananan	unger when the Man	www
			• • • •				
	0.0						
	0.0	0.5		(MHz)	5		30.000
No.	0.0 0.150	0.5 Factor	Reading	(MHz)	5 Limit	Margin	30.000 Detector
No.	0.0 0.150 Frequency (MHz)	0.5 Factor (dB)	Reading (dBuV)	(MHz) Level (dBuV)	5 Limit (dBuV)	Margin (dB)	30.000 Detector
No.	0.0 0.150 Frequency (MHz) 0.1500	0.5 Factor (dB) 9.97	Reading (dBuV) 35.22	(МНz) Level (dBuV) 45.19	5 Limit (dBuV) 79.00	Margin (dB) -33.81	30.000 Detector QP
No. 1 2	0.0 0.150 Frequency (MHz) 0.1500 0.1500	0.5 Factor (dB) 9.97 9.97	Reading (dBuV) 35.22 18.16	(мн₂) Level (dBuV) 45.19 28.13	5 Limit (dBuV) 79.00 66.00	Margin (dB) -33.81 -37.87	30.000 Detector QP AVG
No. 1 2 3	0.0 0.150 Frequency (MHz) 0.1500 0.1500 0.1980	0.5 Factor (dB) 9.97 9.97 9.97	Reading (dBuV) 35.22 18.16 26.94	(мн₂) Level (dBuV) 45.19 28.13 36.91	5 Limit (dBuV) 79.00 66.00 79.00	Margin (dB) -33.81 -37.87 -42.09	30.000 Detector QP AVG QP
No. 1 2 3 4	0.0 0.150 Frequency (MHz) 0.1500 0.1500 0.1500 0.1980 0.1980	0.5 Factor (dB) 9.97 9.97 9.97 9.97 9.97	Reading (dBuV) 35.22 18.16 26.94 12.70	(MHz) Level (dBuV) 45.19 28.13 36.91 22.67	5 Limit (dBuV) 79.00 66.00 79.00 66.00	Margin (dB) -33.81 -37.87 -42.09 -43.33	30.000 Detector QP AVG QP AVG
No. 1 2 3 4 5	0.0 0.150 Frequency (MHz) 0.1500 0.1500 0.1980 0.1980 0.2700	0.5 Factor (dB) 9.97 9.97 9.97 9.97 9.97 9.97	Reading (dBuV) 35.22 18.16 26.94 12.70 21.16	(MHz) Level (dBuV) 45.19 28.13 36.91 22.67 31.13	5 Limit (dBuV) 79.00 66.00 79.00 66.00 79.00	Margin (dB) -33.81 -37.87 -42.09 -43.33 -47.87	30.000 Detector QP AVG QP AVG QP AVG QP
No. 1 2 3 4 5 6	0.0 0.150 Frequency (MHz) 0.1500 0.1500 0.1980 0.1980 0.2700 0.2700	0.5 Factor (dB) 9.97 9.97 9.97 9.97 9.97 9.97 9.97	Reading (dBuV) 35.22 18.16 26.94 12.70 21.16 12.72	(мн₂) Level (dBuV) 45.19 28.13 36.91 22.67 31.13 22.69	5 Limit (dBuV) 79.00 66.00 79.00 66.00 79.00 66.00	Margin (dB) -33.81 -37.87 -42.09 -43.33 -47.87 -43.31	30.000 Detector QP AVG QP AVG QP AVG QP AVG
No. 1 2 3 4 5 6 7	0.0 0.150 Frequency (MHz) 0.1500 0.1500 0.1980 0.1980 0.2700 0.2700 0.2700 0.2700	0.5 Factor (dB) 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97	Reading (dBuV) 35.22 18.16 26.94 12.70 21.16 12.72 34.88	(MH₂) Level (dBuV) 45.19 28.13 36.91 22.67 31.13 22.69 44.86	5 Limit (dBuV) 79.00 66.00 79.00 66.00 79.00 66.00 79.00 66.00	Margin (dB) -33.81 -37.87 -42.09 -43.33 -47.87 -43.31 -28.14	30.000 Detector QP AVG QP AVG QP AVG QP AVG QP
No. 1 2 3 4 5 6 7 8	0.0 0.150 Frequency (MHz) 0.1500 0.1500 0.1500 0.1980 0.1980 0.2700 0.2700 0.2700 0.5020 0.5020	0.5 Factor (dB) 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.98 9.98	Reading (dBuV) 35.22 18.16 26.94 12.70 21.16 12.72 34.88 28.95	(MHz) Level (dBuV) 45.19 28.13 36.91 22.67 31.13 22.69 44.86 38.93	5 Limit (dBuV) 79.00 66.00 79.00 66.00 79.00 66.00 79.00 66.00 73.00 60.00	Margin (dB) -33.81 -37.87 -42.09 -43.33 -47.87 -43.31 -28.14 -21.07	30.000 Detector QP AVG QP AVG QP AVG QP AVG QP AVG
No. 1 2 3 4 5 6 7 8 9	0.0 0.150 Frequency (MHz) 0.1500 0.1500 0.1500 0.1980 0.1980 0.2700 0.2700 0.2700 0.5020 0.5020 1.1780	0.5 Factor (dB) 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.98 9.98 10.01	Reading (dBuV) 35.22 18.16 26.94 12.70 21.16 12.72 34.88 28.95 17.99	(MHz) Level (dBuV) 45.19 28.13 36.91 22.67 31.13 22.69 44.86 38.93 28.00	5 Limit (dBuV) 79.00 66.00 79.00 66.00 79.00 66.00 79.00 66.00 73.00 60.00 73.00	Margin (dB) -33.81 -37.87 -42.09 -43.33 -47.87 -43.31 -28.14 -21.07 -45.00	30.000 Detector QP AVG QP AVG QP AVG QP AVG QP AVG QP AVG
No. 1 2 3 4 5 6 7 8 9 10	0.0 0.150 Frequency (MHz) 0.1500 0.1500 0.1500 0.1980 0.1980 0.2700 0.2700 0.5020 0.5020 1.1780 1.1780 1.1780	0.5 Factor (dB) 9.97 9.98 9.98 10.01 10.01	Reading (dBuV) 35.22 18.16 26.94 12.70 21.16 12.72 34.88 28.95 17.99 12.16	(MHz) Level (dBuV) 45.19 28.13 36.91 22.67 31.13 22.69 44.86 38.93 28.00 22.17	5 Limit (dBuV) 79.00 66.00 79.00 66.00 79.00 66.00 73.00 60.00 73.00 60.00	Margin (dB) -33.81 -37.87 -42.09 -43.33 -47.87 -43.31 -28.14 -21.07 -45.00 -37.83	30.000 Detector QP AVG QP AVG QP AVG QP AVG QP AVG QP AVG
No. 1 2 3 4 5 6 7 8 9 10 11	0.0 0.150 Frequency (MHz) 0.1500 0.1500 0.1500 0.1980 0.1980 0.2700 0.2700 0.2700 0.5020 1.1780 1.1780 2.5260	0.5 Factor (dB) 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.05 10.01 10.01 10.05	Reading (dBuV) 35.22 18.16 26.94 12.70 21.16 12.72 34.88 28.95 17.99 12.16 18.92	(MHz) Level (dBuV) 45.19 28.13 36.91 22.67 31.13 22.69 44.86 38.93 28.00 22.17 28.97	5 Limit (dBuV) 79.00 66.00 79.00 66.00 79.00 66.00 73.00 60.00 73.00 60.00 73.00	Margin (dB) -33.81 -37.87 -42.09 -43.33 -47.87 -43.31 -28.14 -21.07 -45.00 -37.83 -44.03	30.000 Detector QP AVG

CERPASS TECHNOLOGY CORP.

Test engineer: Sun_24

4. Test of Radiated Emission

4.1. Test Limit

Below 1GHz (for digital device)

For unintentional device, according to CISPR PUB.22, for Class B digital devices, the general requirement of field strength of radiated emissions from intentional radiators at a distance of 10 meters shall not exceed the below table.

	dBuV/m (At 10m)		
	Class A	Class B	
30 ~ 230	40	30	
230 ~ 1000	47	37	

Limit tables for non-digital device:

Class A Radiated Emission limit at 10m (for others)

Frequency (MHZ)	Field Strength Limit (uV/m)Q.P.	Field Strength Limit (dBuV/m)Q.P.
30 - 88	90	39
88 - 216	150	43.5
216 – 960	210	46.4
Above 960	300	49.5

Class B Radiated Emission limit at 3m (for others)

Frequency (MHZ)	Field Strength Limit (uV/m)Q.P.	Field Strength Limit (dBuV/m)Q.P.
30 - 88	100	40
88 - 216	150	43.5
216 – 960	200	46
Above 960	500	54

Above 1GHz(for all device)

	Class A (dBu	V/m) (At 10m)	Class B (dBuV/m) (At 3m)	
Frequency (MHZ)	Average	Peak	Average	Peak
Above 1000	49.5	69.5	54	74

NOTE: (1) The lower limit shall apply at the transition frequencies.

(2) Emission level (dBuV/m) = 20 log Emission level (uV/m).

(3) The measurement above 1GHz is at close-in distances 3m,and determine the limit L2 corresponding to the close-in distance d2 by applying the following relation: L2 = L1 (d1/d2), where L1 is the specified limit in microvolts per metre (uV/m) at the distance d1 (10m), L2 is the new limit for distance d2 (3m).
So the new Close A limit above 1CHz at 2m is an following table:

So the new Class A limit above 1GHz at 3m is as following table:

CERPASS TECHNOLOGY CORP.

	Class A (dBuV/m)	(At 3m)
Frequency (MHZ)	Average	Peak
Above 1000	60	80

According to FCC Part 15.33 (b), for an unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.75	30
1.75-108	1000
108-500	2000
500-1000	5000
Above 1000	5 th harmonic of the highest frequency or 40GHz, whichever is lower

4.2. Test Procedures

Procedure of Preliminary Test

- The equipment was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane. When the EUT is a floor standing equipment, it is placed on the ground plane which has a 15 cm non-conductive covering to insulate the EUT from the ground plane.
- Support equipment, if needed, was placed as per ANSI C63.4.
- All I/O cables were positioned to simulate typical usage as per ANSI C63.4.
- The EUT received AC 120VAC/60Hz power source from the outlet socket under the turntable. All support equipment power received from another socket under the turntable.
- The antenna was placed at 3 or 10 meter away from the EUT as stated in ANSI C63.4. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.
- The Analyzer / Receiver quickly scanned from 30MHz to 40GHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the

CERPASS TECHNOLOGY CORP.

horizontal polarization, to maximize the emission reading level.

- Set the spectrum analyzer/ Receiver in the following setting as: Below 1GHz: RBW=120KHz / VBW=300KHz / Sweep=AUTO Above 1GHz: Peak: RBW=1MHz, VBW=3MHz / Sweep=AUTO Average: RBW=1MHz / VBW=1.6Hz / Sweep=AUTO
- The worst configuration of EUT and cable of the above highest emission level were recorded for reference of the final test.

Procedure of Final Test

- EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.
- The Analyzer / Receiver scanned from 30MHz to 40GHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 or 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- Recording at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. Below 1GHz the QP. reading and above 1GHz the Peak and Average reading are presented.
- The test data of the worst-case condition(s) was recorded.

4.3. Typical test Setup

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date
Bilog Antenna	Sunol	JB1	A020514-1	2018/02/13	2019/02/12
Bilog Antenna	Sunol	JB1	A020514-2	2018/03/15	2019/03/14
EMI Receiver	R&S	ESCI3	101402	2018/02/13	2019/02/12
EMI Receiver	R&S	ESCI7	100963	2018/03/06	2019/03/05
Preamplifier	EM Electronics corp.	EM330	60610	2018/02/25	2019/02/24
Preamplifier	EM Electronics corp.	EM330	60611	2018/02/10	2019/02/09
Horn Antenna	Schwarzbeck	BBHA 9120 D	9120D-1785	2017/09/27	2018/09/26
Spectrum Analyzer	R&S	FSP40	100047	2018/02/13	2019/02/12
Preamplifier	EM Electronics corp.	EM01G18G	60700	2017/09/01	2018/08/31
Software	E3	AUDIX	Version: 8.14.806b	N/A	N/A

4.4. Measurement Equipment

4.5. Test Result and Data (30MHz~1GHz)

Test Mode :	Mode 5: Full system for AS7116TLS(AS7100ULS(TLS)-F+KB+TLSC16) With				
	15 LAN				
AC Power :	AC 120V/60Hz	Ant. Polarization:	Horizontal		
Temp :	25°C Humidity : 52%				
Pressure(mbar) :	1002	Date:	2018/08/20		

No.	Frequency	Factor	Reading	Level	Limit	Margin	Det.	Height	Azimuth
	(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)
1	98.8700	-16.44	51.32	34.88	43.50	-8.62	peak	100	64
2	164.8300	-12.57	47.39	34.82	43.50	-8.68	peak	100	302
3	197.8100	-13.20	48.00	34.80	43.50	-8.70	peak	400	259
4	247.2800	-11.96	48.14	36.18	46.40	-10.22	peak	400	257
5	396.6600	-7.45	48.29	40.84	46.40	-5.56	peak	100	168
6	495.6000	-4.19	40.31	36.12	46.40	-10.28	peak	100	50

Test Mode :	Mode 5: Full system for AS7116TLS(AS7100ULS(TLS)-F+KB+TLSC16) With						
	15 LAN						
AC Power :	AC 120V/60Hz Ant. Polarization: Vertical						
Temp :	25°C Humidity : 52%						
Pressure(mbar) :	1002 Date: 2018/08/20						

No.	Frequency	Factor	Reading	Level	Limit	Margin	Det.	Height	Azimuth
	(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)
1	44.5499	-14.48	45.66	31.18	39.00	-7.82	peak	100	271
2	98.8700	-16.44	48.33	31.89	43.50	-11.61	peak	400	316
3	131.8497	-12.25	44.75	32.50	43.50	-11.00	peak	100	119
4	164.8300	-12.57	48.31	35.74	43.50	-7.76	peak	100	265
5	396.6600	-7.45	43.00	35.55	46.40	-10.85	peak	400	65
6	545.0700	-3.04	36.13	33.09	46.40	-13.31	peak	400	216

Test Mode :	Mode 6: Full system for AS9116TLS(AS9100ULS(TLS)-F+KB+TLSC16) With						
	15 LAN						
AC Power :	AC 120V/60Hz Ant. Polarization: Horizontal						
Temp :	25°C Humidity : 52%						
Pressure(mbar) :	1002	Date:	2018/08/20				

No.	Frequency	Factor	Reading	Level	Limit	Margin	Det.	Height	Azimuth
	(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)
1	56.1899	-17.77	51.00	33.23	39.00	-5.77	peak	400	214
2	65.8900	-17.50	51.85	34.35	39.00	-4.65	peak	100	299
3	75.5899	-17.31	52.96	35.65	39.00	-3.35	peak	100	94
4	113.4200	-14.70	49.29	34.59	43.50	-8.91	peak	400	206
5	370.4700	-7.96	47.00	39.04	46.40	-7.36	peak	400	2
6	670.2000	-1.04	43.21	42.17	46.40	-4.23	peak	100	265

Test Mode :	Mode 6: Full system for AS9116TLS(AS9100ULS(TLS)-F+KB+TLSC16) With						
	15 LAN						
AC Power :	AC 120V/60Hz Ant. Polarization: Vertical						
Temp :	25°C Humidity : 52%						
Pressure(mbar) :	1002 Date: 2018/08/20						

No.	Frequency	Factor	Reading	Level	Limit	Margin	Det.	Height	Azimuth
	(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)
1	56.1899	-17.77	53.16	35.39	39.00	-3.61	peak	100	316
2	65.8900	-17.50	52.62	35.12	39.00	-3.88	peak	400	245
3	75.5899	-17.31	52.35	35.04	39.00	-3.96	peak	100	9
4	113.4200	-14.70	50.22	35.52	43.50	-7.98	peak	400	92
5	142.5200	-11.29	47.88	36.59	43.50	-6.91	peak	400	54
6	670.2000	-1.04	43.12	42.08	46.40	-4.32	peak	100	268

4.6. Test Result and Data (1GHz ~18GHz)

Test Mode :	Mode 5: Full system for AS7116TLS(AS7100ULS(TLS)-F+KB+TLSC16) With							
	15 LAN							
AC Power :	AC 120V/60Hz Ant. Polarization: Horizontal							
Temp :	25°C Humidity : 52%							
Pressure(mbar) :	1002 Date: 2018/08/22							

No.	Frequency	Factor	Reading	Level	Limit	Margin	Det.	Height	Azimuth
	(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)
1	3907.000	3.10	44.56	47.66	80.00	-32.34	peak	100	215
2	4485.000	2.70	45.33	48.03	80.00	-31.97	peak	200	7
3	6134.000	5.73	46.34	52.07	80.00	-27.93	peak	200	144
4	7052.000	8.09	45.82	53.91	80.00	-26.09	peak	100	328
5	7596.000	8.55	45.51	54.06	80.00	-25.94	peak	100	268
6	9534.000	9.63	45.24	54.87	80.00	-25.13	peak	100	107

Test Mode :	Mode 5: Full system for AS7116TLS(AS7100ULS(TLS)-F+KB+TLSC16) With								
	15 LAN								
AC Power :	AC 120V/60Hz Ant. Polarization: Vertical								
Temp :	25°C Humidity : 52%								
Pressure(mbar) :	1002	1002 Date: 2018/08/22							

No.	Frequency	Factor	Reading	Level	Limit	Margin	Det.	Height	Azimuth
	(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)
1	1493.000	-5.83	48.57	42.74	80.00	-37.26	peak	200	156
2	1935.000	-3.97	46.97	43.00	80.00	-37.00	peak	200	236
3	2139.000	-3.18	46.32	43.14	80.00	-36.86	peak	200	192
4	3312.000	0.51	46.04	46.55	80.00	-33.45	peak	100	143
5	3907.000	3.10	44.89	47.99	80.00	-32.01	peak	200	131
6	5573.000	5.23	46.62	51.85	80.00	-28.15	peak	200	47

Test Mode :	Mode 6: Full system for AS9116TLS(AS9100ULS(TLS)-F+KB+TLSC16) With							
	15 LAN							
AC Power :	AC 120V/60Hz Ant. Polarization: Horizontal							
Temp :	25°C Humidity : 52%							
Pressure(mbar) :	1002 Date: 2018/08/22							

No.	Frequency	Factor	Reading	Level	Limit	Margin	Det.	Height	Azimuth
	(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)
1	2819.000	-1.44	47.87	46.43	80.00	-33.57	peak	100	265
2	3499.000	1.54	47.00	48.54	80.00	-31.46	peak	200	302
3	3907.000	3.10	46.06	49.16	80.00	-30.84	peak	100	24
4	5607.000	5.24	46.78	52.02	80.00	-27.98	peak	100	82
5	6372.000	6.30	46.67	52.97	80.00	-27.03	peak	200	67
6	7358.000	8.30	46.29	54.59	80.00	-25.41	peak	200	205

Test Mode :	Mode 6: Full system for AS9116TLS(AS9100ULS(TLS)-F+KB+TLSC16) With					
	15 LAN					
AC Power :	AC 120V/60Hz	Ant. Polarization:	Vertical			
Temp :	25°C	Humidity :	52%			
Pressure(mbar) :	1002	Date:	2018/08/22			

No.	Frequency	Factor	Reading	Level	Limit	Margin	Det.	Height	Azimuth
	(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)
1	1493.000	-5.83	50.57	44.74	80.00	-35.26	peak	100	268
2	2615.000	-1.69	47.82	46.13	80.00	-33.87	peak	200	154
3	3312.000	0.51	46.54	47.05	80.00	-32.95	peak	200	207
4	3907.000	3.10	45.39	48.49	80.00	-31.51	peak	100	19
5	5573.000	5.23	47.62	52.85	80.00	-27.15	peak	200	135
6	6967.000	7.95	46.24	54.19	80.00	-25.81	peak	100	305

Test engineer: Sun. Zhoung