

(Class II Permissive Change)

Product Name	JukeBlox Networked Media Module
Model No	CX870-3D
FCC ID.	ZQO-CX8703D

Applicant	STANDARD MICROSYSTEMS CORPORATION
Address	3930, EAST RAY ROAD SUITE 200, PHOENIX,
	ARIZONA, 85044-7176,UNITED STATES

Date of Receipt	Feb. 01, 2012
Issue Date	Feb. 06, 2012
Report No.	122065R-RFUSP42V01
Report Version	V1.0
Iac-MRA	TAF
The adult duty of the	esting Laboratory 0914

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Test Report Certification

Issue Date: Feb. 06, 2012 Report No.: 122065R-RFUSP42V01

Accredited by NIST (NVLAP)

NVLAP Lab Code: 200533-0

Product Name	JukeBlox Networked Media Module		
Applicant	STANDARD MICROSYSTEMS CORPORATION		
Address	3930, EAST RAY ROAD SUITE 200, PHOENIX, ARIZONA,		
	85044-7176,UNITED STATES		
Manufacturer	DONG GUAN G-COM COMPUTER CO., LTD		
Model No.	CX870-3D		
FCC ID.	ZQO-CX8703D		
EUT Rated Voltage	DC 3.3V		
EUT Test Voltage	AC 120V/60Hz		
Trade Name	PICO Module		
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2010		
	ANSI C63.4: 2009		
Test Result	Complied		

The test results relate only to the samples tested.

:

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Documented By :

Genie Chang

(Senior Adm. Specialist / Genie Chang)

Tested By

incent chu

(Engineer / Vincent Chu)

Approved By

(Manager / Vincent Lin)

TABLE OF CONTENTS

Description		Page	
1.	GENERAL INFORMATION	4	
1.1.	EUT Description	4	
1.2.	Operational Description		
1.3.	Tested System Details		
1.4.	Configuration of Tested System		
1.5.	EUT Exercise Software		
1.6.	Test Facility		
2.	Peak Power Output	9	
2.1.	Test Equipment	9	
2.2.	Test Setup	9	
2.3.	Limits	9	
2.4.	Test Procedure	9	
2.5.	Uncertainty	9	
2.6.	Test Result of Peak Power Output	10	
3.	Radiated Emission	12	
3.1.	Test Equipment	12	
3.2.	Test Setup		
3.3.	Limits	14	
3.4.	Test Procedure	15	
3.5.	Uncertainty	15	
3.6.	Test Result of Radiated Emission	16	
4.	Band Edge	24	
4.1.	Test Equipment	24	
4.2.	Test Setup		
4.3.	Limits		
4.4.	Test Procedure		
4.5.	Uncertainty		
4.6.	Test Result of Band Edge		
5.	EMI Reduction Method During Compliance Testing	35	
Attachment 1:	EUT Test Photographs		

Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	JukeBlox Networked Media Module	
Trade Name	PICO Module	
Model No.	CX870-3D	
FCC ID.	ZQO-CX8703D	
Frequency Range	2412-2462MHz for 802.11b/g	
Number of Channels	802.11b/g: 11	
Data Speed	802.11b: 1-11Mbps, 802.11g: 6-54Mbps	
Type of Modulation	802.11b:DSSS (DBPSK, DQPSK, CCK)	
	802.11g:OFDM (BPSK, QPSK, 16QAM, 64QAM)	
Antenna Type	Dipole	
Antenna Gain	Refer to the table "Antenna List"	
Channel Control	Auto	

Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain	Note
1	WANSHIH	01S0940-00	Dipole	1.76 dBi for 2.4 GHz	without core
	ELECTRONIC CO.,				
	LTD.				

Note:

1. The antenna of EUT is conform to FCC 15.203.

802.11b/g Center Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 01:	2412 MHz	Channel 02:	2417 MHz	Channel 03:	2422 MHz	Channel 04:	2427 MHz
Channel 05:	2432 MHz	Channel 06:	2437 MHz	Channel 07:	2442 MHz	Channel 08:	2447 MHz
Channel 09:	2452 MHz	Channel 10:	2457 MHz	Channel 11:	2462 MHz		

Note:

- 1. The EUT is a JukeBlox Networked Media Module with a built-in 2.4GHz WLAN transceiver.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 4. These tests are conducted on a sample for the purpose of demonstrating compliance of 802.11b/g transmitter with Part 15 Subpart C Paragraph 15.247 of spread spectrum devices.
- 5. This is to request a Class II permissive change for FCC ID: ZQO-CX8703D, originally granted on 08/26/2011.

The major change filed under this application is:

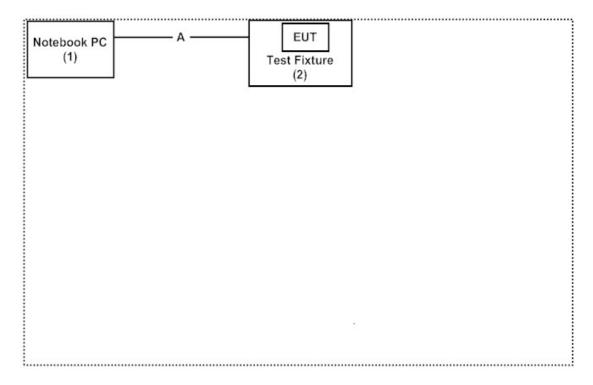
Change #1: Addition new antenna, antenna gain: 1.76dBi(Dipole).

1.2. Operational Description

The EUT is a JukeBlox Networked Media Module, This device provided four kinds of transmitting speed 1, 2, 5.5 and 11Mbps and the device of RF carrier is DBPSK, DQPSK and CCK (IEEE 802.11b). The device provided of eight kinds of transmitting speed 6, 9, 12, 18, 24, 36, 48 and 54Mbps the device of RF carrier is BPSK, QPSK, 16QAM and 64QAM (IEEE 802.11g).

This JukeBlox Networked Media Module, compliant with IEEE 802.11b and IEEE 802.11g, is a high-efficiency Wireless LAN adapter. It allows your computer to connect to a wireless network and to share resources, such as files or printers without being bound to the network wires. Operation in 2.4GHz Direst Sequence Spread Spectrum (DSSS) and Orthogonal Frequency Division Multiplexing (OFDM) radio transmission, the JukeBlox Networked Media Module Wired Equivalent Protection (WEP) algorithm is used. In addition, its standard compliance ensures that it can communicate with any IEEE 802.11b and IEEE 802.11g network.

Test Mode:	Mode 1: Transmit (802.11b 1Mbps)
	Mode 2: Transmit (802.11g 6Mbps)


1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Pro	duct	Manufacturer	Model No.	Serial No.	FCC ID	Power Cord
1	Notebook PC	DELL	РРТ	N/A	DoC	Non-Shielded, 0.8m
2	Test Fixture	LITE-ON	N/A	N/A	N/A	N/A

Signal Cable Type		Signal cable Description	
А	RS-232 Cable	Non-Shielded, 2.0m	

1.4. Configuration of Tested System

1.5. EUT Exercise Software

- (1) Setup the EUT as shown in section 1.4
- (2) Execute command on the notebook.
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Start the continuous transmission.
- (5) Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from

QuieTek Corporation's Web Site: <u>http://www.quietek.com/tw/ctg/cts/accreditations.htm</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: <u>http://www.quietek.com/</u>

Site Description:	File on
	Federal Communications Commission
	FCC Engineering Laboratory
	7435 Oakland Mills Road
	Columbia, MD 21046
	Registration Number: 92195
	Accreditation on NVLAP
	NVLAP Lab Code: 200533-0
Site Name:	Quietek Corporation
Site Address:	No.5-22, Ruishukeng,
	Linkou Dist. New Taipei City 24451,
	Taiwan, R.O.C.
	TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789
	E-Mail : <u>service@quietek.com</u>

FCC Accreditation Number: TW1014

2. Peak Power Output

2.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.			
Х	Power Meter	Anritsu	ML2495A/6K00003357	May, 2011			
Х	Power Sensor	Anritsu	MA2411B/0738448	Jun, 2011			
Note:							
1.	All equipments are calibrated with traceable calibrations. Each calibration is traceable to the						
	national or internation	onal standards.					

2. The test instruments marked with "X" are used to measure the final test results.

2.2. Test Setup

Conducted Measurement

2.3. Limits

The maximum peak power shall be less 1 Watt.

2.4. Test Procedure

The EUT was tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

2.5. Uncertainty

± 1.27 dB

2.6. Test Result of Peak Power Output

Product	:	JukeBlox Networked Media Module
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Channel No.	Frequency	Average Power For different Data Rate (Mbps)				Peak Power	Required	Result
Channel No	Channel No (MHz)		2	5.5	11	1	Limit	Kesult
			Measurement Level (dBm)					
01	2412	14.4				16.7	<30dBm	Pass
06	2437	17.1	16.9	16.82	16.75	19.9	<30dBm	Pass
11	2462	14.81				16.68	<30dBm	Pass

Note: Peak Power Output Value =Reading value on peak power meter + cable loss

Product	:	JukeBlox Networked Media Module
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

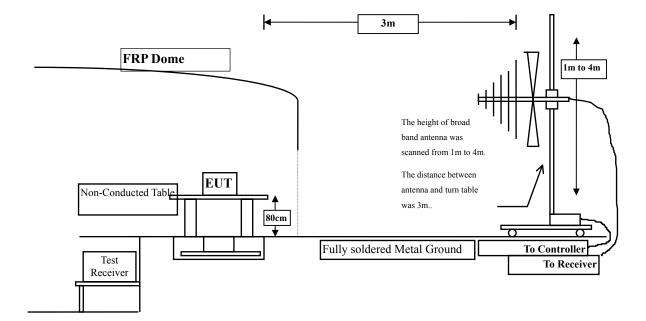
	Fraguarau	e							Peak Power	Dequired		
Channel No	Frequency (MHz)	6	9	12	18	24	36	48	54	6	Required Limit	Result
	Measurement Level (dBm)											
01	2412	11.57								21.83	<30dBm	Pass
06	2437	14.56	14.47	14.4	14.34	14.21	14.16	14.03	13.94	23.47	<30dBm	Pass
11	2462	11.04								21.76	<30dBm	Pass

Note: Peak Power Output Value = Reading value on peak power meter + cable loss

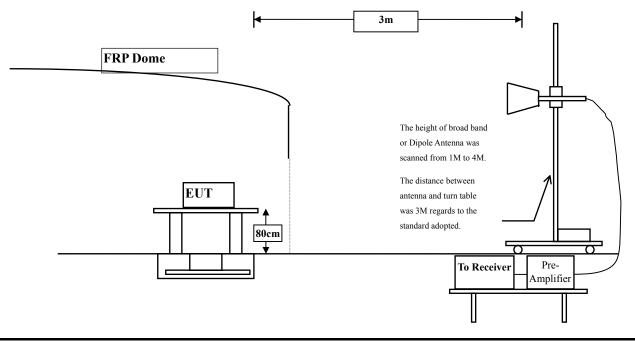
3. Radiated Emission

3.1. Test Equipment

The following test equipment are used during the radiated emission test:


Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2011
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2011
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2011
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2011
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2011
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2011
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2012
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.


2. The test instruments marked with "X" are used to measure the final test results.

3.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

3.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits							
Frequency MHz	uV/m @3m	dBuV/m@3m					
30-88	100	40					
88-216	150	43.5					
216-960	200	46					
Above 960	500	54					

Remarks: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m)

3.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2009 and tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2009 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement. The frequency range from 30MHz to 10th harminics is checked.

3.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

3.6. Test Result of Radiated Emission

Product	:	JukeBlox Networked Media Module
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4824.000	3.261	37.890	41.151	-32.849	74.000
7236.000	10.650	36.920	47.570	-26.430	74.000
9648.000	13.337	40.780	54.116	-19.884	74.000
Average Detector:					
9648.000	13.337	31.110	44.446	-9.554	54.000
Vertical					
Peak Detector:					
4824.000	6.421	38.440	44.861	-29.139	74.000
7236.000	11.495	37.030	48.525	-25.475	74.000
9648.000	13.807	39.080	52.886	-21.114	74.000

Average Detector:

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: JukeBlox Networked Media Module							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 1:	Transmit (802.11	b 1Mbps) (2437 MH	z)				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
4849.000	3.149	37.830	40.979	-33.021	74.000			
7261.000	11.077	36.340	47.418	-26.582	74.000			
9673.000	13.103	36.890	49.993	-24.007	74.000			
Average Detector:								
Vertical								
Peak Detector:								
4849.000	6.116	37.710	43.826	-30.174	74.000			
7261.000	11.901	36.340	48.241	-25.759	74.000			
9673.000	13.619	37.290	50.909	-23.091	74.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 JukeBlox Networked Media Module Harmonic Radiated Emission Data No.3 OATS Mode 1: Transmit (802.11b 1Mbps) (2462 MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
MHz	Factor dB	Level dBuV	Level dBuV/m	dB	dBuV/m		
Horizontal Peak Detector: 4924.000 7386.000 9848.000	2.858 12.127 12.852	37.530 35.210 37.580	40.387 47.338 50.433	-33.613 -26.662 -23.567	74.000 74.000 74.000		
Average Detector: Vertical Peak Detector: 4924.000 7386.000 9848.000	5.521 13.254 13.367	38.100 35.570 36.900	43.620 48.824 50.267	-30.380 -25.176 -23.733	74.000 74.000 74.000		

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site		x Networked Mec ic Radiated Emiss ATS			
Test Mode	: Mode 2:	Transmit (802.11	g 6Mbps) (2412MHz	z)	
Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4824.000	3.261	37.900	41.161	-32.839	74.000
7236.000	10.650	36.520	47.170	-26.830	74.000
9648.000	13.337	36.690	50.026	-23.974	74.000
Average Detector: 					
Vertical					
Peak Detector:					
4824.000	6.421	38.200	44.621	-29.379	74.000
7236.000	11.495	36.430	47.925	-26.075	74.000
9648.000	13.807	36.750	50.556	-23.444	74.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: JukeBlo	x Networked Med	lia Module		
Test Item	: Harmon	ic Radiated Emiss	ion Data		
Test Site	: No.3 OA	ATS			
Test Mode	: Mode 2:	Transmit (802.11	g 6Mbps) (2437 MH	z)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4874.000	3.038	37.620	40.657	-33.343	74.000
7311.000	11.795	35.480	47.274	-26.726	74.000
9748.000	12.635	37.370	50.005	-23.995	74.000
Average Detector: 					
Peak Detector:					
4874.000	5.812	37.570	43.381	-30.619	74.000
7311.000	12.630	36.170	48.799	-25.201	74.000
9748.000	13.126	36.850	49.976	-24.024	74.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item		x Networked Mec ic Radiated Emiss			
Test Site	: No.3 OA	ATS			
Test Mode	: Mode 2:	Transmit (802.11	g 6Mbps) (2462 MH	z)	
Frequency	Correct	Reading	Measurement	Margin	Limit
MII-	Factor	Level	Level	đŀ	dD. V/m
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4924.000	2.858	38.610	41.467	-32.533	74.000
7386.000	12.127	35.300	47.428	-26.572	74.000
9848.000	12.852	36.840	49.693	-24.307	74.000
Average Detector:					
 Vertical					
Peak Detector:					
4924.000	5.521	37.520	43.040	-30.960	74.000
7386.000	13.254	35.570	48.824	-25.176	74.000
9848.000	13.367	36.890	50.257	-23.743	74.000

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: Genera : No.3 O			:)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
111.480	-7.914	37.498	29.584	-13.916	43.500
480.080	-0.329	35.539	35.210	-10.790	46.000
565.440	1.611	35.232	36.843	-9.157	46.000
701.240	2.668	37.746	40.414	-5.586	46.000
745.860	3.308	33.547	36.855	-9.145	46.000
881.660	6.307	30.343	36.650	-9.350	46.000
Vertical					
111.480	-0.954	37.539	36.585	-6.915	43.500
293.840	-7.738	45.622	37.885	-8.115	46.000
480.080	-4.359	37.842	33.483	-12.517	46.000
745.860	1.828	33.085	34.913	-11.087	46.000
837.040	2.223	38.587	40.809	-5.191	46.000
961.200	7.260	31.158	38.418	-15.582	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product		ox Networked Med							
Test Item		Radiated Emissio	n Data						
Test Site									
Test Mode	Test Mode : Mode 2: Transmit (802.11g 6Mbps)(2437 MHz)								
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
111.480	-7.914	37.037	29.123	-14.377	43.500				
270.560	-5.007	40.966	35.959	-10.041	46.000				
480.080	-0.329	39.059	38.730	-7.270	46.000				
565.440	1.611	36.159	37.770	-8.230	46.000				
701.240	2.668	37.213	39.881	-6.119	46.000				
881.660	6.307	30.829	37.136	-8.864	46.000				
Vertical									
117.300	-3.106	38.723	35.617	-7.883	43.500				
355.920	-3.488	39.417	35.929	-10.071	46.000				
480.080	-4.359	35.347	30.988	-15.012	46.000				
745.860	1.828	33.265	35.093	-10.907	46.000				
837.040	2.223	38.275	40.497	-5.503	46.000				
961.200	7.260	35.656	42.916	-11.084	54.000				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Band Edge

4.1. Test Equipment

RF Conducted Measurement

The following test equipments are used during the band edge tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2011
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2011
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2011

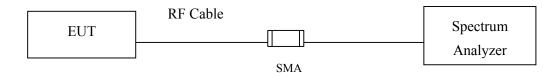
Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

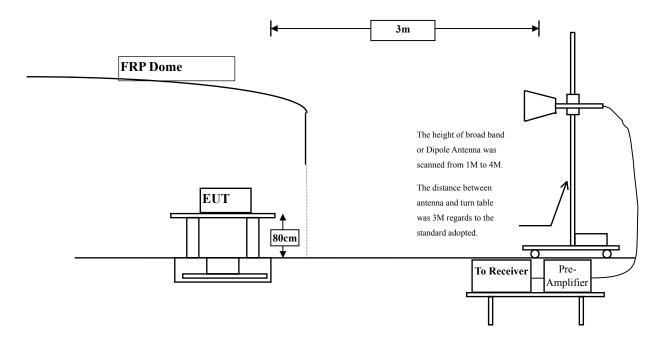
RF Radiated Measurement:

The following test equipments are used during the band edge tests:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3		Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2011
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2011
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2011
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2011
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2011
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2011
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2012
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A


Note:

1. All instruments are calibrated every one year.


2. The test instruments marked by "X" are used to measure the final test results.

4.2. Test Setup

RF Conducted Measurement

RF Radiated Measurement:

4.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

4.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2009 and tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2009 on radiated measurement.

4.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

4.6. Test Result of Band Edge

Product	:	JukeBlox Networked Media Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Fundamental Filed Strength

Antenna	Frequency	Correction Factor	Reading Level	Emission Level	Detector
Pole	[MHz]	[dB/m]	[dBuV]	[dBuV/m]	
Horizontal	2412	31.641	67.64	99.281	Peak
Horizontal	2412	31.621	55.766	87.386	Average
Vertical	2412	30.951	80.87	111.821	Peak
Vertical	2412	30.968	70.841	101.809	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Limit (dBuV/m)	Detector
Horizontal	2390	99.281	39.343	59.938	74.000	Peak
Horizontal	2347.7	87.386	52.692	34.694	54.000	Average
Vertical	2390	111.821	39.343	72.478	74.000	Peak
Vertical	2347.7	101.809	52.692	49.117	54.000	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = F - Δ

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

gilent Spectrum Analyzer - Sv		etor or conu	ucteu Danu Eu	ge Denta	
L RF 50 S		SENSE:INT	ALIGN AUTO	04:37:49 PMDec 19, 2011	-
enter Freq 2.3900	DOOOOO GHz PNO: Fast C IFGain:Low	➡ Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N	Frequency
0 dB/div Ref 20.00	dBm		Mk	r1 2.411 8 GHz 14.921 dBm	Auto Tui
0.0			1		Center Fr
.00				4	2.390000000 G
863		2	nru ^{pu}		
).0 <mark>www.www.www.www.www.www.www.www.www.ww</mark>	······································			ייי וווענוראעניין	Start Fr 2.340000000 G
1.0					Stop Fr
0.0					2.440000000 G
enter 2.39000 GHz Res BW 1.0 MHz	#VB	W 1.0 MHz	#Sweep	Span 100.0 MHz 500 ms (1001 pts)	CF St 10.000000 M
R MODE TRC SCL	× 2.411 8 GHz	14.921 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> N
2 N 1 f 3	2.390 0 GHz	-24.422 dBm			Freq Offs
5					0
7					
0					
G G			STATUS		

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

		0					0				
								- Swept SA	n Analyzer	Spectrun	lent S
Peak Search	PMDec 19, 2011 ACE 1 2 3 4 5 6 YPE MWWWWWW	TRAC	ALIGNAUTO : Log-Pwr 2/100	Avg Type Avg Hold	sense:INT		D GHz PNO: Fast	50 Ω AC	RF 2.4128	er 1 :	L ark
NextPe	2 8 GHz 12 dBm	r1 2.41:					PNU: Fast IFGain:Low	00 dBm	Ref 20.	div	dB/
Next Pk Rig	<u> </u>		1 m	A							9 0.0
Next Pk L		}).0 -).0 -
NEXTPKL	~~	h		v	2					\bigcirc^3).0 -
Marker De).0
Mkr→	100.0 MHz (1001 pts)	7.80 s (BW 10 Hz	#VI		0000 GI .0 MHz	BW 1	les
	ION VALUE	FUNCTIO	NCTION WIDTH	NCTION FU	dBm dBm	2.512 d -57.109 d -50.180 d	412 8 GHz 390 0 GHz 347 7 GHz	2.3	SCL f f f	1 1	
Mkr→Refl											1 5 5 7
M d 1 d											3
			STATUS								2

Product	:	JukeBlox Networked Media Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Fundamental Filed Strength

Antenna	Frequency	Correction Factor	Reading Level	Emission Level	Detector
Pole	[MHz]	[dB/m]	[dBuV]	[dBuV/m]	
Horizontal	2462	32.018	67.006	99.025	Peak
Horizontal	2462	32.013	55.163	87.176	Average
Vertical	2462	31.288	81.057	112.345	Peak
Vertical	2462	31.286	71.367	102.653	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Limit (dBuV/m)	Detector
Horizontal	2483.5	99.025	38.843	60.182	74.000	Peak
Horizontal	2487.7	87.176	55.451	31.725	54.000	Average
Vertical	2483.5	112.345	38.843	73.502	74.000	Peak
Vertical	2487.7	102.653	55.451	47.202	54.000	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge

measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

L RF 5	50 Ω AC	SENSE:INT	ALIGN AUTO	05:23:35 PMDec 19, 2011	
	PNO: Fas IFGain:Lo	Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold≫100/100	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET PINNNNN	Marker Select Marker
) dB/div Ref 20.0	10 dBm				3
9 0.0 0.00					Norm
0.0 0.0 0.0		2			Del
0.0					
0.0					Fixed
enter 2.48350 GH Res BW 1.0 MHz		/BW 1.0 MHz		Span 100.0 MHz 500 ms (1001 pts)	c
KR MODE TRC SCL 1 N 1 f 2 N 1 f	× 2.461 9 GHz 2.483 5 GHz	14.745 dBm -24.097 dBm	UNCTION FUNCTION WIDTH	FUNCTION VALUE	
3 4 5 6					Propertie
				r	
7 3 3 9 0					Mo 1 o

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

	PMDec 19, 2011		ALIGN AUTO	1	NSE:INT	SE		AC	F 50 Ω		L
Peak Search	CE 1 2 3 4 5 6 PE MWWWWW DET P N N N N N	TYP	: Log-Pwr 4/100	Avg Type Avg Hold		Trig: Fre #Atten: 3	i Hz NO: Fast 😱 Gain:Low	00000 G	4613000	r 12.	ke
NextPea	1 3 GHz 62 dBm		Mk					1Bm	ef 20.00 (iv R	3/d
Next Pk Rigl							- Jong				
Next Pk Le						0					
Marker Del			~^		2 3				Mart	\sim	
	100.0 MHz (1001 pts)		Sweep			10 Hz	#VBW		50 GHz MHz	2.483 W 1.0	
Mkr→C	ON VALUE		NCTION WIDTH	ICTION FU	Bm	Y 2.662 d	3 GHz		L	e tro s	MOD
Mkr→RefL						-56.826 d -52.789 d	5 GHz 7 GHz	2.483 2.487		1	N
Mo 1 of											
											_

Product	:	JukeBlox Networked Media Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

Fundamental Filed Strength

Antenna	Frequency	Correction Factor	Reading Level	Emission Level	Detector
Pole	[MHz]	[dB/m]	[dBuV]	[dBuV/m]	
Horizontal	2412	31.605	70.736	102.341	Peak
Horizontal	2412	31.606	53.95	85.556	Average
Vertical	2412	30.937	77.173	108.109	Peak
Vertical	2412	30.937	58.816	89.753	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Limit (dBuV/m)	Detector
Horizontal	2390	102.341	42.938	59.403	74.000	Peak
Horizontal	2352.7	85.556	40.51	45.046	54.000	Average
Vertical	2390	108.109	42.938	65.171	74.000	Peak
Vertical	2352.7	89.753	40.51	49.243	54.000	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge

measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

gilent Spectrum Analyzer - Swept SA	na ana	ne ne	cicu Danu Eu		
L RF 50 Ω AC Marker 1 2.4093000000	PNO: Fast 😱 Tri	SENSE:INT g: Free Run ten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 62/100	04:47:52 PMDec 19, 2011 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N	Peak Search
0 dB/div Ref 20.00 dBm	IFGain:Low #At	ten: 30 dB	Mk	r1 2.409 3 GHz 9.581 dBm	Next Pea
og 10.0 0.00			1 with allow when		Next Pk Rigl
0.0 0.0 0.0	www.www.www.www.www.www.	2 2		todal hat man have been been	Next Pk Le
0.0					Marker Del
enter 2.39000 GHz Res BW 1.0 MHz	#VBW 1.0		#Sweep	Span 100.0 MHz 500 ms (1001 pts) FUNCTION VALUE	Mkr→C
1 N 1 f 2 2 N 1 f 2 3 - - - - 4 - - - - 5 - 6 - - -		581 dBm 087 dBm			Mkr→RefL
7 8 9 9 0 0 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0					Mo 1 of
G	<u>.</u>		STATUS		

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

Agilent Spectrum Analyzer - Sw					
L RF 50 G Marker 1 2.4106000		SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 2/100	04:48:42 PMDec 19, 2011 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Peak Search
10 dB/div Ref 20.00	IFGain:Low	#Atten: 30 dB	Mk	r1 2.410 6 GHz -8.010 dBm	NextPea
0.00			1		Next Pk Rigl
20.0 30.0 40.0		2			Next Pk Le
50.0 60.0 70.0					Marker Del
enter 2.39000 GHz Res BW 1.0 MHz	* #VB	W 10 Hz	Sweep	Span 100.0 MHz 7.80 s (1001 pts)	Mkr→C
1 N 1 f 2 N 1 f 3 N 1 f 4 - - - 5 - - 6	2.410 6 GHz 2.390 0 GHz 2.352 7 GHz	-8.010 dBm -50.532 dBm -48.520 dBm			Mkr→RefL
7 8 9 10 11 11 12 11					Moi 1 of
ISG			STATUS	5	

Product	:	JukeBlox Networked Media Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

Fundamental Filed Strength

Antenna	Frequency	Correction Factor	Reading Level	Emission Level	Detector
Pole	[MHz]	[dB/m]	[dBuV]	[dBuV/m]	
Horizontal	2462	32.058	65.458	97.516	Peak
Horizontal	2462	32.008	48.732	80.74	Average
Vertical	2462	31.271	77.032	108.303	Peak
Vertical	2462	31.317	58.472	89.789	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Limit (dBuV/m)	Detector
Horizontal	2484.6	97.516	37.619	59.897	74.000	Peak
Horizontal	2483.5	80.74	40.472	40.268	54.000	Average
Vertical	2484.6	108.303	37.619	70.684	74.000	Peak
Vertical	2483.5	89.789	40.472	49.317	54.000	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge

measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

AC	SENSE:INT	ALIGN AUTO	04:55:03 PMDec 19, 2011	
000000 GHz PNO: Fast G IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Peak Search
dBm		Mk	r1 2.460 1 GHz 9.734 dBm	Next Pe
A I I I I I I I I I I I I I I I I I I I				Next Pk Rig
	Julien 23	Manlage manuel	and the second sec	Next Pk L
				Marker De
#VBV			Span 100.0 MHz 500 ms (1001 pts) FUNCTION VALUE	Mkr→
2.460 1 GHz 2.483 5 GHz 2.484 6 GHz	9.734 dBm -30.654 dBm -27.885 dBm			Mkr→Refl
				M c 1 c
	22.460 1 GHz 2.460 5 GHz	000000 GHz Trig: Free Run IFGain:Low Trig: Free Run dBm #Atten: 30 dB dBm 1 Image: Start	2.460 1 GHz 7.34 dBm #VBW 1.0 MHz #Sweep	000000 GHz Trig: Free Run IFGain:Low Avg Type: Log.Pwr AvgIHold>100/100 Trace [1 2 3 4 5 6 Type [1 2 3 4 5 6 Dec [1 2 3 4 5 6] Mkr1 2.460 1 GHz 9.734 dBm Mkr1 2.460 1 GHz 9.734 dBm 1 9.734 dBm 1 1 1 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 500 ms (1001 pts) 2 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 4 4 4 4 4 4 4 4 <

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

gilent Spectrum Analyzer - Sw L RF 50 s larker 1 2.463900	2 AC 000000 GHz	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 6/100	04:56:18 PMDec 19, 2011 TRACE 1 2 3 4 5 6 TYPE M WWWWW	Peak Search
0 dB/div Ref 20.00	PNO: Fast (IFGain:Low dBm	#Atten: 30 dB	8.01	r1 2.463 9 GHz -7.935 dBm	Next Pea
	11				Next Pk Rig
		3			Next Pk Le
50.0 50.0 70.0			^		Marker De
enter 2.48350 GHz Res BW 1.0 MHz R MODE TRC SC	#VE	W 10 Hz		Span 100.0 MHz 7.80 s (1001 pts)	Mkr→G
1 N 1 f 2 N 1 f 3 N 1 f 4	2.463 9 GHz 2.483 5 GHz 2.483 5 GHz	-7.935 dBm -48.407 dBm -48.407 dBm			Mkr→RefL
7 8 9					Mo 1 o
0 1 2 2					1.54

5. EMI Reduction Method During Compliance Testing

No modification was made during testing.