Equipment	:	Home Monitoring Device
Brand Name	:	Nest
Model No.	:	02A
FCC ID	:	ZQAT20
Standard	:	47 CFR FCC Part 15.247
Applicant	:	Nest Labs Inc 900 Hansen Way, Palo Alto California, 94304
Manufacturer	:	Pegatron Corporation No. 400, Sec. 7, Chengde Rd., Beitou District, Taipei City 11262 Taiwan

The product sample received on Jul. 20, 2012 and completely tested on Aug. 13, 2012. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Wayne Hsu / Assistant Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories	8
1.3	Support Equipment	8
1.4	Testing Applied Standards	8
1.5	Testing Location Information	8
1.6	Measurement Uncertainty	9
2	TEST CONFIGURATION OF EUT	10
2.1	The Worst Case Modulation Configuration	10
2.2	Test Channel Frequencies Configuration	10
2.3	The Worst Case Power Setting Parameter	11
2.4	The Worst Case Measurement Configuration	12
2.5	Test Setup Diagram	14
3	TRANSMITTER TEST RESULT	16
3.1	AC Power-line Conducted Emissions	16
3.2	6dB Bandwidth	21
3.3	RF Output Power	28
3.4	Power Spectral Density	37
3.5	Transmitter Radiated Bandedge Emissions	44
3.6	Transmitter Radiated Unwanted Emissions	53
4	TEST EQUIPMENT AND CALIBRATION DATA	79
5	CERTIFICATION OF TAF ACCREDITATION	81
APPE	NDIX A. TEST PHOTOS	A6
APPE	NDIX B. PHOTOGRAPHS OF EUT	B7

Summary of Test Result

	Conformance Test Specifications						
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result		
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied		
3.1	15.207	AC Power-line Conducted Emissions	3.970MHz: 35.71dBuV (10.29dB) - AV 42.45dBuV (13.55dB) - QP	FCC 15.207	Complied		
3.2	15.247(a)	6dB Bandwidth	6dB Bandwidth Unit [MHz] 11B-20M: 14.44 11G-20M: 16.41 11N2.4G-20M: 17.63	≥500kHz	Complied		
3.3	15.247(b)	RF Output Power (Maximum Peak Conducted Output Power)	Power [dBm] 11B-20M: 25.52 11G-20M: 22.98 11N2.4G-20M: 21.60	Power [dBm] 30	Complied		
3.4	15.247(d)	Power Spectral Density	PSD [dBm/3kHz] 11B-20M: -4.57 11G-20M: -12.03 11N2.4G-20M: -13.14	PSD [dBm/3kHz] 8	Complied		
3.5	15.247(c)	Transmitter Radiated Bandedge Emissions	Non-Restricted Bands: 2399.82MHz: 31.65dB Restricted Bands [dBuV/m at 3m]: 2493.80MHz: 60.48 (Margin 13.52dB) - PK 53.85 (Margin 0.15dB) - AV	Non-Restricted Bands: > 20 dB Restricted Bands: FCC 15.209	Complied		
3.6	15.247(c)	Transmitter Radiated Unwanted Emissions	Restricted Bands [dBuV/m at 3m]: 4824.00MHz: 58.46 (Margin 15.54dB) – PK 52.05 (Margin 1.95dB) - AV	Non-Restricted Bands: > 20 dB Restricted Bands: FCC 15.209	Complied		

Revision History

Report No.	Version	Description	Issued Date
FR272106AC	Rev. 01	Initial issue of report	Aug. 29, 2012

1 General Description

1.1 Information

1.1.1 RF General Information

RF General Information						
Frequency Range (MHz)IEEE Std. 802.11 ProtocolCh. Frequency (MHz)Channel NumberRF Output Power (dBm)						
2400-2483.5	b	2412-2462	1-11 [11]	25.52		
2400-2483.5	g	2412-2462	1-11 [11]	22.98		
2400-2483.5	n (HT20)	2412-2462	1-11 [11]	21.60		
Note 1: IEEE Std. 802	2.11-2007 modulation	consists of IEEE Std.	802.11g-2003 and IEE	E Std. 802.11b-1999.		

Note 1: IEEE Std. 802.11-2007 modulation consists of IEEE Std. 802.11g-2003 and IEEE Std. 802.11b-1999. Note 2: IEEE Std. 802.11n-2009 modulation consists of HT20 (HT: High Throughput). Then EUT support HT20.

Note 3: RF output power specifies that Maximum Peak Conducted Output Power.

Transmitter Chains & Receiver Chains Information						
IEEE Std. 802.11 Protocol	Number of Transmit Chains (N _{TX})	Number of Receive Chains (N _{RX})	Correlation Signals with Multiple N _{TX}	99% Emission Bandwidth (MHz)	Co-location	
b	1	1	N/A	14.44	Yes	
g	1	1	N/A	16.41	Yes	
n (HT20)	1	1	N/A	17.63	Yes	
Note 1: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting) antennas within 20 cm of each other. (i.e., EUT has simultaneously co-transmitting that operating 2.4GHz and 5GHz.)						

1.1.2 Antenna Information

	Antenna Category					
	Equipment placed on the market without antennas					
\boxtimes	Integral antenna (antenna permanently attached)					
	☐ Temporary RF connector provided					
	No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.					

	Antenna General Information							
Trans	smit	Chains Power D	Distribution	symmetrical dis	tribution 🗌 asy	mmetrical distrib	oution	
Ant. No. PL Ant. Port [Ant. No. X connect to Ant. Port Y] Ant. Cat. Ant. Type GANT (dBi) DG (dBi) DG (dBi) NTX = 1 NTX = 1 NTX = 1 NTX = 1							[uncorrelated]	
1	1	1	Integral	PCB	-1.37	N/A	N/A	
	Note 1: For all transmitter outputs with equal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain (DG) = G_{ANT} + 10 log(N) dBi All transmit signals are completely uncorrelated, Directional Gain (DG)= G_{ANT} Note 2: For all transmitter outputs with unequal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain (DG) = $10 \log[(10^{G1/20} + 10^{G2/20} + + 10^{GN/20})^2 /N] dBi$ All transmit signals are completely uncorrelated, Directional Gain (DG) = $10 \log[(10^{G1/10} + 10^{G2/10} + + 10^{GN/10})/N] dBi$							

1.1.3 Type of EUT

	Identify EUT				
EUT Serial Number		N/A			
Pre	sentation of Equipment	Production ; Pre-Production ; Prototype			
		Type of EUT			
\square	Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
	Other:				

1.1.4 Test Signal Duty Cycle

	Operated Mode for Worst Duty Cycle					
	Operated normally mode for worst duty cycle					
\boxtimes	Operated test mode for worst duty cycle					
	Test Signal Duty Cycle (x)Power Duty Factor [dB] - (10 log 1/x)Voltage Duty Factor [dB] - (20 log 1/x)					
\boxtimes	45.85% - IEEE 802.11b	3.39	6.77			
\boxtimes	17.09% - IEEE 802.11g	7.67	15.35			
\boxtimes	15.51% - IEEE 802.11n (HT20)	8.09	16.19			

1.1.5 EUT Operational Condition

Supply Voltage	AC mains	DC DC	
Type of DC Source	Internal DC supply	External DC adapter	Battery

1.2 Accessories

Accessories Information				
Battery 1	Brand Name	ATL	Model Name	284449
	Power Rating	3.7Vdc, 580 mAh	Туре	Lithium-ion Polymer
Pottony 2	Brand Name	Samsung	Model Name	P11GY1-01-S01
Battery 2	Power Rating	3.7Vdc, 450 mAh	Туре	Lithium-ion Polymer

1.3 Support Equipment

		Support Equ	ipment	
No.	Equipment	Brand Name	Model Name	Serial No.
1	Notebook	DELL	E5520	DoC

1.4 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 558074
- FCC KDB 662911
 FCC KDB 412172

1.5 Testing Location Information

				Testing Location		
\boxtimes	HWA YA	ADD	. No. 52, Hwa Ya Hsien, Taiwan,	a 1st Rd., Hwa Ya Tecl R.O.C	nnology Park, Kwei-Sh	an Hsiang, Tao Yuan
		TEL	: 886-3-327-345	6 FAX : 886	5-3-327-0973	
	Fest Condit	ion	Test Site No.	Test Engineer	Test Environment	Test Date
Co	nducted Em	ission	CO01-HY	David Tu	25°C / 54%	13-Aug-12
	RF Conduct	ed	TH01-HY	lan Du	24.6°C / 44%	02-Aug-12
Ra	adiated Emis	ssion	03CH02-HY	Hsiao	23°C / 59%	09-Aug-12

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Ν	leasurement Uncertainty	1	
Test Item		Uncertainty	Limit
AC power-line conducted emissions		±2.26 dB	N/A
Emission bandwidth, 6dB bandwidth		±1.42 %	N/A
RF output power, conducted		±0.63 dB	N/A
Power density, conducted		±0.81 dB	N/A
Unwanted emissions, conducted	30 – 1000 MHz	±0.51 dB	N/A
	1 – 18 GHz	±0.67 dB	N/A
	18 – 40 GHz	±0.83 dB	N/A
	40 – 200 GHz	N/A	N/A
All emissions, radiated	30 – 1000 MHz	± 2.54 dB	N/A
	1 – 18 GHz	±3.59 dB	N/A
	18 – 40 GHz	±3.82 dB	N/A
	40 – 200 GHz	N/A	N/A
Temperature		±0.8 °C	N/A
Humidity		±3 %	N/A
DC and low frequency voltages		±3 %	N/A
Time		±1.42 %	N/A
Duty Cycle		±1.42 %	N/A

2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

	Wo	orst Modulation	n Used for Con	formance Test	ing	
Power	[.] Level	1				
IEEE 802.11 Protocol	Number of Transmit Chains (N _{TX})	Data Rate / MCS	Worst Data Rate / MCS	Worst Modulation Mode	RF Output Power (dBm)	Power Spectral Density (dBm/3kHz)
b	1	1-11 Mbps	1 Mbps	11B-20M	25.52	-4.57
g	1	6-54 Mbps	6 Mbps	11G-20M	22.98	-12.03
n (HT20)	1	MCS 0-15	MCS 0	11N2.4G-20M	21.60	-13.14
HT20. Note 2: Modula 11B: IE 20M: C Note 3: RF out Note 4: EUT op Then E	Worst modulation EE 802.11b, 11 Channel Bandwid put power specio perating mode the EUT with 1 trans	on mode of Gua isist of 11B-20M G: IEEE 802.11 dth 20MHz fies that Maximi nat using same mit chains whicl	rd Interval (GI) i l, 11G-20M, 11N g, 11N2.4G: IEE um Peak Condu power level bet h does not char		GHz Band) wer. chains and 1 tra mit chain) RF o	ansmit chain. utput power

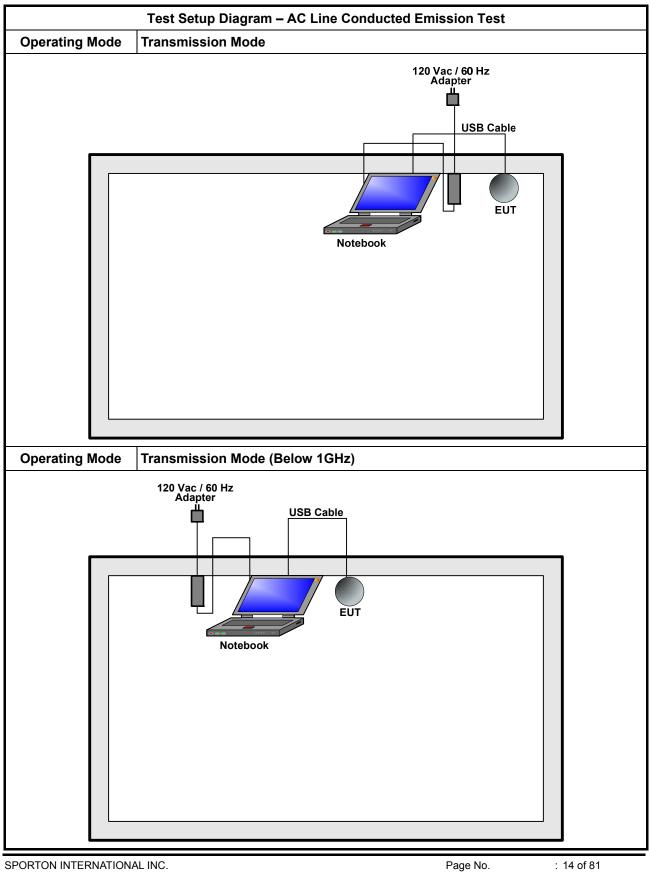
2.2 Test Channel Frequencies Configuration

Tes	st Channel Frequencies Configur	ration
IEEE 802.11 Protocol	Worst Modulation Mode	Test Channel Frequencies (MHz) – FX (Frequencies Abbreviations)
b	11B-20M	2412-(F1), 2437-(F2), 2462-(F3)
g	11G-20M	2412-(F1), 2437-(F2), 2462-(F3)
n (HT20)	11N2.4G-20M	2412-(F1), 2437-(F2), 2462-(F3)

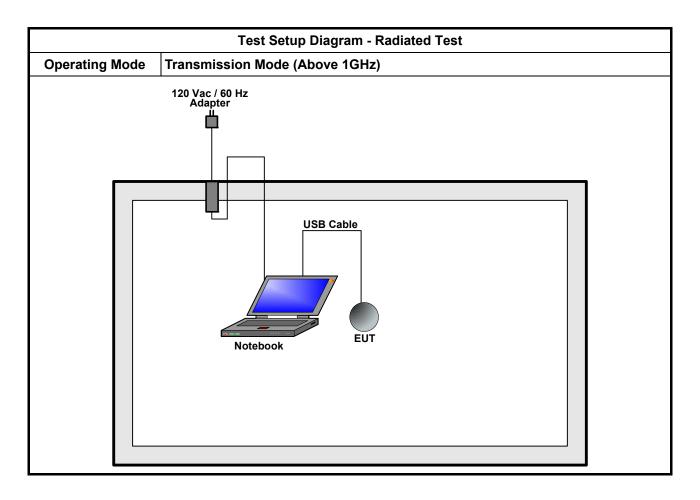
2.3 The Worst Case Power Setting Parameter

	The	Worst Case Pow	ver Setting Paramo	eter	
Test Softwa	are Version	DOS Command			
Worst Modulation Mode	Number of Transmit Chains (N _{Tx})	Frequency (MHz)	Power Setting	Worst Data Rate / MCS	RF Output Power (dBm)
11B-20M	1	2412	18	1 Mbps	25.15
11B-20M	1	2437	18	1 Mbps	25.37
11B-20M	1	2462	18	1 Mbps	25.52
11G-20M	1	2412	13	6 Mbps	22.42
11G-20M	1	2437	13	6 Mbps	22.80
11G-20M	1	2462	13	6 Mbps	22.98
11N2.4G-20M	1	2412	12	MCS 0	21.46
11N2.4G-20M	1	2437	12	MCS 0	21.32
11N2.4G-20M	1	2462	12	MCS 0	21.60
Note 1: RF output	t power specifies t	hat Maximum Pea	k Conducted Outpu	ut Power.	

2.4 The Worst Case Measurement Configuration


	The Worst Case Mode for Following Co	onformance Tests		
Tests Item	AC power-line conducted emissions			
Condition	AC power-line conducted measurement for line and Test Voltage: 120V/60 Hz	neutral		
Operating Mode	Operating Mode Description	Worst Modulation Mode	Test Freq.	Power Level
1	WiFi TX+Zigbee TX+Charger(Battery : ATL)	11N2.4G-20M	F2	1
2	WiFi TX+Zigbee TX+Charger(Battery : Samsung)	11N2.4G-20M	F2	1

	The Worst Case Mode for	r Following Conformance T	ests
Tests Item	RF Output Power Power Spectral Density 6 dB Bandwidth		
Test Condition	Conducted measurement at	transmit chains	
Worst Modulation Mode	Number of Transmit Chains (N _{TX})	Worst Data Rate / MCS	Test Frequency
11B-20M	1	1 Mbps	F1, F2, F3
11G-20M	1	6 Mbps	F1, F2, F3
11N2.4G-20M	1	MCS 0	F1, F2, F3


	The Worst Case Mode fo	r Following Conformance T	ests
Tests Item	Transmitter Radiated Bande	edge Emissions	
Test Condition	Radiated measurement		
Worst Modulation Mode	Number of Transmit Chains (N _{TX})	Worst Data Rate / MCS	Test Frequency
11B-20M	1	1 Mbps	F1, F3
11G-20M	1	6 Mbps	F1, F3
11N2.4G-20M	1	MCS 0	F1, F3

	The Worst Case	e Mode	for Following	Conformance	Tests	
Tests Item	Transmitter Radiated U	Jnwante	ed Emissions			
Test Condition	Radiated measuremer	nt				
	EUT will be place	d in fixe	ed position.			
User Position	EUT will be place performed two or				tiple po	sitions. EUT shall be
	EUT will be a han multiple positions					
Operating	I.WiFi TX+Zigbee	e TX+C	harger(Battery	ATL)		
Mode < 1GHz	2.WiFi TX+Zigbee	e TX+C	harger(Battery	Samsung)		
Worst Modulation Mode	Number of Transmit Chains (N _{TX})	Wors	t Data Rate / MCS	Test Freque	ency	Worst Orthogonal Planes of EUT
11B-20M	1		1 Mbps	F1, F2, F	3	Y Plane
11G-20M	1		6 Mbps	F1, F2, F	3	Y Plane
11N2.4G-20M	1		MCS 0	F1, F2, F	3	Y Plane
	X Plane		ΥP	lane		Z Plane
Orthogonal Planes of EUT						

Test Setup Diagram 2.5

TEL: 886-3-327-3456 FAX: 886-3-327-0973

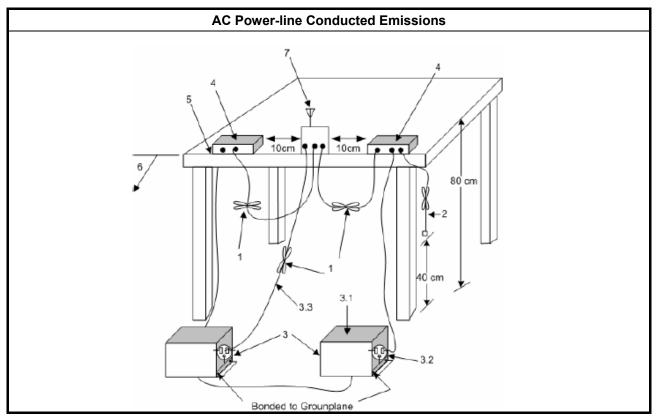
3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

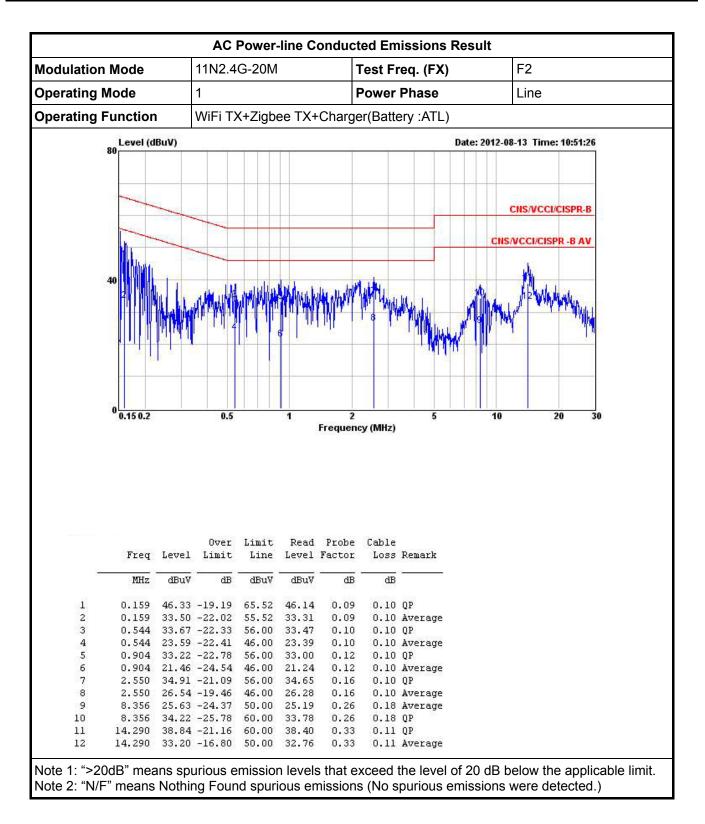
AC Pow	er-line Conducted Emissions	Limit
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50
Note 1: * Decreases with the logarithm of	of the frequency.	•

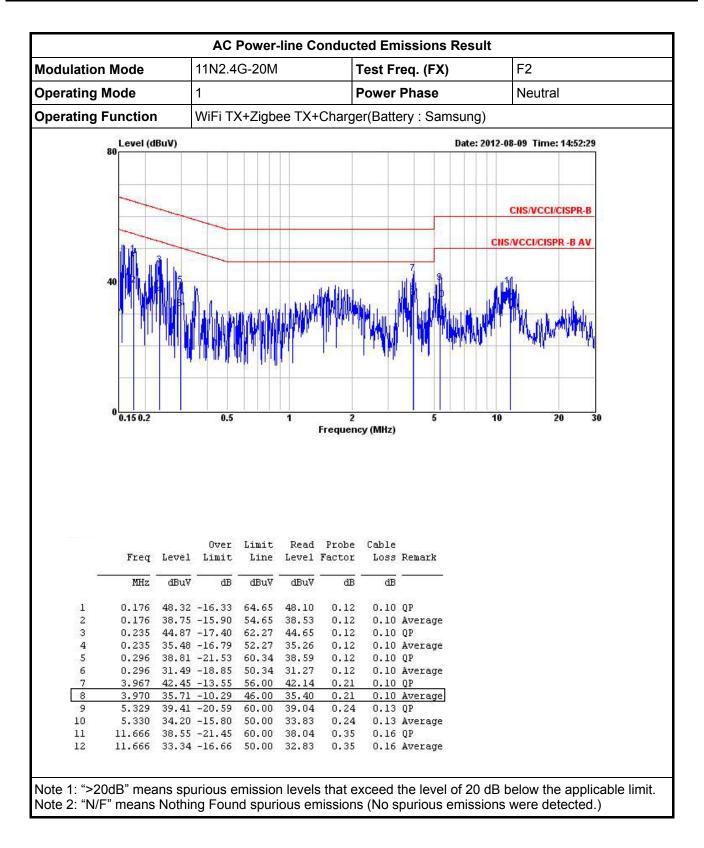
Test Method

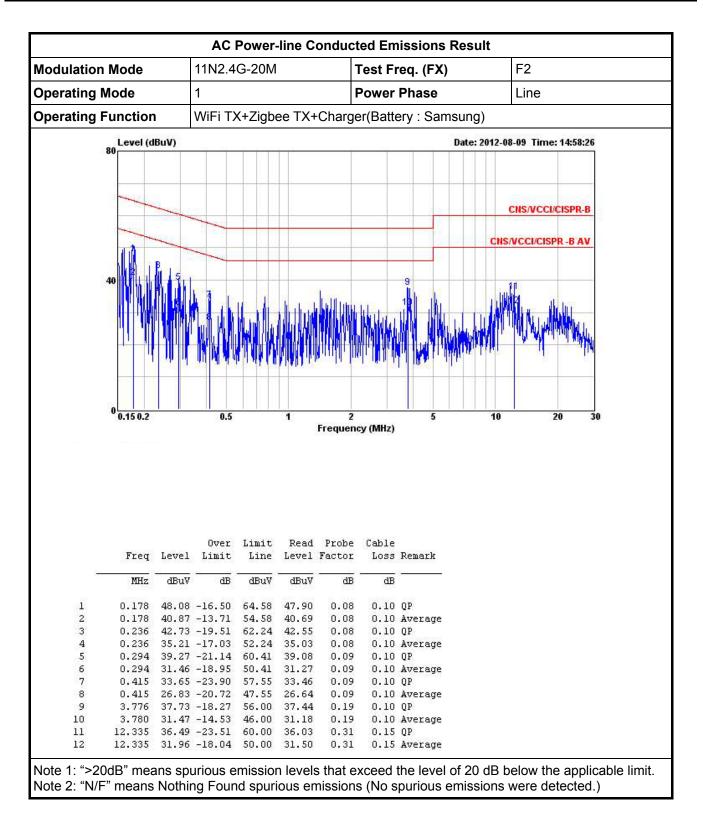

3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures


Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.


3.1.4 Test Setup



erating Mode 1 Power Phase Neutral erating Function WiFi TX+Zigbee TX+Charger(Battery :ATL) Date: 2012-08-13 Time: 10: CNS/VCCU/CISPR -E	PR-B
Bate: 2012-08-13 Time: 10: CHS/VCCI/CISF 40	PR-B
	PR-B
40 Martin Law Chander Martin Change Martin Martin Martin Change Annual Providence	B AV
40 Martin Law Chander Martin Change Martin Martin Martin Change Annual Providence	
	MAN
** The second se	KAN NAM
A CONTRACT OF A	MAN .
	1W
0 0.15 0.2 0.5 1 2 5 10 20	30
6.156.2 0.5 1 2 5 10 20 Frequency (MHz)	30
Over Limit Read Probe Cable	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Freq Level Limit Line Level Factor Loss Remark	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Freq Level Limit Line Level Factor Loss Remark	
Freq Level Line Level Factor Loss Remark MHz dBUV dB dBuV dB dB dB dB 1 0.152 33.42 -22.47 55.89 33.20 0.12 0.10 Average 2 0.152 46.21 -19.68 65.89 45.99 0.12 0.10 QP	
Freq Level Line Level Factor Loss Remark MHz dBuV dB dBuV dB dB dB 1 0.152 33.42 -22.47 55.89 33.20 0.12 0.10 Average 2 0.152 46.21 -19.68 65.89 45.99 0.12 0.10 QP 3 0.194 43.13 -20.73 63.86 42.91 0.12 0.10 QP	
Freq Level Line Level Factor Loss Remark MHz dBuV dB dBuV dBuV dB dB dB 1 0.152 33.42 -22.47 55.89 33.20 0.12 0.10 Average 2 0.152 46.21 -19.68 65.89 45.99 0.12 0.10 QP 3 0.194 43.13 -20.73 63.86 42.91 0.12 0.10 QP 4 0.194 27.77 -26.09 53.86 27.55 0.12 0.10 Average	
Freq Level Line Level Factor Loss Remark MHz dBuV dB dBuV dBuV dB dB dB 1 0.152 33.42 -22.47 55.89 33.20 0.12 0.10 Average 2 0.152 46.21 -19.68 65.89 45.99 0.12 0.10 QP 3 0.194 43.13 -20.73 63.86 42.91 0.12 0.10 QP 4 0.194 27.77 -26.09 53.86 27.55 0.12 0.10 Average 5 0.541 35.87 -20.13 56.00 35.64 0.13 0.10 QP	
Freq Level Line Level Factor Loss Remark MHz dBuV dB dBuV dBuV dB dB dB 1 0.152 33.42 -22.47 55.89 33.20 0.12 0.10 Average 2 0.152 46.21 -19.68 65.89 45.99 0.12 0.10 QP 3 0.194 43.13 -20.73 63.86 42.91 0.12 0.10 QP 4 0.194 27.77 -26.09 53.86 27.55 0.12 0.10 Average 5 0.541 35.87 -20.13 56.00 35.64 0.13 0.10 QP 6 0.541 26.58 -19.42 46.00 26.35 0.13 0.10 Average	
Freq Level Line Level Factor Loss Remark MHz dBuV dB dBuV dBuV dB <	
Freq Level Line Level Factor Loss Remark MHz dBuV dB dBuV dBuV dB dB dB dB 1 0.152 33.42 -22.47 55.89 33.20 0.12 0.10 Average 2 0.152 46.21 -19.68 65.89 45.99 0.12 0.10 QP 3 0.194 43.13 -20.73 63.86 42.91 0.12 0.10 QP 4 0.194 27.77 -26.09 53.86 27.55 0.12 0.10 Average 5 0.541 35.87 -20.13 56.00 35.64 0.13 0.10 QP 6 0.541 26.58 -19.42 46.00 26.35 0.13 0.10 Average 7 2.728 34.83 -21.17 56.00 34.54 0.19 0.10 QP 8 2.728 26.03 -19.97 46.00 <td></td>	
Freq Level Line Level Factor Loss Remark MHz dBuV dB dBuV dBuV dB dB dB dB 1 0.152 33.42 -22.47 55.89 33.20 0.12 0.10 Average 2 0.152 46.21 -19.68 65.89 45.99 0.12 0.10 QP 3 0.194 43.13 -20.73 63.86 42.91 0.12 0.10 QP 4 0.194 27.77 -26.09 53.86 27.55 0.12 0.10 Average 5 0.541 35.87 -20.13 56.00 35.64 0.13 0.10 QP 6 0.541 26.58 -19.42 46.00 26.35 0.13 0.10 Average 7 2.728 34.83 -21.17 56.00 34.54 0.19 0.10 QP 8 2.728 26.03 -19.97 46.00 <td></td>	
Freq Level Line Level Factor Loss Remark MHz dBuV dB dBuV dBuV dB dB dB 1 0.152 33.42 -22.47 55.89 33.20 0.12 0.10 Average 2 0.152 46.21 -19.68 65.89 45.99 0.12 0.10 QP 3 0.194 43.13 -20.73 63.86 42.91 0.12 0.10 QP 4 0.194 27.77 -26.09 53.86 27.55 0.12 0.10 Average 5 0.541 35.87 -20.13 56.00 35.64 0.13 0.10 QP 6 0.541 26.58 -19.42 46.00 26.35 0.13 0.10 Average 7 2.728 34.83 -21.17 56.00 34.54 0.19 0.10 QP 8 2.728 26.03 -19.97 46.00 25.74	

3.1.5 Test Result of AC Power-line Conducted Emissions

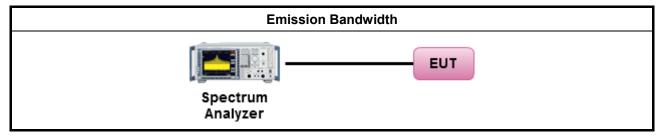
3.2 6dB Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit

Systems using digital modulation techniques:

 \bigcirc 6 dB bandwidth ≥ 500 kHz.

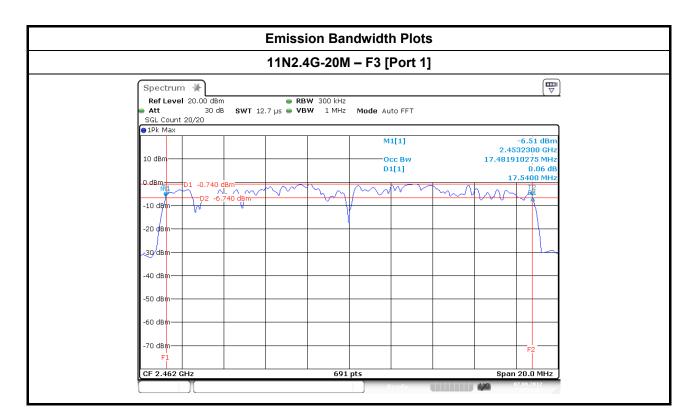

3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures


			Test Method
\boxtimes	For	the e	mission bandwidth shall be measured using one of the options below:
	\boxtimes	Ref	er as FCC KDB 558074, clause 5.1.1 Option 1 for 6 dB bandwidth measurement.
		Ref	er as FCC KDB 558074, clause 5.1.2 Option 2 for 6 dB bandwidth measurement.
		Ref	er as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.
\square	For	cond	ucted measurement.
		For	conducted measurements on devices with multiple transmit chains using options given below:
			Option 1: Multiple transmit chains measurements need to be performed on one of the active transmit chains (antenna outputs). All measurement had be performed on transmit chains 1.
			Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.
			Option 3: A power splitter/combiner shall be used to combine all the transmit chains (antenna outputs) into a single test point and record a single test point EBW.
			ted measurement. The equipment to be measured and the test antenna shall be oriented to e maximum emitted power level.

3.2.4 Test Setup


			Em	ission B	andwidth	Result				
					Emis	sion Ba	ndwidth (N	/IHz)		
Modulation	Ντχ	Freq.		99% Ba	ndwidth			6dB Ba	ndwidth	
Mode		(MHz)	Chain- Port 1	-	-	-	Chain- Port 1	-	-	-
11B-20M	1	2412	14.44	-	-	-	7.90	-	-	-
11B-20M	1	2437	14.24	-	-	-	8.83	-	-	-
11B-20M	1	2462	14.09	-	-	-	10.01	-	-	-
11G-20M	1	2412	16.30	-	-	-	16.09	-	-	-
11G-20M	1	2437	16.38	-	-	-	16.30	-	-	-
11G-20M	1	2462	16.41	-	-	-	16.35	-	-	-
11N2.4G-20M	1	2412	17.60	-	-	-	17.60	-	-	-
11N2.4G-20M	1	2437	17.63	-	-	-	16.99	-	-	-
11N2.4G-20M	1	2462	17.48	-	-	-	17.54	-	-	-
Lim	it			N	/ A			≥500) kHz	
Resi	ılt					Com	plied			
Note 1: N _{TX} = Nur	nber c	of Transm	it Chains							

3.3 **RF Output Power**

3.3.1 RF Output Power Limit

		RF Output Power Limit
Мах	imu	m Peak Conducted Output Power or Maximum Conducted Output Power Limit
	902	-928 MHz Band:
		If $G_{TX} \le 6 \text{ dBi}$, then $P_{Out} \le 30 \text{ dBm} (1 \text{ W})$
		If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6) \text{ dBm}$
\square	240	0-2483.5 MHz Band:
	\square	If $G_{TX} \le 6 \text{ dBi}$, then $P_{Out} \le 30 \text{ dBm} (1 \text{ W})$
		Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm
		Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm
		Smart antenna system (SAS):
		Single beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm
		Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm
		Aggregate power on all beams: If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 + 8 \text{dBm}$
	572	5-5850 MHz Band:
		If $G_{TX} \le 6 \text{ dBi}$, then $P_{Out} \le 30 \text{ dBm} (1 \text{ W})$
		Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm
		Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30$ dBm
e.i.r	.p. P	ower Limit:
	902	-928 MHz Band: P _{eirp} ≤ 36 dBm (4 W)
\square	240	0-2483.5 MHz Band
	\square	Point-to-multipoint systems (P2M): P _{eirp} ≤ 36 dBm (4 W)
		Point-to-point systems (P2P): $P_{eirp} \leq MAX(36, [P_{Out} + G_{TX}]) dBm$
		Smart antenna system (SAS)
		□ Single beam: $P_{eirp} \le MAX(36, P_{Out} + G_{TX}) dBm$
		Overlap beam: $P_{eirp} \le MAX(36, P_{Out} + G_{TX}) dBm$
		Aggregate power on all beams: $P_{eirp} \leq MAX(36, [P_{Out} + G_{TX} + 8]) dBm$
	572	5-5850 MHz Band
		Point-to-multipoint systems (P2M): P _{eirp} ≤ 36 dBm (4 W)
		Point-to-point systems (P2P): N/A
G _{TX}	= the	aximum peak conducted output power or maximum conducted output power in dBm, e maximum transmitting antenna directional gain in dBi. i.r.p. Power in dBm.

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

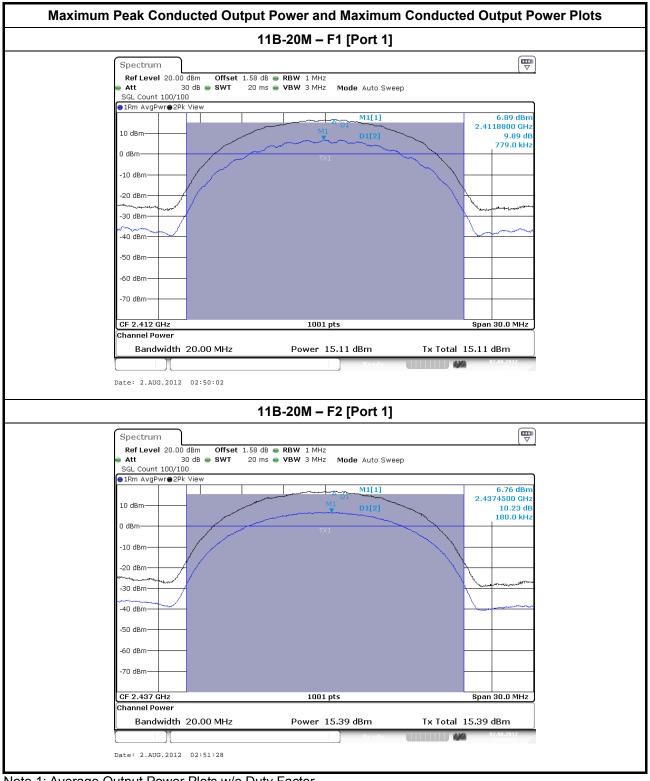
⊠ Maximum Peak Conducted Output Power □ Refer as FCC KDB 558074, clause 5.2.1.1 Option 1 (RBW ≥ EBW method). □ Refer as FCC KDB 558074, clause 5.2.1.2 Option 2 (integrated band power method). □ Refer as ANSI C63.10, clause 6.10.2.1 a) for peak power meter. □ Refer as ANSI C63.10, clause 6.10.2.1 a) for spectrum analyzer - (RBW ≥ EBW). □ Refer as ANSI C63.10, clause 6.10.2.1 b) for spectrum analyzer - BW correction factor. ⊘ Maximum Conducted (Average) Output Power □ Refer as FCC KDB 558074, clause 5.2.2.1 Option 1 (RMS detection with slow sweep speed). ○ Refer as FCC KDB 558074, clause 5.2.2.2 Option 2 (spectral trace averaging). □ Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 1 (trace averaging). □ Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 3 (band power max-hold). ☑ Refer as FCC KDB 558074, clause 2 for conducted measurement. ☑ For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them. □ If multiple transmit chains, EIRP calculation could be following as methods: □ □ If multiple transmit c			Test Method
Refer as FCC KDB 558074, clause 5.2.1.2 Option 2 (integrated band power method). Refer as ANSI C63.10, clause 6.10.2.1 a) for peak power meter. Refer as ANSI C63.10, clause 6.10.2.1 a) for spectrum analyzer - (RBW ≥ EBW). Refer as ANSI C63.10, clause 6.10.2.1 b) for spectrum analyzer - BW correction factor. Maximum Conducted (Average) Output Power Refer as FCC KDB 558074, clause 5.2.2.1 Option 1 (RMS detection with slow sweep speed). Refer as FCC KDB 558074, clause 5.2.2.2 Option 2 (spectral trace averaging). Refer as ANSI C63.10, clause 6.10.3.1 for spectrum analyzer - Method 1 (trace averaging). Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 2 (zero-span averaging). Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 3 (band power max-hold). Refer as FCC KDB 558074, clause 2 for conducted measurement. For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them. If multiple transmit chains, EIRP calculation could be following as methods: Method 1: EIRP1 = P1 + G _{ANT1} ; EIRP2 = P2 + G _{ANT2} ; EIRPn = Pn + G _{ANT0} (calculated in linear unit [mW] and transfer to log unit [dBm]) (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP1 = P1 + P2 + + Pn (calculated in linear	\boxtimes	Max	imum Peak Conducted Output Power
□ Refer as ANSI C63.10, clause 6.10.2.1 a) for peak power meter. □ Refer as ANSI C63.10, clause 6.10.2.1 a) for spectrum analyzer - (RBW ≥ EBW). □ Refer as ANSI C63.10, clause 6.10.2.1 b) for spectrum analyzer - BW correction factor. ☑ Maximum Conducted (Average) Output Power □ Refer as FCC KDB 558074, clause 5.2.2.1 Option 1 (RMS detection with slow sweep speed). ☑ Refer as FCC KDB 558074, clause 5.2.2.2 Option 2 (spectral trace averaging). □ Refer as ANSI C63.10, clause 6.10.3.1 for spectrum analyzer - Method 1 (trace averaging). □ Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 2 (zero-span averaging). □ Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 3 (band power max-hold). ⊠ Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 3 (band power max-hold). ⊠ Refer as FCC KDB 558074, clause 2 for conducted measurement. □ For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them. □ If multiple transmit chains, EIRP calculation could be following as methods: □ If multiple transmit chains, EIRP = P ₂ + G _{ANT2} ; EIRP _n = Pn + G _{ANTn} EIRP _{bot}			Refer as FCC KDB 558074, clause 5.2.1.1 Option 1 (RBW \ge EBW method).
□ Refer as ANSI C63.10, clause 6.10.2.1 a) for spectrum analyzer - (RBW ≥ EBW). □ Refer as ANSI C63.10, clause 6.10.2.1 b) for spectrum analyzer - BW correction factor. ☑ Maximum Conducted (Average) Output Power □ Refer as FCC KDB 558074, clause 5.2.2.1 Option 1 (RMS detection with slow sweep speed). ☑ Refer as FCC KDB 558074, clause 5.2.2.2 Option 2 (spectral trace averaging). □ Refer as ANSI C63.10, clause 6.10.3.1 for spectrum analyzer - Method 1 (trace averaging). □ Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 2 (zero-span averaging). □ Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 3 (band power max-hold). ☑ Refer as FCC KDB 558074, clause 2 for conducted measurement. □ Refer as FCC KDB 558074, clause 2 for conducted measurement. □ For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them. □ If multiple transmit chains, EIRP calculation could be following as methods: □ If multiple transmit chains, EIRP ₂ = P ₂ + G _{ANT2} ; EIRP _n = Pn + G _{ANTn} EIRP _{total} = EIRP ₁ + EIRP ₂ + + EIR ⁿ (calculated in linear unit [mW] and transfer to log unit [dBm]) □		\boxtimes	Refer as FCC KDB 558074, clause 5.2.1.2 Option 2 (integrated band power method).
□ Refer as ANSI C63.10, clause 6.10.2.1 b) for spectrum analyzer - BW correction factor. ○ Maximum Conducted (Average) Output Power □ Refer as FCC KDB 558074, clause 5.2.2.1 Option 1 (RMS detection with slow sweep speed). ○ Refer as FCC KDB 558074, clause 5.2.2.2 Option 2 (spectral trace averaging). □ Refer as ANSI C63.10, clause 6.10.3.1 for spectrum analyzer - Method 1 (trace averaging). □ Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 2 (zero-span averaging). □ Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 3 (band power max-hold). ○ Refer as FCC KDB 558074, clause 2 for conducted measurement. ○ For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them. □ If multiple transmit chains, EIRP calculation could be following as methods: □ Method 1: EIRP ₁ = P ₁ + G _{ANT1} ; EIRP ₂ = P ₂ + G _{ANT2} ; EIRP _n = Pn + G _{ANTn} (calculated in linear unit [mW] and transfer to log unit [dBm]) □ Method 2: P _{total} = P ₁ + P ₂ + + P _n (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG			Refer as ANSI C63.10, clause 6.10.2.1 a) for peak power meter.
☑ Maximum Conducted (Average) Output Power □ Refer as FCC KDB 558074, clause 5.2.2.1 Option 1 (RMS detection with slow sweep speed). ☑ Refer as FCC KDB 558074, clause 5.2.2.2 Option 2 (spectral trace averaging). □ Refer as ANSI C63.10, clause 6.10.3.1 for spectrum analyzer - Method 1 (trace averaging). □ Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 2 (zero-span averaging). □ Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 3 (band power max-hold). ☑ Refer as FCC KDB 558074, clause 2 for conducted measurement. ☑ For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them. □ If multiple transmit chains, EIRP calculation could be following as methods: □ If multiple transmit chains, EIRP 2 = P ₂ + G _{ANT2} ; EIRP _n = Pn + G _{ANTn} EIRP _{total} = EIRP ₁ + EIRP ₂ + + EIRP _n (calculated in linear unit [mW] and transfer to log unit [dBm]) □ Method 2: P _{total} = P ₁ + P ₂ + + P _n (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG			Refer as ANSI C63.10, clause 6.10.2.1 a) for spectrum analyzer - (RBW \ge EBW).
□ Refer as FCC KDB 558074, clause 5.2.2.1 Option 1 (RMS detection with slow sweep speed). □ Refer as FCC KDB 558074, clause 5.2.2.2 Option 2 (spectral trace averaging). □ Refer as ANSI C63.10, clause 6.10.3.1 for spectrum analyzer - Method 1 (trace averaging). □ Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 2 (zero-span averaging). □ Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 3 (band power max-hold). □ Refer as FCC KDB 558074, clause 2 for conducted measurement. □ For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them. □ If multiple transmit chains, EIRP calculation could be following as methods: □ EIRP ₁ = P ₁ + G _{ANT1} ; EIRP ₂ = P ₂ + G _{ANT2} ; EIRP _n = Pn + G _{ANTn} EIRP _{total} = EIRP ₁ + EIRP ₂ + + EIRP _n (calculated in linear unit [mW] and transfer to log unit [dBm]) □ Method 2: P _{total} = P ₁ + P ₂ + + P _n (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG			Refer as ANSI C63.10, clause 6.10.2.1 b) for spectrum analyzer - BW correction factor.
Refer as FCC KDB 558074, clause 5.2.2.2 Option 2 (spectral trace averaging). Refer as ANSI C63.10, clause 6.10.3.1 for spectrum analyzer - Method 1 (trace averaging). Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 2 (zero-span averaging). Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 3 (band power max-hold). Refer as FCC KDB 558074, clause 2 for conducted measurement. For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them. If multiple transmit chains, EIRP calculation could be following as methods: Method 1: EIRP1 = P1 + GANT1; EIRP2 = P2 + GANT2; EIRPn = Pn + GANTn EIRPtotal = EIRP1 + EIRP2 + + EIRPn (calculated in linear unit [mW] and transfer to log unit [dBm]) Method 2: Ptotal = P1 + P2 + + Pn (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRPtotal = Ptotal + DG	\boxtimes	Max	imum Conducted (Average) Output Power
Refer as ANSI C63.10, clause 6.10.3.1 for spectrum analyzer - Method 1 (trace averaging). Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 2 (zero-span averaging). Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 3 (band power max-hold). Refer as FCC KDB 558074, clause 2 for conducted measurement. For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them. If multiple transmit chains, EIRP calculation could be following as methods: Image: Method 1: EIRP1 = P1 + G _{ANT1} ; EIRP2 = P2 + G _{ANT2} ; EIRPn = Pn + G _{ANTn} EIRP1 = P1 + F2 + + Pn (calculated in linear unit [mW] and transfer to log unit [dBm]) Method 2: Ptotal = P1 + P2 + + Pn (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP1 total = P1 + P3 + + Pn (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP1 total = P1 + P3 + + Pn (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP1 total = P1 + P3 + + Pn (calculated in linear unit [mW] and transfer to log unit [dBm])			Refer as FCC KDB 558074, clause 5.2.2.1 Option 1 (RMS detection with slow sweep speed).
□ Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 2 (zero-span averaging). □ Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 3 (band power max-hold). □ Refer as FCC KDB 558074, clause 2 for conducted measurement. □ For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them. □ If multiple transmit chains, EIRP calculation could be following as methods: □ Method 1: EIRP1 = P1 + GANT1; EIRP2 = P2 + GANT2; EIRPn = Pn + GANTn EIRP1 total = EIRP1 + EIRP2 + + EIRPn (calculated in linear unit [mW] and transfer to log unit [dBm]) □ Method 2: Ptotal = P1 + P2 + + Pn (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP1 total = Ptotal + DG		\boxtimes	Refer as FCC KDB 558074, clause 5.2.2.2 Option 2 (spectral trace averaging).
Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 3 (band power max-hold). Refer as FCC KDB 558074, clause 2 for conducted measurement. For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them. If multiple transmit chains, EIRP calculation could be following as methods: Method 1: EIRP1 = P1 + GANT1 ; EIRP2 = P2 + GANT2 ; EIRPn = Pn + GANTn EIRPtotal = EIRP1 + EIRP2 + + EIRPn (calculated in linear unit [mW] and transfer to log unit [dBm]) Method 2: Ptotal = P1 + P2 + + Pn (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRPtotal = Ptotal + DG			Refer as ANSI C63.10, clause 6.10.3.1 for spectrum analyzer - Method 1 (trace averaging).
Refer as FCC KDB 558074, clause 2 for conducted measurement. Image: Provide the second sec			Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 2 (zero-span averaging).
For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them. If multiple transmit chains, EIRP calculation could be following as methods: Method 1: EIRP1 = P1 + GANT1; EIRP2 = P2 + GANT2; EIRPn = Pn + GANTn EIRP1 telRP1 + EIRP2 + + EIRPn (calculated in linear unit [mW] and transfer to log unit [dBm]) Method 2: Ptotal = P1 + P2 + + Pn (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRPtotal = P1 + PG			Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 3 (band power max-hold).
Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them. If multiple transmit chains, EIRP calculation could be following as methods: Method 1: EIRP1 = P1 + GANT1; EIRP2 = P2 + GANT2; EIRPn = Pn + GANTn EIRPtotal = EIRP1 + EIRP2 + + EIRPn (calculated in linear unit [mW] and transfer to log unit [dBm]) Method 2: Ptotal = P1 + P2 + + Pn (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRPtotal = Ptotal + DG	\boxtimes	Refe	er as FCC KDB 558074, clause 2 for conducted measurement.
$ \begin{array}{ c c c c } \hline & \mbox{Method 1:} \\ & \mbox{EIRP}_1 = P_1 + G_{ANT1} ; \mbox{EIRP}_2 = P_2 + G_{ANT2} ; \dots \mbox{EIRP}_n = Pn + G_{ANTn} \\ & \mbox{EIRP}_{total} = \mbox{EIRP}_1 + \mbox{EIRP}_2 + \dots + \mbox{EIRP}_n \\ & \mbox{(calculated in linear unit [mW] and transfer to log unit [dBm])} \\ \hline & \mbox{Method 2:} \\ & \mbox{P}_{total} = P_1 + P_2 + \dots + P_n \\ & \mbox{(calculated in linear unit [mW] and transfer to log unit [dBm])} \\ \hline & \mbox{EIRP}_{total} = P_{total} + \mbox{DG} \end{array} $			Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW)
$ \begin{array}{ c c c c } \hline & \text{EIRP}_1 = P_1 + G_{\text{ANT1}} \text{; EIRP}_2 = P_2 + G_{\text{ANT2}} \text{; } \dots \text{EIRP}_n = \text{Pn} + G_{\text{ANTn}} \\ \hline & \text{EIRP}_{\text{total}} = \text{EIRP}_1 + \text{EIRP}_2 + \dots + \text{EIRP}_n \\ & \text{(calculated in linear unit [mW] and transfer to log unit [dBm])} \\ \hline & \hline & \text{Method 2:} \\ \hline & P_{\text{total}} = P_1 + P_2 + \dots + P_n \\ & \text{(calculated in linear unit [mW] and transfer to log unit [dBm])} \\ \hline & \text{EIRP}_{\text{total}} = P_{\text{total}} + DG \end{array} $			If multiple transmit chains, EIRP calculation could be following as methods:
$P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG			$EIRP_{1} = P_{1} + G_{ANT1}; EIRP_{2} = P_{2} + G_{ANT2}; \dots EIRP_{n} = Pn + G_{ANTn}$ $EIRP_{total} = EIRP_{1} + EIRP_{2} + \dots + EIRP_{n}$
Refer as FCC KDB 558074, clause 2 for radiated measurement.			$P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm])
		Refe	er as FCC KDB 558074, clause 2 for radiated measurement.

3.3.4 Test Setup

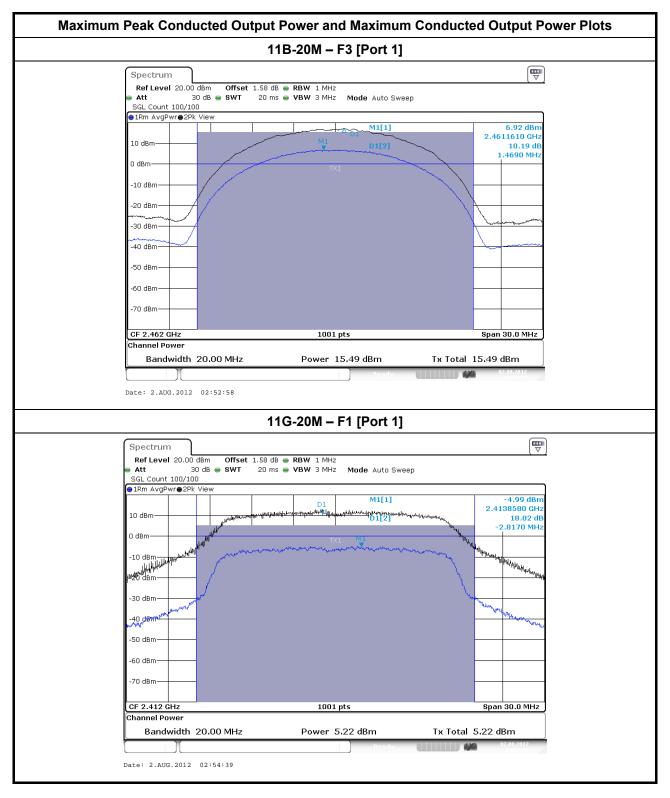
		Maxin	num Peak	Condu	cted Outp	out Powe	er Result					
Directional Gair	n (dBi)	-1.37	RF Output Power (dBm)									
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 1	-	-	-	Sum Chain	Power Limit	EIRP Power	EIRP Limit		
11B-20M	1	2412	25.15	-	-	-	25.15	30.0	23.78	36.0		
11B-20M	1	2437	25.37	-	-	-	25.37	30.0	24.00	36.0		
11B-20M	1	2462	25.52	-	-	-	25.52	30.0	24.15	36.0		
Res	ult					Com	plied					
Note 1: N _{TX} = Nur	nber of	Transmit	Chains									

3.3.5 Test Result of Maximum Peak Conducted Output Power

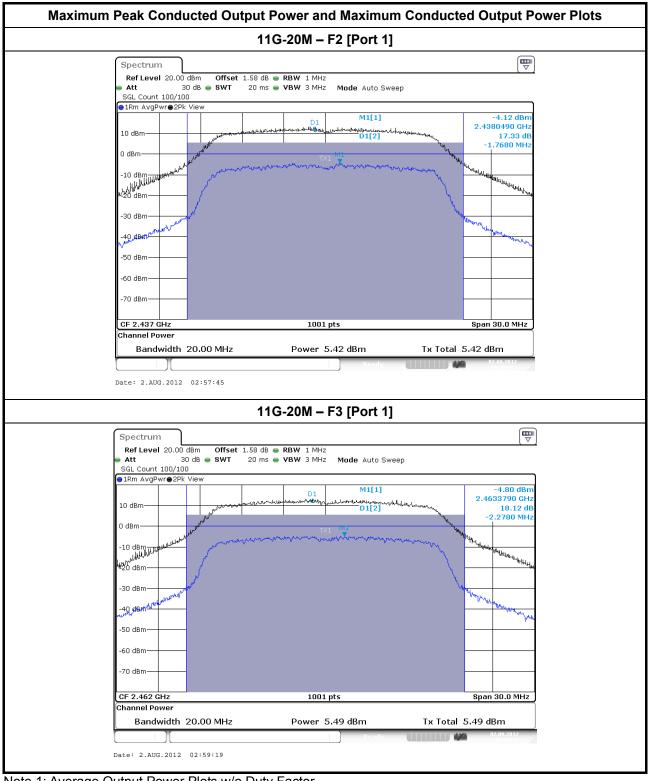
	Maximum Peak Conducted Output Power Result												
Directional Gain	(dBi)	-1.37	RF Output Power (dBm)										
Modulation Mode	Ντχ	Freq. (MHz)	Chain- Port 1	-	-	-	Sum Chain	Power Limit	EIRP Power	EIRP Limit			
11G-20M	1	2412	22.42	-	-	-	22.42	30.0	21.05	36.0			
11G-20M	1	2437	22.80	-	-	-	22.80	30.0	21.43	36.0			
11G-20M	1	2462	22.98	-	-	-	22.98	30.0	21.61	36.0			
Resu	ult					Com	plied						
Note 1: N _{TX} = Num	nber of	Transmit	Chains										

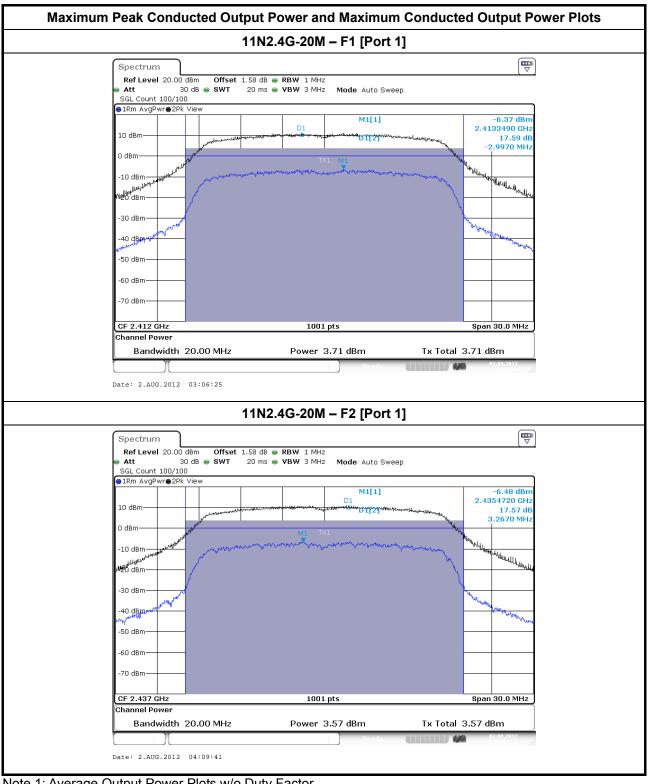

	Maximum Peak Conducted Output Power Result												
Directional Gain	(dBi)	-1.37	RF Output Power (dBm)										
Modulation Mode	Ντχ	Freq. (MHz)	Chain- Port 1	-	-	-	Sum Chain	Power Limit	EIRP Power	EIRP Limit			
11N2.4G-20M	1	2412	21.46	-	-	-	21.46	30.0	20.09	36.0			
11N2.4G-20M	1	2437	21.32	-	-	-	21.32	30.0	19.95	36.0			
11N2.4G-20M	1	2462	21.60	-	-	-	21.60	30.0	20.23	36.0			
Resi	ult			Complied									
Note 1: N _{TX} = Num	ber of	Transmit	Chains										

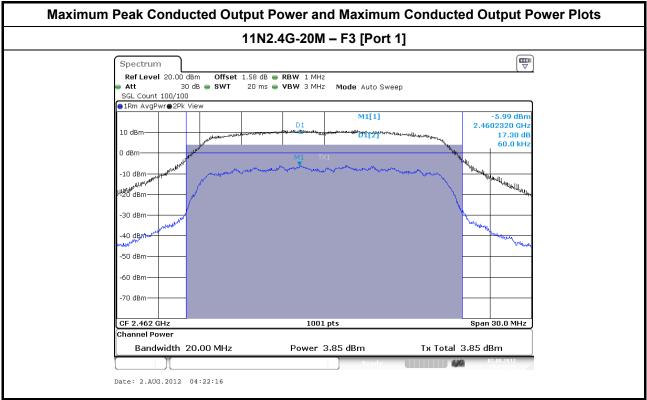
	Maximum Conducted (Average) Output Power Result												
Directional Gain	(dBi)	-1.37	RF Output Power (dBm)										
Modulation Mode	Ντχ	Freq. (MHz)	Chain- Port 1	-	-	Duty Factor	Sum Chain	Power Limit	EIRP Power	EIRP Limit			
11B-20M	1	2412	15.11	-	-	3.39	18.50	30.0	17.13	36.0			
11B-20M	1	2437	15.39	-	-	3.39	18.78	30.0	17.41	36.0			
11B-20M	1	2462	15.49	-	-	3.39	18.88	30.0	17.51	36.0			
Res	ult					Com	plied						
Note 1: N _{TX} = Nun	nber of	Transmit	Chains										


3.3.6 Test Result of Maximum Conducted (Average) Output Power

	Maximum Conducted (Average) Output Power Result												
Directional Gain	n (dBi)	-1.37	RF Output Power (dBm)										
Modulation Mode	Ντχ	Freq. (MHz)	Chain- Port 1	-	-	Duty Factor	Sum Chain	Power Limit	EIRP Power	EIRP Limit			
11G-20M	1	2412	5.22	-	-	7.67	12.89	30.0	11.52	36.0			
11G-20M	1	2437	5.42	-	-	7.67	13.09	30.0	11.72	36.0			
11G-20M	1	2462	5.49	-	-	7.67	13.16	30.0	11.79	36.0			
Res	ult					Com	plied						
Note 1: N _{TX} = Nur	nber of	Transmit	Chains										


	Maximum Conducted (Average) Output Power Result												
Directional Gain	RF Output Power (dBm)												
Modulation Mode	Ντχ	Freq. (MHz)	Chain- Port 1	-	-	Duty Factor	Sum Chain	Power Limit	EIRP Power	EIRP Limit			
11N2.4G-20M	1	2412	3.71	-	-	8.09	11.80	30.0	10.43	36.0			
11N2.4G-20M	1	2437	3.57	-	-	8.09	11.66	30.0	10.29	36.0			
11N2.4G-20M	1	2462	3.85	-	-	8.09	11.94	30.0	10.57	36.0			
Res	ult					Com	plied						
Note 1: N _{TX} = Nun	nber of	Transmit	Chains										


Note 1: Average Output Power Plots w/o Duty Factor


Note 1: Average Output Power Plots w/o Duty Factor

Note 1: Average Output Power Plots w/o Duty Factor

Note 1: Average Output Power Plots w/o Duty Factor

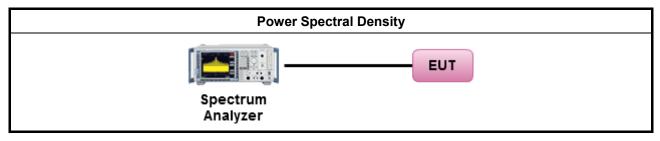
Note 1: Average Output Power Plots w/o Duty Factor

3.4 **Power Spectral Density**

3.4.1 Power Spectral Density Limit

Power Spectral Density Limit

Power Spectral Density (PSD) \leq 8 dBm/3kHz

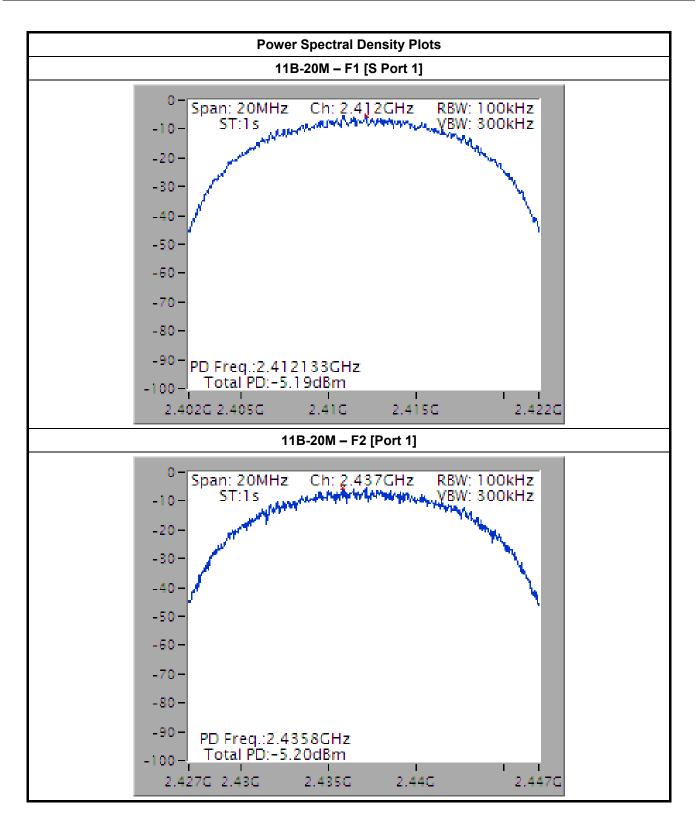

3.4.2 Measuring Instruments

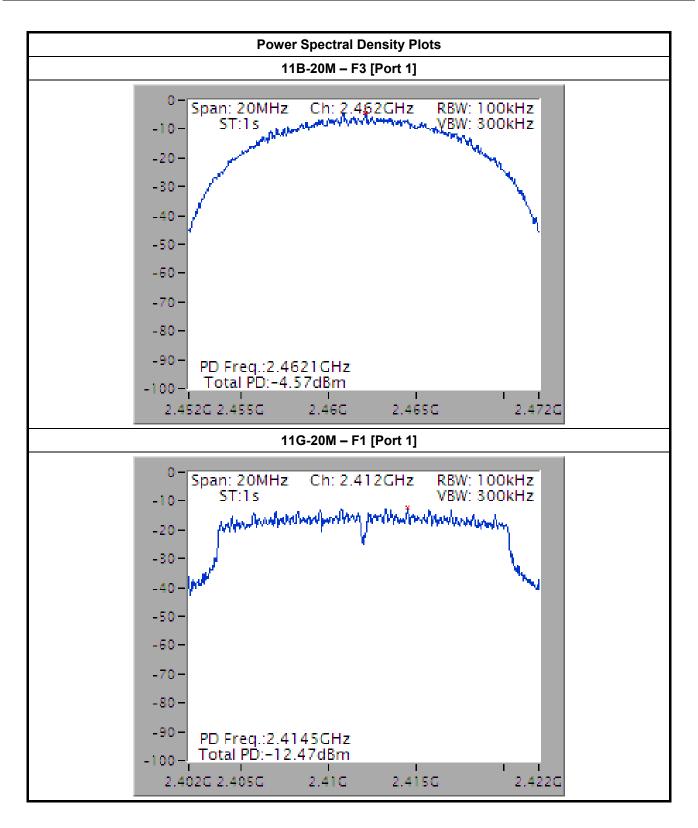
Refer a test equipment and calibration data table in this test report.

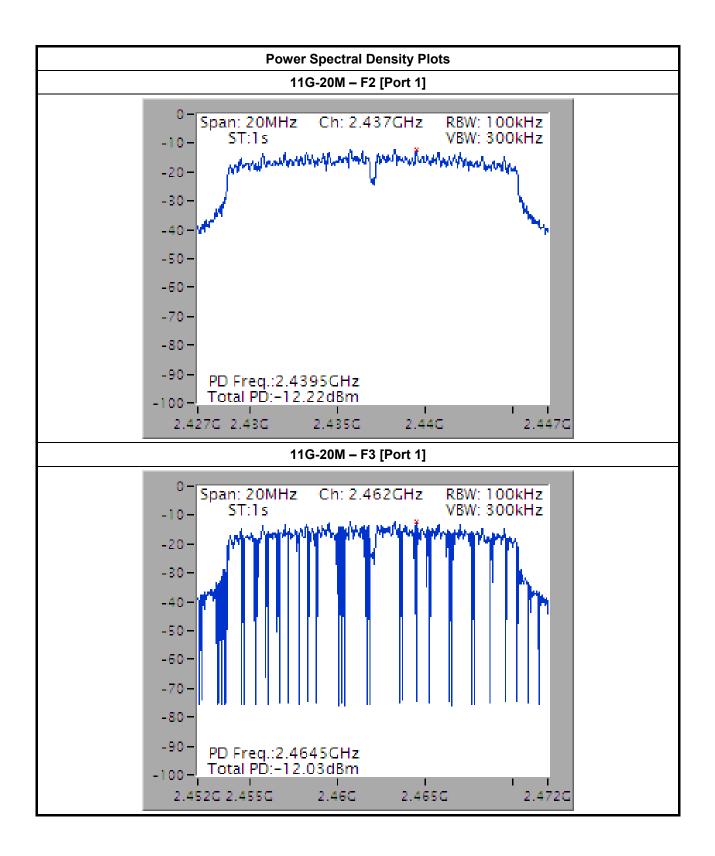
3.4.3 Test Procedures

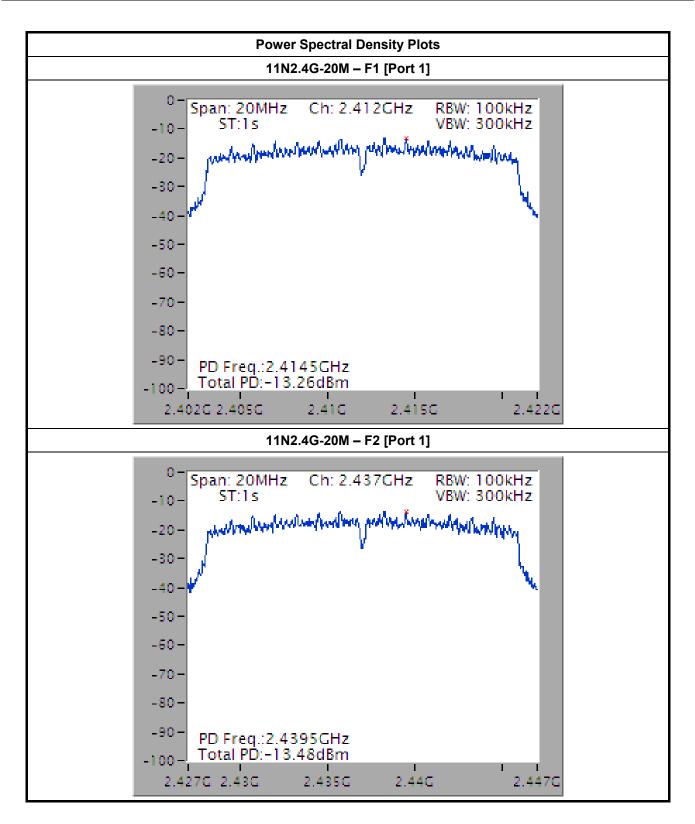
Test Method Power spectral density procedures that the same method as used to determine the conducted output power shall be used to determine the power spectral density. In addition, the use of a peak PSD procedure will always result in a "worst-case" measured level for comparison to the limit. Therefore, whenever the DTS bandwidth exceeds 500 kHz, it is acceptable to utilize the peak PSD procedure to demonstrate compliance to the PSD limit, regardless of how the fundamental output power was measured. For the power spectral density shall be measured using below options: Refer as FCC KDB 558074, clause 5.3.1 Option 1 (peak PSD; BWCF=-15.2dB). \boxtimes Refer as FCC KDB 558074, clause 5.3.2 Option 2 (average PSD; BWCF=-15.2dB). Refer as ANSI C63.10, clause 6.11.2.3 for PSD for DTS - (RBW=3kHz; sweep=100s). Refer as ANSI C63.10, clause 6.11.2.4 for Alternative PSD for DTS - (RBW=3kHz; average=100) \boxtimes Refer as FCC KDB 558074, clause 2 for conducted measurement. \boxtimes For conducted measurements on devices with multiple transmit chains using options given below: Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911. \boxtimes In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the N_{TX} output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace. The new data trace samples added 100 kHz segment and found the highest value of each 100 kHz segments. Add the bandwidth correction factor (BWCF) [-15.2 dB] adjusting in power spectral density per 3kHz. Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit. Refer as FCC KDB 558074, clause 2 for radiated measurement.

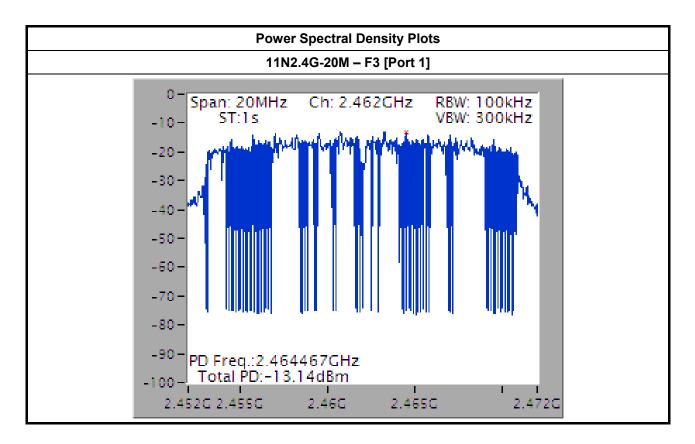
3.4.4 Test Setup

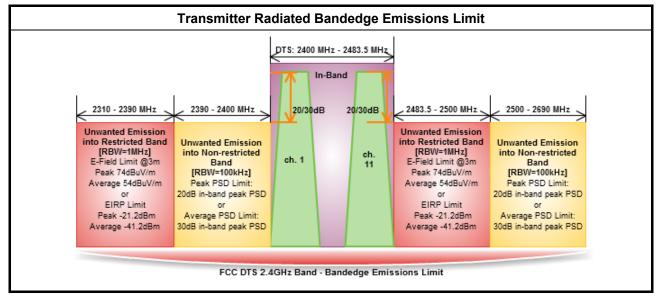



3.4.5 Test Result of Power Spectral Density


	Power Spectral Density Result								
Directional Gair	ı (dBi)	-1.37	Power Spectral Density (dBm/3kHz)						
Modulation Mode N _{TX}		Freq. (MHz)	Chain-Port 1	-	-	-	PSD Limit		
11B-20M	1	2412	-5.19	-	-	-	8		
11B-20M	1	2437	-5.20	-	-	-	8		
11B-20M	1	2462	-4.57	-	-	-	8		
Res	ult				Complied				
Note 1: N _{TX} = Nur	Note 1: N _{TX} = Number of Transmit Chains								


	Power Spectral Density Result								
Directional Gain	(dBi)	-1.37		Power Spectral Density (dBm/3kHz)					
Modulation Mode N _{TX}		Freq. (MHz)	Chain-Port 1	-	-	-	PSD Limit		
11G-20M	1	2412	-12.47	-	-	-	8		
11G-20M	1	2437	-12.22	-	-	-	8		
11G-20M	11G-20M 1		-12.03	-	-	-	8		
Result Complied									
Note 1: N _{TX} = Nur	Note 1: N_{TX} = Number of Transmit Chains								

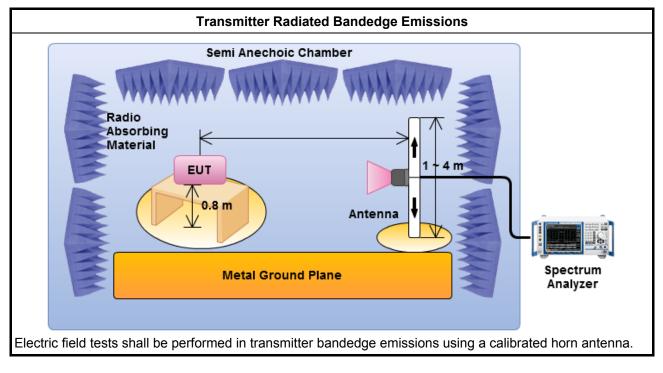

	Power Spectral Density Result								
Directional Gain	(dBi)	-1.37		Power Spectral Density (dBm/3kHz)					
Modulation Mode		Freq. (MHz)	Chain-Port 1	-	-	-	PSD Limit		
11N2.4G-20M	1	2412	-13.26	-	-	-	8		
11N2.4G-20M	1	2437	-13.48	-	-	-	8		
11N2.4G-20M 1		2462	-13.14	-	-	-	8		
Result Complied									
Note 1: N _{TX} = Number of Transmit Chains									



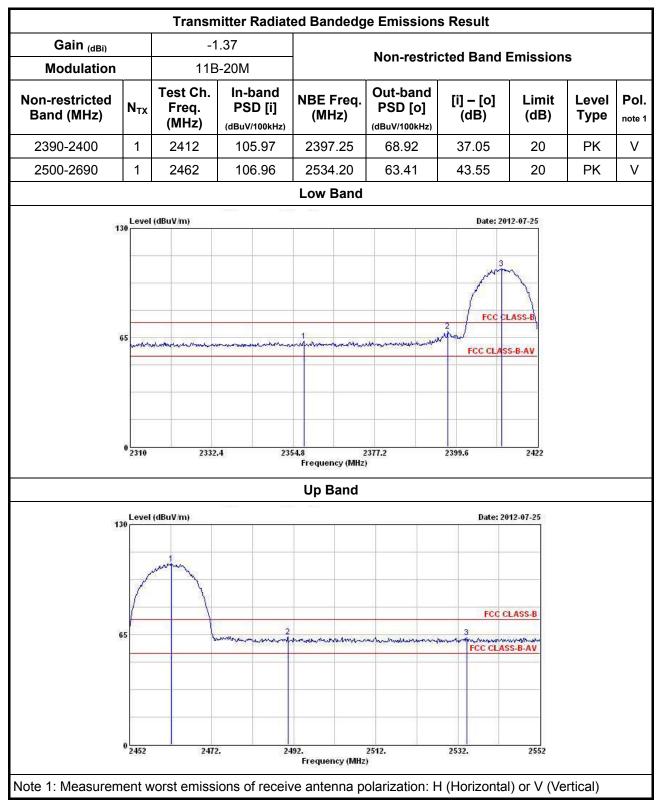
3.5 Transmitter Radiated Bandedge Emissions

3.5.1 Transmitter Radiated Bandedge Emissions Limit

3.5.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures


	Test Method – General Information								
\square	The	The average emission levels shall be measured in [duty cycle \geq 98 or duty factor].							
\boxtimes	Refer as ANSI C63.10, clause 6.9.2.2 bandedge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.								
\square	For the transmitter unwanted emissions shall be measured using following options below:								
	\boxtimes	Refer as FCC KDB 558074, clause 5.4.1 for unwanted emissions into non-restricted bands.							
	\boxtimes	Refer as FCC KDB 558074, clause 5.4.2 for unwanted emissions into restricted bands.							
		Refer as FCC KDB 558074, clause 5.4.2.2.2.1 Option 1 (Power Averaging).							
		Refer as FCC KDB 558074, clause 5.4.2.2.2 Option 2 (Trace Averaging).							
		□ Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). – Duty cycle ≥ 98%.							
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.							
		Refer as FCC KDB 558074, clause 5.4.2.2.1.1 measurement procedure peak limit.							
		Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.							
\boxtimes	For	the transmitter bandedge emissions shall be measured using following options below:							
		Refer as FCC KDB 558074, clause 5.4.2.2.4 for narrower resolution bandwidth using the band power and summing the spectral levels (i.e., 100 kHz or 1 MHz).							
	\boxtimes	Refer as ANSI C63.10, clause 6.9.2 for band-edge testing.							
		Refer as ANSI C63.10, clause 6.9.3 for marker-delta method for band-edge measurements.							

		Test Method							
	Refe	r as FCC KDB 558074, clause 2 for conducted measurement.							
		For unwanted emissions into non-restricted bands (relative emission limits).							
		For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, when testing out-of-band and spurious emissions against relative emission limits, tests may be performed on each output individually without summing of adding 10 log(N) if the measurements are made relative to the in-band emissions on the individual outputs.							
		For unwanted emissions into restricted bands. Test conducted spurious emissions and radiated by the cabinet with the antenna connector(s) terminated by a specified load (cabinet radiation).							
		□ Refer as FCC KDB 558074, clause 5.4.2.2.1 unwanted emissions in restricted bands on frequencies ≤ 1000 MHz							
		Refer as FCC KDB 558074, clause 5.4.2.2.2 unwanted emissions in restricted bands or frequencies > 1000 MHz							
		For conducted measurements on devices with multiple transmit chains using options give below:							
		Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 66291 out-of-band and spurious emission measurement. The trace data for each transmit chai has to be individually recorded and each transmit chain trace data shall be added an compared with the limit.							
		Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.							
\boxtimes	Refe	r as FCC KDB 558074, clause 2 for radiated measurement.							
		Refer as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz.							
		Refer as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1000 MHz.							
	\boxtimes	Refer as ANSI C63.10, clause 6.5 for radiated emissions from above 1 GHz.							


3.5.4 Test Setup

Level	·
Level	
Туре	Pol. note 1
PK	V
AV	V
PK	V
AV	V
	AV PK

Transmitter Radiated Bandedge Emissions Result											
Gain _(dBi)		-1	.37		Destricted David Envisorieus						
Modulation		11G	6-20M	Restricted Band Emissions							
Restricted Band (MHz)	Ντχ	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz)	Measure Distance (m)	Out-Band Level (dBuV/m)	Limit (dBuV/m)	Level Type	Pol. note 1		
2310-2390	1	2412	107.19	2389.63	3	61.86	74	PK	V		
2310-2390	1	2412	89.84	2389.97	3	53.68	54	AV	V		
2483.5-2500	1	2462	106.24	2483.50	3	60.48	74	PK	V		
2483.5-2500	1	2462	88.39	2493.80	3	53.85	54	AV	V		
Note 1: Measurem	Note 1: Measurement worst emissions of receive antenna polarization: H (Horizontal) or V (Vertical).										

Transmitter Radiated Bandedge Emissions Result										
Gain _(dBi)	Gain (dBi)		.37	Destricted David Envisorieurs						
Modulation		11N2.	4G-20M	Restricted Band Emissions						
Restricted Band (MHz)	Ντχ	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz)	Measure Distance (m)	Out-Band Level (dBuV/m)	Limit (dBuV/m)	Level Type	Pol. note 1	
2310-2390	1	2412	106.49	2389.63	3	61.39	74	PK	V	
2310-2390	1	2412	89.30	2389.52	3	53.27	54	AV	V	
2483.5-2500	1	2462	106.69	2484.30	3	60.77	74	PK	V	
2483.5-2500	1	2462	89.50	2483.80	3	53.65	54	AV	V	
Note 1: Measurem	ient v	vorst emissi	ions of receiv	/e antenna po	olarization:	H (Horizontal) or V (Ve	rtical).		

3.6 Transmitter Radiated Unwanted Emissions

3.6.1 Transmitter Radiated Unwanted Emissions Limit

Restricted Band Emissions Limit						
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)			
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300			
0.490~1.705	24000/F(kHz)	33.8 - 23	30			
1.705~30.0	30	29	30			
30~88	100	40	3			
88~216	150	43.5	3			
216~960	200	46	3			
Above 960	500	54	3			

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

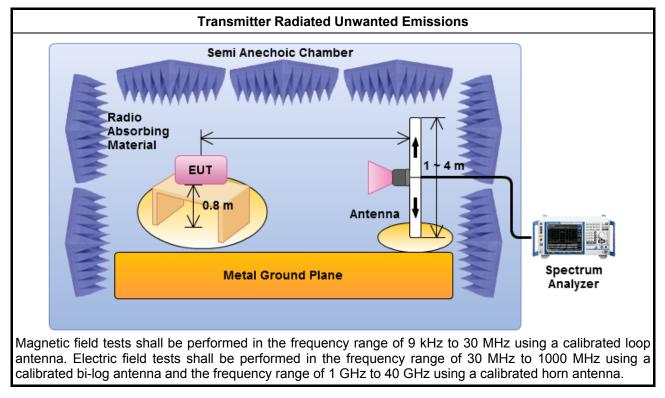
Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

Un-restricted Band Emissions Limit					
RF output power procedure	Limit (dB)				
Peak output power procedure	20				
Average output power procedure	30				
Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within					

demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level. Note 2: If the average output power procedure is used to measure the fundamental emission power to

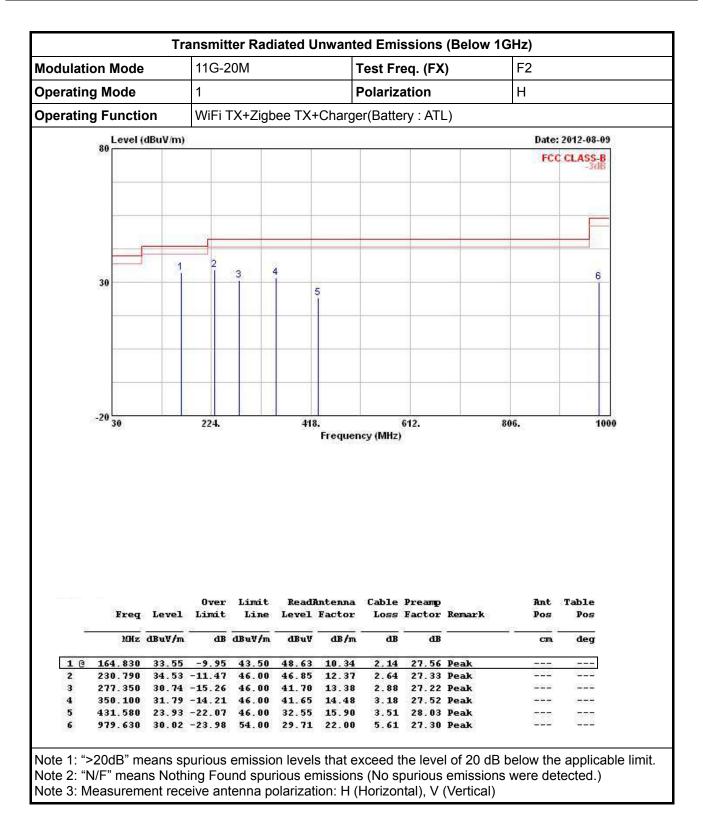
Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

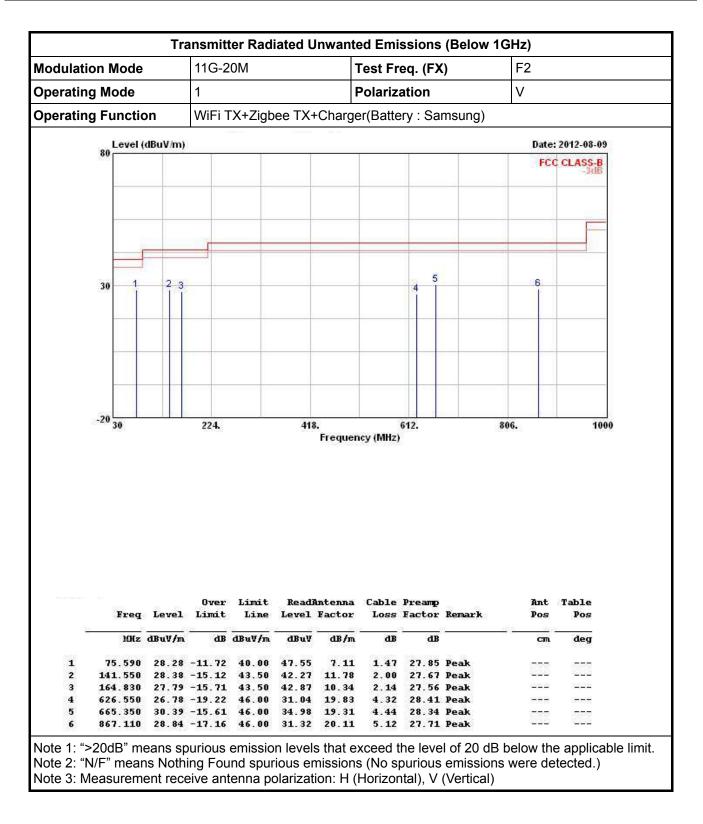
3.6.2 Measuring Instruments

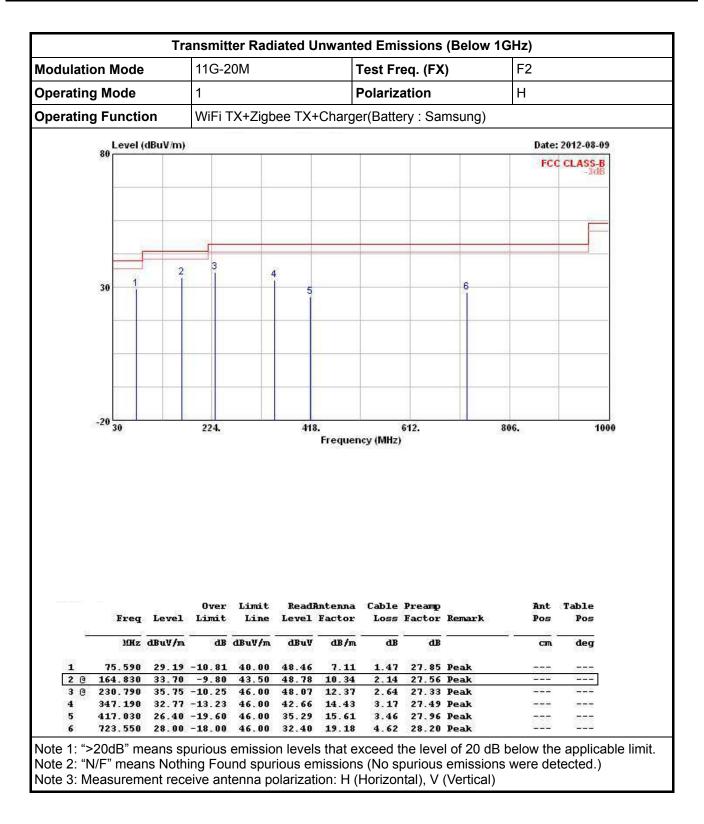

Refer a test equipment and calibration data table in this test report.

3.6.3 Test Procedures

		Test Method – General Information							
\boxtimes	perfo equi extra dista	leasurements may be performed at a distance other than the limit distance provided they are not erformed in the near field and the emissions to be measured can be detected by the measurement quipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).							
	\boxtimes	Measurements in the frequency range 10 GHz - 18GHz are typically made at a closer distance 1m, because the instrumentation noise floor is typically close to the radiated emission limit.							
	\boxtimes	Measurements in the frequency range above 18 GHz - 25GHz are typically made at a closer distance 0.5m, because the instrumentation noise floor is typically close to the radiated emission limit.							
\boxtimes	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].							
\boxtimes	For	For the transmitter unwanted emissions shall be measured using following options below:							
	\boxtimes	Refer as FCC KDB 558074, clause 5.4.1 for unwanted emissions into non-restricted bands.							
	\boxtimes	Refer as FCC KDB 558074, clause 5.4.2 for unwanted emissions into restricted bands.							
		Refer as FCC KDB 558074, clause 5.4.2.2.2.1 Option 1 (Power Averaging).							
		Refer as FCC KDB 558074, clause 5.4.2.2.2 Option 2 (Trace Averaging).							
		□ Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW) – Duty cycle \ge 98%.							
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.							
		Refer as FCC KDB 558074, clause 5.4.2.2.1.1 measurement procedure peak limit.							
		Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.							

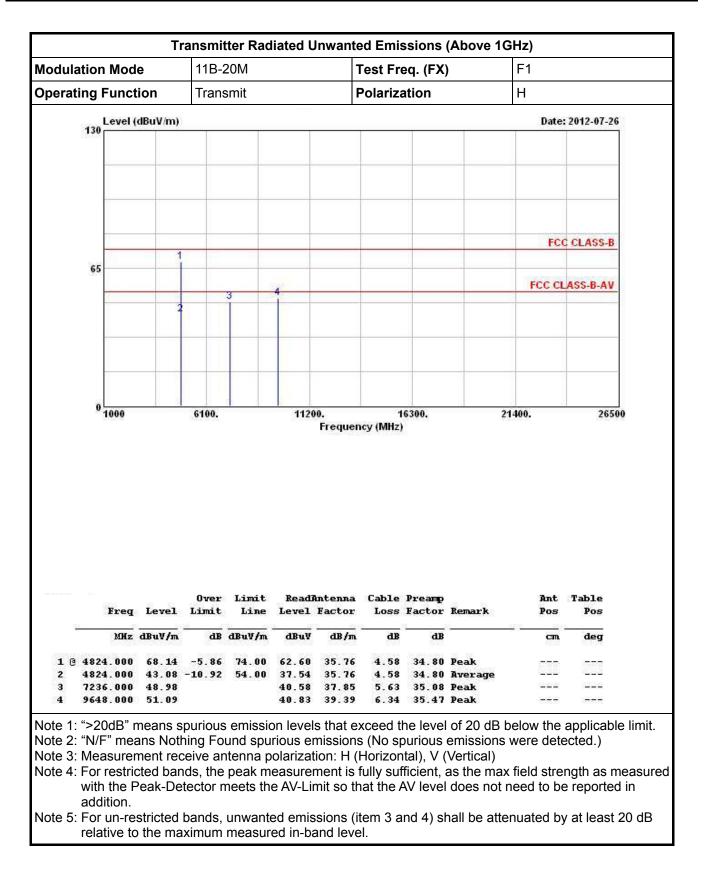

			Test Method							
	Refe	er as	FCC KDB 558074, clause 2 for conducted measurement.							
		For	For unwanted emissions into non-restricted bands (relative emission limits).							
			□ For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, when testing out-of-band and spurious emissions against relative emission limits, tests may be performed on each output individually without summing or adding 10 log(N) if the measurements are made relative to the in-band emissions on the individual outputs.							
			unwanted emissions into restricted bands. Test conducted spurious emissions and radiated by cabinet with the antenna connector(s) terminated by a specified load (cabinet radiation).							
		□ Refer as FCC KDB 558074, clause 5.4.2.2.1 unwanted emissions in restricted bands or frequencies ≤ 1000 MHz								
		Refer as FCC KDB 558074, clause 5.4.2.2.2 unwanted emissions in restricted bands frequencies > 1000 MHz								
		For conducted measurements on devices with multiple transmit chains using options below:								
			Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, out-of-band and spurious emission measurement. The trace data for each transmit chain has to be individually recorded and each transmit chain trace data shall be added and compared with the limit.							
			Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.							
\square	For	radia	ited measurement.							
	\boxtimes	Ref	er as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz.							
	\boxtimes	Ref	er as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1000 MHz.							
	\square	Ref	er as ANSI C63.10, clause 6.5 for radiated emissions from above 1 GHz.							

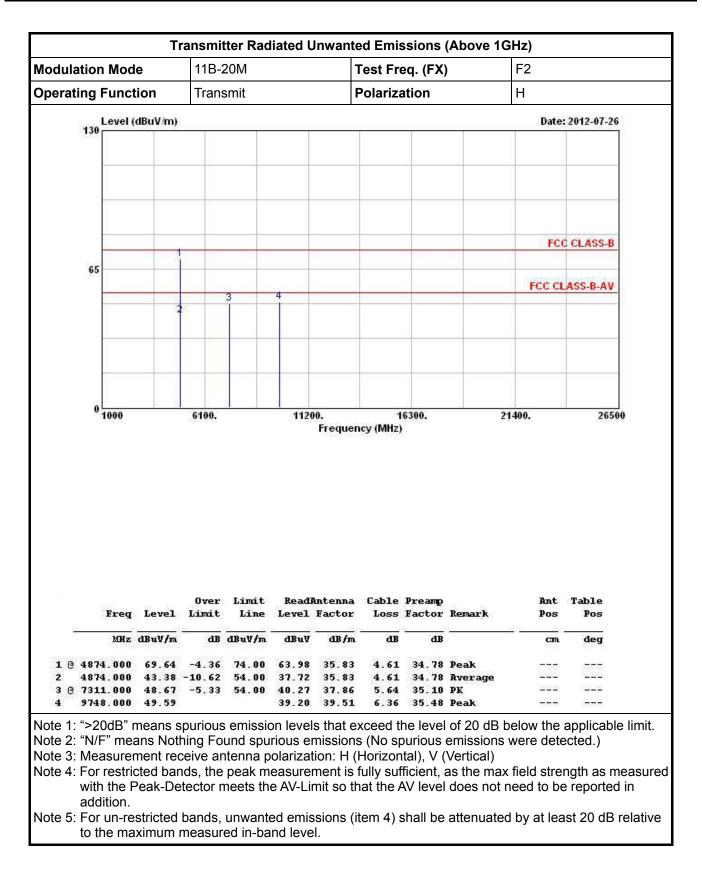

3.6.4 Test Setup

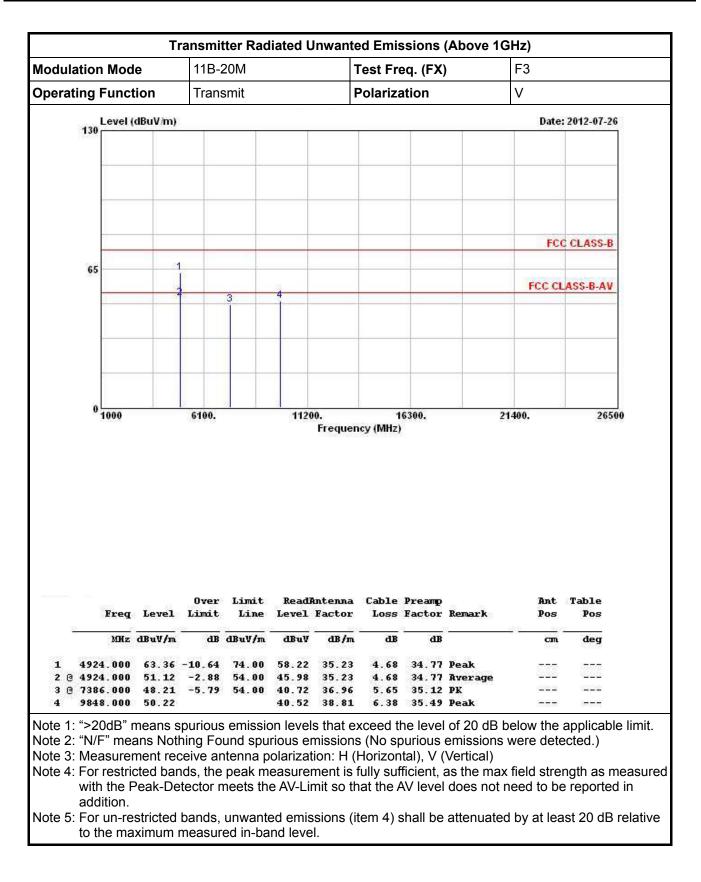


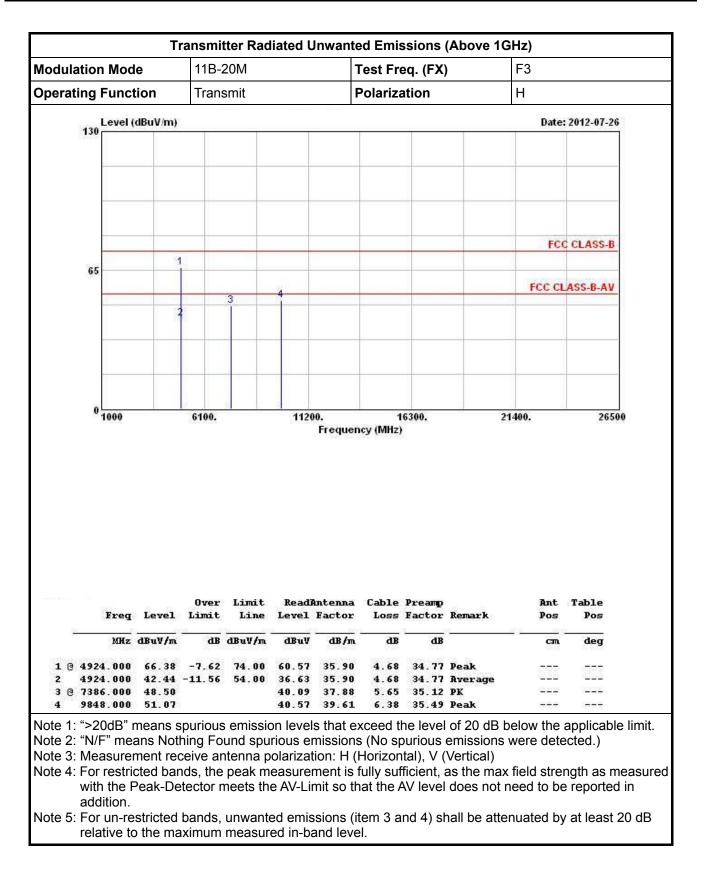
ulation Mode	9	11G-2	20M		٦	lest Fr	req. (FX	()	F2		
rating Mode		1			F	Polarization			V		
rating Funct	on	WiFi	TX+Zigb	ee TX-	+Charge	er(Batte	ery : AT	L))		
Level	(dBuV/m)	Date: 2012-08-09									
80										FCC	CLASS-B
-										_	- ortico
	-								-		
	3						2				
30 1	2					4	5			6	
									_		
									_		
-20									- 122		
-20 30		224.		411	8. Frequen		612.)		806.		100
	Levrel	Over	Limit	Readi	Frequen	cy(MHz) Preamp	Remark	A		Table
Freq	Level	Over Limit	Line	Readi Level	Frequen Antenna Factor	Cable Loss) Preamp Factor	Remark	A	'os 	Table Pos
Freq MHz	dBuV/m	Over Limit dB	Line dBuV/m	Readi Level dBuV	Frequen Antenna Factor dB/m	Cable Loss dB) Preamp Factor dB	20. 28	A		Table
Erec MHz 1 74.620	dBuV/m	Over Limit	Line <u>dBuV/m</u> 40.00	Readi Level	Antenna Factor dB/m 7.05	Cable Loss) Preamp Factor dB 27.85	 Peak	A	'os 	Table Pos
Freq MHz 1 74.620 2 141.550 3 164.830	dBuV/m 25.08 28.66 31.73	Over Limit dB -14.92 -14.84 -11.77	Line dBuV/m 40.00 43.50 43.50	Readi Level dBuV 44.42 42.55 46.81	Frequen Antenna Factor dB/m 7.05 11.78 10.34	Cable Loss dB 1.46 2.00 2.14) Freamp Factor dB 27.85 27.67 27.56	Peak Peak Peak	A	'os 	Table Pos
Freq MHz 1 74.620 2 141.550	dBuV/m 25.08 28.66 31.73 26.76	Over Limit dB -14.92 -14.84	Line dBuV/m 40.00 43.50 43.50 46.00	Readi Level dBuV 44.42 42.55	Antenna Factor dB/m 7.05 11.78	Cable Loss dB 1.46 2.00) Preamp Factor dB 27.85 27.67 27.56 28.44	Peak Peak Peak Peak Peak	A	'os 	Table Pos

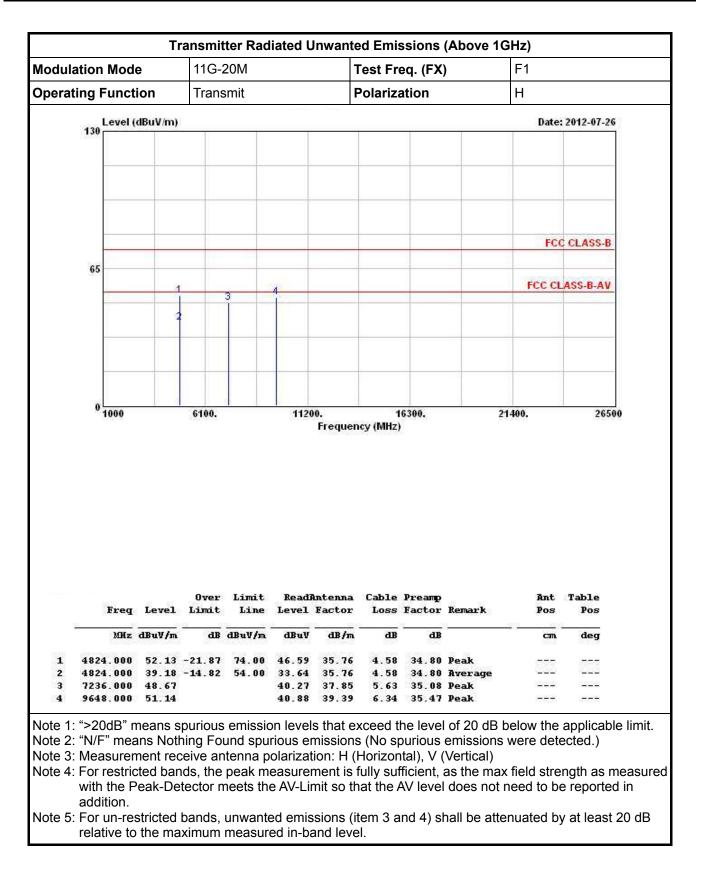
3.6.5 Test Result of Transmitter Radiated Unwanted Emissions (Below 1GHz)

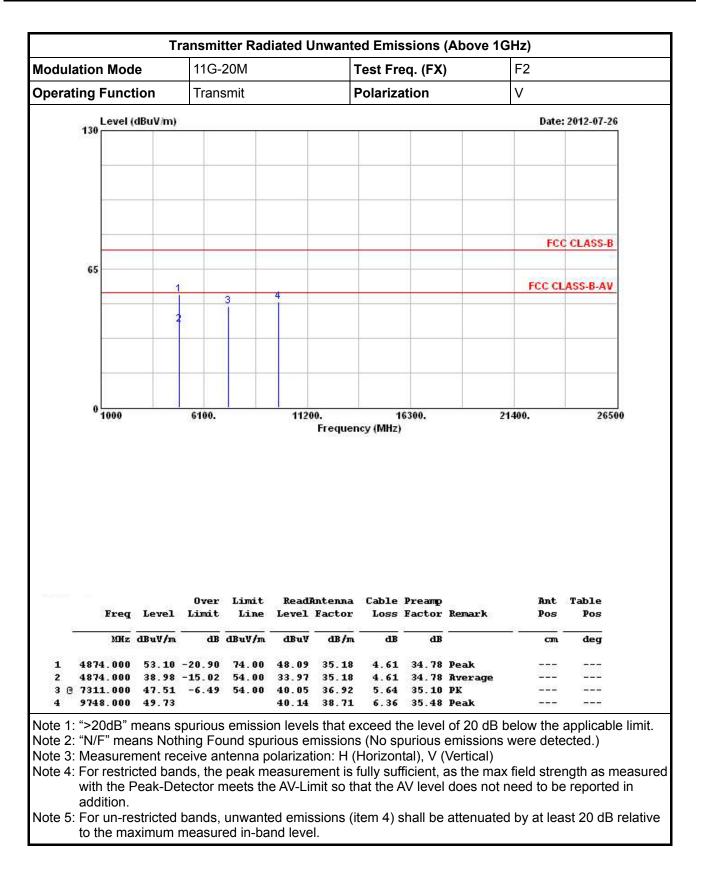


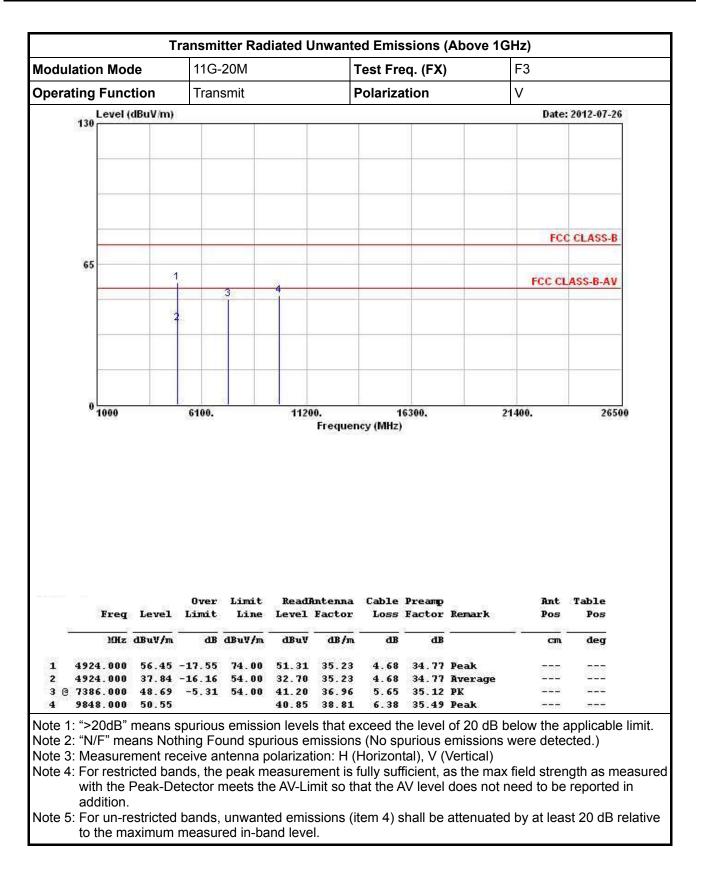


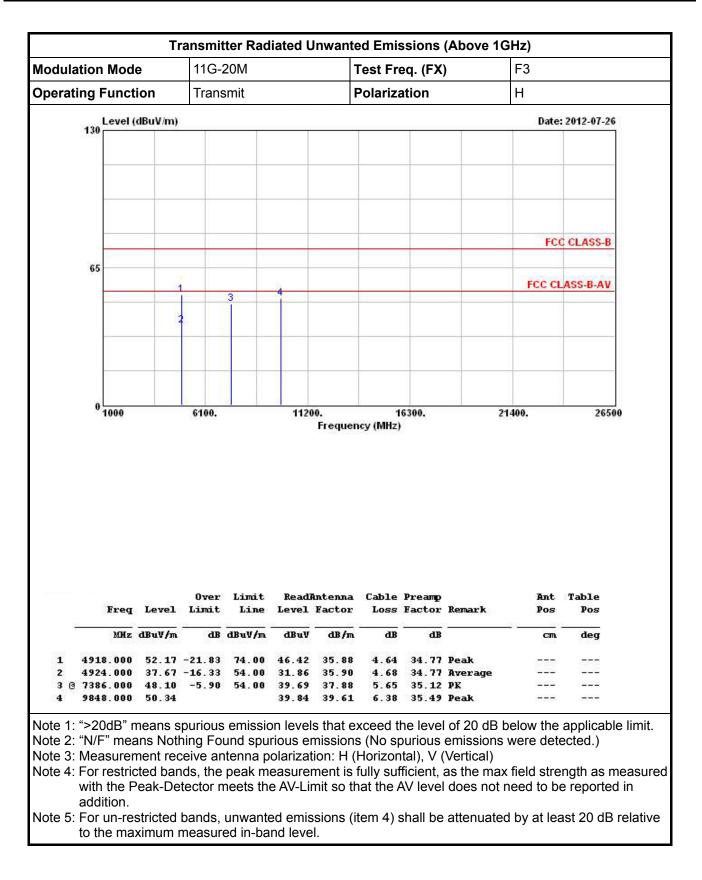

)nerati		е	11B-20M				est Fre	əq. (FX)	F1		
poradi	ng Funct	ion	Trans	smit		F	Polarization			V	
	Level (dBuV/m)	-14	00-00	0.98301	496.016				Date	: 2012-07-26
	130	abav <i>i</i> ni)								Date	. 2012-01-20
	1										
	-										
	10									FC	C CLASS-B
	20.00										
	65	1								1100200100	0000000000
	2	- 1		3	4					FCC CL	ASS-B-AV
			-	Ĩ							
		-									
	_										
	0 1000		6100.		1120	0. Frequen		6300.		21400.	2650
	0 1000			Limit			cy (MHz)			21400. Ant	2650 Table
	- 1000	Level	Över	19241		Frequen	cy (MHz) Cable	Preamp	Remark	92 2560 NJ 231	
	- 1000 Freq		Over Limit	19241	ReadA Level	Frequen intenna Factor	cy (MHz) Cable	Preamp		Ant	Table Pos
	- 1000 Freq 	dBuV/m	Over Limit dB	Line dBuV/m	ReadA Level dBuV	Frequen Intenna Factor dB/m	cy (MHz) Cable Loss dB	Preamp Factor dB	Remark	Ant Pos cm	Table Pos deg
- 1 2 8	Freq MHz 4824.000	dBuV/m 58.46	Over Limit dB -15.54	Line dBuV/m 74.00	ReadA Level dBuV 53.55	Frequen Intenna Factor dB/m 35.13	cy (MHz) Cable Loss dB 4.58	Preamp Factor dB 34.80	Remark Peak	Ant Pos	Table Pos
100 A 10	- 1000 Freq 	dBuV/m 58.46 52.05	Over Limit dB	Line dBuV/m	ReadA Level dBuV	Frequen Intenna Factor dB/m	cy (MHz) Cable Loss dB	Preamp Factor dB 34.80	Remark Peak Average	Ant Pos 	Table Pos deg

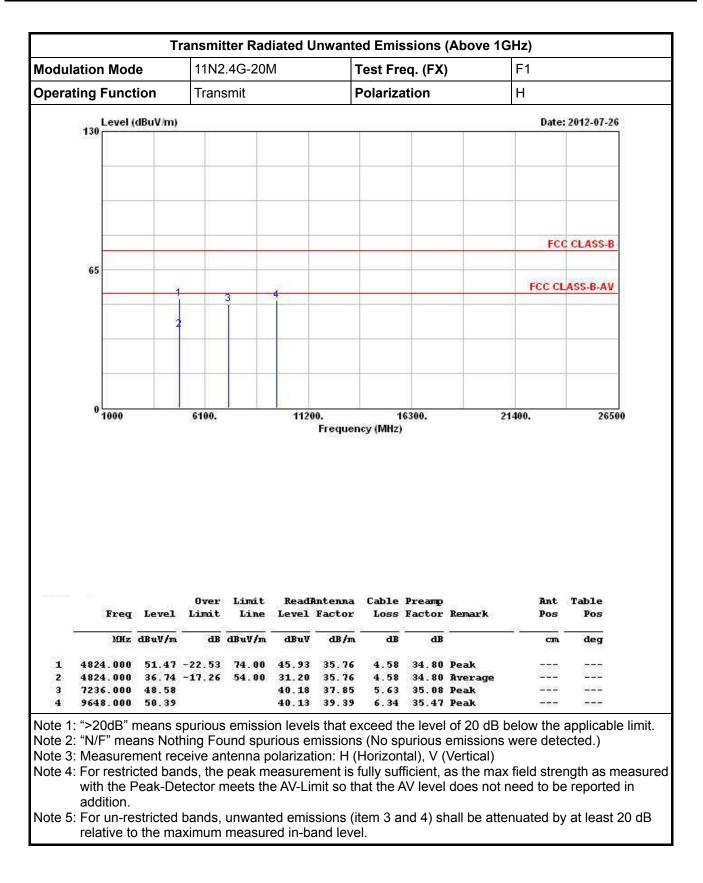

3.6.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11B-20M

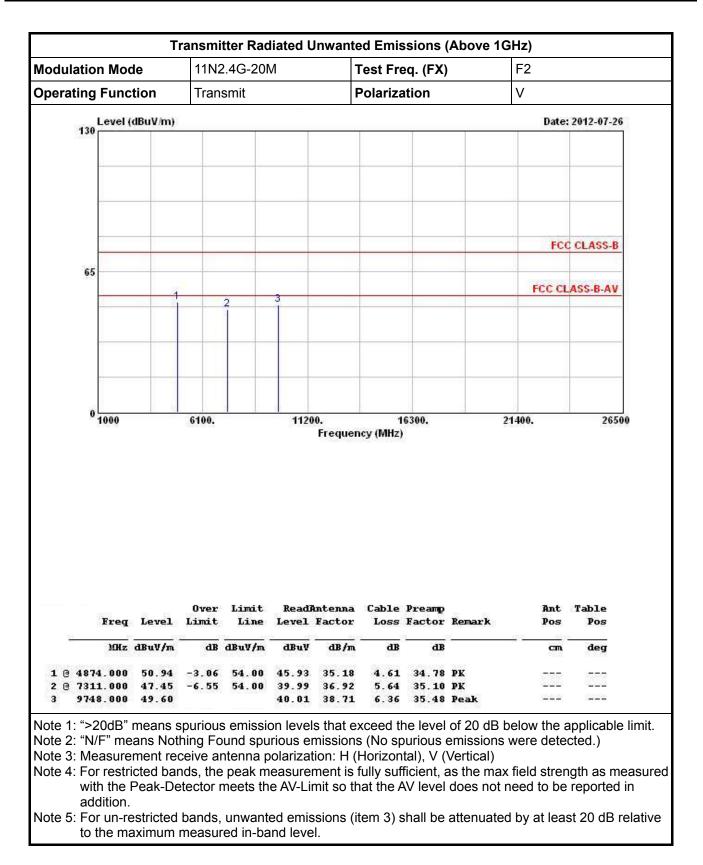


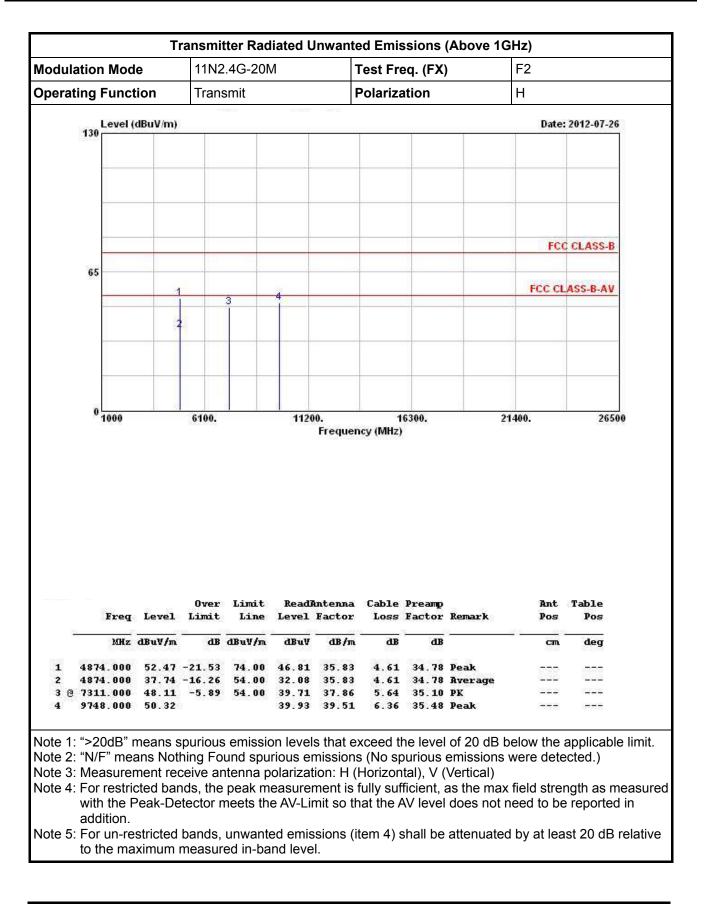


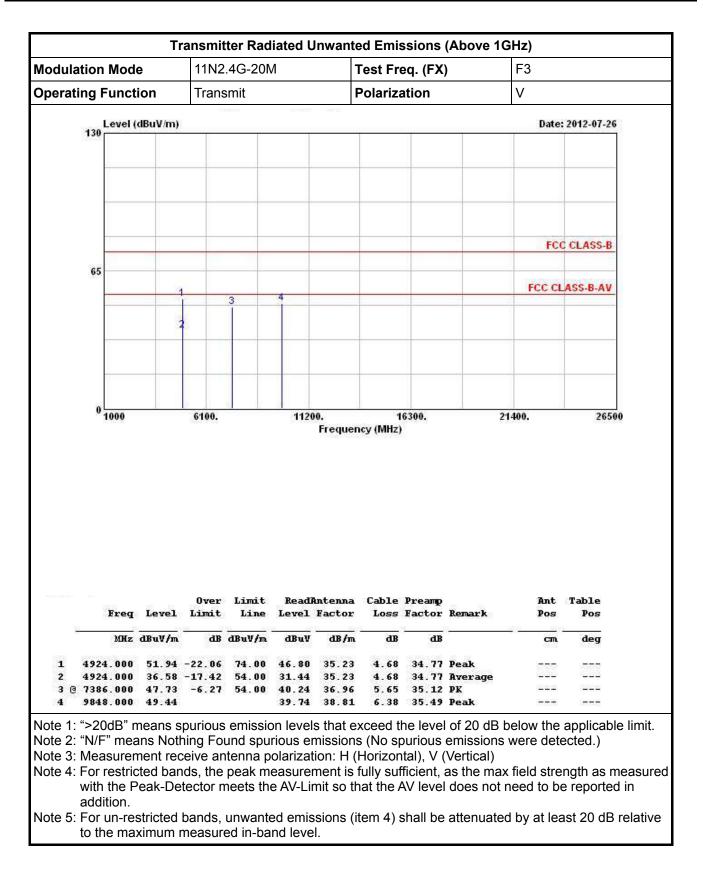

		е	11G-20M				Test Freq. (FX)			F1	
Operati	ing Funct	ion	Trans	mit		P	olarizat	ion		V	
	Level (dBuV/m)	-							Date	: 2012-07-26
	130										
											-
							1				
	-		_					_	-	FC	CLASS-B
	65	-								500.01	
		1		2	3					FCC CL	ASS-B-AV
	-				_		1				
	0 1000		6100.		1120		1 ncy (MHz)	6300.		21400.	2650
	0 1000			Limit			су (MHz)				26500 Table
40-03-0	1000	Level	Over Limit	Line		Frequen	Cable				
	1000 Freq	Level dBuV/m	Over Limit	43836	ReadJ	Frequen	Cable	Preamp		Ant	Table
	1000 Freq		Over Limit dB	Line	Readi Level dBuV	Frequen Antenna Factor	Cable Loss	Preamp Factor	Remark PK	Ant Pos	Table Pos

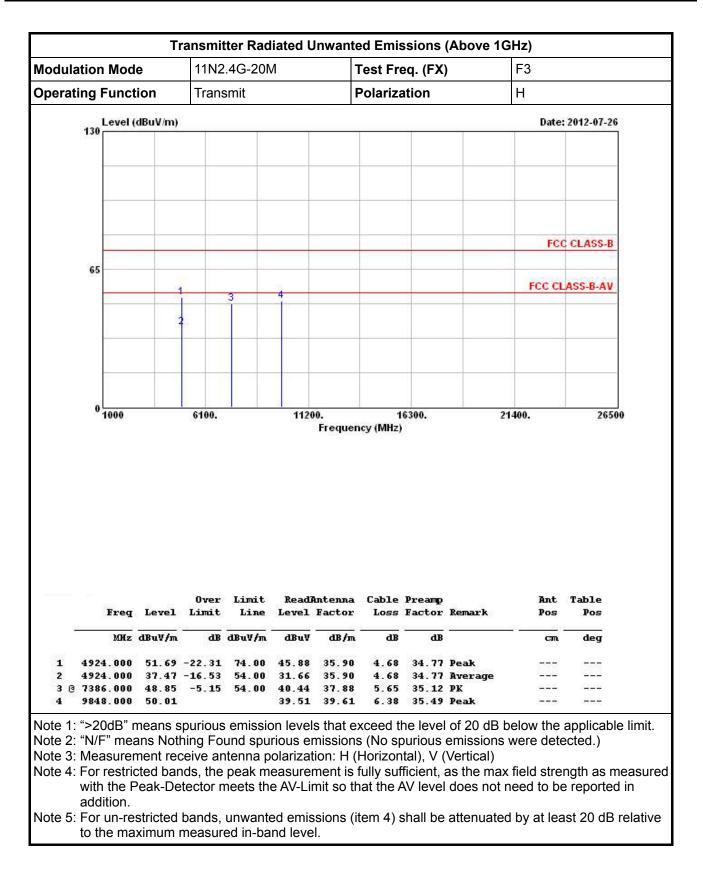

3.6.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11G-20M








	de	11N2.4G-20M			T	Test Freq. (FX)			F1	
erating Fund	tion	Tran	smit		F	olariza	ation		V	
Level	dBuV/m)		an a	Sections.					Date	: 2012-07-2
130										
1							_			
									FC	C CLASS-B
65				-					TACTOR	
3	я		2	3					FCC C	LASS-B-AV
			1							
							_			
0 1000		6100.	5	1120	0. Frequen		6300.		21400.	265
1/11 B-0-17	Level	Over	Limit		Frequen	cy(MHz) Cable	Preamp	Remark		265 Table Pos
Freq	Level dBuV/m	Over Limit		ReadA	Frequen	cy(MHz) Cable	Preamp	Remark	Ant	Table
Freq		Over Limit dB	Line	ReadA Level	Frequen Intenna Factor	cy(MHz) Cable Loss	Preamp Factor	рк	Ant Pos	Table Pos


3.6.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11N2.4G-20M

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100132	9kHz ~ 2.75GHz	Feb. 08, 2012	Conduction (CO01-HY)
LISN	MessTec	NNB-2/16Z	2001/004	9kHz ~ 30MHz	Jan. 12, 2012	Conduction (CO01-HY)
LISN (Support Unit)	MessTec	NNB-2/16Z	2001/009	9kHz ~ 30MHz	Feb. 20, 2012	Conduction (CO01-HY)
RF Cable-CON	HUBER+SUHNER	RG213/U	07611832010 001	9kHz ~ 30MHz	Mar. 02, 2012	Conduction (CO01-HY)

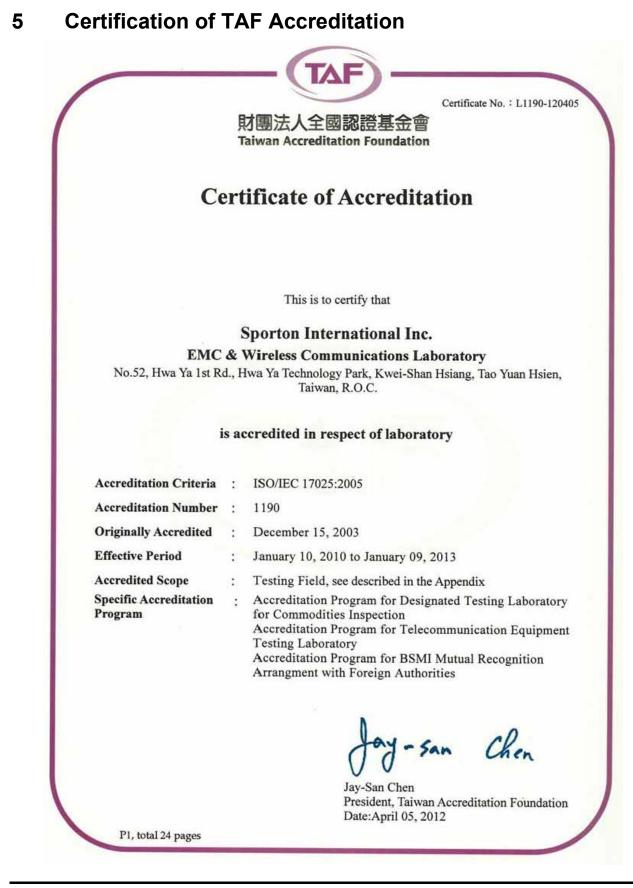
Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP 40	100305	9KHz ~ 40GHz	Feb. 21, 2012	Conducted (TH01-HY)
Spectrum Analyzer	R&S	FSV 40	15195-01-00	9KHz ~ 40GHz	Jan. 06, 2012	Conducted (TH01-HY)
DC Power Source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Jun. 19, 2012	Conducted (TH01-HY)
AC Power Source	G.W	APS-9102	EL920581	AC 0V ~ 300V	Jul. 02, 2012	Conducted (TH01-HY)
Temp. and Humidity Chamber	Giant Force	GTH-225-20-SP- SD	MAA1112-007	-20 ~ 100℃	Dec. 07, 2011	Conducted (TH01-HY)
Signal Generator	R&S	SMR40	100302	10MHz ~ 40GHz	Nov. 22, 2011	Conducted (TH01-HY)
Power Sensor	Anritsu	MA2411B	1027452	300MHz ~ 40GHz	Jan. 12, 2012	Conducted (TH01-HY)
Power Meter	Anritsu	ML2495A	1124009	300MHz ~ 40GHz	Jan. 12, 2012	Conducted (TH01-HY)
RF Cable-2m	HUBER+SUHNER	SUCOFLEX_104	SN 345672/4	1GHz ~ 26.5GHz	Dec. 03, 2011	Conducted (TH01-HY)
RF Cable-3m	HUBER+SUHNER	SUCOFLEX_104	SN 345668/4	1GHz ~ 26.5GHz	Dec. 03, 2011	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
AC Power Source	HPC	HPA-500W	HPA-9100024	AC 0 ~ 300V	Jun. 09, 2011*	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is two year.


FCC Test Report

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP40	100593	9kHz ~ 40GHz	Sep. 01, 2011	Radiation (03CH02-HY)
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH02-HY	30MHz ~ 1GHz 3m	May 10, 2012	Radiation (03CH02-HY)
Amplifier	Agilent	8447D	2944A11146	100kHz ~ 1.3GHz	Jul. 23, 2012	Radiation (03CH02-HY)
Amplifier	Agilent	8449B	3008A02096	1GHz ~ 26.5GHz	Mar. 20, 2012	Radiation (03CH02-HY)
Horn Antenna	ETS-LINDGREN	3117	00091920	1GHz ~ 18GHz	Nov. 15, 2011	Radiation (03CH02-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	30MHz ~ 1GHz	Nov. 11, 2011	Radiation (03CH02-HY)
RF Cable-high	SUHNER	SUCOFLEX106	03CH02-HY	1GHz ~ 40GHz	Mar. 06, 2012	Radiation (03CH02-HY)
Bilog Antenna	SCHAFFNER	CBL61128	2723	30MHz ~ 2GHz	Oct. 22, 2011	Radiation (03CH02-HY)
Turn Table	HD	DS 420	420/649/00	0~ 360 degree	N/A	Radiation (03CH02-HY)
Antenna Mast	HD	MA 240	240/559/00	1 ~ 4 m	N/A	Radiation (03CH02-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Antenna	R&S	HFH2-Z2	860004/001	9 kHz ~ 30 MHz	Jul. 03, 2012*	Radiation (03CH02-HY)

Note: Calibration Interval of instruments listed above is two year.

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-327-0973