# **TEST REPORT**

of

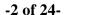
# FCC Part 15 Subpart C

| $\boxtimes$ | New Application; |  | Class I PC; |  | Class II PC |
|-------------|------------------|--|-------------|--|-------------|
|-------------|------------------|--|-------------|--|-------------|

**Product: Towable Tire Pressure Monitor System** 

**Brand:** TIRE INSIGHT

**Model: CT63** 


VS-68R002-X, VS-68R002-XXXX-X (Where X may be any alpha character "a"-"z", "A"-"Z", or numeric character "0"-"9", or -, (,), or blank

Page: 1 of 24

**Model Difference: Market Segmentation** 

FCC ID: ZPNVS68R002

**FCC Rule Part:** 



**VERIFICATION OF COMPLIANCE** 



FCC ID: ZPNVS68R002

**Applicant:** CUB ELECPARTS INC.

**Product Description:** Towable Tire Pressure Monitor System

**Brand Name:** TIRE INSIGHT

FCC ID: ZPNVS68R002

**FCC Rule Part:** 

International Standards Laboratory Report Number: ISL-17LR055FC

**Report Number: ISL-17LR055FC** 



# Version

-3 of 24-

| Version No. | Date       | Description                  |
|-------------|------------|------------------------------|
| 00          | 2017/05/03 | Initial creation of document |
|             |            |                              |

# **Uncertainty of Measurement**

| <b>Description Of Test</b>           | Uncertainty                                              |
|--------------------------------------|----------------------------------------------------------|
| Conducted Emission (AC power line)   | 2.586 dB                                                 |
| Field Strength of Spurious Radiation | <=30MHz: 2.96dB<br>30-1GHz: 4.22 dB<br>1-40 GHz: 4.08 dB |
| Conducted Power                      | 2.412 GHz: 1.30 dB<br>5.805 GHz: 1.55 dB                 |
| Power Density                        | 2.412 GHz:1.30 dB<br>5.805 GHz: 1.67 dB                  |
| Frequency                            | 0.0032%                                                  |
| Time                                 | 0.01%                                                    |
| DC Voltage                           | 1%                                                       |



# -4 of 24- FCC ID: ZPNVS68R002

# **Table of Contents**

| 1.    | GENERAL INFORMATION                          | 6  |
|-------|----------------------------------------------|----|
| 1.1   | PRODUCT DESCRIPTION                          | 6  |
| 1.2   | RELATED SUBMITTAL(S) / GRANT (S)             | 6  |
| 1.3   | TEST METHODOLOGY                             | 6  |
| 1.4   | TEST FACILITY                                | 7  |
| 1.5   | SPECIAL ACCESSORIES                          | 7  |
| 1.6   | EQUIPMENT MODIFICATIONS                      | 7  |
| 2.    | SYSTEM TEST CONFIGURATION                    | 8  |
| 2.1   | EUT CONFIGURATION                            | 8  |
| 2.2   | EUT Exercise                                 | 8  |
| 2.3   | TEST PROCEDURE                               | 8  |
| 2.4   | LIMITATION                                   | 9  |
| 2.5   | CONFIGURATION OF TESTED SYSTEM               | 11 |
| 3.    | SUMMARY OF TEST RESULTS                      | 12 |
| 4.    | DESCRIPTION OF TEST MODES                    | 12 |
| 5.    | AC CONDUCTED EMISSIONS TEST                  | 13 |
| 5.1   | MEASUREMENT PROCEDURE:                       |    |
| 5.2   | TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) | 13 |
| 5.3   | MEASUREMENT EQUIPMENT USED:                  |    |
| 5.4   | MEASUREMENT RESULT:                          |    |
| 6.    | RADIATED EMISSION TEST                       | 14 |
| 6.1   | MEASUREMENT PROCEDURE                        | 14 |
| 6.2   | TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) | 15 |
| 6.3   | MEASUREMENT EQUIPMENT USED:                  | 16 |
| 6.4   | FIELD STRENGTH CALCULATION                   | 16 |
| 6.5   | MEASUREMENT RESULT                           | 17 |
| 7.    | 20DB / 99% OCCUPIED BANDWIDTH                | 20 |
| 7.1   | MEASUREMENT PROCEDURE                        | 20 |
| 7.2   | TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) | 20 |
| 7.3   | MEASUREMENT EQUIPMENT USED:                  | 20 |
| 7.4   | MEASUREMENT RESULTS                          | 20 |
| 7.5 N | MEASUREMENT RESULT:                          | 20 |

| 8.  | DUTY CYCLE MEASUREMENT                       | 22 |
|-----|----------------------------------------------|----|
| 8.1 | MEASUREMENT PROCEDURE                        | 22 |
| 8.2 | TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) |    |
| 8.3 | MEASUREMENT EQUIPMENT USED:                  |    |
| 8.4 | MEASUREMENT RESULTS:                         | 22 |
| 9.  | SILENT PERIOD TIME MEASUREMENT:              | 23 |
| 9.1 | MEASUREMENT PROCEDURE                        |    |
| 9.2 | TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) | 23 |
| 9.3 | MEASUREMENT EQUIPMENT USED:                  | 23 |
| 9.4 | MEASUREMENT RESULTS                          | 23 |



# 1. GENERAL INFORMATION

# 1.1 Product Description

Product Name

Towable Tire Pressure Monitor System

**Report Number: ISL-17LR055FC** 



# 1.4 Test Facility

The measurement facilities used to collect the 3m Radiated Emission and AC power line conducted data are located on the address of **International Standards Laboratory** <Lung-Tan LAB> No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan which are constructed and calibrated to meet the FCC requirements in documents ANSI C63.10: 2013. FCC Registration Number is: 872200; Designation Number is: TW1036, Canada Registration Number: 4067B-3.

## 1.5 Special Accessories

Not available for this EUT intended for grant.

# 1.6 Equipment Modifications

Not available for this EUT intended for grant.



## 2. SYSTEM TEST CONFIGURATION

### 2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

#### 2.2 EUT Exercise

The EUT (Transmitter) was tested with a test program to fix the Tx frequency that was for the purpose of the measurements. For more information please see test data and APPENDIX 1 for set-up photographs.

#### 2.3 Test Procedure

## 2.3.1 Conducted Emissions (Not apply in the report)

The EUT is a placed on as turn table which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10: 2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR 16-1-1 Quasi-Peak and Average detector mode.

### 2.3.2 Radiated Emissions

The EUT is a placed on as turn table which is 0.8 m/1.5m(Frequency above 1GHz) above ground plane. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter(EUT) was rotated through three orthogonal axes according to the requirements in Section 6 and 11 of ANSI C63.10: 2013.

**Report Number: ISL-17LR055FC** 



# 2.4 Limitation

# (1) Conducted Emission

According to section RSS-Gen §8.8 Conducted Emission Limits is as following.

| Frequency range |            | Limits<br>B (uV) |
|-----------------|------------|------------------|
| MHz             | Quasi-peak | Average          |
| 0.15 to 0.50    | 66 to 56   | 56 to 46         |
| 0.50 to 5       | 56         | 46               |
| 5 to 30         | 60         | 50               |

# Note

<sup>1.</sup> The lower limit shall apply at the transition frequencies

<sup>2.</sup> The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

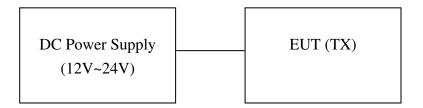


## (2) Radiated Emission

According to (e) Intentional radiators may operate at a periodic rate exceeding that specified in paragraph (a) of this section and may be employed for any type of operation, including operation prohibited in paragraph (a) of this section, provided the intentional radiator complies with the provisions of paragraphs (b) through (d) of this section, except the field strength table in paragraph (b) of this section is replaced by the following:

| Fundamental frequency (MHz) | Field strength of fundamental (microvolts/meter) | Field strength of spurious emission (microvolts/meter) |
|-----------------------------|--------------------------------------------------|--------------------------------------------------------|
| 40.66-40.70                 | 1,000                                            | 100                                                    |
| 70-130                      | 500                                              | 50                                                     |
| 130-174                     | 500 to 1,500 <sup>1</sup>                        | 50 to 150 <sup>1</sup>                                 |
| 174-260                     | 1,500                                            | 150                                                    |
| 260-470                     | 1,500 to 5,000 <sup>1</sup>                      | 150 to 500 <sup>1</sup>                                |
| Above 470                   | 5,000                                            | 500                                                    |

<sup>1</sup>Linear interpolations.


Remark: 1. Emission level in dBuV/m=20 log (uV/m)

- 2. Measurement was performed at an antenna to the closed point of EUT distance of meters.
- 3. Only spurious frequency is permitted to locate within the Restricted Bands specified in provision of  $\xi$  15.205
- 4. Emission spurious frequency which appearing within the Restricted Bands specified in provision of  $\xi$ 15.205, then the general radiated emission limits in  $\xi$ 15.209 apply.
- 5. For the band 130-174MHz, uV/m at 3meters = 22.72727 \* F(MHz) 2454.545; For the band 260-470MHz uV/m at 3meters = 16.6667 \* F(MHz) 2833.333; Where F is the frequency in MHz.
- 6. 433.92MHz AV limit = 16.6667 \* 433.92(MHz) 2833.333= 4398.68 uV/m = 72.86dBuV/m
- 7. 433.92MHz Peak limit = AV Limit + 20dB = 92.86MHz



# 2.5 Configuration of Tested System

Fig. 1 Configuration of Tested System



**Table 2-1 Equipment Used in Tested System** 

| Item | Equipment    | Mfr/Brand | Model/<br>Type No. | Series No. | Data Cable | Power Cord    |
|------|--------------|-----------|--------------------|------------|------------|---------------|
| 1.   | Power supply | MRL       | TH-3205            | N/A        | N/A        | Non-shielding |
| 2.   |              |           |                    |            |            |               |

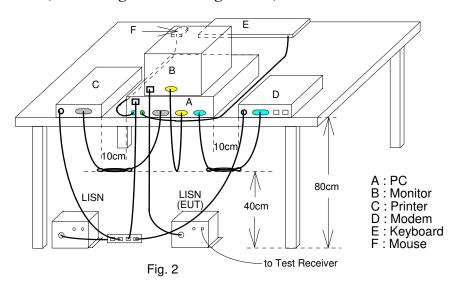
International Standards Laboratory Report Number: ISL-17LR055FC



-12 of 24- FCC ID: ZPNVS68R002

#### **3. SUMMARY OF TEST RESULTS**

| FCC /IC Rules Description Of Test | Result |
|-----------------------------------|--------|
|-----------------------------------|--------|




# 5. AC CONDUCTED EMISSIONS TEST

### **5.1** Measurement Procedure:

- 1. The EUT was placed on a table which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

# 5.2 Test SET-UP (Block Diagram of Configuration)



## 5.3 Measurement Equipment Used:

| Conducted Emission Test Site |                    |                       |                  |            |            |
|------------------------------|--------------------|-----------------------|------------------|------------|------------|
| EQUIPMENT                    | MFR                | MODEL                 | SERIAL           | LAST       | CAL DUE.   |
| TYPE                         |                    | NUMBER                | NUMBER           | CAL.       |            |
| Conduction 04-3<br>Cable     | WOKEN              | CFD 300-NL            | Conduction 04 -3 | 09/12/2016 | 09/11/2017 |
| EMI Receiver 16              | Rohde &<br>Schwarz | ESCI                  | 101221           | 10/24/2016 | 10/23/2017 |
| LISN 18                      | ROHDE &<br>SCHWARZ | ENV216                | 101424           | 02/05/2017 | 02/04/2018 |
| LISN 19                      | ROHDE &<br>SCHWARZ | ENV216                | 101425           | 03/07/2017 | 03/06/2018 |
| Test Software                | Farad              | EZEMC<br>Ver:ISL-03A2 | N/A              | N/A        | N/A        |

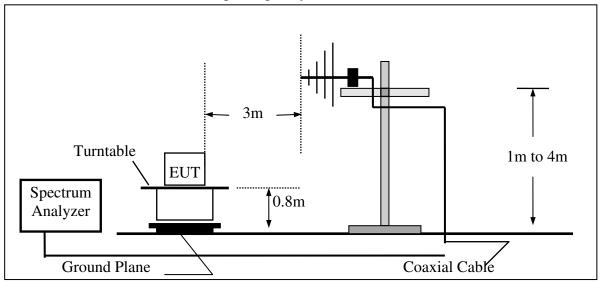
# **5.4** Measurement Result:

N/A

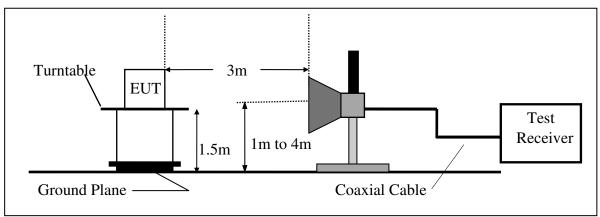


## 6. RADIATED EMISSION TEST

15.231 (e) Intentional radiators may operate at a periodic rate exceeding that specified in paragraph (a) of this section and may be employed for any type of operation, including operation prohibited in paragraph (a) of this section, provided the intentional radiator complies with the provisions of paragraphs (b) through (d) of this section, except the field strength table in paragraph (b) of this section is replaced by the following:


### **6.1** Measurement Procedure

- 1. The EUT was placed on a turn table which is 0.8/1.5m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measured were complete.




# 6.2 Test SET-UP (Block Diagram of Configuration)

# (A) Radiated Emission Test Set-Up, Frequency Below 1000MHz



# (B) Radiated Emission Test Set-UP Frequency Over 1 GHz





# **6.3** Measurement Equipment Used:

| Chamber 19                      |              |                        |                  |              |            |
|---------------------------------|--------------|------------------------|------------------|--------------|------------|
| EQUIPMENT<br>TYPE               | MFR          | MODEL<br>NUMBER        | SERIAL<br>NUMBER | LAST<br>CAL. | CAL DUE.   |
| Spectrum Analyzer 21(3Hz-44GHz) | Agilent      | N9030A                 | MY51360021       | 11/14/2016   | 11/13/2017 |
| Loop Antenna (9K-30M)           | A.H.SYSTEM   | SAS-564                | 294              | 06/17/2015   | 06/16/2017 |
| Bilog Antenna (30M-1G)          | SCHWARZBECK  | VULB9168 w<br>5dB Att  | 736              | 07/22/2016   | 07/21/2017 |
| Horn antenna (1G-18G)           | SCHWARZBECK  | 9120D                  | 9120D-1627       | 07/22/2016   | 07/21/2017 |
| Horn antenna (18G-26G)          | Com-power    | AH-826                 | 081001           | 07/24/2015   | 07/23/2017 |
| Preamplifier (9k-1000M)         | HP           | 8447F                  | 3113A06362       | 11/13/2016   | 11/12/2017 |
| Preamplifier(1G-26G)            | Agilent      | 8449B                  | 3008A02471       | 08/25/2016   | 08/24/2017 |
| Preamplifier (26G-40G)          | MITEQ        | JS4-26004000-<br>27-5A | 818471           | 07/23/2015   | 07/22/2017 |
| RF Cable (9k-18G)               | HUBER SUHNER | SUCOFLEX<br>104A       | MY1397/4A        | 08/25/2016   | 08/24/2017 |
| RF cable (18G~40G)              | HUBER SUHNER | Sucoflex 102           | 27963/2&37421/2  | 11/03/2015   | 11/02/2017 |

# **6.4** Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CL - AG$$

Average Value = Peak Value + 20 Log (Ton/Tp) ......Pulse Modulation Duty Cycle Correction Factor

| Where | FS = Field Strength    | CL = Cable Attenuation Factor (Cable Loss) |
|-------|------------------------|--------------------------------------------|
|       | RA = Reading Amplitude | AG = Amplifier Gain                        |
|       | AF = Antenna Factor    |                                            |

International Standards Laboratory Report Number: ISL-17LR055FC





# **6.5** Measurement Result

# **Fundamental Measurement Result**

Operation Mode: Transmitting Mode Test Date: 2017/03/28

Fundamental Frequency: 433.92MHz Test By: Dino

Temp: 25




# Radiated Spurious Emission Measurement Result (below 1GHz)

Operation Mode: Transmitting Mode Test Date: 2017/03/28

Fundamental Frequency: 433.92MHz

Test By: Dino

Temperature: 25



**Report Number: ISL-17LR055FC** 

Radiated Spurious Emission Measurement Result (above 1GHz)

Operation Mode: Transmitting Mode Test Date: 2017/03/28

Fundamental Frequency: 433.92MHz Test By: Dino

Temperature: 25



# 7. 20DB OCCUPIED BANDWIDTH

### 7.1 Measurement Procedure

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as normal operation
- 3. Set SPA Center Frequency = fundamental frequency, RBW= 10KHz, VBW= 30KHz, Span =3MHz.
- 4. Set SPA Max hold. Mark peak, -20dB. 99% Bandwidth

# 7.2 Test SET-UP (Block Diagram of Configuration)

Same as 6.2 Radiated Emission Measurement.

# 7.3 Measurement Equipment Used:

Same as 6.3 Radiated Emission Measurement.

### 7.4 Measurement Results

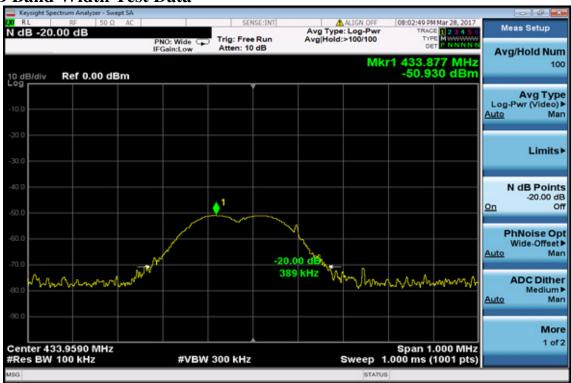
Refer to attached data chart.

The center frequency  $\mathbf{f_c}$  is 433.92MHz, according to the Rules, section 15.231(C), the Bandwidth of Center Frequency at-20dB should be calculated as following:

$$433.92 \times 0.0025 = 1.0848(MHz)$$

So, the Uper/Lower frequencies limit should be specified as:

$$f_{(U)} = f_c + \Delta f/2 = 433.92 + 0.5424 = 434.46(MHz)$$
  
 $f_{(L)} = f_c - \Delta f/2 = 433.92 - 0.5424 = 433.377 (MHz)$ 


# 7.5 Measurement Result:

389 KHz < limit 1.0848MHz

**International Standards Laboratory** 



# 20dB Band Width Test Data





#### 8. DUTY CYCLE (AVERAGE CORRECTION FACTOR) MEASUREMENT

### **Measurement Procedure**

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set ETU normal operating mode.
- 3. Set SPA Center Frequency = fundamental frequency, RBW, VBW= 1.0MHz, Span =0 Hz. Adjacent sweep.
- 4. Set SPA View. Mark delta.

#### 8.2 **Test SET-UP (Block Diagram of Configuration)**

Same as 6.2 Radiated Emission Measurement.

#### 8.3 **Measurement Equipment Used:**

Same as 6.3 Radiated Emission Measurement.

#### 8.4 **Measurement Results: N/A**

Duty cycle correction factor is not used for average value.

**Report Number: ISL-17LR055FC** 



# 9. SILENT PERIOD TIME MEASUREMENT:

## 15.231 (e)

devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

#### RSS 210 A1.1.5

(2) In addition, devices operated under the provisions of this section (A1.1.5) shall be capable of automatically limiting their operation so that the duration of each transmission shall not be greater than 1 second and the silent period between transmissions shall be at least 30 times the duration of the transmission, but in no case less than 10 seconds. However, devices that are designed for limited

use for the purpose of initial programming, reprogramming or installation, and not for regular operations, may operate up to 5 seconds provided that such devices are used only occasionally in connection with each unit being programmed or installed.

#### 9.1 Measurement Procedure

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set SPA Center Frequency = fundamental frequency, RBW, VBW= 1MHz, Span = 0Hz
- 3. Set EUT Power on as normal operation
- 4. Set SPA Max hold. Delta Mark.

# 9.2 Test SET-UP (Block Diagram of Configuration)

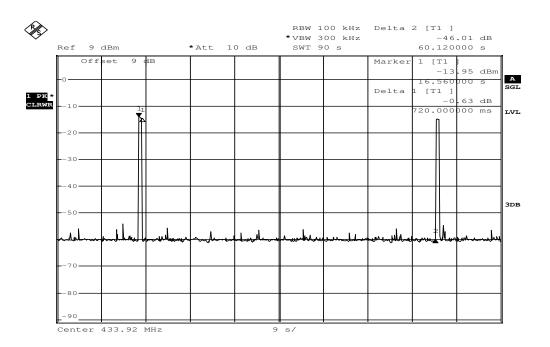
Same as 6.2 Radiated Emission Measurement.

## 9.3 Measurement Equipment Used:

Same as 6.3 Radiated Emission Measurement.

## 9.4 Measurement Results

Total transmission time of transmissions calculation:


Ton: 720 ms, < 1s

Tp: 60.12s

silent period limit(which one is lower): 10s or 720ms\*30 = 21.6s

T silent period = 60.12s - 0.72s = 59.4s > 10s

The result : PASS.



Date: 2.MAY.2017 10:30:34