Appendix A. Maximum Permissible Exposure

Page No. : A1 of A4

FCC ID : ZPJM700SERIESVMDC

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Strength (H) (A/m) Fower Density (S) (mW/ cm²)		Averaging Time E ², H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: $Pd (W/m^2) = \frac{E^2}{377}$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

Page No. : A2 of A4

FCC ID : ZPJM700SERIESVMDC

FCC TEST REPORT Report No.: FR110801AI

1.3. Calculated Result and Limit

Antenna Type: Monopole Antenna

For Single Chain:

Max Conducted Power for IEEE 802.11n (20MHz): 17.04dBm

Test Mode	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Conducted Power (dBm)		Power Density (mW/cm2)
5G	20	0	1	17.04	50.5825	0.0101

For Two Chain:

Max Conducted Power for IEEE 802.11n (20MHz) port A: 16.61dBm

Test Mode	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Conducted Power (dBm)		Power Density (mW/cm2)
5G	20	0	1	16.61	45.8142	0.0091

Max Conducted Power for IEEE 802.11n (20MHz) port B: 14.76dBm

Test Mode	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Conducted Power (dBm)		Power Density (mW/cm2)
5G	20	0	1	14.76	29.9226	0.0060

IEEE 802.11n (20MHz) port A + port B Power Density = 0.0091 + 0.0060 = 0.0151 (mW/cm2)

For Single Chain:

Max Conducted Power for IEEE 802.11n (40MHz): 17.23dBm

Test Mode	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Conducted Power (dBm)		Power Density (mW/cm2)
5G	С	0	1	17.23	52.8445	0.0105

For Two Chain:

Max Conducted Power for IEEE 802.11n (40MHz) port A: 17.23dBm

Test Mode	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Conducted Power (dBm)		Power Density (mW/cm2)
5G	20	0	1	17.23	52.8445	0.0105

Max Conducted Power for IEEE 802.11n (40MHz) port B: 15.23dBm

Test Mode	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Conducted Power (dBm)		Power Density (mW/cm2)
5G	20	0	1	15.23	33.3426	0.0066

IEEE 802.11n (40MHz) port A + port B Power Density = 0.0105 + 0.0066 = 0.0171 (mW/cm2)

Page No. : A3 of A4

FCC ID : ZPJM700SERIESVMDC

For Single Chain:

Max Conducted Power for IEEE 802.11n (20MHz): 16.23dBm

Test Mode	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Conducted Power (dBm)		Power Density (mW/cm2)
2.4G	20	0	1	16.23	41.9759	0.0084

For Two Chain:

Max Conducted Power for IEEE 802.11n (20MHz) port A: 16.32dBm

Test Mode	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Conducted Power (dBm)		Power Density (mW/cm2)
2.4G	20	0	1	16.32	42.8549	0.0085

Max Conducted Power for IEEE 802.11n (20MHz) port B: 15.78dBm

Test Mode	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Conducted Power (dBm)		Power Density (mW/cm2)
2.4G	20	0	1	15.78	37.8443	0.0075

IEEE 802.11n (20MHz) port A + port B Power Density = 0.0085 + 0.0075 = 0.0160 (mW/cm2)

For Single Chain:

Max Conducted Power for IEEE 802.11n (40MHz) port A: 16.05dBm

Test Mode	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Conducted Power (dBm)		Power Density (mW/cm2)
2.4G	20	0	1	16.05	40.2717	0.0080

For Two Chain:

Max Conducted Power for IEEE 802.11n (40MHz) port A: 16.45dBm

Test Mode	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Conducted Power (dBm)	Conducted Power (mW)	Power Density (mW/cm2)
2.4G	20	0	1	16.45	44.1570	8800.0

Max Conducted Power for IEEE 802.11n (40MHz) port B: 16.95dBm

Test Mode	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Conducted Power (dBm)		Power Density (mW/cm2)
2.4G	20	0	1	16.95	49.5450	0.0099

IEEE 82.11n (40MHz) port A + port B Power Density = 0.0088+ 0.0099 = 0.0187 (mW/cm2)

FCC ID : ZPJM700SERIESVMDC

Page No. : A4 of A4