

FCC Test Report

Product Name : Wireless Microphone System

Model No. : WMICG4-HU

Applicant : Coban Technologies, Inc

Address : 11375 W. Sam Houston Parkway S. # 800 Houston,

TX. 77031 USA

Date of Receipt : 2013/09/03

Issued Date : 2013/10/07

Report No. : 139135R-HPUSP10V01

Report Version : V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of Quie Tek Corporation.

Test Report Certification

Issued Date: 2013/10/07

Report No.: 139135R-HPUSP10V01

QuieTek

Product Name : Wireless Microphone System

Applicant : Coban Technologies, Inc

Address : 11375 W. Sam Houston Parkway S. # 800 Houston, TX.

77031 USA

Manufacturer : Shenzhen Honmax Technology Limited

Model No. : WMICG4-HU

FCC ID : ZPJ-WMICG4-HU

Applicable Standard : FCC Oet65 Supplement C June 2001

IEEE Std. 1528-2003

47CFR § 2.1093

Measurement : KDB 447498 D01 & D02 , KDB 941225, KDB 865664

procedures

Test Result : Max. SAR Measurement (1g)

0.626 W/kg

Application Type : Certification

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of Quie Tek Corporation.

Documented By :

(Adm. Specialist / April Chen)

Tested By

(Engineer / Wen Lee)

Approved By

(Manager / Vincent Lin)

TABLE OF CONTENTS

Desc	cription General Information	Page 5
	1.1 EUT Description	
	1.2 Maximum output power and tolerance allowed for production units	
	1.3 Test Environment	
2.	SAR Measurement System	7
	2.1 DASY5 System Description	
	2.1.1 Applications	8
	2.1.2 Area Scans	8
	2.1.3 Zoom Scan (Cube Scan Averaging)	8
	2.1.4 Uncertainty of Inter-/Extrapolation and Averaging	8
	2.2 DASY5 E-Field Probe	
	2.2.1 Isotropic E-Field Probe Specification	9
	2.3 Boundary Detection Unit and Probe Mounting Device	10
	2.4 DATA Acquisition Electronics (DAE) and Measurement Server	
	2.5 Robot	
	2.6 Light Beam Unit	
	2.7 Device Holder	
	2.8 SAM Twin Phantom	12
3.	Tissue Simulating Liquid	13
	3.1 The composition of the tissue simulating liquid	13
	3.2 Tissue Calibration Result	13
	3.3 Tissue Dielectric Parameters for Head and Body Phantoms	14
4.	SAR Measurement Procedure	15
	4.1 SAR System Check	15
	4.1.1 Dipoles	15
	4.1.2 System Check Result	15
	4.2 SAR Measurement Procedure	16
	4.2.1 SAR Measurement Procedure	16
5 .	SAR Exposure Limits	
6 .	Test Equipment List	
7. 8.	Measurement Uncertainty Conducted Power Measurement	
9.	Duty cycle	
10	Test Results	
	10.1 SAR Test Results Summary	21

11.	SAR measurement variability	22
	Appendix	
	Appendix A. SAR System Check Data	
	Appendix B. SAR measurement Data	
	Appendix C. Test Setup Photographs & EUT Photographs	
	Appendix D. Probe Calibration Data	
	Appendix E. Dipole Calibration Data	

1. General Information

1.1 EUT Description

Product Name	Wireless Microphone System
Model No.	WMICG4-HU
FCC ID	ZPJ-WMICG4-HU
TX Frequency	902~928 MHz
Rx Frequency	902~928 MHz
Type of Modulation	OQPSK
Antenna Type	Dipole / Monopole
Antenna Kit	Internal : -1.22 dBi
	External : 1.57 dBi
Device Category	Portable
RF Exposure Environment	Uncontrolled
Max. Output Power	T1: 24.53 dBm
(Conducted)	T2: 23.96 dBm

^{*} Note: T1 port & T2 port can only be simultaneously transmit.

1.2 Maximum output power and tolerance allowed for production units

Mode	Band	Nominal power (dBm)	Tolerance (dBm)	Upper Tolerance (dBm)
OPQSK	900	24	+1	(dBiii) 25

1.3 Test Environment

Items	Required	Actual
Temperature (°C)	18-25	22.3 ± 2
Humidity (%RH)	30-70	49

Site Description:

Accredited by TAF

Accredited Number: 0914

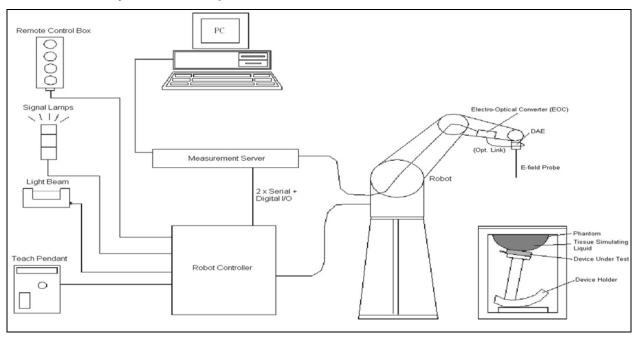
Effective through: December 12, 2014

Site Name: Quietek Corporation

Site Address: No. 5-22, Rueishu Keng, Linkou Dist.,

New Taipei City 24451,

Taiwan. R.O.C.


TEL: 886-2-8601-3788 / FAX: 886-2-8601-3789

E-Mail: service@quietek.com

2. SAR Measurement System

2.1 DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

2.1.1 Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, OET 65, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383 and others.

2.1.2 Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

2.1.3 Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 5x5x7 (8mmx8mmx5mm) providing a volume of 32mm in the X & Y axis, and 30mm in the Z axis.

2.1.4 Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY5 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat

Page: 8 of 23

distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

$$f_1(x,y,z) = Ae^{-\frac{z}{2a}}\cos^2\left(\frac{\pi}{2}\frac{\sqrt{x'^2 + y'^2}}{5a}\right)$$

$$f_2(x,y,z) = Ae^{-\frac{z}{a}}\frac{a^2}{a^2 + x'^2}\left(3 - e^{-\frac{2z}{a}}\right)\cos^2\left(\frac{\pi}{2}\frac{y'}{3a}\right)$$

$$f_3(x,y,z) = A\frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2}\left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2}\right)$$

2.2 DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

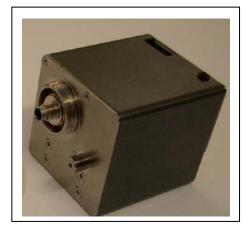
SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.

2.2.1 Isotropic E-Field Probe Specification

Model	Ex3DV4		
Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g.,		
	DGBE)	igame contents, eig.,	
Frequency	10 MHz to 6 GHz		
	Linearity: ± 0.2 dB (30 MHz to 6 GHz)		
Directivity	± 0.3 dB in HSL (rotation around probe axis)		
	± 0.5 dB in tissue material (rotation normal to		
	probe axis)		
Dynamic Range	10 μW/g to 100 mW/g		
	Linearity: ± 0.2 dB (noise: typically < 1 μW/g)		
Dimensions	Overall length: 330 mm (Tip: 20 mm)		
	Tip diameter: 2.5 mm (Body: 12 mm)		
	Typical distance from probe tip to dipole centers:		
	1 mm		
Application	High precision dosimetric measurements in any	•	
	(e.g., very strong gradient fields). Only pro		
	compliance testing for frequencies up to 6 GHz w	ith precision of better	
	30%.		

above 80dB.

2.3 Boundary Detection Unit and Probe Mounting Device


The DASY probes use a precise connector and an additional holder for the probe, consisting of a plastic tube and a flexible silicon ring to center the probe. The connector at the DAE is flexibly mounted and held in the default position with magnets and springs. Two switching systems in the connector mount detect frontal and lateral probe collisions and trigger the necessary software response.

2.4 DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

2.5 Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ➢ 6-axis controller

2.6 Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

2.7 Device Holder

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.8 SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

3. Tissue Simulating Liquid

3.1 The composition of the tissue simulating liquid

		<u> </u>		
INGREDIENT	900MHz	1800MHz	900MHz	1800MHz
(% Weight)	Head	Head	Body	Body
Water			56	
Salt			0.768	
Sugar			41.76	
HEC			1.21	
Preventol			0.27	
DGBE			0	

3.2 Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using APREL Dielectric Probe Kit and Anritsu MS4623B Vector Network Analyzer.

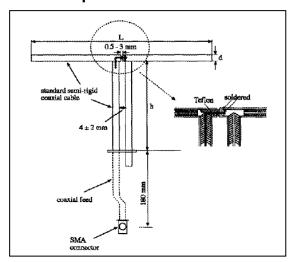
Body Tissue Simulant Measurement				
Frequency		Dielectric F	Parameters	Tissue
[MHz]	Description	εr	σ [s/m]	Temp. [°C]
	Reference result	55	1.05	N/A
900 MHz	± 5% window	52.25 to 57.96	0.9975 to 1.1025	IN/A
	01-Oct-13	53.84	1.04	21.1
904.2 MHz	Low channel	53.48	1.05	21.1
915 MHz	Mid channel	52.89	1.07	21.1
925.8 MHz	High channel	53.09	1.09	21.1

Page: 13 of 23

3.3 Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency	He	ad	Во	dy
(MHz)	ϵ_{r}	σ (S/m)	€ _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00


(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4. SAR Measurement Procedure

4.1 SAR System Check

4.1.1 Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
900MHz	152.0	83.4	3.6

4.1.2 System Check Result

System Performance Check at 835MHz

Dipole Kit: ASL-D-835

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
	Reference result	11.8	7.56	N/A
900 MHz	± 10% window	10.62 to 12.98	6.8 to 8.32	IN/A
	01-Oct-13	12.92	8.28	21.1

Note: (1) The power level is used 250mW

- (2) All SAR values are normalized to 1W forward power.
- (3) The reference result is from Appendix E.

4.2 SAR Measurement Procedure

The Dasy5 calculates SAR using the following equation,

$$SAR = \frac{\sigma |\mathbf{E}|^2}{\rho}$$

σ: represents the simulated tissue conductivity

p: represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

4.2.1 SAR Measurement Procedure

- The device was put into operation by using a call tester. Communication between the device and the call tester was established by air link.
- 2. The device output power was set to maximum power level for all tests; a fully charged battery was use for every test sequence.
- In all operating band in measurements were performed on lowest, middle and highest channels.

5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

6. Test Equipment List

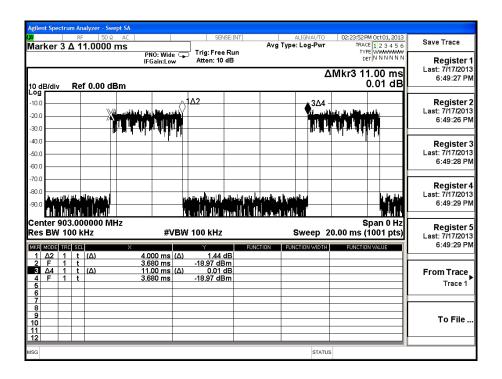
Instrument	Manufacturer	Model No.	Serial No.	Last	Next	
				Calibration	Calibration	
Stäubli Robot TX60L	Stäubli	TX60L	F09/5BL1A1/A06	2009/05/18	only once	
Controller	Speag	CS8c	N/A	2009/05/18	only once	
Reference Dipole 900MHz	Aprel	ALS-D-900	QTK-316	2012/05/25	2014/05/24	
SAM Twin Phantom	Speag	QD000 P40 CA	Tp 1515	N/A	N/A	
Device Holder	Speag	N/A	N/A	N/A	N/A	
Data Acquisition Electronic	Speag	DAE4	1207	2013/05/22	2014/05/21	
E-Field Probe	Speag	EX3DV4	3698	2013/07/31	2014/07/30	
SAR Software	Speag	DASY52	V52.8 (7)	N/A	N/A	
Aprel Dipole Spaccer	Aprel	ALS-DS-U	QTK-295	N/A	N/A	
Power Amplifier	Mini-Circuit	ZHL-42	D051404-20	N/A	N/A	
Directional Coupler	Agilent	778D-012	50550	N/A	N/A	
Universal Radio Communication	R&S	CMU 200	104846	2013/5/9	2014/05/08	
Tester						
Vector Network	Agilent	E5071C	MY46108013	2013/08/09	2014/08/08	
Signal Generator	Anritsu	MG3694A	041902	2013/08/05	2014/08/04	
Power Meter	Anritsu	ML2487A	6K00001447	2012/12/15	2013/12/14	
Wide Bandwidth Sensor	Anritsu	MA2491A	034457	2012/12/17	2013/12/16	

Page: 18 of 23

7. Measurement Uncertainty

	DΔ	SY5 U	ncert	aintv	Accordin	a to IEC 623	200_2/2010)	
DASY5 Uncertainty (According to IEC 62209-2/2010) Measurement uncertainty for 30 MHz to 6 GHz averaged over 1 gram / 10 gram.								
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std. Unc.	Std. Unc.	(Vi)
·	value	Dist.		1g	10g	(1g)	(10g)	Veff
Measurement System			I.	I	1	I.	L	I
Probe Calibration	±6.55%	N	1	1	1	±6.55%	±6.55%	∞
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±2.0%	R	√3	1	1	±1.2%	±1.2%	∞
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	∞
Modulation Response	±2.4%	R	√3	1	1	±1.4%	±1.4%	∞
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Probe Positioning	±6.7%	R	√3	1	1	±3.9%	±3.9%	∞
Post-processing	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
Test Sample Related								
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Scaling	±0%	R	$\sqrt{3}$	1	1	±0.0%	±0.0%	
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	8
Phantom and Setup								
Phantom Uncertainty	±7.9%	R	√3	1	1	±4.6%	±4.6%	∞
SAR correction	±1.9%	R	√3	1	0.84	±1.1%	±1.1%	8
Liquid Conductivity (meas.)	±2.5%	N	1	0.78	0.71	±1.1%	±1.0%	8
Liquid Permittivity (meas.)	±2.5%	N	1	0.26	0.26	±0.3%	±0.4%	8
Temp. unc Conductivity	±3.4%	R	√3	0.78	0.71	±1.5%	±1.4%	8
Temp. unc Permittivity	±0.4%	R	√3	0.23	0.26	±0.1%	±0.1%	8
Combined Std. Uncertainty							±12.5%	748
Expanded STD Uncertainty						±25.1%	±25.1%	

Page: 19 of 23



8. Conducted Power Measurement

Mode	Frequency (MHz)	Channel	T1 Port	T2 Port	T1+T2
	904.2	01	24.53	23.96	27.26
	915	10	24.47	23.70	27.11
	925.8	19	24.22	23.35	26.82

* Note: T1 port & T2 port can only be simultaneously transmit.

9. Duty cycle

* Duty cycle: Ton/(Ton+Toff)*100%=36%

10. Test Results

10.1 SAR Test Results Summary

SAR MEASUREMENT

Ambient Temperature (°C): 22.3 ±2 Relative Humidity (%): 49

Liquid Temperature (°C): 21.1 \pm 2 Depth of Liquid (cm):>15

Product: Wireless Microphone System

Test Mode: 900MHz

1660 (1/1646). 6660(1/12								
Test Position Body Antenna Position	Frequency		Conducted Power (dBm)		SAR 1g (W/kg)		Limit	
	Channel	MHz	Measurement	Tune-up Limit	Measurement	Tune-up Scaled	(W/kg)	
Body-Front	Fixed	1	904.2	27.26	28	0.528	0.626	1.6
Body-Front	Fixed	10	915	27.11	28	0.477	0.585	1.6
Body-Front	Fixed	19	925.8	26.82	28	0.407	0.534	1.6
Body-Back	Fixed	1	904.2	27.26	28	0.120	0.142	1.6
			•					

Page: 21 of 23

11. SAR measurement variability

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Freque	ency	SAR 1g (W/kg)						
Channel MHz	0	First Repeated		Second Repeated		Third Repeated		
	MHZ	Original	Value	Ratio	Value	Ratio	Value	Ratio
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Appendix

Appendix A. SAR System Check Data

Appendix B. SAR measurement Data

Appendix C. Test Setup Photographs & EUT Photographs

Appendix D. Probe Calibration Data

Appendix E. Dipole Calibration Data

Appendix A. SAR System Check Data

Test Laboratory: QuieTek Date/Time: 10/1/2013

SystemPerformanceCheck-900MHz Body DUT: Dipole 900 MHz; Type: ALS-D-900-S-2

Communication System: UID 10000, CW; Frequency: 900 MHz; Communication System

PAR: 0 dB

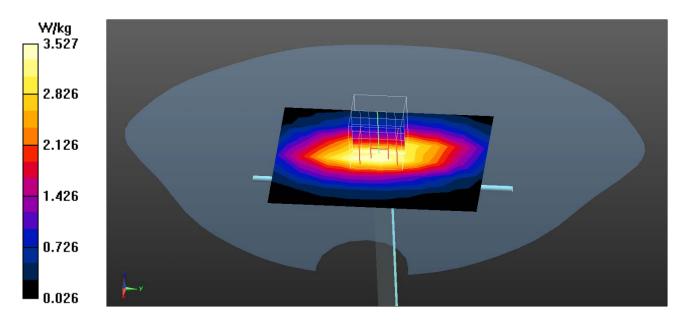
Medium parameters used: f = 900 MHz; $\sigma = 1.04 \text{ S/m}$; $\varepsilon_r = 53.84$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 22.3, Liquid Temperature (°C): 21.1 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(8.69, 8.69, 8.69); Calibrated: 7/31/2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/22/2013
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/900MHz Body/Area Scan (7x9x1): Measurement grid: dx=15mm. dv=15mm


Maximum value of SAR (measured) = 3.53 W/kg

Configuration/900MHz_Body/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 62.907 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 5.02 W/kg

SAR(1 g) = 3.23 W/kg; SAR(10 g) = 2.07 W/kg Maximum value of SAR (measured) = 3.81 W/kg

Appendix B. SAR measurement Data

Test Laboratory: QuieTek Date/Time: 10/1/2013

900MHz Front 1

DUT: Wireless Microphone System; Type: WMICG4-HU

Communication System: UID 0, GSM 900; Frequency: 904.2 MHz; Communication System

PAR: 4.393 dB

Medium parameters used: f = 904.2 MHz; $\sigma = 1.05 \text{ S/m}$; $\varepsilon_r = 53.48$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

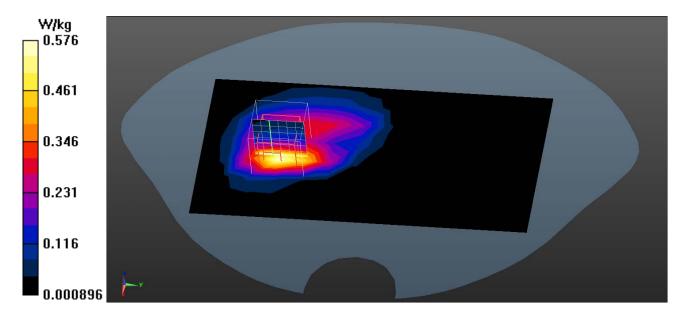
Ambient Temperature (°C): 22.3, Liquid Temperature (°C): 21.1 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(8.69, 8.69, 8.69); Calibrated: 7/31/2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/22/2013
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/Body/Area Scan (14x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.576 W/kg

Configuration/Body/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.287 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 1.15 W/kg

SAR(1 g) = 0.528 W/kg; SAR(10 g) = 0.282 W/kg

Maximum value of SAR (measured) = 0.675 W/kg

Test Laboratory: QuieTek Date/Time: 10/1/2013

900MHz_Front_10

DUT: Wireless Microphone System; Type: WMICG4-HU

Communication System: UID 0, FCC 900MHz (0); Frequency: 915 MHz; Communication

System PAR: 4.393 dB

Medium parameters used: f = 915 MHz; σ = 1.07 S/m; ε_r = 52.89; ρ = 1000 kg/m³

Phantom section: Flat Section

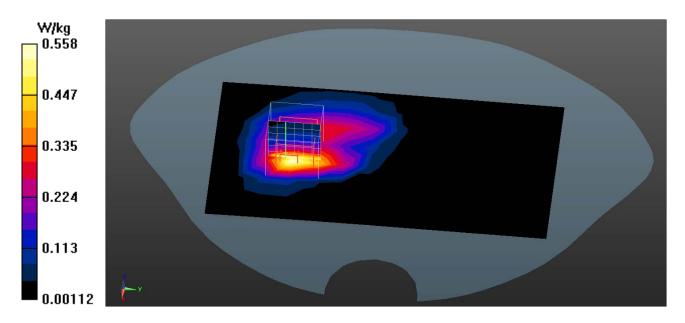
Ambient Temperature (°C): 22.3, Liquid Temperature (°C): 21.1 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(8.69, 8.69, 8.69); Calibrated: 7/31/2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/22/2013
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/Body/Area Scan (14x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.558 W/kg

Configuration/Body/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.276 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 1.00 W/kg

SAR(1 g) = 0.477 W/kg; SAR(10 g) = 0.259 W/kg

Maximum value of SAR (measured) = 0.610 W/kg

Test Laboratory: QuieTek Date/Time: 10/1/2013

900MHz_Front_19

DUT: Wireless Microphone System; Type: WMICG4-HU

Communication System: UID 0, FCC 900MHz (0); Frequency: 925.8 MHz; Communication

System PAR: 4.393 dB

Medium parameters used: f = 925.8 MHz; $\sigma = 1.09 \text{ S/m}$; $\varepsilon_r = 53.09$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 22.3, Liquid Temperature (°C): 21.1 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(8.69, 8.69, 8.69); Calibrated: 7/31/2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/22/2013
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Configuration/Body/Area Scan (14x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.443 W/kg

Configuration/Body/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.598 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.872 W/kg

SAR(1 g) = 0.407 W/kg; SAR(10 g) = 0.218 W/kg Maximum value of SAR (measured) = 0.524 W/kg

Test Laboratory: QuieTek Date/Time: 10/1/2013

900MHz_Back_1

DUT: Wireless Microphone System; Type: WMICG4-HU

Communication System: UID 0, GSM 900; Frequency: 904.2 MHz; Communication System

PAR: 4.393 dB

Medium parameters used: f = 904.2 MHz; σ = 1.05 S/m; ε_r = 53.48; ρ = 1000 kg/m³

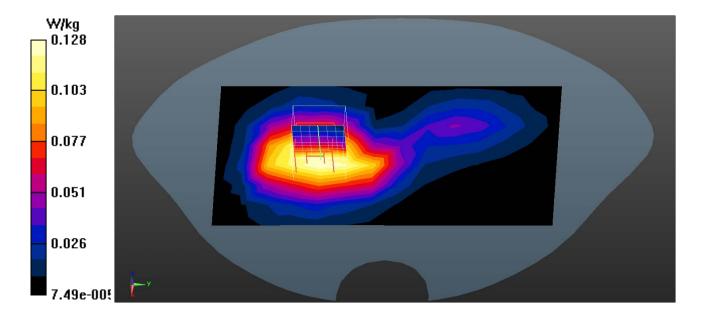
Phantom section: Flat Section

Ambient Temperature (°C): 22.3, Liquid Temperature (°C): 21.1 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(8.69, 8.69, 8.69); Calibrated: 7/31/2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/22/2013
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

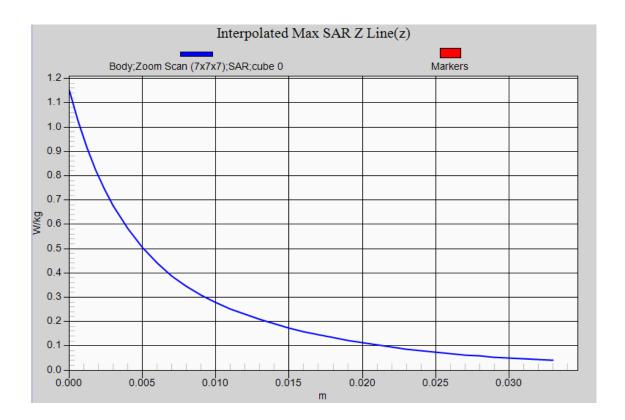
Configuration/Body/Area Scan (14x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.128 W/kg


Configuration/Body/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

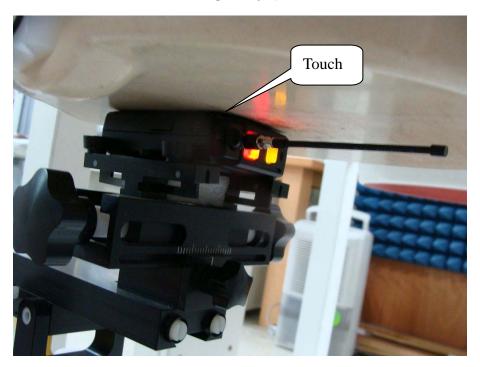
dx=5mm, dy=5mm, dz=5mm

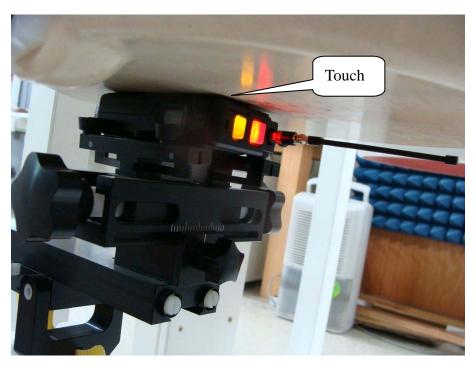
Reference Value = 7.573 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.163 W/kg

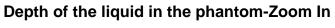

SAR(1 g) = 0.120 W/kg; SAR(10 g) = 0.085 W/kg Maximum value of SAR (measured) = 0.135 W/kg

GSM 900 EUT Body-Front, Z-Axis plot


Channel: 1



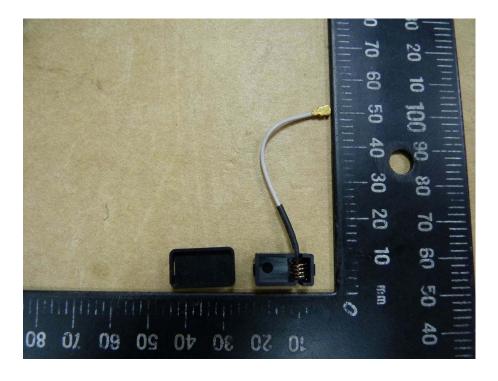
Appendix C. Test Setup Photographs & EUT Photographs Test Setup Photographs

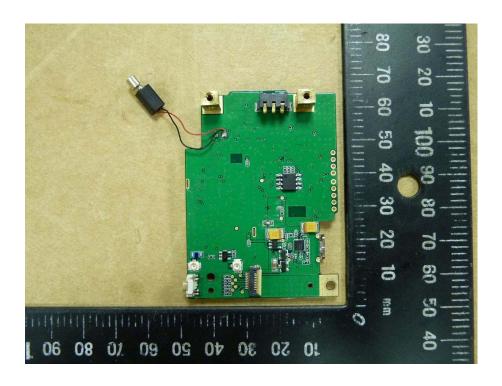


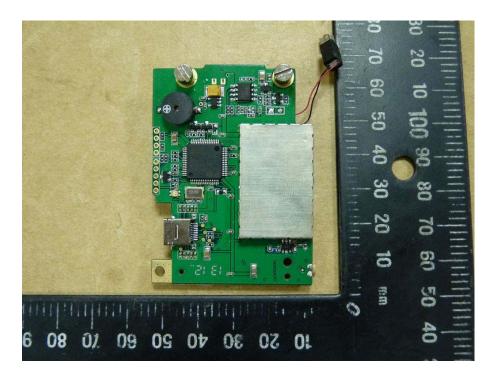
EUT Back

Note: The positions used in the measurements were according to IEEE 1528-2003.

EUT Photographs







Appendix D. Probe Calibration Data

Object: EX3DV4- SN: 3698

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Quietek-TW (Auden)

Certificate No: EX3-3698_Jul13

Accreditation No.: SCS 108

C

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3698

Calibration procedure(s)

QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date:

July 31, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	31-Jan-13 (No. DAE4-660_Jan13)	Jan-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Name Function Signature
Calibrated by: Claudio Leubler Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: July 31, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3698_Jul13

Page 1 of 11

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP

sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization @

φ rotation around probe axis

Polarization 9

Certificate No: EX3-3698_Jul13

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe EX3DV4

SN:3698

Manufactured: April 22, 2009

Calibrated:

July 31, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

EX3DV4- SN:3698 July 31, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3698

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.41	0.35	0.36	± 10.1 %
DCP (mV) ^B	100.4	101.3	97.5	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	Ç	D	VR	Unc [□]
			dB	dB√μV		dB	mV	(k=2)
0	CW	Х	0.0	0.0	1.0	0.00	138.1	±3.0 %
		Y	0.0	0.0	1.0		131.7	
		Z	0.0	0.0	1.0		127.6	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3698

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	9.49	9.49	9.49	0.80	0.50	± 12.0 %
835	41.5	0.90	9.05	9.05	9.05	0.80	0.50	± 12.0 %
900	41.5	0.97	8.67	8.67	8.67	0.80	0.50	± 12.0 %
1750	40.1	1.37	7.61	7.61	7.61	0.48	0.73	± 12.0 %
1900	40.0	1.40	7.34	7.34	7.34	0.44	0.77	± 12.0 %
2450	39.2	1.80	6.54	6.54	6.54	0.27	1.01	± 12.0 %
2600	39.0	1.96	6.46	6.46	6.46	0.29	0.99	± 12.0 %
3500	37.9	2.91	6.03	6.03	6.03	0.25	3.61	± 13.1 %
5200	36.0	4.66	4.81	4.81	4.81	0.35	1.80	± 13.1 %
5300	35.9	4.76	4.63	4.63	4.63	0.36	1.80	± 13.1 %
5500	35.6	4.96	4.53	4.53	4.53	0.41	1.80	± 13.1 %
5600	35.5	5.07	4.04	4.04	4.04	0.59	1.80	± 13.1 %
5800	35.3	5.27	4.34	4.34	4.34	0.45	1.80	± 13.1 %

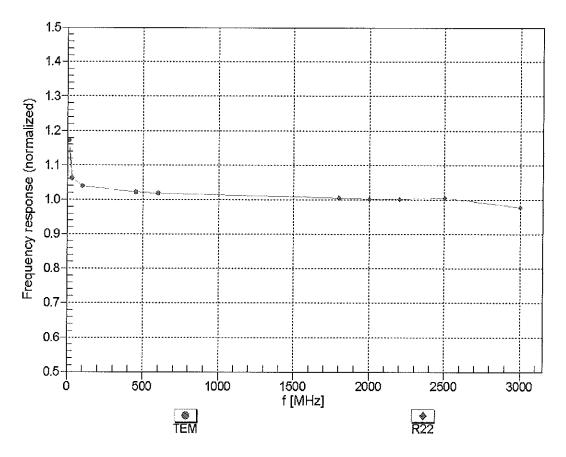
^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

^c At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3698

Calibration Parameter Determined in Body Tissue Simulating Media

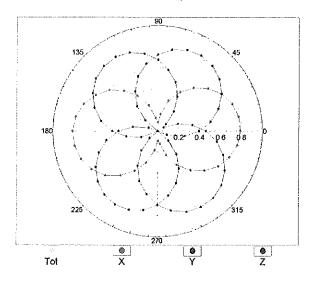

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	9.08	9.08	9.08	0.80	0.50	± 12.0 %
835	55.2	0.97	8.89	8.89	8.89	0.80	0.50	± 12.0 %
900	55.0	1.05	8.69	8.69	8.69	0.80	0.50	± 12.0 %
1750	53.4	1.49	7.39	7.39	7.39	0.35	0.94	± 12.0 %
1900	53.3	1.52	7.06	7.06	7.06	0.43	0.90	± 12.0 %
2450	52.7	1.95	6.61	6.61	6.61	0.74	0.64	± 12.0 %
2600	52.5	2.16	6.41	6.41	6.41	0.78	0.62	± 12.0 %
3500	51.3	3.31	5.76	5.76	5.76	0.21	2.85	± 13.1 %
5200	49.0	5.30	4.33	4.33	4.33	0.45	1.90	± 13.1 %
5300	48.9	5.42	4.12	4.12	4.12	0.48	1.90	± 13.1 %
5500	48.6	5.65	3.82	3.82	3.82	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.39	3.39	3.39	0.67	1.90	± 13.1 %
5800	48.2	6.00	4.01	4.01	4.01	0.51	1.90	± 13.1 %

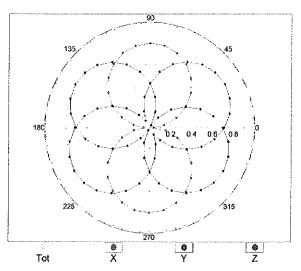
^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

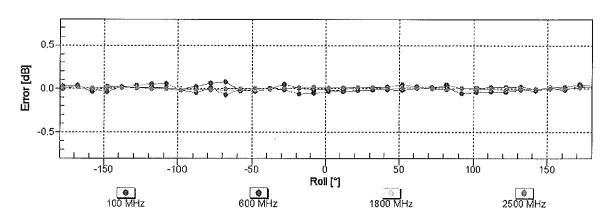
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

^L At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

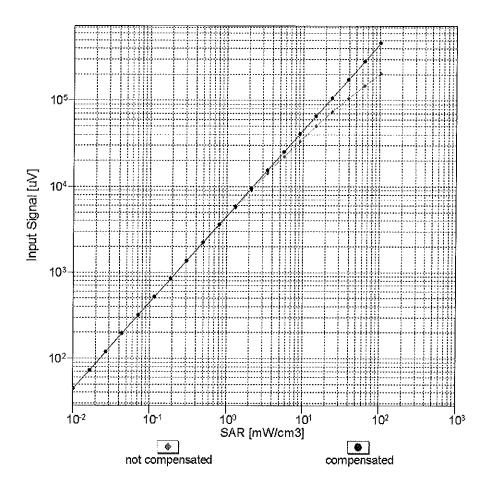

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

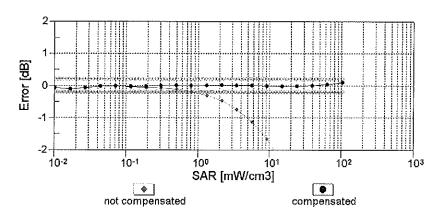

EX3DV4-SN:3698


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

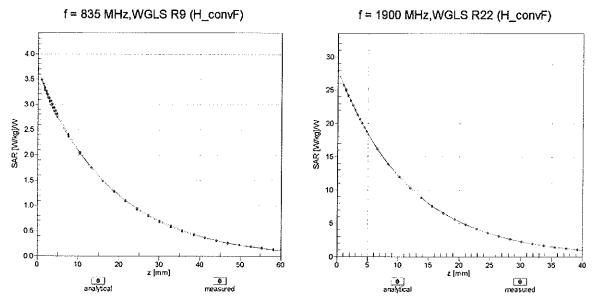
f=600 MHz,TEM

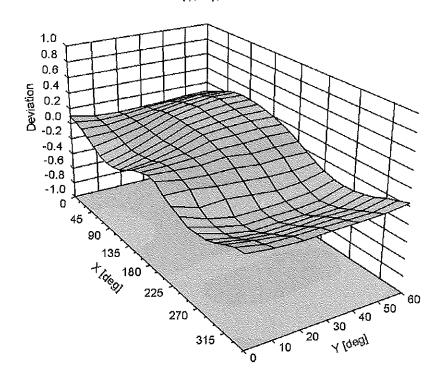
f=1800 MHz,R22

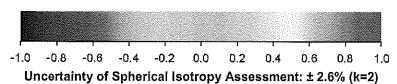




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, ϑ) , f = 900 MHz

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3698

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-138
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Appendix E. Dipole Calibration

Validation Dipole 900 MHz

M/N: ALS-D-900 S/N: QTK-316

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étaionnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Quietek-TW (Auden)

Certificate No: ALS-D-900-QTK-316_May12

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object ALS-D-900 - SN: QTK-316

Calibration procedure(s) QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: May 25, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Osraa El Daoug
Approved by:	Kalja Pokovic	Technical Manager	Alls

Issued: May 25, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Wiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL.

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	. V52.8.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	ii-fidam.
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9 ± 6 %	0.95 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.82 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	11.4 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.82 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	7.33 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.0	1.05 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.7 ± 6 %	1.06 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.95 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	11.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.89 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	7.49 mW / g ± 16.5 % (k=2)

Certificate No: ALS-D-900-QTK-316_May12

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.4 Ω + 7.3 jΩ
Return Loss	- 22.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	43.1 Ω + 4.4 jΩ
Return Loss	- 21.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	0.978 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	APREL
Manufactured on	Unknown

Certificate No: ALS-D-900-QTK-316_May12

DASY5 Validation Report for Head TSL

Date: 25.05.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: ALS-D-900; Serial: ALS-D-900 - SN: QTK-316

Communication System: CW; Frequency: 900 MHz

Medium parameters used: f = 900 MHz; $\sigma = 0.95 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(5.97, 5.97, 5.97); Calibrated: 30.12.2011;

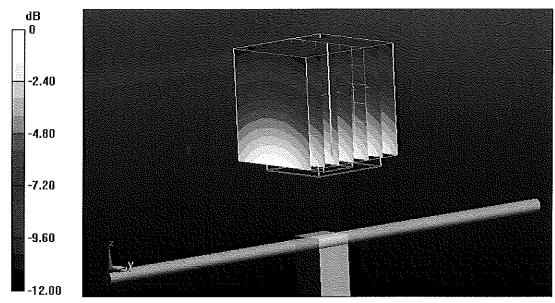
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

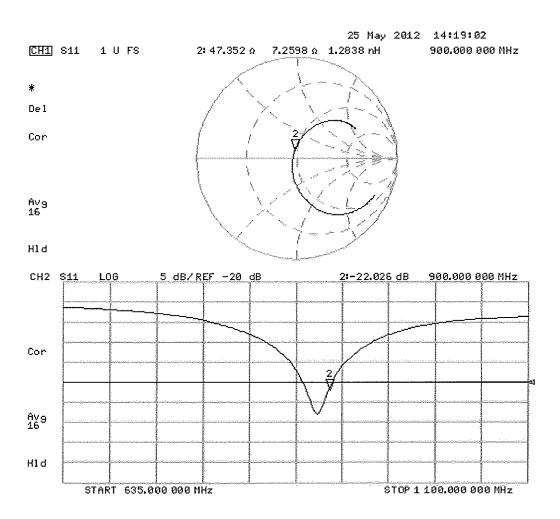
• DASY52 52.8.1(838); SEMCAD X 14.6.5(6469)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm 2/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.790 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 4.206 mW/g


SAR(1 g) = 2.82 mW/g; SAR(10 g) = 1.82 mW/g

Maximum value of SAR (measured) = 3.31 mW/g

0 dB = 3.31 mW/g = 10.40 dB mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 25.05.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: ALS-D-900; Serial: ALS-D-900 - SN: QTK-316

Communication System: CW; Frequency: 900 MHz

Medium parameters used: f = 900 MHz; $\sigma = 1.06 \text{ mho/m}$; $\varepsilon_r = 53.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

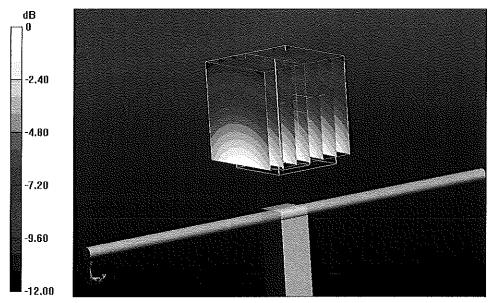
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(5.94, 5.94, 5.94); Calibrated: 30.12.2011;

- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.1(838); SEMCAD X 14.6.5(6469)

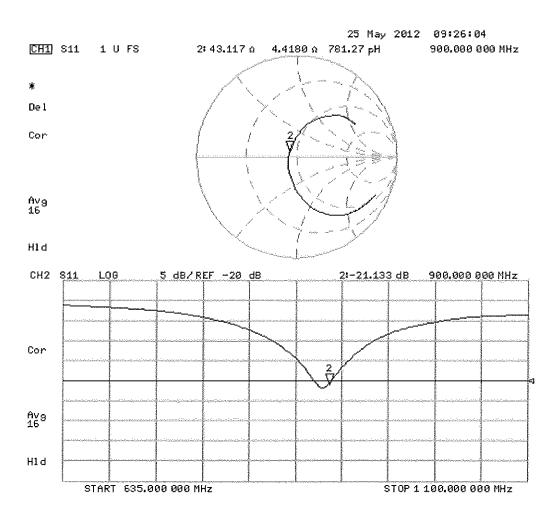
Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm 2/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.764 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 4.504 mW/g

SAR(1 g) = 2.95 mW/g; SAR(10 g) = 1.89 mW/g


Maximum value of SAR (measured) = 3.48 mW/g

0 dB = 3.48 mW/g = 10.83 dB mW/g

Certificate No: ALS-D-900-QTK-316_May12

Impedance Measurement Plot for Body TSL

