

Intertek 731 Enterprise Drive Lexington, KY 40510

Tel 859 226 1000 Fax 859 226 1040

www.intertek.com

Verizon Connect, Inc. MPE REPORT

SCOPE OF WORK

MPE CALCULATION ON THE MERIDIAN PRIME AND ZENITH

REPORT NUMBER 104473451LEX-002.1

ISSUE DATE

2/12/2021

PAGES

13

DOCUMENT CONTROL NUMBER Non-Specific EMC Report Shell Rev. December 2017 © 2017 INTERTEK

MPE TEST REPORT

Report Number:	104473451LEX-002.1
Project Number:	6104473451
Report Issue Date:	2/12/2021
Product Name:	Meridian Prime and Zenith
Standards:	FCC Part 1.1310 Limits for Maximum
	Permissible Exposure (IVIPE)
	RSS-102 Issue 5 RF Field Strength Limits for

Devices Used by the General Public

Tested by: Intertek Testing Services NA, Inc. 731 Enterprise Drive Lexington, KY 40510 USA Client: Verizon Connect, Inc. 5055 North Point Parkway Alpharetta, GA USA

Report prepared by

Bryan Taylor, Team Leader

Report reviewed by

Ai Jo

Brian Lackey, Staff Engineer

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Table of Contents

1	Introduction and Conclusion	.4
2	Test Summary	.4
3	Client Information	.5
4	Description of Equipment under Test and Variant Models	.6
5	Antenna Gains:	.7
6	Output Power:	.7
7	FCC Limits	. 8
8	RSS-102 Issue 5 Exposure Limits:	.9
9	Test Procedure	10
10	FCC Results:	11
11	ISED Results:	12
12	Revision History	13

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

2 Test Summary

Section	Test full name	Result
10	FCC Part 1.1310 Limits for Maximum Permissible Exposure (MPE) (Limits for General Population / Uncontrolled Exposure)	Pass
10 FCC Part 1.1310 Limits for Maximum (Limits for General Population / Un RSS-102 Issue 5 RF Field Strength Li (For Devices Used by the General P	RSS-102 Issue 5 RF Field Strength Limits (For Devices Used by the General Public)	Pass

3 Client Information

This product was tested at the request of the following:

	Client Information					
Client Name:	Verizon Connect, Inc.					
Address:	5055 North Point Parkway					
	Alpharetta, GA					
	USA					
Contact:	Keith Wright					
Telephone:	908.208.9789					
Email:	Keith.wright@verizonconnect.com					
	Manufacturer Information					
Manufacturer Name:	Verizon Connect, Inc.					
Manufacturer Address:	5055 North Point Parkway					
	Alpharetta, GA					
	USA					

4 Description of Equipment under Test and Variant Models

Equipment Under Test						
Product Name Meridian Prime and Zenith						
Model Number	Model Number Al-110					
Serial Number	240000267					
Supported Trasmitters LTE, GSM, Bluetooth Low Energy						
Embedded Module	BG95-M3					
Embedded Module hardware Version	R2.1					
Embedded Module Software Version BG95M3LAR02A03						
FCCID XMR201910BG95M3						
Receive Date 12/17/2020						
Test Start Date 12/16/2020						
Test End Date 12/21/2020						
Device Received Condition	Good					
Test Sample Type Production						
Rated Voltage 4.5VDC						
Low Voltage 3.6VDC						
High Voltage	5.4VDC					
Descrip	tion of Equipment Under Test (provided by client)					

Meridian Zenith is a battery-only device for use as an asset tracker. The Meridian Prime includes a wiring harness for external power. Both models include the BG95-M3 cellular module and Bluetooth Low Energy transmitter.

4.1 Variant Models:

There were no variant models covered by this evaluation.

5 Antenna Gains:

The antenna gains used in the MPE calculations were provided by the client and could impact the test results. For each transmit band supported the worst case antenna gain was used from the following antenna spec sheets:

Performance (Typical as measured in housing)								
Part Number		335-5	500058-001		335-500059-001	335-500056-001		
Frequency	746 MHz	iz 869 MHz 1720 MHz 1930 MHz		1575 MHz	2440 MHz			
Efficiency (%)	52.26	64.17	66.10	59.74	56.5	79.6		
Peak Gain (dB)	0.6	0.6 0.93 1.20 1.86		1.86	2.49	2.50		
Impedance (ohms)	50	i0 50 50 50		50	50	50		
VSWR	≤ 2	2 ≤1.5 ≤2 ≤2		≤ 2	≤ 2	≤ 3		
Polarization	Linear	Linear	Linear	Linear	Linear	Linear		
Maximum Input Power	5W	5W	5W	5W	5W	5W		

	Performance (Typical as measured in housing)								
Part Number		335-500	0064-001		335-500059-001	335-500056-001			
Frequency	746 MHz	869 MHz	1720 MHz	1930 MHz	1575 MHz	2440 MHz			
Efficiency (%)	66.2	54.7	73.7	40.5	62.1	72.6			
Peak Gain (dB)	Gain (dB) 1.45 1.04		2.98	1.59	1.51	3.47			
Impedance (ohms)	Impedance 50 (ohms)		50	50	50	50			
VSWR	R ≤2.5 ≤2.5 ≤2 ≤3		≤ 3	≤ 2	≤ 3				
Polarization	Linear	Linear	Linear	Linear	Linear	Linear			
Maximum Input	5W	5W	5W	5W	5W	5W			

6 Output Power:

The output power used for the Bluetooth Low Energy radio was the worst case measured during testing. The output power used for the cellular radio (LTE and GSM) was identical to that used in the module MPE report on file with the FCC (FCCID: XMR201910BG95M3)

0.2

1.0

f/1500

30

30

30

FCC Limits 7

§ 1.1310: The criteria listed in table 1 shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Part 1.1310 Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Magnetic field strength (A/m) Power density (mW/cm ²)	
(A) Lim	its for Occupationa	I/Controlled Exposu	res	
0.3–3.0	614	1.63	*(100)	6
3.0–30	1842/f	4.89/f	*(900/f2)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500–100,000			5	6
(B) Limits	for General Populati	ion/Uncontrolled Exp	oosure	
0.3–1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f ²)	30

1500-100,000	
	the Maller

30–300

300–1500

f = frequency in MHz
* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure.
Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.
NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for

27.5

.....

0.073

.....

exposure or can not exercise control over their exposure.

8 RSS-102 Issue 5 Exposure Limits:

Table 4: RF Field	Table 4: RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)								
Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m²)	Reference Period (minutes)					
0.003-10 <u>21</u>	83	90	-	Instantaneous*					
0.1-10	-	0.73/ f	-	6**					
1.1-10	87/ f ^{0.5}	-	-	6**					
10-20	27.46	0.0728	-2	6					
20-48	58.07/ f ^{0.25}	0.1540/ f ^{0.25}	8.944/ f ^{0.5}	6					
48-300	22.06	0.05852	1.291	6					
300-6000	3.142 f ^{0.3417}	0.008335 f ^{0.3417}	0.02619 f ^{0.6834}	6					
6000-15000	61.4	0.163	10	6					
15000-150000	61.4	0.163	10	616000/ f ^{1.2}					
150000-300000	0.158 <i>f</i> ^{0.5}	4.21 x 10 ⁻⁴ ƒ ^{0.5}	6.67 x 10 ⁻⁵ f	616000/f ^{1.2}					

Note: f is frequency in MHz.

* Based on nerve stimulation (NS). ** Based on specific absorption rate (SAR).

9 Test Procedure

An MPE evaluation for was performed in order to show that the device was compliant with the general population exposure limits from FCC §2.1091 and RSS-102 Issue 5. The maximum power density was calculated for each transmitter band at a separation distance of 20cm using the maximum declared output power including tune up tolerance.

For each transmitter the maximum RF exposure at a 20 cm distance using the formula:

Conducted Power_{mW} = $10^{Conducted \mathcal{B}wer(d\mathcal{B}m)/10}$

 $PowerDensity = \frac{Conducted Power_{mW} \times Ant.Gain}{4\pi \times (20_{cm})^2}$

For transmitters that could operate simultaneously, the MPE to limit ratio for each was calculated and then summed. If the sum of the MPE to limit ratios was less than 1, that specific combination of transmitters was deemed to comply.

10 FCC Results:

The calculated maximum power density at 20cm distance was equal to or less than the required limits for general population exposure for FCC Part 1.1310. The Bluetooth Low Energy radio could transmit simultaneously with either the GSM or the LTE radios. The worst case sum of MPE/Limit radios occurs with BLE transmitting simultaneously with GSM850. Since the sum of those two worst case MPE/Limit ratios is less than 1 the Meridian Prime and Zenith devices are considered compliant to the simultaneous transmission requirements.

0.001 + 0.1999 = 0.2009

Duty Cycle	100	(%)						
Separation Dist.	20	(cm)						
		Declared Max	Duty Cycle					
		Cond. Power	Adjusted Cond.					MPE / Limit
		(Inc. Tolerance)	Output Power	Antenna Gain	MPE Value	MPE Limit	Margin to Limit	Ratio (for Co-
Operating Mode	Frequecy (MHz)	(dBm)	(dBm)	(dB)	(mW/cm^2)	(mW/cm^2)	(mW/cm^2)	Location)
Bluetooth Low								
Energy	2402	3.73	3.73	3.47	0.0010	1.00	0.9990	0.0010

Bluetooth Low Energy Data

			GSIVI Data				
12.5 (%)							
20 (cm)							
Declared Max		Duty Cycle					
	Cond. Power	Adjusted Cond.					MPE / Limit
	(Inc. Tolerance)	Output Power	Antenna Gain	MPE Value	MPE Limit	Margin to Limit	Ratio (for Co-
Frequecy (MHz)	(dBm)	(dBm)	(dB)	(mW/cm^2)	(mW/cm^2)	(mW/cm^2)	Location)
824	35	25.96910013	1.45	0.1098	0.55	0.4395	0.1999
1900	32	22.96910013	1.86	0.0605	1.00	0.9395	0.0605
	12.5 20 Frequecy (MHz) 824 1900	12.5 (%) 20 (cm) Declared Max Cond. Power (Inc. Tolerance) Frequecy (MHz) 824 35 1900 32	12.5 (>) Declared Max Duty Cycle 20 (cm) Adjusted Cond. Cond. Power Adjusted Cond. (Inc. Tolerance) Output Power Frequecy (MHz) (dBm) (dBm) 824 35 25.96910013 1900 32 22.96910013	Image: Constraint of the system of	SSIVI Data 12.5 (%) Image: Straight partial straight partis straight partial straight partial straight partis straight part	Biological Sidi Data 12.5 (%) Image: Sidi Data Image: Sidi Data 20 (cm) Duty Cycle Image: Sidi Data Image: Sidi Data Declared Max Duty Cycle Adjusted Cond. Image: Sidi Data Image: Sidi Data Image: Cond. Power Adjusted Cond. Antenna Gain MPE Value MPE Limit Frequecy (MHz) (dBm) (dBm) (dB) Image: Sidi Data MPE Value MPE Limit 824 35 25.96910013 1.45 0.1098 0.55 1900 32 22.96910013 1.86 0.0605 1.00	Image: Property of the system of th

Note: the 12.5% duty cycle comes from the GSM radio using 1 out of 8 time slots available.

				LIE Data				
Duty Cycle	100	(%)						
Separation Dist.	20	(cm)						
		Declared Max	Duty Cycle					
		Cond. Power	Adjusted Cond.					MPE / Limit
		(Inc. Tolerance)	Output Power	Antenna Gain	MPE Value	MPE Limit	Margin to Limit	Ratio (for Co-
Operating Mode	Frequecy (MHz)	(dBm)	(dBm)	(dB)	(mW/cm^2)	(mW/cm^2)	(mW/cm^2)	Location)
LTE Band 2	1850	22	22	2.98	0.0626	1.00	0.9374	0.0626
LTE Band 4	1710	22	22	2.98	0.0626	1.00	0.9374	0.0626
LTE Band 5	850	22	22	1.45	0.0440	0.57	0.5226	0.0777
LTE Band 12	698	22	22	1.45	0.0440	0.47	0.4213	0.0946
LTE Band 13	777	22	22	1.45	0.0440	0.52	0.4740	0.0850
LTE Band 14	788	22	22	1.45	0.0440	0.53	0.4813	0.0838
LTE Band 25	1850	22	22	2.98	0.0626	1.00	0.9374	0.0626
LTE Band 26	814	22	22	1.45	0.0440	0.54	0.4986	0.0811
LTE Band 66	1710	22	22	2.98	0.0626	1.00	0.9374	0.0626
LTE Band 85	698	22	22	1.45	0.0440	0.47	0.4213	0.0946
NB-IOT Band 2	1850	22	22	2.98	0.0626	1.00	0.9374	0.0626
NB-IOT Band 4	1710	22	22	2.98	0.0626	1.00	0.9374	0.0626
NB-IOT Band 5	850	22	22	1.45	0.0440	0.57	0.5226	0.0777
NB-IOT Band 12	698	22	22	1.45	0.0440	0.47	0.4213	0.0946
NB-IOT Band 13	777	22	22	1.45	0.0440	0.52	0.4740	0.0850
NB-IOT Band 25	1850	22	22	2.98	0.0626	1.00	0.9374	0.0626
NB-IOT Band 26	814	22	22	1.45	0.0440	0.54	0.4986	0.0811
NB-IOT Band 66	1710	22	22	2.98	0.0626	1.00	0.9374	0.0626
NB-IOT Band 71	663	22	22	1.45	0.0440	0.44	0.3980	0.0996
NB-IOT Band 85	698	22	22	1.45	0.0440	0.47	0.4213	0.0946

LTE Data

11 ISED Results:

The calculated maximum power density at 20cm distance was equal to or less than the required limits for general population exposure for RSS-102 Issue 5. The Bluetooth Low Energy radio could transmit simultaneously with either the GSM or the LTE radios. The worst case sum of MPE/Limit radios occurs with BLE transmitting simultaneously with GSM850. Since the sum of those two worst case MPE/Limit ratios is less than 1 the Meridian Prime and Zenith devices are considered compliant to the simultaneous transmission requirements.

0.002 + 0.4263 = 0.4283

Duty Cycle	100 (%)							
Separation Dist.	20 (cm)							
		Declared Max Cond. Power	Duty Cycle Adjusted Cond.					MPE / Limit
		(Inc. Tolerance)	Output Power	Antenna Gain	MPE Value	MPE Limit	Margin to Limit	Ratio (for Co-
Operating Mode	Frequecy (MHz)	(dBm)	(dBm)	(dB)	(W/m^2)	(W/m^2)	(W/m^2)	Location)
Bluetooth Low								
Energy	2402	3.73	3.73	3.47	0.0104	5.35	5.3404	0.0020

Bluetooth Low Energy Data

GSM Data									
Duty Cycle	12.5 (%)								
Separation Dist.	20 (cm)								
Operating Mode	Frequecy (MHz)	Declared Max Cond. Power (Inc. Tolerance) (dBm)	Duty Cycle Adjusted Cond. Output Power (dBm)	Antenna Gain (dB)	MPE Value (W/m^2)	MPE Limit (W/m^2)	Margin to Limit (W/m^2)	MPE / Limit Ratio (for Co- Location)	
GSM850	824	35	25.96910013	1.45	1.0981	2.58	1.4775	0.4263	
GSM1900	1900	32	22.96910013	1.86	0.6048	4.56	3.9538	0.1327	

Note: the 12.5% duty cycle comes from the GSM radio using 1 out of 8 time slots available.

			_					
Duty Cycle	100	(%)						
Separation Dist.	20	(cm)						
		Declared Max	Duty Cycle					
		Cond. Power	Adjusted Cond.					MPE / Limit
		(Inc. Tolerance)	Output Power	Antenna Gain	MPE Value	MPE Limit	Margin to Limit	Ratio (for Co-
Operating Mode	Frequecy (MHz)	(dBm)	(dBm)	(dB)	(W/m^2)	(W/m^2)	(W/m^2)	Location)
LTE Band 2	1850	22	22	2.98	0.6262	4.48	3.8501	0.1399
LTE Band 4	1710	22	22	2.98	0.6262	4.24	3.6157	0.1476
LTE Band 5	850	22	22	1.45	0.4403	2.63	2.1906	0.1674
LTE Band 12	698	22	22	1.45	0.4403	2.30	1.8592	0.1915
LTE Band 13	777	22	22	1.45	0.4403	2.47	2.0340	0.1779
LTE Band 14	788	22	22	1.45	0.4403	2.50	2.0579	0.1762
LTE Band 25	1850	22	22	2.98	0.6262	4.48	3.8501	0.1399
LTE Band 26	814	22	22	1.45	0.4403	2.55	2.1139	0.1724
LTE Band 66	1710	22	22	2.98	0.6262	4.24	3.6157	0.1476
LTE Band 85	698	22	22	1.45	0.4403	2.30	1.8592	0.1915
NB-IOT Band 2	1850	22	22	2.98	0.6262	4.48	3.8501	0.1399
NB-IOT Band 4	1710	22	22	2.98	0.6262	4.24	3.6157	0.1476
NB-IOT Band 5	850	22	22	1.45	0.4403	2.63	2.1906	0.1674
NB-IOT Band 12	698	22	22	1.45	0.4403	2.30	1.8592	0.1915
NB-IOT Band 13	777	22	22	1.45	0.4403	2.47	2.0340	0.1779
NB-IOT Band 25	1850	22	22	2.98	0.6262	4.48	3.8501	0.1399
NB-IOT Band 26	814	22	22	1.45	0.4403	2.55	2.1139	0.1724
NB-IOT Band 66	1710	22	22	2.98	0.6262	4.24	3.6157	0.1476
NB-IOT Band 71	663	22	22	1.45	0.4403	2.22	1.7797	0.1983
NB-IOT Band 85	698	22	22	1.45	0.4403	2.30	1.8592	0.1915

LTE Data

12 Revision History

Revision Level	Date	Report Number	Prepared By	Reviewed By	Notes
0	2/12/2021	104473451LEX-002.1	BCT	BL	Original Issue