$\begin{aligned} & 10477- \\ & \mathrm{AAC} \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , 16QAM, UL Subframe $=2,3,4,7,8,9$)	X	6.74	228.54	21.21	3.23	80.0	± 9.6 \%
		Y	0.23	55.08	2.89		80.0	
		Z	0.64	60.00	6.98		80.0	
$\begin{aligned} & 10478- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.84	230.57	11.22	3.23	80.0	$\pm 9.6 \%$
		Y	24.37	227.68	30.04		80.0	
		Z	0.66	60.00	6.29		80.0	
10479-AAA	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	3.02	84.98	21.47	3.23	80.0	± 9.6 \%
		Y	100.00	125.48	31.72		80.0	
		Z	5.02	83.00	20.76		80.0	
$\begin{aligned} & 10480- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.47	60.00	6.63	3.23	80.0	$\pm 9.6 \%$
		Y	1.92	67.54	11.86		80.0	
		Z	1.73	65.44	11.67		80.0	
$\begin{aligned} & 10481- \\ & \text { AAA } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.22	55.04	3.12	3.23	80.0	$\pm 9.6 \%$
		Y	1.09	61.90	8.89		80.0	
		Z	1.31	62.31	9.77		80.0	
$\begin{aligned} & \text { 10482- } \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	53.67	208.87	10.65	2.23	80.0	$\pm 9.6 \%$
		Y	1.05	62.14	9.95		80.0	
		Z	0.98	60.56	9.26		80.0	
$\begin{aligned} & \text { 10483- } \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	64.01	327.64	15.81	2.23	80.0	$\pm 9.6 \%$
		Y	1.10	60.00	7.60		80.0	
		Z	1.21	60.00	8.23		80.0	
$\begin{aligned} & 10484- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	72.15	316.72	7.23	2.23	80.0	$\pm 9.6 \%$
		Y	1.13	60.00	7.59		80.0	
		Z	1.24	60.00	8.22		80.0	
10485AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , QPSK, UL Subframe=2,3,4,7,8,9)	X	0.75	60.00	6.88	2.23	80.0	$\pm 9.6 \%$
		Y	2.48	72.41	16.54		80.0	
		Z	1.64	65.93	13.71		80.0	
10486- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.01	60.00	5.53	2.23	80.0	$\pm 9.6 \%$
		Y	1.68	63.79	11.57		80.0	
		Z	1.58	62.22	10.94		80.0	
$\begin{aligned} & 10487- \\ & \mathrm{AAC} \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.04	60.00	5.50	2.23	80.0	± 9.6 \%
		Y	1.66	63.28	11.27		80.0	
		Z	1.59	61.98	10.79		80.0	
$\begin{aligned} & 10488- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 10 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	1.44	64.72	13.06	2.23	80.0	$\pm 9.6 \%$
		Y	2.82	72.60	18.56		80.0	
		Z	2.27	68.12	16.38		80.0	
$\begin{aligned} & 10489- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.47	61.87	10.73	2.23	80.0	± 9.6 \%
		Y	2.82	68.91	16.54		80.0	
		Z	2.48	66.05	15.16		80.0	
$\begin{aligned} & 10490- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 10 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.47	61.55	10.50	2.23	80.0	$\pm 9.6 \%$
		Y	2.86	68.61	16.37		80.0	
		Z	2.55	65.97	15.11		80.0	
$\begin{aligned} & 10491- \\ & \mathrm{AAC} \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 15 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	1.98	66.25	14.91	2.23	80.0	± 9.6 \%
		Y	2.98	70.44	18.02		80.0	
		Z	2.64	67.54	16.51		80.0	
$\begin{aligned} & 10492- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.19	64.63	13.64	2.23	80.0	$\pm 9.6 \%$
		Y	3.11	67.88	16.76		80.0	
		Z	2.90	65.95	15.77		80.0	

10493- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.21	64.43	13.47	2.23	80.0	± 9.6 \%
		Y	3.16	67.71	16.66		80.0	
		Z	2.96	65.87	15.72		80.0	
10494- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	2.11	67.23	15.74	2.23	80.0	± 9.6 \%
		Y	3.21	71.79	18.57		80.0	
		Z	2.78	68.52	16.88		80.0	
10495- AAC	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.35	65.50	14.66	2.23	80.0	$\pm 9.6 \%$
		Y	3.14	68.07	17.04		80.0	
		Z	2.93	66.16	16.02		80.0	
10496 AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.42	65.39	14.61	2.23	80.0	$\pm 9.6 \%$
		Y	3.21	67.85	16.95		80.0	
		Z	3.02	66.06	16.01		80.0	
$\begin{aligned} & 10497- \\ & \text { AAA } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 1.4 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	4.50	220.48	26.76	2.23	80.0	± 9.6 \%
		Y	0.82	60.00	6.90		80.0	
		Z	0.88	60.00	7.23		80.0	
$\begin{aligned} & 10498- \\ & \text { AAA } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 1.4 $\mathrm{MHz}, 16-\mathrm{QAM}$, UL Subframe $=2,3,4,7,8,9$)	X	0.00	60.00	0.00	2.23	80.0	$\pm 9.6 \%$
		Y	1.06	60.00	5.49		80.0	
		Z	1.08	60.00	6.01		80.0	
10499- AAA	LTE-TDD (SC-FDMA, 100\% RB, 1.4 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.00	60.00	0.00	2.23	80.0	± 9.6 \%
		Y	1.10	60.00	5.30		80.0	
		Z	1.11	60.00	5.84		80.0	
$\begin{aligned} & 10500- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	0.83	60.00	8.23	2.23	80.0	$\pm 9.6 \%$
		Y	2.68	72.91	17.52		80.0	
		Z	1.91	67.05	14.90		80.0	
$\begin{aligned} & 10501- \\ & \text { AAA } \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 3 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.03	60.00	6.96	2.23	80.0	$\pm 9.6 \%$
		Y	2.26	66.74	13.90		80.0	
		Z	1.97	64.14	12.76		80.0	
$\begin{aligned} & 10502- \\ & \text { AAA } \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 3 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.05	60.00	6.86	2.23	80.0	$\pm 9.6 \%$
		Y	2.24	66.31	13.60		80.0	
		Z	1.99	63.95	12.58		80.0	
$\begin{aligned} & 10503- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	1.42	64.51	12.94	2.23	80.0	± 9.6 \%
		Y	2.78	72.32	18.42		80.0	
		Z	2.24	67.93	16.27		80.0	
10504- AAC	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.45	61.75	10.65	2.23	80.0	$\pm 9.6 \%$
		Y	2.79	68.76	16.45		80.0	
		Z	2.46	65.95	15.09		80.0	
$\begin{aligned} & 10505- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 5 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.46	61.45	10.42	2.23	80.0	± 9.6 \%
		Y	2.84	68.47	16.29		80.0	
		Z	2.53	65.87	15.05		80.0	
$\begin{aligned} & 10506- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 10 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	2.09	67.08	15.65	2.23	80.0	$\pm 9.6 \%$
		Y	3.18	71.61	18.48		80.0	
$\begin{aligned} & 10507- \\ & \text { AAC } \end{aligned}$		Z	2.76	68.39	16.81		80.0	
	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.34	65.41	14.60	2.23	80.0	± 9.6 \%
		Y	3.12	67.99	16.99		80.0	
		Z	2.92	66.10	15.98		80.0	

$\begin{aligned} & 10508- \\ & A A C \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.40	65.29	14.54	2.23	80.0	± 9.6 \%
		Y	3.20	67.76	16.90		80.0	
		Z	3.01	65.99	15.96		80.0	
10509-$A A C$	LTE-TDD (SC-FDMA, 100\% RB, 15 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	2.58	67.03	16.09	2.23	80.0	± 9.6 \%
		Y	3.55	70.28	17.97		80.0	
		Z	3.24	67.94	16.71		80.0	
$\begin{aligned} & 10510- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 15 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.84	65.59	15.48	2.23	80.0	± 9.6 \%
		Y	3.55	67.42	17.00		80.0	
		Z	3.41	66.05	16.23		80.0	
$\begin{aligned} & 10511- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.92	65.56	15.46	2.23	80.0	± 9.6 \%
		Y	3.62	67.28	16.95		80.0	
		Z	3.49	65.96	16.22		80.0	
$\begin{array}{\|l} \hline 10512- \\ \text { AAC } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 100\% RB, 20 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	2.57	67.43	16.22	2.23	80.0	± 9.6 \%
		Y	3.65	71.51	18.37		80.0	
		Z	3.23	68.73	16.92		80.0	
$\begin{aligned} & 10513- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 20 $\mathrm{MHz}, 16-\mathrm{QAM}, \mathrm{UL}$ Subframe $=2,3,4,7,8,9$)	X	2.79	65.51	15.59	2.23	80.0	$\pm 9.6 \%$
		Y	3.45	67.50	17.07		80.0	
		Z	3.30	66.08	16.26		80.0	
$\begin{aligned} & 10514- \\ & \text { AAC } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 20 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.87	65.41	15.56	2.23	80.0	± 9.6 \%
		Y	3.50	67.18	16.96		80.0	
		Z	3.36	65.86	16.21		80.0	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	0.84	63.77	14.11	0.00	150.0	± 9.6 \%
		Y	1.02	65.86	16.61		150.0	
		Z	0.85	62.40	13.77		150.0	
10516-$A A A$	IEEE 802.11 b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	0.62	73.89	17.55	0.00	150.0	± 9.6 \%
		Y	4.44	111.45	33.24		150.0	
		Z	0.45	67.70	14.48		150.0	
10517- AAA	IEEE 802.11 b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	X	0.68	65.50	14.61	0.00	150.0	$\pm 9.6 \%$
		Y	0.96	70.28	18.66		150.0	
		Z	0.68	63.72	13.93		150.0	
$\begin{array}{\|l\|} \hline 10518- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	X	3.70	67.39	15.82	0.00	150.0	± 9.6 \%
		Y	4.26	67.62	16.61		150.0	
		Z	4.17	66.58	15.96		150.0	
10519 AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	X	3.79	67.51	15.88	0.00	150.0	± 9.6 \%
		Y	4.38	67.73	16.67		150.0	
		Z	4.31	66.74	16.05		150.0	
$\begin{aligned} & 10520- \\ & \text { AAB } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	3.65	67.31	15.75	0.00	150.0	± 9.6 \%
		Y	4.25	67.68	16.61		150.0	
		Z	4.16	66.65	15.95		150.0	
$\begin{aligned} & 10521- \\ & \text { AAB } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	X	3.59	67.16	15.66	0.00	150.0	± 9.6 \%
		Y	4.18	67.62	16.58		150.0	
		Z	4.10	66.58	15.92		150.0	
$\begin{aligned} & \hline 10522- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	3.61	67.21	15.68	0.00	150.0	± 9.6 \%
		Y	4.20	67.65	16.61		150.0	
		Z	4.13	66.67	15.99		150.0	

$\begin{aligned} & \text { 10523- } \\ & \text { AAB } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	X	3.58	67.41	15.78	0.00	150.0	± 9.6 \%
		Y	4.19	67.90	16.68		150.0	
		Z	4.09	66.77	15.97		150.0	
$\begin{aligned} & 10524- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	3.55	67.17	15.73	0.00	150.0	± 9.6 \%
		Y	4.18	67.74	16.69		150.0	
		Z	4.09	66.69	16.02		150.0	
$\begin{aligned} & 10525- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCSO, 99pc duty cycle)	X	3.68	66.62	15.57	0.00	150.0	$\pm 9.6 \%$
		Y	4.25	66.93	16.35		150.0	
		Z	4.15	65.82	15.66		150.0	
10526- AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 99 pc duty cycle)	X	3.72	66.70	15.62	0.00	150.0	± 9.6 \%
		Y	4.34	67.14	16.44		150.0	
		Z	4.25	66.06	15.76		150.0	
10527- AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	X	3.68	66.74	15.58	0.00	150.0	$\pm 9.6 \%$
		Y	4.29	67.16	16.40		150.0	
		Z	4.18	66.03	15.70		150.0	
10528- AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	X	3.67	66.65	15.55	0.00	150.0	± 9.6 \%
		Y	4.30	67.15	16.42		150.0	
		Z	4.20	66.04	15.73		150.0	
10529- AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	X	3.67	66.65	15.55	0.00	150.0	$\pm 9.6 \%$
		Y	4.30	67.15	16.42		150.0	
		Z	4.20	66.04	15.73		150.0	
$\begin{aligned} & 10531- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS6, 99 pc duty cycle)	X	3.64	66.66	15.53	0.00	150.0	± 9.6 \%
		Y	4.25	67.14	16.38		150.0	
		Z	4.15	66.02	15.69		150.0	
$\begin{aligned} & \hline 10532- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	X	3.57	66.55	15.48	0.00	150.0	± 9.6 \%
		Y	4.15	67.03	16.34		150.0	
		Z	4.04	65.89	15.62		150.0	
$\begin{aligned} & 10533- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	X	3.68	66.88	15.62	0.00	150.0	± 9.6 \%
		Y	4.30	67.28	16.44		150.0	
		Z	4.20	66.13	15.73		150.0	
$\begin{aligned} & 10534- \\ & A A B \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCSO, 99pc duty cycle)	X	4.34	66.44	15.93	0.00	150.0	± 9.6 \%
		Y	4.85	66.86	16.39		150.0	
		Z	4.79	66.06	15.87		150.0	
10535- AAB	IEEE 802.11 ac WiFi (40 MHz , MCS1, 99pc duty cycle)	X	4.34	66.46	15.95	0.00	150.0	± 9.6 \%
		Y	4.87	66.95	16.44		150.0	
		Z	4.82	66.17	15.93		150.0	
$\begin{aligned} & 10536- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	4.25	66.45	15.91	0.00	150.0	± 9.6 \%
		Y	4.78	66.98	16.43		150.0	
		Z	4.71	66.14	15.89		150.0	
$\begin{aligned} & 10537- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	X	4.35	66.61	16.01	0.00	150.0	± 9.6 \%
		Y	4.86	67.05	16.47		150.0	
		Z	4.80	66.24	15.94		150.0	
$\begin{aligned} & 10538- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	X	4.37	66.44	15.94	0.00	150.0	$\pm 9.6 \%$
		Y	4.89	66.89	16.42		150.0	
		Z	4.84	66.13	15.93		150.0	
$\begin{aligned} & 10540- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	4.31	66.35	15.93	0.00	150.0	± 9.6 \%
		Y	4.83	66.86	16.43		150.0	
		Z	4.77	66.08	15.92		150.0	

$\begin{aligned} & 10541 \\ & \mathrm{AAB} \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	X	4.33	66.41	15.92	0.00	150.0	± 9.6 \%
		Y	4.83	66.83	16.39		150.0	
		Z	4.77	66.02	15.87		150.0	
$\begin{aligned} & 10542- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 ac WiFi (40 MHz , MCS8, 99pc duty cycle)	X	4.45	66.54	16.01	0.00	150.0	$\pm 9.6 \%$
		Y	4.97	66.88	16.43		150.0	
		Z	4.91	66.12	15.94		150.0	
$\begin{aligned} & 10543- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40 MHz , MCS9, 99pc duty cycle)	X	4.48	66.49	16.02	0.00	150.0	± 9.6 \%
		Y	5.04	66.97	16.50		150.0	
		Z	5.01	66.28	16.06		150.0	
10544- AAB	IEEE 802.11ac WiFi (80 MHz , MCSO, 99 pc duty cycle)	X	4.77	66.20	15.88	0.00	150.0	$\pm 9.6 \%$
		Y	5.21	66.81	16.32		150.0	
		Z	5.15	66.11	15.87		150.0	
$\begin{aligned} & 10545- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	X	4.82	66.41	15.96	0.00	150.0	± 9.6 \%
		Y	5.37	67.24	16.50		150.0	
		Z	5.34	66.63	16.10		150.0	
$\begin{array}{\|l} \hline 10546- \\ A A B \\ \hline \end{array}$	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	X	4.77	66.27	15.89	0.00	150.0	± 9.6 \%
		Y	5.24	66.91	16.35		150.0	
		Z	5.18	66.22	15.90		150.0	
$\begin{aligned} & 10547- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi ($80 \mathrm{MHz}, \mathrm{MCS} 3$, 99 pc duty cycle)	X	4.83	66.38	15.95	0.00	150.0	$\pm 9.6 \%$
		Y	5.36	67.18	16.48		150.0	
		Z	5.31	66.51	16.04		150.0	
$\begin{aligned} & 10548- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	X	4.82	66.54	16.01	0.00	150.0	$\pm 9.6 \%$
		Y	5.39	67.48	16.61		150.0	
		Z	5.39	66.96	16.24		150.0	
$\begin{aligned} & 10550- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	X	4.79	66.46	16.00	0.00	150.0	$\pm 9.6 \%$
		Y	5.34	67.29	16.55		150.0	
		Z	5.30	66.62	16.12		150.0	
$\begin{array}{\|l\|} \hline 10551- \\ A A B \\ \hline \end{array}$	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	X	4.75	66.25	15.87	0.00	150.0	± 9.6 \%
		Y	5.21	66.84	16.29		150.0	
		Z	5.16	66.14	15.84		150.0	
$\begin{aligned} & 10552- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80 MHz , MCS8, 99 pc duty cycle)	X	4.78	66.50	15.97	0.00	150.0	$\pm 9.6 \%$
		Y	5.22	66.98	16.36		150.0	
		Z	5.16	66.23	15.88		150.0	
$\begin{aligned} & 10553- \\ & A A B \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	X	4.79	66.33	15.90	0.00	150.0	± 9.6 \%
		Y	5.26	66.86	16.32		150.0	
		Z	5.20	66.16	15.87		150.0	
$\begin{aligned} & 10554- \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCSO, 99 pc duty cycle)	X	5.25	66.42	15.95	0.00	150.0	± 9.6 \%
		Y	5.65	67.07	16.36		150.0	
		Z	5.60	66.46	15.97		150.0	
$\begin{aligned} & 10555- \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS1, 99 pc duty cycle)	X	5.31	66.63	16.05	0.00	150.0	± 9.6 \%
		Y	5.71	67.24	16.43		150.0	
		Z	5.68	66.67	16.06		150.0	
$\begin{array}{\|l} \hline 10556- \\ \text { AAC } \\ \hline \end{array}$	IEEE 802.11 ac WiFi (160 MHz , MCS2, 99 pc duty cycle)	X	5.32	66.65	16.05	0.00	150.0	$\pm 9.6 \%$
		Y	5.77	67.42	16.51		150.0	
		Z	5.74	66.86	16.15		150.0	
10557- AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	X	5.28	66.55	16.01	0.00	150.0	$\pm 9.6 \%$
		Y	5.72	67.25	16.45		150.0	
		Z	5.67	66.64	16.06		150.0	

$\begin{aligned} & 10558- \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi ($160 \mathrm{MHz}, \mathrm{MCS} 4$, 99 pc duty cycle)	X	5.24	66.46	15.98	0.00	150.0	± 9.6 \%
		Y	5.69	67.20	16.44		150.0	
		Z	5.65	66.61	16.06		150.0	
$\begin{aligned} & \text { 10560- } \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS6, 99pc duty cycle)	X	5.28	66.44	16.00	0.00	150.0	$\pm 9.6 \%$
		Y	5.72	67.18	16.47		150.0	
		Z	5.68	66.60	16.09		150.0	
$\begin{aligned} & \hline 10561- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi ($160 \mathrm{MHz}, \mathrm{MCS} 7$, 99pc duty cycle)	X	5.21	66.38	15.99	0.00	150.0	± 9.6 \%
		Y	5.66	67.17	16.49		150.0	
		Z	5.63	66.59	16.12		150.0	
$\begin{aligned} & 10562- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi ($160 \mathrm{MHz}, \mathrm{MCS} 8$, 99pc duty cycle)	X	5.30	66.67	16.13	0.00	150.0	± 9.6 \%
		Y	5.70	67.29	16.55		150.0	
		Z	5.66	66.70	16.17		150.0	
$\begin{aligned} & 10563- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS9, 99pc duty cycle)	X	5.57	67.31	16.43	0.00	150.0	± 9.6 \%
		Y	5.83	67.40	16.57		150.0	
		Z	5.78	66.77	16.18		150.0	
10564-AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 9 Mbps, 99 pc duty cycle)	X	3.98	67.19	15.91	0.46	150.0	± 9.6 \%
		Y	4.54	67.45	16.63		150.0	
		Z	4.49	66.59	16.10		150.0	
$\begin{aligned} & 10565- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11g WiFi 2.4 GHz (DSSSOFDM, 12 Mbps, 99 pc duty cycle)	X	4.14	67.73	16.32	0.46	150.0	± 9.6 \%
		Y	4.73	67.88	16.97		150.0	
		Z	4.67	67.02	16.44		150.0	
$\begin{aligned} & 10566- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 18 Mbps, $99 p \mathrm{duty}$ cycle)	X	3.97	67.32	16.02	0.46	150.0	± 9.6 \%
		Y	4.56	67.66	16.76		150.0	
		Z	4.51	66.79	16.21		150.0	
$10567 .$ AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 24 Mbps, 99pc duty cycle)	X	4.06	67.96	16.56	0.46	150.0	± 9.6 \%
		Y	4.62	68.16	17.21		150.0	
		Z	4.55	67.23	16.63		150.0	
$\begin{aligned} & 10568- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 36 Mbps, 99pc duty cycle)	X	3.80	66.64	15.45	0.46	150.0	± 9.6 \%
		Y	4.41	67.18	16.36		150.0	
		Z	4.38	66.42	15.88		150.0	
$\begin{aligned} & 10569- \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 48 Mbps, 99 pc duty cycle)	X	4.07	68.35	16.82	0.46	150.0	± 9.6 \%
		Y	4.63	68.53	17.43		150.0	
		Z	4.55	67.52	16.81		150.0	
$\begin{aligned} & \hline 10570- \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 54 Mbps, 99 pc duty cycle)	X	3.99	67.81	16.52	0.46	150.0	± 9.6 \%
		Y	4.60	68.17	17.24		150.0	
		Z	4.53	67.25	16.66		150.0	
$\begin{aligned} & \text { 10571- } \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	0.93	63.68	14.15	0.46	130.0	± 9.6 \%
		Y	1.11	65.62	16.53		130.0	
		Z	0.97	62.81	14.25		130.0	
$\begin{aligned} & 10572- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	0.94	64.27	14.56	0.46	130.0	± 9.6 \%
		Y	1.13	66.40	17.03		130.0	
		Z	0.97	63.27	14.57		130.0	
$\begin{aligned} & 10573- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	1.10	79.41	19.97	0.46	130.0	± 9.6 \%
		Y	29.09	140.84	40.18		130.0	
		Z	0.81	73.52	17.65		130.0	
$\begin{aligned} & 10574- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	X	1.00	70.10	17.80	0.46	130.0	± 9.6 \%
		Y	1.40	75.63	21.83		130.0	
		Z	0.96	67.63	16.92		130.0	

$\begin{aligned} & 10575- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11g WiFi 2.4 GHz (DSSSOFDM, $6 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	3.74	66.83	15.70	0.46	130.0	± 9.6 \%
		Y	4.30	67.12	16.57		130.0	
$\begin{aligned} & 10576- \\ & \text { AAA } \\ & \hline \end{aligned}$		Z	4.26	66.31	16.08		130.0	
	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $9 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	3.78	67.20	15.91	0.46	130.0	± 9.6 \%
		Y	4.34	67.41	16.71		130.0	
		Z	4.29	66.55	16.18		130.0	
$\begin{aligned} & 10577- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $12 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	3.89	67.42	16.06	0.46	130.0	$\pm 9.6 \%$
		Y	4.48	67.61	16.83		130.0	
		Z	4.44	66.77	16.33		130.0	
$\begin{aligned} & 10578- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 18 Mbps , 90 pc duty cycle)	X	3.83	67.60	16.23	0.46	130.0	$\pm 9.6 \%$
		Y	4.40	67.82	17.00		130.0	
		Z	4.35	66.92	16.45		130.0	
$\begin{aligned} & 10579- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 24 Mbps , 90 pc duty cycle)	X	3.51	66.09	15.01	0.46	130.0	± 9.6 \%
		Y	4.12	66.74	16.08		130.0	
		Z	4.09	65.97	15.60		130.0	
$\begin{aligned} & 10580- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $36 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	3.49	65.97	14.89	0.46	130.0	± 9.6 \%
		Y	4.12	66.69	16.03		130.0	
		Z	4.11	65.99	15.59		130.0	
$\begin{aligned} & 10581- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $48 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	3.74	67.63	16.20	0.46	130.0	± 9.6 \%
		Y	4.33	67.99	17.02		130.0	
		Z	4.26	67.01	16.43		130.0	
$\begin{aligned} & \text { 10582- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $54 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	3.37	65.61	14.64	0.46	130.0	$\pm 9.6 \%$
		Y	4.03	66.45	15.82		130.0	
		Z	4.01	65.72	15.36		130.0	
$\begin{aligned} & 10583- \\ & \text { AAB } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90 pc duty cycle)	X	3.74	66.83	15.70	0.46	130.0	± 9.6 \%
		Y	4.30	67.12	16.57		130.0	
		Z	4.26	66.31	16.08		130.0	
$\begin{aligned} & 10584- \\ & \text { AAB } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90 pc duty cycle)	X	3.78	67.20	15.91	0.46	130.0	± 9.6 \%
		Y	4.34	67.41	16.71		130.0	
		Z	4.29	66.55	16.18		130.0	
$\begin{aligned} & 10585- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	3.89	67.42	16.06	0.46	130.0	± 9.6 \%
		Y	4.48	67.61	16.83		130.0	
		Z	4.44	66.77	16.33		130.0	
$\begin{aligned} & 10586- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	3.83	67.60	16.23	0.46	130.0	± 9.6 \%
		Y	4.40	67.82	17.00		130.0	
		Z	4.35	66.92	16.45		130.0	
$\begin{aligned} & 10587- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90 pc duty cycle)	X	3.51	66.09	15.01	0.46	130.0	± 9.6 \%
		Y	4.12	66.74	16.08		130.0	
		Z	4.09	65.97	15.60		130.0	
$\begin{aligned} & 10588- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	3.49	65.97	14.89	0.46	130.0	$\pm 9.6 \%$
		Y	4.12	66.69	16.03		130.0	
		Z	4.11	65.99	15.59		130.0	
$\begin{aligned} & \text { 10589- } \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90 pc duty cycle)	X	3.74	67.63	16.20	0.46	130.0	$\pm 9.6 \%$
		Y	4.33	67.99	17.02		130.0	
		Z	4.26	67.01	16.43		130.0	
$\begin{aligned} & 10590- \\ & \text { AAB } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90 pc duty cycle)	X	3.37	65.61	14.64	0.46	130.0	± 9.6 \%
		Y	4.03	66.45	15.82		130.0	
		Z	4.01	65.72	15.36		130.0	

$\begin{aligned} & \hline 10591- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 n (HT Mixed, 20 MHz , MCSO, 90 pc duty cycle)	X	3.91	67.05	15.98	0.46	130.0	± 9.6 \%
		Y	4.46	67.24	16.72		130.0	
		Z	4.42	66.45	16.24		130.0	
$\begin{aligned} & \hline 10592- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90 pc duty cycle)	X	3.96	67.20	16.07	0.46	130.0	± 9.6 \%
		Y	4.56	67.49	16.83		130.0	
		Z	4.52	66.71	16.36		130.0	
$\begin{aligned} & \text { 10593- } \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	X	3.89	67.09	15.91	0.46	130.0	$\pm 9.6 \%$
		Y	4.48	67.36	16.68		130.0	
		Z	4.44	66.57	16.20		130.0	
$\begin{aligned} & 10594- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	X	3.93	67.20	16.06	0.46	130.0	± 9.6 \%
		Y	4.53	67.56	16.87		130.0	
		Z	4.50	66.76	16.38		130.0	
$\begin{aligned} & 10595- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	3.88	67.15	15.95	0.46	130.0	± 9.6 \%
		Y	4.50	67.54	16.78		130.0	
		Z	4.46	66.73	16.29		130.0	
$\begin{aligned} & 10596- \\ & \text { AAB } \end{aligned}$	IEEE 802.11 n (HT Mixed, 20 MHz , MCS5, 90pc duty cycle)	X	3.78	66.88	15.82	0.46	130.0	± 9.6 \%
		Y	4.41	67.44	16.74		130.0	
		Z	4.38	66.66	16.26		130.0	
$\begin{aligned} & 10597- \\ & \text { AAB } \end{aligned}$	IEEE 802.11 n (HT Mixed, 20 MHz , MCS6, 90pc duty cycle)	X	3.79	66.92	15.72	0.46	130.0	± 9.6 \%
		Y	4.37	67.31	16.57		130.0	
		Z	4.34	66.51	16.09		130.0	
$\begin{aligned} & 10598- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	3.85	67.45	16.19	0.46	130.0	$\pm 9.6 \%$
		Y	4.40	67.66	16.93		130.0	
		Z	4.34	66.79	16.40		130.0	
$\begin{aligned} & \text { 10599- } \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 40MHz, MCSO, 90pc duty cycle)	X	4.79	67.73	16.77	0.46	130.0	± 9.6 \%
		Y	5.21	67.73	17.04		130.0	
		Z	5.16	67.02	16.62		130.0	
$\begin{aligned} & 10600- \\ & \text { AAB } \end{aligned}$	IEEE 802.11 n (HT Mixed, 40 MHz , MCS1, 90pc duty cycle)	X	4.68	67.39	16.57	0.46	130.0	± 9.6 \%
		Y	5.21	67.78	17.04		130.0	
		Z	5.26	67.42	16.79		130.0	
$\begin{aligned} & 10601- \\ & \text { AAB } \end{aligned}$	IEEE 802.11 n (HT Mixed, 40 MHz , MCS2, 90pc duty cycle)	X	4.64	67.32	16.56	0.46	130.0	± 9.6 \%
		Y	5.18	67.81	17.08		130.0	
		Z	5.18	67.25	16.73		130.0	
$\begin{aligned} & 10602- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	X	4.63	67.06	16.35	0.46	130.0	± 9.6 \%
		Y	5.19	67.55	16.86		130.0	
		Z	5.23	67.15	16.59		130.0	
$\begin{aligned} & 10603- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	X	4.68	67.32	16.65	0.46	130.0	± 9.6 \%
		Y	5.23	67.74	17.10		130.0	
		Z	5.27	67.35	16.84		130.0	
$\begin{aligned} & 10604- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	X	4.64	67.04	16.46	0.46	130.0	$\pm 9.6 \%$
		Y	5.12	67.34	16.87		130.0	
		Z	5.13	66.84	16.55		130.0	
$\begin{aligned} & 10605- \\ & \text { AAB } \end{aligned}$	IEEE 802.11 n (HT Mixed, 40 MHz , MCS6, 90pc duty cycle)	X	4.61	67.01	16.45	0.46	130.0	± 9.6 \%
		Y	5.17	67.54	16.97		130.0	
		Z	5.21	67.15	16.70		130.0	
$\begin{aligned} & 10606- \\ & \mathrm{AAB} \end{aligned}$	IEEE 802.11n (HT Mixed, 40 MHz , MCS7, 90pc duty cycle)	X	4.52	66.73	16.13	0.46	130.0	$\pm 9.6 \%$
		Y	5.04	67.22	16.65		130.0	
		Z	5.04	66.71	16.33		130.0	

June 25, 2018

$\begin{aligned} & 10607- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCSO, 90 pc duty cycle)	X	3.77	66.40	15.66	0.46	130.0	± 9.6 \%
		Y	4.33	66.69	16.43		130.0	
		Z	4.27	65.78	15.88		130.0	
$\begin{aligned} & 10608- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20 MHz , MCS1, 90 pc duty cycle)	X	3.82	66.54	15.73	0.46	130.0	± 9.6 \%
		Y	4.44	66.96	16.55		130.0	
		Z	4.38	66.06	16.01		130.0	
$\begin{aligned} & 10609- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20 MHz , MCS2, 90 pc duty cycle)	X	3.73	66.35	15.52	0.46	130.0	± 9.6 \%
		Y	4.34	66.78	16.36		130.0	
		Z	4.28	65.87	15.81		130.0	
$\begin{aligned} & 10610- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS3, 90 pc duty cycle)	X	3.78	66.52	15.70	0.46	130.0	± 9.6 \%
		Y	4.40	66.99	16.56		130.0	
		Z	4.34	66.07	16.00		130.0	
$\begin{aligned} & \hline 10611- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	X	3.70	66.30	15.52	0.46	130.0	± 9.6 \%
		Y	4.30	66.73	16.37		130.0	
		Z	4.25	65.83	15.82		130.0	
$\begin{aligned} & \hline 10612- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS5, 90 pc duty cycle)	X	3.61	66.09	15.37	0.46	130.0	± 9.6 \%
		Y	4.27	66.79	16.38		130.0	
		Z	4.22	65.92	15.84		130.0	
$\begin{aligned} & 10613- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS6, 90 pc duty cycle)	X	3.64	66.03	15.27	0.46	130.0	± 9.6 \%
		Y	4.27	66.59	16.20		130.0	
		Z	4.22	65.72	15.67		130.0	
$\begin{array}{\|l\|} \hline 10614- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi (20MHz, MCS7, 90 pc duty cycle)	X	3.70	66.56	15.73	0.46	130.0	± 9.6 \%
		Y	4.27	66.95	16.54		130.0	
		Z	4.20	66.00	15.96		130.0	
$\begin{array}{\|l} \hline 10615- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi (20MHz, MCS8, 90 pc duty cycle)	X	3.64	65.99	15.16	0.46	130.0	± 9.6 \%
		Y	4.28	66.52	16.09		130.0	
		Z	4.23	65.64	15.56		130.0	
$\begin{aligned} & 10616- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCSO, 90 pc duty cycle)	X	4.45	66.34	16.08	0.46	130.0	± 9.6 \%
		Y	4.95	66.71	16.53		130.0	
		Z	4.93	66.07	16.13		130.0	
$\begin{aligned} & 10617- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS1, 90 pc duty cycle)	X	4.43	66.27	16.03	0.46	130.0	± 9.6 \%
		Y	4.97	66.78	16.54		130.0	
		Z	4.96	66.18	16.16		130.0	
10618- $A A B$	IEEE 802.11ac WiFi (40MHz, MCS2, 90 pc duty cycle)	X	4.37	66.39	16.11	0.46	130.0	$\pm 9.6 \%$
		Y	4.90	66.88	16.61		130.0	
		Z	4.86	66.19	16.18		130.0	
10619- AAB	IEEE 802.11 ac WiFi (40MHz, MCS3, 90 pc duty cycle)	X	4.42	66.32	16.00	0.46	130.0	± 9.6 \%
		Y	4.94	66.79	16.49		130.0	
		Z	4.93	66.18	16.10		130.0	
10620- AAB	IEEE 802.11ac WiFi (40 MHz , MCS4, 90 pc duty cycle)	X	4.43	66.13	15.93	0.46	130.0	$\pm 9.6 \%$
		Y	4.96	66.62	16.45		130.0	
		Z	4.96	66.05	16.09		130.0	
$\begin{aligned} & 10621- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi ($40 \mathrm{MHz}, \mathrm{MCS5}$, 90 pc duty cycle)	X	4.50	66.48	16.27	0.46	130.0	± 9.6 \%
		Y	5.00	66.84	16.69		130.0	
		Z	4.97	66.18	16.29		130.0	
10622- AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90 pc duty cycle)	X	4.46	66.43	16.25	0.46	130.0	± 9.6 \%
		Y	4.98	66.91	16.73		130.0	
		Z	4.96	66.27	16.33		130.0	

$\begin{array}{\|l\|} \hline 10623- \\ A A B \\ \hline \end{array}$	IEEE 802.11ac WiFi (40MHz, MCS7, 90 pc duty cycle)	X	4.39	66.10	15.89	0.46	130.0	± 9.6 \%
		Y	4.89	66.49	16.36		130.0	
		Z	4.86	65.84	15.96		130.0	
$\begin{aligned} & 10624- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	X	4.54	66.35	16.10	0.46	130.0	$\pm 9.6 \%$
		Y	5.06	66.70	16.53		130.0	
		Z	5.05	66.11	16.17		130.0	
$\begin{aligned} & 10625- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS9, 90 pc duty cycle)	X	4.65	66.63	16.32	0.46	130.0	± 9.6 \%
		Y	5.15	66.88	16.69		130.0	
		Z	5.16	66.34	16.36		130.0	
$\begin{aligned} & 10626- \\ & \text { AAB } \end{aligned}$	IEEE 802.11 ac WiFi (80MHz, MCS0, 90 pc duty cycle)	X	4.87	66.09	16.03	0.46	130.0	± 9.6 \%
		Y	5.31	66.64	16.44		130.0	
		Z	5.28	66.07	16.09		130.0	
$\begin{aligned} & 10627- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS1, 90 pc duty cycle)	X	4.96	66.39	16.17	0.46	130.0	$\pm 9.6 \%$
		Y	5.52	67.25	16.73		130.0	
		Z	5.53	66.80	16.43		130.0	
$\begin{aligned} & 10628- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS2, 90 pc duty cycle)	X	4.83	65.96	15.85	0.46	130.0	± 9.6 \%
		Y	5.28	66.56	16.30		130.0	
		Z	5.27	66.03	15.96		130.0	
$\begin{aligned} & 10629- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	X	4.89	66.11	15.93	0.46	130.0	± 9.6 \%
		Y	5.45	66.99	16.52		130.0	
		Z	5.45	66.49	16.20		130.0	
$\begin{aligned} & 10630- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS4, 90 pc duty cycle)	X	4.94	66.47	16.13	0.46	130.0	± 9.6 \%
		Y	5.52	67.40	16.73		130.0	
		Z	5.58	67.09	16.50		130.0	
$\begin{aligned} & 10631 \text { - } \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS5, 90 pc duty cycle)	X	5.04	67.01	16.63	0.46	130.0	$\pm 9.6 \%$
		Y	5.56	67.66	17.07		130.0	
		Z	5.56	67.16	16.74		130.0	
$\begin{aligned} & 10632- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi ($80 \mathrm{MHz}, \mathrm{MCS}$, 90 pc duty cycle)	X	5.02	66.85	16.55	0.46	130.0	± 9.6 \%
		Y	5.59	67.70	17.10		130.0	
		Z	5.59	67.18	16.77		130.0	
$\begin{aligned} & 10633- \\ & \text { AAB } \end{aligned}$	IEEE 802.11 ac WiFi $(80 \mathrm{MHz}, \mathrm{MCS} 7$, 90 pc duty cycle)	X	4.86	66.17	16.01	0.46	130.0	± 9.6 \%
		Y	5.30	66.64	16.39		130.0	
		Z	5.27	66.07	16.03		130.0	
$\begin{aligned} & 10634- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi ($80 \mathrm{MHz}, \mathrm{MCS}$, 90 pc duty cycle)	X	4.95	66.64	16.30	0.46	130.0	± 9.6 \%
		Y	5.35	66.92	16.58		130.0	
		Z	5.32	66.32	16.21		130.0	
$\begin{array}{\|l} \hline 10635- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi ($80 \mathrm{MHz}, \mathrm{MCS}$, 90 pc duty cycle)	X	4.70	65.44	15.34	0.46	130.0	$\pm 9.6 \%$
		Y	5.17	66.01	15.82		130.0	
		Z	5.16	65.50	15.50		130.0	
$\begin{array}{\|l\|} \hline 10636- \\ \text { AAC } \\ \hline \end{array}$	IEEE 802.11ac WiFi ($160 \mathrm{MHz}, \mathrm{MCSO}$, 90 pc duty cycle)	X	5.37	66.35	16.11	0.46	130.0	± 9.6 \%
		Y	5.75	66.94	16.50		130.0	
		Z	5.74	66.45	16.20		130.0	
$\begin{array}{\|l\|} \hline 10637- \\ \text { AAC } \\ \hline \end{array}$	IEEE 802.11 ac WiFi (160 MHz , MCS1, 90 pc duty cycle) 90 pc duty cycle)	X	5.47	66.68	16.28	0.46	130.0	± 9.6 \%
		Y	5.84	67.17	16.61		130.0	
		Z	5.85	66.75	16.34		130.0	
$\begin{aligned} & 10638- \\ & A A C \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS2, 90 pc duty cycle)	X	5.45	66.60	16.21	0.46	130.0	± 9.6 \%
		Y	5.91	67.37	16.68		130.0	
		Z	5.90	66.89	16.39		130.0	

$\begin{aligned} & 10639- \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc duty cycle)	X	5.40	66.48	16.20	0.46	130.0	$\pm 9.6 \%$
		Y	5.83	67.15	16.61		130.0	
$\begin{aligned} & 10640- \\ & \mathrm{AAC} \\ & \hline \end{aligned}$		Z	5.82	66.67	16.32		130.0	
	IEEE 802.11ac WiFi (160 MHz , MCS4, 90 pc duty cycle)	X	5.32	66.22	15.99	0.46	130.0	$\pm 9.6 \%$
		Y	5.75	66.89	16.42		130.0	
		Z	5.75	66.45	16.15		130.0	
$\begin{aligned} & 10641- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11 ac WiFi ($160 \mathrm{MHz}, \mathrm{MCS} 5$, 90 pc duty cycle)	X	5.45	66.45	16.13	0.46	130.0	± 9.6 \%
		Y	5.88	67.07	16.54		130.0	
		Z	5.90	66.70	16.30		130.0	
$\begin{aligned} & 10642- \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS6, 90 pc duty cycle)	X	5.46	66.60	16.39	0.46	130.0	± 9.6 \%
		Y	5.90	67.28	16.81		130.0	
		Z	5.89	66.80	16.53		130.0	
$\begin{aligned} & 10643- \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi ($160 \mathrm{MHz}, \mathrm{MCS} 7$, 90 pc duty cycle)	X	5.28	66.13	16.00	0.46	130.0	$\pm 9.6 \%$
		Y	5.73	66.91	16.51		130.0	
		Z	5.74	66.48	16.24		130.0	
$\begin{aligned} & 10644- \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS8, 90 pc duty cycle)	X	5.42	66.58	16.26	0.46	130.0	$\pm 9.6 \%$
		Y	5.78	67.08	16.62		130.0	
		Z	5.78	66.62	16.33		130.0	
$\begin{aligned} & 10645- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS9, 90 pc duty cycle)	X	5.81	67.58	16.73	0.46	130.0	$\pm 9.6 \%$
		Y	5.91	67.16	16.62		130.0	
		Z	5.93	66.77	16.38		130.0	
$\begin{aligned} & 10646- \\ & \text { AAD } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , QPSK, UL Subframe $=2,7$)	X	2.64	72.38	24.11	9.30	60.0	$\pm 9.6 \%$
		Y	4.60	84.41	29.31		60.0	
		Z	4.84	83.41	28.63		60.0	
$\begin{aligned} & 10647- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , QPSK, UL Subframe=2,7)	X	2.46	71.01	23.55	9.30	60.0	± 9.6 \%
		Y	4.04	81.81	28.38		60.0	
		Z	4.35	81.42	27.96		60.0	
$\begin{aligned} & \text { 10648- } \\ & \text { AAA } \end{aligned}$	CDMA2000 (1x Advanced)	X	2.44	155.88	0.83	0.00	150.0	± 9.6 \%
		Y	0.35	60.28	6.28		150.0	
		Z	0.35	60.00	5.54		150.0	
$\begin{aligned} & 10652- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	LTE-TDD (OFDMA, 5 MHz , E-TM 3.1. Clipping 44\%)	X	2.08	63.49	12.30	2.23	80.0	± 9.6 \%
		Y	3.15	67.39	16.19		80.0	
		Z	2.91	65.29	15.14		80.0	
$\begin{aligned} & 10653- \\ & \text { AAB } \\ & \hline \end{aligned}$	LTE-TDD (OFDMA, 10 MHz , E-TM 3.1, Clipping 44\%)	X	3.02	65.17	14.89	2.23	80.0	± 9.6 \%
		Y	3.64	66.22	16.46		80.0	
		Z	3.52	64.96	15.78		80.0	
$\begin{aligned} & 10654- \\ & \text { AAB } \end{aligned}$	LTE-TDD (OFDMA, 15 MHz , E-TM 3.1, Clipping 44\%)	X	3.20	64.95	15.39	2.23	80.0	$\pm 9.6 \%$
		Y	3.67	65.70	16.49		80.0	
		Z	3.57	64.61	15.88		80.0	
$\begin{aligned} & 10655- \\ & \text { AAB } \end{aligned}$	LTE-TDD (OFDMA, 20 MHz , E-TM 3.1, Clipping 44\%)	X	3.35	64.77	15.59	2.23	80.0	± 9.6 \%
		Y	3.76	65.50	16.51		80.0	
		Z	3.66	64.52	15.94		80.0	
$\begin{aligned} & 10658- \\ & \text { AAA } \end{aligned}$	Pulse Waveform (200Hz, 10\%)	X	2.01	62.76	7.94	10.00	50.0	$\pm 9.6 \%$
		Y	2.58	65.57	9.73		50.0	
		Z	3.05	67.26	11.01		50.0	
$\begin{aligned} & 10659- \\ & \text { AAA } \\ & \hline \end{aligned}$	Pulse Waveform ($200 \mathrm{~Hz}, 20 \%$)	X	0.84	60.00	5.36	6.99	60.0	± 9.6 \%
		Y	1.33	63.54	7.82		60.0	
		Z	1.53	64.53	8.66		60.0	

$10660-$ AAA	Pulse Waveform (200Hz, 40\%)	X	0.39	60.00	3.98	3.98	80.0	$\pm 9.6 \%$
		Y	0.54	61.57	5.88		80.0	
		Z	0.45	60.00	5.04		80.0	
$10661-$ AAA	Pulse Waveform (200Hz, $60 \%)$	X	17.64	60.43	1.44	2.22	100.0	$\pm 9.6 \%$
		Y	0.23	60.00	4.28		100.0	
		Z	0.25	60.00	3.48		100.0	
$10662-$ AAA	Pulse Waveform (200Hz, 80\%)	X	0.00	84.91	40.93	0.97	120.0	$\pm 9.6 \%$
		Y	49.30	1078.61	357.44		120.0	
		Z	0.03	139.18	4.12		120.0	

[^0]Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage S Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA Multifateral Agreement for the recognition of calibration certificates

client PC Test

Certificate No: EX3-7410 Jul 18

CALIBRATION CERTIFICATE

Object
EX3DV4 - SN:7410

Calibration procedure(s)
QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:
July 20, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.

Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	21-Dec-17 (No. DAE4-660_Dec17)	Dec-18	
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	$04-A u g-99$ (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18

Calibrated by: \quad Michael Wober:

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx $y, z \quad$ sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point
CF crest factor (1/duty_cycle) of the RF signal
$A, B, C, D \quad$ modulation dependent linearization parameters
Polarization φ
Polarization ϑ
φ rotation around probe axis
ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta=0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization $9=0$ ($f \leq 900 \mathrm{MHz}$ in TEM-cell; $\mathrm{f}>1800 \mathrm{MHz}$: R22 waveguide). NORM x, y, z are only intermediate values, i.e., the uncertainties of NORM x, y, z does not affect the E^{2}-field uncertainty inside TSL (see below ConvF).
- $N O R M(f) x, y, z=N O R M x, y, z^{*}$ frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z;Cx,y,z;Dx,y,z;VRx,y,z:A,B,C,D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. $V R$ is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800 \mathrm{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $f>800 \mathrm{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50 \mathrm{MHz}$ to ± 100 MHz .
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required).

Probe EX3DV4

SN:7410

Manufactured: November 24, 2015
Calibrated:

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7410

Basic Calibration Parameters

	Sensor \mathbf{X}	Sensor \mathbf{Y}	Sensor \mathbf{Z}	Unc (k=2)
Norm $\left(\mu \mathrm{V} /(\mathrm{V} / \mathrm{m})^{2}\right)^{\mathrm{A}}$	0.41	0.47	0.43	$\pm 10.1 \%$
$\mathrm{DCP}(\mathrm{mV})^{\mathrm{B}}$	93.6	99.2	96.3	

Modulation Calibration Parameters

UID	Communication System Name		\mathbf{A} $\mathbf{d B}$	\mathbf{B} $\mathbf{d B} \sqrt{ } \mathbf{~ V}$	\mathbf{C}	\mathbf{D} $\mathbf{d B}$	$\mathbf{V R}$ $\mathbf{m V}$	$\mathbf{U n c}$ $(\mathbf{k}=\mathbf{2})$
0	CW	X	0.0	0.0	1.0	0.00	142.1	$\pm 2.5 \%$
		Y	0.0	0.0	1.0		157.1	
	Z	0.0	0.0	1.0		143.0		

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	$\mathbf{C 1}$ $\mathbf{f F}$	$\mathbf{C 2}$ $\mathbf{f F}$	\mathbf{a} $\mathbf{V}^{\mathbf{- 1}}$	$\mathbf{T 1}$ $\mathbf{m s .} \mathbf{V}^{\mathbf{- 2}}$	$\mathbf{T 2}$ $\mathbf{m s} . \mathbf{V}^{-\mathbf{1}}$	$\mathbf{T 3}$ $\mathbf{m s}$	$\mathbf{T 4}$ $\mathbf{V}^{\mathbf{- 2}}$	$\mathbf{T 5}$ $\mathbf{V}^{\mathbf{- 1}}$	$\mathbf{T 6}$
X	32.22	246.3	37.01	4.015	0.380	5.018	0.000	0.327	$\mathbf{1 . 0 0 6}$
Y	34.20	252.5	34.94	7.011	0.000	5.034	0.846	0.193	1.003
Z	38.58	298.4	37.77	5.097	0.373	5.059	0.000	0.338	1.011

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^1]
DASY/EASY - Parameters of Probe: EX3DV4 - SN:7410

Calibration Parameter Determined in Head Tissue Simulating Media

$\mathrm{f}(\mathrm{MHz})^{\mathrm{C}}$	$\begin{gathered} \text { Relative } \\ \text { Permittivity } \\ \hline \end{gathered}$	$\begin{gathered} \text { Conductivity } \\ (\mathrm{S} / \mathrm{m})^{\mathrm{F}} \end{gathered}$	ConvF X	ConvF Y	ConvF Z	Alpha ${ }^{\text {G }}$	$\begin{gathered} \text { Depth }^{\sigma} \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { Unc } \\ \mathrm{y}=2) \end{gathered}$
750	41.9	0.89	10.13	10.13	10.13	0.37	0.98	$\pm 12.0 \%$
835	41.5	0.90	9.81	9.81	9.81	0.47	0.80	$\pm 12.0 \%$
1750	40.1	1.37	8.40	8.40	8.40	0.60	0.80	$\pm 12.0 \%$
1900	40.0	1.40	8.16	8.16	8.16	0.56	0.80	± 12.0 \%
2300	39.5	1.67	7.78	7.78	7.78	0.32	0.85	$\pm 12.0 \%$
2450	39.2	1.80	7.50	7.50	7.50	0.34	0.84	$\pm 12.0 \%$
2600	39.0	1.96	7.24	7.24	7.24	0.32	0.89	$\pm 12.0 \%$

${ }^{\text {c }}$ Frequency validity above 300 MHz of $\pm 100 \mathrm{MHz}$ only applies for DASY v4.4 and higher (see Page 2), else is is restricted to $\pm 50 \mathrm{MHz}$. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm 10,25,40,50$ and 70 MHz for ConvF assessments at $30,64,128,150$ and 220 MHz respectively. Above 5 GHz frequency validity can be extended to $\pm 110 \mathrm{MHz}$.
${ }^{F}$ At frequencies below 3 GHz , the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10 \%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz , the validity of tissue parameters (ε and σ) is restricted to $\pm 5 \%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
${ }^{\text {G }}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1 \%$ for frequencies below 3 GHz and below $\pm 2 \%$ for frequencies between $3-6 \mathrm{GHz}$ at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7410

Calibration Parameter Determined in Body Tissue Simulating Media

$\mathbf{f (M H z) ^ { \mathbf { c } }}$	Relative Permittivity $^{\mathbf{F}}$	Conductivity $(\mathbf{S} / \mathbf{m})^{\mathbf{F}}$	ConvF X	ConvF Y	ConvF Z	Alpha $^{\mathbf{G}}$	Depth $(\mathbf{m m})$	Unc $(\mathbf{k}=\mathbf{2})$
750	55.5	0.96	9.87	9.87	9.87	0.33	1.02	$\pm 12.0 \%$
835	55.2	0.97	9.63	9.63	9.63	0.42	0.86	$\pm 12.0 \%$
1750	53.4	1.49	8.06	8.06	8.06	0.35	0.85	$\pm 12.0 \%$
1900	53.3	1.52	7.78	7.78	7.78	0.39	0.80	$\pm 12.0 \%$
2300	52.9	1.81	7.64	7.64	7.64	0.35	0.85	$\pm 12.0 \%$
2450	52.7	1.95	7.45	7.45	7.45	0.32	0.86	$\pm 12.0 \%$
2600	52.5	2.16	7.34	7.34	7.34	0.31	0.94	$\pm 12.0 \%$

[^2]
Frequency Response of E-Field

 (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-fieid: $\pm 6.3 \%(k=2)$

Receiving Pattern (ϕ), $\vartheta=0^{\circ}$

Uncertainty of Axial Isotropy Assessment: $\mathbf{\pm} \mathbf{0 . 5 \%}$ ($\mathbf{k}=\mathbf{2}$)

Dynamic Range f(SAR $\left.{ }_{\text {head }}\right)$
(TEM cell , $\mathrm{f}_{\text {eval }}=1900 \mathrm{MHz}$)

Uncertainty of Linearity Assessment: $\pm \mathbf{0 . 6 \%}(\mathbf{k}=\mathbf{2})$

Conversion Factor Assessment

Deviation from Isotropy in Liquid
Error $(\phi, \vartheta), \mathbf{f}=\mathbf{9 0 0} \mathbf{~ M H z}$

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7410

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (${ }^{\circ}$)	1.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Appendix: Modulation Calibration Parameters

UID	Communication System Name		$\begin{gathered} \mathrm{A} \\ \mathrm{~dB} \end{gathered}$	$\begin{gathered} B \\ d B \cup \mu V \end{gathered}$	C	$\begin{gathered} \hline \mathrm{D} \\ \mathrm{~dB} \end{gathered}$	$\begin{aligned} & \mathrm{VR} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & \text { Max } \\ & \text { Unc } \\ & (k=2) \end{aligned}$
0	CW	X	0.00	0.00	1.00	0.00	142.1	± 2.5 \%
		Y	0.00	0.00	1.00		157.1	
		Z	0.00	0.00	1.00		143.0	
$\begin{aligned} & 10010- \\ & \text { CAA } \end{aligned}$	SAR Validation (Square, $100 \mathrm{~ms}, 10 \mathrm{~ms}$)	X	1.62	62.34	7.74	10.00	20.0	$\pm 9.6 \%$
		Y	1.47	62.51	7.58		20.0	
		Z	1.74	63.23	8.42		20.0	
$\begin{aligned} & 10011- \\ & \mathrm{CAB} \end{aligned}$	UMTS-FDD (WCDMA)	X	0.82	65.36	13.43	0.00	150.0	$\pm 9.6 \%$
		Y	1.01	68.19	15.53		150.0	
		Z	0.83	64.89	13.22		150.0	
$\begin{aligned} & 10012- \\ & \mathrm{CAB} \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	1.03	62.67	14.19	0.41	150.0	± 9.6 \%
		Y	1.12	63.85	15.21		150.0	
		Z	1.03	62.50	14.16		150.0	
$\begin{aligned} & 10013- \\ & \mathrm{CAB} \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 6 Mbps)	X	4.54	66.46	16.76	1.46	150.0	± 9.6 \%
		Y	4.63	66.78	17.00		150.0	
		Z	4.66	66.40	16.88		150.0	
$\begin{aligned} & 10021- \\ & \text { DAC } \end{aligned}$	GSM-FDD (TDMA, GMSK)	X	13.15	84.51	17.52	9.39	50.0	± 9.6 \%
		Y	100.00	105.54	22.55		50.0	
		Z	100.00	109.08	24.59		50.0	
$\begin{aligned} & 10023- \\ & \text { DAC } \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0)	X	7.05	77.63	15.35	9.57	50.0	± 9.6 \%
		Y	100.00	104.89	22.31		50.0	
		Z	100.00	108.55	24.42		50.0	
$\begin{aligned} & 10024- \\ & \text { DAC } \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	100.00	103.12	20.53	6.56	60.0	± 9.6 \%
		Y	100.00	106.39	21.86		60.0	
		Z	100.00	108.56	23.07		60.0	
$\begin{aligned} & 10025- \\ & \text { DAC } \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0)	X	3.34	64.62	22.65	12.57	50.0	± 9.6 \%
		Y	5.12	80.55	32.48		50.0	
		Z	3.40	65.03	23.22		50.0	
$\begin{aligned} & 10026- \\ & \text { DAC } \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	5.08	79.74	27.91	9.56	60.0	± 9.6 \%
		Y	6.12	86.23	31.42		60.0	
		Z	5.62	82.16	29.24		60.0	
$\begin{aligned} & 10027- \\ & \text { DAC } \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	100.00	101.64	19.06	4.80	80.0	± 9.6 \%
		Y	100.00	109.60	22.50		80.0	
		Z	100.00	108.56	22.18		80.0	
$\begin{aligned} & 10028- \\ & \text { DAC } \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	100.00	99.62	17.55	3.55	100.0	± 9.6 \%
		Y	100.00	115.32	24.21		100.0	
		Z	100.00	107.61	21.03		100.0	
$\begin{aligned} & 10029- \\ & \text { DAC } \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	3.55	72.28	23.51	7.80	80.0	± 9.6 \%
		Y	3.97	75.71	25.59		80.0	
		Z	3.84	73.87	24.49		80.0	
$\begin{aligned} & 10030- \\ & \text { CAA } \\ & \hline \end{aligned}$	IEEE 802.15.1 Bluetooth (GFSK, DH1)	X	2.93	72.58	11.67	5.30	70.0	± 9.6 \%
		Y	100.00	104.73	20.69		70.0	
		Z	100.00	105.98	21.40		70.0	
$\begin{aligned} & 10031- \\ & \text { CAA } \\ & \hline \end{aligned}$	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	0.19	60.00	3.86	1.88	100.0	± 9.6 \%
		Y	100.00	108.46	20.17		100.0	
		Z	0.20	60.00	4.39		100.0	

$\begin{aligned} & 10032- \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	8.28	60.36	1.45	1.17	100.0	± 9.6 \%
		Y	100.00	125.60	25.79		100.0	
		Z	9.15	64.10	3.12		100.0	
$\begin{aligned} & \text { 10033- } \\ & \text { CAA } \\ & \hline \end{aligned}$	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	X	3.18	74.95	16.76	5.30	70.0	$\pm 9.6 \%$
		Y	16.17	99.83	25.75		70.0	
		Z	6.70	87.29	22.45		70.0	
$\begin{aligned} & 10034- \\ & \text { CAA } \end{aligned}$	$\begin{aligned} & \text { IEEE 802.15.1 Bluetooth (PI/4-DQPSK, } \\ & \text { DH3) } \end{aligned}$	X	1.10	65.34	10.90	1.88	100.0	± 9.6 \%
		Y	2.67	76.50	16.58		100.0	
		Z	1.54	69.44	13.90		100.0	
$\begin{aligned} & 10035- \\ & \text { CAA } \\ & \hline \end{aligned}$	IEEE 802.15.1 Bluetooth (P//4-DQPSK, DH5)	X	0.87	63.89	9.87	1.17	100.0	$\pm 9.6 \%$
		Y	1.73	72.02	14.58		100.0	
		Z	1.13	66.49	12.17		100.0	
10036-CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	3.74	77.33	17.73	5.30	70.0	± 9.6 \%
		Y	34.06	110.90	28.74		70.0	
		Z	9.80	93.25	24.40		70.0	
$\begin{aligned} & 10037- \\ & \text { CAA } \\ & \hline \end{aligned}$	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	1.04	64.82	10.64	1.88	100.0	$\pm 9.6 \%$
		Y	2.27	74.65	15.89		100.0	
		Z	1.43	68.68	13.56		100.0	
$\begin{aligned} & 10038- \\ & \text { CAA } \\ & \hline \end{aligned}$	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	0.88	64.05	10.08	1.17	100.0	± 9.6 \%
		Y	1.75	72.43	14.90		100.0	
		Z	1.13	66.71	12.40		100.0	
$\begin{aligned} & 10039- \\ & \mathrm{CAB} \end{aligned}$	CDMA2000 (1xRTT, RC1)	X	0.74	62,99	8.94	0.00	150.0	± 9.6 \%
		Y	1.38	69.75	13.20		150.0	
		Z	0.98	64.89	10.73		150.0	
$\begin{aligned} & 10042- \\ & \text { CAB } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IS-54 / IS-136 FDD (TDMA/FDM, P//4- } \\ & \text { DQPSK, Halfrate) } \end{aligned}$	X	2.54	68.84	11.04	7.78	50.0	$\pm 9.6 \%$
		Y	100.00	102.42	20.46		50.0	
		Z	100.00	104.71	21.76		50.0	
$\begin{aligned} & 10044- \\ & \text { CAA } \end{aligned}$	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.06	120.88	5.44	0.00	150.0	± 9.6 \%
		Y	0.00	104.37	4.38		150.0	
		Z	0.08	121.43	6.73		150.0	
$\begin{aligned} & 10048- \\ & \text { CAA } \\ & \hline \end{aligned}$	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	4.91	69.00	13.47	13.80	25.0	± 9.6 \%
		Y	7.93	75.14	15.14		25.0	
		Z	10.77	79.26	17.66		25.0	
$\begin{aligned} & 10049- \\ & \text { CAA } \\ & \hline \end{aligned}$	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	4.71	71.69	13.37	10.79	40.0	± 9.6 \%
		Y	12.12	82.16	16.51		40.0	
		Z	15.08	85.95	18.75		40.0	
$\begin{aligned} & 10056- \\ & \text { CAA } \\ & \hline \end{aligned}$	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	9.20	83.60	20.05	9.03	50.0	± 9.6 \%
		Y	100.00	119.47	30.42		50.0	
		Z	26.92	101.32	26.50		50.0	
$\begin{aligned} & 10058- \\ & \text { DAC } \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	2.97	69.27	21.35	6.55	100.0	± 9.6 \%
		Y	3.27	71.77	22.91		100.0	
		Z	3.17	70.45	22.11		100.0	
$\begin{aligned} & 10059 \text { - } \\ & \text { CAB } \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	X	1.02	63.20	14.50	0.61	110.0	± 9.6 \%
		Y	1.12	64.64	15.70		110.0	
		Z	1.03	63.16	14.59		110.0	
$\begin{aligned} & 10060- \\ & \mathrm{CAB} \end{aligned}$	IEEE 802.11 b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	1.55	78.45	19.20	1.30	110.0	± 9.6 \%
		Y	11.63	111.29	30.45		110.0	
		Z	2.11	82.91	21.03		110.0	

$\begin{aligned} & 10061- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	1.39	70.50	17.86	2.04	110.0	$\pm 9.6 \%$
		Y	1.94	76.74	21.24		110.0	
		Z	1.58	72.59	19.16		110.0	
$\begin{aligned} & 10062- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.34	66.44	16.20	0.49	100.0	± 9.6 \%
		Y	4.45	66.80	16.45		100.0	
		Z	4.46	66.35	16.27		100.0	
$\begin{aligned} & 10063- \\ & \text { CAC } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.35	66.52	16.28	0.72	100.0	± 9.6 \%
		Y	4.46	66.88	16.54		100.0	
		Z	4.47	66.44	16.36		100.0	
10064 CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	4.58	66.71	16.48	0.86	100.0	$\pm 9.6 \%$
		Y	4.69	67.07	16.73		100.0	
		Z	4.73	66.68	16.59		100.0	
$\begin{aligned} & 10065- \\ & \text { CAC } \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 18 Mbps)	X	4.45	66.52	16.53	1.21	100.0	± 9.6 \%
		Y	4.56	66.89	16.79		100.0	
		Z	4.60	66.53	16.67		100.0	
$\begin{aligned} & 10066- \\ & \text { CAC } \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h} \mathrm{WiFi} 5 \mathrm{GHz}$ (OFDM, 24 Mbps)	X	4.45	66.48	16.65	1.46	100.0	± 9.6 \%
		Y	4.56	66.86	16.93		100.0	
		Z	4.61	66.54	16.84		100.0	
$\begin{aligned} & 10067- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h} \mathrm{WiFi} 5 \mathrm{GHz}$ (OFDM, 36 Mbps)	X	4.73	66.77	17.13	2.04	100.0	± 9.6 \%
		Y	4.84	67.12	17.40		100.0	
		Z	4.90	66.81	17.33		100.0	
$\begin{aligned} & 10068- \\ & \text { CAC } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	X	4.76	66.66	17.29	2.55	100.0	± 9.6 \%
		Y	4.86	67.00	17.55		100.0	
		Z	4.92	66.73	17.50		100.0	
$\begin{aligned} & 10069- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	4.81	66.68	17.46	2.67	100.0	$\pm 9.6 \%$
		Y	4.92	67.01	17.74		100.0	
		Z	5.00	66.78	17.71		100.0	
$\begin{aligned} & 10071- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	4.62	66.50	17.03	1.99	100.0	± 9.6 \%
		Y	4.72	66.82	17.28		100.0	
		Z	4.75	66.47	17.18		100.0	
$\begin{aligned} & 10072- \\ & \text { CAB } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	4.56	66.67	17.18	2.30	100.0	± 9.6 \%
		Y	4.66	67.03	17.45		100.0	
		Z	4.70	66.70	17.36		100.0	
$\begin{aligned} & 10073- \\ & \text { CAB } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	4.61	66.83	17.49	2.83	100.0	± 9.6 \%
		Y	4.71	67.17	17.77		100.0	
		Z	4.75	66.85	17.68		100.0	
$\begin{aligned} & 10074- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	4.62	66.77	17.64	3.30	100.0	± 9.6 \%
		Y	4.70	67.09	17.92		100.0	
		Z	4.74	66.75	17.83		100.0	
$\begin{aligned} & 10075- \\ & \text { CAB } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	4.63	66.75	17.86	3.82	90.0	± 9.6 \%
		Y	4.71	67.06	18.15		90.0	
		Z	4.76	66.76	18.09		90.0	
$\begin{aligned} & 10076- \\ & \text { CAB } \end{aligned}$	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	4.68	66.63	18.04	4.15	90.0	± 9.6 \%
		Y	4.74	66.91	18.31		90.0	
		Z	4.79	66.61	18.24		90.0	
$\begin{aligned} & 10077- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	4.71	66.72	18.15	4.30	90.0	± 9.6 \%
		Y	4.77	66.99	18.42		90.0	
		Z	4.82	66.69	18.35		90.0	

$\begin{aligned} & 10081- \\ & \text { CAB } \end{aligned}$	CDMA2000 (1xRTT, RC3)	X	0.41	60.41	6.86	0.00	150.0	± 9.6 \%
		Y	0.64	64.39	10.26		150.0	
10082CAB		Z	0.51	61.51	8.28		150.0	
	IS-54 / IS-136 FDD (TDMA/FDM, Pl/4DQPSK, Fullrate)	X	6.37	60.67	1.90	4.77	80.0	$\pm 9.6 \%$
		Y	0.58	60.00	3.05		80.0	
		Z	0.60	60.00	3.10		80.0	
$\begin{aligned} & 10090- \\ & \text { DAC } \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	100.00	103.19	20.57	6.56	60.0	$\pm 9.6 \%$
		Y	100.00	106.40	21.88		60.0	
		Z	100.00	108.67	23.14		60.0	
$\begin{aligned} & 10097- \\ & \text { CAB } \end{aligned}$	UMTS-FDD (HSDPA)	X	1.61	66.98	14.45	0.00	150.0	$\pm 9.6 \%$
		Y	1.83	68.94	15.87		150.0	
		Z	1.61	66.33	14.36		150.0	
$\begin{array}{\|l} \hline 10098- \\ \mathrm{CAB} \\ \hline \end{array}$	UMTS-FDD (HSUPA, Subtest 2)	X	1.57	66.91	14.41	0.00	150.0	$\pm 9.6 \%$
		Y	1.80	68.88	15.85		150.0	
		Z	1.57	66.26	14.32		150.0	
10099DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	X	5.11	79.85	27.95	9.56	60.0	± 9.6 \%
		Y	6.18	86.42	31.49		60.0	
		Z	5.66	82.29	29.29		60.0	
$\begin{aligned} & 10100- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100\% RB, 20 MHz, QPSK)	X	2.72	68.86	15.96	0.00	150.0	$\pm 9.6 \%$
		Y	2.98	70.42	16.85		150.0	
		Z	2.77	68.66	15.78		150.0	
$\begin{aligned} & 10101- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 20 $\mathrm{MHz}, 16-\mathrm{QAM}$)	X	2.94	66.71	15.42	0.00	150.0	$\pm 9.6 \%$
		γ	3.09	67.54	15.94		150.0	
		Z	3.00	66.60	15.35		150.0	
$\begin{aligned} & 10102- \\ & \text { CAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 20 \\ & \mathrm{MHz}, 64-\mathrm{QAM}) \end{aligned}$	X	3.05	66.78	15.55	0.00	150.0	$\pm 9.6 \%$
		Y	3.19	67.54	16.04		150.0	
		Z	3.11	66.65	15.49		150.0	
$\begin{aligned} & 10103- \\ & \text { CAF } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 20 MHz, QPSK)	X	4.63	72.33	19.10	3.98	65.0	$\pm 9.6 \%$
		Y	5.31	74.95	20.40		65.0	
		Z	5.01	73.33	19.72		65.0	
$\begin{aligned} & 10104- \\ & \text { CAF } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 20 $\mathrm{MHz}, 16$-QAM)	X	4.71	70.15	18.78	3.98	65.0	± 9.6 \%
		Y	5.12	71.87	19.74		65.0	
		Z	4.99	70.84	19.32		65.0	
$\begin{aligned} & 10105- \\ & \text { CAF } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \mathrm{RB}, 20 \\ & \mathrm{MHz}, 64-\mathrm{QAM}) \\ & \hline \end{aligned}$	X	4.62	69.52	18.79	3.98	65.0	$\pm 9.6 \%$
		Y	4.98	71.08	19.67		65.0	
		Z	4.89	70.18	19.31		65.0	
$\begin{aligned} & \text { 10108- } \\ & \text { CAF } \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	2.32	68.23	15.74	0.00	150.0	$\pm 9.6 \%$
		Y	2.56	69.77	16.68		150.0	
		Z	2.39	67.99	15.57		150.0	
$\begin{aligned} & 10109- \\ & \text { CAF } \end{aligned}$	LTE-FDD (SC-FDMA, 100\% RB, 10 $\mathrm{MHz}, 16-\mathrm{QAM}$)	X	2.57	66.62	15.17	0.00	150.0	$\pm 9.6 \%$
		Y	2.73	67.56	15.82		150.0	
		Z	2.64	66.42	15.13		150.0	
$\begin{aligned} & 10110- \\ & \text { CAF } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, QPSK)	X	1.82	67.31	15.00	0.00	150.0	± 9.6 \%
		Y	2.06	69.08	16.19		150.0	
		Z	1.89	67.03	14.94		150.0	
$\begin{aligned} & 10111- \\ & \text { CAF } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \mathrm{RB}, 5 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	2.27	67.56	15.11	0.00	150.0	± 9.6 \%
		Y	2.50	68.95	16.11		150.0	
		Z	2.32	67.14	15.12		150.0	

10112- CAF	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 10 \\ & \mathrm{MHz}, 64-\mathrm{QAM}) \end{aligned}$	X	2.70	66.75	15.29	0.00	150.0	$\pm 9.6 \%$
		Y	2.86	67.62	15.89		150.0	
		Z	2.77	66.52	15.24		150.0	
$\begin{aligned} & 10113- \\ & \text { CAF } \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 5 MHz , 64-QAM)	X	2.41	67.80	15.29	0.00	150.0	$\pm 9.6 \%$
		Y	2.64	69.12	16.24		150.0	
		Z	2.47	67.38	15.32		150.0	
10114CAC	IEEE 802.1 n (HT Greenfield, 13.5 Mbps, BPSK)	X	4.85	66.91	16.28	0.00	150.0	$\pm 9.6 \%$
		Y	4.92	67.20	16.42		150.0	
		Z	4.93	66.80	16.23		150.0	
$\begin{aligned} & 10115- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 81 Mbps , 16-QAM)	X	5.08	66.97	16.31	0.00	150.0	± 9.6 \%
		Y	5.16	67.24	16.44		150.0	
		Z	5.19	66.91	16.30		150.0	
$\begin{aligned} & 10116- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 135 Mbps , 64-QAM)	X	4.91	67.06	16.28	0.00	150.0	± 9.6 \%
		Y	5.00	67.37	16.44		150.0	
		Z	5.02	67.01	16.26		150.0	
10117CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps , BPSK)	X	4.82	66.80	16.24	0.00	150.0	± 9.6 \%
		Y	4.91	67.14	16.41		150.0	
		Z	4.92	66.75	16.22		150.0	
10118-CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16QAM)	X	5.15	67.18	16.42	0.00	150.0	± 9.6 \%
		Y	5.23	67.42	16.54		150.0	
		Z	5.28	67.15	16.43		150.0	
10119-CAC	IEEE 802.11n (HT Mixed, 135 Mbps , 64QAM)	X	4.92	67.09	16.30	0.00	150.0	± 9.6 \%
		Y	5.00	67.37	16.45		150.0	
		Z	5.02	67.00	16.27		150.0	
$\begin{array}{\|l\|} \hline 10140- \\ \text { CAE } \\ \hline \end{array}$	LTE-FDD (SC-FDMA, 100\% RB, 15 $\mathrm{MHz}, 16-\mathrm{QAM}$)	X	3.06	66.79	15.45	0.00	150.0	± 9.6 \%
		Y	3.21	67.57	15.95		150.0	
		Z	3.13	66.66	15.40		150.0	
10141CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, $64-Q A M$)	X	3.19	67.01	15.68	0.00	150.0	± 9.6 \%
		Y	3.34	67.73	16.14		150.0	
		Z	3.26	66.83	15.61		150.0	
$\begin{aligned} & 10142- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 3 MHz , QPSK)	X	1.53	66.71	13.85	0.00	150.0	$\pm 9.6 \%$
		Y	1.82	69.13	15.54		150.0	
		Z	1.62	66.60	14.09		150.0	
$\begin{aligned} & 10143- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 3 MHz , 16-QAM)	X	1.93	66.97	13.55	0.00	150.0	± 9.6 \%
		Y	2.31	69.49	15.29		150.0	
		Z	2.06	67.05	14.07		150.0	
10144-CAE	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, 64-QAM)	X	1.68	64.38	11.67	0.00	150.0	± 9.6 \%
		Y	1.94	66.13	13.09		150.0	
		Z	1.85	64.82	12.42		150.0	
$\begin{aligned} & 10145- \\ & \text { CAF } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	0.61	60.00	6.25	0.00	150.0	± 9.6 \%
		Y	0.75	61.41	7.98		150.0	
		Z	0.75	60.75	7.63		150.0	
$\begin{aligned} & 10146- \\ & \text { CAF } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 1.4 \\ & \mathrm{MHz}, 16-\mathrm{QAM}) \end{aligned}$	X	0.82	60.00	5.83	0.00	150.0	± 9.6 \%
		Y	0.92	60.25	6.35		150.0	
		Z	1.12	61.59	7.98		150.0	
$\begin{aligned} & 10147- \\ & \text { CAF } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 1.4 \\ & \text { MHz, } 64-Q A M) \end{aligned}$	X	0.84	60.00	5.89	0.00	150.0	± 9.6 \%
		Y	0.96	60.55	6.61		150.0	
		Z	1.20	62.21	8.43		150.0	

10149CAE	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, 16-QAM)	X	2.58	66.69	15.22	0.00	150.0	$\pm 9.6 \%$
		Y	2.74	67.63	15.87		150.0	
10150- CAE		Z	2.65	66.49	15.18		150.0	
	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, 64-QAM)	X	2.71	66.82	15.33	0.00	150.0	$\pm 9.6 \%$
		Y	2.87	67.69	15.94		150.0	
		Z	2.78	66.58	15.28		150.0	
$\begin{aligned} & 10151- \\ & \text { CAF } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 20 MHz , QPSK)	X	4.58	74.10	19.83	3.98	65.0	± 9.6 \%
		Y	5.45	77.40	21.46		65.0	
		Z	5.00	75.19	20.56		65.0	
$\begin{aligned} & 10152- \\ & \text { CAF } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 20 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	4.21	69.89	18.16	3.98	65.0	± 9.6 \%
		Y	4.65	71.84	19.30		65.0	
		Z	4.51	70.68	18.85		65.0	
$\begin{aligned} & \text { 10153- } \\ & \text { CAF } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 20 MHz , 64-QAM)	X	4.55	71.06	19.09	3.98	65.0	± 9.6 \%
		Y	5.01	72.96	20.18		65.0	
		Z	4.85	71.76	19.74		65.0	
$\begin{aligned} & \text { 10154- } \\ & \text { CAF } \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, QPSK)	X	1.85	67.65	15.22	0.00	150.0	± 9.6 \%
		Y	2.10	69.48	16.44		150.0	
		Z	1.92	67.37	15.16		150.0	
$\begin{aligned} & 10155- \\ & \text { CAF } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, 16-QAM)	X	2.27	67.61	15.14	0.00	150.0	$\pm 9.6 \%$
		Y	2.50	69.00	16.15		150.0	
		Z	2.33	67.17	15.15		150.0	
$\begin{aligned} & 10156- \\ & \text { CAF } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 5 MHz , QPSK)	X	1.31	65.90	12.85	0.00	150.0	± 9.6 \%
		Y	1.64	68.88	14.94		150.0	
		Z	1.43	66.11	13.38		150.0	
$\begin{aligned} & 10157- \\ & \text { CAF } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 5 MHz , 16-QAM)	X	1.43	63.96	10.91	0.00	150.0	± 9.6 \%
		Y	1.74	66.31	12.74		150.0	
		Z	1.63	64.73	11.94		150.0	
$\begin{aligned} & 10158- \\ & \text { CAF } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, 64-QAM)	X	2.42	67.89	15.35	0.00	150.0	± 9.6 \%
		Y	2.65	69.22	16.31		150.0	
		Z	2.48	67.46	15.37		150.0	
$\begin{aligned} & 10159- \\ & \text { CAF } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \mathrm{RB}, 5 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	1.49	64.13	11.04	0.00	150.0	± 9.6 \%
		Y	1.82	66.66	12.95		150.0	
		Z	1.70	65.00	12.13		150.0	
10160- CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz , QPSK)	X	2.41	67.89	15.65	0.00	150.0	± 9.6 \%
		Y	2.60	69.05	16.44		150.0	
		Z	2.48	67.64	15.56		150.0	
10161CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz , 16-QAM)	X	2.59	66.74	15.14	0.00	150.0	± 9.6 \%
		Y	2.76	67.68	15.82		150.0	
		Z	2.66	66.50	15.14		150.0	
$\begin{aligned} & 10162- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 15 MHz , 64-QAM)	X	2.70	67.00	15.31	0.00	150.0	± 9.6 \%
		Y	2.87	67.91	15.97		150.0	
		Z	2.77	66.73	15.29		150.0	
10166CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz , QPSK)	X	2.91	67.87	18.41	3.01	150.0	± 9.6 \%
		Y	3.09	68.81	18.75		150.0	
		Z	3.17	68.75	19.02		150.0	
$\begin{aligned} & 10167- \\ & \text { CAF } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \mathrm{RB}, 1.4 \mathrm{MHz} \\ & \text { 16-QAM) } \end{aligned}$	X	3.24	69.92	18.52	3.01	150.0	± 9.6 \%
		Y	3.65	71.74	19.22		150.0	
		Z	3.63	71.08	19.26		150.0	

$\begin{aligned} & 10168- \\ & \text { CAF } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \text { RB, } 1.4 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	3.66	72.66	20.22	3.01	150.0	$\pm 9.6 \%$
		Y	4.14	74.51	20.83		150.0	
		Z	4.11	73.91	20.95		150.0	
$\begin{aligned} & \text { 10169- } \\ & \text { CAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	2.32	65.83	17.44	3.01	150.0	± 9.6 \%
		Y	2.49	67.28	18.07		150.0	
		Z	2.46	66.70	18.14		150.0	
$\begin{array}{\|l\|} \hline 10170- \\ \text { CAE } \\ \hline \end{array}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	2.74	70.01	19.35	3.01	150.0	$\pm 9.6 \%$
		Y	3.21	72.95	20.48		150.0	
		Z	3.00	71.51	20.32		150.0	
10171AAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	2.31	66.53	16.58	3.01	150.0	± 9.6 \%
		Y	2.63	68.93	17.60		150.0	
		Z	2.50	67.67	17.42		150.0	
$\begin{array}{\|l} \hline 10172- \\ \mathrm{CAF} \\ \hline \end{array}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz}, \\ & \text { QPSK) } \end{aligned}$	X	2.90	74.23	22.35	6.02	65.0	± 9.6 \%
		Y	3.68	79.90	24.98		65.0	
		Z	3.91	80.19	25.56		65.0	
$\begin{aligned} & 10173- \\ & \text { CAF } \\ & \hline \end{aligned}$	```LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)```	X	3.92	78.79	22.40	6.02	65.0	± 9.6 \%
		Y	6.85	89.50	26.38		65.0	
		Z	6.70	89.11	27.06		65.0	
$\begin{aligned} & 10174- \\ & \text { CAF } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz} \text {, } \\ & 64-Q A M) \end{aligned}$	X	2.90	73.28	19.67	6.02	65.0	± 9.6 \%
		Y	5.51	84.77	24.11		65.0	
		Z	4.93	82.66	24.17		65.0	
$\begin{aligned} & 10175- \\ & \text { CAF } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 10 MHz , QPSK)	X	2.30	65.58	17.20	3.01	150.0	± 9.6 \%
		Y	2.47	67.02	17.83		150.0	
		Z	2.44	66.43	17.89		150.0	
$\begin{aligned} & 10176- \\ & \text { CAF } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \mathrm{RB}, 10 \mathrm{MHz} \text {, } \\ & 16 \text {-QAM) } \end{aligned}$	X	2.74	70.03	19.36	3.01	150.0	± 9.6 \%
		Y	3.21	72.97	20.49		150.0	
		Z	3.00	71.53	20.33		150.0	
10177-CAH	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 5 \mathrm{MHz}_{\text {, }} \\ & \text { QPSK) } \end{aligned}$	X	2.31	65.68	17.27	3.01	150.0	± 9.6 \%
		Y	2.48	67.13	17.91		150.0	
		Z	2.45	66.56	17.98		150.0	
$\begin{aligned} & 10178- \\ & \mathrm{CAF} \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 5 MHz , $16-$ QAM)	X	2.73	69.91	19.28	3.01	150.0	± 9.6 \%
		Y	3.19	72.83	20.41		150.0	
		Z	2.98	71.36	20.23		150.0	
$\begin{aligned} & 10179- \\ & \text { CAF } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \mathrm{RB}, 10 \mathrm{MHz} \text {, } \\ & \text { 64-OAM) } \end{aligned}$	X	2.50	68.14	17.82	3.01	150.0	± 9.6 \%
		Y	2.89	70.84	18.91		150.0	
		Z	2.72	69.48	18.74		150.0	
$\begin{aligned} & 10180- \\ & \text { CAF } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 5 MHz , 64QAM)	X	2.31	66.50	16.56	3.01	150.0	± 9.6 \%
		Y	2.63	68.90	17.57		150.0	
		Z	2.50	67.63	17.39		150.0	
10181-CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 15 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	2.31	65.67	17.27	3.01	150.0	± 9.6 \%
		Y	2.48	67.11	17.90		150.0	
		Z	2.45	66.54	17.97		150.0	
$\begin{aligned} & 10182- \\ & \text { CAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 15 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	2.73	69.88	19.27	3.01	150.0	± 9.6 \%
		Y	3.19	72.81	20.40		150.0	
		Z	2.98	71.34	20.21		150.0	
$\begin{array}{\|l} \hline 10183- \\ \text { AAD } \\ \hline \end{array}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \mathrm{RB}, 15 \mathrm{MHz}, \\ & \text { 64-QAM) } \end{aligned}$	X	2.31	66.48	16.55	3.01	150.0	± 9.6 \%
		Y	2.63	68.87	17.56		150.0	
		Z	2.49	67.61	17.37		150.0	

July 20, 2018

10184CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \mathrm{RB}, 3 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	2.32	65.70	17.29	3.01	150.0	± 9.6 \%
		Y	2.49	67.15	17.92		150.0	
10185- CAE		Z	2.46	66.58	17.99		150.0	
	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, $16-$ QAM)	X	2.74	69.95	19.31	3.01	150.0	± 9.6 \%
		Y	3.20	72.88	20.43		150.0	
		Z	2.99	71.41	20.26		150.0	
$\begin{aligned} & 10186- \\ & \text { AAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 3 MHz , 64QAM)	X	2.32	66.53	16.58	3.01	150.0	± 9.6 \%
		Y	2.64	68.94	17.60		150.0	
		Z	2.51	67.67	17.41		150.0	
$\begin{aligned} & 10187- \\ & \mathrm{CAF} \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz , QPSK)	X	2.33	65.78	17.37	3.01	150.0	± 9.6 \%
		Y	2.50	67.22	18.00		150.0	
		Z	2.47	66.64	18.07		150.0	
$\begin{aligned} & 10188- \\ & \text { CAF } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \mathrm{RB}, 1.4 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	2.80	70.47	19.65	3.01	150.0	± 9.6 \%
		Y	3.29	73.46	20.79		150.0	
		Z	3.07	72.01	20.64		150.0	
$\begin{aligned} & 10189- \\ & \text { AAF } \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz , 64-QAM)	X	2.35	66.85	16.82	3.01	150.0	± 9.6 \%
		Y	2.69	69.31	17.86		150.0	
		Z	2.55	68.03	17.68		150.0	
$\begin{aligned} & \hline 10193- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 6.5 Mbps , BPSK)	X	4.23	66.54	15.90	0.00	150.0	± 9.6 \%
		Y	4.33	66.90	16.14		150.0	
		Z	4.32	66.32	15.87		150.0	
$\begin{aligned} & 10194- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Greenfield, 39 Mbps , 16-QAM)	X	4.36	66.75	16.04	0.00	150.0	± 9.6 \%
		Y	4.47	67.12	16.27		150.0	
		Z	4.47	66.58	16.01		150.0	
$\begin{aligned} & 10195- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 65 Mbps , 64-QAM)	X	4.39	66.76	16.05	0.00	150.0	± 9.6 \%
		Y	4.50	67.13	16.28		150.0	
		Z	4.50	66.61	16.03		150.0	
$\begin{aligned} & 10196- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Mixed, 6.5 Mbps , BPSK)	X	4.21	66.52	15.87	0.00	150.0	± 9.6 \%
		Y	4.32	66.89	16.12		150.0	
		Z	4.31	66.33	15.87		150.0	
$\begin{aligned} & 10197- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Mixed, 39 Mbps , 16QAM)	X	4.37	66.75	16.04	0.00	150.0	± 9.6 \%
		Y	4.48	67.12	16.28		150.0	
		Z	4.48	66.59	16.02		150.0	
$\begin{aligned} & 10198- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 65 Mbps, 64QAM)	X	4.38	66.75	16.05	0.00	150.0	± 9.6 \%
		Y	4.50	67.13	16.28		150.0	
		Z	4.50	66.62	16.04		150.0	
$\begin{aligned} & 10219 \cdots \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	4.16	66.56	15.85	0.00	150.0	$\pm 9.6 \%$
		Y	4.27	66.93	16.10		150.0	
		Z	4.26	66.35	15.83		150.0	
$\begin{aligned} & 10220- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Mixed, 43.3 Mbps , 16 QAM)	X	4.36	66.72	16.03	0.00	150.0	± 9.6 \%
		Y	4.47	67.08	16.26		150.0	
		Z	4.47	66.56	16.01		150.0	
$\begin{aligned} & 10221- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64QAM)	X	4.40	66.71	16.04	0.00	150.0	± 9.6 \%
		Y	4.51	67.07	16.27		150.0	
		Z	4.51	66.56	16.03		150.0	
$\begin{aligned} & 10222- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Mixed, 15 Mbps , BPSK)	X	4.80	66.80	16.23	0.00	150.0	± 9.6 \%
		Y	4.88	67.12	16.39		150.0	
		Z	4.89	66.72	16.20		150.0	

$\begin{aligned} & 10223- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 90 Mbps , 16QAM)	X	5.04	66.95	16.32	0.00	150.0	$\pm 9.6 \%$
		Y	5.14	67.29	16.49		150.0	
		Z	5.18	66.99	16.36		150.0	
$\begin{aligned} & 10224- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Mixed, 150 Mbps , 64QAM)	X	4.84	66.92	16.22	0.00	150.0	$\pm 9.6 \%$
		Y	4.92	67.24	16.38		150.0	
		Z	4.93	66.82	16.18		150.0	
$\begin{aligned} & 10225- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	UMTS-FDD (HSPA+)	X	2.46	65.56	14.20	0.00	150.0	$\pm 9.6 \%$
		Y	2.62	66.44	14.96		150.0	
		Z	2.55	65.41	14.45		150.0	
$\begin{aligned} & \text { 10226- } \\ & \text { CAA } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \mathrm{RB}, 1.4 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	4.12	79.74	22.87	6.02	65.0	± 9.6 \%
		Y	7.38	90.96	26.97		65.0	
		Z	7.19	90.56	27.66		65.0	
$\begin{aligned} & \hline 10227- \\ & \text { CAA } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \mathrm{RB}, 1.4 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	4.10	78.95	21.90	6.02	65.0	± 9.6 \%
		Y	7.43	89.71	25.78		65.0	
		Z	7.75	90.70	26.99		65.0	
$\begin{aligned} & 10228- \\ & \text { CAA } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \mathrm{RB}, 1.4 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	3.12	75.94	23.15	6.02	65.0	$\pm 9.6 \%$
		Y	4.06	82.01	25.85		65.0	
		Z	4.25	82.24	26.47		65.0	
$\begin{array}{\|l\|} \hline 10229- \\ \text { CAC } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz , 16QAM)	X	3.94	78.88	22.44	6.02	65.0	$\pm 9.6 \%$
		Y	6.91	89.62	26.42		65.0	
		Z	6.76	89.24	27.11		65.0	
$\begin{aligned} & 10230- \\ & \text { CAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64QAM)	X	3.89	78.03	21.47	6.02	65.0	± 9.6 \%
		Y	6.86	88.27	25.23		65.0	
		Z	7.16	89.19	26.40		65.0	
$\begin{aligned} & 10231- \\ & \text { CAC } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 3 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	3.03	75.32	22.81	6.02	65.0	± 9.6 \%
		Y	3.92	81.25	25.48		65.0	
		Z	4.10	81.44	26.07		65.0	
$\begin{aligned} & 10232- \\ & \text { CAE } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , 16QAM)	X	3.94	78.86	22.44	6.02	65.0	$\pm 9.6 \%$
		Y	6.89	89.60	26.42		65.0	
		Z	6.74	89.21	27.10		65.0	
$\begin{aligned} & 10233- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , 64QAM)	X	3.88	77.99	21.46	6.02	65.0	± 9.6 \%
		Y	6.83	88.22	25.21		65.0	
		Z	7.13	89.13	26.38		65.0	
$\begin{aligned} & 10234- \\ & \text { CAE } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , QPSK)	X	2.96	74.84	22.48	6.02	65.0	± 9.6 \%
		Y	3.82	80.66	25.12		65.0	
		Z	4.00	80.82	25.70		65.0	
$\begin{aligned} & 10235- \\ & \text { CAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 10 \mathrm{MHz}_{1} \\ & \text { 16-QAM) } \end{aligned}$	X	3.94	78.87	22.44	6.02	65.0	± 9.6 \%
		Y	6.90	89.63	26.43		65.0	
		Z	6.75	89.23	27.11		65.0	
$\begin{aligned} & 10236 \\ & \text { CAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	3.92	78.11	21.50	6.02	65.0	± 9.6 \%
		Y	6.93	88.43	25.27		65.0	
		Z	7.23	89.34	26.44		65.0	
$\begin{aligned} & 10237- \\ & \text { CAE } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , QPSK)	X	3.03	75.32	22.81	6.02	65.0	± 9.6 \%
		Y	3.92	81,27	25.49		65.0	
		Z	4.10	81.45	26.08		65.0	
$\begin{aligned} & 10238- \\ & \text { CAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 15 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	3.93	78.83	22.43	6.02	65.0	± 9.6 \%
		Y	6.87	89.57	26.41		65.0	
		Z	6.72	89.17	27.08		65.0	

$\begin{aligned} & \text { 10239- } \\ & \text { CAE } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \mathrm{RB}, 15 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	3.87	77.95	21.45	6.02	65.0	± 9.6 \%
		Y	6.80	88.17	25.20		65.0	
		Z	7.10	89.08	26.37		65.0	
$\begin{aligned} & 10240- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 15 MHz , QPSK)	X	3.02	75.30	22.81	6.02	65.0	± 9.6 \%
		Y	3.91	81.25	25.48		65.0	
		Z	4.09	81.42	26.07		65.0	
$\begin{aligned} & 10241- \\ & \mathrm{CAA} \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 1.4 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	5.47	76.60	23.52	6.98	65.0	± 9.6 \%
		Y	6.28	79.70	24.95		65.0	
		Z	6.08	77.98	24.56		65.0	
$\begin{aligned} & 10242- \\ & \text { CAA } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 1.4 \mathrm{MHz}, \\ & \text { 64-QAM) } \end{aligned}$	X	5.17	75.55	22.99	6.98	65.0	± 9.6 \%
		Y	5.96	78.71	24.47		65.0	
		Z	5.82	77.10	24.09		65.0	
$\begin{aligned} & 10243- \\ & \text { CAA } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 1.4 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	4.47	72.66	22.57	6.98	65.0	$\pm 9.6 \%$
		Y	4.85	74.66	23.64		65.0	
		Z	4.89	73.70	23.43		65.0	
$\begin{aligned} & 10244- \\ & \text { CAC } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 3 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	2.59	65.60	11.95	3.98	65.0	± 9.6 \%
		Y	3.16	68.30	13.59		65.0	
		Z	3.94	71.58	16.14		65.0	
$\begin{array}{\|l} \hline 10245- \\ \text { CAC } \\ \hline \end{array}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \mathrm{RB}, 3 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	2.56	65.23	11.69	3.98	65.0	± 9.6 \%
		Y	3.08	67.71	13.25		65.0	
		Z	3.80	70.75	15.70		65.0	
$\begin{aligned} & \hline 10246- \\ & \text { CAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 3 \mathrm{MHz}$, QPSK)	X	2.30	67.33	13.29	3.98	65.0	± 9.6 \%
		Y	3.40	73.14	16.55		65.0	
		Z	3.20	71.92	16.41		65.0	
$\begin{array}{\|l\|} \hline 10247- \\ \text { CAE } \\ \hline \end{array}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 5 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	2.93	67.28	14.07	3.98	65.0	± 9.6 \%
		Y	3.57	70.51	16.14		65.0	
		Z	3.50	69.72	16.15		65.0	
10248-CAE	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 5 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	2.93	66.83	13.84	3.98	65.0	± 9.6 \%
		Y	3.51	69.74	15.76		65.0	
		Z	3.49	69.17	15.87		65.0	
10249-CAE	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 5 \mathrm{MHz}$, QPSK)	X	3.40	72.89	17.31	3.98	65.0	± 9.6 \%
		Y	5.05	79.62	20.60		65.0	
		Z	4.35	76.73	19.72		65.0	
$\begin{aligned} & 10250- \\ & \text { CAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \mathrm{RB}, 10 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	4.07	71.77	18.68	3.98	65.0	± 9.6 \%
		Y	4.65	74.35	20.17		65.0	
		Z	4.43	72.91	19.73		65.0	
10251-CAE	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	3.86	69.66	17.25	3.98	65.0	± 9.6 \%
		Y	4.37	71.98	18.68		65.0	
		Z	4.24	70.85	18.35		65.0	
$\begin{aligned} & 10252- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 10 MHz , QPSK)	X	4.28	75.56	20.13	3.98	65.0	± 9.6 \%
		Y	5.50	80.28	22.41		65.0	
		Z	4.84	77.34	21.32		65.0	
$\begin{aligned} & 10253- \\ & \text { CAE } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \mathrm{RB}, 15 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	4.17	69.62	17.88	3.98	65.0	± 9.6 \%
		Y	4.59	71.50	19.03		65.0	
		Z	4.46	70.34	18.61		65.0	
$\begin{aligned} & 10254- \\ & \text { CAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \mathrm{RB}, 15 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	4.46	70.60	18.66	3.98	65.0	± 9.6 \%
		Y	4.90	72.45	19.77		65.0	
		Z	4.75	71.28	19.37		65.0	

$\begin{aligned} & 10255- \\ & \text { CAE } \end{aligned}$	$\text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 15 \mathrm{MHz} \text {, }$ QPSK)	X	4.40	73.51	19.69	3.98	65.0	± 9.6 \%
		Y	5.16	76.59	21.27		65.0	
		Z	4.77	74.49	20.43		65.0	
$\begin{aligned} & \text { 10256- } \\ & \text { CAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 1.4 $\mathrm{MHz}, 16-\mathrm{QAM}$)	X	1.88	62.21	8.80	3.98	65.0	$\pm 9.6 \%$
		Y	2.16	63.72	9.95		65.0	
		Z	2.68	66.18	12.27		65.0	
$\begin{aligned} & 10257- \\ & \text { CAA } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 1.4 $\mathrm{MHz}, 64-\mathrm{QAM}$)	X	1.87	61.92	8.53	3.98	65.0	± 9.6 \%
		Y	2.13	63.28	9.61		65.0	
		Z	2.60	65.47	11.78		65.0	
$\begin{aligned} & 10258- \\ & \text { CAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 1.4 MHz, QPSK)	X	1.63	62.98	9.76	3.98	65.0	± 9.6 \%
		Y	2.11	66.24	12.11		65.0	
		Z	2.20	66.42	12.68		65.0	
$\begin{aligned} & 10259- \\ & \text { CAC } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \mathrm{RB}, 3 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	3.37	69.09	15.81	3.98	65.0	± 9.6 \%
		Y	4.03	72.21	17.73		65.0	
		Z	3.88	71.08	17.53		65.0	
$\begin{aligned} & 10260- \\ & \text { CAC } \end{aligned}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, 64-QAM)	X	3.41	68.89	15.70	3.98	65.0	$\pm 9.6 \%$
		Y	4.05	71.86	17.55		65.0	
		Z	3.92	70.83	17.40		65.0	
$\begin{aligned} & 10261- \\ & \text { CAC } \end{aligned}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, QPSK)	X	3.65	73.54	18.24	3.98	65.0	± 9.6 \%
		Y	4.99	79.08	21.01		65.0	
		Z	4.36	76.25	20.08		65.0	
$\begin{aligned} & \hline 10262- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 5 MHz ,	X	4.05	71.68	18.62	3.98	65.0	± 9.6 \%
		Y	4.63	74.27	20.11		65.0	
		Z	4.42	72.84	19.67		65.0	
$\begin{array}{\|l\|} \hline 10263- \\ \text { CAE } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, 64-QAM)	X	3.85	69.65	17.25	3.98	65.0	$\pm 9.6 \%$
		Y	4.36	71.96	18.67		65.0	
		Z	4.23	70.83	18.35		65.0	
$\begin{aligned} & 10264- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, QPSK)	X	4.23	75.35	20.01	3.98	65.0	± 9.6 \%
		Y	5.43	80.04	22.29		65.0	
		Z	4.79	77.13	21.21		65.0	
$\begin{array}{\|l\|} \hline 10265- \\ \text { CAE } \\ \hline \end{array}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 10 \\ & \mathrm{MHz}, 16 \text {-QAM) } \end{aligned}$	X	4.21	69.90	18.16	3.98	65.0	± 9.6 \%
		Y	4.65	71.84	19.30		65.0	
		Z	4.51	70.68	18.86		65.0	
$\begin{aligned} & 10266- \\ & \text { CAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 10 \\ & \mathrm{MHz}, 64 \text {-QAM) } \end{aligned}$	X	4.55	71.05	19.08	3.98	65.0	$\pm 9.6 \%$
		Y	5.00	72.95	20.16		65.0	
		Z	4.85	71.75	19.72		65.0	
$\begin{aligned} & 10267- \\ & \text { CAE } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 10 MHz, QPSK)	X	4.57	74.06	19.81	3.98	65.0	± 9.6 \%
		Y	5.43	77.35	21.43		65.0	
		Z	4.99	75.14	20.54		65.0	
$\begin{aligned} & 10268- \\ & \text { CAE } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 15 \\ & \text { MHz. 16-QAM) } \end{aligned}$	X	4.89	70.28	18.92	3.98	65.0	± 9.6 \%
		Y	5.29	71.90	19.82		65.0	
		Z	5.16	70.86	19.41		65.0	
$\begin{aligned} & 10269- \\ & \text { CAE } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 15 $\mathrm{MHz}, 64-\mathrm{QAM}$)	X	4.93	70.03	18.82	3.98	65.0	± 9.6 \%
		Y	5.31	71.54	19.69		65.0	
		Z	5.18	70.53	19.29		65.0	
$\begin{aligned} & 10270- \\ & \mathrm{CAE} \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 15 MHz, QPSK)	X	4.82	72.26	19.25	3.98	65.0	± 9.6 \%
		Y	5.40	74.50	20.39		65.0	
		Z	5.12	72.93	19.74		65.0	

$\begin{aligned} & 10274- \\ & \text { CAB } \\ & \hline \end{aligned}$	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.30	66.08	14.21	0.00	150.0	± 9.6 \%
		Y	2.48	67.13	15.07		150.0	
		Z	2.37	65.78	14.35		150.0	
$\begin{aligned} & 10275- \\ & \text { CAB } \\ & \hline \end{aligned}$	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	1.33	66.42	14.09	0.00	150.0	± 9.6 \%
		Y	1.55	68.66	15.67		150.0	
		Z	1.35	65.99	13.99		150.0	
$\begin{aligned} & 10277- \\ & \text { CAA } \\ & \hline \end{aligned}$	PHS (QPSK)	X	1.44	58.96	4.35	9.03	50.0	$\pm 9.6 \%$
		Y	1.29	58.94	4.16		50.0	
		Z	1.60	59.77	5.29		50.0	
$\begin{aligned} & 10278- \\ & \text { CAA } \end{aligned}$	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	2.42	63.55	9.32	9.03	50.0	$\pm 9.6 \%$
		Y	2.50	65.00	10.23		50.0	
		Z	3.00	66.61	11.73		50.0	
$\begin{aligned} & 10279- \\ & \text { CAA } \end{aligned}$	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	2.47	63.72	9.48	9.03	50.0	$\pm 9.6 \%$
		Y	2.58	65.28	10.45		50.0	
		Z	3.09	66.89	11.94		50.0	
$\begin{array}{\|l} \hline 10290- \\ \text { AAB } \\ \hline \end{array}$	CDMA2000, RC1, SO55, Full Rate	X	0.64	61.56	7.87	0.00	150.0	$\pm 9.6 \%$
		Y	0.98	65.79	11.09		150.0	
		Z	0.84	63.19	9.57		150.0	
$\begin{aligned} & 10291- \\ & A A B \end{aligned}$	CDMA2000, RC3، SO55, Full Rate	X	0.41	60.33	6.79	0.00	150.0	$\pm 9.6 \%$
		Y	0.62	64.18	10.12		150.0	
		Z	0.50	61.40	8.20		150.0	
$\begin{aligned} & 10292- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	CDMA2000, RC3, SO32, Full Rate	X	0.46	61.89	7.99	0.00	150.0	± 9.6 \%
		Y	1.01	70.37	13.40		150.0	
		Z	0.57	63.19	9.51		150.0	
$\begin{aligned} & 10293- \\ & \text { AAB } \\ & \hline \end{aligned}$	CDMA2000, RC3, SO3, Full Rate	X	0.64	65.03	10.07	0.00	150.0	± 9.6 \%
		Y	4.97	89.66	20.54		150.0	
		Z	0.76	66.38	11.57		150.0	
$\begin{array}{\|l\|} \hline 10295- \\ \mathrm{AAB} \\ \hline \end{array}$	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	14.73	88.54	22.30	9.03	50.0	± 9.6 \%
		Y	21.95	97.75	26.07		50.0	
		Z	14.97	91.80	24.79		50.0	
$\begin{aligned} & 10297- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, QPSK)	X	2.34	68.34	15.82	0.00	150.0	± 9.6 \%
		Y	2.58	69.89	16.76		150.0	
		Z	2.40	68.08	15.64		150.0	
10298-AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz , QPSK)	X	0.86	62.29	9.16	0.00	150.0	± 9.6 \%
		Y	1.16	65.45	11.69		150.0	
		Z	1.05	63.56	10.60		150.0	
$\begin{aligned} & 10299- \\ & \text { AAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \text { RB, } 3 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	1.14	61.76	8.21	0.00	150.0	± 9.6 \%
		Y	1.41	63.51	9.50		150.0	
		Z	1.73	65.72	11.49		150.0	
$\begin{aligned} & 10300- \\ & \text { AAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \text { RB, } 3 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	0.97	60.07	6.55	0.00	150.0	± 9.6 \%
		Y	1.14	61.11	7.49		150.0	
		Z	1.33	62.21	8.89		150.0	
$\begin{aligned} & 10301- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16e WiMAX (29:18, 5ms, 10 MHz, QPSK, PUSC)	X	4.13	64.55	16.56	4.17	50.0	± 9.6 \%
		Y	4.26	65.00	16.97		50.0	
		Z	4.39	64.86	16.90		50.0	
$\begin{aligned} & 10302- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16e WiMAX (29:18, 5ms, 10 MHz, QPSK, PUSC, 3 CTRL symbols)	X	4.66	65.38	17.39	4.96	50.0	± 9.6 \%
		Y	4.76	65.70	17.72		50.0	
		Z	4.88	65.46	17.59		50.0	

10303- AAA	IEEE 802.16 e WiMAX ($31: 15,5 \mathrm{~ms}$, 10MHz, 64QAM, PUSC)	X	4.45	65.36	17.40	4.96	50.0	± 9.6 \%
		Y	4.51	65.30	17.48		50.0	
		Z	4.62	65.06	17.37		50.0	
$\begin{aligned} & 10304- \\ & \text { AAA } \end{aligned}$	IEEE 802.16 e WiMAX ($29: 18,5 \mathrm{~ms}$, 10MHz, 64QAM, PUSC)	X	4.25	64.98	16.73	4.17	50.0	± 9.6 \%
		Y	4.36	65.33	17.07		50.0	
		Z	4.45	64.98	16.90		50.0	
$\begin{aligned} & 10305- \\ & \text { AAA } \end{aligned}$	IEEE 802.16 e WIMAX ($31: 15,10 \mathrm{~ms}$, $10 \mathrm{MHz}, 64 \mathrm{QAM}$, PUSC, 15 symbols)	X	3.81	66.28	17.81	6.02	35.0	± 9.6 \%
		Y	3.76	65.91	18.03		35.0	
		Z	4.04	66.66	18.48		35.0	
10306- AAA	IEEE 802.16e WIMAX ($29: 18,10 \mathrm{~ms}$, $10 \mathrm{MHz}, 64 \mathrm{QAM}$, PUSC, 18 symbols)	X	4.18	65.73	17.92	6.02	35.0	± 9.6 \%
		Y	4.17	65.55	18.11		35.0	
		Z	4.39	65.94	18.38		35.0	
$\begin{array}{\|l\|} \hline 10307- \\ \text { AAA } \\ \hline \end{array}$	IEEE 802.16e WiMAX (29:18, 10ms, 10 MHz , QPSK, PUSC, 18 symbols)	X	4.05	65.69	17.78	6.02	35.0	± 9.6 \%
		Y	4.04	65.48	17.96		35.0	
		Z	4.27	65.96	18.27		35.0	
$\begin{aligned} & 10308- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	X	4.03	65.87	17.91	6.02	35.0	± 9.6 \%
		Y	4.01	65.64	18.09		35.0	
		Z	4.25	66.15	18.40		35.0	
$\begin{aligned} & 10309- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16e WiMAX (29:18, 10 ms , $10 \mathrm{MHz}, 16 \mathrm{QAM}$, AMC $2 \times 3,18$ symbols)	X	4.18	65.77	18.00	6.02	35.0	± 9.6 \%
		Y	4.19	65.61	18.20		35.0	
		Z	4.42	66.06	18.49		35.0	
$\begin{aligned} & 10310- \\ & \text { AAA } \end{aligned}$	IEEE 802.16e WiMAX (29:18, 10 ms , 10 MHz , QPSK, AMC $2 \times 3,18$ symbols)	X	4.13	65.78	17.90	6.02	35.0	± 9.6 \%
		Y	4.12	65.57	18.08		35.0	
		Z	4.34	65.98	18.35		35.0	
$\begin{aligned} & 10311- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100\% RB, 15 MHz, QPSK)	X	2.69	67.62	15.56	0.00	150.0	± 9.6 \%
		Y	2.94	69.08	16.39		150.0	
		Z	2.75	67.40	15.38		150.0	
$\begin{array}{\|l} 10313- \\ \text { AAA } \\ \hline \end{array}$	iDEN 1:3	X	1.80	67.21	13.40	6.99	70.0	± 9.6 \%
		Y	2.78	73.35	16.36		70.0	
		Z	2.09	69.09	14.51		70.0	
$\begin{array}{\|l\|} \hline 10314- \\ \text { AAA } \\ \hline \end{array}$	iDEN 1:6	X	3.26	75.39	19.57	10.00	30.0	± 9.6 \%
		Y	5.56	85.97	24.05		30.0	
		Z	4.04	79.23	21.39		30.0	
10315 AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96 pc duty cycle)	X	0.96	62.72	14.16	0.17	150.0	± 9.6 \%
		Y	1.05	63.94	15.22		150.0	
		Z	0.96	62.45	14.04		150.0	
$\begin{aligned} & \text { 10316- } \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (ERPOFDM, 6 Mbps, 96 pc duty cycle)	X	4.24	66.42	15.96	0.17	150.0	± 9.6 \%
		Y	4.35	66.80	16.22		150.0	
		Z	4.36	66.32	16.01		150.0	
10317 AAC	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96 pc duty cycle)	X	4.24	66.42	15.96	0.17	150.0	± 9.6 \%
		Y	4.35	66.80	16.22		150.0	
		Z	4.36	66.32	16.01		150.0	
$\begin{aligned} & \hline 10400- \\ & \text { AAD } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99 pc duty cycle)	X	4.31	66.71	15.99	0.00	150.0	± 9.6 \%
		Y	4.43	67.11	16.24		150.0	
		Z	4.43	66.60	15.99		150.0	
$\begin{aligned} & 10401- \\ & \text { AAD } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	X	4.98	66.52	16.05	0.00	150.0	± 9.6 \%
		Y	5.08	66.87	16.24		150.0	
		Z	5.16	66.70	16.18		150.0	

$\begin{aligned} & 10402- \\ & \text { AAD } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	X	5.36	67.14	16.28	0.00	150.0	$\pm 9.6 \%$
		Y	5.44	67.45	16.42		150.0	
		Z	5.45	67.07	16.25		150.0	
$\begin{aligned} & 10403- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	CDMA2000 (1xEV-DO, Rev. 0)	X	0.64	61.56	7.87	0.00	115.0	$\pm 9.6 \%$
		Y	0.98	65.79	11.09		115.0	
		Z	0.84	63.19	9.57		115.0	
$\begin{aligned} & 10404- \\ & \text { AAB } \end{aligned}$	CDMA2000 (1xEV-DO, Rev. A)	X	0.64	61.56	7.87	0.00	115.0	$\pm 9.6 \%$
		Y	0.98	65.79	11.09		115.0	
		Z	0.84	63.19	9.57		115.0	
$\begin{aligned} & 10406- \\ & \text { AAB } \end{aligned}$	CDMA2000, RC3, SO32, SCH0, Full Rate	X	100.00	119.53	28.08	0.00	100.0	$\pm 9.6 \%$
		Y	100.00	115.68	26.57		100.0	
		Z	100.00	126.19	31.47		100.0	
$\begin{aligned} & 10410- \\ & \text { AAE } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$, Subframe Conf=4)	X	2.86	79.80	18.70	3.23	80.0	$\pm 9.6 \%$
		Y	25.09	107.33	26.44		80.0	
		Z	100.00	133.23	34.42		80.0	
$\begin{aligned} & 10415- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	0.92	62.32	13.80	0.00	150.0	$\pm 9.6 \%$
		Y	1.00	63.42	14.80		150.0	
		Z	0.91	61.96	13.60		150.0	
$\begin{aligned} & 10416- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (ERPOFDM, $6 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle)	X	4.22	66.50	15.96	0.00	150.0	± 9.6 \%
		Y	4.32	66.87	16.21		150.0	
		Z	4.32	66.33	15.95		150.0	
$\begin{aligned} & 10417- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h} \mathrm{WiFi} 5 \mathrm{GHz}$ (OFDM, 6 Mbps, 99pc duty cycle)	X	4.22	66.50	15.96	0.00	150.0	$\pm 9.6 \%$
		Y	4.32	66.87	16.21		150.0	
		Z	4.32	66.33	15.95		150.0	
$\begin{aligned} & 10418- \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 6 Mbps , 99pc duty cycle, Long preambule)	X	4.21	66.71	16.02	0.00	150.0	$\pm 9.6 \%$
		Y	4.32	67.09	16.27		150.0	
		Z	4.31	66.51	15.99		150.0	
$\begin{aligned} & 10419- \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 6 Mbps , 99 pc duty cycle, Short preambule)	X	4.23	66.64	16.01	0.00	150.0	$\pm 9.6 \%$
		Y	4.34	67.01	16.25		150.0	
		Z	4.33	66.45	15.98		150.0	
$\begin{aligned} & 10422- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	X	4.33	66.62	16.03	0.00	150.0	$\pm 9.6 \%$
		Y	4.44	66.98	16.26		150.0	
		Z	4.44	66.45	16.00		150.0	
$\begin{aligned} & 10423- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	X	4.45	66.86	16.11	0.00	150.0	± 9.6 \%
		Y	4.56	67.23	16.34		150.0	
		Z	4.57	66.72	16.10		150.0	
$\begin{aligned} & 10424- \\ & \text { AAB } \end{aligned}$	IEEE 802.1 nn (HT Greenfield, 72.2 Mbps, 64-QAM)	X	4.38	66.81	16.08	0.00	150.0	± 9.6 \%
		Y	4.50	67.18	16.32		150.0	
		Z	4.50	66.66	16.07		150.0	
$\begin{aligned} & 10425- \\ & A A B \end{aligned}$	IEEE 802.11n (HT Greenfield, 15 Mbps , BPSK)	X	5.03	67.03	16.34	0.00	150.0	$\pm 9.6 \%$
		Y	5.11	67.32	16.49		150.0	
		Z	5.14	66.98	16.33		150.0	
$\begin{aligned} & 10426-1 \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Greenfield, 90 Mbps , 16-QAM)	X	5.06	67.16	16.40	0.00	150.0	± 9.6 \%
		Y	5.13	67.40	16.52		150.0	
		Z	5.17	67.10	16.39		150.0	

July 20, 2018

10427- AAB	IEEE 802.11n (HT Greenfield, 150 Mbps , 64-QAM)	X	5.01	66.91	16.27	0.00	150.0	± 9.6 \%
		Y	5.09	67.19	16.41		150.0	
		Z	5.13	66.90	16.28		150.0	
$\begin{array}{\|l\|} \hline 10430- \\ \text { AAC } \\ \hline \end{array}$	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	X	4.07	72.07	17.91	0.00	150.0	± 9.6 \%
		Y	4.24	72.56	18.40		150.0	
		Z	4.04	71.02	17.78		150.0	
10431- AAC	LTE-FDD (OFDMA, $10 \mathrm{MHz}, \mathrm{E}-\mathrm{TM} 3.1$)	X	3.79	66.99	15.69	0.00	150.0	± 9.6 \%
		Y	3.94	67.49	16.09		150.0	
		Z	3.92	66.79	15.76		150.0	
10432- AAC	LTE-FDD (OFDMA, $15 \mathrm{MHz}, \mathrm{E}-\mathrm{TM} 3.1$)	X	4.13	66.89	15.96	0.00	150.0	$\pm 9.6 \%$
		Y	4.26	67.30	16.25		150.0	
		Z	4.25	66.71	15.96		150.0	
10433 AAC	LTE-FDD (OFDMA, $20 \mathrm{MHz}, \mathrm{E}-\mathrm{TM} 3.1$)	X	4.40	66.85	16.11	0.00	150.0	$\pm 9.6 \%$
		Y	4.51	67.22	16.34		150.0	
		Z	4.51	66.70	16.09		150.0	
10434- AAA	W-CDMA (BS Test Model 1,64 DPCH)	X	4.05	72.38	17.35	0.00	150.0	± 9.6 \%
		Y	4.37	73.48	18.19		150.0	
		Z	4.07	71.60	17.46		150.0	
10435- AAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	2.72	79.05	18.38	3.23	80.0	± 9.6 \%
		Y	21.44	105.07	25.81		80.0	
		Z	100.00	132.91	34.27		80.0	
10447. AAC	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44\%)	X	2.96	66.34	14.12	0.00	150.0	± 9.6 \%
		Y	3.18	67.31	14.92		150.0	
		Z	3.13	66.39	14.53		150.0	
$\begin{aligned} & 10448- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-FDD (OFDMA, 10 MHz , E-TM 3.1, Clippin 44\%)	X	3.67	66.79	15.57	0.00	150.0	$\pm 9.6 \%$
		Y	3.81	67.30	15.97		150.0	
		Z	3.78	66.58	15.62		150.0	
10449-AAC	LTE-FDD (OFDMA, 15 MHz , E-TM 3.1, Cliping 44\%)	X	3.98	66.71	15.86	0.00	150.0	± 9.6 \%
		Y	4.10	67.14	16.16		150.0	
		Z	4.09	66.52	15.85		150.0	
$\begin{array}{\|l} \hline 10450- \\ \text { AAC } \\ \hline \end{array}$	LTE-FDD (OFDMA, 20 MHz , E-TM 3.1. Clipping 44\%)	X	4.21	66.62	15.96	0.00	150.0	$\pm 9.6 \%$
		Y	4.32	67.01	16.21		150.0	
		Z	4.30	66.46	15.93		150.0	
$\begin{aligned} & 10451- \\ & \text { AAA } \end{aligned}$	W-CDMA (BS Test Model 1, 64 DPCH , Clipping 44\%)	X	2.70	65.75	13.11	0.00	150.0	± 9.6 \%
		Y	2.96	67.00	14.12		150.0	
		Z	2.94	66.14	13.79		150.0	
$\begin{aligned} & 10456- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi ($160 \mathrm{MHz}, 64$-QAM, 99pc duty cycle)	X	5.99	67.61	16.55	0.00	150.0	± 9.6 \%
		Y	6.02	67.80	16.61		150.0	
		Z	6.11	67.72	16.61		150.0	
$\begin{aligned} & 10457- \\ & \text { AAA } \\ & \hline \end{aligned}$	UMTS-FDD (DC-HSDPA)	X	3.61	65.32	15.70	0.00	150.0	± 9.6 \%
		Y	3.69	65.64	15.94		150.0	
		Z	3.65	65.04	15.66		150.0	
$\begin{aligned} & 10458- \\ & \text { AAA } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CDMA2000 (1xEV-DO, Rev. B, } 2 \\ & \text { carriers) } \end{aligned}$	X	3.19	69.07	15.08	0.00	150.0	± 9.6 \%
		Y	3.69	71.30	16.62		150.0	
		Z	3.53	69.92	16.16		150.0	
10459-AAA	$\begin{aligned} & \text { CDMA2000 (1xEV-DO, Rev. B, } 3 \\ & \text { carriers) } \end{aligned}$	X	4.69	69.03	17.48	0.00	150.0	± 9.6 \%
		Y	4.79	69.11	17.75		150.0	
		Z	4.84	68.73	17.83		150.0	

$10460-$ AAA	UMTS-FDD (WCDMA, AMR)	X	0.72	66.02	14.12	0.00	150.0	± 9.6 \%
		Y	0.91	69.57	16.66		150.0	
		Z	0.71	65.26	13.72		150.0	
$\begin{aligned} & 10461- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	1.93	75.92	18.31	3.29	80.0	± 9.6 \%
		Y	6.83	93.43	24.06		80.0	
		Z	100.00	137.66	36.58		80.0	
$\begin{array}{\|l\|} \hline 10462- \\ \text { AAA } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.63	60.00	7.27	3.23	80.0	± 9.6 \%
		Y	0.63	60.00	7.19		80.0	
		Z	1.15	65.31	10.99		80.0	
$\begin{aligned} & 10463- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.65	60.00	6.55	3.23	80.0	± 9.6 \%
		Y	0.66	60.00	6.45		80.0	
		Z	0.67	60.00	7.76		80.0	
$10464-$ AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	1.38	71.32	15.83	3.23	80.0	$\pm 9.6 \%$
		Y	4.54	86.66	21.20		80.0	
		Z	100.00	134.26	34.80		80.0	
$\begin{aligned} & 10465- \\ & \text { AAB } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, $3 \mathrm{MHz}, 16-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.63	60.00	7.20	3.23	80.0	± 9.6 \%
		Y	0.63	60.00	7.11		80.0	
		Z	0.94	63.37	10.05		80.0	
$\begin{aligned} & 10466- \\ & \text { AAB } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.65	60.00	6.50	3.23	80.0	$\pm 9.6 \%$
		Y	0.66	60.00	6.41		80.0	
		Z	0.68	60.00	7.70		80.0	
$\begin{array}{\|l\|} \hline 10467- \\ \text { AAD } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	1.47	72.19	16.22	3.23	80.0	± 9.6 \%
		Y	5.30	88.83	21.91		80.0	
		Z	100.00	134.76	35.02		80.0	
$\begin{array}{\|l\|} \hline 10468- \\ \text { AAD } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , 16 QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.63	60.00	7.22	3.23	80.0	$\pm 9.6 \%$
		Y	0.63	60.00	7.14		80.0	
		Z	0.99	63.90	10.32		80.0	
$\begin{aligned} & \hline 10469- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.65	60.00	6.51	3.23	80.0	$\pm 9.6 \%$
		Y	0.66	60.00	6.41		80.0	
		Z	0.68	60.00	7.70		80.0	
$\begin{aligned} & 10470- \\ & \text { AAD } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	1.46	72.21	16.22	3.23	80.0	± 9.6 \%
		Y	5.35	88.98	21.94		80.0	
		Z	100.00	134.82	35.03		80.0	
$\begin{array}{\|l\|} \hline 10471- \\ \text { AAD } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , 16QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.63	60.00	7.21	3.23	80.0	± 9.6 \%
		Y	0.63	60.00	7.12		80.0	
		Z	0.98	63.79	10.26		80.0	
$\begin{aligned} & \hline 10472- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.65	60.00	6.49	3.23	80.0	± 9.6 \%
		Y	0.66	60.00	6.39		80.0	
		Z	0.67	60.00	7.68		80.0	
10473-$A A D$	LTE-TDD (SC-FDMA, 1 RB, 15 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	1.46	72.15	16.20	3.23	80.0	± 9.6 \%
		Y	5.31	88.87	21.90		80.0	
		Z	100.00	134.77	35.01		80.0	
$\begin{aligned} & 10474- \\ & \text { AAD } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 15 MHz , 16QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.63	60.00	7.20	3.23	80.0	± 9.6 \%
		Y	0.63	60.00	7.12		80.0	
		Z	0.97	63.74	10.23		80.0	
$\begin{aligned} & 10475 . \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 15 MHz , 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.65	60.00	6.49	3.23	80.0	± 9.6 \%
		Y	0.66	60.00	6.39		80.0	
		Z	0.67	60.00	7.69		80.0	

$\begin{aligned} & 10477- \\ & \text { AAE } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , 16QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.63	60.00	7.17	3.23	80.0	$\pm 9.6 \%$
		Y	0.63	60.00	7.08		80.0	
		Z	0.93	63.31	10.01		80.0	
$\begin{aligned} & 10478- \\ & \text { AAE } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	0.65	60.00	6.47	3.23	80.0	$\pm 9.6 \%$
		Y	0.66	60.00	6.37		80.0	
		Z	0.67	60.00	7.67		80.0	
10479- AAA	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	4.26	80.69	20.19	3.23	80.0	± 9.6 \%
		Y	7.01	87.70	22.71		80.0	
		Z	21.27	105.57	28.88		80.0	
$\begin{aligned} & 10480- \\ & \text { AAA } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.88	66.39	12,32	3.23	80.0	± 9.6 \%
		Y	3.13	71.95	14.74		80.0	
		Z	13.52	90.52	21.87		80.0	
$\begin{aligned} & 10481- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}$, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.43	63.16	10.40	3.23	80.0	± 9.6 \%
		Y	2.06	66.80	12.23		80.0	
		Z	6.11	79.62	18.02		80.0	
$\begin{aligned} & 10482- \\ & \text { AAB } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	1.06	61.11	9.78	2.23	80.0	± 9.6 \%
		Y	1.73	66.89	13.39		80.0	
		Z	1.53	64.78	12.61		80.0	
$\begin{aligned} & 10483- \\ & \mathrm{AAB} \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , 16-QAM, UL Subframe=2,3,4,7,8,9)	X	1.23	60.00	8.50	2.23	80.0	± 9.6 \%
		Y	1.57	62.45	10.22		80.0	
		Z	2.78	68.98	14.19		80.0	
$\begin{aligned} & 10484- \\ & \text { AAB } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.26	60.00	8.49	2.23	80.0	$\pm 9.6 \%$
		Y	1.54	61.98	9.97		80.0	
		Z	2.53	67.57	13.58		80.0	
$\begin{aligned} & 10485- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	1.66	65.74	13.74	2.23	80.0	± 9.6 \%
.		Y	2.52	71.78	17.06		80.0	
		Z	2.10	68.47	15.70		80.0	
$\begin{aligned} & 10486- \\ & \text { AAD } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 5 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.66	62.56	11.27	2.23	80.0	$\pm 9.6 \%$
		Y	2.26	66.58	13.85		80.0	
		Z	2.12	65.12	13.38		80.0	
$\begin{aligned} & 10487- \\ & \text { AAD } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.67	62.33	11.12	2.23	80.0	± 9.6 \%
		Y	2.24	66.10	13.59		80.0	
		Z	2.14	64.83	13.21		80.0	
$\begin{aligned} & 10488- \\ & \text { AAD } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, QPSK, UL Subframe=2,3,4,7,8,9)	X	2.26	67.65	16.13	2.23	80.0	$\pm 9.6 \%$
		Y	2.82	71.24	18.12		80.0	
		Z	2.57	69.00	17.08		80.0	
$\begin{aligned} & \text { 10489- } \\ & \text { AAD } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 10 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.49	65.85	15.07	2.23	80.0	± 9.6 \%
		Y	2.90	68.21	16.54		80.0	
		Z	2.74	66.70	15.91		80.0	
$\begin{aligned} & 10490- \\ & \text { AAD } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.57	65.79	15.03	2.23	80.0	$\pm 9.6 \%$
		Y	2.97	68.04	16.46		80.0	
		Z	2.83	66.63	15.88		80.0	
$\begin{aligned} & 10491- \\ & \text { AAD } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	2.64	67.24	16.30	2.23	80.0	$\pm 9.6 \%$
		Y	3.09	69.79	17.74		80.0	
		Z	2.92	68.21	16.96		80.0	
$\begin{aligned} & 10492- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.93	65.80	15.66	2.23	80.0	± 9.6 \%
		Y	3.24	67.45	16.69		80.0	
		Z	3.14	66.35	16.22		80.0	

$\begin{aligned} & 10493- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 15 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.99	65.74	15.62	2.23	80.0	± 9.6 \%
		Y	3.29	67.32	16.63		80.0	
		Z	3.21	66.28	16.18		80.0	
$\begin{aligned} & \text { 10494- } \\ & \text { AAE } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 20 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	2.77	68.16	16.65	2.23	80.0	± 9.6 \%
		Y	3.31	71.10	18.21		80.0	
		Z	3.09	69.31	17.33		80.0	
$\begin{aligned} & 10495- \\ & \text { AAE } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, 16 -QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.95	66.01	15.89	2.23	80.0	± 9.6 \%
		Y	3.25	67.67	16.91		80.0	
		Z	3.16	66.59	16.41		80.0	
$\begin{aligned} & 10496- \\ & \text { AAE } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 20 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.04	65.92	15.89	2.23	80.0	± 9.6 \%
		Y	3.34	67.48	16.84		80.0	
		Z	3.25	66.45	16.38		80.0	
$\begin{aligned} & 10497- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	0.90	60.00	7.56	2.23	80.0	$\pm 9.6 \%$
		Y	0.94	60.22	8.59		80.0	
		Z	0.98	60.00	8.77		80.0	
$\begin{aligned} & 10498- \\ & \text { AAA } \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.09	60.00	6.33	2.23	80.0	$\pm 9.6 \%$
		Y	1.09	60.00	7.12		80.0	
		Z	1.16	60.00	7.58		80.0	
$\begin{aligned} & \text { 10499- } \\ & \text { AAA } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 1.4 \\ & \text { MHz, } 64-Q A M, ~ U L \\ & \text { Subframe }=2,3,4,7,8,9 \text {) } \end{aligned}$	X	1.11	60.00	6.17	2.23	80.0	± 9.6 \%
		Y	1.11	60.00	6.94		80.0	
		Z	1.17	60.00	7.42		80.0	
$\begin{aligned} & 10500- \\ & A A B \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	1.91	66.68	14.78	2.23	80.0	± 9.6 \%
		Y	2.64	71.54	17.49		80.0	
		Z	2.29	68.68	16.26		80.0	
$\begin{aligned} & 10501- \\ & \text { AAB } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 3 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.02	64.23	12.91	2.23	80.0	± 9.6 \%
		Y	2.60	67.75	15.11		80.0	
		Z	2.42	66.09	14.51		80.0	
$\begin{aligned} & 10502- \\ & \text { AAB } \end{aligned}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.05	64.07	12.75	2.23	80.0	± 9.6 \%
		Y	2.63	67.51	14.92		80.0	
		Z	2.46	65.95	14.37		80.0	
$\begin{aligned} & 10503- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	2.23	67.47	16.03	2.23	80.0	± 9.6 \%
		Y	2.79	71.03	18.01		80.0	
		Z	2.54	68.82	16.98		80.0	
$\begin{aligned} & 10504- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 5 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.48	65.75	15.00	2.23	80.0	± 9.6 \%
		Y	2.88	68.10	16.48		80.0	
		Z	2.73	66.60	15.85		80.0	
$\begin{aligned} & 10505- \\ & \text { AAD } \end{aligned}$	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.55	65.70	14.97	2.23	80.0	± 9.6 \%
		Y	2.95	67.94	16.40		80.0	
		Z	2.81	66.54	15.82		80.0	
$\begin{aligned} & 10506- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 10 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	2.76	68.04	16.58	2.23	80.0	± 9.6 \%
		Y	3.29	70.96	18.14		80.0	
		Z	3.07	69.18	17.26		80.0	
$\begin{aligned} & 10507- \\ & \text { AAD } \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.93	65.95	15.85	2.23	80.0	± 9.6 \%
		Y	3.24	67.61	16.87		80.0	
		Z	3.14	66.53	16.37		80.0	

$\begin{aligned} & \text { 10508- } \\ & \text { AAD } \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 10 $\mathrm{MHz}, 64-\mathrm{QAM}, \mathrm{UL}$ Subframe $=2,3,4,7,8,9$)	X	3.03	65.86	15.84	2.23	80.0	± 9.6 \%
		Y	3.33	67.40	16.79		80.0	
		Z	3.24	66.38	16.33		80.0	
$\begin{aligned} & \text { 10509- } \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 15 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	3.24	67.72	16.53	2.23	80.0	± 9.6 \%
		Y	3.69	69.96	17.72		80.0	
		Z	3.51	68.56	17.03		80.0	
$\begin{aligned} & 10510- \\ & \text { AAD } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 15 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.43	65.97	16.12	2.23	80.0	± 9.6 \%
		Y	3.71	67.32	16.91		80.0	
		Z	3.64	66.47	16.52		80.0	
$10511-$ AAD	LTE-TDD (SC-FDMA, 100\% RB, 15 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.52	65.89	16.12	2.23	80.0	± 9.6 \%
		Y	3.78	67.15	16.86		80.0	
		Z	3.71	66.32	16.49		80.0	
$\begin{aligned} & 10512- \\ & \text { AAE } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 20 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	3.22	68.47	16.72	2.23	80.0	$\pm 9.6 \%$
		Y	3.79	71.22	18.12		80.0	
		Z	3.54	69.57	17.32		80.0	
10513- AAE	LTE-TDD (SC-FDMA, 100\% RB, 20 $\mathrm{MHz}, 16-\mathrm{QAM}, \mathrm{UL}$ Subframe $=2,3,4,7,8,9$)	X	3.32	66.00	16.15	2.23	80.0	± 9.6 \%
		Y	3.60	67.43	16.98		80.0	
		Z	3.52	66.56	16.56		80.0	
10514- AAE	LTE-TDD (SC-FDMA, 100\% RB, 20 $\mathrm{MHz}, 64-\mathrm{QAM}, \mathrm{UL}$ Subframe $=2,3,4,7,8,9$)	X	3.39	65.79	16.10	2.23	80.0	$\pm 9.6 \%$
		Y	3.64	67.11	16.88		80.0	
		Z	3.57	66.28	16.49		80.0	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	0.88	62.44	13.81	0.00	150.0	± 9.6 \%
		Y	0.96	63.62	14.88		150.0	
		Z	0.87	62.07	13.59		150.0	
10516- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	0.45	66.98	14.48	0.00	150.0	± 9.6 \%
		Y	0.65	72.72	18.47		150.0	
		Z	0.42	65.95	13.66		150.0	
$\begin{aligned} & \text { 10517- } \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	X	0.70	63.68	13.97	0.00	150.0	± 9.6 \%
		Y	0.81	65.65	15.62		150.0	
		Z	0.69	63.23	13.65		150.0	
$\begin{array}{\|l} \hline 10518- \\ A A B \\ \hline \end{array}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	X	4.21	66.61	15.96	0.00	150.0	± 9.6 \%
		Y	4.32	66.98	16.20		150.0	
		Z	4.31	66.42	15.93		150.0	
$\begin{array}{\|l\|} \hline 10519- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	X	4.34	66.77	16.04	0.00	150.0	$\pm 9.6 \%$
		Y	4.46	67.14	16.28		150.0	
		Z	4.46	66.61	16.03		150.0	
$\begin{aligned} & 10520- \\ & \text { AAB } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.20	66.68	15.95	0.00	150.0	± 9.6 \%
		Y	4.32	67.07	16.20		150.0	
		Z	4.31	66.53	15.94		150.0	
$\begin{aligned} & 10521- \\ & \text { AAB } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	X	4.13	66.63	15.92	0.00	150.0	± 9.6 \%
		Y	4.25	67.04	16.18		150.0	
		Z	4.24	66.49	15.91		150.0	
$\begin{aligned} & 10522- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.17	66.72	15.99	0.00	150.0	± 9.6 \%
		Y	4.29	67.14	16.26		150.0	
		Z	4.30	66.63	16.02		150.0	

$\begin{aligned} & 10523- \\ & A A B \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	X	4.12	66.80	15.96	0.00	150.0	± 9.6 \%
		Y	4.24	67.19	16.22		150.0	
		Z	4.21	66.57	15.90		150.0	
$\begin{aligned} & 10524- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.13	66.73	16.01	0.00	150.0	± 9.6 \%
		Y	4.25	67.13	16.27		150.0	
		Z	4.25	66.57	15.99		150.0	
$\begin{aligned} & 10525- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCSO, 99pc duty cycle)	X	4.18	65.86	15.65	0.00	150.0	± 9.6 \%
		Y	4.29	66.26	15.91		150.0	
		Z	4.27	65.65	15.61		150.0	
$\begin{aligned} & 10526- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS1, 99 pc duty cycle)	X	4.28	66.10	15.76	0.00	150.0	$\pm 9.6 \%$
		Y	4.41	66.52	16.01		150.0	
		Z	4.40	65.94	15.73		150.0	
$\begin{aligned} & 10527 \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	X	4.22	66.07	15.69	0.00	150.0	± 9.6 \%
		Y	4.34	66.49	15.96		150.0	
		Z	4.33	65.90	15.66		150.0	
10528-AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 99 pc duty cycle)	X	4.23	66.08	15.73	0.00	150.0	± 9.6 \%
		Y	4.36	66.51	15.99		150.0	
		Z	4.34	65.91	15.70		150.0	
$\begin{array}{\|l\|} \hline 10529- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	X	4.23	66.08	15.73	0.00	150.0	± 9.6 \%
		Y	4.36	66.51	15.99		150.0	
		Z	4.34	65.91	15.70		150.0	
$\begin{aligned} & 10531 \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	X	4.19	66.07	15.68	0.00	150.0	± 9.6 \%
		Y	4.32	66.52	15.96		150.0	
		Z	4.31	65.94	15.68		150.0	
10532-AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	X	4.08	65.93	15.61	0.00	150.0	± 9.6 \%
		Y	4.20	66.39	15.90		150.0	
		Z	4.19	65.79	15.60		150.0	
$\begin{aligned} & 10533- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	X	4.23	66.16	15.73	0.00	150.0	± 9.6 \%
		Y	4.36	66.60	16.00		150.0	
		Z	4.35	65.98	15.69		150.0	
$\begin{aligned} & 10534- \\ & A A B \end{aligned}$	IEEE 802,11ac WiFi (40MHz, MCSO, 99pc duty cycle)	X	4.82	66.10	15.85	0.00	150.0	± 9.6 \%
		Y	4.91	66.46	16.04		150.0	
		Z	4.91	66.02	15.83		150.0	
$\begin{aligned} & 10535- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	4.85	66.20	15.91	0.00	150.0	± 9.6 \%
		Y	4.94	66.56	16.09		150.0	
		Z	4.97	66.17	15.90		150.0	
$\begin{aligned} & 10536- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS2, 99 pc duty cycle)	X	4.74	66.19	15.87	0.00	150.0	± 9.6 \%
		Y	4.84	66.58	16.08		150.0	
		Z	4.85	66.14	15.86		150.0	
$\begin{aligned} & 10537- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS3, 99 pc duty cycle)	X	4.82	66.26	15.91	0.00	150.0	± 9.6 \%
		Y	4.91	66.59	16.08		150.0	
		Z	4.91	66.13	15.86		150.0	
$\begin{aligned} & 10538- \\ & A A B \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	X	4.87	66.17	15.91	0.00	150.0	± 9.6 \%
		Y	4.97	66.52	16.09		150.0	
		Z	4.98	66.12	15.90		150.0	
$\begin{aligned} & 10540- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS6, 99 pc duty cycle)	X	4.80	66.12	15.90	0.00	150.0	± 9.6 \%
		Y	4.90	66.49	16.09		150.0	
		Z	4.91	66.07	15.89		150.0	

$\begin{aligned} & 10541- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS7. 99pc duty cycle)	X	4.79	66.06	15.85	0.00	150.0	± 9.6 \%
		Y	4.89	66.43	16.04		150.0	
		Z	4.89	65.96	15.82		150.0	
$\begin{aligned} & 10542- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	X	4.94	66.17	15.92	0.00	150.0	± 9.6 \%
		Y	5.04	66.51	16.10		150.0	
		Z	5.05	66.09	15.90		150.0	
$\begin{aligned} & 10543- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.03	66.31	16.03	0.00	150.0	± 9.6 \%
		Y	5.11	66.60	16.17		150.0	
		Z	5.12	66.17	15.97		150.0	
10544AAB	IEEE 802.11 ac WiFi (80 MHz , MCSO, 99pc duty cycle)	X	5.18	66.16	15.86	0.00	150.0	± 9.6 \%
		Y	5.26	66.52	16.02		150.0	
		Z	5.26	66.12	15.84		150.0	
$\begin{aligned} & 10545- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80 MHz , MCS1, 99pc duty cycle)	X	5.36	66.65	16.06	0.00	150.0	± 9.6 \%
		Y	5.42	66.93	16.19		150.0	
		Z	5.45	66.61	16.04		150.0	
10546-AAB	IEEE 802.11ac WiFi ($80 \mathrm{MHz}, \mathrm{MCS} 2$, 99 pc duty cycle)	X	5.20	66.27	15.88	0.00	150.0	± 9.6 \%
		Y	5.29	66.63	16.05		150.0	
		Z	5.29	66.25	15.87		150.0	
$\begin{array}{\|l\|} \hline 105474 \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	X	5.31	66.50	15.99	0.00	150.0	± 9.6 \%
		Y	5.37	66.75	16.11		150.0	
		Z	5.38	66.37	15.93		150.0	
$\begin{array}{\|l} \hline 10548- \\ A A B \\ \hline \end{array}$	IEEE 802.11ac WiFi (80MHz, MCS4, $99 p \mathrm{~d}$ duty cycle)	X	5.41	66.98	16.21	0.00	150.0	± 9.6 \%
		Y	5.49	67.30	16.36		150.0	
		Z	5.57	67.13	16.28		150.0	
$\begin{aligned} & \hline 10550- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi ($80 \mathrm{MHz}, \mathrm{MCS} 6$, 99 pc duty cycle)	X	5.30	66.60	16.06	0.00	150.0	± 9.6 \%
		Y	5.35	66.83	16.16		150.0	
		Z	5.37	66.46	15.99		150.0	
$\begin{aligned} & 10551- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS7, $99 p \mathrm{duty}$ cycle)	X	5.19	66.21	15.83	0.00	150.0	± 9.6 \%
		Y	5.28	66.60	16.01		150.0	
		Z	5.30	66.24	15.84		150.0	
$\begin{aligned} & 10552- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi ($80 \mathrm{MHz}, \mathrm{MCS} 8$, 99 pc duty cycle)	X	5.18	66.29	15.86	0.00	150.0	± 9.6 \%
		Y	5.27	66.65	16.04		150.0	
		Z	5.26	66.20	15.82		150.0	
$\begin{array}{\|l\|} \hline 10553- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	X	5.23	66.22	15.86	0.00	150.0	± 9.6 \%
		Y	5.32	66.58	16.03		150.0	
		Z	5.32	66.18	15.85		150.0	
$10554-$ AAC	IEEE 802.11ac WiFi ($160 \mathrm{MHz}, \mathrm{MCS} 0$, 99 pc duty cycle)	X	5.62	66.51	15.95	0.00	150.0	± 9.6 \%
		Y	5.68	66.84	16.09		150.0	
		Z	5.69	66.48	15.94		150.0	
10555-AAC	IEEE 802.11ac WiFi (160 MHz , MCS1, 99 pc duty cycle)	X	5.69	66.71	16.04	0.00	150.0	± 9.6 \%
		Y	5.76	67.04	16.18		150.0	
		Z	5.79	66.75	16.05		150.0	
$\begin{aligned} & 10556- \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi ($160 \mathrm{MHz}, \mathrm{MCS} 2$, 99pc duty cycle)	X	5.75	66.88	16.11	0.00	150.0	± 9.6 \%
		Y	5.80	67.16	16.23		150.0	
		Z	5.83	66.85	16.10		150.0	
$\begin{aligned} & 10557- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS3, 99pc duty cycle)	X	5.69	66.70	16.04	0.00	150.0	± 9.6 \%
		Y	5.76	67.04	16.19		150.0	
		Z	5.77	66.69	16.03		150.0	

10558AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 99 pc duty cycle)	X	5.67	66.68	16.05	0.00	150.0	± 9.6 \%
		Y	5.76	67.07	16.22		150.0	
		Z	5.80	66.79	16.10		150.0	
$\begin{array}{\|l\|} \hline 10560- \\ \text { AAC } \\ \hline \end{array}$	IEEE 802.11ac WiFi (160 MHz , MCS6, 99pc duty cycle)	X	5.71	66.66	16.07	0.00	150.0	$\pm 9.6 \%$
		Y	5.79	67.02	16.23		150.0	
		Z	5.81	66.69	16.09		150.0	
$\begin{aligned} & 10561- \\ & \text { AAC } \end{aligned}$	IEEE 802.11 ac WiFi (160 MHz , MCS7, 99 pc duty cycle)	X	5.65	66.65	16.10	0.00	150.0	$\pm 9.6 \%$
		Y	5.72	67.00	16.25		150.0	
		Z	5.75	66.69	16.12		150.0	
$\begin{aligned} & 10562- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS8, 99pc duty cycle)	X	5.68	66.77	16.16	0.00	150.0	$\pm 9.6 \%$
		Y	5.77	67.15	16.33		150.0	
		Z	5.80	66.87	16.21		150.0	
$\begin{aligned} & 10563- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS9, 99 pc duty cycle)	X	5.80	66.82	16.15	0.00	150.0	± 9.6 \%
		Y	5.88	67.15	16.29		150.0	
		Z	5.91	66.85	16.17		150.0	
$\begin{aligned} & 10564- \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 9 Mbps , 99 pc duty cycle)	X	4.52	66.62	16.09	0.46	150.0	$\pm 9.6 \%$
		Y	4.63	66.97	16.32		150.0	
		Z	4.63	66.48	16.09		150.0	
$\begin{aligned} & 10565- \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 12 Mbps , 99 pc duty cycle)	X	4.71	67.05	16.42	0.46	150.0	± 9.6 \%
		Y	4.82	67.38	16.63		150.0	
		Z	4.83	66.91	16.42		150.0	
$\begin{aligned} & \text { 10566- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $18 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle)	X	4.54	66.82	16.20	0.46	150.0	$\pm 9.6 \%$
		Y	4.65	67.19	16.43		150.0	
		Z	4.66	66.71	16.22		150.0	
$\begin{aligned} & 10567- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11g WiFi 2.4 GHz (DSSSOFDM, $24 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle)	X	4.58	67.25	16.61	0.46	150.0	$\pm 9.6 \%$
		Y	4.69	67.60	16.82		150.0	
		Z	4.69	67.12	16.60		150.0	
$\begin{aligned} & \text { 10568- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 36 Mbps , 99 pc duty cycle)	X	4.42	66.46	15.88	0.46	150.0	± 9.6 \%
		Y	4.54	66.88	16.15		150.0	
		Z	4.56	66.45	15.95		150.0	
$\begin{aligned} & 10569- \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 48 Mbps , 99 pc duty cycle)	X	4.58	67.53	16.78	0.46	150.0	± 9.6 \%
		Y	4.68	67.86	16.97		150.0	
		Z	4.68	67.31	16.72		150.0	
$\begin{aligned} & 10570- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS. OFDM, 54 Mbps , 99pc duty cycle)	X	4.57	67.27	16.64	0.46	150.0	± 9.6 \%
		Y	4.68	67.61	16.85		150.0	
		Z	4.69	67.12	16.62		150.0	
$\begin{aligned} & 10571- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	0.99	62.81	14.23	0.46	130.0	± 9.6 \%
		Y	1.09	64.12	15.35		130.0	
		Z	1.00	62.69	14.25		130.0	
$\begin{aligned} & 10572- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90 pc duty cycle)	X	1.00	63.25	14.53	0.46	130.0	± 9.6 \%
		Y	1.10	64.66	15.71		130.0	
		Z	1.00	63.12	14.54		130.0	
$\begin{aligned} & 10573- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90 pc duty cycle)	X	0.77	71.94	17.18	0.46	130.0	± 9.6 \%
		Y	1.53	83.79	23.08		130.0	
		Z	0.78	71.84	17.05		130.0	
$\begin{aligned} & 10574- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 b WiFi 2.4 GHz (DSSS, 11 Mbps, 90 pc duty cycle)	X	0.97	67.27	16.73	0.46	130.0	± 9.6 \%
		Y	1.16	70.12	18.67		130.0	
		Z	0.98	67.08	16.66		130.0	

$\begin{aligned} & 10575- \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $6 \mathrm{Mbps}, 90$ pc duty cycle)	X	4.29	66.33	16.06	0.46	130.0	$\pm 9.6 \%$
		Y	4.40	66.70	16.31		130.0	
		Z	4.41	66.24	16.12		130.0	
$\begin{aligned} & \text { 10576- } \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $9 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	4.32	66.56	16.16	0.46	130.0	± 9.6 \%
		Y	4.43	66.92	16.41		130.0	
		Z	4.43	66.43	16.20		130.0	
10577- AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 12 Mbps , 90 pc duty cycle)	X	4.47	66.78	16.31	0.46	130.0	± 9.6 \%
		Y	4.58	67.14	16.55		130.0	
		Z	4.60	66.69	16.36		130.0	
10578- AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 18 Mbps , 90 pc duty cycle)	X	4.38	66.93	16.42	0.46	130.0	± 9.6 \%
		Y	4.49	67.29	16.66		130.0	
		Z	4.50	66.83	16.46		130.0	
10579-$A A A$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $24 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	4.12	66.01	15.59	0.46	130.0	$\pm 9.6 \%$
		Y	4.24	66.44	15.89		130.0	
		Z	4.26	65.99	15.69		130.0	
$10580-$ AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 36 Mbps , 90 pc duty cycle)	X	4.14	66.03	15.59	0.46	130.0	± 9.6 \%
		Y	4.27	66.48	15.90		130.0	
		Z	4.30	66.06	15.72		130.0	
$\begin{aligned} & 10581- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 48 Mbps , 90 pc duty cycle)	X	4.29	67.01	16.39	0.46	130.0	$\pm 9.6 \%$
		Y	4.41	67.39	16.65		130.0	
		Z	4.41	66.87	16.41		130.0	
$\begin{aligned} & 10582- \\ & \text { AAA } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $54 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	4.04	65.76	15.35	0.46	130.0	± 9.6 \%
		Y	4.17	66.20	15.67		130.0	
		Z	4.19	65.76	15.46		130.0	
$\begin{aligned} & 10583- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.29	66.33	16.06	0.46	130.0	$\pm 9.6 \%$
		Y	4.40	66.70	16.31		130.0	
		Z	4.41	66.24	16.12		130.0	
$\begin{aligned} & 10584- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	4.32	66.56	16.16	0.46	130.0	$\pm 9.6 \%$
		Y	4.43	66.92	16.41		130.0	
		Z	4.43	66.43	16.20		130.0	
$\begin{aligned} & 10585- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90 pc duty cycle)	X	4.47	66.78	16.31	0.46	130.0	± 9.6 \%
		Y	4.58	67.14	16.55		130.0	
		Z	4.60	66.69	16.36		130.0	
$\begin{aligned} & 10586- \\ & \text { AAB } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	4.38	66.93	16.42	0.46	130.0	$\pm 9.6 \%$
		Y	4.49	67.29	16.66		130.0	
		Z	4.50	66.83	16.46		130.0	
$\begin{aligned} & 10587- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90 pc duty cycle)	X	4.12	66.01	15.59	0.46	130.0	$\pm 9.6 \%$
		Y	4.24	66.44	15.89		130.0	
		Z	4.26	65.99	15.69		130.0	
$\begin{aligned} & 10588- \\ & \text { AAB } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.14	66.03	15.59	0.46	130.0	$\pm 9.6 \%$
		Y	4.27	66.48	15.90		130.0	
		Z	4.30	66.06	15.72		130.0	
$\begin{aligned} & 10589- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90 pc duty cycle)	X	4.29	67.01	16.39	0.46	130.0	$\pm 9.6 \%$
		Y	4.41	67.39	16.65		130.0	
		Z	4.41	66.87	16.41		130.0	
$\begin{aligned} & 10590- \\ & \mathrm{AAB} \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	4.04	65.76	15.35	0.46	130.0	$\pm 9.6 \%$
		Y	4.17	66.20	15.67		130.0	
		Z	4.19	65.76	15.46		130.0	

$\begin{aligned} & 10591- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	X	4.45	66.46	16.22	0.46	130.0	$\pm 9.6 \%$
		Y	4.56	66.80	16.44		130.0	
		Z	4.57	66.34	16.25		130.0	
$\begin{aligned} & 10592- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 20 MHz , MCS1, 90pc duty cycle)	X	4.56	66.73	16.33	0.46	130.0	$\pm 9.6 \%$
		Y	4.67	67.08	16.56		130.0	
		Z	4.69	66.64	16.38		130.0	
$\begin{aligned} & 10593- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	X	4.47	66.59	16.17	0.46	130.0	$\pm 9.6 \%$
		Y	4.59	66.95	16.42		130.0	
		Z	4.60	66.51	16.23		130.0	
$\begin{aligned} & \hline 10594- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 20 MHz , MCS3, 90pc duty cycle)	X	4.53	66.78	16.36	0.46	130.0	$\pm 9.6 \%$
		Y	4.64	67.13	16.59		130.0	
		Z	4.66	66.69	16.40		130.0	
$\begin{aligned} & 10595- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	4.49	66.75	16.26	0.46	130.0	$\pm 9.6 \%$
		Y	4.61	67.12	16.50		130.0	
		Z	4.62	66.66	16.30		130.0	
$\begin{aligned} & 10596- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS5,90pc duty cycle)	X	4.42	66.68	16.23	0.46	130.0	$\pm 9.6 \%$
		Y	4.53	67.07	16.49		130.0	
		Z	4.55	66.62	16.29		130.0	
$\begin{aligned} & 10597- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 n (HT Mixed, 20 MHz , MCS6, 90pc duty cycle)	X	4.37	66.54	16.07	0.46	130.0	$\pm 9.6 \%$
		Y	4.49	66.93	16.34		130.0	
		Z	4.51	66.49	16.14		130.0	
$\begin{aligned} & 10598- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	4.38	66.81	16.37	0.46	130.0	± 9.6 \%
		Y	4.49	67.18	16.61		130.0	
		Z	4.50	66.72	16.41		130.0	
$\begin{aligned} & 10599- \\ & \text { AAB } \end{aligned}$	IEEE 802.11 n (HT Mixed, 40 MHz , MCS0, 90pc duty cycle)	X	5.17	67.00	16.56	0.46	130.0	$\pm 9.6 \%$
		Y	5.23	67.23	16.68		130.0	
		Z	5.27	66.93	16.57		130.0	
$\begin{aligned} & 10600- \\ & \text { AAB } \end{aligned}$	JEEE 802.11n (HT Mixed, 40 MHz , MCS1, 90pc duty cycle)	X	5.26	67.35	16.71	0.46	130.0	± 9.6 \%
		Y	5.31	67.52	16.80		130.0	
		Z	5.40	67.37	16.76		130.0	
$\begin{aligned} & 10601- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 40 MHz , MCS2, 90pc duty cycle)	X	5.19	67.20	16.65	0.46	130.0	± 9.6 \%
		Y	5.24	67.37	16.74		130.0	
		Z	5.28	67.08	16.63		130.0	
$\begin{aligned} & 10602- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11 n (HT Mixed, 40 MHz , MCS3, 90pc duty cycle)	X	5.24	67.11	16.52	0.46	130.0	± 9.6 \%
		Y	5.31	67.34	16.64		130.0	
		Z	5.41	67.24	16.63		130.0	
$\begin{aligned} & \hline 10603- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 40 MHz , MCS4, 90 pc duty cycle)	X	5.29	67.35	16.79	0.46	130.0	± 9.6 \%
		Y	5.38	67.63	16.93		130.0	
		Z	5.49	67.59	16.94		130.0	
$\begin{aligned} & 10604- \\ & \mathrm{AAB} \end{aligned}$	IEEE 802.11 n (HT Mixed, 40 MHz , MCS5, 90pc duty cycle)	X	5.15	66.85	16.51	0.46	130.0	$\pm 9.6 \%$
		Y	5.25	67.21	16.70		130.0	
		Z	5.37	67.21	16.74		130.0	
$\begin{aligned} & 10605- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 40 MHz , MCS6, 90 pc duty cycle)	X	5.23	67.14	16.65	0.46	130.0	± 9.6 \%
		Y	5.30	67.39	16.79		130.0	
		Z	5.38	67.23	16.74		130.0	
$\begin{aligned} & 10606- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 n (HT Mixed, 40 MHz , MCS7, 90pc duty cycle)	X	5.05	66.67	16.26	0.46	130.0	± 9.6 \%
		Y	5.11	66.89	16.39		130.0	
		Z	5.14	66.57	16.26		130.0	

$\begin{aligned} & 10607- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20 MHz , MCSO, 90 pc duty cycle)	X	4.30	65.79	15.85	0.46	130.0	± 9.6 \%
		Y	4.41	66.18	16.11		130.0	
		Z	4.41	65.65	15.87		130.0	
$\begin{aligned} & 10608- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS1, 90 pc duty cycle)	X	4.42	66.08	15.98	0.46	130.0	± 9.6 \%
		Y	4.54	66.48	16.24		130.0	
		Z	4.55	65.99	16.03		130.0	
$\begin{aligned} & 10609- \\ & A A B \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS2, 90 pc duty cycle)	X	4.32	65.89	15.79	0.46	130.0	± 9.6 \%
		Y	4.44	66.32	16.07		130.0	
		Z	4.44	65.81	15.84		130.0	
10610- $A A B$	IEEE 802.11ac WiFi (20MHz, MCS3, 90 pc duty cycle)	X	4.37	66.08	15.98	0.46	130.0	± 9.6 \%
		Y	4.49	66.49	16.24		130.0	
		Z	4.49	65.99	16.01		130.0	
10611- $A A B$	IEEE 802.11ac WiFi ($20 \mathrm{MHz}, \mathrm{MCS} 4$, 90 pc duty cycle)	X	4.28	65.85	15.80	0.46	130.0	± 9.6 \%
		Y	4.40	66.28	16.08		130.0	
		Z	4.41	65.78	15.85		130.0	
$\begin{aligned} & 10612- \\ & A A B \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS5, 90 pc duty cycle)	X	4.26	65.94	15.82	0.46	130.0	$\pm 9.6 \%$
		Y	4.39	66.39	16.11		130.0	
		Z	4.40	65.90	15.88		130.0	
$\begin{aligned} & \text { 10613- } \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS6, 90 pc duty cycle)	X	4.25	65.75	15.65	0.46	130.0	± 9.6 \%
		Y	4.38	66.20	15.95		130.0	
		Z	4.40	65.73	15.73		130.0	
10614- $A A B$	IEEE 802.11ac WiFi (20MHz, MCS7, 90 pc duty cycle)	X	4.24	66.02	15.94	0.46	130.0	± 9.6 \%
		Y	4.36	66.46	16.22		130.0	
		Z	4.36	65.95	15.99		130.0	
10615- AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	X	4.26	65.66	15.54	0.46	130.0	± 9.6 \%
		Y	4.39	66.11	15.84		130.0	
		Z	4.40	65.60	15.61		130.0	
$\begin{aligned} & 10616- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCSO, 90 pc duty cycle)	X	4.95	66.09	16.09	0.46	130.0	± 9.6 \%
		Y	5.04	66.42	16.27		130.0	
		Z	5.06	66.06	16.12		130.0	
$\begin{aligned} & 10617- \\ & \mathrm{AAB} \end{aligned}$	IEEE 802,11ac WiFi (40MHz, MCS1, 90 pc duty cycle)	X	4.98	66.18	16.11	0.46	130.0	$\pm 9.6 \%$
		Y	5.07	66.52	16.29		130.0	
		Z	5.13	66.25	16.19		130.0	
10618- AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 90 pc duty cycle)	X	4.89	66.22	16.14	0.46	130.0	$\pm 9.6 \%$
		Y	4.99	66.61	16.35		130.0	
		Z	5.02	66.28	16.21		130.0	
$\begin{aligned} & \hline 10619- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS3, 90 pc duty cycle)	X	4.94	66.16	16.04	0.46	130.0	$\pm 9.6 \%$
		Y	5.01	66.45	16.21		130.0	
		Z	5.04	66.09	16.05		130.0	
$\begin{aligned} & 10620- \\ & A A B \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS4, 90 pc duty cycle)	X	4.98	66.07	16.05	0.46	130.0	± 9.6 \%
		Y	5.08	66.42	16.24		130.0	
		Z	5.12	66.10	16.11		130.0	
$\begin{aligned} & \hline 10621- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS5, 90 pc duty cycle)	X	5.00	66.21	16.25	0.46	130.0	± 9.6 \%
		Y	5.09	66.55	16.43		130.0	
		Z	5.12	66.22	16.29		130.0	
$\begin{array}{\|l\|} \hline 10622- \\ \text { AAB } \end{array}$	IEEE 802.11ac WiFi (40MHz, MCS6, 90 pc duty cycle)	X	4.98	66.29	16.29	0.46	130.0	$\pm 9.6 \%$
		Y	5.08	66.63	16.46		130.0	
		Z	5.11	66.32	16.34		130.0	

$\begin{aligned} & 10623 m \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS7, 90 pc duty cycle)	X	4.88	65.86	15.92	0.46	130.0	$\pm 9.6 \%$
		Y	4.97	66.20	16.11		130.0	
		Z	4.99	65.82	15.95		130.0	
10624- AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 90 pc duty cycle)	X	5.07	66.13	16.12	0.46	130.0	$\pm 9.6 \%$
		Y	5.16	66.45	16.30		130.0	
		Z	5.20	66.12	16.17		130.0	
$\begin{aligned} & 10625- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS9, 90 pc duty cycle)	X	5.18	66.36	16.31	0.46	130.0	$\pm 9.6 \%$
		Y	5.24	66.57	16.42		130.0	
		Z	5.32	66.38	16.36		130.0	
$\begin{aligned} & 10626- \\ & \text { AAB } \end{aligned}$	$\begin{aligned} & \text { IEEE } 802.11 \mathrm{ac} \text { WiFi }(80 \mathrm{MHz}, \mathrm{MCSO}, \\ & 90 \mathrm{pc} \text { duty cycle) } \end{aligned}$	X	5.30	66.10	16.05	0.46	130.0	$\pm 9.6 \%$
		Y	5.38	66.44	16.22		130.0	
		Z	5.40	66.12	16.09		130.0	
$\begin{aligned} & 10627- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS1, 90 pc duty cycle)	X	5.53	66.77	16.36	0.46	130.0	$\pm 9.6 \%$
		Y	5.59	67.01	16.48		130.0	
		Z	5.65	66.81	16.41		130.0	
$\begin{aligned} & 10628- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS2, 90 pc duty cycle)	X	5.29	66.06	15.93	0.46	130.0	$\pm 9.6 \%$
		Y	5.37	66.41	16.10		130.0	
		Z	5.40	66.11	15.98		130.0	
$\begin{aligned} & 10629- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS3, 90 pc duty cycle)	X	5.43	66.42	16.11	0.46	130.0	$\pm 9.6 \%$
		Y	5.47	66.61	16.20		130.0	
		Z	5.50	66.31	16.08		130.0	
$\begin{aligned} & 10630- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS4, 90 pc duty cycle)	X	5.59	67.09	16.45	0.46	130.0	$\pm 9.6 \%$
		Y	5.66	67.38	16.59		130.0	
		Z	5.82	67.46	16.66		130.0	
$\begin{aligned} & 10631- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS5, 90 pc duty cycle)	X	5.58	67.18	16.70	0.46	130.0	$\pm 9.6 \%$
		Y	5.66	67.50	16.84		130.0	
		Z	5.74	67.33	16.79		130.0	
$\begin{aligned} & 10632- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS6, 90 pc duty cycle)	X	5.57	67.09	16.67	0.46	130.0	$\pm 9.6 \%$
		Y	5.60	67.22	16.72		130.0	
		Z	5.64	66.96	16.63		130.0	
$\begin{aligned} & 10633- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	X	5.30	66.12	16.00	0.46	130.0	$\pm 9.6 \%$
		Y	5.39	66.49	16.18		130.0	
		Z	5.45	66.28	16.11		130.0	
$\begin{aligned} & 10634- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS8, 90 pc duty cycle)	X	5.34	66.35	16.17	0.46	130.0	$\pm 9.6 \%$
		Y	5.43	66.70	16.34		130.0	
		Z	5.44	66.35	16.20		130.0	
$\begin{aligned} & 10635- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS9, 90 pc duty cycle)	X	5.19	65.54	15.47	0.46	130.0	$\pm 9.6 \%$
		Y	5.28	65.93	15.68		130.0	
		Z	5.31	65.62	15.55		130.0	
$\begin{aligned} & 10636- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi ($160 \mathrm{MHz}, \mathrm{MCSO}$, 90 pc duty cycle)	X	5.75	66.48	16.16	0.46	130.0	$\pm 9.6 \%$
		Y	5.81	66.78	16.30		130.0	
		Z	5.84	66.50	16.20		130.0	
$\begin{aligned} & 10637- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS1, 90 pc duty cycle)	X	5.86	66.76	16.29	0.46	130.0	$\pm 9.6 \%$
		Y	5.91	67.05	16.42		130.0	
		Z	5.98	66.87	16.37		130.0	
$\begin{aligned} & 10638- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS2, 90 pc duty cycle)	X	5.90	66.89	16.33	0.46	130.0	$\pm 9.6 \%$
		Y	5.95	67.16	16.45		130.0	
		Z	5.98	66.88	16.35		130.0	

$\begin{aligned} & 10639- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFI ($160 \mathrm{MHz}, \mathrm{MCS} 3$, 90 pc duty cycle)	X	5.83	66.70	16.28	0.46	130.0	± 9.6 \%
		Y	5.90	67.02	16.42		130.0	
		Z	5.94	66.76	16.33		130.0	
$\begin{aligned} & 10640- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS4, 90 pc duty cycle)	X	5.77	66.49	16.12	0.46	130.0	± 9.6 \%
		Y	5.85	66.88	16.30		130.0	
		Z	5.92	66.69	16.24		130.0	
10641 $A A C$	IEEE 802.11ac WiFi ($160 \mathrm{MHz}, \mathrm{MCS5}$, 90 pc duty cycle)	X	5.90	66.70	16.24	0.46	130.0	± 9.6 \%
		Y	5.96	66.97	16.37		130.0	
		Z	6.02	66.77	16.30		130.0	
10642- AAC	IEEE 802.11ac WiFi ($160 \mathrm{MHz}, \mathrm{MCS}$, 90 pc duty cycle)	X	5.91	66.85	16.49	0.46	130.0	± 9.6 \%
		Y	5.98	67.18	16.64		130.0	
		Z	6.03	66.94	16.56		130.0	
10643- AAC	IEEE 802.11ac WiFi (160 MHz , MCS7, 90 pc duty cycle)	X	5.75	66.52	16.20	0.46	130.0	$\pm 9.6 \%$
		Y	5.83	66.86	16.37		130.0	
		Z	5.88	66.65	16.30		130.0	
10644- AAC	IEEE 802.11 ac WiFi ($160 \mathrm{MHz}, \mathrm{MCS} 8$, 90pc duty cycle)	X	5.80	66.66	16.30	0.46	130.0	± 9.6 \%
		Y	5.88	67.03	16.47		130.0	
		Z	5.94	66.85	16.42		130.0	
10645- AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	X	5.94	66.78	16.33	0.46	130.0	± 9.6 \%
		Y	6.00	67.06	16.46		130.0	
		Z	6.15	67.15	16.54		130.0	
10646- AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , QPSK, UL Subframe=2.7)	X	5.05	83.78	28.65	9.30	60.0	± 9.6 \%
		Y	6.98	93.27	32.89		60.0	
		Z	7.15	91.85	32.42		60.0	
10647- AAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , QPSK, UL Subframe $=2,7$)	X	4.54	81.82	27.99	9.30	60.0	± 9.6 \%
		Y	5.99	90.07	31.84		60.0	
		Z	6.33	89.46	31.67		60.0	
10648	CDMA2000 (1x Advanced)	X	0.37	60.00	6.05	0.00	150.0	$\pm 9.6 \%$
		Y	0.48	61.63	8.16		150.0	
		Z	0.43	60.11	6.90		150.0	
$\begin{aligned} & 10652- \\ & \text { AAC } \\ & \hline \end{aligned}$	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1 , Clipping 44\%)	X	2.93	65.21	15.11	2.23	80.0	± 9.6 \%
		Y	3.20	66.58	16.05		80.0	
		Z	3.10	65.44	15.57		80.0	
$\begin{aligned} & 10653- \\ & \text { AAC } \end{aligned}$	LTE-TDD (OFDMA, 10 MHz , E-TM 3.1, Clipping 44\%)	X	3.55	64.93	15.73	2.23	80.0	$\pm 9.6 \%$
		Y	3.74	65.80	16.31		80.0	
		Z	3.68	65.02	15.99		80.0	
10654 AAC	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44\%)	X	3.60	64.60	15.83	2.23	80.0	± 9.6 \%
		Y	3.76	65.39	16.34		80.0	
		Z	3.70	64.69	16.04		80.0	
$\begin{aligned} & \hline 10655- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (OFDMA, 20 MHz , E-TM 3.1, Clipping 44\%)	X	3.69	64.52	15.89	2.23	80.0	± 9.6 \%
		Y	3.83	65.30	16.38		80.0	
		Z	3.78	64.64	16.09		80.0	
$\begin{aligned} & 10658- \\ & \text { AAA } \end{aligned}$	Pulse Waveform ($200 \mathrm{~Hz}, 10 \%$)	X	3.48	68.63	11.85	10.00	50.0	$\pm 9.6 \%$
		Y	5.65	74.45	13.80		50.0	
		Z	7.21	77.53	15.77		50.0	
10659-	Pulse Waveform ($200 \mathrm{~Hz}, 20 \%$)	X	2.03	66.95	10.03	6.99	60.0	± 9.6 \%
		Y	100.00	101.12	19.79		60.0	
		Z	100.00	104.10	21.38		60.0	

$10660-$ AAA	Pulse Waveform (200Hz, 40\%)	X	0.68	62.61	6.79	3.98	80.0	$\pm 9.6 \%$
		Y	100.00	101.16	18.64		80.0	
		Z	100.00	99.78	18.10		80.0	
$10661-$ AAA	Pulse Waveform (200Hz, 60\%)	X	0.25	60.00	4.25	2.22	100.0	$\pm 9.6 \%$
		Y	100.00	102.31	18.13		100.0	
		Z	0.28	60.39	4.93		100.0	
$10662-$ AAA	Pulse Waveform (200Hz, 80\%)	X	6.06	60.21	1.38	0.97	120.0	$\pm 9.6 \%$
		Y	100.00	96.37	14.68		120.0	
	Z	9.95	60.38	1.42		120.0		

${ }^{E}$ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client
PC Test
Certificate No: EX3-7488_Jan 19

CALIBRATION CERTIFICATE

Object	
Calibration procedure(s)	
Calibration date:	January 24, 2019 \%
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.	
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 $\pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.	
Calibration Equipment used (M\&TE critical for calibration)	

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
DAE4	SN: 660	19-Dec-18 (No. DAE4-660_Dec18)	Dec-19
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Glossary:
TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORM x, y, z
DCP diode compression point
CF crest factor (1/duty_cycle) of the RF signal
$A, B, C, D \quad$ modulation dependent linearization parameters
Polarization φ
Polarization ϑ
φ rotation around probe axis
ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta=0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization $9=0$ ($f \leq 900 \mathrm{MHz}$ in TEM-cell; $\mathrm{f}>1800 \mathrm{MHz}$: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORM x, y, z does not affect the E^{2}-field uncertainty inside TSL (see below ConvF).
- NORM(f) $x, y, z=N O R M x, y, z$ * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $D C P x, y, z$: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $A x, y, z ; B x, y, z ; C x, y, z ; D x, y, z ; V R x, y, z: A, B, C, D$ are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $\mathrm{f} \leq 800 \mathrm{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $\mathrm{f}>800 \mathrm{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50 \mathrm{MHz}$ to ± 100 MHz .
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7488

Basic Calibration Parameters

	Sensor \mathbf{X}	Sensor \mathbf{Y}	Sensor \mathbf{Z}	Unc (k=2)
Norm $\left(\mu \mathrm{V} /(\mathrm{V} / \mathrm{m})^{2}\right)^{\mathrm{A}}$	0.45	0.49	0.50	$\pm 10.1 \%$
$\mathrm{DCP}(\mathrm{mV})^{B}$	98.9	102.3	99.6	

Calibration Results for Modulation Response

UID	Communication System Name		$\begin{gathered} \hline A \\ d B \end{gathered}$	$\stackrel{B}{d B \cup \mu v}$	C	$\begin{gathered} \\ \hline \mathrm{D} \\ \mathrm{~dB} \end{gathered}$	$\begin{aligned} & \mathrm{VR} \\ & \mathrm{mV} \end{aligned}$	Max dev.	$\underset{\text { Mnc }^{\text {Max }}}{ }$ $(k=2)$
0	CW	X	0.00	0.00	1.00	0.00	149.5	± 2.7 \%	± 4.7 \%
		Y	0.00	0.00	1.00		140.8		
		Z	0.00	0.00	1.00		138.2		
$\begin{aligned} & \text { 10352- } \\ & \text { AAA } \end{aligned}$	Pulse Waveform ($200 \mathrm{~Hz}, 10 \%$)	X	10.21	80.63	15.98	10.00	60.0	± 3.1 \%	± 9.6 \%
		Y	5.90	74.67	14.18		60.0		
		Z	15.00	89.30	20.53		60,0		
$\begin{aligned} & 10353- \\ & \text { AAA } \end{aligned}$	Pulse Waveform (200Hz, 20\%)	X	15.00	85.88	16.55	6.99	80.0	± 2.1 \%	± 9.6 \%
		Y	15.00	84.35	15.79		80.0		
		Z	15.00	92.51	21.01		80.0		
$\begin{aligned} & 10354- \\ & \text { AAA } \end{aligned}$	Pulse Waveform ($200 \mathrm{~Hz}, 40 \%$)	X	15.00	90.08	17.19	3.98	95.0	± 1.3 \%	± 9.6 \%
		Y	15.00	83.37	13.66		95.0		
		Z	15.00	104.27	25.33		95.0		
$\begin{aligned} & 10355- \\ & \text { AAA } \end{aligned}$	Pulse Waveform ($200 \mathrm{~Hz}, 60 \%$)	X	15.00	97.36	19.30	2.22	120.0	± 1.2 \%	± 9.6 \%
		Y	0.26	60.00	4.43		120.0		
		Z	15.00	117.38	29.81		120.0		
$\begin{aligned} & 10387- \\ & \text { AAA } \end{aligned}$	QPSK Waveform, 1 MHz	X	0.51	60.28	7.04	0.00	150.0	± 3.3 \%	± 9.6 \%
		Y	0.47	60.00	5.79		150.0		
		Z	0.61	61.09	8.42		150.0		
$\begin{aligned} & 10388- \\ & \text { AAA } \end{aligned}$	QPSK Waveform, 10 MHz	X	2.29	69.54	16.64	0.00	150.0	± 1.1 \%	± 9.6 \%
		Y	1.90	66.64	14.97		150.0		
		Z	2.23	68.54	16.09		150.0		
$\begin{aligned} & 10396- \\ & \text { AAA } \end{aligned}$	64-QAM Waveform, 100 kHz	X	2.94	72.04	19.55	3.01	150.0	± 0.7 \%	± 9.6 \%
		Y	2.49	68.13	17.71		150.0		
		Z	3.35	73.33	20.07		150.0		
$\begin{aligned} & \text { 10399- } \\ & \text { AAA } \end{aligned}$	64-QAM Waveform, 40 MHz	X	3.54	67.80	16.20	0.00	150.0	± 2.2 \%	± 9.6 \%
		Y	3.42	67.12	15.74		150.0		
		Z	3.49	67.32	15.92		150.0		
10414AAA	WLAN CCDF, 64-QAM, 40MHz	X	4.65	65.56	15.55	0.00	150.0	$\pm 4.0 \%$	± 9.6 \%
		Y	4.74 4.80	65.87	15.68		150.0		
		Z	4.80						

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^3]
DASY/EASY - Parameters of Probe: EX3DV4 - SN:7488

Sensor Model Parameters

	$\mathbf{C 1}$ $\mathbf{f F}$	$\mathbf{C 2}$ $\mathbf{f F}$	\mathbf{a} $\mathbf{V}^{\mathbf{- 1}}$	$\mathbf{T 1}$ $\mathbf{m s} . \mathbf{V}^{\mathbf{- 2}}$	$\mathbf{T 2}$ $\mathbf{m s} . \mathbf{V}^{\mathbf{- 1}}$	$\mathbf{T 3}$ $\mathbf{m s}$	$\mathbf{T 4}$ $\mathbf{V}^{\mathbf{- 2}}$	$\mathbf{T 5}$ $\mathbf{V}^{\mathbf{- 1}}$	$\mathbf{T 6}$
X	35.2	259.64	34.83	7.55	0.00	5.04	1.52	0.11	1.01
Y	34.3	261.80	36.90	6.01	0.21	5.06	0.00	0.41	1.01
Z	40.7	301.53	35.10	11.37	0.14	5.09	1.94	0.15	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle $\left(^{\circ}\right.$)	-129.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7488

Calibration Parameter Determined in Head Tissue Simulating Media

$\mathbf{f (M H z})^{\mathbf{C}}$	Relative Permittivity $^{\mathbf{F}}$	Conductivity $(\mathbf{S} / \mathrm{m})^{\mathbf{F}}$	ConvF X	ConvF \mathbf{Y}	ConvF $Z^{\text {Alpha }}{ }^{\mathbf{G}}$	Dept $^{\mathbf{G}}$ $(\mathbf{m m})$	Unc $(\mathrm{k}=2)$	
750	41.9	0.89	10.77	10.77	10.77	0.56	0.80	$\pm 12.0 \%$
835	41.5	0.90	10.37	10.37	10.37	0.40	0.93	$\pm 12.0 \%$
1750	40.1	1.37	8.87	8.87	8.87	0.33	0.84	$\pm 12.0 \%$
1900	40.0	1.40	8.53	8.53	8.53	0.27	0.84	$\pm 12.0 \%$
2300	39.5	1.67	8.25	8.25	8.25	0.33	0.85	$\pm 12.0 \%$
2450	39.2	1.80	7.86	7.86	7.86	0.34	0.90	$\pm 12.0 \%$
2600	39.0	1.96	7.69	7.69	7.69	0.35	0.86	$\pm 12.0 \%$
5250	35.9	4.71	5.35	5.35	5.35	0.40	1.80	$\pm 13.1 \%$
5600	35.5	5.07	4.70	4.70	4.70	0.40	1.80	$\pm 13.1 \%$
5750	35.4	5.22	5.03	5.03	5.03	0.40	1.80	$\pm 13.1 \%$

${ }^{c}$ Frequency validity above 300 MHz of $\pm 100 \mathrm{MHz}$ only applies for DASY v4.4 and higher (see Page 2), else it is restricted to $\pm 50 \mathrm{MHz}$. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm 10,25,40,50$ and 70 MHz for ConvF assessments at $30,64,128,150$ and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is $4-9 \mathrm{MHz}$, and ConvF assessed at 13 MHz is $9-19 \mathrm{MHz}$. Above 5 GHz frequency validify can be extended to $\pm 110 \mathrm{MHz}$.
${ }^{F}$ At frequencies below 3 GHz , the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10 \%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz , the validity of tissue parameters (ε and σ) is restricted to $\pm 5 \%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
${ }^{G}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1 \%$ for frequencies below 3 GHz and below $\pm 2 \%$ for frequencies between $3-6 \mathrm{GHz}$ at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7488

Calibration Parameter Determined in Body Tissue Simulating Media

$\mathbf{f (M H z)}{ }^{\text {c }}$	Relative Permittivity $^{\text {F }}$	Conductivity $(\mathbf{S} / \mathrm{m})^{F}$	ConvF X	ConvFY	ConvF Z	Alpha $^{\text {G }}$	Depth (mm)	Unc $(\mathbf{k}=\mathbf{2})$
750	55.5	0.96	11.28	11.28	11.28	0.46	0.80	$\pm 12.0 \%$
835	55.2	0.97	11.03	11.03	11.03	0.46	0.81	$\pm 12.0 \%$
1750	53.4	1.49	8.68	8.68	8.68	0.38	0.88	$\pm 12.0 \%$
1900	53.3	1.52	8.37	8.37	8.37	0.38	0.88	$\pm 12.0 \%$
2300	52.9	1.81	8.21	8.21	8.21	0.42	0.84	$\pm 12.0 \%$
2450	52.7	1.95	8.07	8.07	8.07	0.35	0.98	$\pm 12.0 \%$
2600	52.5	2.16	7.94	7.94	7.94	0.25	0.95	$\pm 12.0 \%$
5250	48.9	5.36	4.82	4.82	4.82	0.50	1.90	$\pm 13.1 \%$
5600	48.5	5.77	4.09	4.09	4.09	0.50	1.90	$\pm 13.1 \%$
5750	48.3	5.94	4.32	4.32	4.32	0.50	1.90	$\pm 13.1 \%$

${ }^{c}$ Frequency validity above 300 MHz of $\pm 100 \mathrm{MHz}$ only applies for DASY v4.4 and higher (see Page 2), else it is restricted to $\pm 50 \mathrm{MHz}$. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm 10,25,40,50$ and 70 MHz for ConvF assessments at $30,64,128,150$ and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is $4-9 \mathrm{MHz}$, and ConvF assessed at 13 MHz is $9-19 \mathrm{MHz}$. Above 5 GHz frequency validity can be extended to $\pm 110 \mathrm{MHz}$.
${ }^{F}$ At frequencies below 3 GHz , the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10 \%$ if fiquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz , the validity of tissue parameters (g and σ) is restricted to $\pm 5 \%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
${ }^{6}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1 \%$ for frequencies below 3 GHz and below $\pm 2 \%$ for frequencies between $3-6 \mathrm{GHz}$ at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field

 (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: $\pm 6.3 \%(k=2)$

Dynamic Range f(SAR $\left.{ }_{\text {head }}\right)$

 (TEM cell , $\mathrm{f}_{\text {eval }}=1900 \mathrm{MHz}$)

Uncertainty of Linearity Assessment: $\pm \mathbf{0 . 6 \%}$ ($k=2$)

Conversion Factor Assessment

 Error (ϕ, ϑ), $\mathbf{f}=\mathbf{9 0 0} \mathbf{~ M H z}$

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	$\begin{aligned} & \text { PAR } \\ & \text { (dB) } \end{aligned}$	$\begin{aligned} & \text { Unc }^{E} \\ & \text { (k=2) } \end{aligned}$
0		CW	CW	0.00	± 4.7 \%
10010	CAA	SAR Validation (Square, $100 \mathrm{~ms}, 10 \mathrm{~ms}$)	Test	10.00	$\pm 9.6 \%$
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	$\pm 9.6 \%$
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	$\pm 9.6 \%$
10013	CAB	IEEE 802.11 g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	$\pm 9.6 \%$
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	$\pm 9.6 \%$
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	$\pm 9.6 \%$
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	$\pm 9.6 \%$
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	$\pm 9.6 \%$
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	$\pm 9.6 \%$
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	$\pm 9.6 \%$
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	$\pm 9.6 \%$
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	$\pm 9.6 \%$
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	$\pm 9.6 \%$
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	$\pm 9.6 \%$
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	$\pm 9.6 \%$
10033	CAA	IEEE 802.15.1 Bluetooth (Pl/4-DQPSK, DH1)	Bluetooth	7.74	$\pm 9.6 \%$
10034	CAA	IEEE 802.15.1 Bluetooth (Pl/4-DQPSK, DH3)	Bluetooth	4.53	± 9.6 \%
10035	CAA	IEEE 802.15.1 Bluetooth (Pl/4-DQPSK, DH5)	Bluetooth	3.83	$\pm 9.6 \%$
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	$\pm 9.6 \%$
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	$\pm 9.6 \%$
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	$\pm 9.6 \%$
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	$\pm 9.6 \%$
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, Pl/4-DQPSK, Halfrate)	AMPS	7.78	$\pm 9.6 \%$
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	$\pm 9.6 \%$
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	± 9.6 \%
10049	CAA	DECT (TDD, TDMAIFDM, GFSK, Double Slot, 12)	DECT	10.79	$\pm 9.6 \%$
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	$\pm 9.6 \%$
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	$\pm 9.6 \%$
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	$\pm 9.6 \%$
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	$\pm 9.6 \%$
10061	CAB	IEEE 802.11b WIFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	$\pm 9.6 \%$
10062	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	$\pm 9.6 \%$
10063	CAC	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	$\pm 9.6 \%$
10064	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	± 9.6 \%
10065	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	$\pm 9.6 \%$
10066	CAC	IEEE $802.11 \mathrm{a} / \mathrm{h} \mathrm{WiFi} 5 \mathrm{GHz}$ (OFDM, 24 Mbps)	WLAN	9.38	$\pm 9.6 \%$
10067	CAC	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	$\pm 9.6 \%$
10068	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	$\pm 9.6 \%$
10069	CAC	IEEE $802.11 \mathrm{a} / \mathrm{h} \mathrm{WiFi} 5 \mathrm{GHz}$ (OFDM, 54 Mbps)	WLAN	10.56	$\pm 9.6 \%$
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	$\pm 9.6 \%$
10072	CAB	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	$\pm 9.6 \%$
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	$\pm 9.6 \%$
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	$\pm 9.6 \%$
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	$\pm 9.6 \%$
10076	CAB	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	$\pm 9.6 \%$
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	$\pm 9.6 \%$
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	$\pm 9.6 \%$
10082	CAB	IS-54/IS-136 FDD (TDMAFDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	$\pm 9.6 \%$
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	$\pm 9.6 \%$
10097	CAB	UMTS-FDD (HSDPA)	WCDMA	3.98	$\pm 9.6 \%$
10098	CAB	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	$\pm 9.6 \%$
10099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	$\pm 9.6 \%$
10100	CAE	L.TE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 20 \mathrm{MHz}$, QPSK)	LTE-FDD	5.67	$\pm 9.6 \%$
10101	CAE	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 20 \mathrm{MHz}, 16-\mathrm{QAM}$)	LTE-FDD	6.42	$\pm 9.6 \%$
10102	CAE	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 20 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-FDD	6.60	$\pm 9.6 \%$
10103	CAG	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 20 \mathrm{MHz}$, QPSK)	LTE-TDD	9.29	± 9.6 \%
10104	CAG	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 20 \mathrm{MHz}$, 16-QAM)	LTE-TDD	9.97	$\pm 9.6 \%$
10105	CAG	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 20 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-TDD	10.01	$\pm 9.6 \%$
10108	CAG	LTE-FDD (SC-FDMA, 100\% RB, 10 MHz , QPSK)	LTE-FDD	5.80	$\pm 9.6 \%$

10109	CAG	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 10 \mathrm{MHz}$, 16-QAM)	LTE-FDD	6.43	± 9.6 \%
10110	CAG	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}, \mathrm{QPSK}$)	LTE-FDD	5.75	$\pm 9.6 \%$
10111	CAG	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}, 16-\mathrm{QAM}$)	LTE-FDD	6.44	$\pm 9.6 \%$
10112	CAG	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 10 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-FDD	6.59	± 9.6 \%
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, $5 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-FDD	6.62	$\pm 9.6 \%$
10114	CAC	IEEE 802.11 n (HT Greenfield, 13.5 Mbps , BPSK)	WLAN	8.10	$\pm 9.6 \%$
10115	CAC	IEEE 802.11n (HT Greenfield, $81 \mathrm{Mbps}, 16$-QAM)	WLAN	8.46	$\pm 9.6 \%$
10116	CAC	IEEE 802.11 n (HT Greenfield, $135 \mathrm{Mbps}, 64$-QAM)	WLAN	8.15	$\pm 9.6 \%$
10117	CAC	IEEE 802.11 n (HT Mixed, 13.5 Mbps , BPSK)	WLAN	8.07	± 9.6 \%
10118	CAC	IEEE 802.11n (HT Mixed, 81 Mbps , 16-QAM)	WLAN	8.59	$\pm 9.6 \%$
10119	CAC	IEEE 802.11n (HT Mixed, 135 Mbps , 64-QAM)	WLAN	8.13	$\pm 9.6 \%$
10140	CAE	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 15 \mathrm{MHz}, 16$-QAM)	LTE-FDD	6.49	$\pm 9.6 \%$
10141	CAE	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 15 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-FDD	6.53	± 9.6 \%
10142	CAE	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, QPSK)	LTE-FDD	5.73	± 9.6 \%
10143	CAE	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, $16-\mathrm{QAM}$)	LTE-FDD	6.35	$\pm 9.6 \%$
10144	CAE	LTE-FDD (SC-FDMA, 100% RB, $3 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-FDD	6.65	$\pm 9.6 \%$
10145	CAF	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 1.4 \mathrm{MHz}, \mathrm{QPSK}$)	LTE-FDD	5.76	$\pm 9.6 \%$
10146	CAF	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 1.4 \mathrm{MHz}, 16-\mathrm{QAM}$)	LTE-FDD	6.41	$\pm 9.6 \%$
10147	CAF	LTE-FDD (SC-FDMA, $100 \% \mathrm{RB}, 1.4 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-FDD	6.72	$\pm 9.6 \%$
10149	CAE	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}, 16-\mathrm{QAM}$)	LTE-FDD	6.42	± 9.6 \%
10150	CAE	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-FDD	6.60	$\pm 9.6 \%$
10151	CAG	LTE-TDD (SC-FDMA $, 50 \% \mathrm{RB}, 20 \mathrm{MHz}$, QPSK)	LTE-TDD	9.28	$\pm 9.6 \%$
10152	CAG	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}, 16-\mathrm{QAM}$)	LTE-TDD	9.92	$\pm 9.6 \%$
10153	CAG	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, $64-\mathrm{QAM}$)	LTE-TDD	10.05	± 9.6 \%
10154	CAG	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}, \mathrm{QPSK}$)	LTE-FDD	5.75	± 9.6 \%
10155	CAG	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}, 16-\mathrm{QAM}$)	LTE-FDD	6.43	$\pm 9.6 \%$
10156	CAG	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 5 \mathrm{MHz}$, QPSK)	LTE-FDD	5.79	$\pm 9.6 \%$
10157	CAG	LTE-FDD (SC-FDMA, 50% RB, $5 \mathrm{MHz}, 16-\mathrm{QAM}$)	LTE-FDD	6.49	± 9.6 \%
10158	CAG	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-FDD	6.62	± 9.6 \%
10159	CAG	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 5 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-FDD	6.56	± 9.6 \%
10160	CAE	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, QPSK)	LTE-FDD	5.82	$\pm 9.6 \%$
10161	CAE	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}, 16-\mathrm{QAM}$)	LTE-FDD	6.43	$\pm 9.6 \%$
10162	CAE	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-FDD	6.58	$\pm 9.6 \%$
10166	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz , QPSK)	LTE-FDD	5.46	$\pm 9.6 \%$
10167	CAF	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}, 16-\mathrm{QAM}$)	LTE-FDD	6.21	$\pm 9.6 \%$
10168	CAF	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-FDD	6.79	± 9.6 \%
10169	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	± 9.6 \%
10170	CAE	LTE-FDD (SC-FDMA, $1 \mathrm{RB}, 20 \mathrm{MHz}, 16 \mathrm{QAM}$)	LTE-FDD	6.52	$\pm 9.6 \%$
10171	AAE	LTE-FDD (SC-FDMA, 1 RB, $20 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-FDD	6.49	± 9.6 \%
10172	CAG	LTE-TDD (SC-FDMA, 1 RB, $20 \mathrm{MHz}, \mathrm{QPSK}$)	LTE-TDD	9.21	± 9.6 \%
10173	CAG	LTE-TDD (SC-FDMA, $1 \mathrm{RB}, 20 \mathrm{MHz}, 16 \mathrm{-QAM}$)	LTE-TDD	9.48	$\pm 9.6 \%$
10174	CAG	LTE-TDD (SC-FDMA, $1 \mathrm{RB}, 20 \mathrm{MHz}$, 64-QAM)	LTE-TDD	10.25	± 9.6 \%
10175	CAG	LTE-FDD (SC-FDMA, $1 \mathrm{RB}, 10 \mathrm{MHz}$, QPSK)	LTE-FDD	5.72	± 9.6 \%
10176	CAG	LTE-FDD (SC-FDMA, $1 \mathrm{RB}, 10 \mathrm{MHz}, 16-\mathrm{QAM}$)	LTE-FDD	6.52	$\pm 9.6 \%$
10177	CAI	LTE-FDD (SC-FDMA, $1 \mathrm{RB}, 5 \mathrm{MHz}$, QPSK)	LTE-FDD	5.73	± 9.6 \%
10178	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz , 16-QAM)	LTE-FDD	6.52	± 9.6 \%
10179	CAG	LTE-FDD (SC-FDMA, $1 \mathrm{RB}, 10 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-FDD	6.50	$\pm 9.6 \%$
10180	CAG	LTE-FDD (SC-FDMA, $1 \mathrm{RB}, 5 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-FDD	6.50	± 9.6 \%
10181	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	$\pm 9.6 \%$
10182	CAE	LTE-FDD (SC-FDMA, 1 RB, $15 \mathrm{MHz}, 16-\mathrm{QAM}$)	LTE-FDD	6.52	$\pm 9.6 \%$
10183	AAD	LTE-FDD (SC-FDMA, 1 RB, $15 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-FDD	6.50	$\pm 9.6 \%$
10184	CAE	LTE-FDD (SC-FDMA, $1 \mathrm{RB}, 3 \mathrm{MHz}$, QPSK)	LTE-FDD	5.73	± 9.6 \%
10185	CAE	LTE-FDD (SC-FDMA, 1 RB, $3 \mathrm{MHz}, 16-\mathrm{QAM}$)	LTE-FDD	6.51	± 9.6 \%
10186	AAE	LTE-FDD (SC-FDMA, 1 RB, $3 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-FDD	6.50	± 9.6 \%
10187	CAF	LTE-FDD (SC-FDMA, $1 \mathrm{RB}, 1.4 \mathrm{MHz}$, QPSK)	LTE-FDD	5.73	± 9.6 \%
10188	CAF	LTE-FDD (SC-FDMA, $1 \mathrm{RB}, 1.4 \mathrm{MHz}, 16 \mathrm{-QAM}$)	LTE-FDD	6.52	$\pm 9.6 \%$
10189	AAF	L.TE-FDD (SC-FDMA, 1 RB, $1.4 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-FDD	6.50	$\pm 9.6 \%$
10193	CAC	IEEE 802.11 n (HT Greenfield, 6.5 Mbps , BPSK)	WLAN	8.09	± 9.6 \%
10194	CAC	IEEE 802.11n (HT Greenfield, 39 Mbps , 16-QAM)	WLAN	8.12	$\pm 9.6 \%$
10195	CAC	IEEE 802.11n (HT Greenfield, 65 Mbps , 64-QAM)	WLAN	8.21	$\pm 9.6 \%$
10196	CAC	IEEE 802.11n (HT Mixed, $6.5 \mathrm{Mbps}, \mathrm{BPSK}$)	WLAN	8.10	± 9.6 \%
10197	CAC	IEEE 802.11 n (HT Mixed, $39 \mathrm{Mbps}, 16-\mathrm{QAM}$)	WLAN	8.13	$\pm 9.6 \%$
10198	CAC	IEEE 802.11 n (HT Mixed, 65 Mbps , 64 -QAM)	WLAN	8.27	$\pm 9.6 \%$
10219	CAC	IEEE 802.11 n (HT Mixed, 7.2 Mbps , BPSK)	WLAN	8.03	± 9.6 \%

10220	CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps , 16-QAM)	WLAN	8.13	± 9.6 \%
10221	CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	$\pm 9.6 \%$
10222	CAC	IEEE 802.11n (HT Mixed, 15 Mbps , BPSK)	WLAN	8.06	$\pm 9.6 \%$
10223	CAC	IEEE 802.11 n (HT Mixed, 90 Mbps , $16-\mathrm{QAM}$)	WLAN	8.48	± 9.6 \%
10224	CAC	IEEE 802.11n (HT Mixed, $150 \mathrm{Mbps}, 64$-QAM)	WLAN	8.08	± 9.6 \%
10225	CAB	UMTS-FDD (HSPA+)	WCDMA	5.97	± 9.6 \%
10226	CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz , 16-QAM)	LTE-TDD	9.49	$\pm 9.6 \%$
10227	CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz , 64-QAM)	LTE-TDD	10.26	$\pm 9.6 \%$
10228	CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	± 9.6 \%
10229	CAC	LTE-TDD (SC-FDMA, 1 RB, $3 \mathrm{MHz}, 16-\mathrm{QAM}$)	LTE-TDD	9.48	± 9.6 \%
10230	CAC	LTE-TDD (SC-FDMA, $1 \mathrm{RB}, 3 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-TDD	10.25	$\pm 9.6 \%$
10231	CAC	LTE-TDD (SC-FDMA, $1 \mathrm{RB}, 3 \mathrm{MHz}, \mathrm{QPSK}$)	LTE-TDD	9.19	$\pm 9.6 \%$
10232	CAF	LTE-TDD (SC-FDMA, $1 \mathrm{RB}, 5 \mathrm{MHz}, 16-\mathrm{QAM}$)	LTE-TDD	9.48	$\pm 9.6 \%$
10233	CAF	LTE-TDD (SC-FDMA, 1 RB, $5 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-TDD	10.25	$\pm 9.6 \%$
10234	CAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , QPSK)	LTE-TDD	9.21	± 9.6 \%
10235	CAF	LTE-TDD (SC-FDMA, $1 \mathrm{RB}, 10 \mathrm{MHz}, 16-\mathrm{QAM}$)	LTE-TDD	9.48	$\pm 9.6 \%$
10236	CAF	LTE-TDD (SC-FDMA, $1 \mathrm{RB}, 10 \mathrm{MHz}$, $64-\mathrm{QAM}$)	LTE-TDD	10.25	$\pm 9.6 \%$
10237	CAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , QPSK)	LTE-TDD	9.21	$\pm 9.6 \%$
10238	CAF	LTE-TDD (SC-FDMA, $1 \mathrm{RB}, 15 \mathrm{MHz}, 16-\mathrm{QAM}$)	LTE-TDD	9.48	± 9.6 \%
10239	CAF	LTE-TDD (SC-FDMA, $1 \mathrm{RB}, 15 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-TDD	10.25	± 9.6 \%
10240	CAF	LTE-TDD (SC-FDMA, $1 \mathrm{RB}, 15 \mathrm{MHz}$, QPSK)	LTE-TDD	9.21	$\pm 9.6 \%$
10241	CAA	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}, 16-\mathrm{QAM}$)	LTE-TDD	9.82	± 9.6 \%
10242	CAA	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-TDD	9.86	± 9.6 \%
10243	CAA	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}$, 1.4 MHz , QPSK)	LTE-TDD	9.46	$\pm 9.6 \%$
10244	CAC	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 3 \mathrm{MHz}, 16-\mathrm{QAM}$)	LTE-TDD	10.06	± 9.6 \%
10245	CAC	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 3 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-TDD	10.06	$\pm 9.6 \%$
10246	CAC	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 3 \mathrm{MHz}$, QPSK)	LTE-TDD	9.30	$\pm 9.6 \%$
10247	CAF	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 5 \mathrm{MHz}, 16-\mathrm{QAM}$)	LTE-TDD	9.91	$\pm 9.6 \%$
10248	CAF	LTE-TDD (SC-FDMA, 50% RB, $5 \mathrm{MHz}, 64$-QAM)	LTE-TDD	10.09	± 9.6 \%
10249	CAF	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 5 \mathrm{MHz}$, QPSK)	LTE-TDD	9.29	± 9.6 \%
10250	CAF	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}, 16-\mathrm{QAM}$)	LTE-TDD	9.81	$\pm 9.6 \%$
10251	CAF	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-TDD	10.17	± 9.6 \%
10252	CAF	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}, \mathrm{QPSK}$)	LTE-TDD	9.24	$\pm 9.6 \%$
10253	CAF	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}, 16-\mathrm{QAM}$)	LTE-TDD	9.90	$\pm 9.6 \%$
10254	CAF	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-TDD	10.14	$\pm 9.6 \%$
10255	CAF	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, QPSK)	LTE-TDD	9.20	± 9.6 \%
10256	CAA	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 1.4 \mathrm{MHz}, 16-\mathrm{QAM}$)	LTE-TDD	9.96	$\pm 9.6 \%$
10257	CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	$\pm 9.6 \%$
10258	CAA	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 1.4 \mathrm{MHz}, \mathrm{QPSK}$)	LTE-TDD	9.34	± 9.6 \%
10259	CAC	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}, 16-\mathrm{QAM}$)	LTE-TDD	9.98	± 9.6 \%
10260	CAC	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-TDD	9.97	± 9.6 \%
10261	CAC	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}, \mathrm{QPSK}$)	LTE-TDD	9.24	$\pm 9.6 \%$
10262	CAF	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}, 16-\mathrm{QAM}$)	LTE-TDD	9.83	$\pm 9.6 \%$
10263	CAF	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-TDD	10.16	± 9.6 \%
10264	CAF	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 5 \mathrm{MHz}$, QPSK)	LTE-TDD	9.23	$\pm 9.6 \%$
10265	CAF	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 10 \mathrm{MHz}, 16$-QAM)	LTE-TDD	9.92	$\pm 9.6 \%$
10266	CAF	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 10 \mathrm{MHz}$, 64-QAM)	LTE-TDD	10.07	± 9.6 \%
10267	CAF	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 10 \mathrm{MHz}$, QPSK)	LTE-TDD	9.30	± 9.6 \%
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, $15 \mathrm{MHz}, 16$-QAM)	LTE-TDD	10.06	$\pm 9.6 \%$
10269	CAF	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 15 \mathrm{MHz}, 64-\mathrm{QAM}$)	LTE-TDD	10.13	$\pm 9.6 \%$
10270	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	± 9.6 \%
10274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	$\pm 9.6 \%$
10275	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	± 9.6 \%
10277	CAA	PHS (QPSK)	PHS	11.81	± 9.6 \%
10278	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS	11.81	± 9.6 \%
10279	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	12.18	± 9.6 \%
10290	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	$\pm 9.6 \%$
10291	AAB	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	$\pm 9.6 \%$
10292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	± 9.6 \%
10293	AAB	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	± 9.6 \%
10295	AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr .	CDMA2000	12.49	$\pm 9.6 \%$
10297	AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz , QPSK)	LTE-FDD	5.81	$\pm 9.6 \%$
10298	AAD	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 3 \mathrm{MHz}$, QPSK)	LTE-FDD	5.72	± 9.6 \%
10299	AAD	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 3 \mathrm{MHz}, 16 \mathrm{-QAM}$)	LTE-FDD	6.39	± 9.6 \%

10300	AAD	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 3 \mathrm{MHz}$, 64-QAM)	LTE-FDD	6.60	± 9.6 \%
10301	AAA	IEEE 802.16e WiMAX (29:18, $5 \mathrm{~ms}, 10 \mathrm{MHz}$, QPSK, PUSC $)$	WIMAX	12.03	± 9.6 \%
10302	AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	WIMAX	12.57	± 9.6 \%
10303	AAA		WIMAX	12.52	$\pm 9.6 \%$
10304	AAA		WIMAX	11.86	$\pm 9.6 \%$
10305	AAA	IEEE 802.16 e WiMAX ($31: 15,10 \mathrm{~ms}, 10 \mathrm{MHz}$, 64QAM, PUSC, 15 symbols)	WIMAX	15.24	± 9.6 \%
10306	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	WIMAX	14.67	± 9.6 \%
10307	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	WIMAX	14.49	± 9.6 \%
10308	AAA	IEEE 802.16 e WIMAX ($29: 18,10 \mathrm{~ms}, 10 \mathrm{MHz}, 16 \mathrm{QAM}, \mathrm{PUSC})$	WIMAX	14.46	± 9.6 \%
10309	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC $2 \times 3,18$ symbols)	WIMAX	14.58	± 9.6 \%
10310	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC $2 \times 3,18$ symbols)	WIMAX	14.57	± 9.6 \%
10311	AAD	LTE-FDD (SC-FDMA, 100\% RB, $15 \mathrm{MHz}, \mathrm{QPSK}$)	LTE-FDD	6.06	± 9.6 \%
10313	AAA	iDEN 1:3	iDEN	10.51	± 9.6 \%
10314	AAA	IDEN 1:6	iDEN	13.48	± 9.6 \%
10315	AAB	IEEE 802.11 bWiFi 2.4 GHz (DSSS, 1 Mbps , 96 pc duty cycle)	WLAN	1.71	$\pm 9.6 \%$
10316	AAB	IEEE 802.11 g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps , 96pc duty cycle)	WLAN	8.36	± 9.6 \%
10317	AAC	IEEE 802.11a WiFi 5 GHz (OFDM, $6 \mathrm{Mbps}, 96 \mathrm{pc}$ duty cycle)	WLAN	8.36	± 9.6 \%
10352	AAA	Pulse Waveform ($200 \mathrm{~Hz}, 10 \%$)	Generic	10.00	± 9.6 \%
10353	AAA	Pulse Waveform ($200 \mathrm{~Hz}, 20 \%$)	Generic	6.99	± 9.6 \%
10354	AAA	Pulse Waveform ($200 \mathrm{~Hz}, 40 \%$)	Generic	3.98	± 9.6 \%
10355	AAA	Pulse Waveform ($200 \mathrm{~Hz}, 60 \%$)	Generic	2.22	± 9.6 \%
10356	AAA	Pulse Waveform ($200 \mathrm{~Hz}, 80 \%$)	Generic	0.97	± 9.6 \%
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	± 9.6 \%
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	± 9.6 \%
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	± 9.6 \%
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	$\pm 9.6 \%$
10400	AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	WLAN	8.37	$\pm 9.6 \%$
10401	AAD	IEEE 802.11 ac WiFi ($40 \mathrm{MHz}, 64-\mathrm{QAM}, 99 \mathrm{pc}$ duty cycle)	WLAN	8.60	$\pm 9.6 \%$
10402	AAD	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	WLAN	8.53	$\pm 9.6 \%$
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	± 9.6 \%
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	± 9.6 \%
10406	AAB	CDMA2000, RC3, SO32, SCHO, Full Rate	CDMA2000	5.22	$\pm 9.6 \%$
10410	AAF	LTE-TDD (SC-FDMA, $1 \mathrm{RB}, 10 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$, Subframe Conf $=4$)	LTE-TDD	7.82	± 9.6 \%
10414	AAA	WLAN CCDF, $64-\mathrm{QAM}, 40 \mathrm{MHz}$	Generic	8.54	± 9.6 \%
10415	AAA	IEEE 802.11 b WiFi 2.4 GHz (DSSS, 1 Mbps , 99pc duty cycle)	WLAN	1.54	± 9.6 \%
10416	AAA	IEEE 802.11 g WiFi 2.4 GHz (ERP-OFDM, $6 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle)	WLAN	8.23	± 9.6 \%
10417	AAB	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 6 Mbps , 99pc duty cycle)	WLAN	8.23	± 9.6 \%
10418	AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps , 99 pc duty cycle, Long preambule)	WLAN	8.14	± 9.6 \%
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps , 99pc duty cycle, Short preambule)	WLAN	8.19	± 9.6 \%
10422	AAB	IEEE 802.11n (HT Greenfield, $7.2 \mathrm{Mbps}, \mathrm{BPSK}$)	WLAN	8.32	± 9.6 \%
10423	AAB	IEEE 802.11 n (HT Greenfield, 43.3 Mbps , 16-QAM)	WLAN	8.47	± 9.6 \%
10424	AAB	IEEE 802.11 n (HT Greenfield, 72.2 Mbps , 64-QAM)	WLAN	8.40	± 9.6 \%
10425	AAB	IEEE 802.11 n (HT Greenfield, 15 Mbps , BPSK)	WLAN	8.41	$\pm 9.6 \%$
10426	AAB	IEEE 802.11n (HT Greenfield, 90 Mbps , 16-QAM)	WLAN	8.45	$\pm 9.6 \%$
10427	AAB	IEEE 802.11 n (HT Greenfield, 150 Mbps , 64-QAM)	WLAN	8.41	± 9.6 \%
10430	AAD	LTE-FDD (OFDMA, $5 \mathrm{MHz}, \mathrm{E}-\mathrm{TM} 3.1$)	LTE-FDD	8.28	± 9.6 \%
10431	AAD	LTE-FDD (OFDMA, 10 MHz , E-TM 3.1)	LTE-FDD	8.38	$\pm 9.6 \%$
10432	AAC	LTE-FDD (OFDMA, 15 MHz , E-TM 3.1)	LTE-FDD	8.34	± 9.6 \%
10433	AAC	LTE-FDD (OFDMA, 20 MHz , E-TM 3.1)	LTE-FDD	8.34	± 9.6 \%
10434	AAA	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	$\pm 9.6 \%$
10435	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	LTE-TDD	7.82	± 9.6 \%
10447	AAD	LTE-FDD (OFDMA, 5 MHz , E-TM 3.1, Clipping 44\%)	LTE-FDD	7.56	$\pm 9.6 \%$
10448	AAD	LTE-FDD (OFDMA, 10 MHz , E-TM 3.1, Clippin 44\%)	LTE-FDD	7.53	$\pm 9.6 \%$
10449	AAC	LTE-FDD (OFDMA, 15 MHz , E-TM 3.1, Cliping 44\%)	LTE-FDD	7.51	± 9.6 \%
10450	AAC	LTE-FDD (OFDMA, 20 MHz , E-TM 3.1, Clipping 44\%)	LTE-FDD	7.48	$\pm 9.6 \%$

$\left.\begin{array}{|l|l|l|l|l|l|}\hline 10451 & \text { AAA } & \text { W-CDMA (BS Test Model 1, } 64 \text { DPCH, Clipping 44\%) } & \text { WCDMA } & 7.59 & \pm 9.6 \% \\ \hline 10456 & \text { AAB } & \text { IEEE } 802.11 \text { ac WiFi (160MHz, 64-QAM, 99pc duty CyCle) } & \text { WLLAN } & 8.63 & \pm 9.6 \% \\ \hline 10457 & \text { AAA } & \text { UMTS-FDD (DC-HSDPA) }\end{array}\right)$

10492	AAE	LTE-TDD (SC-FDMA, 50% RB, $15 \mathrm{MHz}, 16-\mathrm{QAM}$, UL Subframe $=2,3,4,7,8,9$)	LTE-TDD	8.41	± 9.6 \%
10493	AAE	LTE-TDD (SC-FDMA, 50% RB, $15 \mathrm{MHz}, 64-\mathrm{QAM}$, UL Subframe $=2,3,4,7,8,9$)	LTE-TDD	8.55	± 9.6 \%
10494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	LTE-TDD	7.74	± 9.6 \%
10495	AAF	LTE-TDD (SC-FDMA, 50% RB, $20 \mathrm{MHz}, 16-$ QAM, UL Subframe $=2,3,4,7,8,9$)	LTE-TDD	8.37	± 9.6 \%
10496	AAF	LTE-TDD (SC-FDMA, 50% RB, $20 \mathrm{MHz}, 64-$ QAM, UL Subframe $=2,3,4,7,8,9$)	LTE-TDD	8.54	± 9.6 \%
10497	AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe $=2,3,4,7,8,9)$	LTE-TDD	7.67	± 9.6 \%
10498	AAA	LTE-TDD (SC-FDMA, 100% RB, $1.4 \mathrm{MHz}, 16-\mathrm{QAM}$, UL Subframe $=2,3,4,7,8,9$)	LTE-TDD	8.40	± 9.6 \%
10499	AAA	LTE-TDD (SC-FDMA, 100% RB, $1.4 \mathrm{MHz}, 64-\mathrm{QAM}, \mathrm{UL}$ Subframe $=2,3,4,7,8,9$)	LTE-TDD	8.68	± 9.6 \%
10500	AAB	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 3 \mathrm{MHz}$, QPSK, UL Subframe $=2,3,4,7,8,9$)	LTE-TDD	7.67	± 9.6 \%
10501	AAB	LTE-TDD (SC-FDMA, 100% RB, $3 \mathrm{MHz}, 16-\mathrm{QAM}, \mathrm{UL}$ Subframe $=2,3,4,7,8,9$)	LTE-TDD	8.44	± 9.6 \%
10502	AAB	LTE-TDD (SC-FDMA, 100% RB, $3 \mathrm{MHz}, 64-\mathrm{QAM}, \mathrm{UL}$ Subframe $=2,3,4,7,8,9$)	LTE-TDD	8.52	± 9.6 \%
10503	AAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	LTE-TDD	7.72	± 9.6 \%
10504	AAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	LTE-TDD	8.31	± 9.6 \%
10505	AAE	LTE-TDD (SC-FDMA, 100% RB, $5 \mathrm{MHz}, 64-\mathrm{QAM}$, UL Subframe $=2,3,4,7,8,9$)	LTE-TDD	8.54	± 9.6 \%
10506	AAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz , QPSK, UL. Subframe $=2,3,4,7,8,9$)	LTE-TDD	7.74	± 9.6 \%
10507	AAE	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 10 \mathrm{MHz}, 16-\mathrm{QAM}, \mathrm{UL}$ Subframe $=2,3,4,7,8,9$)	LTE-TDD	8.36	± 9.6 \%
10508	AAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	LTE-TDD	8.55	± 9.6 \%
10509	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	LTE-TDD	7.99	± 9.6 \%
10510	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	LTE-TDD	8.49	± 9.6 \%
10511	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	LTE-TDD	8.51	± 9.6 \%
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	LTE-TDD	7.74	± 9.6 \%
10513	AAF	LTE-TDD (SC-FDMA, $100 \% \mathrm{RB}, 20 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	LTE-TDD	8.42	± 9.6 \%
10514	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	LTE-TDD	8.45	± 9.6 \%
10515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, $2 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle)	WLAN	1.58	± 9.6 \%
10516	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, $5.5 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle)	WLAN	1.57	± 9.6 \%
10517	AAA	IEEE 802.11b Wifi 2.4 GHz (DSSS, 11 Mbps , 99pc duty cycle)	WLAN	1.58	$\pm 9.6 \%$
10518	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, $9 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle)	WLAN	8.23	$\pm 9.6 \%$
10519	AAB	IEEE $802.11 \mathrm{a} / \mathrm{h} \mathrm{WiFi} 5 \mathrm{GHz}$ (OFDM, $12 \mathrm{Mbps}, 99 p \mathrm{duty}$ cycle)	WLAN	8.39	$\pm 9.6 \%$
10520	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, $18 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle)	WLAN	8.12	± 9.6 \%
10521	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps , 99pc duty cycle)	WLAN	7.97	$\pm 9.6 \%$
10522	AAB	IEEE 802.11 $\mathrm{a} / \mathrm{h} \mathrm{WiFi} 5 \mathrm{GHz}$ (OFDM, 36 Mbps , 99pc duty cycle)	WLAN	8.45	$\pm 9.6 \%$
10523	AAB	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 48 Mbps , 99pc duty cycle)	WLAN	8.08	$\pm 9.6 \%$
10524	AAB	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 54 Mbps , 99pc duty cycle)	WLAN	8.27	$\pm 9.6 \%$
10525	AAB	IEEE 802.11ac WiFi (20 MHz , MCS0, 99pc duty cycle)	WLAN	8.36	$\pm 9.6 \%$
10526	AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	WLAN	8.42	± 9.6 \%
10527	AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	WLAN	8.21	± 9.6 \%
10528	AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	WLAN	8.36	± 9.6 \%
10529	AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	WLAN	8.36	± 9.6 \%
10531	AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	WLAN	8.43	± 9.6 \%
10532	AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	WLAN	8.29	$\pm 9.6 \%$
10533	AAB	IEEE 802.11 ac WiFi (20 MHz , MCS8, 99pc duty cycle)	WLAN	8.38	$\pm 9.6 \%$
10534	AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	WLAN	8.45	$\pm 9.6 \%$

10535	AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	WLAN	8.45	$\pm 9.6 \%$
10536	AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	WLAN	8.32	$\pm 9.6 \%$
10537	AAB	IEEE 802.11ac WiFi (40 MHz , MCS3, 99pc duty cycle)	WLAN	8.44	$\pm 9.6 \%$
10538	AAB	IEEE 802.11ac WiFi (40 MHz , MCS4, 99pc duty cycle)	WLAN	8.54	$\pm 9.6 \%$
10540	AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	WLAN	8.39	$\pm 9.6 \%$
10541	$A A B$	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	WLAN	8.46	$\pm 9.6 \%$
10542	AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	WLAN	8.65	$\pm 9.6 \%$
10543	AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	WLAN	8.65	$\pm 9.6 \%$
10544	AAB	IEEE 802.11 ac WiFi (80MHz, MCS0, 99pc duty cycle)	WLAN	8.47	$\pm 9.6 \%$
10545	AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	WLAN	8.55	$\pm 9.6 \%$
10546	$A A B$	IEEE 802.11 ac WiFi (80 MHz , MCS2, 99pc duty cycle)	WLAN	8.35	$\pm 9.6 \%$
10547	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	WLAN	8.49	$\pm 9.6 \%$
10548	$A A B$	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	WLAN	8.37	$\pm 9.6 \%$
10550	AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	WLAN	8.38	$\pm 9.6 \%$
10551	AAB	IEEE $802.11 \mathrm{ac} \mathrm{WiFi} \mathrm{(80MHz}, \mathrm{MCS7}, \mathrm{99pc} \mathrm{duty} \mathrm{cycle)}$	WLAN	8.50	$\pm 9.6 \%$
10552	AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	WLAN	8.42	$\pm 9.6 \%$
10553	AAB	IEEE 802.11 ac WiFi (80 MHz , MCS9, 99pc duty cycle)	WLAN	8.45	± 9.6 \%
10554	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	WLAN	8.48	$\pm 9.6 \%$
10555	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	WLAN	8.47	$\pm 9.6 \%$
10556	AAC	IEEE 802.11ac WiFi (160 MHz , MCS2, 99 pc duty cycle)	WLAN	8.50	$\pm 9.6 \%$
10557	AAC	IEEE $802.11 \mathrm{ac} \mathrm{WiFi}(160 \mathrm{MHz}, \mathrm{MCS3}, 99 \mathrm{pc}$ duty cycle)	WLAN	8.52	$\pm 9.6 \%$
10558	AAC	IEEE 802.11ac $\mathrm{WiFl}(160 \mathrm{MHz}, \mathrm{MCS4}, 99 \mathrm{pc}$ duty cycle)	WLAN	8.61	$\pm 9.6 \%$
10560	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	WLAN	8.73	$\pm 9.6 \%$
10561	AAC	IEEE $802.11 \mathrm{ac} \mathrm{WiFi}(160 \mathrm{MHz}$, MCS7, 99pc duty cycle)	WLAN	8.56	$\pm 9.6 \%$
10562	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	WLAN	8.69	$\pm 9.6 \%$
10563	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	WLAN	8.77	$\pm 9.6 \%$
10564	AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps , 99 pc duty cycle)	WLAN	8.25	$\pm 9.6 \%$
10565	AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps , 99pc duty cycle)	WLAN	8.45	± 9.6 \%
10566	AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSS-OFDM, $18 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle)	WLAN	8.13	± 9.6 \%
10567	AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSS-OFDM, $24 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle)	WLAN	8.00	$\pm 9.6 \%$
10568	AAA	IEEE 802,11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps , 99pc duty cycle)	WLAN	8.37	± 9.6 \%
10569	AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps , 99 pc duty cycle)	WLAN	8.10	± 9.6 \%
10570	AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps , 99 pc duty cycle)	WLAN	8.30	± 9.6 \%
10571	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps , 90pc duty cycle)	WLAN	1.99	$\pm 9.6 \%$
10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, $2 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	WLAN	1.99	$\pm 9.6 \%$
10573	AAA	IEEE 802.11 bWiFi 2.4 GHz (DSSS, $5.5 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	WLAN	1.98	$\pm 9.6 \%$
10574	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps , 90pc duty cycle)	WLAN	1.98	$\pm 9.6 \%$
10575	AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSS-OFDM, $6 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	WLAN	8.59	$\pm 9.6 \%$
10576	AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps , 90 pc duty cycle)	WLAN	8.60	± 9.6 \%
10577	AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps , 90pc duty cycle)	WLAN	8.70	$\pm 9.6 \%$
10578	AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSS-OFDM, $18 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	WLAN	8.49	$\pm 9.6 \%$
10579	AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps , 90pc duty cycle)	WLAN	8.36	± 9.6 \%
10580	AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSS-OFDM, $36 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	WLAN	8.76	± 9.6 \%
10581	AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSS-OFDM, $48 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	WLAN	8.35	± 9.6 \%
10582	AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSS-OFDM, $54 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	WLAN	8.67	± 9.6 \%
10583	AAB	IEEE $802.11 \mathrm{a} / \mathrm{h} \mathrm{WiFi} 5 \mathrm{GHz}$ (OFDM, 6 Mbps , 90pc duty cycle)	WLAN	8.59	$\pm 9.6 \%$
10584	AAB	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 9 Mbps , 90pc duty cycle)	WLAN	8.60	$\pm 9.6 \%$
10585	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps , 90pc duty cycle)	WLAN	8.70	$\pm 9.6 \%$
10586	AAB	IEEE $802.11 \mathrm{a} / \mathrm{h} \mathrm{WiFi} 5 \mathrm{GHz}$ (OFDM, $18 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	WLAN	8.49	$\pm 9.6 \%$
10587	AAB	IEEE $802.11 \mathrm{a} / \mathrm{h} \mathrm{WiFi} 5 \mathrm{GHz}$ (OFDM, $24 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	WLAN	8.36	$\pm 9.6 \%$

10588	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps , 90pc duty cycle)	WLAN	8.76	$\pm 9.6 \%$
10589	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps , 90pc duty cycle)	WLAN	8.35	$\pm 9.6 \%$.
10590	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps , 90pc duty cycle)	WLAN	8.67	$\pm 9.6 \%$
10591	AAB	IEEE 802.11 n (HT Mixed, 20 MHz , MCSO, 90pc duty cycle)	WLAN	8.63	$\pm 9.6 \%$
10592	AAB	IEEE 802.11n (HT Mixed, 20 MHz , MCS1, 90pc duty cycle)	WLAN	8.79	$\pm 9.6 \%$
10593	AAB	IEEE 802.11 n (HT Mixed, 20 MHz , MCS2, 90pc duty cycle)	WLAN	8.64	$\pm 9.6 \%$
10594	AAB	IEEE 802.11n (HT Mixed, 20 MHz , MCS3, 90pc duty cycle)	WLAN	8.74	$\pm 9.6 \%$
10595	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	WLAN	8.74	$\pm 9.6 \%$
10596	AAB	IEEE 802.11n (HT Mixed, 20 MHz , MCS5, 90pc duty cycle)	WLAN	8.71	$\pm 9.6 \%$
10597	AAB	IEEE 802.11 n (HT Mixed, 20 MHz , MCS6, 90pc duty cycle)	WLAN	8.72	$\pm 9.6 \%$
10598	AAB	JEEE 802.11 n (HT Mixed, 20 MHz , MCS7, 90pc duty cycle)	WLAN	8.50	$\pm 9.6 \%$
10599	AAB	IEEE 802.11 n (HT Mixed, 40 MHz , MCS0, 90pc duty cycle)	WLAN	8.79	$\pm 9.6 \%$
10600	AAB	IEEE 802.11 n (HT Mixed, 40 MHz , MCS1, 90pc duty cycle)	WLAN	8.88	$\pm 9.6 \%$
10601	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	WLAN	8.82	$\pm 9.6 \%$
10602	AAB	IEEE 802.11 n (HT Mixed, $40 \mathrm{MHz}, \mathrm{MCS3}, 90 \mathrm{pc}$ duty cycle)	WLAN	8.94	$\pm 9.6 \%$
10603	AAB	IEEE 802.11 n (HT Mixed, 40 MHz , MCS4, 90pc duty cycle)	WLAN	9.03	$\pm 9.6 \%$
10604	AAB	IEEE 802.11 n (HT Mixed, $40 \mathrm{MHz}, \mathrm{MCS5}, 90 \mathrm{pc}$ duty cycle)	WLAN	8.76	$\pm 9.6 \%$
10605	AAB	IEEE 802.11 n (HT Mixed, $40 \mathrm{MHz}, \mathrm{MCS6}, 90 \mathrm{pc}$ duty cycle)	WLAN	8.97	$\pm 9.6 \%$
10606	AAB	IEEE 802.11 n (HT Mixed, $40 \mathrm{MHz}, \mathrm{MCS7}, 90 \mathrm{pc}$ duty cycle)	WLAN	8.82	$\pm 9.6 \%$
10607	AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	WLAN	8.64	$\pm 9.6 \%$
10608	AAB	IEEE 802.11 ac WiFi (20MHz, MCS1, 90pc duty cycle)	WLAN	8.77	$\pm 9.6 \%$
10609	AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	WLAN	8.57	$\pm 9.6 \%$
10610	AAB	IEEE 802,11ac WiFi (20MHz, MCS3, 90pc duty cycle)	WLAN	8.78	$\pm 9.6 \%$
10611	AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	WLAN	8.70	$\pm 9.6 \%$
10612	AAB	IEEE 802.11 ac WiFi (20 MHz , MCS5, 90pc duty cycle)	WLAN	8.77	$\pm 9.6 \%$
10613	AAB	IEEE 802.11 ac WiFi (20 MHz , MCS6, 90pc duty cycle)	WLAN	8.94	$\pm 9.6 \%$
10614	AAB	IEEE 802.11 ac WiFi ($20 \mathrm{MHz}, \mathrm{MCS} 7,90 \mathrm{pc}$ duty cycle)	WLAN	8.59	$\pm 9.6 \%$
10615	AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	WLAN	8.82	$\pm 9.6 \%$
10616	AAB	IEEE 802.11ac WiFi (40 MHz , MCSO, 90pc duty cycle)	WLAN	8.82	$\pm 9.6 \%$
10617	AAB	IEEE 802.11 ac WiFi (40 MHz , MCS1, 90 pc duty cycle)	WLAN	8.81	$\pm 9.6 \%$
10618	AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	WLAN	8.58	$\pm 9.6 \%$
10619	AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	WLAN	8.86	$\pm 9.6 \%$
10620	AAB	IEEE 802.11ac WiFi (40 MHz , MCS4, 90pc duty cycle)	WLAN	8.87	$\pm 9.6 \%$
10621	AAB	IEEE 802.11ac WiFi (40 MHz , MCS5, 90pc duty cycle)	WLAN	8.77	$\pm 9.6 \%$
10622	AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	WLAN	8.68	$\pm 9.6 \%$
10623	AAB	IEEE $802.11 \mathrm{ac} \mathrm{WiFi} \mathrm{(} 40 \mathrm{MHz}, \mathrm{MCS7}, 90 \mathrm{pc}$ duty cycle)	WLAN	8.82	$\pm 9.6 \%$
10624	AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	WLAN	8.96	$\pm 9.6 \%$
10625	AAB	IEEE 802.11 ac WiFi (40 MHz , MCS9, 90pc duty cycle)	WLAN	8.96	$\pm 9.6 \%$
10626	AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	WLAN	8.83	$\pm 9.6 \%$
10627	AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	WLAN	8.88	$\pm 9.6 \%$
10628	AAB	IEEE 802.11 ac WiFi (80 MHz , MCS2, 90pc duty cycle)	WLAN	8.71	$\pm 9.6 \%$
10629	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	WLAN	8.85	$\pm 9.6 \%$
10630	AAB	IEEE 802.11 ac WiFi (80 MHz , MCS4, 90pc duty cycle)	WLAN	8.72	$\pm 9.6 \%$
10631	AAB	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	WLAN	8.81	$\pm 9.6 \%$
10632	AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	WLAN	8.74	$\pm 9.6 \%$
10633	AAB	IEEE 802.11 ac WiFi (80 MHz , MCS7, 90pc duty cycle)	WLAN	8.83	$\pm 9.6 \%$
10634	AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	WLAN	8.80	$\pm 9.6 \%$
10635	AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	WLAN	8.81	$\pm 9.6 \%$
10636	AAC	IEEE 802.11ac WiFi (160 MHz , MCS0, 90pc duty cycle)	WLAN	8.83	$\pm 9.6 \%$
10637	AAC	IEEE $802.11 \mathrm{ac} \mathrm{WiFi}(160 \mathrm{MHz}, \mathrm{MCS1}, 90 \mathrm{pc}$ duty cycle)	WLAN	8.79	$\pm 9.6 \%$
10638	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	WLAN	8.86	$\pm 9.6 \%$
10639	AAC	IEEE 802.11ac WiFi (160 MHz , MCS3, 90pc duty cycle)	WLAN	8.85	$\pm 9.6 \%$
10640	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	WLAN	8.98	$\pm 9.6 \%$
10641	AAC	IEEE 802.11ac WiFi (160 MHz , MCS5, 90pc duty cycle)	WLAN	9.06	$\pm 9.6 \%$
10642	AAC	IEEE 802.11ac WiFi (160 MHz MCS6, 90pc duty cycle)	WLAN	9.06	$\pm 9.6 \%$
10643	AAC	IEEE 802.11ac WiFi ($160 \mathrm{MHz}, \mathrm{MCS} 7,90 \mathrm{pc}$ duty cycle)	WLAN	8.89	$\pm 9.6 \%$
10644	AAC	IEEE 802.11ac WiFi (160 MHz , MCS8, 90pc duty cycle)	WLAN	9.05	$\pm 9.6 \%$
10645	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	WLAN	9.11	$\pm 9.6 \%$
10646	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , QPSK, UL Subframe=2,7)	LTE-TDD	11.96	$\pm 9.6 \%$
10647	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , QPSK, UL Subframe=2,7)	LTE-TDD	11.96	$\pm 9.6 \%$
10648	AAA	CDMA2000 (1x Advanced)	CDMA2000	3.45	$\pm 9.6 \%$
10652	AAD	LTE-TDD (OFDMA, 5 MHz , E-TM 3.1, Clipping 44\%)	LTE-TDD	6.91	$\pm 9.6 \%$
10653	AAD	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44\%)	LTE-TDD	7.42	$\pm 9.6 \%$
10654	AAD	LTE-TDD (OFDMA, 15 MHz , E-TM 3.1, Clipping 44\%)	LTE-TDD	6.96	± 9.6 \%

10655	AAE	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44\%)	LTE-TDD	7.21	
10658	AAA	Pulse Waveform $(200 \mathrm{~Hz}, 10 \%)$	Test	10.00	$\pm 9.6 \%$
10659	AAA	Pulse Waveform $(200 \mathrm{~Hz}, 20 \%)$	Test	6.99	$\pm 9.6 \%$
10660	AAA	Pulse Waveform $(200 \mathrm{~Hz}, 40 \%)$	Test	3.98	$\pm 9.6 \%$
10661	AAA	Pulse Waveform $(200 \mathrm{~Hz}, 60 \%)$	Test	2.22	$\pm 9.6 \%$
10662	AAA	Pulse Waveform $(200 \mathrm{~Hz}, 80 \%)$	Test	0.97	$\pm 9.6 \%$
10670	AAA	Bluetooth Low Energy	Bluetooth	2.19	$\pm 9.6 \%$

${ }^{E}$ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Accreditation No.: SCS 0108

Client PCJTest Certificate No EX3-7308_Aug18
CALIBRATION CERTIFICATE

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	$04-A p r-18$ (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21-Dec-17 (No. DAE4-660_Dec17)	Dec-18
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	O6-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	O4-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18

[^4]Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S	Schweizerischer Kalibrierdienst
C	Service suisse d'étalonnage
S	Servizio svizzero di taratura
	Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Glossary:
TSL
NORMx,y,z
ConvF
DCP
CF
A, B, C, D
Polarization φ
Polarization ϑ
Connector Angle

> tissue simulating liquid
> sensitivity in free space
> sensitivity in TSL / NORMx,y,z
> diode compression point
> crest factor (1/duty_cycle) of the RF signal
> modulation dependent linearization parameters
> φ rotation around probe axis
> ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta=0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization $\vartheta=0$ (f $\leq 900 \mathrm{MHz}$ in TEM-cell; $\mathrm{f}>1800 \mathrm{MHz}$: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORM x, y, z does not affect the E^{2}-field uncertainty inside TSL (see below ConvF).
- $N O R M(f) x, y, z=N O R M x, y, z{ }^{*}$ frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $D C P x, y, z$: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z;Bx,y,z;Cx,y,z;Dx,y,z;VRx,y,z:A,B,C,Dare numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. $V R$ is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800 \mathrm{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $\mathrm{f}>800 \mathrm{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z*ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50 \mathrm{MHz}$ to ± 100 MHz .
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required).

Probe EX3DV4

SN:7308

Manufactured: March 11, 2014
Calibrated: August 23, 2018

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7308

Basic Calibration Parameters

	Sensor \mathbf{X}	Sensor \mathbf{Y}	Sensor \mathbf{Z}	Unc $(\mathbf{k}=\mathbf{2})$
Norm $\left(\mu \mathrm{V} /(\mathrm{V} / \mathrm{m})^{2}\right)^{\mathrm{A}}$	0.49	0.60	0.44	$\pm 10.1 \%$
$\mathrm{DCP}(\mathrm{mV})^{\mathrm{B}}$	99.6	97.1	102.5	

Modulation Calibration Parameters

UID	Communication System Name		\mathbf{A} $\mathbf{d B}$	\mathbf{B} $\mathbf{d B} \sqrt{ } \mathbf{V} \mathbf{V}$	\mathbf{C}	\mathbf{D} $\mathbf{d B}$	$\mathbf{V R}$ $\mathbf{m V}$	$\mathbf{U n c} \mathbf{E}$ $(\mathbf{k}=\mathbf{2})$
0	CW	X	0.0	0.0	1.0	0.00	177.2	$\pm 3.5 \%$
		Y	0.0	0.0	1.0		165.4	
	Z	0.0	0.0	1.0		159.6		

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	$\mathbf{C 1}$ $\mathbf{f F}$	$\mathbf{C 2}$ $\mathbf{f F}$	$\mathbf{\alpha}$ $\mathbf{V}^{\mathbf{- 1}}$	$\mathbf{T 1}$ $\mathbf{m s .} \mathbf{V}^{-\mathbf{2}}$	$\mathbf{T 2}$ $\mathbf{m s} . \mathbf{V}^{-1}$	$\mathbf{T 3}$ $\mathbf{m s}$	$\mathbf{T 4}$ $\mathbf{V}^{-\mathbf{2}}$	$\mathbf{T 5}$ $\mathbf{V}^{-\mathbf{1}}$	$\mathbf{T 6}$
X	53.71	401.2	35.76	12.80	0.351	5.077	0.717	0.413	1.005
Y	56.67	439.8	38.08	13.44	0.524	5.100	0.000	0.597	1.012
Z	40.98	304.1	35.29	8.573	0.334	5.045	1.531	0.174	1.005

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^5]
DASY/EASY - Parameters of Probe: EX3DV4 - SN:7308

Calibration Parameter Determined in Head Tissue Simulating Media

$f(\mathrm{MHz})^{\text {c }}$	Relative Permittivity ${ }^{F}$	$\begin{gathered} \text { Conductivity } \\ (\mathrm{S} / \mathrm{m})^{\mathrm{F}} \end{gathered}$	ConvF X	ConvF Y	ConvF Z	Alpha ${ }^{\text {G }}$	Depth (mm)	$\begin{aligned} & \text { Unc } \\ & (\mathrm{k}=2) \end{aligned}$
750	41.9	0.89	10.23	10.23	10.23	0.57	0.81	$\pm 12.0 \%$
835	41.5	0.90	9.96	9.96	9.96	0.58	0.81	± 12.0 \%
1750	40.1	1.37	8.66	8.66	8.66	0.36	0.80	$\pm 12.0 \%$
1900	40.0	1.40	8.26	8.26	8.26	0.29	0.85	$\pm 12.0 \%$
2300	39.5	1.67	7.81	7.81	7.81	0.29	0.85	$\pm 12.0 \%$
2450	39.2	1.80	7.45	7.45	7.45	0.35	0.91	± 12.0 \%
2600	39.0	1.96	7.30	7.30	7.30	0.35	0.87	$\pm 12.0 \%$
5250	35.9	4.71	5.10	5.10	5.10	0.40	1.80	± 13.1 \%
5600	35.5	5.07	4.85	4.85	4.85	0.40	1.80	± 13.1 \%
5750	35.4	5.22	5.04	5.04	5.04	0.40	1.80	± 13.1 \%

[^6]
DASY/EASY - Parameters of Probe: EX3DV4 - SN:7308

Calibration Parameter Determined in Body Tissue Simulating Media

$\mathbf{f (M H z) ^ { c }}$	Relative Permittivity ${ }^{\mathrm{F}}$	Conductivity $(\mathbf{S} / \mathrm{m})^{\mathrm{F}}$	ConvF X	ConvF Y	ConvF Z	Alpha $^{\text {G }}$	Depth $(\mathbf{m m})$	Unc $(\mathbf{k}=\mathbf{2})$
750	55.5	0.96	10.38	10.38	10.38	0.36	0.99	$\pm 12.0 \%$
835	55.2	0.97	10.19	10.19	10.19	0.50	0.82	$\pm 12.0 \%$
1750	53.4	1.49	8.13	8.13	8.13	0.27	1.04	$\pm 12.0 \%$
1900	53.3	1.52	7.79	7.79	7.79	0.38	0.85	$\pm 12.0 \%$
2300	52.9	1.81	7.73	7.73	7.73	0.37	0.80	$\pm 12.0 \%$
2450	52.7	1.95	7.57	7.57	7.57	0.34	0.88	$\pm 12.0 \%$
2600	52.5	2.16	7.40	7.40	7.40	0.29	0.95	$\pm 12.0 \%$
5250	48.9	5.36	4.48	4.48	4.48	0.50	1.90	$\pm 13.1 \%$
5600	48.5	5.77	4.00	4.00	4.00	0.50	1.90	$\pm 13.1 \%$
5750	48.3	5.94	4.18	4.18	4.18	0.50	1.90	$\pm 13.1 \%$

[^7]
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: $\pm \mathbf{6 . 3 \%}(\mathrm{k}=\mathbf{2})$

Receiving Pattern (ϕ), $\vartheta=0^{\circ}$

Dynamic Range $f\left(\right.$ SAR $\left._{\text {head }}\right)$ (TEM cell , $\mathrm{f}_{\text {eval }}=1900 \mathbf{~ M H z}$)

Uncertainty of Linearity Assessment: $\pm \mathbf{0 . 6 \%}$ ($\mathbf{k}=\mathbf{2}$)

Conversion Factor Assessment

Deviation from Isotropy in Liquid
Error (ϕ, ϑ) , $\mathbf{f}=\mathbf{9 0 0} \mathbf{~ M H z}$

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7308

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle $\left(^{\circ}\right.$)	108.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Appendix: Modulation Calibration Parameters

UID	Communication System Name		$\begin{gathered} \bar{A} \\ d B \end{gathered}$	$\frac{B}{d B \sqrt{\mu} V}$	C	$\begin{gathered} \overline{\mathrm{D}} \\ \mathrm{~dB} \end{gathered}$	$\begin{aligned} & \hline \text { VR } \\ & \mathrm{mV} \end{aligned}$	Max ${ }^{\text {Un }}$ $(\mathbf{k}=2)$
0	CW	X	0.00	0.00	1.00	0.00	177.2	$\pm 3.5 \%$
		Y	0.00	0.00	1.00		165.4	
		Z	0.00	0.00	1.00		159.6	
$\begin{aligned} & 10010- \\ & \text { CAA } \\ & \hline \end{aligned}$	SAR Validation (Square, $100 \mathrm{~ms}, 10 \mathrm{~ms}$)	X	2.71	68.17	11.26	10.00	20.0	± 9.6 \%
		Y	2.39	66.64	10.67		20.0	
		\underline{Z}	1.90	64.26	9.03		20.0	
$\begin{aligned} & 10011- \\ & \text { CAB } \\ & \hline \end{aligned}$	UMTS-FDD (WCDMA)	X	1.19	70.37	17.06	0.00	150.0	± 9.6 \%
		Y	0.96	66.50	14.51		150.0	
		Z	1.05	68.92	16.00		150.0	
$\begin{aligned} & 10012- \\ & \text { CAB } \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	1.18	64.67	16.08	0.41	150.0	± 9.6 \%
		Y	1.11	63.43	15.04		150.0	
		Z	1.13	64.11	15.48		150.0	
$\begin{aligned} & 10013- \\ & \mathrm{CAB} \end{aligned}$	IEEE 802.11g WiFi 2.4 GHz (DSSSOFDM, 6 Mbps)	X	4.93	66.75	17.26	1.46	150.0	$\pm 9.6 \%$
		Y	4.92	66.47	17.15		150.0	
		Z	4.74	66.75	17.08		150.0	
$\begin{aligned} & 10021- \\ & \text { DAC } \\ & \hline \end{aligned}$	GSM-FDD (TDMA, GMSK)	X	100.00	114.38	27.28	9.39	50.0	± 9.6 \%
		Y	100.00	114.83	27.64		50.0	
		Z	100.00	109.69	24.90		50.0	
$\begin{aligned} & 10023- \\ & \text { DAC } \\ & \hline \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0)	X	100.00	113.94	27.13	9.57	50.0	± 9.6 \%
		Y	100.00	114.49	27.54		50.0	
		Z	100.00	109.21	24.74		50.0	
$\begin{aligned} & 10024- \\ & \text { DAC } \\ & \hline \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	100.00	115.48	26.77	6.56	60.0	± 9.6 \%
		Y	100.00	114.18	26.29		60.0	
		\underline{Z}	100.00	109.85	23.86		60.0	
$\begin{aligned} & 10025- \\ & \text { DAC } \\ & \hline \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0)	X	6.22	84.66	34.29	12.57	50.0	± 9.6 \%
		Y	4.94	76.24	29.94		50.0	
		Z	5.36	79.88	31.57		50.0	
$\begin{aligned} & 10026- \\ & \text { DAC } \\ & \hline \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	11.81	100.22	36.35	9.56	60.0	± 9.6 \%
		Y	11.10	97.75	35.30		60.0	
		Z	7.89	90.81	32.78		60.0	
$\begin{aligned} & 10027- \\ & \text { DAC } \\ & \hline \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	100.00	118.27	27.22	4.80	80.0	$\pm 9.6 \%$
		Y	100.00	114.44	25.61		80.0	
		Z	100.00	111.67	23.86		80.0	
$\begin{aligned} & 10028- \\ & \text { DAC } \\ & \hline \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	100.00	122.72	28.40	3.55	100.0	± 9.6 \%
		Y	100.00	114.80	25.04		100.0	
		Z	100.00	114.83	24.49		100.0	
$\begin{aligned} & 10029- \\ & \text { DAC } \\ & \hline \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	6.56	85.50	29.56	7.80	80.0	± 9.6 \%
		Y	6.53	84.80	29.16		80.0	
		Z	4.80	79.03	26.78		80.0	
$\begin{aligned} & 10030- \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (GFSK, DH1)	X	100.00	114.96	26.10	5.30	70.0	± 9.6 \%
		Y	100.00	112.69	25.18		70.0	
		Z	100.00	108.37	22.73		70.0	
$\begin{aligned} & 10031- \\ & \text { CAA } \\ & \hline \end{aligned}$	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	126.84	28.53	1.88	100.0	± 9.6 \%
		Y	100.00	105.21	19.68		100.0	
		Z	100.00	108.61	20.59		100.0	

$\begin{aligned} & 10032- \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	100.00	146.53	35.02	1.17	100.0	± 9.6 \%
		\bar{Y}	100.00	95.65	15.05		100.0	
$\begin{array}{\|l\|} \hline 10033- \\ \mathrm{CAA} \\ \hline \end{array}$		Z	100.00	112.23	21.08		100.0	
	IEEE 802.15.1 Bluetooth (P//4-DQPSK, DH1)	X	100.00	133.98	36.90	5.30	70.0	± 9.6 \%
		\bar{Y}	94.91	132.14	36.35		70.0	
		Z	24.70	106.96	28.52		70.0	
$\begin{aligned} & 10034- \\ & \text { CAA } \\ & \hline \end{aligned}$	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	X	8.70	95.28	25.33	1.88	100.0	± 9.6 \%
		Y	4.18	83.23	21.11		100.0	
		Z	3.97	82.01	19.44		100.0	
$\begin{aligned} & 10035- \\ & \text { CAA } \\ & \hline \end{aligned}$	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	X	3.83	83.82	21.38	1.17	100.0	± 9.6 \%
		Y	2.23	74.99	17.69		100.0	
		Z	2.33	75.94	16.98		100.0	
$\begin{aligned} & 10036- \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	100.00	134.50	37.14	5.30	70.0	± 9.6 \%
		Y	100.00	133.48	36.76		70.0	
		Z	56.60	119.91	31.85		70.0	
$\begin{array}{\|l} \hline 10037- \\ \text { CAA } \\ \hline \end{array}$	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	7.69	93.53	24.78	1.88	100.0	± 9.6 \%
		Y	3.89	82.31	20.76		100.0	
		Z	3.40	80.12	18.77		100.0	
$\begin{aligned} & 10038- \\ & \text { CAA } \end{aligned}$	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	3.93	84.59	21.78	1.17	100.0	± 9.6 \%
		Y	2.28	75.57	18.03		100.0	
		Z	2.38	76.51	17.34		100.0	
$\begin{aligned} & 10039- \\ & \text { CAB } \end{aligned}$	CDMA2000 (1xRTT, RC1)	X	2.78	78.14	18.71	0.00	150.0	± 9.6 \%
		Y	1.67	70.12	14.94		150.0	
		\underline{Z}	2.00	74.01	15.76		150.0	
$\begin{aligned} & 10042- \\ & \text { CAB } \end{aligned}$	IS-54 / IS-136 FDD (TDMA/FDM, Pl/4- DQPSK, Halfrate)	X	100.00	110.92	24.96	7.78	50.0	± 9.6 \%
		Y	100.00	110.22	24.75		50.0	
		Z	100.00	106.01	22.46		50.0	
$\begin{aligned} & 10044- \\ & \text { CAA } \end{aligned}$	IS-91/EIAVTIA-553 FDD (FDMA, FM)	X	0.00	112.58	4.43	0.00	150.0	± 9.6 \%
		Y	0.07	121.95	9.84		150.0	
		\underline{Z}	0.01	118.94	9.83		150.0	
$\begin{aligned} & 10048- \\ & \text { CAA } \\ & \hline \end{aligned}$	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	\bar{X}	100.00	111.48	27.44	13.80	25.0	± 9.6 \%
		Y	100.00	112.85	28.28		25.0	
		Z	18.65	86.54	19.90		25.0	
$\begin{aligned} & 10049- \\ & \text { CAA } \end{aligned}$	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	100.00	112.40	26.75	10.79	40.0	± 9.6 \%
		Y	100.00	113.42	27.38		40.0	
		Z	46.23	99.19	22.45		40.0	
$\begin{aligned} & 10056- \\ & \text { CAA } \\ & \hline \end{aligned}$	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	100.00	126.85	34.82	9.03	50.0	± 9.6 \%
		Y	100.00	126.84	34.96		50.0	
		Z	73.14	116.99	30.84		50.0	
$\begin{aligned} & 10058- \\ & \text { DAC } \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	4.87	79.06	26.07	6.55	100.0	$\pm 9.6 \%$
		Y	4.89	78.72	25.82		100.0	
		Z	3.78	74.24	23.87		100.0	
$\begin{aligned} & 10059- \\ & \mathrm{CAB} \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	X	1.24	66.08	16.89	0.61	110.0	± 9.6 \%
		Y	1.15	64.70	15.80		110.0	
$\begin{aligned} & 10060- \\ & \text { CAB } \end{aligned}$		Z	1.15	65.12	16.08		110.0	
	IEEE 802.11 b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	100.00	145.11	38.67	1.30	110.0	± 9.6 \%
		Y	100.00	138.14	35.54		110.0	
		Z	100.00	143.13	37.45		110.0	

$\begin{aligned} & 10061- \\ & \mathrm{CAB} \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	5.01	92.44	27.34	2.04	110.0	± 9.6 \%
		Y	3.88	86.79	24.94		110.0	
$\begin{aligned} & 10062- \\ & \text { CAC } \end{aligned}$		Z	2.64	81.37	23.02		110.0	
	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.74	66.80	16.70	0.49	100.0	± 9.6 \%
		Y	4.72	66.44	16.52		100.0	
		Z	4.55	66.78	16.53		100.0	
$\begin{aligned} & 10063- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.76	66.90	16.81	0.72	100.0	± 9.6 \%
		Y	4.74	66.55	16.64		100.0	
		\underline{Z}	4.57	66.86	16.62		100.0	
$\begin{aligned} & 10064- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 12 Mbps)	X	5.07	67.18	17.05	0.86	100.0	± 9.6 \%
		Y	5.06	66.88	16.91		100.0	
		Z	4.83	67.08	16.83		100.0	
$\begin{aligned} & 10065- \\ & \text { CAC } \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 18 Mbps)	X	4.93	67.08	17.15	1.21	100.0	± 9.6 \%
		Y	4.92	66.80	17.03		100.0	
		Z	4.69	66.95	16.91		100.0	
$\begin{aligned} & 10066- \\ & \text { CAC } \end{aligned}$	IEEE $802.11 \mathrm{a} / \mathrm{h}$ WiFi 5 GHz (OFDM, 24 Mbps)	X	4.95	67.11	17.33	1.46	100.0	± 9.6 \%
		Y	4.94	66.84	17.22		100.0	
		Z	4.70	66.94	17.07		100.0	
$\begin{aligned} & 10067- \\ & \mathrm{CAC} \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	5.22	67.17	17.72	2.04	100.0	± 9.6 \%
		Y	5.23	66.94	17.65		100.0	
		Z	4.99	67.15	17.52		100.0	
$\begin{aligned} & 10068- \\ & \text { CAC } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	X	5.28	67.31	17.99	2.55	100.0	± 9.6 \%
		Y	5.30	67.12	17.95		100.0	
		Z	5.01	67.08	17.69		100.0	
$\begin{aligned} & 10069- \\ & \text { CAC } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	5.36	67.24	18.15	2.67	100.0	± 9.6 \%
		Y	5.38	67.05	18.11		100.0	
		Z	5.09	67.11	17.88		100.0	
$\begin{aligned} & 10071- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	5.01	66.83	17.56	1.99	100.0	± 9.6 \%
		Y	5.01	66.58	17.48		100.0	
		Z	4.83	66.80	17.36		100.0	
$\begin{aligned} & 10072- \\ & \mathrm{CAB} \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	5.00	67.20	17.81	2.30	100.0	$\pm 9.6 \%$
		Y	5.01	66.96	17.73		100.0	
		Z	4.79	67.07	17.56		100.0	
$\begin{aligned} & 10073- \\ & \mathrm{CAB} \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	5.05	67.32	18.13	2.83	100.0	± 9.6 \%
		Y	5.06	67.11	18.07		100.0	
		Z	4.84	67.21	17.87		100.0	
$\begin{aligned} & 10074- \\ & \text { CAB } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	5.01	67.17	18.27	3.30	100.0	± 9.6 \%
		Y	5.03	66.98	18.23		100.0	
		Z	4.82	67.10	18.01		100.0	
$\begin{aligned} & 10075- \\ & \text { CAB } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	5.05	67.33	18.61	3.82	90.0	± 9.6 \%
		Y	5.08	67.18	18.60		90.0	
		Z	4.84	67.13	18.28		90.0	
$\begin{aligned} & 10076- \\ & \text { CAB } \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	5.04	67.01	18.67	4.15	90.0	± 9.6 \%
		Y	5.06	66.85	$18 . \overline{66}$		90.0	
		Z	4.86	66.95	18.41		90.0	
$\begin{aligned} & 10077- \\ & \mathrm{CAB} \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	5.05	67.06	18.76	4.30	90.0	± 9.6 \%
		Y	5.07	66.89	18.74		90.0	
		Z	4.89	67.03	18.52		90.0	

$\begin{aligned} & 10081- \\ & \mathrm{CAB} \end{aligned}$	CDMA2000 (1xRTT, RC3)	X	1.10	69.87	14.99	0.00	150.0	± 9.6 \%
		Y	0.78	64.74	11.83		150.0	
$\begin{array}{\|l} \hline 10082- \\ \text { CAB } \\ \hline \end{array}$		Z	0.78	66.34	11.97		150.0	
	IS-54 / IS-136 FDD (TDMA/FDM, P//4DQPSK, Fullrate)	X	0.69	60.00	4.39	4.77	80.0	± 9.6 \%
		Y	0.71	60.00	4.39		80.0	
		Z	7.97	68.50	6.36		80.0	
$\begin{aligned} & 10090- \\ & \text { DAC } \end{aligned}$	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	100.00	115.53	26.81	6.56	60.0	± 9.6 \%
		Y	100.00	114.29	26.36		60.0	
		Z	100.00	109.90	23.90		60.0	
$\begin{aligned} & 10097- \\ & \text { CAB } \end{aligned}$	UMTS-FDD (HSDPA)	X	1.95	68.97	16.62	0.00	150.0	± 9.6 \%
		Y	1.75	66.81	15.24		150.0	
		Z	1.87	68.90	16.13		150.0	
$\begin{aligned} & 10098- \\ & \text { CAB } \end{aligned}$	UMTS-FDD (HSUPA, Subtest 2)	X	1.91	68.95	16.60	0.00	150.0	± 9.6 \%
		Y	1.71	66.77	15.20		150.0	
		Z	1.83	68.86	16.11		150.0	
$\begin{aligned} & 10099- \\ & \text { DAC } \\ & \hline \end{aligned}$	EDGE-FDD (TDMA, 8PSK, TN 0-4)	X	11.93	100.45	36.42	9.56	60.0	± 9.6 \%
		Y	11.20	97.95	35.37		60.0	
		Z	7.96	90.99	32.84		60.0	
$\begin{aligned} & 10100- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100\% RB, 20 MHz, QPSK)	X	3.40	71.76	17.45	0.00	150.0	± 9.6 \%
		Y	3.10	69.82	16.33		150.0	
		\underline{Z}	3.12	70.91	17.03		150.0	
$\begin{aligned} & 10101- \\ & \text { CAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \mathrm{RB}, 20 \\ & \mathrm{MHz}, 16-\mathrm{QAM}) \end{aligned}$	X	3.36	68.15	16.35	0.00	150.0	± 9.6 \%
		Y	3.24	67.23	15.77		150.0	
		Z	3.17	67.74	16.07		150.0	
10102-CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 20 \\ & \mathrm{MHz}, 64-\mathrm{QAM}) \end{aligned}$	X	3.45	68.05	16.42	0.00	150.0	± 9.6 \%
		Y	3.34	67.19	15.87		150.0	
		Z	3.28	67.71	16.16		150.0	
10103-CAF	LTE-TDD (SC-FDMA, 100\% RB, 20 MHz, QPSK)	X	6.86	77.75	21.56	3.98	65.0	± 9.6 \%
		Y	6.56	76.62	21.10		65.0	
		Z	5.69	75.27	20.45		65.0	
$10104-$ CAF	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 100 \% \text { RB, } 20 \\ & \mathrm{MHz}, 16-Q A M) \end{aligned}$	\bar{X}	6.41	74.58	21.07	3.98	65.0	± 9.6 \%
		Y	6.33	74.04	20.86		65.0	
		Z	5.58	72.74	20.11		65.0	
$\begin{aligned} & 10105- \\ & \text { CAF } \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	6.09	73.43	20.88	3.98	65.0	± 9.6 \%
		Y	6.03	72.95	20.69		65.0	
		Z	5.24	71.29	19.75		65.0	
$\begin{aligned} & 10108- \\ & \text { CAF } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 10 MHz , QPSK)	X	2.97	70.94	17.29	0.00	150.0	± 9.6 \%
		Y	2.72	69.08	16.17		150.0	
		Z	2.70	70.20	16.88		150.0	
$\begin{aligned} & 10109- \\ & \text { CAF } \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 10 $\mathrm{MHz}, 16-\mathrm{QAM}$)	X	3.02	68.05	16.32	0.00	150.0	± 9.6 \%
		Y	2.90	67.02	15.66		150.0	
		z	2.83	67.71	15.99		150.0	
$\begin{aligned} & 10110- \\ & \text { CAF } \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 5 MHz , QPSK)	X	2.42	70.09	17.00	0.00	150.0	± 9.6 \%
		Y	2.21	68.14	15.78		150.0	
		Z	2.18	69.46	16.49		150.0	
$\begin{aligned} & 10111- \\ & \text { CAF } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 5 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	2.76	69.06	16.78	0.00	150.0	± 9.6 \%
		Y	2.59	67.59	15.88		150.0	
		Z	2.59	68.99	16.39		150.0	

$\begin{aligned} & 10112- \\ & \text { CAF } \end{aligned}$	LTE-FDD (SC-FDMA, 100\% RB, 10 $\mathrm{MHz}, 64-\mathrm{QAM}$)	$\bar{\chi}$	3.14	67.97	16.35	0.00	150.0	± 9.6 \%
		Y	3.03	67.00	15.72		150.0	
10113- CAF		Z	2.95	67.72	16.05		150.0	
	LTE-FDD (SC-FDMA, 100% RB, 5 MHz , 64-QAM)	X	2.92	69.11	16.87	0.00	150.0	± 9.6 \%
		Y	2.75	67.72	16.02		150.0	
10114CAC		Z	2.74	69.14	16.51		150.0	
	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	5.18	67.31	16.57	0.00	150.0	± 9.6 \%
		Y	5.14	66.93	16.36		150.0	
		Z	5.02	67.26	16.48		150.0	
$\begin{aligned} & 10115- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11 n (HT Greenfield, 81 Mbps , 16-QAM)	X	5.52	67.57	16.70	0.00	150.0	± 9.6 \%
		Y	5.51	67.29	16.56		150.0	
		Z	5.27	67.30	16.50		150.0	
$\begin{aligned} & 10116- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	X	5.29	67.56	16.61	0.00	150.0	± 9.6 \%
		Y	5.27	67.21	16.43		150.0	
		Z	5.10	67.44	16.50		150.0	
$10117-$$\mathrm{CAC}$	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	5.16	67.25	16.55	0.00	150.0	± 9.6 \%
		Y	5.13	66.89	16.36		150.0	
		Z	4.99	67.15	16.44		150.0	
$\begin{aligned} & 10118- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 81 Mbps, 16QAM)	X	5.59	67.74	16.79	0.00	150.0	± 9.6 \%
		Y	5.60	67.49	16.67		150.0	
		Z	5.34	67.49	16.60		150.0	
$10119$$\mathrm{CAC}$	IEEE 802.11n (HT Mixed, 135 Mbps , 64QAM)	X	5.26	67.49	16.59	0.00	150.0	± 9.6 \%
		Y	5.24	67.15	16.41		150.0	
		Z	5.09	67.40	16.49		150.0	
10140-CAE	LTE-FDD (SC-FDMA, 100\% RB, 15 $\mathrm{MHz}, 16-\mathrm{QAM}$)	X	3.50	68.05	16.33	0.00	150.0	± 9.6 \%
		Y	3.39	67.19	15.79		150.0	
		Z	3.30	67.72	16.07		150.0	
$\begin{aligned} & 10141- \\ & \text { CAE } \end{aligned}$	LTE-FDD (SC-FDMA, 100\% RB, 15 $\mathrm{MHz}, 64-\mathrm{QAM}$)	X	3.62	68.10	16.48	0.00	150.0	± 9.6 \%
		Y	3.51	67.27	15.96		150.0	
		Z	3.43	67.85	16.25		150.0	
10142-CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz , QPSK)	X	2.22	70.35	16.88	0.00	150.0	± 9.6 \%
		Y	1.98	67.98	15.45		150.0	
		Z	1.97	69.67	16.10		150.0	
10143CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \text { RB, } 3 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	2.70	70.21	16.79	0.00	150.0	± 9.6 \%
		Y	2.44	68.12	15.58		150.0	
		Z	2.48	69.97	16.00		150.0	
10144- CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz , 64-QAM)	X	2.42	67.64	15.07	0.00	150.0	± 9.6 \%
		Y	2.26	66.15	14.15		150.0	
		Z	2.13	66.86	13.96		150.0	
$\begin{aligned} & 10145- \\ & \text { CAF } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 100 \% \mathrm{RB}, 1.4 \\ & \mathrm{MHz}, \mathrm{QPSK} \text {) } \\ & \hline \end{aligned}$	X	1.54	68.23	14.00	0.00	150.0	± 9.6 \%
		Y	1.25	64.93	12.03		150.0	
		Z	1.00	63.72	10.21		150.0	
$\begin{aligned} & 10146- \\ & \text { CAF } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100\% RB, 1.4 $\mathrm{MHz}, 16-\mathrm{QAM}$)	X	2.38	68.67	13.30	0.00	150.0	± 9.6 \%
		Y	2.63	70.03	14.41		150.0	
		Z	1.37	62.94	8.80		150.0	
$\begin{aligned} & 10147- \\ & \text { CAF } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 100% RB, 1.4 $M H z, 64-Q A M)$	X	3.01	71.74	14.81	0.00	150.0	± 9.6 \%
		Y	3.44	73.73	16.16		150.0	
		Z	1.50	63.86	9.38		150.0	

10149- CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \text { RB, } 20 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	3.03	68.12	16.37	0.00	150.0	± 9.6 \%
		Y	2.91	67.08	15.71		150.0	
		Z	2.84	67.78	16.04		150.0	
$\begin{aligned} & 10150- \\ & \text { CAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \mathrm{RB}, 20 \mathrm{MHz} \\ & \text { 64-QAM) } \end{aligned}$	X	3.15	68.03	16.39	0.00	150.0	± 9.6 \%
		Y	3.03	67.05	15.76		150.0	
		Z	2.96	67.78	16.09		150.0	
$\begin{aligned} & 10151- \\ & \text { CAF } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 20 MHz , QPSK)	X	7.33	80.62	22.85	3.98	65.0	± 9.6 \%
		\bar{Y}	6.93	79.21	22.28		65.0	
		Z	6.07	78.22	21.74		65.0	
10152- CAF	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 20 \mathrm{MHz} \\ & \text { 16-QAM) } \end{aligned}$	X	5.98	74.73	20.92	3.98	65.0	± 9.6 \%
		Y	5.89	74.12	20.68		65.0	
		Z	5.12	72.74	19.78		65.0	
$\begin{aligned} & 10153- \\ & \text { CAF } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	6.33	75.57	21.65	3.98	65.0	± 9.6 \%
		Y	6.23	74.94	21.41		65.0	
		Z	5.49	73.78	20.61		65.0	
$\begin{aligned} & 10154- \\ & \text { CAF } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, QPSK)	X	2.49	70.63	17.32	0.00	150.0	$\pm 9.6 \%$
		Y	2.26	68.57	16.06		150.0	
		Z	2.24	69.92	16.77		150.0	
$\begin{aligned} & 10155- \\ & \text { CAF } \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, 16-QAM)	X	2.77	69.07	16.79	0.00	150.0	± 9.6 \%
		Y	2.59	67.59	15.89		150.0	
		Z	2.59	69.02	16.41		150.0	
$\begin{aligned} & 10156- \\ & \text { CAF } \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 5 MHz , QPSK)	X	2.11	70.85	16.93	0.00	150.0	± 9.6 \%
		Y	1.83	68.04	15.26		150.0	
		Z	1.82	69.80	15.80		150.0	
$\begin{aligned} & 10157- \\ & \text { CAF } \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 5 MHz , 16-QAM)	X	2.31	68.61	15.35	0.00	150.0	± 9.6 \%
		Y	2.08	66.62	14.16		150.0	
		Z	1.98	67.47	13.92		150.0	
$\begin{aligned} & 10158- \\ & \text { CAF } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \mathrm{RB}, 10 \mathrm{MHz} \\ & \text { 64-QAM) } \end{aligned}$	X	2.92	69.17	16.92	0.00	150.0	± 9.6 \%
		Y	2.75	67.77	16.06		150.0	
		Z	2.75	69.22	16.57		150.0	
$\begin{aligned} & \text { 10159- } \\ & \text { CAF } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 5 MHz , 64-QAM)	X	2.44	69.17	15.69	0.00	150.0	± 9.6 \%
		Y	2.19	67.06	14.45		150.0	
		Z	2.09	67.96	14.21		150.0	
$\begin{aligned} & 10160- \\ & \text { CAE } \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 15 MHz , QPSK)	X	2.90	69.57	16.90	0.00	150.0	± 9.6 \%
		Y	2.74	68.24	16.05		150.0	
		Z	2.70	69.25	16.60		150.0	
10161- CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz , 16-QAM)	X	3.05	67.98	16.35	0.00	150.0	± 9.6 \%
		Y	2.93	66.95	15.69		150.0	
		Z	2.86	67.77	16.01		150.0	
$\begin{aligned} & 10162- \\ & \text { CAE } \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 15 \mathrm{MHz}$, 64-QAM)	X	3.15	68.06	16.42	0.00	150.0	± 9.6 \%
		Y	3.03	67.06	15.79		150.0	
		Z	2.97	67.96	16.14		150.0	
$\begin{aligned} & 10166- \\ & \mathrm{CAF} \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz , QPSK)	X	3.67	69.77	19.22	3.01	150.0	± 9.6 \%
		Y	3.71	69.61	19.37		150.0	
		Z	3.45	70.11	19.35		150.0	
$\begin{aligned} & 10167- \\ & \text { CAF } \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 1.4 \mathrm{MHz}$, 16-QAM)	X	4.61	72.92	19.78	3.01	150.0	± 9.6 \%
		Y	4.57	72.37	19.78		150.0	
		Z	4.42	74.02	20.14		150.0	

August 23, 2018

$\begin{aligned} & 10168- \\ & \text { CAF } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \text { RB, } 1.4 \mathrm{MHz} \\ & \text { 64-QAM) } \end{aligned}$	X	5.13	75.25	21.12	3.01	150.0	± 9.6 \%
		Y	5.05	74.54	21.07		150.0	
$\begin{aligned} & 10169- \\ & \text { CAE } \end{aligned}$		Z	5.13	77.22	21.87		150.0	
	LTE-FDD (SC-FDMA, 1 RB, 20 MHz , QPSK)	X	3.12	70.03	19.37	3.01	150.0	± 9.6 \%
		Y	3.15	69.73	19.46		150.0	
		Z	2.86	69.57	19.15		150.0	
$\begin{aligned} & 10170- \\ & \text { CAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	4.58	77.10	22.08	3.01	150.0	± 9.6 \%
		Y	4.39	75.79	21.81		150.0	
		Z	4.44	78.23	22.53		150.0	
10171AAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 20 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \\ & \hline \end{aligned}$	X	3.64	72.24	19.05	3.01	150.0	± 9.6 \%
		Y	3.59	71.47	18.98		150.0	
		Z	3.36	72.39	19.02		150.0	
$\begin{aligned} & 10172- \\ & \text { CAF } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \mathrm{RB}, 20 \mathrm{MHz}, \\ & \text { QPSK) } \end{aligned}$	X	12.64	100.34	31.84	6.02	65.0	± 9.6 \%
		Y	12.97	100.68	32.37		65.0	
		Z	5.77	87.24	27.51		65.0	
$\begin{aligned} & 10173- \\ & \mathrm{CAF} \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , 16-QAM)	X	36.96	114.71	33.67	6.02	65.0	± 9.6 \%
		Y	30.92	112.16	33.64		65.0	
		Z	22.36	108.00	31.61		65.0	
$\begin{aligned} & 10174- \\ & \text { CAF } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , 64-QAM)	X	22.92	104.35	30.17	6.02	65.0	± 9.6 \%
		Y	21.96	104.04	30.70		65.0	
		Z	11.65	95.24	27.25		65.0	
$\begin{aligned} & 10175- \\ & \text { CAF } \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 10 MHz , QPSK)	X	3.08	69.68	19.10	3.01	150.0	± 9.6 \%
		Y	3.11	69.39	19.20		150.0	
		Z	2.82	69.22	18.88		150.0	
10176- CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz , 16-QAM)	X	4.59	77.13	22.09	3.01	150.0	± 9.6 \%
		Y	4.40	75.82	21.82		150.0	
		Z	4.45	78.26	22.55		150.0	
$\begin{aligned} & 10177- \\ & \mathrm{CAH} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \mathrm{RB}, 5 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	3.11	69.85	19.21	3.01	150.0	± 9.6 \%
		Y	3.14	69.56	19.30		150.0	
		Z	2.84	69.38	18.97		150.0	
10178CAF	LTE-FDD (SC-FDMA, 1 RB, 5 MHz , 16QAM)	X	4.53	76.83	21.94	3.01	150.0	± 9.6 \%
		Y	4.34	75.53	21.68		150.0	
		Z	4.39	77.99	22.42		150.0	
$\begin{aligned} & 10179- \\ & \text { CAF } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	4.06	74.50	20.40	3.01	150.0	± 9.6 \%
		Y	3.95	73.49	20.26		150.0	
		Z	3.83	75.09	20.61		150.0	
$10180-$CAF	LTE-FDD (SC-FDMA, 1 RB, $5 \mathrm{MHz}, 64-$ QAM)	X	3.62	72.15	18.99	3.01	150.0	± 9.6 \%
		Y	3.58	71.38	18.93		150.0	
		Z	3.35	72.32	18.97		150.0	
$\overline{10181-}$ CAE	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 15 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	3.10	69.83	19.20	3.01	150.0	± 9.6 \%
		\bar{Y}	3.13	69.54	19.29		150.0	
		Z	2.84	69.36	18.97		150.0	
$\overline{10182-}$ CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz , 16-QAM)	X	4.52	76.80	21.93	3.01	150.0	± 9.6 \%
		Y	4.33	75.51	21.66		150.0	
		Z	4.38	77.96	22.40		150.0	
10183- AAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz , 64-QAM)	X	3.62	72.12	18.97	3.01	150.0	± 9.6 \%
		Y	3.57	71.35	18.91		150.0	
		Z	3.34	72.29	18.96		150.0	

10184- CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	3.11	69.88	19.22	3.01	150.0	± 9.6 \%
		\bar{Y}	3.14	69.58	19.32		150.0	
		Z	2.85	69.41	18.99		150.0	
$\begin{aligned} & 10185- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16QAM)	X	4.54	76.88	21.97	3.01	150.0	± 9.6 \%
		Y	4.35	75.59	21.70		150.0	
		Z	4.41	78.06	22.45		150.0	
$\begin{aligned} & 10186- \\ & \text { AAE } \\ & \hline \end{aligned}$	$\text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 3 \text { MHz, 64- }$ QAM)	X	3.64	72.20	19.01	3.01	150.0	± 9.6 \%
		Y	3.59	71.42	18.95		150.0	
		Z	3.36	72.37	19.00		150.0	
$\begin{aligned} & 10187- \\ & \text { CAF } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 1.4 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	3.12	69.93	19.28	3.01	150.0	± 9.6 \%
		Y	3.15	69.63	19.37		150.0	
		Z	2.86	69.48	19.07		150.0	
$\begin{aligned} & 10188- \\ & \text { CAF } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \mathrm{RB}, 1.4 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	4.72	77.70	22.40	3.01	150.0	± 9.6 \%
		Y	4.51	76.33	22.11		150.0	
		Z	4.61	78.98	22.92		150.0	
10189- AAF	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 1 \text { RB, } 1.4 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	3.73	72.70	19.32	3.01	150.0	± 9.6 \%
		Y	3.67	71.88	19.24		150.0	
		Z	3.46	72.92	19.33		150.0	
$\begin{aligned} & 10193- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 6.5 Mbps , BPSK)	X	4.59	66.76	16.33	0.00	150.0	± 9.6 \%
		Y	4.55	66.31	16.09		150.0	
		Z	4.42	66.80	16.19		150.0	
$\begin{aligned} & 10194- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 39 Mbps , 16-QAM)	X	4.77	67.10	16.45	0.00	150.0	± 9.6 \%
		Y	4.74	66.66	16.21		150.0	
		Z	4.58	67.08	16.32		150.0	
$\begin{aligned} & 10195- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 65 Mbps , 64-QAM)	X	4.82	67.12	16.46	0.00	150.0	± 9.6 \%
		Y	4.78	66.69	16.22		150.0	
		Z	4.62	67.10	16.34		150.0	
$\begin{aligned} & 10196- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11 n (HT Mixed, 6.5 Mbps , BPSK)	X	4.60	66.84	16.36	0.00	150.0	± 9.6 \%
		Y	4.56	66.40	16.12		150.0	
		Z	4.41	66.83	16.20		150.0	
$\begin{aligned} & 10197- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 39 Mbps , 16QAM)	X	4.79	67.12	16.46	0.00	150.0	± 9.6 \%
		Y	4.75	66.69	16.22		150.0	
		Z	4.59	67.09	16.33		150.0	
$\begin{aligned} & 10198- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Mixed, 65 Mbps, 64QAM)	X	4.82	67.14	16.47	0.00	150.0	± 9.6 \%
		Y	4.78	66.71	16.24		150.0	
		\underline{Z}	4.61	67.11	16.35		150.0	
$\begin{aligned} & 10219- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11 n (HT Mixed, 7.2 Mbps , BPSK)	X	4.55	66.86	16.33	0.00	150.0	± 9.6 \%
		Y	4.51	66.41	16.08		150.0	
		\underline{Z}	4.37	66.86	16.17		150.0	
$\begin{aligned} & 10220- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16QAM)	X	4.79	67.10	16.45	0.00	150.0	± 9.6 \%
		Y	4.75	66.67	16.22		150.0	
		Z	4.58	67.05	16.32		150.0	
$\begin{aligned} & 10221- \\ & \text { CAC } \end{aligned}$	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64QAM)	X	4.83	67.06	16.45	0.00	150.0	± 9.6 \%
		Y	4.79	66.64	16.23		150.0	
		\underline{Z}	4.62	67.04	16.33		150.0	
$\begin{aligned} & 10222- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	X	5.14	67.26	16.55	0.00	150.0	± 9.6 \%
		\bar{Y}	5.11	66.90	16.36		150.0	
		Z	4.97	67.15	16.43		150.0	

$\overline{10223-}$ CAC	IEEE 802.11n (HT Mixed, 90 Mbps , 16QAM)	X	5.45	67.43	16.65	0.00	150.0	± 9.6 \%
		Y	5.45	67.18	16.52		150.0	
		Z	5.25	67.35	16.55		150.0	
$\begin{aligned} & 10224- \\ & \text { CAC } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 150 Mbps , 64QAM)	X	5.19	67.37	16.53	0.00	150.0	± 9.6 \%
		Y	5.15	66.99	16.33		150.0	
		Z	5.01	67.26	16.42		150.0	
$\begin{aligned} & 10225- \\ & \text { CAB } \\ & \hline \end{aligned}$	UMTS-FDD (HSPA+)	X	2.89	66.55	15.78	0.00	150.0	± 9.6 \%
		Y	2.80	65.71	15.24		150.0	
		Z	2.72	66.49	15.32		150.0	
$\begin{aligned} & 10226- \\ & \text { CAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $1 \mathrm{RB}, 1.4 \mathrm{MHz}$, 16-QAM)	X	42.12	117.30	34.47	6.02	65.0	± 9.6 \%
		Y	34.39	114.35	34.35		65.0	
		Z	25.78	110.75	32.49		65.0	
10227- CAA	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \mathrm{RB}, 1.4 \mathrm{MHz}, \\ & \text { 64-QAM) } \end{aligned}$	X	33.34	110.83	32.01	6.02	65.0	± 9.6 \%
		Y	29.14	109.23	32.25		65.0	
		Z	23.91	107.08	30.63		65.0	
$\begin{aligned} & 10228- \\ & \text { CAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz , QPSK)	X	15.66	105.06	33.38	6.02	65.0	± 9.6 \%
		Y	15.84	105.37	33.95		65.0	
		Z	7.75	93.33	29.68		65.0	
$\begin{aligned} & 10229- \\ & \text { CAC } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16QAM)	X	37.28	114.84	33.72	6.02	65.0	± 9.6 \%
		Y	31.13	112.26	33.67		65.0	
		Z	22.62	108.17	31.67		65.0	
$\begin{aligned} & 10230- \\ & \text { CAC } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz , 64 - QAM)	X	29.88	108.76	31.36	6.02	65.0	± 9.6 \%
		Y	26.58	107.43	31.66		65.0	
		Z	20.85	104.61	29.86		65.0	
$\begin{aligned} & 10231- \\ & \text { CAC } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	14.65	103.59	32.85	6.02	65.0	± 9.6 \%
		Y	14.88	103.95	33.43		65.0	
		\underline{Z}	7.34	92.15	29.19		65.0	
$\begin{aligned} & 10232- \\ & \text { CAE } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , 16QAM)	X	37.25	114.84	33.71	6.02	65.0	± 9.6 \%
		Y	31.10	112.26	33.67		65.0	
		Z	22.58	108.16	31.67		65.0	
$\begin{aligned} & 10233- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , 64- QAM)	X	29.82	108.74	31.35	6.02	65.0	± 9.6 \%
		Y	26.53	107.41	31.66		65.0	
		Z	20.76	104.56	29.85		65.0	
$\begin{aligned} & \text { 10234- } \\ & \text { CAE } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 5 \mathrm{MHz}, \\ & \text { QPSK) } \end{aligned}$	X	13.83	102.21	32.30	6.02	65.0	± 9.6 \%
		Y	14.10	102.64	32.91		65.0	
		Z	7.03	91.14	28.71		65.0	
$\begin{aligned} & 10235- \\ & \text { CAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	37.39	114.93	33.74	6.02	65.0	± 9.6 \%
		Y	31.21	112.34	33.70		65.0	
		Z	22.65	108.24	31.69		65.0	
$\begin{aligned} & 10236- \\ & \text { CAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	30.43	109.05	31.43	6.02	65.0	± 9.6 \%
		Y	27.03	$\overline{107.71}$	31.73		65.0	
		Z	21.22	104.87	29.93		65.0	
10237- CAE	$\text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 10 \mathrm{MHz} \text {, }$ QPSK)	X	14.73	103.74	32.90	6.02	65.0	± 9.6 \%
		Y	14.96	104.11	33.48		65.0	
		Z	7.35	92.21	29.22		65.0	
$\begin{aligned} & 10238- \\ & \text { CAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \text { RB, } 15 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	37.20	114.83	33.71	6.02	65.0	± 9.6 \%
		Y	31.07	112.26	33.67		65.0	
		Z	22.51	108.13	31.66		65.0	

$\begin{aligned} & 10239- \\ & \text { CAE } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 1 \mathrm{RB}, 15 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	29.73	108.72	31.35	6.02	65.0	± 9.6 \%
		Y	26.48	107.40	31.66		65.0	
		Z	20.66	104.50	29.83		65.0	
$\begin{aligned} & 10240- \\ & \text { CAE } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 15 MHz , QPSK)	\bar{X}	14.67	103.66	32.88	6.02	65.0	± 9.6 \%
		Y	14.89	104.03	33.46		65.0	
		Z	7.33	92.17	29.20		65.0	
$\begin{aligned} & \text { 10241- } \\ & \text { CAA } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \mathrm{RB}, 1.4 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	8.22	81.62	25.84	6.98	65.0	± 9.6 \%
		Y	8.21	81.11	25.93		65.0	
		Z	7.55	81.89	25.74		65.0	
$\begin{aligned} & 10242- \\ & \text { CAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz , 64-QAM)	X	7.60	79.92	25.06	6.98	65.0	± 9.6 \%
		Y	7.70	79.68	25.24		65.0	
		Z	6.63	79.21	24.57		65.0	
10243- CAA	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 1.4 \mathrm{MHz} \text {, } \\ & \text { QPSK) } \end{aligned}$	X	6.06	76.28	24.43	6.98	65.0	± 9.6 \%
		Y	6.20	76.29	24.69		65.0	
		Z	5.27	75.02	23.70		65.0	
$\begin{aligned} & 10244- \\ & \text { CAC } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 3 \mathrm{MHz}$, 16-QAM)	X	6.94	79.13	20.40	3.98	65.0	$\pm 9.6 \%$
		Y	7.61	80.93	21.65		65.0	
		Z	4.63	73.01	16.54		65.0	
$\begin{aligned} & 10245- \\ & \text { CAC } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 3 \mathrm{MHz}$, 64-QAM)	X	6.74	78.35	20.03	3.98	65.0	± 9.6 \%
		Y	7.38	80.11	21.28		65.0	
		Z	4.46	72.20	16.14		65.0	
$\begin{aligned} & 10246- \\ & \text { CAC } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 3 \mathrm{MHz}$, QPSK)	X	8.26	86.16	23.38	3.98	65.0	± 9.6 \%
		Y	7.07	83.23	22.34		65.0	
		Z	4.76	77.46	19.00		65.0	
$\begin{aligned} & 10247- \\ & \text { CAE } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , 16-QAM)	X	5.60	76.50	20.35	3.98	65.0	± 9.6 \%
		Y	5.37	75.45	19.96		65.0	
		Z	4.29	72.64	17.71		65.0	
$\begin{aligned} & 10248- \\ & \text { CAE } \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC̄-FDMA, } 50 \% \text { RB, } 5 \mathrm{MHz} \\ & \text { 64-QAM) } \end{aligned}$	X	5.54	75.70	19.98	3.98	65.0	± 9.6 \%
		Y	5.35	74.79	19.65		65.0	
		Z	4.24	71.91	17.36		65.0	
$\begin{aligned} & 10249- \\ & \text { CAE } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 5 \mathrm{MHz}$, QPSK)	X	9.19	88.24	24.95	3.98	65.0	± 9.6 \%
		Y	7.96	85.32	23.90		65.0	
		Z	6.28	82.28	22.02		65.0	
$\begin{aligned} & 10250- \\ & \mathrm{CAE} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 10 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	6.20	77.76	22.32	3.98	65.0	± 9.6 \%
		Y	6.01	76.85	21.97		65.0	
		Z	5.20	75.42	20.86		65.0	
$\begin{aligned} & 10251- \\ & \text { CAE } \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, 64-QAM) 64-QAM)	X	5.85	75.32	20.92	3.98	65.0	± 9.6 \%
		Y	5.73	74.58	20.63		65.0	
		Z	4.92	73.12	19.45		65.0	
$\begin{aligned} & 10252- \\ & \text { CAE } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 10 MHz , QPSK)	X	8.09	84.95	24.58	3.98	65.0	± 9.6 \%
		Y	7.42	82.94	23.81		65.0	
		Z	6.31	81.52	22.96		65.0	
$\begin{aligned} & 10253- \\ & \text { CAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \mathrm{RB}, 15 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	5.80	74.00	20.63	3.98	65.0	± 9.6 \%
		Y	5.72	73.40	20.39		65.0	
		Z	5.04	72.28	19.52		65.0	
$\begin{aligned} & 10254- \\ & \text { CAE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-TDD (SC-FDMA, } 50 \% \text { RB, } 15 \mathrm{MHz}, \\ & \text { 64-QAM) } \end{aligned}$	X	6.14	74.84	21.30	3.98	65.0	± 9.6 \%
		Y	6.05	74.22	21.07		65.0	
		Z	5.36	73.21	20.25		65.0	

August 23, 2018

$\begin{aligned} & 10274- \\ & \text { CAB } \end{aligned}$	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.66	66.98	15.73	0.00	150.0	± 9.6 \%
		Y	2.54	65.90	15.04		150.0	
		Z	2.55	67.07	15.35		150.0	
$\begin{aligned} & 10275- \\ & \text { CAB } \end{aligned}$	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	1.78	69.77	16.72	0.00	150.0	± 9.6 \%
		Y	1.55	67.13	15.03		150.0	
		Z	1.62	69.04	16.02		150.0	
$\begin{aligned} & 10277- \\ & \text { CAA } \end{aligned}$	PHS (QPSK)	X	2.12	61.97	7.55	9.03	50.0	± 9.6 \%
		Y	2.25	62.30	7.96		50.0	
		Z	1.72	60.31	5.78		50.0	
$\begin{aligned} & 10278- \\ & \text { CAA } \\ & \hline \end{aligned}$	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	10.93	86.19	21.29	9.03	50.0	± 9.6 \%
		Y	9.64	84.41	20.95		50.0	
		Z	3.57	69.00	13.15		50.0	
$\begin{aligned} & 10279- \\ & \text { CAA } \end{aligned}$	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	11.22	86.49	21.46	9.03	50.0	± 9.6 \%
		Y	9.91	84.71	21.11		50.0	
		Z	3.69	69.35	13.38		50.0	
$\begin{aligned} & 10290- \\ & \text { AAB } \end{aligned}$	CDMA2000, RC1, SO55, Full Rate	X	1.95	72.86	16.32	0.00	150.0	± 9.6 \%
		Y	1.38	67.46	13.46		150.0	
		Z	1.34	68.81	13.27		150.0	
$\begin{aligned} & 10291- \\ & \text { AAB } \\ & \hline \end{aligned}$	CDMA2000, RC3, SO55, Full Rate	X	1.06	69.47	14.79	0.00	150.0	± 9.6 \%
		Y	0.76	64.53	11.71		150.0	
		Z	0.76	66.05	11.81		150.0	
$\begin{aligned} & 10292- \\ & \text { AAB } \\ & \hline \end{aligned}$	CDMA2000, RC3, SO32, Full Rate	X	1.83	78.35	18.94	0.00	150.0	± 9.6 \%
		Y	0.91	67.73	13.68		150.0	
		Z	1.34	73.93	15.68		150.0	
$\begin{aligned} & 10293- \\ & \text { AAB } \end{aligned}$	CDMA2000, RC3, SO3, Full Rate	X	4.73	93.04	24.47	0.00	150.0	± 9.6 \%
		Y	1.31	72.72	16.40		150.0	
		Z	6.43	94.81	23.11		150.0	
$\begin{aligned} & 10295- \\ & \text { AAB } \\ & \hline \end{aligned}$	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	10.60	89.87	26.40	9.03	50.0	$\pm 9.6 \%$
		Y	10.25	88.78	26.08		50.0	
		Z	12.25	89.80	24.68		50.0	
$\begin{aligned} & 10297- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 20 \mathrm{MHz}$, QPSK)	X	2.99	71.06	17.36	0.00	150.0	± 9.6 \%
		Y	2.73	69.18	16.24		150.0	
		\underline{Z}	2.72	70.32	16.96		150.0	
$\begin{aligned} & \text { 10298- } \\ & \text { AAD } \end{aligned}$	LTE-FDD (SC-FDMA, $50 \% \mathrm{RB}, 3 \mathrm{MHz}$, QPSK)	X	1.90	70.47	15.90	0.00	150.0	± 9.6 \%
		Y	1.56	67.01	13.91		150.0	
		Z	1.44	67.67	13.50		150.0	
$\begin{aligned} & \text { 10299- } \\ & \text { AAD } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \mathrm{RB}, 3 \mathrm{MHz} \text {, } \\ & \text { 16-QAM) } \end{aligned}$	X	3.07	71.64	15.53	0.00	150.0	± 9.6 \%
		Y	3.23	72.42	16.33		150.0	
		Z	2.17	67.61	12.32		150.0	
$\begin{aligned} & 10300- \\ & \text { AAD } \end{aligned}$	$\begin{aligned} & \text { LTE-FDD (SC-FDMA, } 50 \% \text { RB, } 3 \mathrm{MHz} \text {, } \\ & \text { 64-QAM) } \end{aligned}$	X	2.19	66.26	12.34	0.00	150.0	± 9.6 \%
		Y	2.31	66.80	13.02		150.0	
		Z	1.57	63.33	9.50		150.0	
10301- AAA	IEEE 802.16e WiMAX ($29: 18$, 5 ms , 10 MHz, QPSK, PUSC)	X	4.82	65.43	17.57	4.17	50.0	± 9.6 \%
		Y	4.87	65.32	17.50		50.0	
		Z	4.60	65.72	17.49		50.0	
$\begin{aligned} & 10302- \\ & \text { AAA } \end{aligned}$	IEEE 802.16e WiMAX (29:18, 5 ms , $10 \mathrm{MHz}, \mathrm{QPSK}, \mathrm{PUSC}, 3$ CTRL symbols)	X	5.31	66.17	18.35	4.96	50.0	± 9.6 \%
		Y	5.36	66.00	18.25		50.0	
		Z	5.00	66.00	18.02		50.0	

August 23, 2018

$\begin{aligned} & \text { 10303- } \\ & \text { AAA } \end{aligned}$	IEEE 802.16e WiMAX ($31: 15,5 \mathrm{~ms}$, $10 \mathrm{MHz}, 64 \mathrm{QAM}$, PUSC)	X	5.06	65.83	18.21	4.96	50.0	± 9.6 \%
		Y	5.11	65.70	18.12		50.0	
$\begin{aligned} & \text { 10304- } \\ & \text { AAA } \end{aligned}$		\underline{Z}	4.75	65.61	17.82		50.0	
	IEEE 802.16e WiMAX (29:18, 5 ms , $10 \mathrm{MHz}, 64 \mathrm{QAM}, \mathrm{PUSC}$)	X	4.87	65.69	17.69	4.17	50.0	± 9.6 \%
		Y	4.90	65.47	17.55		50.0	
$\begin{aligned} & \text { 10305- } \\ & \text { AAA } \end{aligned}$		Z	4.58	65.56	17.35		50.0	
	IEEE 802.16 e WiMAX $(31: 15,10 \mathrm{~ms}$, $10 \mathrm{MHz}, 64 \mathrm{QAM}$, PUSC, 15 symbols)	X	4.43	67.35	19.83	6.02	35.0	± 9.6 \%
		Y	4.56	67.70	19.98		35.0	
		Z	4.15	67.17	19.10		35.0	
$\begin{aligned} & \text { 10306- } \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16e WiMAX (29:18, 10ms, $10 \mathrm{MHz}, 64 \mathrm{QAM}$, PUSC, 18 symbois)	X	4.77	66.43	19.36	6.02	35.0	± 9.6 \%
		Y	4.86	66.61	19.45		35.0	
		Z	4.49	66.31	18.82		35.0	
$\begin{aligned} & 10307- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.16e WiMAX $(29: 18,10 \mathrm{~ms}$, 10 MHz , QPSK, PUSC, 18 symbols)	X	4.67	66.65	19.36	6.02	35.0	± 9.6 \%
		Y	4.78	66.88	19.46		35.0	
		Z	4.37	66.39	18.75		35.0	
10308-AAA	IEEE 802.16e WiMAX (29:18, 10ms, $10 \mathrm{MHz}, 16 \mathrm{QAM}$, PUSC)	X	4.64	66.81	19.48	6.02	35.0	± 9.6 \%
		Y	4.74	67.03	19.58		35.0	
		Z	4.35	66.60	18.90		35.0	
10309- AAA	IEEE 802.16e WiMAX (29:18, 10ms, $10 \mathrm{MHz}, 16 \mathrm{QAM}, \mathrm{AMC} 2 \times 3,18$ symbols)	X	4.84	66.72	19.54	6.02	35.0	± 9.6 \%
		Y	4.94	66.92	19.63		35.0	
		Z	4.52	66.47	18.95		35.0	
$10310-$$\mathrm{AAA}$	IEEE 802.16 e WIMAX $(29: 18,10 \mathrm{~ms}$, 10 MHz, QPSK, AMC $2 \times 3,18$ symbols)	X	4.71	66.49	19.33	6.02	35.0	± 9.6 \%
		Y	4.81	66.68	19.42		35.0	
		Z	4.43	66.37	18.80		35.0	
$\begin{aligned} & 10311- \\ & \text { AAD } \end{aligned}$	LTE-FDD (SC-FDMA, 100\% RB, 15 MHz, QPSK)	X	3.36	70.26	16.95	0.00	150.0	± 9.6 \%
		Y	3.08	68.46	15.91		150.0	
		Z	3.08	69.51	16.57		150.0	
10313AAA	iDEN 1:3	X	5.95	81.40	19.48	6.99	70.0	± 9.6 \%
		Y	4.30	76.35	17.48		70.0	
		Z	3.21	73.80	16.43		70.0	
10314-AAA	iDEN 1:6	X	12.17	97.07	27.72	10.00	30.0	± 9.6 \%
		Y	7.44	87.94	24.60		30.0	
		Z	6.18	85.76	23.72		30.0	
10315- AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96 pc duty cycle)	X	1.10	64.61	16.02	0.17	150.0	± 9.6 \%
		Y	1.01	63.21	14.85		150.0	
		Z	1.05	64.14	15.48		150.0	
$\begin{aligned} & 10316- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (ERPOFDM, 6 Mbps , 96 pc duty cycle)	X	4.65	66.81	16.47	0.17	150.0	± 9.6 \%
		Y	4.62	66.42	16.27		150.0	
		Z	4.46	66.78	16.31		150.0	
$\begin{aligned} & 10317- \\ & \text { AAC } \end{aligned}$	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96 pc duty cycle)	X	4.65	66.81	16.47	0.17	150.0	± 9.6 \%
		Y	4.62	66.42	16.27		150.0	
		Z	4.46	66.78	16.31		150.0	
$\begin{aligned} & 10400- \\ & \text { AAD } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20 MHz , 64-QAM, $99 p \mathrm{~d}$ duty cycle)	X	4.78	67.16	16.44	0.00	150.0	± 9.6 \%
		Y	4.74	66.73	16.21		150.0	
		Z	4.55	67.11	16.31		150.0	
$\begin{aligned} & 10401- \\ & \text { AAD } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	X	5.43	67.23	16.53	0.00	150.0	$\pm 9.6 \%$
		Y	5.42	66.92	16.38		150.0	
		Z	5.24	67.11	16.40		150.0	

$\begin{aligned} & 10402- \\ & \text { AAD } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99 pc duty cycle)	X	5.71	67.66	16.59	0.00	150.0	± 9.6 \%
		Y	5.70	67.34	16.43		150.0	
		Z	5.52	67.48	16.45		150.0	
$\begin{aligned} & \hline 10403- \\ & \text { AAB } \\ & \hline \end{aligned}$	CDMA2000 (1xEV-DO, Rev. 0)	X	1.95	72.86	16.32	0.00	115.0	$\pm 9.6 \%$
		Y	1.38	67.46	13.46		115.0	
		Z	1.34	68.81	13.27		115.0	
$\begin{aligned} & 10404- \\ & \text { AAB } \\ & \hline \end{aligned}$	CDMA2000 (1xEV-DO, Rev. A)	X	1.95	72.86	16.32	0.00	115.0	± 9.6 \%
		Y	1.38	67.46	13.46		115.0	
		Z	1.34	68.81	13.27		115.0	
$\begin{aligned} & 10406- \\ & \text { AAB } \\ & \hline \end{aligned}$	CDMA2000, RC3, SO32, SCHO, Full Rate	X	100.00	122.38	30.73	0.00	100.0	± 9.6 \%
		Y	81.48	123.67	32.28		100.0	
		Z	100.00	114.83	26.66		100.0	
$\begin{aligned} & 10410- \\ & \text { AAE } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$, Subframe Conf=4)	X	100.00	123.65	31.04	3.23	80.0	± 9.6 \%
		\bar{Y}	100.00	127.30	33.02		80.0	
		\underline{Z}	100.00	122.18	29.60		80.0	
$10415-$ AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	1.02	63.74	15.40	0.00	150.0	± 9.6 \%
		Y	0.94	62.36	14.20		150.0	
		Z	0.99	63.49	14.99		150.0	
$\begin{aligned} & 10416- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (ERPOFDM, 6 Mbps, $99 p \mathrm{duty}$ cycle)	X	4.59	66.79	16.39	0.00	150.0	± 9.6 \%
		Y	4.55	66.36	16.15		150.0	
		Z	4.42	66.82	16.27		150.0	
$10417-$ AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	X	4.59	66.79	16.39	0.00	150.0	± 9.6 \%
		Y	4.55	66.36	16.15		150.0	
		Z	4.42	66.82	16.27		150.0	
10418-AAA	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 6 Mbps , 99pc duty cycle, Long preambule)	X	4.58	66.96	16.41	0.00	150.0	± 9.6 \%
		Y	4.54	66.49	16.15		150.0	
10419- AAA		Z	4.42	67.01	16.31		150.0	
	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 6 Mbps, 99pc duty cycle, Short preambule)	X	4.61	66.90	16.41	0.00	150.0	± 9.6 \%
		Y	4.56	66.45	16.16		150.0	
		Z	4.43	66.95	16.30		150.0	
10422- AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	X	4.73	66.90	16.41	0.00	150.0	± 9.6 \%
		Y	4.69	66.47	16.18		150.0	
		Z	4.54	66.92	16.31		150.0	
$\begin{aligned} & 10423- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	X	4.91	67.24	16.54	0.00	150.0	± 9.6 \%
		Y	4.87	66.82	16.31		150.0	
		Z	4.68	67.21	16.40		150.0	
$\begin{aligned} & 10424- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	X	4.82	67.19	16.51	0.00	150.0	± 9.6 \%
		Y	4.79	66.76	16.28		150.0	
		Z	4.61	67.16	16.38		150.0	
$\begin{aligned} & 10425- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Greenfield, 15 Mbps , BPSK)	X	5.41	67.47	16.65	0.00	150.0	± 9.6 \%
		Y	5.40	67.17	16.50		150.0	
		Z	5.21	67.35	16.53		150.0	
$\begin{aligned} & 10426- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Greenfield, 90 Mbps , 16-QAM)	X	5.41	67.47	16.65	0.00	150.0	± 9.6 \%
		Y	5.40	67.19	16.50		150.0	
		Z	5.23	67.42	16.56		150.0	

10460- AAA	UMTS-FDD (WCDMA, AMR)	X	1.07	72.05	18.39	0.00	150.0	± 9.6 \%
		Y	0.81	67.05	15.17		150.0	
10461- AAA		Z	0.95	70.49	17.24		150.0	
	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	129.11	33.59	3.29	80.0	$\pm 9.6 \%$
		Y	100.00	132.68	35.56		80.0	
		Z	100.00	128.17	32.38		80.0	
10462-AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	29.76	94.39	20.32	3.23	80.0	± 9.6 \%
		Y	100.00	112.07	25.94		80.0	
		Z	0.79	60.49	7.76		80.0	
$\begin{aligned} & 10463- \\ & \text { AAA } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $1 \mathrm{RB}, 1.4 \mathrm{MHz}$, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.50	68.97	12.20	3.23	80.0	± 9.6 \%
		Y	100.00	107.58	23.85		80.0	
		Z	0.77	60.00	6.89		80.0	
$\begin{aligned} & 10464- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz , QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	126.29	32.12	3.23	80.0	$\pm 9.6 \%$
		Y	100.00	130.29	34.26		80.0	
		Z	100.00	124.25	30.42		80.0	
10465-AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz , 16QAM, UL Subframe $=2,3,4,7,8,9$)	X	9.13	82.53	17.12	3.23	80.0	± 9.6 \%
		Y	100.00	111.30	25.58		80.0	
		Z	0.75	60.00	7.44		80.0	
$\begin{aligned} & 10466- \\ & \text { AAB } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 3 MHz , 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.98	66.71	11.27	3.23	80.0	± 9.6 \%
		Y	99.88	106.88	23.53		80.0	
		Z	0.78	60.00	6.83		80.0	
$\begin{aligned} & 10467- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	126.60	32.25	3.23	80.0	± 9.6 \%
		Y	100.00	130.59	34.40		80.0	
		Z	100.00	124.67	30.60		80.0	
$\begin{aligned} & 10468- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, $5 \mathrm{MHz}, 16-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	11.66	85.00	17.83	3.23	80.0	± 9.6 \%
		Y	100.00	111.53	25.68		80.0	
		Z	0.75	60.09	7.51		80.0	
$\begin{aligned} & 10469- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.98	66.75	11.28	3.23	80.0	± 9.6 \%
		Y	100.00	106.90	23.54		80.0	
		Z	0.77	60.00	6.83		80.0	
$\begin{aligned} & 10470- \\ & \text { AAD } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	126.64	32.26	3.23	80.0	± 9.6 \%
		Y	100.00	130.65	34.41		80.0	
		\underline{Z}	100.00	124.69	30.60		80.0	
$\begin{aligned} & 10471- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, $10 \mathrm{MHz}, 16-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	11.32	84.67	17.72	3.23	80.0	± 9.6 \%
		Y	100.00	111.46	25.64		80.0	
		Z	0.75	60.04	7.47		80.0	
$\begin{aligned} & 10472- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 10 MHz , 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.96	66.63	11.22	3.23	80.0	± 9.6 \%
		Y	100.00	106.82	23.49		80.0	
		Z	0.77	60.00	6.81		80.0	
$\begin{aligned} & 10473- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 15 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	100.00	126.60	32.24	3.23	80.0	± 9.6 \%
		Y	100.00	130.61	34.39		80.0	
		Z	100.00	124.64	30.58		80.0	
$\begin{aligned} & 10474- \\ & \text { AAD } \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 15 MHz , 16QAM, UL Subframe $=2,3,4,7,8,9$)	X	11.06	84.45	17.66	3.23	80.0	± 9.6 \%
		Y	100.00	111.47	25.64		80.0	
		Z	0.74	60.02	7.45		80.0	
$\begin{aligned} & 10475- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 1 RB, 15 MHz , 64QAM, UL Subframe $=2,3,4,7,8,9$)	X	1.95	66.59	11.20	3.23	80.0	± 9.6 \%
		Y	99.99	106.84	23.50		80.0	
		Z	0.77	60.00	6.81		80.0	

10477- AAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , $16-$ QAM, UL Subframe $=2,3,4,7,8,9$)	X	9.10	82.47	17.07	3.23	80.0	± 9.6 \%
		Y	100.00	111.24	25.54		80.0	
10478- AAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , 64QAM, UL Subframe $=2,3,4,7,8,9$)	Z	0.74	60.00	7.42		80.0	
		X	1.93	66.47	11.14	3.23	80.0	± 9.6 \%
		Y	96.81	106.44	23.40		80.0	
	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	\underline{Z}	0.77	60.00	6.80		80.0	
$\begin{aligned} & 10479- \\ & \text { AAA } \\ & \hline \end{aligned}$		X	9.68	90.97	25.10	3.23	80.0	± 9.6 \%
		Y	13.83	97.37	27.65		80.0	
	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	Z	12.23	94.71	25.17		80.0	
$\begin{aligned} & 10480- \\ & \text { AAA } \\ & \hline \end{aligned}$		X	11.91	88.02	22.17	3.23	80.0	± 9.6 \%
		Y	19.25	95.65	25.10		80.0	
		Z	7.50	81.30	18.54		80.0	
$\begin{aligned} & 10481- \\ & \text { AAA } \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	9.15	83.59	20.38	3.23	80.0	± 9.6 \%
		Y	15.12	91.18	23.39		80.0	
$\begin{aligned} & 10482- \\ & \text { AAB } \\ & \hline \end{aligned}$		Z	4.40	74.24	15.71		80.0	
	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	4.76	79.70	20.44	2.23	80.0	± 9.6 \%
		Y	3.53	74.74	18.45		80.0	
		Z	2.62	71.60	16.13		80.0	
$\begin{aligned} & \hline 10483- \\ & \text { AAB } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.87	78.17	19.16	2.23	80.0	± 9.6 \%
		Y	8.24	83.44	21.55		80.0	
		Z	2.93	69.04	14.15		80.0	
$\begin{aligned} & 10484- \\ & \text { AAB } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 3 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	5.35	76.61	18.60	2.23	80.0	± 9.6 \%
		Y	7.24	81.28	20.83		80.0	
		Z	2.73	67.94	13.69		80.0	
10485- AAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	4.47	78.87	21.04	2.23	80.0	± 9.6 \%
		Y	3.68	75.23	19.49		80.0	
		Z	3.15	74.27	18.50		80.0	
$\begin{aligned} & \hline 10486- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 5 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.79	72.50	18.04	2.23	80.0	± 9.6 \%
		Y	3.38	70.29	17.05		80.0	
		\underline{Z}	2.84	69.02	15.57		80.0	
$\begin{aligned} & 10487- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50\% RB, 5 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.74	71.89	17.77	2.23	80.0	± 9.6 \%
		Y	3.37	69.86	16.85		80.0	
		Z	2.81	68.50	15.32		80.0	
$\begin{aligned} & \text { 10488- } \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 10 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	4.24	75.86	20.43	2.23	80.0	± 9.6 \%
		Y	3.83	73.65	19.40		80.0	
		Z	3.28	72.72	18.85		80.0	
$\begin{aligned} & 10489- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, $50 \% \mathrm{RB}, 10 \mathrm{MHz}$, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.72	70.49	18.27	2.23	80.0	± 9.6 \%
		Y	3.53	69.26	17.66		80.0	
		Z	3.19	68.97	17.14		80.0	
$\begin{aligned} & 10490- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 10 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.79	70.18	18.14	2.23	80.0	± 9.6 \%
		Y	3.62	69.04	17.58		80.0	
		Z	3.27	68.77	17.05		80.0	
$\begin{aligned} & 10491- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 15 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	4.23	73.19	19.42	2.23	80.0	± 9.6 \%
		Y	3.95	71.65	18.67		80.0	
		Z	3.47	70.90	18.25		80.0	
$\begin{aligned} & \text { 10492- } \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 15 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.97	69.24	17.95	2.23	80.0	± 9.6 \%
		Y	3.85	68.36	17.51		80.0	
		Z	3.50	68.04	17.11		80.0	

$\begin{aligned} & 10493- \\ & \text { AAD } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50\% RB, 15 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.03	69.04	17.87	2.23	80.0	± 9.6 \%
		Y	3.92	68.21	17.46		80.0	
10494AAE		Z	3.56	67.90	17.04		80.0	
	LTE-TDD (SC-FDMA, 50% RB, 20 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	4.79	75.46	20.14	2.23	80.0	± 9.6 \%
		Y	4.38	73.53	19.24		80.0	
		Z	3.78	72.48	18.78		80.0	
$\begin{aligned} & 10495- \\ & \text { AAE } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 50% RB, 20 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.03	69.76	18.19	2.23	80.0	± 9.6 \%
		Y	3.90	68.85	17.73		80.0	
		Z	3.53	68.35	17.31		80.0	
10496- AAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.08	69.35	18.04	2.23	80.0	± 9.6 \%
		Y	3.97	68.51	17.62		80.0	
		Z	3.60	68.09	17.22		80.0	
$\begin{array}{\|l\|} \hline 10497- \\ \text { AAA } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 100\% RB, 1.4 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	3.72	75.87	18.08	2.23	80.0	± 9.6 \%
		Y	2.64	70.76	15.98		80.0	
		Z	1.51	64.60	11.77		80.0	
$\begin{aligned} & 10498- \\ & \text { AAA } \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.30	66.27	12.99	2.23	80.0	± 9.6 \%
		Y	2.02	64.31	12.06		80.0	
		Z	1.20	60.00	8.21		80.0	
$\begin{aligned} & 10499- \\ & \text { AAA } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 1.4 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	2.18	65.35	12.41	2.23	80.0	± 9.6 \%
		Y	1.97	63.70	11.62		80.0	
		Z	1.22	60.00	8.05		80.0	
$\begin{aligned} & 10500- \\ & \text { AAB } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 3 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	4.19	76.87	20.53	2.23	80.0	± 9.6 \%
		Y	3.63	74.04	19.27		80.0	
		Z	3.15	73.35	18.54		80.0	
$\begin{aligned} & 10501- \\ & \text { AAB } \\ & \hline \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 3 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.74	71.57	18.07	2.23	80.0	± 9.6 \%
		Y	3.44	69.83	17.26		80.0	
		Z	3.03	69.25	16.29		80.0	
$\begin{aligned} & 10502- \\ & \text { AAB } \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 3 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.79	71.34	17.92	2.23	80.0	± 9.6 \%
		Y	3.50	69.66	17.14		80.0	
		Z	3.07	69.05	16.12		80.0	
$\begin{array}{\|l} 10503- \\ \text { AAD } \\ \hline \end{array}$	LTE-TDD (SC-FDMA, 100% RB, 5 MHz , QPSK, UL Subframe $=2,3,4,7,8,9$)	X	4.18	75.62	20.32	2.23	80.0	± 9.6 \%
		Y	3.77	73.43	19.30		80.0	
		Z	3.23	72.50	18.74		80.0	
$\begin{aligned} & 10504- \\ & \text { AAD } \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 5 MHz , 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.70	70.40	18.21	2.23	80.0	± 9.6 \%
		Y	3.52	69.18	17.61		80.0	
		Z	3.17	68.86	17.07		80.0	
$\begin{aligned} & \text { 10505- } \\ & \text { AAD } \end{aligned}$	LTE-TDD (SC-FDMA, 100% RB, 5 MHz , 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	3.77	70.08	18.09	2.23	80.0	± 9.6 \%
		Y	3.60	68.95	17.53		80.0	
		Z	3.25	68.67	16.99		80.0	
$\begin{aligned} & \text { 10506- } \\ & \text { AAD } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 10 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	4.74	75.29	20.06	2.23	80.0	± 9.6 \%
		Y	4.34	73.37	19.17		80.0	
		\underline{z}	3.74	72.32	18.70		80.0	
$\begin{aligned} & 10507- \\ & \text { AAD } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 10 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.01	69.69	18.15	2.23	80.0	± 9.6 \%
		Y	3.88	68.79	17.69		80.0	
		Z	3.51	68.29	17.27		80.0	

August 23, 2018

$\begin{aligned} & 10508- \\ & \text { AAD } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 10 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.07	69.28	18.00	2.23	80.0	± 9.6 \%
		Y	3.96	68.45	17.58		80.0	
$\begin{aligned} & 10509- \\ & \text { AAD } \\ & \hline \end{aligned}$		Z	3.59	68.02	17.17		80.0	
	LTE-TDD (SC-FDMA, 100\% RB, 15 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	4.87	73.12	19.15	2.23	80.0	± 9.6 \%
		Y	4.57	71.69	18.46		80.0	
$\begin{aligned} & 10510- \\ & \text { AAD } \end{aligned}$		Z	4.08	70.95	18.12		80.0	
	LTE-TDD (SC-FDMA, 100\% RB, 15 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.46	69.19	17.97	2.23	80.0	± 9.6 \%
		Y	4.36	68.46	17.61		80.0	
$\begin{aligned} & 10511- \\ & \text { AAD } \end{aligned}$		Z	3.98	67.93	17.23		80.0	
	LTE-TDD (SC-FDMA, 100\% RB, 15 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.49	68.83	17.85	2.23	80.0	± 9.6 \%
		Y	4.40	68.15	17.52		80.0	
		Z	4.03	67.70	17.16		80.0	
10512- AAE	LTE-TDD (SC-FDMA, 100\% RB, 20 MHz, QPSK, UL Subframe $=2,3,4,7,8,9$)	X	5.35	75.53	19.95	2.23	80.0	± 9.6 \%
		Y	4.89	73.64	19.09		80.0	
		Z	4.27	72.56	18.64		80.0	
$\begin{aligned} & \text { 10513- } \\ & \text { AAE } \end{aligned}$	LTE-TDD (SC-FDMA, 100\% RB, 20 MHz, 16-QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.37	69.62	18.15	2.23	80.0	± 9.6 \%
		Y	4.26	68.83	17.75		80.0	
		Z	3.86	68.15	17.33		80.0	
10514-AAE	LTE-TDD (SC-FDMA, 100\% RB, 20 MHz, 64-QAM, UL Subframe $=2,3,4,7,8,9$)	X	4.36	69.04	17.95	2.23	80.0	± 9.6 \%
		Y	4.26	68.32	17.60		80.0	
		Z	3.89	67.75	17.20		80.0	
$10515-$ AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	0.98	64.01	15.52	0.00	150.0	± 9.6 \%
		Y	0.90	62.52	14.23		150.0	
		Z	0.95	63.71	15.08		150.0	
$\begin{aligned} & 10516- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	0.96	80.43	22.24	0.00	150.0	± 9.6 \%
		Y	0.52	69.16	15.73		150.0	
		Z	0.74	75.71	19.80		150.0	
$10517-$ AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	X	0.87	66.95	16.73	0.00	150.0	± 9.6 \%
		Y	0.75	64.30	14.64		150.0	
		Z	0.81	66.10	15.98		150.0	
$\begin{aligned} & 10518- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	X	4.59	66.88	16.37	0.00	150.0	± 9.6 \%
		Y	4.55	66.43	16.12		150.0	
		Z	4.41	66.91	16.25		150.0	
$\begin{aligned} & 10519- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	X	4.79	67.13	16.49	0.00	150.0	± 9.6 \%
		Y	4.75	66.71	16.26		150.0	
		\underline{Z}	4.57	67.10	16.35		150.0	
$\begin{aligned} & 10520- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.64	67.11	16.43	0.00	150.0	± 9.6 \%
		Y	4.60	66.67	16.18		150.0	
		Z	4.43	67.05	16.27		150.0	
$\begin{aligned} & \text { 10521- } \\ & \text { AAB } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	X	4.57	67.12	16.42	0.00	150.0	± 9.6 \%
		Y	4.53	66.66	16.16		150.0	
		Z	4.36	67.04	16.26		150.0	
$\begin{aligned} & 10522- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.63	67.16	16.48	0.00	150.0	± 9.6 \%
		Y	4.59	66.70	16.22		150.0	
		Z	4.42	67.17	16.36		150.0	

$\begin{aligned} & 10523- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	X	4.51	67.05	16.34	0.00	150.0	± 9.6 \%
		Y	4.46	66.56	16.06		150.0	
		Z	4.33	67.10	16.24		150.0	
$\begin{aligned} & \text { 10524- } \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.58	67.09	16.46	0.00	150.0	± 9.6 \%
		Y	4.53	66.64	16.20		150.0	
		Z	4.37	67.10	16.33		150.0	
$\begin{array}{\|l\|} \hline 10525- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi (20MHz, MC̄ 99pc duty cycle)	X	4.55	66.14	16.05	0.00	150.0	± 9.6 \%
		Y	4.50	65.66	15.78		150.0	
		Z	4.38	66.18	15.95		150.0	
$\begin{aligned} & 10526- \\ & A A B \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS1, 99 pc duty cycle)	X	4.74	66.53	16.19	0.00	150.0	± 9.6 \%
		Y	4.69	66.05	15.93		150.0	
		Z	4.52	66.50	16.07		150.0	
$\begin{aligned} & 10527- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	X	4.66	66.50	16.15	0.00	150.0	± 9.6 \%
		Y	4.61	66.01	15.87		150.0	
		Z	4.45	66.47	16.02		150.0	
$\begin{aligned} & 10528- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	X	4.67	66.52	16.18	0.00	150.0	± 9.6 \%
		Y	4.62	66.03	15.91		150.0	
		Z	4.47	66.48	16.05		150.0	
$\begin{aligned} & 10529- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	X	4.67	66.52	16.18	0.00	150.0	± 9.6 \%
		Y	4.62	66.03	15.91		150.0	
		Z	4.47	66.48	16.05		150.0	
$\begin{aligned} & 10531- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	X	4.67	66.65	16.20	0.00	150.0	± 9.6 \%
		Y	4.63	66.16	15.93		150.0	
		Z	4.44	66.54	16.04		150.0	
$\begin{aligned} & 10532- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS7, $99 p \mathrm{c}$ duty cycle)	X	4.53	66.51	16.14	0.00	150.0	± 9.6 \%
		Y	4.48	66.01	15.86		150.0	
		Z	4.32	66.41	15.98		150.0	
$\begin{aligned} & 10533- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (20MHz, MCS8, 99 pc duty cycle)	X	4.68	66.56	16.16	0.00	150.0	± 9.6 \%
		Y	4.63	66.06	15.89		150.0	
		Z	4.48	66.56	16.05		150.0	
$\begin{aligned} & 10534- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCSO, 99pc duty cycle)	X	5.19	66.60	16.20	0.00	150.0	± 9.6 \%
		Y	5.16	66.20	15.99		150.0	
		Z	5.01	66.50	16.09		150.0	
$\begin{aligned} & 10535- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	5.26	66.75	16.27	0.00	150.0	± 9.6 \%
		Y	5.22	66.35	16.06		150.0	
		Z	5.06	66.65	16.16		150.0	
$\begin{aligned} & 10536- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	5.13	66.73	16.24	0.00	150.0	± 9.6 \%
		Y	5.09	66.32	16.02		150.0	
		Z	4.95	66.64	16.13		150.0	
$\begin{aligned} & 10537- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi ($40 \mathrm{MHz}, \mathrm{MCS} 3$, 99 pc duty cycle)	X	5.19	66.69	16.22	0.00	150.0	± 9.6 \%
		Y	5.15	66.30	16.01		150.0	
		Z	5.00	66.59	16.11		150.0	
$\begin{aligned} & 10538- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	X	5.28	66.73	16.28	0.00	150.0	± 9.6 \%
		Y	5.26	66.36	16.08		150.0	
		Z	5.08	66.58	16.14		150.0	
$\begin{aligned} & 10540 \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	5.21	66.72	16.29	0.00	150.0	± 9.6 \%
		Y	5.17	66.33	16.08		150.0	
		Z	5.01	66.56	16.15		150.0	

August 23, 2018

$\begin{array}{\|l} \hline 10541- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	X	5.18	66.60	16.22	0.00	150.0	± 9.6 \%
		Y	5.14	66.20	16.01		150.0	
$\begin{aligned} & \hline 10542- \\ & \text { AAB } \\ & \hline \end{aligned}$		Z	4.99	66.47	16.09		150.0	
	IEEE 802.11ac WIFI (40MHz, MCS8, 99 pc duty cycle)	X	5.33	66.65	16.26	0.00	150.0	± 9.6 \%
		Y	5.31	66.28	16.07		150.0	
$\begin{aligned} & 10543- \\ & \text { AAB } \\ & \hline \end{aligned}$		Z	5.14	66.55	16.15		150.0	
	IEEE 802.11ac WiFi (40MHz, MCS9, 99 pc duty cycle)	X	5.41	66.68	16.29	0.00	150.0	± 9.6 \%
		Y	5.39	66.31	16.11		150.0	
10544- AAB		Z	5.20	66.56	16.18		150.0	
	IEEE 802.11ac WiFi ($80 \mathrm{MHz}, \mathrm{MCS} 0$, 99pc duty cycle)	X	5.49	66.70	16.18	0.00	150.0	± 9.6 \%
		Y	5.45	66.31	15.98		150.0	
$\begin{aligned} & 10545- \\ & \text { AAB } \\ & \hline \end{aligned}$		Z	5.34	66.58	16.07		150.0	
	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	X	5.68	67.09	16.32	0.00	150.0	± 9.6 \%
		Y	5.66	66.76	16.15		150.0	
$\begin{aligned} & 10546- \\ & \text { AAB } \end{aligned}$		Z	5.51	66.98	16.23		150.0	
	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	X	5.57	66.94	16.26	0.00	150.0	± 9.6 \%
		Y	5.54	66.57	16.08		150.0	
$\begin{aligned} & \hline 10547- \\ & \text { AAB } \\ & \hline \end{aligned}$		Z	5.38	66.73	16.11		150.0	
	IEEE 802.11ac WiFi (80 MHz , MCS3, 99pc duty cycle)	X	5.64	66.98	16.27	0.00	150.0	$\pm 9.6 \%$
		Y	5.63	66.66	16.11		150.0	
$\begin{aligned} & 10548- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$		Z	5.45	66.79	16.14		150.0	
	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	X	5.90	67.92	16.71	0.00	150.0	± 9.6 \%
		Y	5.97	67.87	16.68		150.0	
$\begin{aligned} & 10550- \\ & \text { AAB } \end{aligned}$		Z	5.63	67.50	16.47		150.0	
	IEEE 802.11 ac WiFi (80MHz, MCS6, $99 p \mathrm{duty}$ cycle)	X	5.59	66.92	16.26	0.00	150.0	± 9.6 \%
		Y	5.55	66.54	16.07		150.0	
$\begin{aligned} & \text { 10551- } \\ & \text { AAB } \\ & \hline \end{aligned}$		Z	5.42	66.82	16.17		150.0	
	IEEE 802.11ac WiFi (80MHz, MCS7, 99 pc duty cycle)	X	5.60	66.98	16.25	0.00	150.0	± 9.6 \%
		Y	5.56	66.60	16.06		150.0	
		Z	5.40	66.75	16.10		150.0	
$\begin{aligned} & 10552- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	X	5.51	66.77	16.16	0.00	150.0	± 9.6 \%
		Y	5.47	66.37	15.96		150.0	
$\begin{array}{\|l\|} \hline 10553- \\ \text { AAB } \\ \hline \end{array}$		Z	5.35	66.67	16.06		150.0	
	IEEE 802.11ac WiFi (80MHz, MCS9, 99 pc duty cycle)	X	5.60	66.81	16.21	0.00	150.0	± 9.6 \%
		Y	5.56	66.43	16.01		150.0	
$\begin{aligned} & 10554- \\ & \text { AAC } \\ & \hline \end{aligned}$		Z	5.41	66.65	16.08		150.0	
	IEEE 802.11ac WiFi (160 MHz , MCSO, 99pc duty cycle)	X	5.89	67.05	16.26	0.00	150.0	± 9.6 \%
		Y	5.86	66.69	16.08		150.0	
$\begin{aligned} & 10555- \\ & \text { AAC } \\ & \hline \end{aligned}$		Z	5.75	66.91	16.14		150.0	
	IEEE 802.11ac WiFi (160 MHz , MCS1, 99pc duty cycle)	X	6.02	67.35	16.38	0.00	150.0	± 9.6 \%
		Y	6.00	67.02	16.22		150.0	
		Z	5.86	67.17	16.25		150.0	
10556- AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	X	6.04	67.39	16.40	0.00	150.0	± 9.6 \%
		Y	6.02	67.06	16.23		150.0	
$\begin{aligned} & 10557- \\ & \text { AAC } \end{aligned}$		Z	5.88	67.24	16.28		150.0	
	IEEE 802.11ac WiFi (160MHz, MCS3, $99 p \mathrm{duty}$ cycle)	X	6.01	67.32	16.38	0.00	150.0	± 9.6 \%
		Y	5.99	66.98	16.22		150.0	
		Z	5.85	67.13	16.24		150.0	

$\begin{aligned} & \text { 10558- } \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS4, $99 p \mathrm{duty}$ cycle)	X	6.07	67.49	16.48	0.00	150.0	± 9.6 \%
		Y	6.05	67.17	16.33		150.0	
$\begin{aligned} & 10560- \\ & \text { AAC } \\ & \hline \end{aligned}$		Z	5.88	67.26	16.33		150.0	
	IEEE 802.11ac WiFi (160MHz, MCS6, 99 pc duty cycle)	X	6.06	67.34	16.44	0.00	150.0	± 9.6 \%
		Y	6.04	66.99	16.28		150.0	
		Z	5.88	67.13	16.30		150.0	
$\begin{aligned} & 10561- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11 ac WiFi ($160 \mathrm{MHz}, \mathrm{MCS} 7$, 99 pc duty cycle)	X	5.98	67.30	16.46	0.00	150.0	± 9.6 \%
		Y	5.96	66.96	16.30		150.0	
		Z	5.81	67.11	16.32		150.0	
$\begin{aligned} & 10562- \\ & \text { AAC } \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCS8, 99pc duty cycle)	X	6.11	67.72	16.67	0.00	150.0	± 9.6 \%
		Y	6.12	67.46	16.55		150.0	
		Z	5.89	67.37	16.45		150.0	
10563- AAC	IEEE 802.11 ac WiFi ($160 \mathrm{MHz}, \mathrm{MCS} 9$, 99 pc duty cycle)	X	6.43	68.23	16.87	0.00	150.0	± 9.6 \%
		Y	6.50	68.16	16.85		150.0	
		Z	5.96	67.23	16.35		150.0	
$\begin{aligned} & 10564- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 9 Mbps , 99 pc duty cycle)	X	4.91	66.93	16.51	0.46	150.0	± 9.6 \%
		Y	4.88	66.54	16.31		150.0	
		Z	4.73	66.93	16.37		150.0	
$\begin{aligned} & 10565- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11g WiFi 2.4 GHz (DSSSOFDM, 12 Mbps , 99 pc duty cycle)	X	5.16	67.40	16.83	0.46	150.0	± 9.6 \%
		Y	5.13	67.02	16.64		150.0	
		Z	4.93	67.35	16.69		150.0	
$\begin{aligned} & 10566- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 18 Mbps , 99 pc duty cycle)	X	4.99	67.26	16.66	0.46	150.0	$\pm 9.6 \%$
		Y	4.96	66.87	16.45		150.0	
		Z	4.77	67.18	16.50		150.0	
$\begin{aligned} & 10567- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 24 Mbps , 99 pc duty cycle)	X	5.02	67.67	17.02	0.46	150.0	± 9.6 \%
		Y	4.98	67.25	16.79		150.0	
		Z	4.81	67.60	16.88		150.0	
$\begin{aligned} & 10568- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11g WiFi 2.4 GHz (DSSSOFDM, 36 Mbps , 99 pc duty cycle)	$\overline{\text { X }}$	4.90	67.00	16.42	0.46	150.0	± 9.6 \%
		Y	4.87	66.62	16.22		150.0	
		Z	4.67	66.94	16.26		150.0	
$\begin{array}{\|l} \hline 10569- \\ \text { AAA } \\ \hline \end{array}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $48 \mathrm{Mbps}, 99 \mathrm{pc}$ duty cycle)	X	4.97	67.73	17.07	0.46	150.0	± 9.6 \%
		Y	4.93	67.29	16.83		150.0	
		Z	4.78	67.78	16.99		150.0	
$\begin{aligned} & 10570- \\ & \mathrm{AAA} \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 54 Mbps , 99 pc duty cycle)	X	5.01	67.57	17.00	0.46	150.0	± 9.6 \%
		Y	4.97	67.15	16.77		150.0	
		Z	4.80	67.57	16.89		150.0	
$\begin{aligned} & 10571- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90 pc duty cycle)	X	1.17	65.22	16.39	0.46	130.0	± 9.6 \%
		Y	1.09	63.89	15.30		130.0	
		Z	1.10	64.48	15.68		130.0	
$\begin{aligned} & 10572- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	1.19	65.91	16.81	0.46	130.0	± 9.6 \%
		Y	1.10	64.45	15.65		130.0	
		Z	1.12	65.08	16.07		130.0	
$10573-$ AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	11.95	118.97	33.95	0.46	130.0	± 9.6 \%
		Y	2.10	86.50	22.92		130.0	
		Z	2.78	93.83	26.37		130.0	
$\begin{aligned} & 10574- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90 pc duty cycle)	X	1.42	73.69	20.72	0.46	130.0	± 9.6 \%
		Y	1.20	70.19	18.52		130.0	
		Z	1.24	71.54	19.44		130.0	

August 23, 2018

$\begin{array}{\|l\|} \hline 10575- \\ \text { AAA } \\ \hline \end{array}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $6 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	4.69	66.71	16.57	0.46	130.0	± 9.6 \%
		Y	4.67	66.34	16.38		130.0	
10576- AAA		Z	4.50	66.68	16.40		130.0	
	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $9 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	4.72	66.88	16.64	0.46	130.0	± 9.6 \%
		\bar{Y}	4.69	66.50	16.44		130.0	
		Z	4.53	66.88	16.48		130.0	
$\begin{aligned} & 10577- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11g WiFi 2.4 GHz (DSSSOFDM, 12 Mbps, 90 pc duty cycle)	X	4.94	67.20	16.81	0.46	130.0	± 9.6 \%
		Y	4.91	66.83	16.62		130.0	
		Z	4.71	67.13	16.63		130.0	
$\begin{aligned} & 10578- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, $18 \mathrm{Mbps}, 90 \mathrm{pc}$ duty cycle)	X	4.83	67.37	16.92	0.46	130.0	± 9.6 \%
		Y	4.81	66.98	16.72		130.0	
		Z	4.61	67.29	16.74		130.0	
$\begin{aligned} & 10579- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 24 Mbps, 90 pc duty cycle)	X	4.60	66.66	16.24	0.46	130.0	± 9.6 \%
		Y	4.57	66.30	16.05		130.0	
		Z	4.37	66.49	16.00		130.0	
$\begin{aligned} & 10580- \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 36 Mbps , 90 pc duty cycle)	X	4.64	66.67	16.25	0.46	130.0	± 9.6 \%
		Y	4.62	66.31	16.06		130.0	
		Z	4.41	66.55	16.03		130.0	
$\begin{aligned} & 10581- \\ & \text { AAA } \\ & \hline \end{aligned}$	1EEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 48 Mbps , 90 pc duty cycle)	X	4.73	67.42	16.87	0.46	130.0	± 9.6 \%
		Y	4.70	67.02	16.65		130.0	
		Z	4.52	67.36	16.71		130.0	
$\begin{aligned} & \text { 10582- } \\ & \text { AAA } \\ & \hline \end{aligned}$	IEEE 802.11 g WiFi 2.4 GHz (DSSSOFDM, 54 Mbps , 90 pc duty cycle)	X	4.54	66.41	16.03	0.46	130.0	± 9.6 \%
		Y	4.53	66.07	15.85		130.0	
		Z	4.30	66.25	15.78		130.0	
$\begin{aligned} & 10583- \\ & A A B \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.69	66.71	16.57	0.46	130.0	± 9.6 \%
		Y	4.67	66.34	16.38		130.0	
		Z	4.50	66.68	16.40		130.0	
$\begin{aligned} & 10584- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90 pc duty cycle)	X	4.72	66.88	16.64	0.46	130.0	± 9.6 \%
		Y	4.69	66.50	16.44		130.0	
		Z	4.53	66.88	16.48		130.0	
$\begin{aligned} & 10585- \\ & \text { AAB } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	4.94	67.20	16.81	0.46	130.0	± 9.6 \%
		Y	4.91	66.83	16.62		130.0	
		Z	4.71	67.13	16.63		130.0	
$\begin{aligned} & 10586- \\ & \text { AAB } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	4.83	67.37	16.92	0.46	130.0	± 9.6 \%
		Y	4.81	66.98	16.72		130.0	
		Z	4.61	67.29	16.74		130.0	
$\begin{aligned} & 10587- \\ & \text { AAB } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	4.60	66.66	16.24	0.46	130.0	$\pm 9.6 \%$
		Y	4.57	66.30	16.05		130.0	
		Z	4.37	66.49	16.00		130.0	
$\begin{aligned} & 10588- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.64	66.67	16.25	0.46	130.0	± 9.6 \%
		Y	4.62	66.31	16.06		130.0	
		Z	4.41	66.55	16.03		130.0	
$\begin{aligned} & \hline 10589- \\ & \text { AAB } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90 pc duty cycle)	X	4.73	67.42	16.87	0.46	130.0	± 9.6 \%
		Y	4.70	67.02	16.65		130.0	
		Z	4.52	67.36	16.71		130.0	
$\begin{aligned} & 10590- \\ & \text { AAB } \end{aligned}$	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	4.54	66.41	16.03	0.46	130.0	± 9.6 \%
		Y	4.53	66.07	15.85		130.0	
		Z	4.30	66.25	15.78		130.0	

$\begin{aligned} & 10591- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCSO, 90pc duty cycle)	X	4.84	66.77	16.66	0.46	130.0	± 9.6 \%
		Y	4.82	66.41	16.48		130.0	
		Z	4.66	66.76	16.51		130.0	
$\begin{aligned} & 10592- \\ & \text { AAB } \end{aligned}$	IEEE 802.11 n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	X	5.01	67.12	16.79	0.46	130.0	± 9.6 \%
		Y	4.99	66.76	16.61		130.0	
		Z	4.79	67.07	16.64		130.0	
$\begin{aligned} & 10593- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	X	4.93	67.04	16.68	0.46	130.0	± 9.6 \%
		Y	4.91	66.69	16.51		130.0	
		Z	4.71	66.95	16.50		130.0	
$\begin{aligned} & \text { 10594- } \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	X	4.98	67.20	16.83	0.46	130.0	± 9.6 \%
		Y	4.96	66.84	16.65		130.0	
		Z	4.76	67.13	16.67		130.0	
$\begin{array}{\|l} 10595- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	4.95	67.16	16.73	0.46	130.0	± 9.6 \%
		Y	4.93	66.80	16.55		130.0	
		Z	4.73	67.10	16.57		130.0	
$\begin{array}{\|l\|} \hline 10596- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	X	4.89	67.16	16.74	0.46	130.0	± 9.6 \%
		Y	4.87	66.79	16.55		130.0	
		Z	4.66	67.08	16.56		130.0	
$\begin{aligned} & 10597- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	X	4.84	67.08	16.63	0.46	130.0	$\pm 9.6 \%$
		Y	4.82	66.71	16.44		130.0	
		Z	4.61	66.96	16.43		130.0	
$\begin{aligned} & 10598- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	4.82	67.33	16.90	0.46	130.0	± 9.6 \%
		Y	4.80	66.95	16.70		130.0	
		Z	4.60	67.20	16.70		130.0	
$\begin{aligned} & 10599- \\ & A A B \end{aligned}$	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	X	5.51	67.30	16.83	0.46	130.0	± 9.6 \%
		Y	5.50	67.04	16.72		130.0	
		\underline{Z}	5.31	67.18	16.69		130.0	
$\begin{array}{\|l} \hline 10600- \\ \mathrm{AAB} \\ \hline \end{array}$	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	5.66	67.75	17.03	0.46	130.0	± 9.6 \%
		Y	5.70	67.66	17.00		130.0	
		Z	5.42	67.55	16.85		130.0	
$\begin{aligned} & 10601- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 40 MHz , MCS2, 90pc duty cycle)	X	5.54	67.49	16.91	0.46	130.0	± 9.6 \%
		Y	5.55	67.29	16.83		130.0	
		Z	5.33	67.34	16.76		130.0	
$\begin{aligned} & 10602- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, $40 \mathrm{MHz}_{\text {, }}$ MCS3, 90pc duty cycle)	X	5.62	67.47	16.82	0.46	130.0	± 9.6 \%
		Y	5.64	67.27	16.74		130.0	
		Z	5.46	67.51	16.77		130.0	
$\begin{aligned} & 10603- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	X	5.72	67.83	17.13	0.46	130.0	± 9.6 \%
		Y	5.72	67.56	17.01		130.0	
		Z	5.53	67.80	17.05		130.0	
$\begin{aligned} & 10604- \\ & \text { AAB } \end{aligned}$	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	X	5.51	67.26	16.84	0.46	130.0	± 9.6 \%
		Y	5.51	67.00	16.72		130.0	
		\underline{Z}	5.40	67.44	16.85		130.0	
$\begin{aligned} & 10605- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	X	5.62	67.58	16.99	0.46	130.0	± 9.6 \%
		\bar{Y}	5.63	67.37	16.91		130.0	
		Z	5.43	67.48	16.86		130.0	
$\begin{aligned} & 10606- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	X	5.39	67.04	16.59	0.46	130.0	± 9.6 \%
		Y	5.38	66.75	16.46		130.0	
		Z	5.18	66.82	16.39		130.0	

August 23, 2018

$\begin{array}{\|l} \hline 10607- \\ \mathrm{AAB} \\ \hline \end{array}$	IEEE 802.11ac WiFi (20MHz, MCSO, 90pc duty cycle)	X	4.69	66.11	16.30	0.46	130.0	± 9.6 \%
		\bar{Y}	4.65	65.70	16.09		130.0	
$\begin{aligned} & 10608- \\ & \text { AAB } \\ & \hline \end{aligned}$		\underline{Z}	4.51	66.12	16.16		130.0	
	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	4.89	66.54	16.47	0.46	130.0	$\pm 9.6 \%$
		Y	4.86	66.13	16.26		130.0	
$\begin{aligned} & 10609- \\ & \text { AAB } \end{aligned}$		Z	4.67	66.48	16.32		130.0	
	IEEE 802.11ac WiFi (20MHz, MCS2, 90pe duty cycle)	X	4.78	66.40	16.32	0.46	130.0	± 9.6 \%
		Y	4.74	65.99	16.10		130.0	
$\begin{aligned} & 10610- \\ & \text { AAB } \end{aligned}$		Z	4.56	66.32	16.14		130.0	
	IEEE 802.11ac WiFi (20MHz, MCS3, 90 pc duty cycle)	X	4.83	66.56	16.48	0.46	130.0	± 9.6 \%
		Y	4.80	66.15	16.27		130.0	
$\begin{aligned} & 10611- \\ & \text { AAB } \\ & \hline \end{aligned}$		Z	4.61	66.49	16.31		130.0	
	IEEE 802.11ac WiFi (20MHz, MCS4, 90 pc duty cycle)	X	4.74	66.37	16.33	0.46	130.0	± 9.6 \%
		Y	4.71	65.96	16.12		130.0	
$\begin{aligned} & 10612- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$		Z	4.52	66.28	16.15		130.0	
	IEEE 802.11ac WiFi (20MHz, MCS5, 90 pc duty cycle)	X	4.76	66.53	16.38	0.46	130.0	± 9.6 \%
		Y	4.73	66.12	16.16		130.0	
$\begin{array}{\|l\|} \hline 10613- \\ \text { AAB } \\ \hline \end{array}$		Z	4.52	66.43	16.20		130.0	
	IEEE 802.11ac WiFi (20MHz, MCS6, 90 pc duty cycle)	X	4.76	66.43	16.27	0.46	130.0	± 9.6 \%
		Y	4.74	66.03	16.06		130.0	
$\begin{aligned} & 10614- \\ & \text { AAB } \\ & \hline \end{aligned}$		Z	4.52	66.26	16.05		130.0	
	IEEE 802.11ac WiFi (20MHz, MCS7, 90 pc duty cycle)	X	4.70	66.62	16.50	0.46	130.0	± 9.6 \%
		Y	4.67	66.19	16.28		130.0	
$\begin{aligned} & 10615- \\ & \text { AAB } \\ & \hline \end{aligned}$		Z	4.48	66.49	16.31		130.0	
	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	X	4.74	66.19	16.10	0.46	130.0	± 9.6 \%
		Y	4.72	65.79	15.90		130.0	
$\begin{aligned} & 10616- \\ & \text { AAB } \end{aligned}$		Z	4.52	66.11	15.92		130.0	
	IEEE 802.11ac WiFi (40MHz, MCSO, 90 pc duty cycle)	X	5.34	66.61	16.47	0.46	130.0	± 9.6 \%
		Y	5.32	66.28	16.32		130.0	
$\begin{aligned} & 10617- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$		Z	5.14	66.47	16.32		130.0	
	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	X	5.40	66.74	16.51	0.46	130.0	± 9.6 \%
		Y	5.38	66.41	16.35		130.0	
		Z	5.21	66.65	16.39		130.0	
$\begin{aligned} & 10618- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11 ac WiFi (40MHz, MCS2, 90pc duty cycle)	X	5.29	66.79	16.56	0.46	130.0	± 9.6 \%
		Y	5.27	66.46	16.39		130.0	
$\begin{aligned} & \hline 10619- \\ & \text { AAB } \end{aligned}$		Z	5.11	66.70	16.43		130.0	
	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	X	5.31	66.61	16.40	0.46	130.0	± 9.6 \%
		Y	5.30	66.30	16.25		130.0	
$\begin{aligned} & 10620- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$		Z	5.11	66.46	16.24		130.0	
	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	X	5.41	66.67	16.47	0.46	130.0	$\pm 9.6 \%$
		Y	5.41	66.38	16.34		130.0	
$\begin{array}{\|l} \hline 10621- \\ \text { AAB } \\ \hline \end{array}$		Z	5.19	66.48	16.30		130.0	
	IEEE 802.11ac WiFi (40MHz, MCS5, 90 pe duty cycle)	X	5.40	66.76	16.64	0.46	130.0	± 9.6 \%
		\bar{Y}	5.38	66.43	16.48		130.0	
$\begin{aligned} & 10622- \\ & \mathrm{AAB} \\ & \hline \end{aligned}$		Z	5.21	66.64	16.50		130.0	
	IEEE 802.11ac WiFi (40MHz, MCS6, 90 pc duty cycle)	X	5.41	66.91	16.70	0.46	130.0	$\pm 9.6 \%$
		Y	5.39	66.60	16.55		130.0	
		Z	5.20	66.74	16.55		130.0	

$\begin{aligned} & \hline 10623- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS7, 90 pc duty cycle)	X	5.29	66.45	16.36	0.46	130.0	$\pm 9.6 \%$
		Y	5.27	66.12	16.20		130.0	
		Z	5.08	66.28	16.19		130.0	
$\begin{aligned} & 10624- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS8, 90 pc duty cycle)	X	5.48	66.64	16.51	0.46	130.0	± 9.6 \%
		Y	5.47	66.35	16.38		130.0	
		Z	5.28	66.51	16.36		130.0	
$\begin{aligned} & 10625- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (40MHz, MCS9, 90 pc duty cycle)	X	5.87	67.67	17.07	0.46	130.0	± 9.6 \%
		Y	5.92	67.56	17.03		130.0	
		Z	5.48	66.99	16.66		130.0	
$\begin{aligned} & 10626- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCSO, 90pc duty cycle)	X	5.62	66.65	16.41	0.46	130.0	$\pm 9.6 \%$
		Y	5.59	66.32	16.26		130.0	
		Z	5.46	66.52	16.28		130.0	
$\begin{aligned} & 10627- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS1, 90 pe duty cycle)	X	5.86	67.19	16.64	0.46	130.0	± 9.6 \%
		Y	5.87	66.96	16.54		130.0	
		Z	5.68	67.07	16.52		130.0	
$\begin{array}{\|l\|} \hline 10628- \\ \text { AAB } \\ \hline \end{array}$	IEEE 802.11ac WiFi (80MHz, MCS2, 90 pc duty cycle)	X	5.67	66.78	16.37	0.46	130.0	± 9.6 \%
		Y	5.65	66.49	16.24		130.0	
		Z	5.47	66.52	16.18		130.0	
$\begin{aligned} & 10629- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS3, 90 pc duty cycle)	X	5.76	66.87	16.41	0.46	130.0	± 9.6 \%
		Y	5.74	66.55	16.26		130.0	
		Z	5.55	66.62	16.22		130.0	
$\begin{aligned} & 10630- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS4, 90 pc duty cycle)	X	6.21	68.41	17.17	0.46	130.0	± 9.6 \%
		\bar{Y}	6.36	68.57	17.26		130.0	
		Z	5.84	67.72	16.78		130.0	
$\begin{aligned} & 10631- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS5, 90 pc duty cycle)	X	6.11	68.22	17.27	0.46	130.0	± 9.6 \%
		Y	6.15	68.07	17.21		130.0	
		Z	5.81	67.73	16.97		130.0	
$\begin{aligned} & 10632- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS6, 90 pc duty cycle)	X	5.83	67.26	16.81	0.46	130.0	± 9.6 \%
		Y	5.82	66.98	16.68		130.0	
		Z	5.67	67.19	16.73		130.0	
$\begin{aligned} & 10633- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS7, 90 pe duty cycle)	X	5.73	66.95	16.48	0.46	130.0	± 9.6 \%
		Y	5.72	66.66	16.35		130.0	
		Z	5.54	66.74	16.32		130.0	
$\begin{aligned} & 10634- \\ & \text { AAB } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS8, 90 pc duty cycle)	X	5.72	66.98	16.56	0.46	130.0	± 9.6 \%
		Y	5.70	66.65	16.41		130.0	
		Z	5.52	66.78	16.40		130.0	
$\begin{aligned} & 10635- \\ & \text { AAB } \end{aligned}$	IEEE 802.11ac WiFi (80MHz, MCS9, 90 pc duty cycle)	X	5.60	66.32	15.97	0.46	130.0	± 9.6 \%
		Y	5.59	66.03	15.84		130.0	
		Z	5.39	66.04	15.76		130.0	
$\begin{aligned} & 10636- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160 MHz , MCSO, 90pc duty cycle)	X	6.03	67.02	16.50	0.46	130.0	± 9.6 \%
		Y	6.02	66.74	16.37		130.0	
		Z	5.89	66.87	16.36		130.0	
10637- AAC	IEEE 802.11ac WiFi (160 MHz , MCS1, 90 pc duty cycle)	X	6.19	67.40	16.66	0.46	130.0	± 9.6 \%
		Y	6.19	67.15	16.56		130.0	
		Z	6.02	67.21	16.51		130.0	
$\begin{aligned} & 10638- \\ & \text { AAC } \\ & \hline \end{aligned}$	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	X	6.19	67.38	16.63	0.46	130.0	± 9.6 \%
		Y	6.19	67.12	16.52		130.0	
		Z	6.03	67.21	16.49		130.0	

August 23, 2018

$\begin{array}{\|l} \hline 10639- \\ \text { AAC } \\ \hline \end{array}$	IEEE 802.11ac WiFi (160 MHz , MCS3, 90 pc duty cycle)	X	6.18	67.36	16.66	0.46	130.0	± 9.6 \%
		Y	6.17	67.09	16.55		130.0	
$10640-$ AAC		Z	6.00	67.13	16.50		130.0	
	IEEE 802.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	X	6.19	67.39	16.62	0.46	130.0	± 9.6 \%
		Y	6.20	67.16	16.53		130.0	
$\begin{aligned} & 10641- \\ & \mathrm{AAC} \\ & \hline \end{aligned}$		Z	5.99	67.11	16.43		130.0	
	IEEE 802.11ac WiFi (160MHz, MCS5, 90 pc duty cycle)	X	6.21	67.22	16.56	0.46	130.0	± 9.6 \%
		Y	6.20	66.94	16.44		130.0	
10642- AAC		Z	6.05	67.08	16.43		130.0	
	IEEE 802.11ac WiFi (160MHz, MCS6, 90 pc duty cycle)	X	6.27	67.52	16.87	0.46	130.0	$\pm 9.6 \%$
		Y	6.26	67.23	16.75		130.0	
$\begin{array}{\|l\|} \hline 10643- \\ \text { AAC } \\ \hline \end{array}$		Z	6.09	67.31	16.72		130.0	
	IEEE 802.11ac WiFi (160MHz, MCS7, 90 pc duty cycle)	X	6.10	67.19	16.61	0.46	130.0	± 9.6 \%
		Y	6.09	66.93	16.50		130.0	
$\begin{aligned} & 10644- \\ & \text { AAC } \\ & \hline \end{aligned}$		Z	5.93	67.00	16.46		130.0	
	IEEE 802.11ac WiFi (160MHz, MCS8, 90 pc duty cycle)	X	6.29	67.77	16.92	0.46	130.0	± 9.6 \%
		Y	6.32	67.61	16.86		130.0	
$10645-$ AAC		\underline{Z}	6.02	67.30	16.63		130.0	
	IEEE 802.11ac WiFi (160MHz, MCS9, 90 pe duty cycle)	$\overline{\text { X }}$	6.72	68.61	17.29	0.46	130.0	± 9.6 \%
		Y	6.81	68.60	17.31		130.0	
10646- AAE		Z	6.13	67.29	16.58		130.0	
	LTE-TDD (SC-FDMA, 1 RB, 5 MHz , QPSK, UL Subframe=2,7)	X	26.22	119.06	40.53	9.30	60.0	± 9.6 \%
		Y	23.98	116.77	40.23		60.0	
10647- AAE		Z	13.39	105.96	36.68		60.0	
	LTE-TDD (SC-FDMA, 1 RB, 20 MHz , QPSK, UL Subframe=2,7)	X	21.91	115.56	39.67	9.30	60.0	± 9.6 \%
		Y	20.79	114.08	39.59		60.0	
$\begin{aligned} & 10648- \\ & \text { AAA } \end{aligned}$		Z	11.12	102.25	35.63		60.0	
	CDMA2000 (1x Advanced)	X	0.80	65.60	12.34	0.00	150.0	± 9.6 \%
		Y	0.65	62.69	10.17		150.0	
10652-AAC		Z	0.58	62.96	9.61		150.0	
	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44\%)	X	3.70	67.38	17.08	2.23	80.0	± 9.6 \%
		Y	3.59	66.56	16.66		80.0	
$\begin{aligned} & 10653- \\ & \text { AAC } \end{aligned}$		Z	3.39	66.83	16.41		80.0	
	LTE-TDD (OFDMA, $10 \mathrm{MHz}, \mathrm{E}-\mathrm{TM} 3.1$, Clipping 44\%)	X	4.17	66.50	17.03	2.23	80.0	± 9.6 \%
		Y	4.11	65.95	16.76		80.0	
$\begin{aligned} & 10654- \\ & \text { AAC } \\ & \hline \end{aligned}$		\underline{Z}	3.90	66.02	16.55		80.0	
	LTE-TDD (OFDMA, 15 MHz , E-TM 3.1, Clipping 44\%)	X	4.13	66.12	17.00	2.23	80.0	± 9.6 \%
		Y	4.07	65.60	16.75		80.0	
$\begin{aligned} & 10655- \\ & \text { AAD } \\ & \hline \end{aligned}$		Z	3.90	65.62	16.55		80.0	
	LTE-TDD (OFDMA, 20 MHz , E-TM 3.1, Clipping 44\%)	X	4.19	66.12	17.04	2.23	80.0	± 9.6 \%
		Y	4.13	65.62	16.79		80.0	
10658- AAA		Z	3.96	65.57	16.58		80.0	
	Pulse Waveform ($200 \mathrm{~Hz}, 10 \%$)	X	100.00	111.27	26.15	10.00	50.0	± 9.6 \%
		Y	100.00	112.15	26.71		50.0	
		Z	14.35	85.50	18.40		50.0	
10659-AAA	Pulse Waveform ($200 \mathrm{~Hz}, 20 \%$)	X	100.00	110.66	24.83	6.99	60.0	± 9.6 \%
		Y	100.00	110.25	24.76		60.0	
		Z	100.00	105.29	22.07		60.0	

$10660-$ AAA	Pulse Waveform (200Hz, 40\%)	X	100.00	112.93	24.53	3.98	80.0	$\pm 9.6 \%$
		Y	100.00	108.47	22.64		80.0	
		Z	100.00	104.83	20.58		80.0	
$10661-$ AAA	Pulse Waveform $(200 \mathrm{~Hz}, 60 \%)$	X	100.00	118.71	25.68	2.22	100.0	$\pm 9.6 \%$
		Y	100.00	104.33	19.70		100.0	
		Z	100.00	104.48	19.32		100.0	
$10662-$ AAA	Pulse Waveform $(200 \mathrm{~Hz}, 80 \%)$	X	100.00	138.66	31.49	0.97	120.0	$\pm 9.6 \%$
		Y	0.19	60.00	4.09		120.0	
		Z	100.00	91.23	12.90		120.0	

${ }^{\text {E }}$ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

APPENDIX D:SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

1) The network analyzer and probe system was configured and calibrated.
2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
3) The complex admittance with respect to the probe aperture was measured
4) The complex relative permittivity ε can be calculated from the below equation (Pournaropoulos and Misra):

$$
Y=\frac{j 2 \omega \varepsilon_{r} \varepsilon_{0}}{[\ln (b / a)]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos \phi^{\prime} \frac{\exp \left[-j \omega r\left(\mu_{0} \varepsilon_{r}^{\prime} \varepsilon_{0}\right)^{1 / 2}\right]}{r} d \phi^{\prime} d \rho^{\prime} d \rho
$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^{2}=\rho^{2}+\rho^{\prime 2}-2 \rho \rho^{\prime} \cos \phi^{\prime}, \omega$ is the angular frequency, and $j=\sqrt{-1}$.

3 Composition / Information on ingredients

3.2 Mixtures Description: Aqueous solution with surfactants and inhibitors Declarable, or hazardous components:		
CAS: 107-21-1 EINECS: 203-473-3 Reg.nr.: 01-2119456816-28-0000	Ethanediol STOT RE 2, H373; Acute Tox. 4, H302	>1.0-4.9\%
CAS: 68608-26-4 EINECS: 271-781-5 Reg.nr.: 01-2119527859-22-0000	Sodium petroleum sulfonate Eye Irrit. 2, H319	<2.9\%
CAS: 107-41-5 EINECS: 203-489-0 Reg.nr.: 01-2119539582-35-0000	Hexylene Glycol / 2-Methyl-pentane-2,4-diol Skin Irrit. 2, H315; Eye Irrit. 2, H319	<2.9\%
CAS: 68920-66-1 NLP: 500-236-9 Reg.nr.: 01-2119489407-26-0000	Alkoxylated alcohol, > \mathbf{C}_{16} Aquatic Chronic 2, H411; Skin Irrit. 2, H315; Eye Irrit. 2, H319	<2.0\%
Additional information: For the wording of the listed risk phr Not mentioned CAS-, EINECS- or re The specific chemical identity and/or withheld as a trade secret.	ses refer to section 16. gistration numbers are to be regarded as Proprie exact percentage concentration of proprietary co	fidential. ts is

Figure D-1
Note: Liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

FCC ID: ZNFX525WA	(T)PCTEST	SAR EVALUATION REPORT	(-) LG	Approved by: Quality Manager
Test Dates: $06 / 03 / 19-06 / 14 / 19$	DUT Type: Portable Handset			APPENDIX D: Page 1 of 3
© 2019 PCTEST Engineering Laboratory, Inc.				$\begin{array}{r} \hline \text { REV } 21.3 \mathrm{M} \\ 02 / 15 / 2019 \end{array}$

Schmid \& Partner Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland
Phone +41442459700 , Fax +41442459779
info@speag.com, http://www.speag.com
Measurement Certificate / Material Test

Item Name	Body Tissue Simulating Liquid (MBBL600-6000V6)
Product No.	SLAAM U16 BC (Batch: 181029-1)
Manufacturer	SPEAG

Measurement Method

TSL dielectric parameters measured using calibrated DAK probe.

Test Condition
Ambient Condition $22^{\circ} \mathrm{C} ; 30 \%$ humidity
TSL Temperature $22^{\circ} \mathrm{C}$
Test Date $\quad 30$-Oct-18
Operator CL
Additional Information
TSL Density
TSL Heat-capacity

Figure D-2
750 - 5800 MHz Body Tissue Equivalent Matter

FCC ID ZNFX525WA	CPCTEST	SAR EVALUATION REPORT	(h) LG	Approved by: Quality Manager
Test Dates: \|06/03/19-06/14/19	DUT Type: Portable Handset			APPENDIX D: Page 2 of 3
19 PCTEST Engineering Laboratory, Inc.				$\begin{array}{r} \hline \text { REV } 21.3 \mathrm{M} \\ 02 / 15 / 2019 \end{array}$

Phone +41442459700, Fax +41442459779
info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name Head Tissue Simulating Liquid (HBBL600-10000V6) Product No. SL AAH U16 BC (Batch: 181031-2) Manufacturer SPEAG
Measurement Method
TSL dielectric parameters measured using calibrated DAK probe.
Target Parameters
Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.
Test Condition
Ambient Condition $22^{\circ} \mathrm{C} ; 30 \%$ humidity TSL Temperature $22^{\circ} \mathrm{C}$ Test Date $31-$ Oct-18 Operator CL
Additional Information
TSL Density TSL Heat-capacity

	Measured			Target		Diff.to Target [\%]	
$f(\mathrm{MHz}]$	${ }^{\text {e }}$	${ }^{\text {a }}$	sigma	eps	sigma	Δ-eps	Δ ssigma
800	43.8	20.5	0.91	41.7	0.90	5.1	1.4
825	43.8	20.1	0.92	41.6	0.91	5.3	1.5
835	43.8	19.9	0.93	41.5	0.91	5.4	2.0
850	43.7	19.7	0.93	41.5	0.92	5.3	1.5
900	43.5	18.9	0.95	41.5	0.97	4.8	-2.1
1400	42.5	15.0	1.17	40.6	1.18	4.7	-0.8
1450	425	14.8	1.19	40.5	1.20	4.9	-0.8
1600	42.2	14.3	1.27	40.3	1.28	4.7	-1.1
1625	42.2	14.2	1.29	40.3	1.30	4.8	-0.7
1640	42.2	14.2	1.30	40.3	1.31	4.8	-0.5
1650	42.1	14.2	1.30	40.2	1.31	4.6	-1.0
1700	42.1	14.0	1.33	40.2	1.34	4.8	-0.9
1750	42.0	13.9	1.36	40.1	1.37	4.8	-0.8
1800	41.9	13.9	1.39	40.0	1.40	4.7	-0.7
1810	41.9	13.8	1.40	40.0	1.40	4.7	0.0
1825	41.9	13.8	1.41	40.0	1.40	4.7	0.7
1850	41.8	13.8	1.42	40.0	1.40	4.5	1.4
1900	41.8	13.7	1.45	40.0	1.40	4.5	3.6
1950	41.7	13.7	1.48	40.0	1.40	4.3	5.7
2000	41.6	13.6	1.51	40.0	1.40	4.0	7.9
2050	41.6	13.6	1.55	39.9	1.44	4.2	7.3
2100	41.5	13.5	1.58	39.8	1.49	4.2	6.1
2150	41.4	13.5	1.62	39.7	1.53	4.2	5.7
2200	41.4	13.5	1.65	39.6	1.58	4.4	4.6
2250	41.3	13.5	1.69	39.6	1.62	4.4	4.2
2300	41.2	13.5	1.72	39.5	1.67	4.4	3.2
2350	41.1	13.5	1.76	39.4	1.71	4.4	2.9
2400	41.1	13.5	1.80	39.3	1.76	4.6	2.5
2450	41.0	13.5	1.84	39.2	1.80	4.6	2.2
2500	40.9	13.5	1.88	39.1	1.85	4.5	1.4
2550	40.8	13.5	1.92	39.1	1.91	4.4	0.6
2600	40.8	13.6	1.96	39.0	1.96	4.6	-0.2
3500	39.2	14.1	2.74	37.9	2.91	3.3	-5.8
3700	38.9	14.2	2.93	37.7	3.12	3.1	-6.1

TSL Dielectric Parameters

Figure D-3
750 - 5800 MHz Head Tissue Equivalent Matter

FCC ID:ZNFX525WA	GPCTEST	SAR EVALUATION REPORT	(1) LG	Approved by: Quality Manager
Test Dates: $06 / 03 / 19-06 / 14 / 19$	DUT Type: Portable Handset			APPENDIX D: Page 3 of 3
2019 PCTEST Engineering Laboratory, Inc.				$\begin{array}{r} \hline \text { REV } 21.3 \mathrm{M} \\ 02 / 15 / 2019 \end{array}$

APPENDIX E: SAR SYSTEM VALIDATION

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

Table E-1
SAR System Validation Summary - 1g

SAR System	Freq. (MHz)	Date	Probe SN	Probe Cal Point		Cond. (σ)	Perm. ($\mathbf{\varepsilon r}$)	CW VALIDATION			MOD. VALIDATION			
						SENSITIVITY		PROBE LINEARITY	PROBE ISOTROPY	$\begin{aligned} & \hline \text { MOD. } \\ & \text { TYPE } \end{aligned}$	DUTY FACTOR	PAR		
I	750	6/4/2019	7357	750	Head		0.894	42.979	PASS	PASS	PASS	N/A	N/A	N/A
H	835	7/13/2018	7409	835	Head	0.932	43.227	PASS	PASS	PASS	GMSK	PASS	N/A	
H	835	6/6/2019	7406	835	Head	0.93	43.8	PASS	PASS	PASS	GMSK	PASS	N/A	
I	1750	5/28/2019	7357	1750	Head	1.368	40.344	PASS	PASS	PASS	N/A	N/A	N/A	
L	1900	5/22/2019	7308	1900	Head	1.450	38.200	PASS	PASS	PASS	GMSK	PASS	N/A	
E	2450	2/5/2019	3589	2450	Head	1.825	39.836	PASS	PASS	PASS	OFDM/TDD	PASS	PASS	
E	2600	2/7/2019	3589	2600	Head	1.964	40.460	PASS	PASS	PASS	TDD	PASS	N/A	
H	5250	7/5/2018	7409	5250	Head	4.492	34.994	PASS	PASS	PASS	OFDM	N/A	PASS	
H	5600	7/5/2018	7409	5600	Head	4.839	34.496	PASS	PASS	PASS	OFDM	N/A	PASS	
H	5750	7/5/2018	7409	5750	Head	4.995	34.288	PASS	PASS	PASS	OFDM	N/A	PASS	
L	750	11/6/2018	7308	750	Body	0.962	53.923	PASS	PASS	PASS	N/A	N/A	N/A	
J	835	3/10/2019	7488	835	Body	0.988	53.868	PASS	PASS	PASS	GMSK	PASS	N/A	
D	1750	4/29/2019	3914	1750	Body	1.529	51.886	PASS	PASS	PASS	N/A	N/A	N/A	
G	1900	8/10/2018	7410	1900	Body	1.567	52.239	PASS	PASS	PASS	GMSK	PASS	N/A	
K	2450	3/6/2019	7417	2450	Body	2.039	50.670	PASS	PASS	PASS	OFDM/TDD	PASS	PASS	
K	2600	3/6/2019	7417	2600	Body	2.224	50.170	PASS	PASS	PASS	TDD	PASS	N/A	
L	5250	10/29/2018	7308	5250	Body	5.511	48.770	PASS	PASS	PASS	OFDM	N/A	PASS	
L	5600	10/29/2018	7308	5600	Body	5.994	48.200	PASS	PASS	PASS	OFDM	N/A	PASS	
L	5750	10/29/2018	7308	5750	Body	6.219	47.960	PASS	PASS	PASS	OFDM	N/A	PASS	

Table E-2
SAR System Validation Summary - 10g

				Probe Cal Point		Cond. (σ)	Perm. (ε r)	CW VALIDATION			MOD. VALIDATION			
SAR System	Freq. (MHz)	Date	Probe SN			SENSITIVITY		PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR		
L	5250	10/29/2018	7308	5250	Body		5.511	48.770	PASS	PASS	PASS	OFDM	N/A	PASS
L	5600	10/29/2018	7308	5600	Body	5.994	48.200	PASS	PASS	PASS	OFDM	N/A	PASS	

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.

FCC ID: ZNFX525WA	(T)PCTEST	SAR EVALUATION REPORT	(1) LG	Approved by: Quality Manager
Test Dates: $06 / 03 / 19-06 / 14 / 19$	DUT Type: Portable Handset			APPENDIX E: Page 1 of 1
PCTEST Engineering La				$\begin{array}{r} \hline \text { REV } 21.3 \mathrm{M} \\ 02 / 15 / 2019 \end{array}$

APPENDIX G: DOWNLINK LTE CA RF CONDUCTED POWERS

1.1 LTE Downlink Only Carrier Aggregation Test Reduction Methodology

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number of component carriers (CCs) supported by the product implementation. Per April 2018 TCBC Workshop Notes, the following test reduction methodology was applied to determine the combinations required for conducted power measurements.

LTE DLCA Test Reduction Methodology:

- The supported combinations were arranged by the number of component carriers in columns.
- Any limitations on the PCC or SCC for each combination were identified alongside the combination (e.g. CA_2A-2A-4A-12A, but B12 can only be configured as a SCC).
- Power measurements were performed for "supersets" (LTE CA combinations with multiple components carriers) and any "subsets" (LTE CA combinations with fewer component carriers) that were not completely covered by the supersets.
- Only subsets that have the exact same components as a superset were excluded for measurement.
- When there were certain restrictions on component carriers that existed in the superset that were not applied for the subset, the subset configuration was additionally evaluated.
- Both inter-band and intra-band downlink carrier aggregation scenarios were considered.

Table 1 - Example of Exclusion Table for SISO Configurations

1.2 LTE Downlink Only Carrier Aggregation Test Selection and Setup

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number component carriers (CCs) supported by the product implementation. For those configurations required by April 2018 TCBC Workshop Notes, conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrie (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band.

Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for carrier aggregation configurations when the maximum average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive. All bands required for SAR testing per FCC KDB procedures were considered. Based on the measured maximum powers below, no additional SAR tests were required for DLCA SAR configurations.

General PCC and SCC configuration selection procedure

- PCC uplink channel, channel bandwidth, modulation and RB configurations were selected based on section C)3)b)iii) of KDB 941225 D05 V01r02. The downlink PCC channel was paired with the selected PCC uplink channel according to normal configurations without carrier aggregation.
- To maximize aggregated bandwidth, highest channel bandwidth available for that CA combination was selected for SCC. For inter-band CA, the SCC downlink channels were selected near the middle of their transmission bands. For contiguous intra-band CA, the downlink channel spacing between the component carriers was set to multiple of 300 kHz less than the nominal channel spacing defined in section 5.4.1A of 3GPP TS 36.521. For non-contiguous intra-band CA, the downlink channel spacing between the component carriers was set to be larger than the nominal channel spacing and provided maximum separation between the component carriers.
- All selected PCC and SCC(s) remained fully within the uplink/downlink transmission band of the respective component carrier.

Figure 1
DL CA Power Measurement Setup

1.3 Downlink Carrier Aggregation RF Conducted Powers

1.3.1 LTE Band 12 as PCC

Table 1
Maximum Output Powers

	PCC									SCC1				Power	
Combination	PCC Band	PCCBW [MHz]	PCC (UL) Ch.	$\begin{gathered} \text { PCC (UL) } \\ \text { Freq. [MHz] } \end{gathered}$	Mod.	$\begin{array}{\|c} \text { PCC UL\# } \\ \text { RB } \end{array}$	PCC ULRB Offset	PCC (DL) Channel	$\begin{array}{\|c\|} \hline \text { PCC (DL) } \\ \text { Freq. [MHz] } \end{array}$	SCC Band	$\begin{gathered} \text { SCC BW } \\ {[\mathrm{MHz}]} \end{gathered}$	$\operatorname{sCC}(\mathrm{DL})$ Channel	$\begin{gathered} \mathrm{SCC}(\mathrm{DL}) \\ \text { Freq. [MHz] } \end{gathered}$	$\begin{gathered} \hline \begin{array}{c} \text { LTE TX.Power } \\ \text { with DL CA } \\ \text { Enabled } \\ \text { (dBm) } \end{array} \\ \hline 20.66 \end{gathered}$	LTE Single Carrier Tx Power (dBm)
CA_12A-66A (1)	LTE B12	10	23095	707.5	QPSK	1	25	5095	737.5	LTE B66	20	66786	2145	24.66	24.67
CA_12A-66A (2)	LTE B12	10	23095	707.5	QPSK	1	25	5095	737.5	LTE B66	20	66786	2145	24.66	24.67
CA_2A-12A (1)	LTE B12	10	23095	707.5	QPSK	1	25	5095	737.5	LTE B2	20	900	1960	24.67	24.67
CA_4A-12A (1)	LTE B12	10	23095	707.5	QPSK	1	25	5095	737.5	LTE B4	20	2175	2132.5	24.70	24.67
CA_4A-12A (2)	LTE B12	10	23095	707.5	QPSK	1	25	5095	737.5	LTE B4	20	2175	2132.5	24.70	24.67

1.3.2 LTE Band 5 as PCC

Table 2
Maximum Output Powers

	PCC									SCC 1				Power	
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Ch.	$\begin{gathered} \text { PCC (UL) } \\ \text { Freq. [MHz] } \end{gathered}$	Mod.	$\begin{array}{\|c} \text { PCC UL\# } \\ \text { RB } \end{array}$	PCC UL RB Offset	PCC (DL) Channel	$\begin{aligned} & \text { PCC (DL) } \\ & \text { Freq. [MHz] } \end{aligned}$	SCC Band	SCC BW [MHz]	SCC (DL) Channel	$\begin{aligned} & \text { SCC (DL) } \\ & \text { Freq. [MHz] } \end{aligned}$	LTE Tx. Power with DLCA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_2A-5A	LTE B5	10	20525	836.5	QPSK	1	25	2525	881.5	LTE B2	20	900	1960	25.20	25.20
CA_4A-5A (1)	LTE B5	10	20525	836.5	QPSK	1	25	2525	881.5	LTE B4	20	2175	2132.5	25.20	25.20

1.3.3 LTE Band 66 as PCC

Table 3
Maximum Output Powers

	PCC									SCC 1				Power	
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Ch.	$\begin{gathered} \text { PCC (UL) } \\ \text { Freq. [MHz] } \end{gathered}$	Mod.	$\left\|\begin{array}{c} \text { PCC UL\# } \\ \text { RB } \end{array}\right\|$	PCC UL RB Offset	PCC (DL) Channel	$\begin{gathered} \text { PCC (DL) } \\ \text { Freq. [MHz] } \end{gathered}$	SCC Band	$\begin{gathered} \text { SCC BW } \\ \text { [MHz] } \end{gathered}$	SCC (DL) Channel	$\begin{array}{\|c\|} \hline \text { SCC (DL) } \\ \text { Freq. }[\mathrm{MHz}] \end{array}$	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_66B	LTE B66	5	131997	1712.5	QPSK	1	12	66461	2112.5	LTE B66	15	66554	2121.8	23.36	23.37
CA_66C	LTE B66	5	131997	1712.5	QPSK	1	12	66461	2112.5	LTE B66	20	66578	2124.2	23.38	23.37
CA_66A-66A	LTE B66	5	131997	1712.5	QPSK	1	12	66461	2112.5	LTE B66	20	67236	2190	23.39	23.37
CA_12A-66A (1)	LTE B66	5	131997	1712.5	QPSK	1	12	66461	2112.5	LTE B12	10	5095	737.5	23.38	23.37
CA_12A-66A (2)	LTE B66	5	131997	1712.5	QPSK	1	12	66461	2112.5	LTE B12	10	5095	737.5	23.38	23.37

1.3.4 LTE Band 2 as PCC

Table 4
Maximum Output Powers

	PCC									SCC1				Power	
Combination	PCC Band	PCC BW [MHz]	PCC (UL) ch.	$\begin{gathered} \text { PCC (UL) } \\ \text { Freq. [MHz] } \end{gathered}$	Mod.	$\left\|\begin{array}{c} \text { PCC UL\# } \\ \text { RB } \end{array}\right\|$	PCC ULRB Offse	PCC (DL) Channel	$\begin{array}{\|c\|} \hline \text { PCC (DL) } \\ \text { Freq. [MHz] } \end{array}$	SCC Band	$\begin{gathered} \text { ScC BW } \\ {[\mathrm{MHz]}} \end{gathered}$	SCC (DL) Channe	$\left\lvert\, \begin{array}{c\|} \operatorname{scc}(\mathrm{DL}) \\ \text { Freq. }[\mathrm{MHz}] \end{array}\right.$	LTE Tx.Power with DLCA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_2A-12A (1)	LTE B2	20	18700	1860	QPSK	1	50	700	1940	LTE B12	10	5095	737.5	23.12	23.20
CA_2A-17A	LTE B2	10	18650	1855	QPSK	1	25	650	1935	LTE B17	10	5790	740	23.13	23.16
CA_2A-5A	LTE B2	20	18700	1860	QPSK	1	50	700	1940	LTE B5	10	2525	881.5	23.15	23.20

1.3.5 LTE Band 7 as PCC

Table 5
Maximum Output Powers

	PCC									ScC1				Power	
Combination	PCC Band	PCCBW [MHz]	PCC (UL) ch.	PCC (UL) Freq. [MHz]	Mod.	$\underset{\mathrm{RB}}{\mathrm{PCCULI}}$	PCC ULRB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	$\begin{gathered} \mathrm{scc} \text { вw } \\ {[\mathrm{MHz}]} \end{gathered}$	SCC (DL) Channe	$\left\lvert\, \begin{gathered} \mathrm{SCC}(\mathrm{DL}) \\ \text { Freq. [MHz] } \end{gathered}\right.$	LTE T.P.Power with DLCA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_7B	LTE B7	15	21375	2562.5	QPSK	1	36	3375	2682.5	LTE B7	5	3282	2673.2	23.47	23.43
CA_7C (1)	LTE B7	20	21100	2535	QPSK	1	50	3100	2655	LTE B7	20	2902	2635.2	23.53	23.51
CA_7A-7A (1)	LTE B7	5	21425	2567.5	QPSK	1	12	3425	2687.5	LTE B7	20	2850	2630	23.60	23.53

[^0]: ${ }^{\text {E }}$ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

[^1]: ${ }^{\text {A }}$ The uncertainties of Norm X, Y, Z do not affect the E^{2}-field uncertainty inside TSL (see Pages 5 and 6).
 ${ }^{\mathrm{B}}$ Numerical linearization parameter: uncertainty not required.
 ${ }^{E}$ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

[^2]: ${ }^{\mathrm{c}}$ Frequency validity above 300 MHz of $\pm 100 \mathrm{MHz}$ only applies for DASY v4.4 and higher (see Page 2), else it is restricted to $\pm 50 \mathrm{MHz}$. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm 10,25,40,50$ and 70 MHz for ConvF assessments at $30,64,128,150$ and 220 MHz respectively. Above 5 GHz frequency validity can be extended to $\pm 110 \mathrm{MHz}$.
 ${ }^{F}$ At frequencies below 3 GHz , the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10 \%$ if fiquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz , the validity of tissue parameters (ε and σ) is restricted to $\pm 5 \%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
 ${ }^{G}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1 \%$ for frequencies below 3 GHz and below $\pm 2 \%$ for frequencies between $3-6 \mathrm{GHz}$ at any distance larger than half the probe tip diameter from the boundary.

[^3]: ${ }^{\text {A }}$ The uncertainties of Norm X, Y, Z do not affect the E^{2}-field uncertainty inside TSL (see Pages 5 and 6).
 ${ }^{B}$ Numerical linearization parameter: uncertainty not required.
 ${ }^{E}$ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

[^4]: This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

[^5]: ${ }^{\text {A }}$ The uncertainties of Norm X, Y, Z do not affect the E^{2}-field uncertainty inside TSL (see Pages 5 and 6).
 ${ }^{8}$ Numerical linearization parameter: uncertainty not required.
 ${ }^{E}$ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

[^6]: c Frequency validity above 300 MHz of $\pm 100 \mathrm{MHz}$ only applies for DASY v4.4 and higher (see Page 2), else it is restricted to $\pm 50 \mathrm{MHz}$. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm 10,25,40,50$ and 70 MHz for ConvF assessments at $30,64,128,150$ and 220 MHz respectively. Above 5 GHz frequency validity can be extended to $\pm 110 \mathrm{MHz}$.
 ${ }^{F}$ At frequencies below 3 GHz , the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10 \%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz , the validity of tissue parameters (ε and σ) is restricted to $\pm 5 \%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
 ${ }^{6}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1 \%$ for frequencies below 3 GHz and below $\pm 2 \%$ for frequencies between $3-6 \mathrm{GHz}$ at any distance larger than half the probe tip
 diameter from the boundary.

[^7]: ${ }^{c}$ Frequency validity above 300 MHz of $\pm 100 \mathrm{MHz}$ only applies for DASY v4.4 and higher (see Page 2), else it is restricted to $\pm 50 \mathrm{MHz}$. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm 10,25,40,50$ and 70 MHz for ConvF assessments at $30,64,128,150$ and 220 MHz respectively. Above 5 GHz frequency validity can be extended to $\pm 110 \mathrm{MHz}$.
 ${ }^{F}$ At frequencies below 3 GHz , the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10 \%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz , the validity of tissue parameters (ε and σ) is restricted to $\pm 5 \%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
 Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1 \%$ for frequencies below 3 GHz and below $\pm 2 \%$ for frequencies between $3-6 \mathrm{GHz}$ at any distance larger than half the probe tip

