Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client DT\&C (Dymstec)

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage Cervizio svizzero di taratura
S
Swiss Calibration Service

CALIBRATION CERTIFICATE

Object	D2600V2-SN:1103		
Calibration procedure(s)	QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz		
Calibration date:	February 16, 20		
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.			
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 $\pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.			
Calibration Equipment used (M\&TE critical for calibration)			
Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047,2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Proba EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID \#	Check Date (in house)	Scheduled
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house
RF generator R\&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager)
This calibration certificate shall	be reproduced except	ull without written approval of the lab	

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 0108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x, y, z
N/A not applicable or not measured
Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664 , "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1 .

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$2600 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	39.0	$1.96 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$37.3 \pm 6 \%$	$2.04 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	----

SAR result with Head TSL

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	250 mW input power	$14.5 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{5 6 . 4} \mathrm{~W} / \mathrm{kg} \pm 17.0 \%(\mathbf{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{\mathbf{3}}(\mathbf{1 0} \mathbf{~ g})$ of Head TSL	condition	
SAR measured	250 mW input power	$6.45 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 5 . 4} \mathbf{W} / \mathrm{kg} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2})$

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	52.5	$2.16 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$51.0 \pm 6 \%$	$2.22 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	----

SAR result with Body TSL

SAR averaged over $\mathbf{1} \mathrm{cm}^{\mathbf{3}} \mathbf{(1 \mathrm { g }) \text { of Body TSL }}$	Condition	
SAR measured	250 mW input power	$14.2 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{5 5 . 7} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 7 . 0} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{3}(\mathbf{1 0} \mathbf{g})$ of Body TSL	condition	
SAR measured	250 mW input power	$6.29 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 4 . 9 \mathrm { W } / \mathrm { kg } \pm 1 6 . 5 \% (\mathbf { k } = \mathbf { 2 })}$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$49.1 \Omega-6.6 \mathrm{j} \Omega$
Return Loss	-23.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$45.9 \Omega-4.1 \mathrm{j} \Omega$
Return Loss	-24.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.147 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 13, 2015

DASY5 Validation Report for Head TSL

Date: 16.02.2018
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 2600 MHz ; Type: D2600V2; Serial: D2600V2 - SN: 1103
Communication System: UID 0-CW; Frequency: 2600 MHz
Medium parameters used: $\mathrm{f}=2600 \mathrm{MHz} ; \sigma=2.04 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37.3 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.7, 7.7, 7.7); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial; 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin $=\mathbf{2 5 0} \mathbf{~ m W}, \mathrm{d}=10 \mathrm{~mm} /$ Zoom Scan ($7 \times 7 \times 7$)/Cube 0:
Measurement grid: $d x=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=116.0 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.09 \mathrm{~dB}$
Peak SAR (extrapolated) $=29.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=14.5 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=6.45 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=23.2 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 16.02 .2018
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 2600 MHz ; Type: D2600V2; Serial: D2600V2 - SN: 1103
Communication System: UID 0 - CW; Frequency: 2600 MHz
Medium parameters used: $\mathrm{f}=2600 \mathrm{MHz} ; \sigma=2.22 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=51 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.81, 7.81, 7.81); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=105.4 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.07 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=29.7 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=14.2 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=6.29 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR $($ measured $)=23.1 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Body TSL

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL
ConvF sensitivity in TSL / NORM x, y, z
N/A not applicable or not measured

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}=4.0 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$	Graded Ratio $=1.4$ (Z direction)
	$5200 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
Frequency	$5300 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
	$5560 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
	$5600 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	36.0	$4.66 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$36.4 \pm 6 \%$	$4.53 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	---

SAR result with Head TSL at 5200 MHz

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	100 mW input power	$7.95 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{7 9 . 6 ~ W / k g ~} \pm 19.9 \%(\mathrm{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	100 mW input power	$2.26 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 2 . 6} \mathrm{~W} / \mathrm{kg} \pm 19.5 \%(\mathbf{k}=2)$

Head TSL parameters at 5300 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.9	$4.76 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$36.3 \pm 6 \%$	$4.64 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	----

SAR result with Head TSL at 5300 MHz

SAR averaged over $1 \mathrm{~cm}^{\mathbf{3}}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	100 mW input power	$8.10 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$81.1 \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathrm{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	100 mW input power	$2.31 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$23.1 \mathrm{~W} / \mathrm{kg} \pm 19.5 \%(\mathrm{k}=2)$

Head TSL parameters at 5500 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.6	$4.96 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$36.0 \pm 6 \%$	$4.84 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	---

SAR result with Head TSL at 5500 MHz

SAR averaged over $\mathbf{1} \mathrm{cm}^{\mathbf{3}} \mathbf{(1 \mathrm { g }) \text { of Head TSL }}$	Condition	
SAR measured	100 mW input power	$8.53 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 5 . 4} \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathrm{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{\mathbf{3}}(\mathbf{1 0} \mathbf{g})$ of Head TSL	condition	
SAR measured	100 mW input power	$2.40 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 4 . 0} \mathrm{~W} / \mathrm{kg} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Head TSL parameters at 5600 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.5	$5.07 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$35.8 \pm 6 \%$	$4.95 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	---

SAR result with Head TSL at 5600 MHz

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	100 mW input power	$8.36 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$83.6 \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathrm{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{3}(\mathbf{1 0} \mathrm{~g})$ of Head TSL	condition	
SAR measured	100 mW input power	$2.38 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 3 . 8} \mathrm{~W} / \mathrm{kg} \pm 19.5 \%(\mathrm{k}=2)$

Head TSL parameters at 5800 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.3	$5.27 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$35.5 \pm 6 \%$	$5.16 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	----

SAR result with Head TSL at 5800 MHz

SAR averaged over $1 \mathrm{~cm}^{\mathbf{3}} \mathbf{(1 \mathrm { g }) \text { of Head TSL }}$	Condition	
SAR measured	100 mW input power	$7.95 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{7 9 . 5} \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{\mathbf{3}}(\mathbf{1 0} \mathbf{~ g})$ of Head TSL	condition	
SAR measured	100 mW input power	$2.24 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 2 . 4} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Body TSL parameters at 5200 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	49.0	$5.30 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$47.5 \pm 6 \%$	$5.41 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	----

SAR result with Body TSL at 5200 MHz

SAR averaged over $\mathbf{1} \mathrm{cm}^{\mathbf{3}} \mathbf{(1 \mathrm { g }) \text { of Body TSL }}$	Condition	
SAR measured	100 mW input power	$7.31 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{7 2 . 7} \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Body TSL	condition	
SAR measured	100 mW input power	$2.03 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$20.2 \mathrm{~W} / \mathrm{kg} \pm 19.5 \%(\mathrm{k}=2)$

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	48.9	$5.42 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$47.3 \pm 6 \%$	$5.54 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	---

SAR result with Body TSL at 5300 MHz

SAR averaged over $\mathbf{1} \mathrm{cm}^{\mathbf{3}} \mathbf{(1 \mathrm { g }) \text { of Body TSL }}$	Condition	
SAR measured	100 mW input power	$7.57 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{7 5 . 2} \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Body TSL	condition	
SAR measured	100 mW input power	$2.11 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$20.9 \mathrm{~W} / \mathrm{kg} \pm 19.5 \%(\mathbf{k}=2)$

Body TSL parameters at 5500 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	48.6	$5.65 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$47.0 \pm 6 \%$	$5.80 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	---

SAR result with Body TSL at 5500 MHz

SAR averaged over $1 \mathrm{~cm}^{\mathbf{3}}(\mathbf{1} \mathrm{g})$ of Body TSL	Condition	
SAR measured	100 mW input power	$8.04 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$79.9 \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathrm{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Body TSL	condition	
SAR measured	100 mW input power	$2.22 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$22.0 \mathrm{~W} / \mathrm{kg} \pm 19.5 \%(\mathrm{k}=2)$

Body TSL parameters at 5600 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	48.5	$5.77 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$46.8 \pm 6 \%$	$5.95 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	---

SAR result with Body TSL at 5600 MHz

SAR averaged over $1 \mathrm{~cm}^{\mathbf{3}}(\mathbf{1} \mathrm{g})$ of Body TSL	Condition	
SAR measured	100 mW input power	$7.94 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{7 8 . 9} \mathrm{~W} / \mathrm{kg} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{\mathbf{3}}(10 \mathrm{~g})$ of Body TSL	condition	
SAR measured	100 mW input power	$2.20 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$21.8 \mathrm{~W} / \mathrm{kg} \pm 19.5 \%(\mathrm{k}=2)$

Body TSL parameters at 5800 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	48.2	$6.00 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$46.4 \pm 6 \%$	$6.23 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	----

SAR result with Body TSL at 5800 MHz

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Body TSL	Condition	
SAR measured	100 mW input power	$7.62 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{7 5 . 7} \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathrm{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{\mathbf{3}}(\mathbf{1 0 ~ \mathrm { g }) \text { of Body TSL }}$	condition	
SAR measured	100 mW input power	$2.10 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$20.8 \mathrm{~W} / \mathrm{kg} \pm 19.5 \%(\mathrm{k}=2)$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	$48.3 \Omega-3.7 \mathrm{j} \Omega$
Return Loss	-27.8 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	$47.8 \Omega-0.1 \mathrm{j} \Omega$
Return Loss	-33.0 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	$46.8 \Omega+1.4 \mathrm{j} \Omega$
Return Loss	-28.8 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	$50.4 \Omega+3.1 \mathrm{j} \Omega$
Return Loss	-30.2 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	$52.3 \Omega+3.2 \mathrm{j} \Omega$
Return Loss	-28.2 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	$47.9 \Omega-3.7 \mathrm{j} \Omega$
Return Loss	-27.3 dB

Antenna Parameters with Body TSL at 5300 MiHz

Impedance, transformed to feed point	$48.6 \Omega+2.0 \mathrm{j} \Omega$
Return Loss	-32.0 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	$47.4 \Omega+3.1 \mathrm{j} \Omega$
Return Loss	-27.5 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	$50.5 \Omega+4.0 \mathrm{j} \Omega$
Return Loss	-28.0 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	$52.5 \Omega+4.4 \mathrm{j} \Omega$
Return Loss	-26.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.191 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 14, 2014

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1212

Communication System: UID 0 - CW; Frequency: 5200 MHz , Frequency: 5300 MHz , Frequency: 5500 MHz , Frequency: 5600 MHz , Frequency: 5800 MHz
Medium parameters used: $\mathrm{f}=5200 \mathrm{MHz} ; \sigma=4.53 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=36.4 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5300 \mathrm{MHz} ; \sigma=4.64 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=36.3 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5500 \mathrm{MHz} ; \sigma=4.84 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=36 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5600 \mathrm{MHz} ; \sigma=4.95 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=35.8 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5800 \mathrm{MHz} ; \sigma=5.16 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=35.5 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(5.75, 5.75, 5.75); Calibrated: 30.12.2017, ConvF(5.5, 5.5, 5.5); Calibrated: 30.12 .2017 , $\operatorname{ConvF}(5.2,5.2,5.2)$; Calibrated: 30.12 .2017 , $\operatorname{ConvF}(5.05,5.05,5.05)$; Calibrated: $30.12 .2017, \operatorname{ConvF}(4.96,4.96,4.96)$; Calibrated: 30.12.2017;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

```
Dipole Calibration for Head Tissue/Pin=100mW, dist \(=10 \mathrm{~mm}, \mathrm{f}=5200 \mathrm{MHz} /\) Zoom Scan,
dist \(=1.4 \mathrm{~mm}(8 \times 8 \times 7) /\) Cube 0: Measurement grid: \(d x=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}\)
Reference Value \(=71.98 \mathrm{~V} / \mathrm{m}\); Power Drift \(=-0.08 \mathrm{~dB}\)
Peak SAR (extrapolated) \(=28.5 \mathrm{~W} / \mathrm{kg}\)
\(\operatorname{SAR}(1 \mathrm{~g})=7.95 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.26 \mathrm{~W} / \mathrm{kg}\)
Maximum value of SAR \((\) measured \()=18.0 \mathrm{~W} / \mathrm{kg}\)
Dipole Calibration for Head Tissue/Pin \(=100 \mathrm{~mW}\), dist \(=10 \mathrm{~mm}, \mathrm{f}=5300 \mathrm{MHz} /\) Zoom Scan,
dist \(=1.4 \mathrm{~mm}(8 \mathrm{x} 8 \mathrm{x} 7) /\) Cube 0 : Measurement grid: \(\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}\)
Reference Value \(=72.21 \mathrm{~V} / \mathrm{m}\); Power Drift \(=-0.08 \mathrm{~dB}\)
Peak SAR (extrapolated) \(=29.9 \mathrm{~W} / \mathrm{kg}\)
\(\operatorname{SAR}(1 \mathrm{~g})=8.1 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.31 \mathrm{~W} / \mathrm{kg}\)
Maximum value of SAR (measured) \(=18.8 \mathrm{~W} / \mathrm{kg}\)
Dipole Calibration for Head Tissue/Pin \(=100 \mathrm{~mW}\), dist \(=10 \mathrm{~mm}, \mathrm{f}=5500 \mathrm{MHz} /\) Zoom Scan,
dist \(=1.4 \mathrm{~mm}(8 \times 8 \times 7) /\) Cube 0: Measurement grid: \(d x=4 \mathrm{~mm}, d y=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}\)
Reference Value \(=73.15 \mathrm{~V} / \mathrm{m}\); Power Drift \(=-0.08 \mathrm{~dB}\)
Peak SAR (extrapolated) \(=33.3 \mathrm{~W} / \mathrm{kg}\)
\(\operatorname{SAR}(1 \mathrm{~g})=8.53 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.4 \mathrm{~W} / \mathrm{kg}\)
Maximum value of SAR (measured) \(=20.1 \mathrm{~W} / \mathrm{kg}\)
```

Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5600 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0 : Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=72.01 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.05 \mathrm{~dB}$
Peak SAR (extrapolated) $=32.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.36 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.38 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=20.0 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5800 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube $0:$ Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=70.08 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.03 \mathrm{~dB}$
Peak SAR (extrapolated) $=31.9 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=7.95 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.24 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=19.4 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1212

Communication System: UID 0 - CW; Frequency: 5200 MHz , Frequency: 5300 MHz ,
Frequency: 5500 MHz , Frequency: 5600 MHz , Frequency: 5800 MHz
Medium parameters used: $\mathrm{f}=5200 \mathrm{MHz} ; \sigma=5.41 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=47.5 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5300 \mathrm{MHz} ; \sigma=5.54 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=47.3 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5500 \mathrm{MHz} ; \sigma=5.8 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=47 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5600 \mathrm{MHz} ; \sigma=5.95 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=46.8 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5800 \mathrm{MHz} ; \sigma=6.23 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=46.4 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(5.35, 5.35, 5.35); Calibrated: 30.12.2017, ConvF(5.15, 5.15, 5.15); Calibrated: 30.12 .2017 , $\operatorname{ConvF}(4.7,4.7,4.7)$; Calibrated: 30.12 .2017 , $\operatorname{ConvF}(4.65,4.65,4.65)$; Calibrated: $30.12 .2017, \operatorname{ConvF}(4.53,4.53,4.53)$; Calibrated: 30.12.2017;
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,
dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $d x=4 \mathrm{~mm}, d y=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=64.59 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.02 \mathrm{~dB}$
Peak SAR (extrapolated) $=27.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=7.31 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.03 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR $($ measured $)=16.9 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Body Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5300 \mathrm{MHz} /$ Zoom Scan,
dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube $0:$ Measurement grid: $d x=4 \mathrm{~mm}, d y=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=64.99 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=29.6 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=7.57 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.11 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR $($ measured $)=17.7 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,
dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $d x=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=65.88 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.07 \mathrm{~dB}$
Peak SAR (extrapolated) $=33.3 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.04 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.22 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=19.3 \mathrm{~W} / \mathrm{kg}$

Dipole Calibration for Body Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5600 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=64.59 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.02 \mathrm{~dB}$
Peak SAR (extrapolated) $=33.4 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=7.94 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.2 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR $($ measured $)=19.0 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Body Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5800 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0 ; Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=63.42 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.02 \mathrm{~dB}$
Peak SAR (extrapolated) $=33.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=7.62 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.1 \mathrm{~W} / \mathrm{kg}$
Maximum value of SAR (measured) $=18.7 \mathrm{~W} / \mathrm{kg}$

Impedance Mieasurement Plot for Body TSL

APPENDIX C. - SAR Tissue Specifications

The brain and muscle mixtures consist of a viscous gel using hydrox-ethylcellulose (HEC) gelling agent and saline solution (see Table C.1). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C . Gabriel and G. Harts grove.

Figure C. 1 Simulated Tissue

Table C. 1 Composition of the Tissue Equivalent Matter

Ingredients (\% by weight)	Frequency (MHz)							
	835		1900		2450		$5200 \sim 5800$	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body
Water	40.19	50.75	55.24	70.23	71.88	73.40	65.52	80.00
Salt (NaCl)	1.480	0.940	0.310	0.290	0.160	0.060	-	-
Sugar	57.90	48.21	-	-	-	-	-	-
HEC	0.250	-	-	-	-	-	-	-
Bactericide	0.180	0.100	-	-	-	-	-	-
Triton X-100	-	-	-	-	19.97	-	17.24	-
DGBE	-	-	44.45	29.48	7.990	26.54	-	-
Diethylene glycol hexyl ether	-	-	-	-	-	-	17.24	-
Polysorbate (Tween) 80	-	-	-	-	-	-		20.00
Target for Dielectric Constant	41.5	55.2	40.0	53.3	39.2	52.7	-	-
Target for Conductivity (S/m)	0.90	0.97	1.40	1.52	1.80	1.95	-	-

Salt:
Water:
DGBE:
Triton X-100(ultra pure):

99 \% Pure Sodium Chloride
De-ionized, 16M resistivity

Sugar: $\quad 98$ \% Pure Sucrose
HEC: Hydroxyethyl Cellulose

99 \% Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]
Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether

Table C. 2 HSL/MSL750 (Head and Body liquids for 700 - 800 MHz)

Item	Head Tissue Simulation Liquids HSL750
	Muscle (body) Tissue Simulation Liquids MSL750
Type No	SL AAH 075, SL AAM 075
Manufacturer	SPEAG
The item is composed of the following ingredients:	
$\mathrm{H}^{2} \mathrm{O}$	Water, 35 - 58\%
Sucrose	Sucrose, 40 - 60\%
NaCl	Sodium Chloride, 0 - 6\%
$\mathrm{Hydroxyethyl-cellulose}$	Medium Viscosity (CAS\# 9004-62-0), < 0.3\%
Preventol-D7	Preservative:aqueous preparation, (CAS\# 55965-84-9), containing 5- chloro-2-methyl-3(2H)-isothiazolone and 2-methyyl-3(2H)-isothiazolone, 0.1-0.6\%

Table C. 3 HSL/MSL1750 (Head and Body liquids for 1700 - 1800 MHz)

Item	Head Tissue Simulation Liquids HSL1750
	Muscle (body) Tissue Simulation Liquids MSL1750
Type No	SLAAH 175, SL AAM 175
Manufacturer	SPEAG
The item is composed of the following ingredients:	
$\mathrm{H}^{2} \mathrm{O}$	Water, $52-75 \%$
C 8 H 18 O 3	Diethylene glycol monobutyl ether (DGBE), 25-48\%
NaCl	Sodium Chloride, <1.0\%

APPENDIX D. - SAR SYSTEM VALIDATION

SAR System Validation

Per FCC KDB 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

Table D. 1 SAR System Validation Summary

SAR System	Freq. [MHz]	Date	Probe SN	Probe Type	Probe CAL. Point		PERM.	COND.	CW Validation			MOD. Validation		
							(عr)	(σ)	Sensitivity	Probe Linearity	Probe Isortopy	MOD. Type	Duty Factor	PAR
D	750	2018.10.15	3933	EX3DV4	750	Head	42.212	0.887	PASS	PASS	PASS	N/A	N/A	N/A
D	835	2018.10.16	3933	EX3DV4	835	Head	40.978	0.919	PASS	PASS	PASS	GMSK	PASS	N/A
D	1800	2018.10.17	3933	Ex3DV4	1800	Head	39.954	1.397	PASS	PASS	PASS	N/A	N/A	N/A
D	1900	2018.10.18	3933	Ex3DV4	1900	Head	39.547	1.369	PASS	PASS	PASS	GMSK	PASS	N/A
c	2450	2018.05.10	3916	Ex3DV4	2450	Head	38.995	1.822	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
D	2600	2018.10.22	3933	EX3DV4	2600	Head	38.458	1.977	PASS	PASS	PASS	TDD	PASS	N/A
c	5200	2018.05.14	3916	Ex3DV4	5200	Head	34.856	4.725	PASS	PASS	PASS	OFDM	N/A	PASS
c	5300	2018.05.15	3916	Ex3DV4	5300	Head	34.854	4.856	PASS	PASS	PASS	OFDM	N/A	PASS
c	5500	2018.05.16	3916	EX3DV4	5500	Head	34.625	5.113	PASS	PASS	PASS	OFDM	N/A	PASS
c	5600	2018.05.17	3916	Ex3DV4	5600	Head	34.265	5.221	PASS	PASS	PASS	OFDM	N/A	PASS
C	5800	2018.05.18	3916	EX3DV4	5800	Head	34.113	5.414	PASS	PASS	PASS	OFDM	N/A	PASS
D	750	2018.10.15	3933	Ex3DV4	750	Body	54.650	0.965	PASS	PASS	PASS	N/A	N/A	N/A
D	835	2018.10.16	3933	Ex3DV4	835	Body	54.597	0.975	PASS	PASS	PASS	GMSK	PASS	N/A
D	1800	2018.10.17	3933	Ex3DV4	1800	Body	52.381	1.553	PASS	PASS	PASS	N/A	N/A	N/A
D	1900	2018.10.18	3933	Ex3DV4	1900	Body	52.289	1.571	PASS	PASS	PASS	GMSK	PASS	N/A
c	2450	2018.05.10	3916	Ex3DV4	2450	Body	51.454	2.011	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
D	2600	2018.10.22	3933	Ex3DV4	2600	Body	51.142	2.221	PASS	PASS	PASS	TDD	PASS	N/A
c	5200	2018.05.14	3916	EX3DV4	5200	Body	48.156	5.467	PASS	PASS	PASS	OFDM	N/A	PASS
c	5300	2018.05.15	3916	EX3DV4	5300	Body	48.111	5.488	PASS	PASS	PASS	OFDM	N/A	PASS
c	5500	2018.05.16	3916	Ex3DV4	5500	Body	47.774	5.822	PASS	PASS	PASS	OFDM	N/A	PASS
c	5600	2018.05.17	3916	Ex3DV4	5600	Body	47.116	5.911	PASS	PASS	PASS	OFDM	N/A	PASS
c	5800	2018.05.18	3916	EX3DV4	5800	Body	46.774	6.223	PASS	PASS	PASS	OFDM	N/A	PASS

NOTE: While the probes have been calibrated for both a CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio ($>5 \mathrm{~dB}$), such as OFDM according to KDB 865664.

APPENDIX E. - Downlink LTE CA RF Conducted Powers

E. 1 LTE Downlink Only Carrier Aggregation Test Reduction Methodology

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number of component carriers (CCs) supported by the product implementation. Per April 2018 TCBC Workshop Notes, the following test reduction methodology was applied to determine the combinations required for conducted power measurements.

LTE DL CA Test Reduction Methodology:

(1) Test supported combinations were arranged by the number of component carriers in columns.
(2) Any limitations on the PCC or SCC for each combination were identified alongside the combination (e.g. CA $2 \mathrm{~A}-2 \mathrm{~A}-4 \mathrm{~A}-12 \mathrm{~A}$, but B12 can only be configured as a SCC).
(3) Power measurements were performed for "supersets" (LTE CA combinations with multiple components carriers) and any "subsets" (LTE CA combinations with fewer component carriers) that were not completely covered by the supersets.
(4) Only subsets that have the exact same components as a superset were excluded for measurement.
(5) When there were certain restrictions on component carriers that existed in the superset that were not applied for the subset, the subset configuration was additionally evaluated.
(6) Both inter-band and intra-band downlink carrier aggregation scenarios were considered.

Index	2 CC	Restriction	Completely Covered by Measurement Superset	Index	3 CC	Restriction	Completely Covered by Measurement Superset	Index	4 CC	Restriction	Completely Covered by Measurement Superset	Index	5 CC	Restriction	Completely Covered by Measurement Superset
$2 \mathrm{Cc}{ }^{\text {\% }} 1$	$\mathrm{CA}_{2} 2 \mathrm{C}$		3 CCH \#	$3 \mathrm{CCH1}$	CA $2 \mathrm{~A}-2 \mathrm{~A}-4 \mathrm{~A}$		$4 \mathrm{CCH1}$	$4 \mathrm{CCH1}$	CA $2 \mathrm{~A}-2 \mathrm{~A}-4 \mathrm{~A}-4 \mathrm{~A}$		No	SCC\#1	CA_2A-2A-46D	B46 SCC Only	No
$2 \mathrm{CCH2}$	CA $2 \mathrm{~A}-2 \mathrm{~A}$		$4 \mathrm{CC} \# 1$	$3 \mathrm{CCH}+2$	CA $2 \mathrm{~A}-2 \mathrm{~A}-5 \mathrm{~A}$		$4 \mathrm{CCH2}$	4CC\#2	CA $2 \mathrm{~A}-2 \mathrm{~A}-4 \mathrm{~A}-5 \mathrm{~A}$		No	$\mathrm{CCO}+2$	CA 2 A-5B-30A-66A		No
2 CCH	CA $2 \mathrm{~A}-4 \mathrm{~A}(2)$		4 CC \#1	3 CCH	CA $2 \mathrm{~A}-2 \mathrm{~A}-12 \mathrm{~A}$		No	4CCH3	CA $2 \mathrm{~A}-2 \mathrm{~A}-4 \mathrm{~A}-12 \mathrm{~A}$	B12 SCC Only	No	CCOH	CA 2 A-5B-66A-66A		No
$2 \mathrm{CCH4}$	CA 2A-5A		$4 \mathrm{CC} \# 2$	$3 \mathrm{CC}+4$	CA $2 \mathrm{~A}-2 \mathrm{~A}-13 \mathrm{~A}$		4 CC \#8	$4 \mathrm{CC} \mathrm{\# H}^{\text {d }}$	CA 2A-2A-5A-30A		No	$\mathrm{SCC}^{\text {\# }} 4$	CA 2A-46D-66A	B46 SCC Only	No
$2 \mathrm{CCH5}$	CA 2A-7A		$4 \mathrm{CC} \# 16$	3CC\#5	CA $2 \mathrm{~A}-2 \mathrm{~A}-29 \mathrm{~A}$	B29 SCC Only	$4 \mathrm{CC} \# 9$	4CC\#5	CA $2 \mathrm{~A}-2 \mathrm{~A}-5 \mathrm{~A}-66 \mathrm{~A}$		No	SCCH5	CA 2 2-46A-46C-66A	${ }^{\text {B46 SCC Only }}$	No
2Cc\#6	CA_2A-12A(1)		$3 \mathrm{CC} \# 3$	3CCH6	CA $2 \mathrm{~A}-2 \mathrm{~A}-30 \mathrm{~A}$		$4 \mathrm{CC} \# 9$	4CCH6	CA 2 A-2A-12A-30A	B12 SCC Only	No	SCC\#6	CA 41C-41D		No
$2 \mathrm{CCH7}$	CA $2 \mathrm{~A}-13 \mathrm{~A}$		$4 \mathrm{CC} \# 31$	$3 \mathrm{CC} \# 7$	CA 2C-66A		No	HCC\#7	CA $2 \mathrm{~A}-2 \mathrm{~A}-12 \mathrm{~A}-66 \mathrm{~A}$	B12 SCC Only	No	CC\#7	CA 46D-66A-66A	B46 SCC Only	No
$2 \mathrm{CCH8}$	CA 2 A-14A		$3 \mathrm{CC} \# 27$	3CC\# ${ }^{\text {c }}$	CA $2 \mathrm{~A}-2 \mathrm{~A}$-66A		$4 \mathrm{CCH7}$	4CC\#8	CA 2 A-2A-13A-66A		No	$\mathrm{CCCH}^{\text {\% }}$			
$2 \mathrm{CCH9}$	CA 2A-17A		No	3CC \#9	CA $2 \mathrm{~A}-2 \mathrm{~A}-71 \mathrm{~A}$	B71 Scc Only	No	4CC\#9	CA $2 \mathrm{~A}-2 \mathrm{~A}-29 \mathrm{~A}-30 \mathrm{~A}$	B29 Scc Only	No	SCA 9			
$2 \mathrm{CCH10}$	CA $2 \mathrm{~A}-29 \mathrm{~A}(2)$	B29 Scc Only	4 CC \#9	$3 \mathrm{CCH10}$	CA $2 \mathrm{~A}-4 \mathrm{~A}-4 \mathrm{~A}$		$4 \mathrm{CC} \# 1$	4CC\#10	CA 2 A-2A-66A-66A		No	SCA_10			
2 CCH \#11	CA $2 \mathrm{~A}-30 \mathrm{~A}$		4 CC \#9	$3 \mathrm{CCH}+11$	CA $2 \mathrm{~A}-4 \mathrm{~A}-5 \mathrm{~A}$		4 CCH +	4CC\#\#11	CA $22 \mathrm{~A}-4 \mathrm{~A}-4 \mathrm{~A}-5 \mathrm{~A}$		No	CA, 11			
$2 \mathrm{CCH}{ }^{\text {d }}$	CA 2 2-46A	${ }^{\text {B46 SCC Only }}$	$5 \mathrm{CC} \# 5$	3 CCH 12	CA $2 \mathrm{~A}-4 \mathrm{~A}-7 \mathrm{~A}$		$4 \mathrm{CC} \# 16$	4CC\#12	CA $2 \mathrm{~A}-4 \mathrm{~A}-4 \mathrm{~A}-12 \mathrm{~A}$	B12 SCC Only	No	SCA 12			
$2 \mathrm{CC} \# 13$	CA 2A-66A		$5 \mathrm{CC} \# 2$	$3 \mathrm{CCH13}$	CA $2 \mathrm{~A}-4 \mathrm{~A}-12 \mathrm{~A}$		No	4CC\#13	CA 2A-4A-5B		No	CA 13			
$2 \mathrm{CCH14}$	CA 2 A - 71 A	B71 SCC Only	3 CC \#17	$3 \mathrm{CCH14}$	CA 2 2A-4A-13A		No	${ }^{1} \mathrm{CC} \# 14$	CA 2 2A-4A-5A-30A		No	SCA 14			
$2 \mathrm{CCH15}$	CA 4A-4A		$4 \mathrm{CC} \# 1$	$3 \mathrm{CC} \# 15$	CA $2 \mathrm{~A}-4 \mathrm{~A}-29 \mathrm{~A}$	B29 Scc Only	4 CC \#20	ACC\#15	CA $2 \mathrm{~A}-4 \mathrm{~A}-7 \mathrm{C}$		No	CCA 15			
$2 \mathrm{CC} \mathrm{\# 16}$	CA 4A-5A (1)		4 CC \#2	$3 \mathrm{CC} \# 16$	CA $2 \mathrm{~A}-4 \mathrm{~A}-30 \mathrm{~A}$		$4 \mathrm{CC} \# 19$	4CC\#16	CA $2 \mathrm{~A}-4 \mathrm{~A}-7 \mathrm{~A}-7 \mathrm{~A}$		No	CCA 16			
$2 \mathrm{CCH17}$	CA 4A-7A (1)		$4 \mathrm{CC} \mathrm{\# 16}$	$3 \mathrm{CCH17}$	CA $2 \mathrm{~A}-4 \mathrm{~A}-71 \mathrm{~A}$	B71 Scc Only	No	4CC\#17	CA $2 \mathrm{~A}-4 \mathrm{~A}-7 \mathrm{~A}-12 \mathrm{~A}$	B12 SCC Only	No	CCA 17			
$2 \mathrm{CCH18}$	CA 4A-12A(2)		$4 \mathrm{CC} \# 3$	3CC\#18	CA $2 \mathrm{~A}-5 \mathrm{~B}$		$4 \mathrm{CC} \mathrm{\# 13}$	HCC\#18	CA $2 \mathrm{~A}-4 \mathrm{~A}-12 \mathrm{~B}$	B12 SCC Only	No	CCA 18			
$2 \mathrm{CCH19}$	CA 4A-13A		3CC\#14	$3 \mathrm{CCH19}$	CA 2 2A-5A-30A		4 CC \#23	4CC\#19	CA $2 \mathrm{~A}-4 \mathrm{~A}-12 \mathrm{~A}-30 \mathrm{~A}$	B12 SCC Only	No	SCA_19			
$2 \mathrm{CCH20}$	CA 4A-17A	B17 SCC Only	No	$3 \mathrm{CCH}+20$	CA_2A-5A-66A		$4 \mathrm{CCH}{ }^{2}$	4CC +20	CA $2 \mathrm{~A}-4 \mathrm{~A}-29 \mathrm{~A}-30 \mathrm{~A}$	${ }^{\text {B29 SCC Only }}$	No	$\mathrm{CCA}_{2} 20$			
$2 \mathrm{CCH21}$	CA 4 4-29A(2)	${ }^{\text {B29 SCC Only }}$	4 CC \#20	$3 \mathrm{CCH21}$	CA 2A-7A-7A		$4 \mathrm{CC} \# 16$	4CC \# 21	CA 2 2-5B-30A		5 CC \#2	SCA 21			
$2 \mathrm{CCH}+22$	CA 4A-30A		$4 \mathrm{CC} \# 19$	3CC +22	CA $2 \mathrm{~A}-7 \mathrm{~A}-12 \mathrm{~A}$		No	ACC +22	CA $2 \mathrm{~A}-5 \mathrm{~B}$-66A		$5 \mathrm{CC} \# 3$	CA 22			
$2 \mathrm{CCH23}$	CA 4A-46A	B46 SCC Only	4 CC \#42	3CC+23	CA $2 \mathrm{~A}-12 \mathrm{~B}$		No	$4 \mathrm{CC} \# 23$	CA 2 2A-5A-30A-66A		No	SCA 23			
$2 \mathrm{CCH} \# 24$	CA 4A-71A	B71 SCC Only	$3 \mathrm{CCH43}$	$3 \mathrm{CCH}+24$	CA $2 \mathrm{2A}-12 \mathrm{~A}-30 \mathrm{~A}$		No	4CC $\# 24$	CA 2 2A-5A-66B		No	CCA 24			
$2 \mathrm{CCH}+25$	CA 5B		5 CCH \#	3CCH25	CA 2 2-12A-66A		No	4CC +25	CA $2 \mathrm{~A}-5 \mathrm{~A}-66 \mathrm{C}$		No	CCA 25			
$2 \mathrm{CCH26}$	CA 5A-25A		No	3CC \#26	CA 2A-13A-66A		$4 \mathrm{CC} \# 31$	ACC\#26	CA 2A-5A-66A-66A		No	SCA 26			
2CCH27	CA 5A-30A		4 CC \#23	3CC +27	CA $2 \mathrm{~A}-14 \mathrm{~A}-30 \mathrm{~A}$		No	4CC $\# 27$	CA $2 \mathrm{~A}-12 \mathrm{~A}-30 \mathrm{~A}-66 \mathrm{~A}$	B12 SCC Only	No	SCA 27			
2 CCH \#28	CA 5 A-66A		4 CC \#23	$3 \mathrm{CCH28}$	CA $2 \mathrm{~A}-29 \mathrm{~A}-30 \mathrm{~A}$	B29 Scc Only	$4 \mathrm{CC} \# 9$	4CC $\# 28$	CA 2 A-12A-66A-66A	B12 SCC Only	No	$\mathrm{CCA}_{2} 8$			
2 CCH +29	CA 7 7A-7A (1)		$4 \mathrm{CC} \# 16$	$3 \mathrm{CCH}+29$	CA 22A-30A-66A		$4 \mathrm{CC} \# 23$	HCC $\# 29$	CA 2 2-13A-66B		No	ССА 29			
$2 \mathrm{CCH}{ }^{2} 0$	CA 7 - -12 A		3 CC \#22	$3 \mathrm{CCH} \# 3$	CA $2 \mathrm{~A}-46 \mathrm{C}$	${ }^{\text {B46 SCC Only }}$	$5 \mathrm{CCH5}$	4CCH30	CA $2 \mathrm{~A}-13 \mathrm{~A}-66 \mathrm{C}$		No	SCA 30			
2CC\#31	CA 7A-46A (1)	346 SCC Only	No	3CCH31	CA 2A-46A-46A	${ }^{\text {B46 SCC Only }}$	$4 \mathrm{CC} \# 34$	ACC\#31	CA 2A-13A-66A-66A		No	SCA 31			
$2 \mathrm{CCH32}$	CA 12 B		3 CC \#23	3CC\#32	CA 2 2A-46A-66A	B46 SCC Only	$4 \mathrm{CC} \# 34$	HCC \#32	CA $2 \mathrm{~A}-46 \mathrm{D}$	B46 SCC Only	5CC\#1	SCA 32			
$2 \mathrm{Cc} \# 33$	CA_12A-25A		No	3CC\#33	CA $2 \mathrm{~A}-66 \mathrm{~B}$		4 CC \#24	4СС\#33	CA_2A-46A-46C	B46 SCC Only	5CC \#5	CCA 33			
$2 \mathrm{CCH} \# 3$	CA 12A-30A		$4 \mathrm{CC} \# 4$	3CCH34	CA 2A-66C		4 CC \#25	HCC\#34	CA 2A-46A-46A-66A	${ }^{\text {B46 SCC Only }}$	No	CCA 34			
$2 \mathrm{CCH35}$	CA 12A-66A (1)		3CC $\# 25$	3CC\#35	CA 2A-66A-66A		4 CC \#26	4СС $\# 35$	CA 2A-46C-66A	B46 SCC Only	5CC\#5	CCA 35			
2CC\#36	CA 13A-46A	B46 SCC Only	No	3CC\#36	CA 2A-66A-71A	B71 Scc Only	No	4CC\#36	CA $4 \mathrm{~A}-4 \mathrm{~A}-5 \mathrm{~B}$		No	CCA 36			
$2 \mathrm{Cc} \# 37$	CA $13 \mathrm{~A}-66 \mathrm{~A}$		$4 \mathrm{CCH8}$	$3 \mathrm{CC} \# 37$	CA_4A-4A-5A		$4 \mathrm{CC} \# 37$	HCC\#37	CA $4 \mathrm{~A}-4 \mathrm{~A}-5 \mathrm{~A}-30 \mathrm{~A}$		No	SCA 37			
$2 \mathrm{CCH38}$	CA $14 \mathrm{~A}-30 \mathrm{~A}$		3 CC \#27	3CC\#38	CA 4 4 -4A-7A (1)		No	4CC \#38	CA $4 \mathrm{~A}-4 \mathrm{~A}-12 \mathrm{~A}-30 \mathrm{~A}$	B12 SCC Only	No	[CA 38			
2 CCH 39	CA 14 A -66A		$3 \mathrm{CC} \# 66$	3CCH39	CA 4 4-4A-12A		$4 \mathrm{CC} \# 38$	4CCH39	CA $4 \mathrm{~A}-4 \mathrm{~A}-29 \mathrm{~A}-30 \mathrm{~A}$	${ }^{\text {B29 SCC Only }}$	No	SCA 39			
2 CCH 40	CA 25A-25A(1)		$4 \mathrm{CC} \# 49$	$3 \mathrm{CCH40}$	CA 4A-4A-13A		No	HCC\#40	CA 4A-5B-30A		No	SCA 40			

Table E.1.1 Example of Exclusion Table for LTE DL CA

E. 2 LTE Downlink Only Carrier Aggregation Test Selection and Setup

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number of component carriers (CCs) supported by the product implementation. For those configurations required by April 2018 TCBC Workshop Notes, conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation and RB combinations in each frequency band.

Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

General PCC and SCC configuration selection procedure
PCC uplink channel, channel bandwidth, modulation and RB configurations were selected based on section C)3)b)ii) of KDB 941225 D05v01r02. The downlink PCC channel was paired with the selected PCC uplink channel according to normal configurations without carrier aggregation.

To maximize aggregation bandwidth, highest channel bandwidth available for that CA combination was selected for SCC. For inter-band CA, the SCC downlink channels were selected near the middle of their transmission bands. For contiguous intra-band CA, the downlink channel spacing between the component carriers was set to multiple of 300 kHz less than the nominal channel spacing defined in section 5.4.1A of 3GPP TS 36.521. For non-contiguous intraband CA, the downlink channel spacing between the component carriers was set to be larger than the nominal channel spacing and provided maximum separation between the component carriers.

All selected PCC and SCC(s) remained fully within the uplink/downlink transmission band of the respective component carrier.

When a device supports LTE capabilities with overlapping transmission frequency ranges, the standalone powers from the band with a larger transmission frequency range can be used to select measurement configurations for the band with the fully covered transmission frequency range.

E. 3 LTE DL Carrier Aggregation Conducted Powers

- Below downlink CA configurations were determined based on Manufacturer's information.

Class	ATBC		$\begin{gathered} \text { Maximum } \\ \text { number of CC } \end{gathered}$
	NRB.agg	MHz	
A	$\mathrm{N} \leq 100$	20	1
B	$\mathbf{2 5}<\mathrm{N} \leq 100$	20	2
C	$100<\mathrm{N} \leq 200$	40	2
D	$200<\mathrm{N} \leq 300$	60	3
E	$300<\mathrm{N} \leq 400$	80	4
F	$400<\mathrm{N} \leq 500$	100	5
1	$\mathbf{7 0 0}<\mathbf{N} \leq 800$	160	8

Index	2CC	Supported Channel Bandwidth [MHz]		Restriction	Completely Covered by Measurement Superset
		CC1	CC2		
2CC \#1	CA_4A-7A (0)	5, 10	5, 10, 15, 20		No
2CC \#2	CA_4A-7A (1)	5, 10, 15, 20	5, 10, 15, 20		No
2CC \#3	CA_5A-7A (0)	1.4, 3, 5, 10	10, 15, 20		No
2CC \#4	CA_5A-7A (1)	5, 10	10, 15, 20		No
2CC \#5	CA_7A-7A (0)	5, 10, 15, 20	10, 15, 20		No
2CC \#6	CA_7A-7A (1)	5, 10, 15, 20	5, 10, 15, 20		No
2CC \#7	CA_7A-7A (2)	5, 10, 15, 20	5,10		No
2CC \#8	CA_7A-7A (3)	10, 15, 20	10, 15, 20		No
2CC \#9	CA_7C (0)	15, 20	15, 20		No
2CC \#10	CA_7C (1)	10, 15, 20	10, 15, 20		No
2CC \#11	CA_7C (2)	15, 20	10, 15, 20		No
2CC \#12	CA_66A-66A (0)	5, 10, 15, 20	5, 10, 15, 20		No
2CC \#13	CA_66B (0)	5, 10, 15	5, 10, 15		No
2CC \#14	CA_66C (0)	5, 10, 15, 20	5, 10, 15, 20		No

PCC										SCC				Power	
Combination	PCC Band	$\begin{gathered} \text { PCC BW } \\ (\mathrm{MHz}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{PCC} \\ \text { (UL) CH. } \\ \hline \end{gathered}$	$\begin{gathered} \text { PCC (UL) } \\ \text { Freq. (MHz) } \end{gathered}$	Mod.	$\begin{aligned} & \text { PCC } \\ & \text { UL\# RB } \end{aligned}$	PCC UL RB Offset	$\begin{gathered} \mathrm{PCC}(\mathrm{DL}) \\ \mathrm{CH} . \\ \hline \end{gathered}$	$\begin{gathered} \text { PCC (DL) } \\ \text { Freq. (MHz) } \end{gathered}$	$\begin{aligned} & \text { SCC } \\ & \text { Band } \end{aligned}$	$\underset{(\mathrm{MHz})}{\substack{\mathrm{SCC} \\ \hline}}$	$\begin{gathered} \mathrm{SCC} \\ (\mathrm{DLL}) \mathrm{CH} . \end{gathered}$	$\begin{gathered} \text { SCC (DL) } \\ \text { Freq. (MHz) } \end{gathered}$	LTE Tx. Power with DL CA Enabled (dBm)	LTE Single Carrier Tx. Power (dBm) 2.44
CA_4A-7A (0)	LTE B4	10	20000	1715.0	QPSK	1	25	2000	2115.0	LTE B7	20	3100	2655.0	23.11	23.44
CA_4A-7A (1)	LTE B4	20	20175	1732.5	QPSK	1	50	2175	2132.5	LTE B7	20	3100	2655.0	23.10	23.34

Table F.3.4 LTE Band 5 as PCC

PCC										SCC				Power	
Combination	PCC Band	$\begin{gathered} \text { PCC BW } \\ (\mathrm{MHz}) \end{gathered}$	$\begin{aligned} & \mathrm{PCC} \\ & \text { (UL) } \mathrm{CH} . \end{aligned}$	$\begin{gathered} \text { PCC (UL) } \\ \text { Freq. (MHz) } \end{gathered}$	Mod.	$\begin{gathered} \mathrm{PCC} \\ \text { UL\#RB } \end{gathered}$	PCC UL RB Offset	$\begin{gathered} \mathrm{PCC}(\mathrm{DL}) \\ \mathrm{CH} . \end{gathered}$	$\begin{gathered} \text { PCC (DL) } \\ \text { Freq. (MHz) } \end{gathered}$	$\begin{aligned} & \text { SCC } \\ & \text { Band } \end{aligned}$	$\begin{gathered} \text { Scc Bw } \\ (\mathrm{MHz}) \end{gathered}$	$\begin{gathered} \mathrm{SCC} \\ \text { (DL) } \mathrm{CH} . \end{gathered}$	$\begin{gathered} \text { SCC (DL) } \\ \text { Freq. (MHz) } \end{gathered}$	$\begin{gathered} \hline \text { LTE Tx. Power with } \\ \text { DL CA Enabled } \\ (\mathrm{dBm}) \end{gathered}$	LTE Single Carrier Tx. Power (dBm)
CA_5A-7A (0)	LTE B5	10	20525	836.5	QPSK	1	0	2525	881.5	LTE B7	20	3100	2655.0	24.12	24.40
CA_5A-7A (1)	LTE B5	10	20525	836.5	QPSK	1	0	2525	881.5	LTE B7	20	3100	2655.0	24.12	24.40

PCC										SCC				Power	
Combination	PCC Band	$\underset{(\mathrm{MHz})}{\mathrm{PCC} \text { BW }}$	$\begin{gathered} \mathrm{PCC} \\ (\mathrm{UL}) \mathrm{CH} . \end{gathered}$	$\begin{gathered} \text { PCC (UL) } \\ \text { Freq. (MHz) } \end{gathered}$	Mod.	$\begin{aligned} & \text { PCC } \\ & \text { UL\# RB } \end{aligned}$	PCC UL RB Offset	$\begin{gathered} \mathrm{PCC}(\mathrm{DL}) \\ \mathrm{CH} . \\ \hline \end{gathered}$	$\begin{gathered} \text { PCC (DL) } \\ \text { Freq. (MHz) } \end{gathered}$	$\begin{aligned} & \text { SCC } \\ & \text { Band } \end{aligned}$	$\underset{(\mathrm{MHz})}{\mathrm{SCCBW}}$	$\begin{gathered} \mathrm{ScC} \\ (\mathrm{DL}) \mathrm{CH} . \end{gathered}$	$\underset{\substack{\operatorname{SCC}(\mathrm{DL}) \\ \text { Freq. (MHz) }}}{\text { (}}$	$\begin{aligned} & \text { LTE Tx. Power with } \\ & \text { DL CA Enabled } \\ & (\mathrm{dBm}) \end{aligned}$	LTE Single Carrier Tx. Power (dBm)
CA_4A-7A (0)	LTE B7	20	21100	2535.0	QPSK	1	50	3100	2655.0	LTE B4	10	2175	2132.5	23.13	23.29
CA_4A-7A (1)	LTE B7	20	21100	2535.0	QPSK	1	50	3100	2655.0	LTE B4	20	2175	2132.5	23.15	23.29
CA_5A-7A (0)	LTE B7	20	21100	2535.0	QPSK	1	50	3100	2655.0	LTE B5	10	2525	881.5	23.12	23.29
CA_5A-7A (1)	LTE B7	20	21100	2535.0	QPSK	1	50	3100	2655.0	LTE B5	10	2525	881.5	23.12	23.29
CA_7A-7A (0)	LTE B7	20	21100	2535.0	QPSK	1	50	3100	2655.0	LTE B7	20	3350	2680.0	23.11	23.29
CA_7A-7A (1)	LTE B7	20	21100	2535.0	QPSK	1	50	3100	2655.0	LTE B7	20	3350	2680.0	23.11	23.29
CA_7A-7A (2)	LTE B7	20	21100	2535.0	QPSK	1	50	3100	2655.0	LTE B7	10	3400	2685.0	23.10	23.29
CA_7A-7A (3)	LTE B7	20	21100	2535.0	QPSK	1	50	3100	2655.0	LTE B7	20	3350	2680.0	23.11	23.29
CA_7C (0)	LTE B7	20	21100	2535.0	QPSK	1	50	3100	2655.0	LTE B7	20	3298	2674.8	23.14	23.29
CA_7C (1)	LTE B7	20	21100	2535.0	QPSK	1	50	3100	2655.0	LTE B7	20	3298	2674.8	23.14	23.29
CA_7C (2)	LTE B7	20	21100	2535.0	QPSK	1	50	3100	2655.0	LTE B7	20	3298	2674.8	23.14	23.29

Table F.3.6 LTE Band 66 as PCC

PCC										SCC				Power	
Combination	PCC Band	$\begin{gathered} \text { PCC BW } \\ (\mathrm{MHz}) \\ \hline \end{gathered}$	$\begin{gathered} \text { PCC } \\ \text { (ULL) CH. } \end{gathered}$	$\begin{gathered} \hline \text { PCC (UL) } \\ \text { Freq. (MHz) } \\ \hline \end{gathered}$	Mod.	$\begin{gathered} \text { PCC } \\ \text { UL\# RB } \end{gathered}$	$\begin{aligned} & \text { PCC UL } \\ & \text { RB Offset } \end{aligned}$	$\begin{aligned} & \mathrm{PCC}(\mathrm{DL}) \\ & \mathrm{CH} . \end{aligned}$	$\begin{gathered} \hline \text { PCC (DL) } \\ \text { Freq. (MHz) } \\ \hline \end{gathered}$	SCC Band	$\begin{gathered} \mathrm{SCCBW} \\ (\mathrm{MHz}) \end{gathered}$	$\begin{gathered} \mathrm{SCC}(\mathrm{DL}) \\ \mathrm{CH} . \end{gathered}$	$\begin{gathered} \text { SCC (DL) } \\ \text { Freq. (MHz) } \\ \hline \end{gathered}$	LTE Tx. Power with DL CA Enabled (dBm)	$\begin{gathered} \text { LTE } \\ \text { Single Carrier } \\ \text { Tx. Power (dBm) } \end{gathered}$
CA_66A-66A (0)	LTE B66	20	132572	1770.0	QPSK	1	50	67036	2170.0	LTE B66	20	66536	2120.0	23.36	23.51
CA_66B (0)	LTE B66	15	132597	1772.5	QPSK	1	36	67061	2172.5	LTE B66	5	66968	2163.2	23.22	23.41
CA_66C (0)	LTE B66	20	132572	1770.0	QPSK	1	50	67036	2170.0	LTE B66	20	66838	2150.2	23.34	23.51

1. The device only supports downlink Carrier Aggregation. Uplink Carrier Aggregation is not supported. The DL carrier aggregation powers were measured according to the April 2018 TCB Workshop Notes (LTE Carrier Aggregation). Per Fall 2017 TCB Workshop Notes (LTE Carrier Aggregation) and FCC KDB Publication 941225 D05Av01r02, no further power measurements and SAR measurements are required for DL carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.
2. For downlink carrier aggregation combinations, PCC uplink channel was selected based on section C.3)b)ii) of KDB 941225 D05Av01r02.

Figure E.3.1 DL 4CA Power Measurement Setup

APPENDIX F. - Description of Test Equipment

F. 1 SAR Measurement Setup

Measurements are performed using the DASY5 automated dosimetric assessment system. The DASY5 is made by Schmid \& Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. F.1.1).

A cell controller system contains the power supply, robot controller each pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the Intel Core i7-3770 3.40 GHz desktop computer with Windows 7 system and SAR Measurement Software DASY5,A/D interface card, monitor, mouse, and keyboard. The Staubli Robotis connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

Figure F.1.1 SAR Measurement System Setup

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail.

F. 2 Probe Specification

Figure F.2.2 Probe Thick-Film Technique

The SAR measurements were conducted with the dosimetric probe EX3DV4 designed in the classical triangular configuration(see F.2.1) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multitier line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection during a software approach and looks for the maximum using a 2 nd order fitting. The approach is stopped at reaching the maximum.

DAE System

F. 3 E-Probe Calibration Process

Dosimetric Assessment Procedure

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than $+/-10 \%$. The spherical isotropy was evaluated with the procedure and found to be better than $+/-0.25 \mathrm{~dB}$. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz , and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees.

Temperature Assessment *

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent the remits or based temperature probe is used in conjunction with the E-field probe.

$$
\mathrm{SAR}=C \frac{\Delta \mathrm{~T}}{\Delta t} \quad \operatorname{SAR}=\frac{|\mathrm{E}|^{2} \cdot \sigma}{\rho}
$$

where:
where:
$\Delta t=$ exposure time (30 seconds),
$\mathrm{C}=$ heat capacity of tissue (brain or muscle),
$\sigma=$ simulated tissue conductivity,
$\rho=$ Tissue density ($1.25 \mathrm{~g} / \mathrm{cm}^{3}$ for brain tissue)
$\Delta \mathrm{T}=$ temperature increase due to RF exposure.
SAR is proportional to ΔT / Δt, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E-field;

Figure F.3.1 E-Field and Temperature Measurements at 900 MHz

Figure F.3.2 E-Field and Temperature Measurements at 1800 MHz

F. 4 Data Extrapolation

The DASY5 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below;

$$
V_{i}=U_{i}+U_{i}^{2} \cdot \frac{c f}{d c p_{i}}
$$

with

$$
\begin{aligned}
& V_{i}=\text { compensated signal of channel } i \\
& U_{1}=\text { input signal of channel } i \\
& c f=c r e s t ~ f a c t o r ~ o f ~ e x c i t i n g ~ f i e l d ~ \\
& d c p_{1}=\text { diode compression point }
\end{aligned}
$$

($\mathrm{i}=\mathrm{x}, \mathrm{y}, \mathrm{z}$)
(i=x,y,z)
(DASY parameter)
(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:
E-field probes: \quad with $V_{i} \quad=$ compensated signal of channel $i(i=x, y, z)$
$E_{i}=\sqrt{\frac{V_{i}}{\text { Norm }_{i} \cdot \operatorname{ConvF}}}$

Norm $_{i}=$ sensor sensitivity of channel $i \quad(i=x, y, z)$
$\mu \mathrm{V} /(\mathrm{V} / \mathrm{m})^{2}$ for E-field probes
ConvF $=$ sensitivity of enhancement in solution
$\mathbf{E}_{1} \quad=$ electric field strength of channel i in V / m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$
E_{b t}=\sqrt{E_{x}^{2}+E_{y}^{2}+E_{x}^{2}}
$$

The primary field data are used to calculate the derived field units.

$$
S A R=E_{\text {bot }}^{2} \cdot \frac{\sigma}{\rho \cdot 1000} \quad \text { with } \quad \begin{array}{ll}
\text { SAR } & =\text { local specific absorption rate in } \mathrm{W} / \mathrm{g} \\
E_{\text {tot }} & =\text { total field strength in } \mathrm{V} / \mathrm{m} \\
\sigma & =\text { conductivity in [mho/m] or [Siemens } / \mathrm{m}] \\
\rho & =\text { equivalent tissue density in } \mathrm{g} / \mathrm{cm}^{3}
\end{array}
$$

The power flow density is calculated assuming the excitation field to be a free space field.

$$
P_{\text {fux }}=\frac{E_{b o t}^{2}}{3770} \quad \text { with } \quad \begin{aligned}
& \mathrm{P}_{\text {pue }} \\
& \mathrm{E}_{\mathrm{Lo}}
\end{aligned} \quad \begin{aligned}
& \text { = equivalent power density of a plane wave in } \mathrm{W} / \mathrm{cm}^{2} \\
& \text { = total electric field strength in } \mathrm{V} / \mathrm{m}
\end{aligned}
$$

F. 5 SAM Twin Phantom

The SAM Twin Phantom V5.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid.

Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. F.5.1)

Figure F.5.1 SAM Twin Phantom

SAM Twin Phantom Specification:

Construction

Shell Thickness
Filling Volume
Dimensions

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.
Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.
$2 \pm 0.2 \mathrm{~mm}$
Approx. 25 liters
Length: 1000 mm
Width: 500 mm
Height: adjustable feet

Specific Anthropomorphic Mannequin (SAM) Specifications:

The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected along the mid-sagittal plane into right and left halves (see Fig. F.5.2). The perimeter sidewalls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimized reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15 cm to minimize reflections from the upper surface.

Figure F.5.2 Sam Twin Phantom shell

F. 6 Device Holder for Transmitters

In combination with the Twin SAM Phantom V4.0/V4.0c, V5.0 or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).
Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Figure F.6.1 Mounting Device

F. 7 Automated Test System Specifications

Positioner
Robot Stäubli Unimation Corp. Robot Model: TX90XL Repeatability 0.02 mm
No. of axis 6
Data Acquisition Electronic (DAE) System
Cell Controller
Processor Intel Core i7-3770Clock SpeedOperating System Windows 7 Professional3.40 GHzData CardDASY5 PC-Board
Data Converter
Features SAA, multiplexer, A/D converter. \& control logicSoftwareDASY5Connecting Lines
Optical downlink for data and status infoOptical uplink for commands and clock
PC Interface CardFunction
24 bit (64 MHz) DSP for real time processing Link to DAE 4
16 bit A / D converter for surface detection system
serial link to robot
direct emergency stop output for robot
E-Field Probes
Model EX3DV4 S/N: 3916/ EX3DV4 S/N: 3933Construction
FrequencyLinearityTriangular core fiber optic detection system10 MHz to 6 GHz$\pm 0.2 \mathrm{~dB}$ (30 MHz to 6 GHz)
Phantom

Phantom	SAM Twin Phantom (V5.0)
Shell Material	Composite
Thickness	$2.0 \pm 0.2 \mathrm{~mm}$

Figure F.7.1 DASY5 Test System

