DASY5 Validation Report for SAM Head

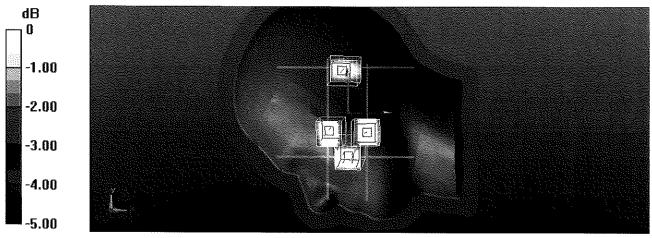
Date: 22.01.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 44.4$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(10, 10, 10) @ 835 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: SAM Head
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

SAM/Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 61.32 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.51 W/kg SAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (measured) = 3.12 W/kg

SAM/Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 62.25 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.67 W/kg SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.65 W/kg Maximum value of SAR (measured) = 3.24 W/kg

SAM/Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.69 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 3.43 W/kg SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.6 W/kg Maximum value of SAR (measured) = 3.08 W/kg

SAM/Head/Ear/Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.79 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 2.94 W/kg SAR(1 g) = 2.02 W/kg; SAR(10 g) = 1.36 W/kg Maximum value of SAR (measured) = 2.62 W/kg

0 dB = 2.62 W/kg = 4.18 dBW/kg

S Schweizerlischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service Is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

PC Test Client Certificate No: D1750V2-1148 May17 CALIBRATION CERTIFICATE Object D1750V2 - SN:1148 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz 05-09-2017 05-09-201 May 09, 2017 Calibration date: 승규는 승규는 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 04-Apr-17 (No. 217-02521/02522) Apr-18 Power sensor NRP-Z91 SN: 103244 04-Apr-17 (No. 217-02521) Apr-18 Power sensor NRP-Z91 SN: 103245 04-Apr-17 (No. 217-02522) Apr-18 Reference 20 dB Attenuator SN: 5058 (20k) 07-Apr-17 (No. 217-02528) Apr-18 Type-N mismatch combination SN: 5047.2 / 06327 07-Apr-17 (No. 217-02529) Apr-18 Reference Probe EX3DV4 SN: 7349 31-Dec-16 (No. EX3-7349_Dec16) Dec-17 DAE4 SN: 601 28-Mar-17 (No. DAE4-601_Mar17) Mar-18 Secondary Standards ID # Check Date (In house) Scheduled Check Power meter EPM-442A SN: GB37480704 07-Oct-15 (in house check Oct-16) In house check: Oct-18 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-16) in house check: Oct-18 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-16) In house check: Oct-18 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-16) in house check: Oct-18 Network Analyzer HP 8753E SN: US37390585 18-Oct-01 (in house check Oct-16) In house check: Oct-17

 Name
 Function
 Signature

 Calibrated by:
 Claudio Leubler
 Laboratory Technician

 Approved by:
 Kalja Pokovic
 Technical Manager

Certificate No: D1750V2-1148_May17

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.83 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.7 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.1 7 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.93 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.8 Ω - 0.7 jΩ
Return Loss	- 42.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.7 Ω - 0.5 jΩ
Return Loss	- 26.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.223 ns
Electrical Beilay (one allocation)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

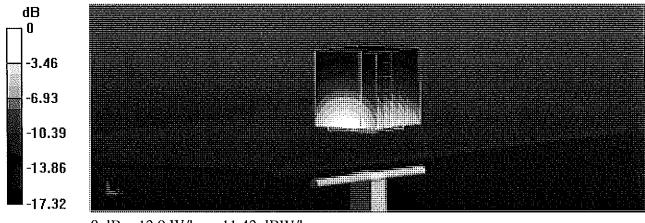
Manufactured by	SPEAG
Manufactured on	September 30, 2014

DASY5 Validation Report for Head TSL

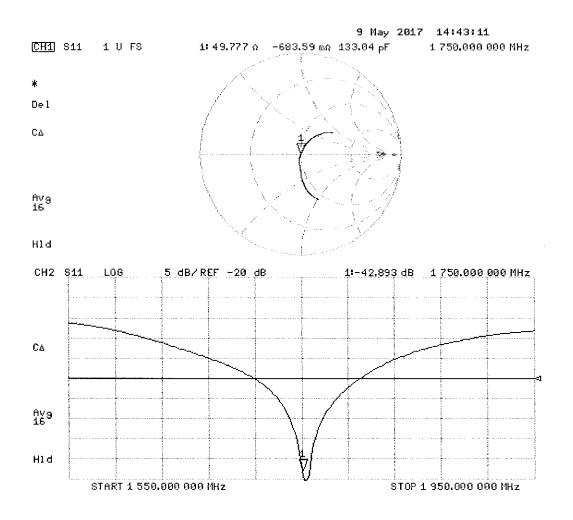
Date: 09.05.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.36$ S/m; $\varepsilon_r = 39$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.46, 8.46, 8.46); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 105.4 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 16.5 W/kg SAR(1 g) = 9.11 W/kg; SAR(10 g) = 4.83 W/kg Maximum value of SAR (measured) = 13.9 W/kg

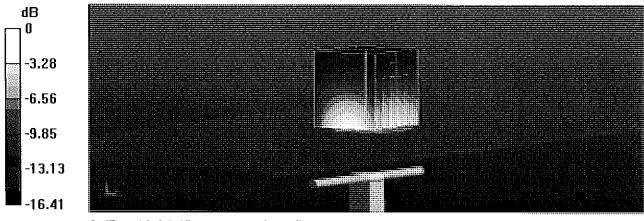
0 dB = 13.9 W/kg = 11.43 dBW/kg

DASY5 Validation Report for Body TSL

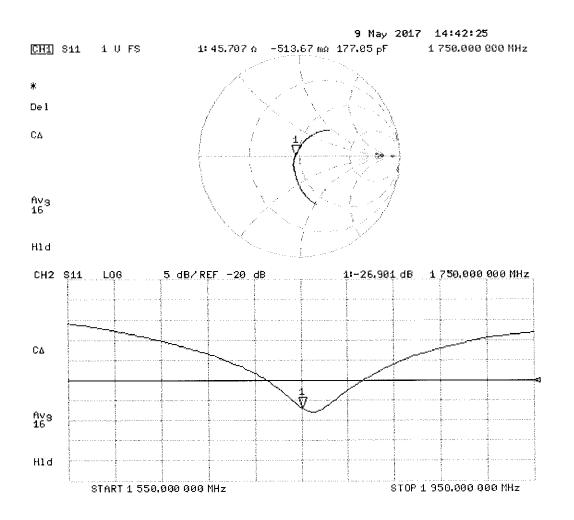
Date: 09.05.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.47$ S/m; $\varepsilon_r = 53.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.25, 8.25, 8.25); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 99.49 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 15.9 W/kg SAR(1 g) = 9.17 W/kg; SAR(10 g) = 4.93 W/kg Maximum value of SAR (measured) = 13.1 W/kg

0 dB = 13.1 W/kg = 11.17 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D1750V2 - SN: 1148

May 09, 2018

Calibration procedure(s)

Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date:

Description:

SAR Validation Dipole at 1750 MHz.

Calibration Equipment used:

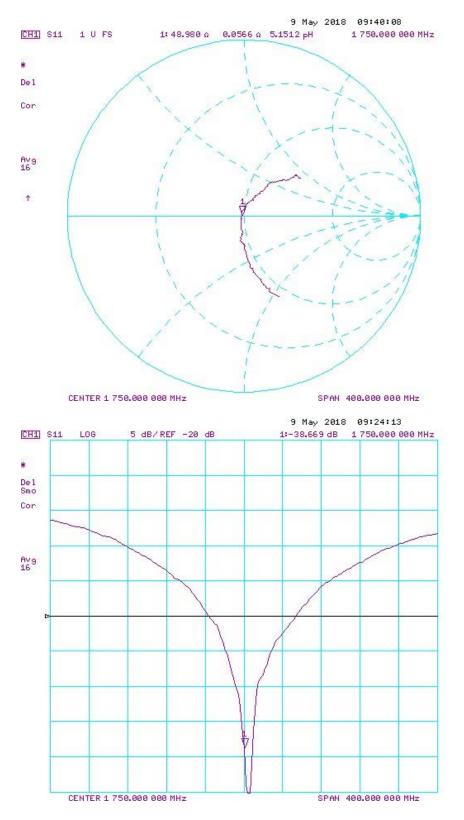
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/1/2017	Annual	6/1/2018	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/9/2018	Annual	2/9/2019	1272
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/21/2017	Annual	6/21/2018	1333
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/12/2017	Annual	9/12/2018	1091
SPEAG	ES3DV3	SAR Probe	9/18/2017	Annual	9/18/2018	3287
SPEAG	ES3DV3	SAR Probe	2/13/2018	Annual	2/13/2019	3213
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1339018
Agilent	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Pasternack	NC-100	Torque Wrench	4/18/2018	Annual	4/18/2019	1445
Anritsu	ML2495A	Power Meter	10/22/2017	Annual	10/22/2018	941001

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

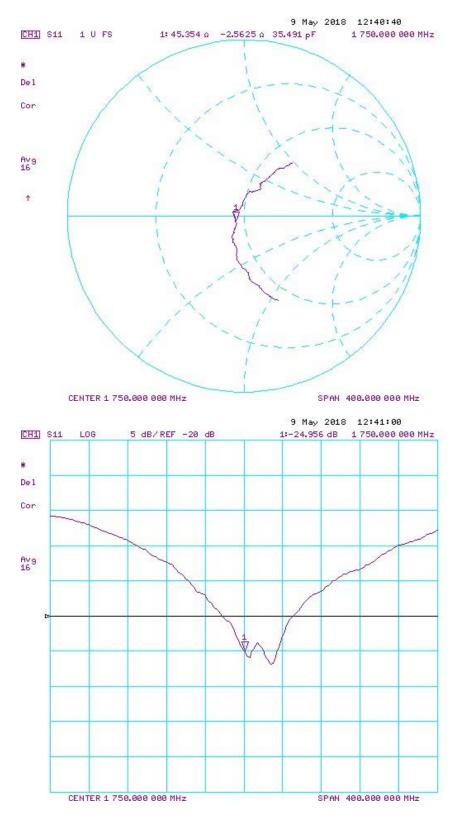
Object:	Date Issued:	Page 1 of 4
D1750V2 – SN: 1148	05/09/2018	Page 1 of 4

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	W/kg @ 20.0 dBm	dBm	(%)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm		Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
5/9/2017	5/9/2018	1.223	3.64	3.59	-1.37%	1.93	1.91	-1.04%	49.8	49.0	0.8	-0.7	0.1	0.8	-42.9	-38.7	9.90%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		BODY SAR (1g)	(9/)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
5/9/2017	5/9/2018	1.223	3.7	3.88	4.86%	1.98	2.06	4.04%	45.7	45.4	0.3	-0.5	-2.6	2.1	-26.9	-25.0	7.20%	PASS

Object:	Date Issued:	Page 2 of 4
D1750V2 – SN: 1148	05/09/2018	Fage 2 01 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Dago 2 of 4	
D1750V2 – SN: 1148	05/09/2018	Page 3 of 4	

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4	
D1750V2 – SN: 1148	05/09/2018	Page 4 of 4	

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Service suisse d'étaionnage Servizio svizzero di taratura
- S Swiss Calibration Service

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client	PC Test

Certificate No: D1900V2-5d080_Oct18

CALIBRATION CERTIFICATE

Object	D1900V2 - SN:5c	1080	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	dure for dipole validation kits abov	
Calibration date:	October 23, 2018		BN1/ 10-30-2018
The measurements and the uncerta	ainties with confidence p	onal standards, which realize the physical units robability are given on the following pages and y facility: environment temperature (22 ± 3)°C a	are part of the certificate.
Calibration Equipment used (M&TE			and manually < 7078.
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02672)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02673)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	1D #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	e Un
Approved by:	Katja Pokovic	Technical Manager	<u>AUU</u>
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory.	Issued: October 23, 2018

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end • of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

····	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.8 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	5.18 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.5 Ω + 7.9 jΩ		
Return Loss	- 21.8 dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.1 Ω + 8.1 jΩ
Return Loss	- 21.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.193 ns		
	Electrical Delay (one direction)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

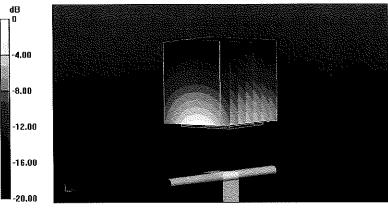
Manufactured by	SPEAG			
Manufactured on	June 28, 2006			

DASY5 Validation Report for Head TSL

Date: 23.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.4$ S/m; $\varepsilon_r = 40.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 110.0 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 18.7 W/kg SAR(1 g) = 9.93 W/kg; SAR(10 g) = 5.18 W/kg Maximum value of SAR (measured) = 15.6 W/kg

0 dB = 15.6 W/kg = 11.93 dBW/kg

Impedance Measurement Plot for Head TSL

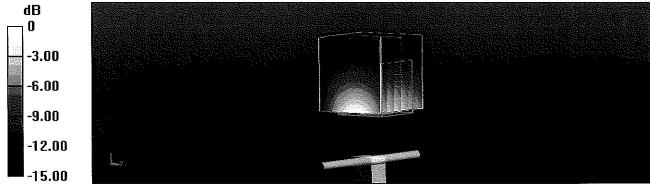
<u>File V</u> iew	<u>C</u> hannel	Sweep Ca	alibration <u>T</u>	race <u>S</u> calı	e M <u>a</u> rker	System '	Window	Help		(The surface sector sector)	
Ch1: SI	Ch 1 Avg = tart 1.70000 0			A			A.	1.900000 G 665.50 1.900000 C	рΗ	7.9 81.00 67	525 Ω 447 Ω 38 mU 7.935 °
10.00	Inst	1	1		·		41.	t doooo z	-11 (
5.00				······		>		<u>1.900000 C</u>	<u>1HZ</u>	-21.8	323 dB
0.00 -5.00											
-10.00											
-15.00											
-25.00											
-30.00					\vdash						· · · · · · · · · · · · · · · · ·
-35.00 -40.00 Ch1: S	Ch 1 Avg = tart 1.70000 0	20 3Hz		<u> </u>	/					Stop 2	10000 GHz
· · · · · · · · · · · · · · · · · · ·											

DASY5 Validation Report for Body TSL

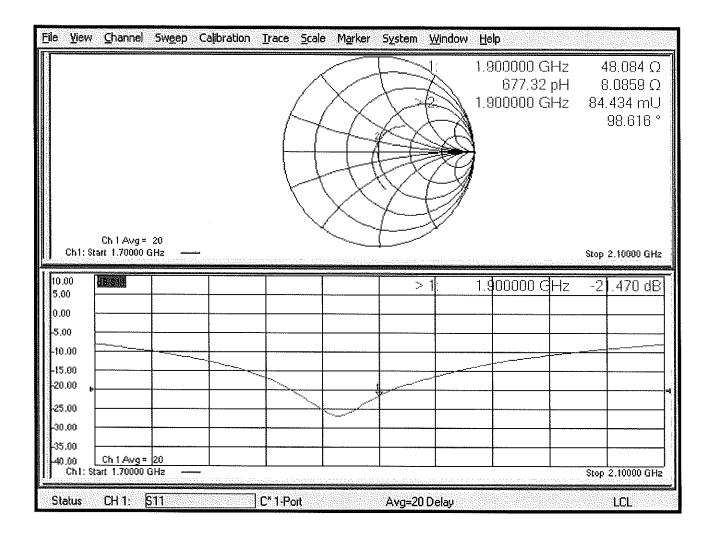
Date: 23.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.47$ S/m; $\epsilon_r = 52.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.15, 8.15, 8.15) @ 1900 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 99.86 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 9.62 W/kg; SAR(10 g) = 5.09 W/kg Maximum value of SAR (measured) = 14.1 W/kg

0 dB = 14.1 W/kg = 11.49 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

ient PC Test		Ce	rtificate No: D2300V2-1064_Nov17
ALIBRATION C	ERTIECATE		
bject	D2300V2-SN:10	064	BEBRICHSERICALISTERS:
alibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation	i kits above 700 MHz
			BAN
Calibration date:	November 08, 20	J 1 Y	12/04/2017
The measurements and the uncer	rtainties with confidence p	robability are given on the following	physical units of measurements (SI). ng pages and are part of the certificate. $11/21/$
Il calibrations have been conduc	ted in the closed laborator	ry facility: environment temperatu	re (22 \pm 3)°C and humidity < 70%.
alibration Equipment used (M&T	E critical for calibration)		
rimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/025	22) Apr-18
ower sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
ower sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
eference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
pe-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
eference Probe EX3DV4	SN: 7349	31-May-17 (No. EX3-7349_Ma	
AE4	SN: 601	26-Oct-17 (No. DAE4-601_Oc	t17) Oct-18
econdary Standards	iD #	Check Date (in house)	Scheduled Check
ower meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oc	t-16) In house check: Oct-18
ower sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oc	t-16) In house check: Oct-18
ower sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oc	•
F generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oc	
letwork Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oc	t-17) In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Techn	idan die UC
Approved by:	Katja Pokovic	Technical Manage	• JECHE
			Issued: November 8, 2017
This calibration certificate shall n	ot be reproduced except i	n full without written approval of th	

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2300 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.5	1.67 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.3 ± 6 %	1.70 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	47.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.84 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.9	1.81 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.9±6%	1.85 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	11.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	46.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.69 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.6 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.4 Ω - 5.2 jΩ
Return Loss	- 25.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.1 Ω - 4.1 jΩ
Return Loss	- 23.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.168 ns
	1.106 fts

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

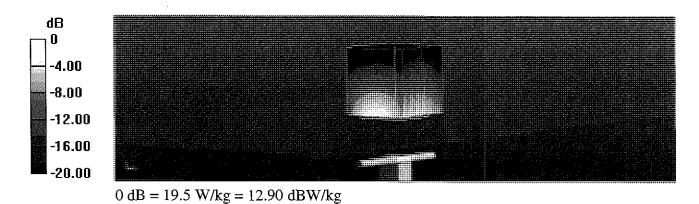
Manufactured by	SPEAG
Manufactured on	August 20, 2015

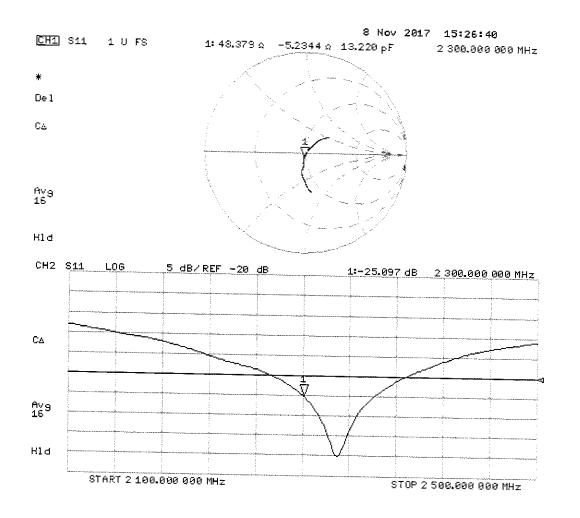
DASY5 Validation Report for Head TSL

Date: 08.11.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1064


Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.7$ S/m; $\epsilon_r = 38.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.31, 8.31, 8.31); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

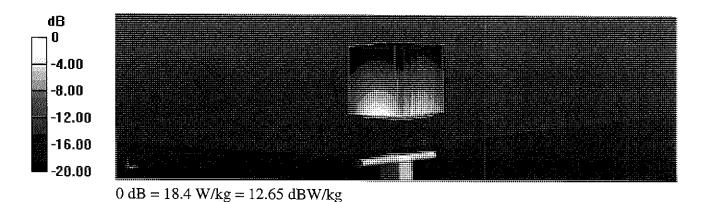
Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 112.6 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 23.8 W/kg SAR(1 g) = 12.1 W/kg; SAR(10 g) = 5.84 W/kg Maximum value of SAR (measured) = 19.5 W/kg

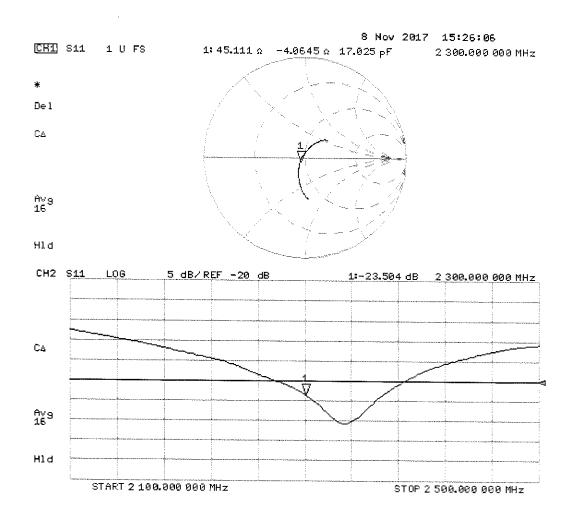
DASY5 Validation Report for Body TSL

Date: 08.11.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1064


Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; σ = 1.85 S/m; ϵ_r = 51.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.22, 8.22, 8.22); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 105.6 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 22.6 W/kg SAR(1 g) = 11.8 W/kg; SAR(10 g) = 5.69 W/kg Maximum value of SAR (measured) = 18.4 W/kg

PCTEST ENGINEERING LABORATORY, INC. 18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

+1.410.290.6652 / Fax +1.410.290.6 http://www.pctest.com

Certification of Calibration

Object

D2300V2 - SN: 1064

November 20, 2018

Calibration procedure(s)

Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date:

Description:

SAR Validation Dipole at 2300 MHz.

Calibration Equipment used:

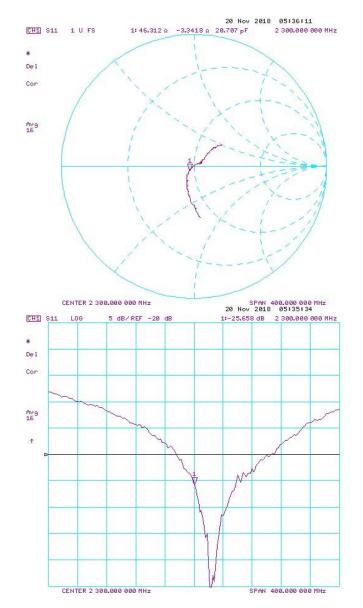
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Vector Network Analyzer	8/30/2018	Annual	8/30/2019	MY40003841
Agilent	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1339018
Anritsu	ML2495A	Power Meter	10/22/2017	Annual	10/22/2018	1328004
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/18/2018	Annual	6/18/2019	1334
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2018	Annual	7/11/2019	1322
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070
SPEAG	EX3DV4	SAR Probe	6/25/2018	Annual	6/25/2019	7409
SPEAG	EX3DV4	SAR Probe	7/20/2018	Annual	7/20/2019	7410

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	SAR Test Engineer	BROPTE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

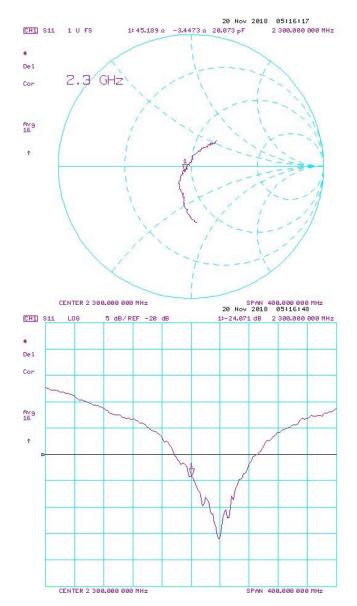
Object:	Date Issued:	Page 1 of 4
D2300V2 – SN: 1064	11/20/2018	Page 1 of 4

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	dBill	(%)	dBm	(10g) W/kg @ 20.0 dBm		Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Head (dB)	Head (dB)	Deviation (%)	
11/8/2017	11/20/2018	1.168	4.76	4.69	-1.47%	2.31	2.24	-3.03%	48.4	46.3	2.1	-5.2	-3.3	1.9	-25.1	-25.7	-2.20%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm		Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(10a) W//ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
11/8/2017	11/20/2018	1.168	4.65	4.83	3.87%	2.26	2.29	1.33%	45.1	45.2	0.1	-4.1	-3.4	0.7	-23.5	-24.1	-2.40%	PASS

Object:	Date Issued:	Page 2 of 4	
D2300V2 – SN: 1064	11/20/2018	Page 2 of 4	

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Daga 2 of 4
D2300V2 – SN: 1064	11/20/2018	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Daga 4 of 4
D2300V2 – SN: 1064	11/20/2018	Page 4 of 4

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

PC Test

Client

Schweizerischer Kallbrlerdienst S Service suisse d'étalonnage С Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D2450V2-719_Aug17

Object	D2450V2 - SN:7	19 of the second second	
			PN
Calibration procedure(s)	QA CAL-05.v9	Aktan Alah Marin	•
		dure for dipole validation kits abo	ove 700 MHz 8/27
	11년 48년 동네가 한다.		Fxtende
			Rai
Calibration date:	August 17, 2017	· 我们就是你说,你可能是可能的。"	(DNC)
			ove 700 MHz 8/27 Extende BN 7/19/2
This calibration certificate docum	ents the traceability to nat	ional standards, which realize the physical un	nits of measurements (SI).
The measurements and the unce	rtainties with confidence p	robability are given on the following pages an	nd are part of the certificate.
All calibrations have been conduc	ted in the closed laborato	ry facility: environment temperature (22 \pm 3)°(C and humidity < 70%
Calibration Equipment used (M&	FE critical for calibration)		
	lD #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	ID # SN: 104778	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522)	Scheduled Calibration Apr-18
Power meter NRP			
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 104778 SN: 103244 SN: 103245	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)	Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522)	Apr-18 Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528)	Apr-18 Apr-18 Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 1D # SN: GB37480704	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 1D # SN: GB37480704 SN: US37292783	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 1D # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 31-May-17 (No. EX3-7349_May17) 28-Mar-17 (No. DAE4-601_Mar17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 May-18 Mar-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-17

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V 52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity	
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m	
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.86 mho/m ± 6 %	
Head TSL temperature change during test	< 0.5 °C			

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.9 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	arameters 22.0 °C 52.7		1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.9 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.00 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.7 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.7 Ω + 7.0 jΩ
Return Loss	- 21.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.4 Ω + 8.1 jΩ		
Return Loss	- 21.8 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.150 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

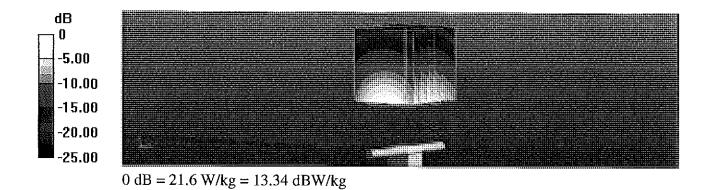
Manufactured by	SPEAG		
Manufactured on	September 10, 2002		

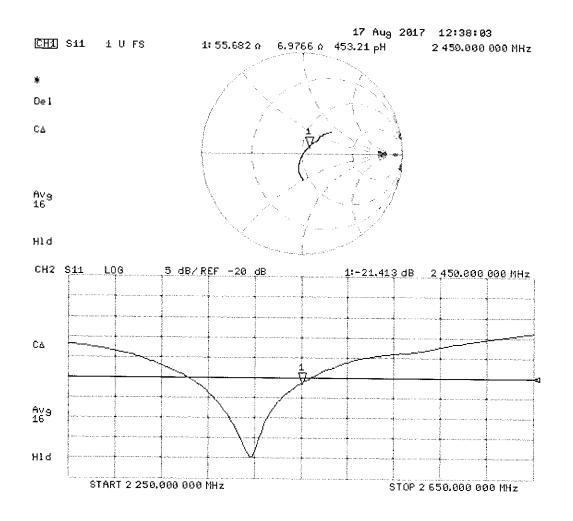
DASY5 Validation Report for Head TSL

Date: 17.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

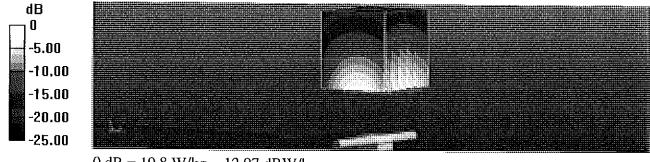
Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 112.8 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.15 W/kg Maximum value of SAR (measured) = 21.6 W/kg

DASY5 Validation Report for Body TSL

Date: 17.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 719


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ S/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.1, 8.1, 8.1); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 103.0 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 25.2 W/kg SAR(1 g) = 12.8 W/kg; SAR(10 g) = 6 W/kg Maximum value of SAR (measured) = 19.8 W/kg

0 dB = 19.8 W/kg = 12.97 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D2450V2 - SN: 719

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

07/18/2018

Extended Calibration date:

Description:

SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

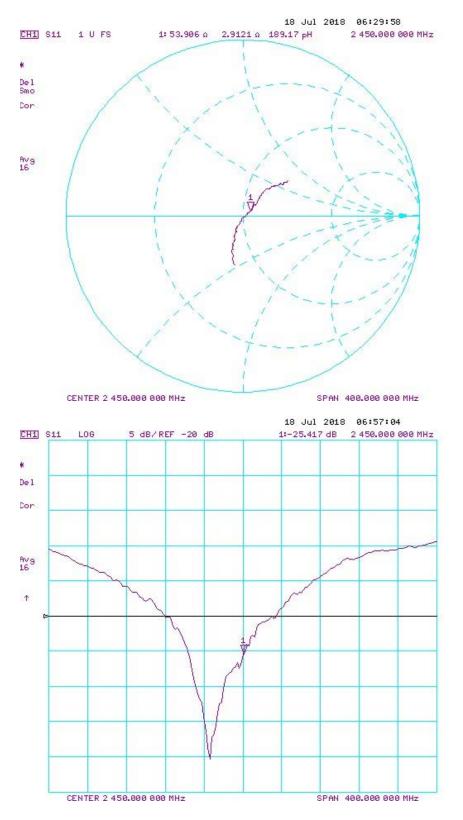
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E4438C	ESG Vector Signal Generator	3/24/2017	Biennial	3/24/2019	MY42082385
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	ML2495A	Power Meter	11/28/2017	Annual	11/28/2018	1039008
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	11/15/2017	Annual	11/15/2018	1339007
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/7/2018	Annual	3/7/2019	1368
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/9/2017	Annual	8/9/2018	1323
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/12/2017	Annual	9/12/2018	1091
SPEAG	ES3DV3	SAR Probe	3/13/2018	Annual	3/13/2019	3319
SPEAG	ES3DV3	SAR Probe	8/14/2017	Annual	8/14/2018	3332

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

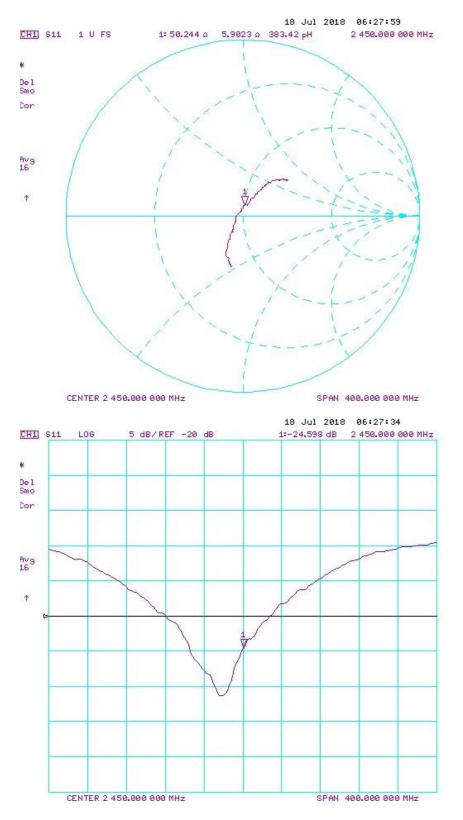
Object:	Date Issued:	Dogo 1 of 4
D2450V2 – SN: 719	07/18/2018	Page 1 of 4

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	W/kg @ 20.0 dBm	dBm	(%)	W/kg @ 20.0 dBm	(10g) W/kg @ 20.0 dBm		Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Head (dB)	Deviation (%)	
8/17/2017	7/18/2018	1.150	5.19	5.46	5.20%	2.43	2.51	3.29%	55.7	53.9	1.8	7.0	2.9	4.1	-21.4	-25.4	-18.70%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Body SAR (1g) W/kg @ 20.0 dBm	(0/)		(40-) Million (2)	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
8/17/2017	7/18/2018	1.150	5.01	5.19	3.59%	2.37	2.38	0.42%	51.4	50.2	1.2	8.1	5.9	2.2	-21.8	-24.6	-12.80%	PASS

Object:	Date Issued:	Daga 2 of 4
D2450V2 – SN: 719	07/18/2018	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Dogo 2 of 4
D2450V2 – SN: 719	07/18/2018	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2450V2 – SN: 719	07/18/2018	Faye 4 01 4

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

PC Test

Client

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D750V3-1161_Oct18

CALIBRATION CERTIFICATE

Object	D750V3 - SN:116	51	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	dure for dipole validation kits abo	ve 700 MHz
Calibration date:	October 19, 2018	1	BN 10-30-2018
	-	onal standards, which realize the physical uni robability are given on the following pages and	ts of measurements (SI).
All calibrations have been conducte	ed in the closed laborator	ry facility: environment temperature (22 \pm 3)°C	and humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	1D #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Papandan, Standarda		Charle Data (in basis)	
Secondary Standards		Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Manu Seitz	Laboratory Technician	
		la l	
Approved by:	Katja Pokovic	Technical Manager	fills
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory	Issued: October 22, 2018

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end • of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the • nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	11.00	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.03 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.32 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.1 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.43 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.39 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.55 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.6 Ω - 1.9 jΩ
Return Loss	- 25.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.6 Ω - 4.2 jΩ
Return Loss	- 27.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.032 ns		
---	--	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

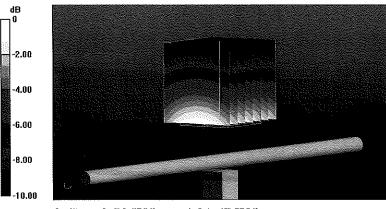
Manufactured by	SPEAG	
Manufactured on	November 19, 2015	

DASY5 Validation Report for Head TSL

Date: 19.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1161


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.89$ S/m; $\epsilon_r = 40.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.22, 10.22, 10.22) @ 750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 58.51 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.04 W/kg SAR(1 g) = 2.02 W/kg; SAR(10 g) = 1.32 W/kg Maximum value of SAR (measured) = 2.70 W/kg

0 dB = 2.70 W/kg = 4.31 dBW/kg

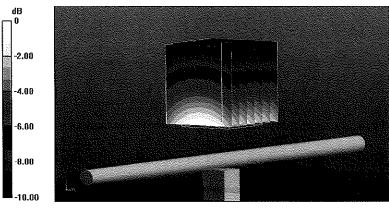
E le <u>V</u>iew <u>C</u>hannel Sw<u>e</u>ep Ca	libration Trace Scale Marker	1: 750.000000 MHz 112.30 pF 2: 750.000000 MHz	-1.8896 Ω
Ch1: Start 550.000 MHz		una general "" 	Stop 950.000 MHz
10.00 10.00 5.00		> 1: 750.00000 MHz	-2\$.015 dB
-15.00 -20.00 -25.00 -30.00 -35.00 -40.00 Ch 1 Avg = 20 Ch 1: Start 550.000 MHz			Stop 950.000 MHz

DASY5 Validation Report for Body TSL

Date: 19.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1161


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.96$ S/m; $\varepsilon_r = 55.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.19, 10.19, 10.19) @ 750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 57.57 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.18 W/kg SAR(1 g) = 2.11 W/kg; SAR(10 g) = 1.39 W/kg Maximum value of SAR (measured) = 2.83 W/kg

0 dB = 2.83 W/kg = 4.52 dBW/kg

Impedance Measurement Plot for Body TSL

Elle View Channel Sweep C	alibration <u>Trace Scale Mark</u>	er System Window Help 1: 750.000000 MH 51.109 p 2: 750.000000 MH	F -4.1521 Ω lz 41.709 mU -78.869 °
10.00 68 211		> 1: 750.00000 MH	stop 950.000 MHz Iz -27.595 dB
5.00			
-10.00 -15.00 -20.00			
-25.00 -30.00 			
Ch 1 Avg = [20 Ch 1: Start 550.000 MHz		Avg=20 Delay	Stop 950.000 MHz

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client **PC Test**

Certificate No: D1900V2-5d149_Oct18

CALIBRATION CERTIFICATE

Object	D1900V2 - SN:5c	1149	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	dure for dipole validation kits abo	və 700 MHz
Calibration date:	October 23, 2018		BNV 10-30-2018
	=	onal standards, which realize the physical uni robability are given on the following pages and	
All calibrations have been conducte	ed in the closed laborator	y facility: environment temperature (22 \pm 3)°C	C and humidity < 70%.
Calibration Equipment used (M&TE	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	Relle
This calibration certificate shall not	t be reproduced except in	full without written approval of the laboratory	Issued: October 23, 2018

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. ٠
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the • nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	250 mW input power	9.80 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	39.3 W/kg ± 17.0 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	5.11 W/kg	

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.68 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.7 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω + 6.3 jΩ
Return Loss	- 23.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.5 Ω + 8.2 jΩ
Return Loss	- 21.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.193 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

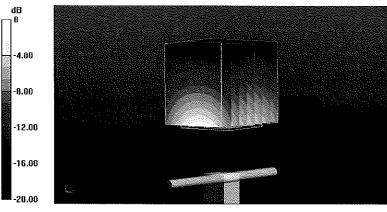
Manufactured by	SPEAG
Manufactured on	March 11, 2011

DASY5 Validation Report for Head TSL

Date: 23.10.2018

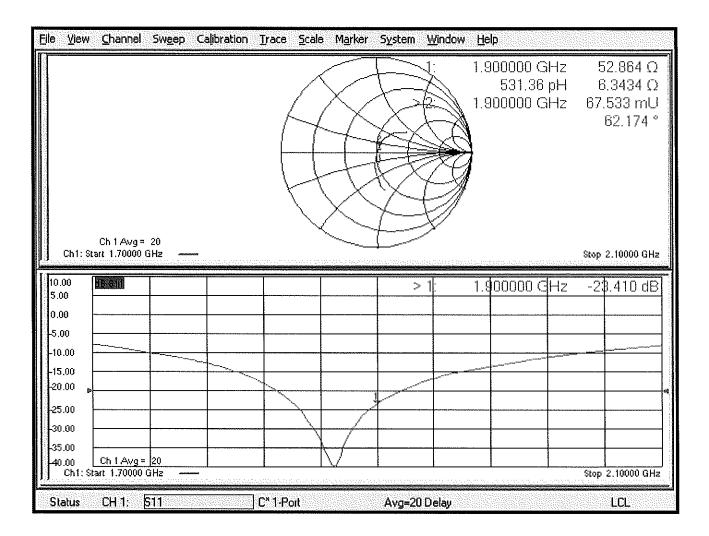
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.4 S/m; ϵ_r = 40.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 110.0 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 18.5 W/kg **SAR(1 g) = 9.8 W/kg; SAR(10 g) = 5.11 W/kg** Maximum value of SAR (measured) = 15.4 W/kg

0 dB = 15.4 W/kg = 11.88 dBW/kg

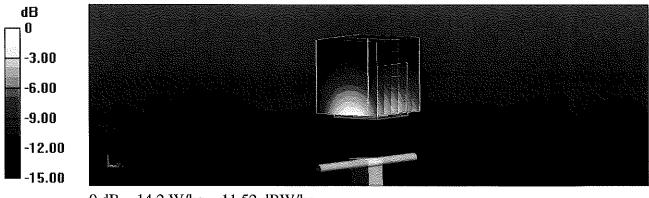
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 23.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.47 S/m; ϵ_r = 52.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.15, 8.15, 8.15) @ 1900 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.1 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 9.68 W/kg; SAR(10 g) = 5.11 W/kg Maximum value of SAR (measured) = 14.2 W/kg

0 dB = 14.2 W/kg = 11.52 dBW/kg

Impedance Measurement Plot for Body TSL

<u>File V</u> iew	<u>C</u> hannel Sw <u>e</u> ep	Calibration <u>T</u> race <u>S</u> cale	Marker System Window	<u>H</u> elp	
		<u> </u>		1.900000 GHz 684.48 pH 1.900000 GHz	48.539 Ω 8.1713 Ω 83.953 mU 95.400 °
Ch1: 9	Ch 1 Avg = 20 Start 1.70000 GHz				Stop 2.10000 GHz
10.00 5.00 -5.00 -10.00 -15.00 -20.00 -25.00 -30.00 -35.00 -40.00 Ch1: S	Image: Arrow of the second s			1.900000 GHz	-21.519 dB
Status	CH 1: 511	C* 1-Poit	Avg=20 Delay		LCL

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D2300V2-1073_Aug18

CALIBRATION CERTIFICATE

Object	D2300V2 - SN:1	073	· ·
Calibration procedure(s) Calibration date:	QA CAL-05.v10 Calibration proce August 13, 2018	edure for dipole validation kits abo	ove 700 MHz BNV 09-06-2018
	· · · · ·		
This calibration certificate document The measurements and the uncert	nts the traceability to nati ainties with confidence p	ional standards, which realize the physical uni robability are given on the following pages an	its of measurements (SI). d are part of the certificate.
All calibrations have been conducte	ed in the closed laborator	ry facility: environment temperature (22 \pm 3)°C	and humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	!D #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	•
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Apr-19
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Dec-18 Oct-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: U\$37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	
	· · · · · · · · · · · · · · · · · · ·		17.1122
Approved by:	Katja Pokovic	Technical Manager	RUL
	1999 - San	· · · · · · · · · · · · · · · · · · ·	
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory.	Issued: August 13, 2018

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2300 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.5	1.67 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.2 ± 6 %	1.70 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	49.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.9	1.81 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	1.85 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	47.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.86 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.1 Ω - 5.2 jΩ
Return Loss	- 25.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.5 Ω - 4.1 jΩ
Return Loss	- 23.9 dB

General Antenna Parameters and Design

I	Electrical Delay (one direction)	1.171 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 16, 2015

DASY5 Validation Report for Head TSL

Date: 13.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1073

Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; σ = 1.7 S/m; ϵ_r = 38.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.08, 8.08, 8.08) @ 2300 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 115.9 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 24.1 W/kg SAR(1 g) = 12.5 W/kg; SAR(10 g) = 6.02 W/kg Maximum value of SAR (measured) = 20.2 W/kg

Impedance Measurement Plot for Head TSL

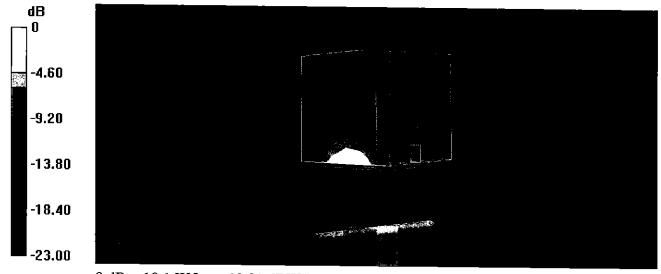
File	⊻iew	Channel	Sw <u>e</u> ep	Calibration	<u>T</u> race	Scale	M <u>a</u> rker	System	<u>W</u> indow	Help)			
		Ch 1 Avg=	20		(00000 G 13.259 00000 G	рF	-5. 52.1 -{	0.050 Ω .2189 Ω 094 mU 36.467 °
	Ch1: St	art 2.10000	GHz —	-				-					Stop 2	2.50000 GHz
-15 -20 -25 -30 -35 -40	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u>Ch 1 Avg</u> = art 2.10000								2.30				.664 dB
Sta	atus	CH 1:	511		C* 1 Pc	ut		Avg=20	Delay					LCL

DASY5 Validation Report for Body TSL

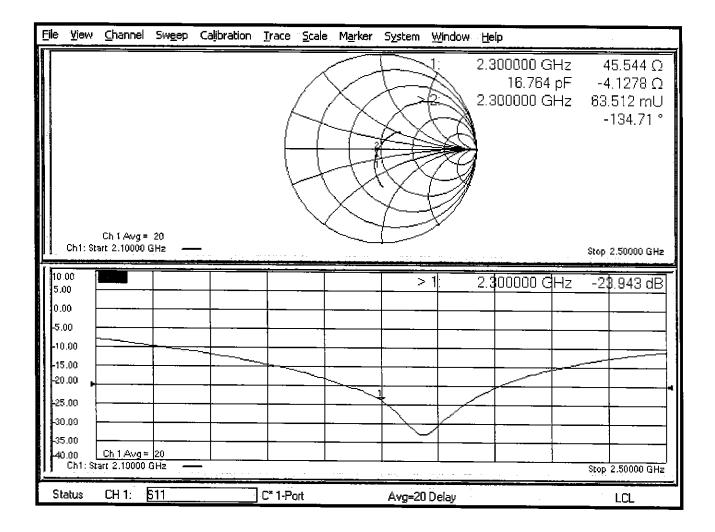
Date: 13.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1073


Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; σ = 1.85 S/m; ϵ_r = 52.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.08, 8.08, 8.08) @ 2300 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 107.5 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 22.9 W/kg SAR(1 g) = 12.1 W/kg; SAR(10 g) = 5.86 W/kg Maximum value of SAR (measured) = 19.1 W/kg

0 dB = 19.1 W/kg = 12.81 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

. .

S

C

S

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D2450V2-797_Sep17

CALIBRATION CERTIFICATE

Object	D2450V2 - SN:79	7	· · ·	
Callbration procedure(s)	QA CAL-05.v9 Calibration procee	dure for dipole validation kits abo	ve 700 MHz 5 C رواوع[20 ا	Ŋ
Calibration date:	September 11, 20)17	We 700 MHz 5CV 10/03/2011 Extended PMV J/20/20	18
This calibration certificate document The measurements and the uncert	nts the traceability to natic ainties with confidence pr	onal standards, which realize the physical un obability are given on the following pages an	Is of measurements (SI).	
All calibrations have been conducted	ed in the closed laboratory	y facility: environment temperature (22 \pm 3)°(C and humidity < 70%.	
Calibration Equipment used (M&TE	E critical for calibration)			
Primary Standards	1D #	Cal Date (Certificate No.)	Scheduled Calibration	
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18	
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18	
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18	
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18	
Type-N mismatch combination	SN: 5047,2 / 08327	07-Apr-17 (No. 217-02529)	Apr-18	
Reference Probe EX3DV4	SN: 7349	31-May-17 (No. EX3-7349_May17)	May-18	
DAE4	SN: 601	28-Mar-17 (No. DAE4-601_Mar17)	Mar-18	
Secondary Standards	ID#	Check Date (in house)	Scheduled Check	
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18	
Power sensor HP 8481A	SN; US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18	
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18	
RF generator R&S SMT-08	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18	
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17	•
	Name	Function	Signature	
Calibrated by:	Michael Weber	Laboratory Technician	Miller	
Approved by:	Katja Pokovic	Technical Manager	blitty	
		· · · · ·	issued: September 11, 2017	

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerlscher Kalibrierdienst S

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters;

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the ٠ nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature Permittivity		Conductivity	
Nominal Head TSL parameters	22.0 °C 39.2		1.80 mho/m	
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.86 mho/m ± 6 %	
Head TSL temperature change during test	< 0.5 °C			

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.8 W/kg ± 16.5 % (k=2)

à

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity	
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m	
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.9 ± 6 %	2.04 mho/m ± 6 %	
Body TSL temperature change during test	< 0.5 °C	18. 18. us ut		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.1 W/kg ± 17.0 % (k≃2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8 Ω + 7.4 jΩ		
Return Loss	~ 21.9 dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.7 Ω + 9.1 jΩ
Return Loss	- 20.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.152 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	January 24, 2006	

DASY5 Validation Report for Head TSL

Date: 11.09.2017

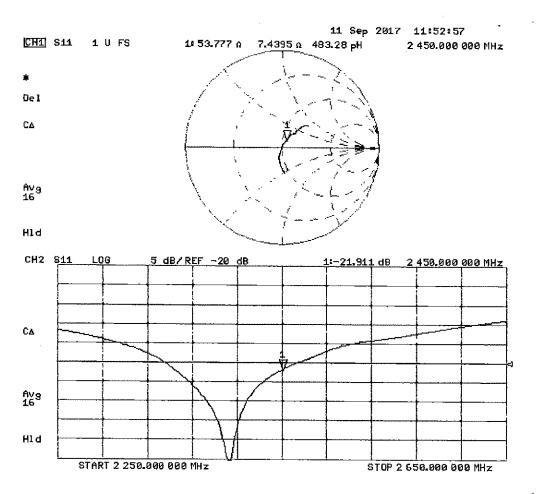
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.86 S/m; ϵ_r = 37.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 113.5 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.28 W/kg Maximum value of SAR (measured) = 21.6 W/kg

0 dB = 21.6 W/kg = 13.34 dBW/kg

Impedance Measurement Plot for Head TSL

i.

.

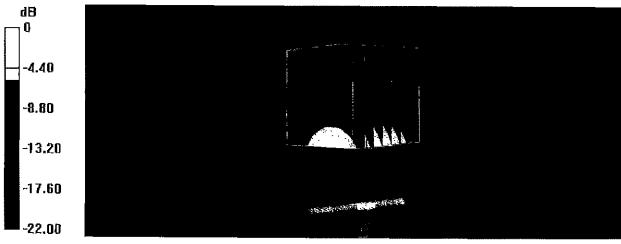
DASY5 Validation Report for Body TSL

Date: 11.09.2017

Test Laboratory: SPEAG, Zurich, Switzerland

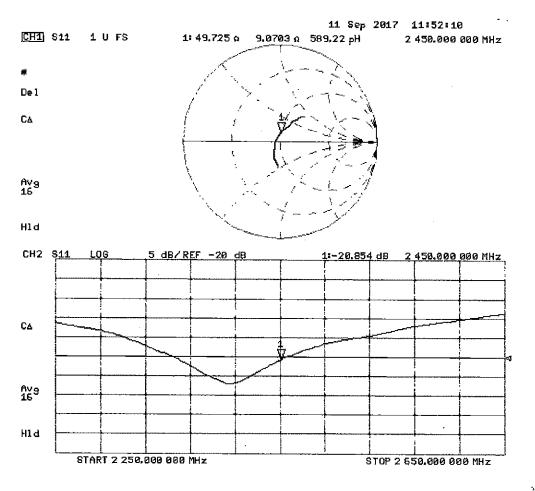
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 797

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.04 S/m; ϵ_r = 51.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.1, 8.1, 8.1); Calibrated: 31.05.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 105.4 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 25.6 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.14 W/kg

Maximum value of SAR (measured) = 20.3 W/kg

 $0 \, dB = 20.3 \, W/kg = 13.07 \, dBW/kg$

Impedance Measurement Plot for Body TSL

ţ,

. PCTEST ENGINEERING LABORATORY, INC.

18855 Adams Ct, Morgan Hill, CA 95037 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object

PCTEST

D2450V2 - SN: 797

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: September 11, 2018

Description:

SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight	7720	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
Agilent	8753ES	S-Parameter Vector Network Analyzer	8/30/2018	Annuai	8/30/2019	MY40003841
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	СВТ	N/A
SPEAG	DAK-3,5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070
SPEAG	EX3DV4	SAR Probe	7/20/2018	Annual	7/20/2019	7410
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2018	Annual	7/11/2019	1322
SPEAG	ES3DV3	SAR Probe	3/13/2018	Annual	3/13/2019	3319
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/7/2018	Annual	3/7/2019	1368
Anritsu	MA2411B	Puise Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA24118	Puise Power Sensor	3/2/2018	Annual	3/2/2019	1339018
Anritsu	ML2495A	Power Meter	10/22/2017	Annuəl	10/22/2018	1328004
Aglient	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	C8T	N/A	CBT	N/A
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	СВТ	N/A

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

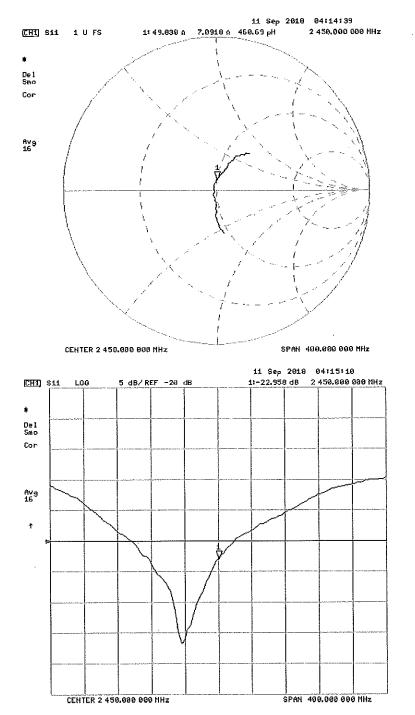
Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Team Lead Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	3KOK-

Object:	Date Issued:	Page 1 of 4
D2450V2 – SN: 797	09/11/2018	

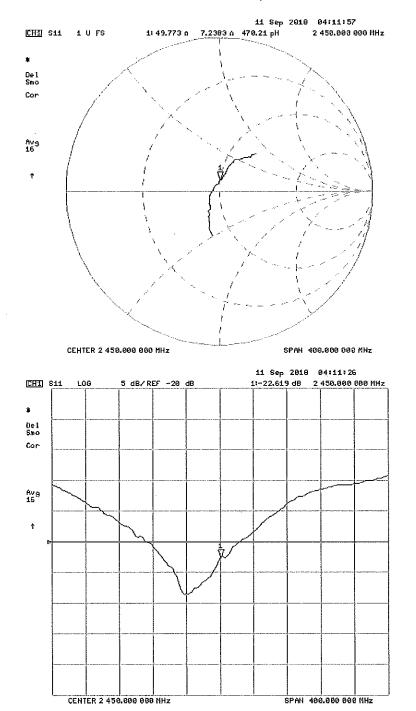
DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date		Certificate SAR Target Head (1g) W/kg @ 20.0 dBm			Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Head SAR		Certificate Impedance Head (Ohm) Real		Difference (Ohm) Real		Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
9/11/2017	9/11/2018	1.152	5.27	5.52	4.74%	2.48	2.54	2.42%	53.8	49.8	4	7.4	7.1	0.3	-21.9	-23	-4.80%	PASS


Calibration Date	Extension Date		Certificate SAR Target Body (1g) W/kg @ 20.0 dBm			Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real		Certificate Impedance Body (Ohm) Imaginary		Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
9/11/2017	9/11/2018	1.152	5.11	5.17	1.17%	2.42	2.37	-2.07%	49.7	49.8	0.1	9.1	7.2	1.9	-20.9	-22.6	-8.20%	PASS

Object:	Date Issued:	Dego 2 of 4
D2450V2 – SN: 797	09/11/2018	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Page 3 of 4
D2450V2 SN: 797	09/11/2018	

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D2450V2 – SN: 797	09/11/2018	

APPENDIX D: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ε' can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}^{'}\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho' \cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

	C	omposi	tion of th	ne Tissu	e Equiva	lent Mat	ter			
Frequency (MHz)	750	750	835	835	1750	1750	1900	1900	2450	2450
Tissue	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Ingredients (% by weight)										
Bactericide			0.1	0.1						
DGBE					47	31	44.92	29.44		26.7
HEC	See page	See page	1	1					Saa maga 4	
NaCl	2-3	2	1.45	0.94	0.4	0.2	0.18	0.39	See page 4	0.1
Sucrose			57	44.9]	
Water			40.45	53.06	52.6	68.8	54.9	70.17		73.2

Table D-I Composition of the Tissue Equivalent Matte

FCC ID: ZNF	X420AS8		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Test Dates:		DUT Type:			APPENDIX D:
04/21/19 - 05/	/02/19	Portable Handset			Page 1 of 4
© 2019 PCTEST Engir	neering Laboratory,	Inc.			REV 21.3 M 02/15/2019

2 Composition / Information on ingredients

The Item is composed of	f the following ingredients:
H ₂ O	Water, 35 – 58%
Sucrose	Sugar, white, refined, 40 – 60%
NaCl	Sodium Chloride, 0 – 6%
Hydroxyethyl-cellulose	Medium Viscosity (CAS# 9004-62-0), <0.3%
Preventol-D7	Preservative: aqueous preparation, (CAS# 55965-84-9), containing
	5-chloro-2-methyl-3(2H)-isothiazolone and 2-methyyl-3(2H)-isothiazolone
	0.1 – 0.7%
	Relevant for safety; Refer to the respective Safety Data Sheet*.

Figure D-1 Composition of 750 MHz Head and Body Tissue Equivalent Matter

Note: 750MHz liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

Zeughau Phone + info@sp	41 44	245 97	00, Fax	x +41 4	44 245												
Meas	urem	ent C	ertif	icate	/ Ma	terial	Test										
Item Na							Liquid (I		0V2)								
Produc Manufa			SL AA SPEA		5 AA (I	Batch:	170608-1)									
Ivianula	curer		SFEA	G		_											_
Measu																	
TSL die	electric	parar	neters	meas	ured u	using ca	alibrated D	DAK pro	obe.								
Setup Validat			ere wi	thin +	2.5%	towards	the targe	et value	s of Me	thanol.							
vanuar	1011103	uno w	010 111	4 HI 1 1	2.070	to mar de	r the tange		0 01 1110								
Target	Parar	neters															
Target	param	eters a	as def	ined ir	n the IB	EEE 15	28 and IE	C 6220	9 comp	liance	standa	ards.					
Test C			Faula		110000	oratur	(22 ± 3)°C	and h	umiditu	~ 70%							_
			Enviro	onmen	it temp	peratur	$(22 \pm 3)^{\circ}$	and n	unnany	< 10%							
Ambier																	
TSL Te	empera	ature	22°C														
TSL Te Test D	empera ate	ature															
TSL Te	empera ate	ature	22°C 20-Ju														
TSL Te Test D	empera ate tor	ature	22°C 20-Ju CL	n-17													
TSL Te Test D Operat	empera ate tor onal Ir ensity	ature nforma	22°C 20-Ju CL ation 1.212	n-17													
TSL Te Test D Operat	empera ate tor onal Ir ensity	ature nforma	22°C 20-Ju CL ation 1.212	n-17													
TSL Te Test D Operat	empera ate tor onal Ir ensity eat-ca	nforma	22°C 20-Ju CL ation 1.212	n-17 g/cm ³ kJ/(kg	g*K)	Diff. to 1	Farget [%]										
TSL Te Test D Operat	empera ate tor onal Ir ensity	nforma	22°C 20-Ju CL 1.212 3.006	n-17 g/cm ³ kJ/(kg	g*K)		Γarget [%] Δ-sigma		10.0 -								
TSL Te Test D Operat	empera ate for onal Ir ensity eat-ca Measu	ature nforma pacity red	22°C 20-Ju CL ation 1.212	n-17 g/cm ³ kJ/(kg	g*K)	Diff.to 1 Δ-eps 2.2	∆-sigma -12.2	lty %									
TSL Te Test D Operat Additie TSL D TSL H f (MHz) 600 625	empera ate tor onal Ir ensity eat-ca Measu e' 57.3 57.1	nforma pacity red e" 25.02 24.67	22°C 20-Ju CL 1.212 3.006 sigma 0.84 0.86	g/cm ³ kJ/(kg Target eps 56.1 56.0	sigma 0.95 0.95	Δ-eps 2.2 1.9	Δ-sigma -12.2 -10.1		10.0								
TSL Te Test D Operat Additie TSL D TSL H f [MHz] 600 625 650	onal Ir ensity eat-ca Measu 67.3 57.1 56.8	ature aforma pacity red e" 25.02 24.67 24.32	22°C 20-Ju CL 1.212 3.006 sigma 0.84 0.86 0.88	n-17 g/cm ³ kJ/(kg Eps 56.1 56.0 55.9	sigma 0.95 0.95 0.96	<u>Δ-eps</u> 2.2 1.9 1.6	Δ-sigma -12.2 -10.1 -8.0		10.0 7.5 5.0 2.5 0.0	•				•••••			
Addition TSL Doperate Addition TSL Do TSL Ho 600 625 650 675	onal Ir ensity eat-ca Measu e' 57.3 57.1 56.8 56.6	nforma pacity red 25.02 24.67 24.32 24.02	22°C 20-Ju CL 1.212 3.006 sigma 0.84 0.86 0.88 0.90	n-17 g/cm ² kJ/(kg eps 56.1 56.0 55.9 55.8	sigma 0.95 0.95 0.96 0.96	Δ-eps 2.2 1.9 1.6 1.3	Δ-sigma -12.2 -10.1 -8.0 -5.8	Permittivity	10.0 7.5 5.0 2.5 0.0 -2.5								
TSL Test D Operation Addition TSL Do TSL Ho 600 625 650 675 700	onal Ir onal Ir ensity eat-ca Measu e' 57.3 57.1 56.8 56.6 56.3	ature aforma pacity rred e" 25.02 24.67 24.32 24.02 23.71	22°C 20-Ju CL 1.212 3.006 sigma 0.84 0.86 0.88 0.90 0.92	n-17 g/cm ³ kJ/(kg 56.1 56.0 55.9 55.8 55.7	sigma 0.95 0.95 0.96 0.96 0.96	Δ-eps 2.2 1.9 1.6 1.3 1.1	Δ-sigma -12.2 -10.1 -8.0 -5.8 -3.8		10.0 7.5 5.0 2.5 0.0				-				
TSL Te Test D Operat TSL D TSL H 1 (MHz) 600 625 650 675 700 725	empera ate for ensity eat-ca Measu e' 57.3 57.1 56.8 56.6 56.3 56.1	ature pacity rred 25.02 24.67 24.32 24.02 23.71 23.48	22°C 20-Ju CL 1.212 3.006 sigma 0.84 0.86 0.88 0.90 0.92 0.95	n-17 g/cm ³ kJ/(kg 56.1 56.0 55.9 55.8 55.7 55.6	sigma 0.95 0.95 0.96 0.96 0.96	Δ-eps 2.2 1.9 1.6 1.3 1.1 0.8	Δ-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -1.5	Dev. Permittivity	10.0 7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 -10.0								
TSL Te Test D Operat TSL D TSL H (MHz) 600 625 650 675 700 725 750	empera ate lor onal Ir ensity eat-ca 57.3 57.1 56.8 56.6 56.3 56.1 55.9	ature pacity red 25.02 24.67 24.32 24.02 23.71 23.48 23.25	22°C 20-Ju CL 1.212 3.006 sigma 0.84 0.86 0.88 0.90 0.92 0.95 0.97	n-17 g/cm ³ kJ/(kg 56.1 56.0 55.9 55.8 55.7 55.6 55.5	sigma 0.95 0.95 0.96 0.96 0.96	Δ-eps 2.2 1.9 1.6 1.3 1.1	Δ-sigma -12.2 -10.1 -8.0 -5.8 -3.8	Dev. Permittivity	10.0 7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5	650	700	750		850	900	950	10
TSL Te Test D Operat TSL D TSL H 1 (MHz) 600 625 650 675 700 725	empera ate for ensity eat-ca Measu e' 57.3 57.1 56.8 56.6 56.3 56.1	ature pacity rred 25.02 24.67 24.32 24.02 23.71 23.48	22°C 20-Ju CL 1.212 3.006 sigma 0.84 0.86 0.88 0.90 0.92 0.95	n-17 g/cm ³ kJ/(kg 56.1 56.0 55.9 55.8 55.7 55.6	sigma 0.95 0.95 0.96 0.96 0.96 0.96 0.96	Δ-eps 2.2 1.9 1.6 1.3 1.1 0.8 0.6	Δ-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7	Dev. Permittivity	10.0 7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 -10.0	650	700		800 uency N		900	950	10
TSL Te Test D Operati TSL D TSL H 600 625 650 675 700 725 750 775	empera ate lor onal Ir ensity eat-ca 57.3 57.1 56.8 56.6 56.3 56.1 55.9 55.6	ature pacity red 25.02 24.67 24.32 24.02 23.71 23.48 23.25 23.04	22°C 20-Ju CL 1.212 3.006 0.84 0.86 0.88 0.90 0.92 0.95 0.97 0.99	n-17 g/cm ³ kJ/(kg 56.1 56.0 55.9 55.8 55.7 55.6 55.5 55.4	sigma 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96	Δ-eps 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3	∆-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -3.8 -1.5 0.7 2.9	Dev. Permittivity	10.0 7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 -10.0	650	700				900	950	10
TSL Te Test D Operati TSL D TSL H f [MHz] 600 625 650 675 700 725 775 800	empera ate tor ensity eat-ca for s7.3 57.1 56.8 56.6 56.6 55.6 55.6 55.6	ature	22°C 20-Ju CL 1.212 3.006 0.84 0.86 0.88 0.90 0.92 0.95 0.97 0.99 1.02	n-17 g/cm ² kJ/(kg eps 56.1 56.0 55.9 55.8 55.7 55.6 55.5 55.4 55.4 55.3	sigma 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.98 0.98	Δ-eps 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3 0.1 -0.1 -0.3	▲-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7 2.9 5.0 6.3 6.9	Dev. Permittivity	10.0 7.5 2.5 0.0 -2.5 -5.0 -7.5 -10.0 600	650	700				900	950	10
TSL Te Test D Operat Additi TSL D TSL H 1 (MHz) 600 625 650 675 700 625 650 675 700 725 750 775 800 825 838 850	mpera ate lor onal Ir ensity eat-ca for 57.3 57.1 56.8 56.6 56.3 56.6 56.3 56.6 55.9 55.6 55.4 55.4 55.1 55.1 55.1	Ature Aforma pacity red e" 25.02 24.62 24.62 24.32 24.02 24.32 24.02 23.71 23.48 23.04 22.85 22.66 22.56 22.56 22.57	22°C 20-Ju CL 1.212 3.006 sigma 0.84 0.86 0.88 0.90 0.92 0.95 0.97 0.99 1.02 1.04 1.05 1.06	n-17 g/cm ³ kJ/(kg eps 56.1 56.9 55.8 55.4 55.4 55.4 55.2 55.2 55.2 55.2 55.2	sigma 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.98 0.98 0.99	Δ-eps 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3 0.1 -0.1 -0.3 -0.4	Δ-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7 2.9 5.0 6.3 6.9 7.5	Dev. Permittivity	10.0 7.5 2.5 0.0 -2.5 -5.0 -7.5 -10.0 600	650	700				900	950	10
TSL Te Test D Operat Additie TSL D TSL H 600 625 650 675 700 725 700 725 700 725 800 825 838 8350 875	Measure ooral Ir ensity eat-ca Measure e' 57.3 57.4 56.8 56.3 56.1 55.9 55.4 55.1 54.9 54.7	Ature Aforma pacity red e" 24.67 24.32 24.42 24.42 24.42 23.71 23.48 23.25 23.04 22.85 22.56 22.56 22.57 22.34	22°C 20-Ju 20-Ju CL 3.006 sigma 0.84 0.86 0.88 0.90 0.92 0.95 0.97 0.99 1.02 1.04 1.05 1.06 1.09	n-17 g/cm ³ kJ/(kg 56.9 55.9 55.8 55.7 55.6 55.7 55.6 55.5 55.2 55.2 55.2 55.2 55.2 55.2	sigma 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.98 0.98 0.99 1.02	Δ-eps 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3 0.1 -0.1 -0.3 -0.4 -0.7	∆-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7 2.9 5.0 6.3 6.9 7.5 6.7	% Dev. Permittvity	10.0 7.5 5.0 2.5 -2.5 -5.0 -7.5 -10.0 600	650	700				900	950	10
TSL Te Test D Operat Additio TSL D TSL H 600 625 650 675 700 725 750 775 800 825 838 855 838 855 875 900	emperate lor onal Ir ensity eat-ca scale 57.3 57.4 57.3 57.3 57.3 57.3 57.3 57.3 57.3 57.3 57.3 57.3 57.3 57.3 57.3 57.3 55.6 55.7 55.6 55.7 55.8 55.9 54.7 54.	Ature Aforma pacity red e" 25.02 24.67 24.32 23.71 23.48 23.48 23.48 23.48 23.48 23.48 22.82 22.55 22.54 22.21	22°C 20-Ju 20-Ju CL 1.212 3.0006 55gma 0.84 0.86 0.88 0.90 0.92 0.95 0.99 1.02 1.04 1.05 1.06 1.09 1.11	n-17 g/cm ³ kJ/(kg 66.0 55.9 55.8 55.7 55.6 55.4 55.3 55.2 55.2 55.2 55.2 55.2 55.2 55.2	sigma 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.98 0.98 0.99 1.02 1.05	Δ-eps 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3 0.1 -0.1 -0.3 -0.4 -0.7 -0.9	▲-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7 2.9 5.0 6.3 6.9 7.5 6.7 5.9	% Dev. Permittvity	10.0 7.5 5.0 2.5 -2.5 -5.0 -7.5 -10.0 600	650	700				900	950	10
TSL Te Test D Operat TSL D TSL H f (MHz) 600 625 650 675 700 725 750 775 800 825 838 850 835 838	Measure e ⁺ 57.3 56.8 56.6 56.3 56.4 55.9 55.4 55.5 55.4 54.7 54.7 54.5 54.5 54.5 54.5	Ature Aforma Dacity red e" 25.02 24.67 24.32 24.67 24.32 23.41 23.48 23.25 23.04 22.82 22.65 22.56 22.47 22.34 22.21 22.08	22°C 20-Ju CL 3.006 9.084 0.86 0.88 0.90 0.92 0.95 0.99 1.02 1.04 1.05 1.06 1.09 1.02	n-17 g/cm ³ kJ/(kg eps 56.1 55.9 55.8 55.7 55.8 55.4 55.3 55.2 55.2 55.2 55.2 55.2 55.2 55.2	sigma 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.98 0.98 0.98 0.99 1.02 1.05 1.06	∆-eps 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3 0.1 -0.1 -0.3 -0.4 -0.7 -0.9 -1.3	▲-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7 2.9 6.3 6.9 7.5 6.7 5.9 6.9	% Dev. Permittvity	10.0 7.5 5.0 2.5 -2.5 -5.0 -7.5 -10.0 600	650	700				900	950	10
TSL Te Test D Operat Additio TSL D TSL H 600 625 650 675 700 725 750 775 800 825 838 855 838 855 875 900	emperate lor onal Ir ensity eat-ca scale 57.3 57.4 57.3 57.3 57.3 57.3 57.3 57.3 57.3 57.3 57.3 57.3 57.3 57.3 57.3 57.3 55.6 55.7 55.6 55.7 55.8 55.9 54.7 54.	Aformation and a second	22°C 20-Ju 20-Ju CL 1.212 3.0006 55gma 0.84 0.86 0.88 0.90 0.92 0.95 0.99 1.02 1.04 1.05 1.06 1.09 1.11	n-17 g/cm ³ kJ/(kg 56.1 56.0 55.9 55.8 55.7 55.5 55.4 55.2 55.2 55.2 55.2 55.2 55.2	sigma 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.98 0.98 0.99 1.02 1.05	Δ-eps 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3 0.1 -0.1 -0.3 -0.4 -0.7 -0.9	▲-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7 2.9 5.0 6.3 6.9 7.5 6.7 5.9	Dev. Permittivity	10.0 7.5 5.0 2.5 -2.5 -5.0 -7.5 -10.0 600	650	700				900	950	10

Figure D-2 750MHz Body Tissue Equivalent Matter

FCC ID: ZNFX420AS8		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
Test Dates:	DUT Type:			APPENDIX D:
04/21/19 - 05/02/19	Portable Handset			Page 2 of 4
© 2019 PCTEST Engineering Laboratory,	Inc.			REV 21.3 M 02/15/2019

Schmid & Partner Engineering AG	S	p	е	а	g	
Zeughausstrasse 43, 8004 Zurich, Switzerland						

Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name	Head Tissue Simulating Liquid (HSL750V2)	
Product No.	SL AAH 075 AA (Batch: 170612-4)	
Manufacturer	SPEAG	

Measurement Method TSL dielectric parameters measured using calibrated DAK probe.

Setup Validation Validation results were within $\pm 2.5\%$ towards the target values of Methanol.

Target Parameters Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition

ſ	Ambient	Environment temperatur (22 ± 3)°C and humidity < 70%.
I	TSL Temperature	
l	Test Date	20-Jun-17
I	Operator	CL

Additional Information

TSL Density 1.284 g/cm³ TSL Heat-capacity 2.701 kJ/(kg*K)

	arget [%]	Diff.to Ta	t	Targe		red	Measu	
10.0	∆-sigma	∆-eps	sigma	eps	sigma	e"	e'	f [MHz]
% 7. Aj 5.	-13.1	6.7	0.88	42.7	0.77	22.97	45.6	600
initi 2.	-10.6	6.2	0.88	42.6	0.79	22.73	45.2	625
Permittivity	-8.2	5.6	0.89	42.5	0.81	22.49	44.9	650
å -2.	-5.8	5.1	0.89	42.3	0.84	22.27	44.5	675
-70 -5.	-3.5	4.6	0.89	42.2	0.86	22.05	44.2	700
-/.	-1.0	4.2	0.89	42.1	0.88	21.88	43.8	725
-10.0	1.4	3.8	0.89	41.9	0.91	21.72	43.5	750
	3.7	3.4	0.90	41.8	0.93	21.55	43.2	775
	6.0	2.9	0.90	41.7	0.95	21.38	42.9	800
	7.5	2.4	0.91	41.6	0.97	21.24	42.6	825
	8.2	2.2	0.91	41.5	0.99	21.17	42.5	838
10.	8.9	2.0	0.92	41.5	1.00	21.09	42.3	850
8 7.	8.3	1.2	0.94	41.5	1.02	20.98	42.0	875
AT 5.	7.7	0.5	0.97	41.5	1.05	20.87	41.7	900
ding 2.	8.7	0.0	0.98	41.5	1.07	20.76	41.5	925
Conductivity	9.7	-0.6	0.99	41.4	1.09	20.64	41.2	950
> -5.	10.9	-1.1	1.00	41.4	1.11	20.55	40.9	975
-5. 0 -7.	12.1	-1.7	1.01	41.3	1.14	20.46	40.6	1000

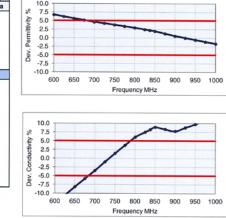


Figure D-3 750MHz Head Tissue Equivalent Matter

	FCC ID: ZNFX420AS8		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	04/21/19 - 05/02/19	Portable Handset			Page 3 of 4
© 201	9 PCTEST Engineering Laboratory, I	nc.			REV 21.3 M 02/15/2019

3 Composition / Info	rmation on in	ngredients
The Item is composed of the	ne following ingre	dients:
Water	50 - 73 %	
Non-ionic detergents	25 - 50 %	polyoxyethylenesorbitan monolaurate
NaCl	0 - 2%	
Preservative	0.05 - 0.1%	6 Preventol-D7
Safety relevant ingredients	:	
CAS-No. 55965-84-9	< 0.1 %	aqueous preparation, containing 5-chloro-2-methyl-3(2H)- isothiazolone and 2-methyyl-3(2H)-isothiazolone
CAS-No. 9005-64-5 According to international g marked by symbols.	<50 % guidelines, the pr	polyoxyethylenesorbitan monolaurate oduct is not a dangerous mixture and therefore not required to be

Figure D-4 Composition of 2.4 GHz Head Tissue Equivalent Matter

Note: 2.4 GHz head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

Schmid	i & Part	tner En	gineer	ing AG						s	р		е	а	1	g	1	
Phone -	+41 44 peag.co	245 9	700, Fa	ax +41	44 245	59779												
Meas	urem	nent (Certi	ficate	e / Ma	aterial	Test											
ltern N Produc Manufa		r		AH 19			Liquid (170619-1		900-:	3800	V3)							
	electric			s mea:	sured	using ca	alibrated [OAK pro	obe.			_			-			
	Validation res		ere w	ithin ±	2.5%	towards	s the targe	t value	s of I	Metha	anol.	_						
	t Paran			fined in	n the l	FFF 15	28 and IE	C 6220	19 co	molia	nce st	andi	ande					
	onditi						(22 ± 3)°C											
	empera ate	ature	22°C 20-Ju CL			Portular	(88.8.0) 6		unnu		0.10.							
	onal Ir	nform	ation	a/cm	3													
	eat-ca			kJ/(k	g*K)													
	Measu			Targe			arget [%]		10.0									
[MHz] 1900	e' 41.8	e" 12.2	sigma 1.3	eps 40.0	sigma 1.4	∆-eps 4.5	∆-sigma -8.2		7.5									
1950	41.6	12.3	1.3	40.0	1.4	4.0	-4.6		5.0	_				14.22				
2000	41.4	12.4	1.4	40.0	1.4	3.6	-1.3	Permittivity	2.5	~	*****		-					
2050 2100	41.2	12.6	1.4	39.9 39.8	1.4	3.3	-0.9		0.0				-	-				
2150	40.9	12.8	1.5	39.8	1.5	2.9	-0.8	Dev	-2.5						-	-	-	
2200	40.7	12.9	1.6	39.6	1.6	2.7	0.2	1	-7.5	-								
2250 2300	40.6	13.0	1.6	39.6 39.5	1.6	2.5	0.5		-10.0		100 230							
2350	40.2	13.3	1.7	39.5	1.7	2.1	1.5			900 2	100 230				3100 .	3300 2	3000 2	\$700.39
2400	40.0	13.4	1.8	39.3	1.8	1.8	2.1					F	requen	cy MHz				
2450	39.8	13.5	1.8	39.2	1.8	1.6	2.6											
2500 2550	39.7 39.5	13.7 13.7	1.9	39.1 39.1	1.9	1.3	2.6											-
2600	39.3	13.9	2.0	39.0	2.0	0.8	2.5	1	10.0									
2650 2700	39.1 39.0	14.0	2.1	38.9	2.0	0.5	2.6	1 12	5.0									
2700 2750	39.0	14.2	2.1	38.9	2.1	-0.2	2.7	ctivit	2.5			-	*****	*****		****	****	
2800	38.6	14.4	2.2	38.8	2.2	-0.4	2.5	Conductivity	0.0	r	-							
2850 2900	38.4 38.2	14.5	2.3	38.7 38.6	2.2	-0.8	2.6	Dev. Ct	-2.5	1								
2900 2950	38.2	14.6	2.3	38.6	2.3	-1.0	2.6	8	-7.5	1								
3000	37.9	14.8	2.5	38.5	2.4	-1.7	2.6		-10.0	000.0	00.000	0.05	0.0304	0000			1000	
3050 3100	37.7	14.8	2.5	38.4	2.5	-2.0	2.8		1	900.5	100 2300	0.520	N 2700	2900 3	100	3300 3	1500 3	100 39
3100 3150	37.5 37.3	14.9 15.0	2.6 2.6	38.4	2.5 2.6	-2.3	2.8						Freque	ncy MH	iz			
3200	37.1	15.1	2.7	38.3	2.6	-3.0	2.9											
3250 3300	37.0	15.1	2.7	38.2	2.7	-3.3	3.0											
3300 3350	36.8	15.2	2.8	38.2	2.7	-3.6	3.1											
3400	36.4	15.3	2.9	38.0	2.8	-4.2	3.3											
3450	36.3	15.4	3.0	38.0	2.9	-4.5	3.4											
3500	36.1	15.5	3.0	37.9	2.9	-4.8	3.5											
	36.0	15.5	3.1	37.9	3.0	-5.0	3.6											
3600							3.7	1										
	35.7	15.7	3.2	37.8	3.1	-5.6	3.7											
3600 3650 3700	35.7 35.5	15.7	3.2	37.7	3.1	-5.8	3.9											
3600 3650	35.7																	

Figure D-5 2.4 GHz Head Tissue Equivalent Matter

	FCC ID: ZNFX420AS8		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	04/21/19 - 05/02/19	Portable Handset			Page 4 of 4
© 201	9 PCTEST Engineering Laboratory, I	Inc.			REV 21.3 M 02/15/2019

APPENDIX E: SAR SYSTEM VALIDATION

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

					IN Oysic			-		ON	MOD	VALIDATI	ON
SAR System	Freq. (MHz)	Date	Probe SN	Probe C	Cal Point	Cond. (σ)	Perm. (εr)	SENSITI VITY	PROBE LINEARI TY	PROBE ISOTRO PY	MOD. TYPE	DUTY FACTOR	PAR
Н	750	9/5/2018	7409	750	Head	0.887	41.851	PASS	PASS	PASS	N/A	N/A	N/A
D	835	4/12/2019	3914	835	Head	0.935	42.549	PASS	PASS	PASS	GMSK	PASS	N/A
Н	1750	7/16/2018	7409	1750	Head	1.331	41.186	PASS	PASS	PASS	N/A	N/A	N/A
Н	1900	7/16/2018	7409	1900	Head	1.425	40.935	PASS	PASS	PASS	GMSK	PASS	N/A
E	2300	2/6/2019	3589	2300	Head	1.724	40.93	PASS	PASS	PASS	N/A	N/A	N/A
L	2450	4/29/2019	7308	2450	Head	1.82	37.749	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
L	750	11/6/2018	7308	750	Body	0.962	53.923	PASS	PASS	PASS	N/A	N/A	N/A
J	835	3/10/2019	7488	835	Body	0.988	53.868	PASS	PASS	PASS	GMSK	PASS	N/A
J	1750	2/7/2019	7488	1750	Body	1.509	51.017	PASS	PASS	PASS	N/A	N/A	N/A
D	1750	4/29/2019	3914	1750	Body	1.529	51.886	PASS	PASS	PASS	N/A	N/A	N/A
I	1900	4/29/2019	7357	1900	Body	1.584	51.771	PASS	PASS	PASS	GMSK	PASS	N/A
L	2300	11/6/2018	7308	2300	Body	1.894	51.522	PASS	PASS	PASS	N/A	N/A	N/A
K	2450	3/6/2019	7417	2450	Body	2.039	50.67	PASS	PASS	PASS	OFDM/TDD	PASS	PASS

 Table E-1

 SAR System Validation Summary – 1g

Table E-2 SAR System Validation Summary – 10g

				• • • • •	0,01011	Tanaa		<u> </u>	109					
								CW VALIDATION			MO	MOD. VALIDATION		
SAR System	Freq. (MHz)	Date	Probe SN	Probe C	al Point	Cond. (σ)	Perm. (εr)	SENSITI VITY	PROBE LINEARI TY	PROBE ISOTRO PY	MOD. TYPE	DUTY FACTOR	PAR	
J	1750	2/7/2019	7488	1750	Body	1.509	51.017	PASS	PASS	PASS	N/A	N/A	N/A	
D	1750	4/29/2019	3914	1750	Body	1.529	51.886	PASS	PASS	PASS	N/A	N/A	N/A	
I	1900	4/29/2019	7357	1900	Body	1.584	51.771	PASS	PASS	PASS	GMSK	PASS	N/A	
L	2300	11/6/2018	7308	2300	Body	1.894	51.522	PASS	PASS	PASS	N/A	N/A	N/A	

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.

FCC ID: ZNFX420AS8		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
Test Dates:	DUT Type:			APPENDIX E:
04/21/19 - 05/02/19	Portable Handset			Page 1 of 1
2019 PCTEST Engineering Laborat	ory, Inc.			REV 21.3 M 02/15/2019

APPENDIX G POWER REDUCTION VERIFICATION

Per the May 2017 TCBC Workshop Notes, demonstration of proper functioning of the power reduction mechanisms is required to support the corresponding SAR configurations. The verification process was divided into two parts: (1) evaluation of output power levels for individual or multiple triggering mechanisms and (2) evaluation of the triggering distances for proximity-based sensors.

G.1 Power Verification Procedure

The power verification was performed according to the following procedure:

- 1. A base station simulator was used to establish a conducted RF connection and the output power was monitored. The power measurements were confirmed to be within expected tolerances for all states before and after a power reduction mechanism was triggered.
- 2. Step 1 was repeated for all relevant modes and frequency bands for the mechanism being investigated.
- 3. Steps 1 and 2 were repeated for all individual power reduction mechanisms and combinations thereof. For the combination cases, one mechanism was switched to a 'triggered' state at a time; powers were confirmed to be within tolerances after each additional mechanism was activated.

G.2 Distance Verification Procedure

The distance verification procedure was performed according to the following procedure:

- 1. A base station simulator was used to establish an RF connection and to monitor the power levels. The device being tested was placed below the relevant section of the phantom with the relevant side or edge of the device facing toward the phantom.
- 2. The device was moved toward and away from the phantom to determine the distance at which the mechanism triggers and the output power is reduced, per KDB Publication 616217 D04v01r02 and FCC Guidance. Each applicable test position was evaluated. The distances were confirmed to be the same or larger (more conservative) than the minimum distances provided by the manufacturer.
- 3. Steps 1 and 2 were repeated for low, mid, and high bands, as appropriate (see note below Table G-2 for more details).
- 4. Steps 1 through 3 were repeated for all distance-based power reduction mechanisms.

FCC ID: ZNFX420AS8		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
04/21/19 - 05/02/19	Portable Handset			Page 1 of 2
© 2019 PCTEST Engineering Laboratory, Inc.				REV 20.05 M

Main Antenna Verification Summary G.3

Mechanism(s)		Conducted F	Power (dBm)									
1st	Mode/Band	Un-triggered (Max)	Mechanism #1 (Reduced)									
Grip	UMTS 1750	23.64	22.09									
Grip	UMTS 1900	23.75	22.15									
Grip	LTE FDD Band 4	23.58	22.18									
Grip	LTE FDD Band 66	23.44	21.91									
Grip	LTE FDD Band 2	23.38	21.95									
Grip	LTE FDD Band 30	22.88	21.47									

Table G-1 Power Measurement Verification for Main Antenna

Table G-2 **Distance Measurement Verification for Main Antenna**

Mechanism(s)	Test Condition	Band	Distance Meas	urements (mm)	Minimum Distance per
wiechanism(s)	Test Condition	вапи	Moving Toward	Moving Away	Manufacturer (mm)
Grip	Phablet - Back Side	Mid	4	6	4
Grip	Phablet - Back Side	High	4	6	4
Grip	Phablet - Front Side	Mid	4	6	4
Grip	Phablet - Front Side	High	4	6	4
Grip	Phablet - Bottom Edge	Mid	5	7	5
Grip	Phablet - Bottom Edge	High	5	7	5

*Note: Mid band refers to: UMTS 1750/1900, LTE Band 2/4/66. High band refers to: LTE Band 30.

Reviewed by: 🕒 LG FCC ID: ZNFX420AS8 SAR EVALUATION REPORT Quality Manager Test Dates: DUT Type: APPENDIX G: Page 2 of 2 Portable Handset 04/21/19 - 05/02/19 © 2019 PCTEST Engineering Laboratory, Inc. REV 20.05 M

APPENDIX H: DOWNLINK LTE CA RF CONDUCTED POWERS

1.1 LTE Downlink Only Carrier Aggregation Test Reduction Methodology

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number of component carriers (CCs) supported by the product implementation. Per April 2018 TCBC Workshop Notes, the following test reduction methodology was applied to determine the combinations required for conducted power measurements.

LTE DLCA Test Reduction Methodology:

C

- The supported combinations were arranged by the number of component carriers in columns.
- Any limitations on the PCC or SCC for each combination were identified alongside the combination (e.g. CA_2A-2A-4A-12A, but B12 can only be configured as a SCC).
- Power measurements were performed for "supersets" (LTE CA combinations with multiple components • carriers) and any "subsets" (LTE CA combinations with fewer component carriers) that were not completely covered by the supersets.
- Only subsets that have the exact same components as a superset were excluded for measurement.
- When there were certain restrictions on component carriers that existed in the superset that were not applied for the subset, the subset configuration was additionally evaluated.
- Both inter-band and intra-band downlink carrier aggregation scenarios were considered.

Table 1 – Example of Exclusion Table for SISO Configurations

FCC ID: ZNFX420AS8		SAR EVALUATION REPORT	🕕 LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX H:
04/21/19 - 05/02/19	Portable Handset			Page 1 of 4
2019 PCTEST Engineering Laboratory, Inc.				REV 21.3 M
				02/15/2019

1.2 LTE Downlink Only Carrier Aggregation Test Selection and Setup

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number component carriers (CCs) supported by the product implementation. For those configurations required by April 2018 TCBC Workshop Notes, conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band.

Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for carrier aggregation configurations when the maximum average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive. All bands required for SAR testing per FCC KDB procedures were considered. Based on the measured maximum powers below, no additional SAR tests were required for DLCA SAR configurations.

General PCC and SCC configuration selection procedure

- PCC uplink channel, channel bandwidth, modulation and RB configurations were selected based on section C)3)b)ii) of KDB 941225 D05 V01r02. The downlink PCC channel was paired with the selected PCC uplink channel according to normal configurations without carrier aggregation.
- To maximize aggregated bandwidth, highest channel bandwidth available for that CA combination was selected for SCC. For inter-band CA, the SCC downlink channels were selected near the middle of their transmission bands. For contiguous intra-band CA, the downlink channel spacing between the component carriers was set to multiple of 300 kHz less than the nominal channel spacing defined in section 5.4.1A of 3GPP TS 36.521. For non-contiguous intra-band CA, the downlink channel spacing between the component carriers was set to be larger than the nominal channel spacing and provided maximum separation between the component carriers.
- All selected PCC and SCC(s) remained fully within the uplink/downlink transmission band of the respective component carrier.

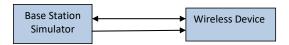


Figure 1 DL CA Power Measurement Setup

	FCC ID: ZNFX420AS8		SAR EVALUATION REPORT	🕑 LG	Reviewed by: Quality Manager
	Test Dates: 04/21/19 - 05/02/19	DUT Type: Portable Handset			APPENDIX H: Page 2 of 4
© 201	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M 02/15/2019

1.3 Downlink Carrier Aggregation RF Conducted Powers

1.3.1 LTE Band 12 as PCC

	Maximum Output Powers														
					SC	Power									
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Ch.	PCC (UL) Freq. [MHz]	Mod.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_2A-12A	LTE B12	10	23095	707.5	QPSK	1	49	5095	737.5	LTE B2	20	900	1960	25.18	25.13
CA_2A-12A (1)	LTE B12	10	23095	707.5	QPSK	1	49	5095	737.5	LTE B2	20	900	1960	25.18	25.13
CA_12A-30A	LTE B12	10	23095	707.5	QPSK	1	49	5095	737.5	LTE B30	10	9820	2355	24.64	25.13
CA_12A-66A (1)	LTE B12	10	23095	707.5	QPSK	1	49	5095	737.5	LTE B66	20	66786	2145	25.17	25.13
CA_12A-66A (2)	LTE B12	10	23095	707.5	QPSK	1	49	5095	737.5	LTE B66	20	66786	2145	25.17	25.13

Table 1

1.3.2 LTE Band 14 as PCC

Table 2Maximum Output Powers

					PCC		so		Power						
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Ch.	PCC (UL) Freq. [MHz]	Mod.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_2A-14A	LTE B14	10	23330	793	QPSK	1	25	5330	763	LTE B2	20	900	1960	22.53	23.20
CA_14A-66A	LTE B14	10	23330	793	QPSK	1	25	5330	763	LTE B66	20	66786	2145	22.50	23.20
CA_14A-30A	LTE B14	10	23330	793	QPSK	1	25	5330	763	LTE B30	10	9820	2355	23.20	23.20

1.3.3 LTE Band 5 as PCC

Table 3 Maximum Output Powers

					PCC						SC	CC 1		Por	wer
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Ch.	PCC (UL) Freq. [MHz]	Mod.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_2A-5A	LTE B5	10	20525	836.5	QPSK	1	25	2525	881.5	LTE B2	20	900	1960	25.12	25.19
CA_5A-30A	LTE B5	10	20525	836.5	QPSK	1	25	2525	881.5	LTE B30	10	9820	2355	25.20	25.19

1.3.4 LTE Band 66 as PCC

Table 4Maximum Output Powers

					PCC				SC		Power				
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Ch.	PCC (UL) Freq. [MHz]	Mod.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_2A-66A	LTE B66	15	132322	1745	QPSK	1	36	66786	2145	LTE B2	20	900	1960	24.40	24.40
CA_12A-66A (1)	LTE B66	15	132322	1745	QPSK	1	36	66786	2145	LTE B12	10	5095	737.5	24.38	24.40
CA_12A-66A (2)	LTE B66	15	132322	1745	QPSK	1	36	66786	2145	LTE B12	10	5095	737.5	24.38	24.40
CA_14A-66A	LTE B66	15	132322	1745	QPSK	1	36	66786	2145	LTE B14	10	5330	763	24.37	24.40
CA_29A-66A	LTE B66	15	132322	1745	QPSK	1	36	66786	2145	LTE B29	10	9715	722.5	24.37	24.40
CA_66A-66A	LTE B66	15	132322	1745	QPSK	1	36	66786	2145	LTE B66	20	67236	2190	24.39	24.40
CA_66B	LTE B66	15	132322	1745	QPSK	1	36	66786	2145	LTE B66	5	66693	2135.7	24.38	24.40
CA_66C	LTE B66	15	132322	1745	QPSK	1	36	66786	2145	LTE B66	20	66615	2127.9	24.38	24.40

	FCC ID: ZNFX420AS8		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX H:
	04/21/19 - 05/02/19	Portable Handset			Page 3 of 4
© 201	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M 02/15/2019

1.3.5 LTE Band 2 as PCC

Maximum Output Powers															
					PCC			SC	CC 1		Power				
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Ch.	PCC (UL) Freq. [MHz]	Mod.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_2A-2A	LTE B2	5	18625	1852.5	QPSK	1	12	625	1932.5	LTE B2	20	1100	1980	24.37	24.38
CA_2A-12A	LTE B2	5	18625	1852.5	QPSK	1	12	625	1932.5	LTE B12	10	5095	737.5	24.38	24.38
CA_2A-12A (1)	LTE B2	5	18625	1852.5	QPSK	1	12	625	1932.5	LTE B12	10	5095	737.5	24.38	24.38
CA_2A-29A	LTE B2	5	18625	1852.5	QPSK	1	12	625	1932.5	LTE B29	10	9715	722.5	24.39	24.38
CA_2A-5A	LTE B2	5	18625	1852.5	QPSK	1	12	625	1932.5	LTE B5	10	2525	881.5	24.39	24.38
CA_2A-66A	LTE B2	5	18625	1852.5	QPSK	1	12	625	1932.5	LTE B66	20	66786	2145	24.38	24.38
CA_2A-14A	LTE B2	5	18625	1852.5	QPSK	1	12	625	1932.5	LTE B14	10	5330	763	24.36	24.38
CA_2A-29A (2)	LTE B2	5	18625	1852.5	QPSK	1	12	625	1932.5	LTE B29	10	9715	722.5	24.39	24.38

Table 5 Maximum Output Powers

1.3.6 LTE Band 30 as PCC

Table 6 Maximum Output Powers

		PCC										SCC 1				
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Ch.	PCC (UL) Freq. [MHz]	Mod.	PCC UL# RB	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)	
CA_5A-30A	LTE B30	10	27710	2310	QPSK	1	25	9820	2355	LTE B5	10	2525	881.5	23.69	23.70	
CA_12A-30A	LTE B30	10	27710	2310	QPSK	1	25	9820	2355	LTE B12	10	5095	737.5	23.70	23.70	
CA_14A-30A	LTE B30	10	27710	2310	QPSK	1	25	9820	2355	LTE B14	10	5075	763	23.70	23.70	
CA_29A-30A	LTE B30	10	27710	2310	QPSK	1	25	9820	2355	LTE B29	10	9715	722.5	23.70	23.70	

	FCC ID: ZNFX420AS8		SAR EVALUATION REPORT	🕑 LG	Reviewed by: Quality Manager
	Test Dates: 04/21/19 - 05/02/19	DUT Type: Portable Handset			APPENDIX H: Page 4 of 4
© 201	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M 02/15/2019