

FCC RF Test Report

APPLICANT	:	LG Electronics Mobile Comm USA
EQUIPMENT	:	Smart phone
BRAND NAME	:	LG
MODEL NAME	:	LG-X240H
FCC ID	:	ZNFX240H
STANDARD	:	FCC Part 15 Subpart C §15.247
CLASSIFICATION	:	(DTS) Digital Transmission System

The product was received on Oct. 18, 2016 and testing was completed on Nov. 20, 2016. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC. No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : ZNFX240H

Page Number : 1 of 34 Report Issued Date : Feb. 17, 2017 Report Version : Rev. 01 Report Template No.: BU5-FR15CBT4.0 Version 1.3

TABLE OF CONTENTS

SU	MMAR	Y OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1 1.2 1.3 1.4 1.5 1.6 1.7	Applicant Manufacturer Product Feature of Equipment Under Test Product Specification of Equipment Under Test Modification of EUT Testing Location Applicable Standards	5 5 5 6
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
3	2.1 2.2 2.3 2.4 2.5 2.6 TEST	Descriptions of Test Mode Test Mode Connection Diagram of Test System Support Unit used in test configuration and system EUT Operation Test Setup Measurement Results Explanation Example RESULT	7 8 9 9
	3.1	6dB and 99% Bandwidth Measurement1	0
	3.2	Peak Output Power Measurement1	
	3.3	Power Spectral Density Measurement	
	3.4 3.5	Conducted Band Edges and Spurious Emission Measurement	
	3.6	AC Conducted Emission Measurement	
	3.7	Antenna Requirements	
4	LIST	OF MEASURING EQUIPMENT	3
5	UNCE	ERTAINTY OF EVALUATION	;4
AP	PEND	X A. CONDUCTED TEST RESULTS	
AP	PEND	X B. RADIATED SPURIOUS EMISSION	
AP	PEND	X C. RADIATED SPURIOUS EMISSION PLOTS	
AP	PEND	X D. DUTY CYCLE PLOTS	

APPENDIX E. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR6O1802B	Rev. 01	Initial issue of report	Feb. 17, 2017

SUMMARY	OF TEST	RESULT
---------	---------	--------

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.1	-	99% Bandwidth	-	Pass	-
3.2	15.247(b)(3)	Peak Output Power	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 8.52 dB at 40.800 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 14.80 dB at 0.406 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

1 General Description

1.1 Applicant

LG Electronics Mobile Comm USA

LG Twin Towers 20, Yeouido-Dong Youngdeungpo-Gu, Seoul 150-721, Republic Of Korea

1.2 Manufacturer

Arima Communications Corp.

6F, No. 866, Jhongjheng Rd., Jhonghe Dist., New Taipei City 23586, Taiwan

1.3 Product Feature of Equipment Under Test

Product Feature			
Equipment	Smart phone		
Brand Name	LG		
Model Name	LG-X240H		
FCC ID	ZNFX240H		
	GSM/EGPRS/WCDMA/HSPA/LTE		
EUT supports Radios application	WLAN 11b/g/n HT20/HT40		
	Bluetooth BR/EDR/LE		
HW Version	PP2		
SW Version	LGX240HAT-00-V08a-CIS-XX-NOV-17-2016+0		
EUT Stage	Production Unit		

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz		
Number of Channels	40		
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)		
Maximum Output Power to Antenna	-0.37 dBm (0.0009 W)		
99% Occupied Bandwidth	1.014MHz		
Antenna Type / Gain	PIFA Antenna type with gain -2.10 dB		
Type of Modulation	Bluetooth LE : GFSK		

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1022 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.		
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,		
Test Site Location	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.		
	TEL: +886-3-327-3456		
	FAX: +886-3-328-4978		
Test Site No.	Sporton	Site No.	
	TH05-HY	CO05-HY	

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC.		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd Rd. Guishan Dist, Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No. 03CH11-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

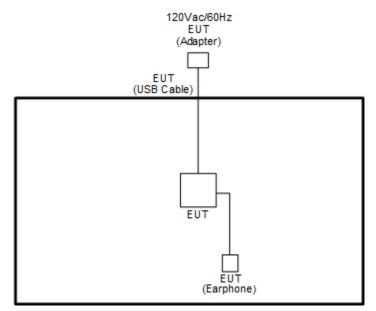
2.1 Descriptions of Test Mode

		Bluetooth – LE RF Output Power
Channel	Frequency	Data Rate / Modulation
Channel	Frequency	GFSK
		1Mbps
Ch00	2402MHz	-1.07 dBm
Ch19	2440MHz	<mark>-0.37</mark> dBm
Ch39	2480MHz	-1.53 dBm

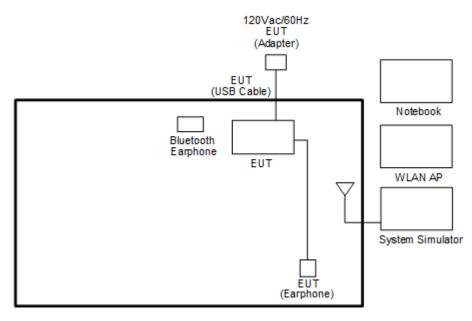
The RF output power was recorded in the following table:

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (Y plane as worst plane) from all possible combinations.
- b. AC power line Conducted Emission was tested under maximum output power.

2.2 Test Mode


The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases				
Teet liem	Data Rate / Modulation				
Test Item	Bluetooth – LE / GFSK				
Conducted	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
Radiated	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
AC	Made 1. MCDMA Band II Idle - Bluetoeth Link - MI AN Link - Comera (Front) -				
Conducted	Mode 1: WCDMA Band II Idle + Bluetooth Link + WLAN Link + Camera (Front) +				
Emission	Earphone + Battery + USB Cable (Charging from Adapter)				



2.3 Connection Diagram of Test System

<Bluetooth – LE Tx Mode>

<AC Conducted Emission Mode>

2.4 Support Unit used in test configuration and system	2.4	Support Ur	nit used in	test configuration	and system
--	-----	------------	-------------	--------------------	------------

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
3.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
4.	Notebook	DELL		FCC DoC/ Contains FCC ID: QDS-BRCM1054		AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
5.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A

2.5 EUT Operation Test Setup

For WLAN RF test items, an engineering test program was provided and enabled to make EUT transmitting and receiving signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

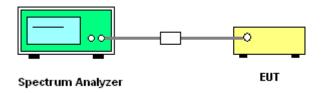
= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

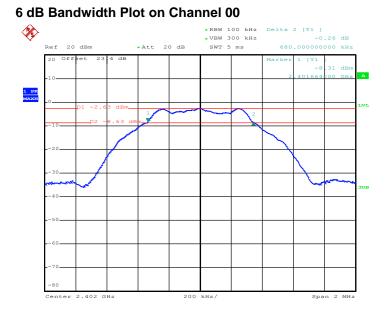
The minimum 6 dB bandwidth shall be at least 500 kHz.

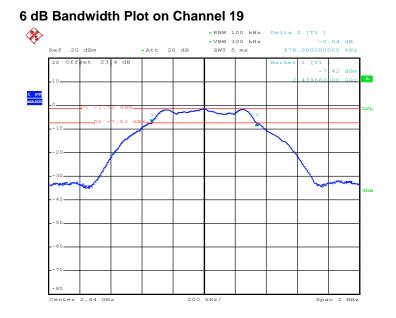

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

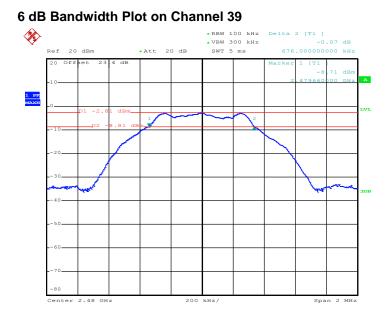
- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 30kHz and set the Video bandwidth (VBW) = 100kHz.
- 6. Measure and record the results in the test report.


3.1.4 Test Setup



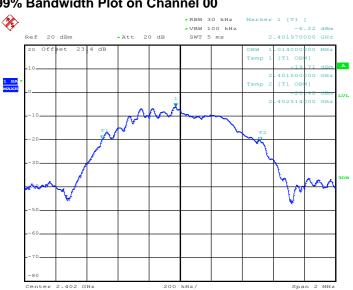
3.1.5 Test Result of 6dB Bandwidth

Test data refer to Appendix A.


Date: 20.NOV.2016 09:03:40

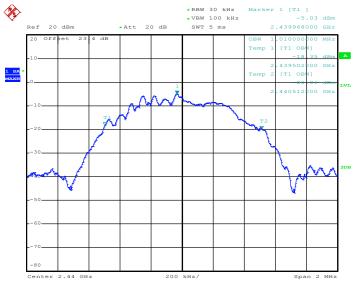
Date: 20.NOV.2016 09:08:28

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : ZNFX240H



Date: 20.NOV.2016 09:12:10

3.1.6 Test Result of 99% Occupied Bandwidth


Test data refer to Appendix A.

99% Bandwidth Plot on Channel 00


Date: 20.NOV.2016 09:06:22

99% Occupied Bandwidth Plot on Channel 19

Date: 20.NOV.2016 09:09:14

99% Occupied Bandwidth Plot on Channel 39

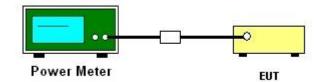
Date: 20.NOV.2016 09:13:37

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Peak Output Power Measurement

3.2.1 Limit of Peak Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.


3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v03r05 section 9.1.2 PKPM1 Peak power meter method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

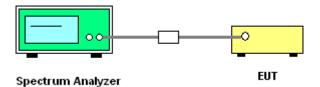
3.2.5 Test Result of Peak Output Power

Test data refers to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

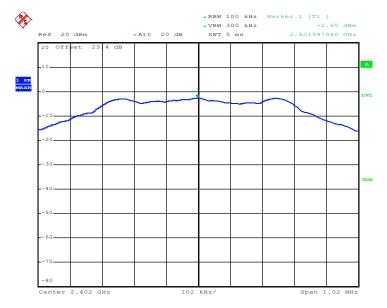

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

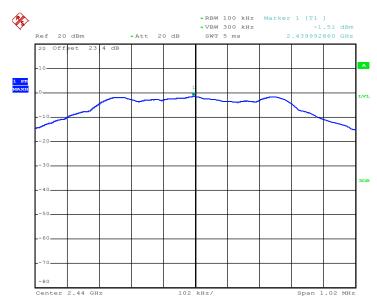
3.3.3 Test Procedures

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

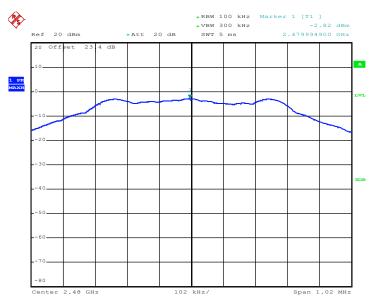

3.3.5 Test Result of Power Spectral Density

Test data refers to Appendix A.



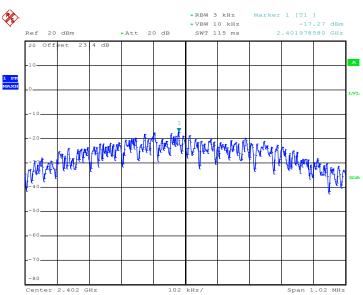
3.3.6 Test Result of Power Spectral Density Plots (100kHz)

PSD 100kHz Plot on Channel 00


Date: 20.NOV.2016 09:04:48

PSD 100kHz Plot on Channel 19

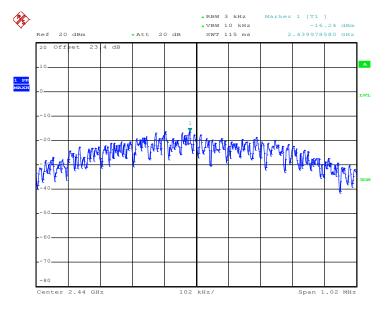
Date: 20.NOV.2016 09:08:57



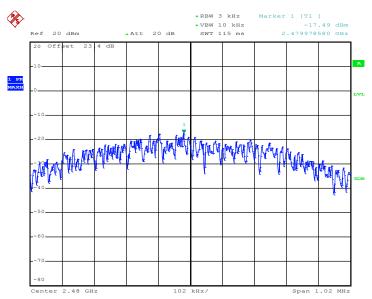
PSD 100kHz Plot on Channel 39

Date: 20.NOV.2016 09:12:35

3.3.7 Test Result of Power Spectral Density Plots (3kHz)



PSD 3kHz Plot on Channel 00


Date: 20.NOV.2016 09:04:19

PSD 3kHz Plot on Channel 19

Date: 20.NOV.2016 09:08:39

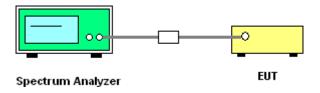
PSD 3kHz Plot on Channel 39

Date: 20.NOV.2016 09:12:22

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

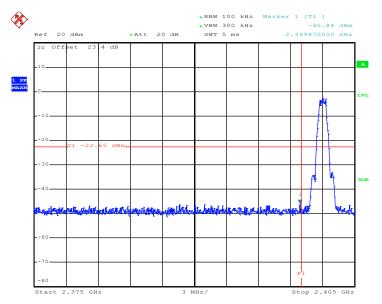
All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

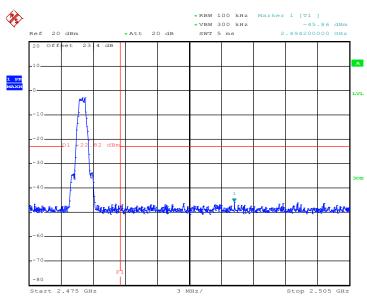

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedure

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


3.4.4 Test Setup



3.4.5 Test Result of Conducted Band Edges Plots

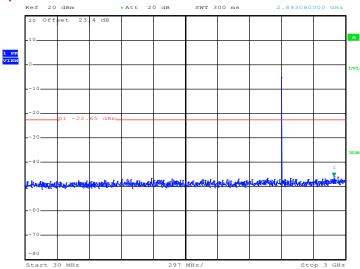
Low Band Edge Plot on Channel 00

Date: 20.NOV.2016 09:05:15

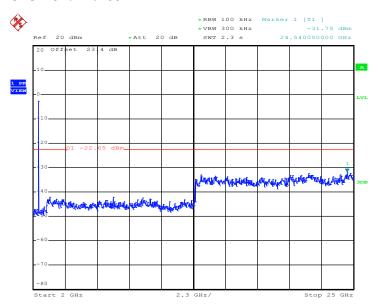
High Band Edge Plot on Channel 39

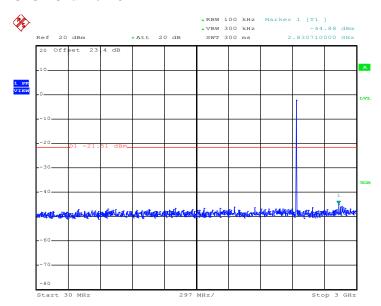
Date: 20.NOV.2016 09:12:52

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : ZNFX240H


-45.71 dBm

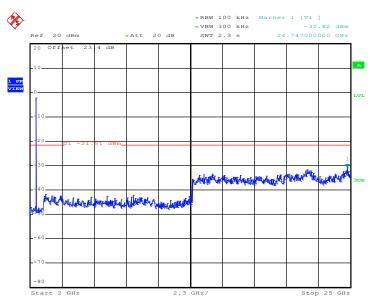
3.4.6 Test Result of Conducted Spurious Emission Plots


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

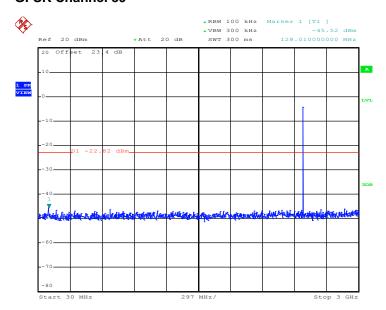

Date: 20.NOV.2016 09:05:30

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00

Date: 20.NOV.2016 09:05:39

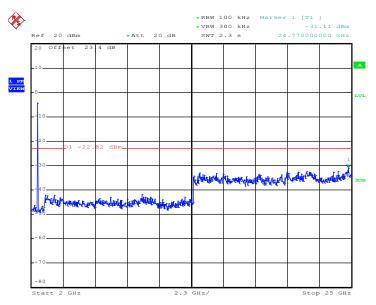


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19


Date: 20.NOV.2016 09:09:27

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

Date: 20.NOV.2016 09:09:35



Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 20.NOV.2016 09:13:06

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 20.NOV.2016 09:13:14

3.5 Radiated Band Edges and Spurious Emission Measurement

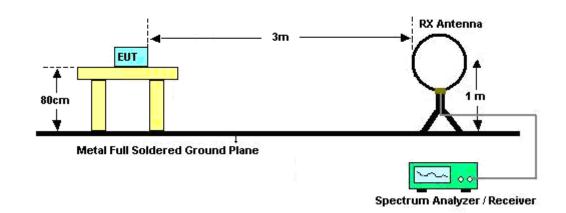
3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

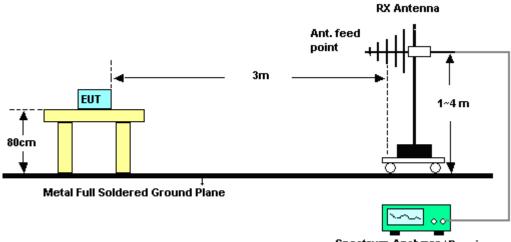
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

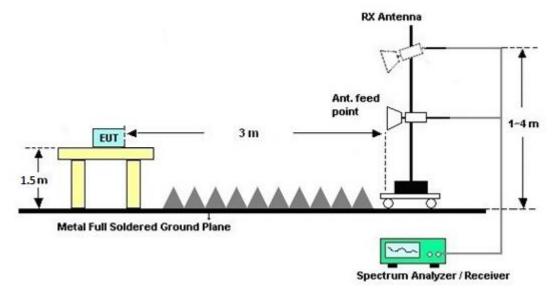

3.5.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for f ≥ 1 GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.



3.5.4 Test Setup

For radiated emissions below 30MHz


For radiated emissions from 30MHz to 1GHz

Spectrum Analyzer / Receiver

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.5.7 Duty Cycle

Please refer to Appendix D.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

3.6 AC Conducted Emission Measurement

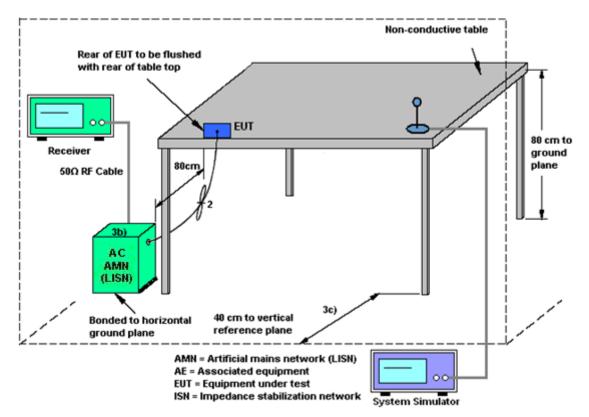
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted	limit (dBµV)
Frequency of emission (MHZ)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Fest Mode :	Mode 1			Temp	erature :		21~23℃
Fest Engineer :	Arthur Hsieh			Relati	ve Humi	idity :	51~53%
Fest Voltage :	120Vac / 60Hz			Phase	:		Line
Function Type :	WCDMA Band + Battery + US						k + Camera (Front) + Earph
Level in dBJV	100 90 80 70 60 50 40 40 40 40 40 40 40 40 40 40 40 40 40) 1M	2M requenc	CI CI CI CI CI CI CI CI CI CI CI CI CI C	IS PR 22-7	<u>-QP Limit at Main Ports</u> A <u>ve Limit at Main Ports</u> M 20M 30M
Frequency (MHz)	/ Quasi-Peak (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	
0.150000	42.5	Off	L1	(ub) 19.6		(upha)	
0.100000					23.5	66.0	-
0.182000	40.0	Off	L1	19.6	23.5 24.4	66.0 64.4	-
0.182000	40.0 42.8	Off Off	L1 L1				-
				19.6	24.4	64.4	
0.366000	42.8	Off	L1	19.6 19.6	24.4 15.8	64.4 58.6	
0.366000 0.406000 4.246000 15.126000	42.8 41.9 30.1 37.6	Off Off	L1 L1	19.6 19.6 19.6	24.4 15.8 15.8	64.4 58.6 57.7	
0.366000 0.406000 4.246000 15.126000 Final Resu	42.8 41.9 30.1 37.6 It : Average	Off Off Off	L1 L1 L1	19.6 19.6 19.6 19.8	24.4 15.8 15.8 25.9	64.4 58.6 57.7 56.0	
0.366000 0.406000 4.246000 15.126000 Final Resu Frequency	42.8 41.9 30.1 37.6 It : Average	Off Off Off Off	L1 L1 L1 L1	19.6 19.6 19.8 20.4 Corr.	24.4 15.8 15.8 25.9	64.4 58.6 57.7 56.0 60.0	
0.366000 0.406000 4.246000 15.126000 Final Resu Frequency (MHz)	42.8 41.9 30.1 37.6 It : Average / Αverage (dBμV)	Off Off Off Filter	L1 L1 L1 L1	19.6 19.6 19.8 20.4 Corr. (dB)	24.4 15.8 15.8 25.9 22.4 Margin (dB)	64.4 58.6 57.7 56.0 60.0 Limit (dBμV)	
0.366000 0.406000 4.246000 15.126000 Final Resu Frequency (MHz) 0.150000	42.8 41.9 30.1 37.6 It : Average (dBμV) 21.2	Off Off Off Filter	L1 L1 L1 L1 L1 Line	19.6 19.6 19.8 20.4 Corr. (dB) 19.6	24.4 15.8 15.8 25.9 22.4 Margin (dB) 34.8	64.4 58.6 57.7 56.0 60.0 Limit (dBμV) 56.0	
0.366000 0.406000 4.246000 15.126000 Final Resu Frequency (MHz) 0.150000 0.182000	42.8 41.9 30.1 37.6 It : Average (dBμV) 21.2 29.2	Off Off Off Filter	L1 L1 L1 L1 L1 L1 L1 L1	19.6 19.6 19.8 20.4 Corr. (dB) 19.6 19.6	24.4 15.8 25.9 22.4 Margin (dB) 34.8 25.2	64.4 58.6 57.7 56.0 60.0 Limit (dBμV)	
0.366000 0.406000 4.246000 15.126000 Final Resu Frequency (MHz) 0.150000	42.8 41.9 30.1 37.6 It : Average (dBμV) 21.2 29.2	Off Off Off Filter	L1 L1 L1 L1 L1 Line	19.6 19.6 19.8 20.4 Corr. (dB) 19.6	24.4 15.8 15.8 25.9 22.4 Margin (dB) 34.8	64.4 58.6 57.7 56.0 60.0 Limit (dBμV) 56.0	
0.366000 0.406000 4.246000 15.126000 Final Resu Frequency (MHz) 0.150000 0.182000	42.8 41.9 30.1 37.6 It : Average (dBμV) 21.2 29.2 33.5	Off Off Off Filter Off Off	L1 L1 L1 L1 L1 Line L1 L1	19.6 19.6 19.8 20.4 Corr. (dB) 19.6 19.6	24.4 15.8 25.9 22.4 Margin (dB) 34.8 25.2	64.4 58.6 57.7 56.0 60.0 Limit (dBμV) 56.0 54.4	
0.366000 0.406000 4.246000 15.126000 Final Resu Frequency (MHz) 0.150000 0.182000 0.366000	42.8 41.9 30.1 37.6 It : Average (dBμV) 21.2 29.2 33.5 32.9	Off Off Off Filter Off Off Off	L1 L1 L1 L1 L1 L1 L1 L1 L1	19.6 19.6 19.8 20.4 Corr. (dB) 19.6 19.6	24.4 15.8 15.8 25.9 22.4 Margin (dB) 34.8 25.2 15.1	64.4 58.6 57.7 56.0 60.0 Limit (dBμV) 56.0 54.4 48.6	

		Mode 1			Tempe	erature :		21~23℃
Test Engine	er:	Arthur Hsieh			Relati	ve Humi	dity :	51~53%
Test Voltage):	120Vac / 60Hz			Phase	:		Neutral
Function Ty	pe:	WCDMA Band + Battery + US						k + Camera (Front) + Earphone
	Levelin dBµV 5 5 4 5 5 5	00 10 10 10 10 10 10 10 10 10						2-OP Limit at Main Ports
		0 150k 300 400	500 8	800 1M	2M Frequen		5M 6	8 10M 20M 30M
Final F	Resul			800 1M	2M Frequen		5M 6	8 10M 20M 30M
Freq	Resul ⁱ uency IHz)	t : Quasi-Peak (dBµV)		Line			5M 6 Limit (dBµV)	
Freq (M	uency	t : Quasi-Peak Quasi-Peak			Frequen Corr.	ncy in Hz Margin	Limit	
Freq (M 0.15	uency IHz)	t : Quasi-Peak Quasi-Peak (dBµV)	Filter	Line	Frequen Corr. (dB)	Margin (dB)	Limit (dBµV)	
Freq (M 0.15 0.19	uency IHz) 50000	t : Quasi-Peak Quasi-Peak (dBµV) 48.2	Filter Off	Line N	Frequen Corr. (dB) 19.6	Margin (dB) 17.8	Limit (dBµV) 66.0	
Freq (M 0.15 0.19 0.34 0.38	uency IHz) 50000 90000 12000 32000	t : Quasi-Peak Quasi-Peak (dBµV) 48.2 35.4 31.3 39.4	Filter Off Off Off	Line N N N N	Frequen (dB) 19.6 19.6 19.6	Margin (dB) 17.8 28.6 27.9 18.8	Limit (dBµV) 66.0 64.0 59.2 58.2	
Freq (M 0.15 0.19 0.34 0.38 0.40	uency IHz) 50000 90000 12000 32000 96000	t : Quasi-Peak (dBµV) 48.2 35.4 31.3 39.4 34.0	Filter Off Off Off Off	Line N N N N	Frequen (dB) 19.6 19.6 19.6 19.6 19.6	Margin (dB) 17.8 28.6 27.9 18.8 23.7	Limit (dBµV) 66.0 64.0 59.2 58.2 57.7	
Freq (M 0.15 0.19 0.34 0.38 0.40 0.50	uency Hz) 50000 2000 2000 32000 50000	t : Quasi-Peak Quasi-Peak (dBµV) 48.2 35.4 31.3 39.4 34.0 30.8	Filter Off Off Off Off Off	Line N N N N N	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 17.8 28.6 27.9 18.8 23.7 25.2	Limit (dBµV) 66.0 64.0 59.2 58.2 58.2 57.7 56.0	
Freq (M 0.15 0.19 0.34 0.38 0.40 0.50 0.89	uency Hz) 50000 50000 52000 52000 52000 52000 52000	t : Quasi-Peak Quasi-Peak (dBµV) 48.2 35.4 31.3 39.4 34.0 30.8 25.4	Filter Off Off Off Off	Line N N N N	Frequen (dB) 19.6 19.6 19.6 19.6 19.6	Margin (dB) 17.8 28.6 27.9 18.8 23.7	Limit (dBµV) 66.0 64.0 59.2 58.2 57.7	
Freq (M 0.15 0.19 0.34 0.38 0.40 0.50 0.89 Final F	uency IHz) 50000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000	t : Quasi-Peak Quasi-Peak (dBµV) 48.2 35.4 31.3 39.4 34.0 30.8 25.4 t : Average	Filter Off Off Off Off Off	Line N N N N N	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 17.8 28.6 27.9 18.8 23.7 25.2 30.6	Limit (dBµV) 66.0 64.0 59.2 58.2 57.7 56.0 56.0	
Freq (M 0.15 0.19 0.34 0.38 0.40 0.50 0.89 Final F	uency (Hz) 50000 (2000 (2000 (2000 (2000 (2000 (2000 (2000 (2000 (2000 (2000) (2000 (2000) (2	t : Quasi-Peak (dBµV) 48.2 35.4 31.3 39.4 34.0 30.8 25.4 t : Average Average	Filter Off Off Off Off Off	Line N N N N N	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 17.8 28.6 27.9 18.8 23.7 25.2 30.6 Margin	Limit (dBµV) 66.0 59.2 58.2 57.7 56.0 56.0 Limit	
Freq (M 0.15 0.19 0.34 0.38 0.40 0.50 0.89 Final F Freq (M	uency IHz) 50000 2000 2000 52000 52000 52000 52000 54000 Result uency IHz)	t : Quasi-Peak (dBµV) 48.2 35.4 31.3 39.4 34.0 30.8 25.4 t : Average (dBµV)	Filter Off Off Off Off Off Off Off	Line N N N N N N Line	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 17.8 28.6 27.9 18.8 23.7 25.2 30.6 Margin (dB)	Limit (dBµV) 66.0 59.2 58.2 57.7 56.0 56.0 Limit (dBµV)	
Freq (M 0.15 0.19 0.34 0.38 0.40 0.50 0.89 Final F Freq (M 0.15	uency Hz) 50000 2000 22000 52000 06000 02000 02000 04000 Result uency Hz) 50000	t : Quasi-Peak (dBµV) 48.2 35.4 31.3 39.4 34.0 30.8 25.4 t : Average (dBµV) 23.4	Filter Off Off Off Off Off Off Off Filter	Line N N N N N N Line N	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 17.8 28.6 27.9 18.8 23.7 25.2 30.6 Margin (dB) 32.6	Limit (dBµV) 66.0 64.0 59.2 58.2 57.7 56.0 56.0 Limit (dBµV) 56.0	
Freq (M 0.15 0.19 0.34 0.38 0.40 0.50 0.89 Final F Freq (M 0.15 0.19	uency IHz) 50000 2000 2000 52000 52000 52000 52000 52000 52000 52000 52000 52000 52000 52000 52000 50000 50000	t : Quasi-Peak Quasi-Peak (dBµV) 48.2 35.4 31.3 39.4 34.0 30.8 25.4 t : Average (dBµV) 23.4 18.5	Filter Off Off Off Off Off Off Filter	Line N N N N N N Line N N	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 (dB) 19.6 19.6 19.6	Margin (dB) 17.8 28.6 27.9 18.8 23.7 25.2 30.6 Margin (dB) 32.6 35.5	Limit (dBµV) 66.0 64.0 59.2 58.2 57.7 56.0 56.0 Limit (dBµV) 56.0 54.0	
Freq (M 0.15 0.19 0.34 0.38 0.40 0.50 0.89 Final F Freq (M 0.15 0.19 0.34	uency IHz) 50000 20000 2000 2000 2000 2000 2000 2	t : Quasi-Peak Quasi-Peak (dBµV) 48.2 35.4 31.3 39.4 34.0 30.8 25.4 t : Average (dBµV) 23.4 18.5 21.9	Filter Off Off Off Off Off Off Filter	Line N N N N N N Line N N N N	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 17.8 28.6 27.9 18.8 23.7 25.2 30.6 Margin (dB) 32.6 35.5 27.3	Limit (dBµV) 66.0 59.2 58.2 57.7 56.0 56.0 Limit (dBµV) 56.0 54.0 49.2	
Freq (M 0.15 0.19 0.34 0.38 0.40 0.50 0.89 Final F Freq (M 0.15 0.19 0.34 0.38	uency IHz) 50000 2000 32000 52000 52000 54000 54000 54000 50000 50000 52000 52000	t : Quasi-Peak (dBµV) 48.2 35.4 31.3 39.4 34.0 30.8 25.4 t : Average (dBµV) 23.4 18.5 21.9 30.2	Filter Off Off Off Off Off Off Off Filter Off Off Off	Line N N N N N N Line N N N N N N N N N N N N N N N N	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 Corr. (dB) 19.6 19.6 19.6 19.6	Margin (dB) 17.8 28.6 27.9 18.8 23.7 25.2 30.6 Margin (dB) 32.6 35.5 27.3 18.0	Limit (dBµV) 66.0 59.2 58.2 57.7 56.0 56.0 Limit (dBµV) 56.0 54.0 49.2 48.2	
Freq (M 0.15 0.19 0.34 0.38 0.40 0.50 0.89 Final F Freq (M 0.15 0.19 0.34 0.38 0.40	uency IHz) 50000 20000 2000 2000 2000 2000 2000 2	t : Quasi-Peak Quasi-Peak (dBµV) 48.2 35.4 31.3 39.4 34.0 30.8 25.4 t : Average (dBµV) 23.4 18.5 21.9	Filter Off Off Off Off Off Off Filter	Line N N N N N N Line N N N N	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 17.8 28.6 27.9 18.8 23.7 25.2 30.6 Margin (dB) 32.6 35.5 27.3	Limit (dBµV) 66.0 59.2 58.2 57.7 56.0 56.0 Limit (dBµV) 56.0 54.0 49.2	

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Agilent	E4416A	GB412923 44	300MHz~40GH z	Jan. 08, 2016	Nov. 03, 2016 ~ Nov. 20, 2016	Jan. 07, 2017	Conducted (TH05-HY)
Power Sensor	Agilent	E9327A	US404415 48	300MHz~40GH z	Jan. 07, 2016	Nov. 03, 2016 ~ Nov. 20, 2016	Jan. 06, 2017	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100055	9kHz-40GHz	Jul. 17, 2016	Nov. 03, 2016 ~ Nov. 20, 2016	Jul. 16, 2017	Conducted (TH05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Oct. 22, 2016	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI 7	100724	9kHz~7GHz	Aug. 30, 2016	Oct. 22, 2016	Aug. 29, 2017	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 02, 2015	Oct. 22, 2016	Dec. 01, 2016	Conduction (CO05-HY)
Amplifier	SONOMA	310N	187312	9kHz~1GHz	Nov. 20, 2015	Nov. 12, 2016 ~ Nov. 15, 2016	Nov. 19, 2016	Radiation (03CH11-HY)
Bilog Antenna	TESEQ	CBL 6111D&N-6-0 6	35414&AT- N0602	30MHz~1GHz	Oct. 15, 2016	Nov. 12, 2016 ~ Nov. 15, 2016	Oct. 14, 2017	Radiation (03CH11-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-132 6	1GHz ~ 18GHz	Oct. 07, 2016	Nov. 12, 2016 ~ Nov. 15, 2016	Oct. 06, 2017	Radiation (03CH11-HY)
Preamplifier	Keysight	83017A	MY532700 80	1GHz~26.5GHz	Nov. 19, 2015	Nov. 12, 2016 ~ Nov. 15, 2016	Nov. 18, 2016	Radiation (03CH11-HY)
Spectrum Analyzer	Keysight	N9010A	MY542004 86	10Hz ~ 44GHz	Oct. 12, 2016	Nov. 12, 2016 ~ Nov. 15, 2016	Oct. 11, 2017	Radiation (03CH11-HY)
Antenna Mast	EMEC	AM-BS-4500- B	N/A	1~4m	N/A	Nov. 12, 2016 ~ Nov. 15, 2016	N/A	Radiation (03CH11-HY)
Turn Table	EMEC	TT 2000	N/A	0~360 Degree	N/A	Nov. 12, 2016 ~ Nov. 15, 2016	N/A	Radiation (03CH11-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 576	18GHz- 40GHz	Apr. 15, 2016	Nov. 12, 2016 ~ Nov. 15, 2016	Apr. 14, 2017	Radiation (03CH11-HY)
Preamplifier	MITEQ	TTA0204	1872107	2GHz~40GHz	Feb. 15, 2016	Nov. 12, 2016 ~ Nov. 15, 2016	Feb. 14, 2017	Radiation (03CH11-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Oct. 20, 2016	Nov. 12, 2016 ~ Nov. 15, 2016	Oct. 19, 2018	Radiation (03CH11-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of Confidence	2.7
of 95% (U = 2Uc(y))	2.1

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.2
--	-----

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.5
of 95% (U = 2Uc(y))	5.5

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.2
of 95% (U = 2Uc(y))	5.2

Appendix A. Conducted Test Results

Report Number : FR6O1802B

Bluetooth Low Energy

Test Engineer:	Aking Chang	Temperature:	21~25	°C
Test Date:	2016/11/03 ~ 2016/11/20	Relative Humidity:	51~54	%

<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandw									
		Data			Free	99%		6dB BW	
	Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Occupied BW (MHz)	6dB BW (MHz)	Limit (MHz)	Pass/Fail
	BLE	1Mbps	1	0	2402	1.01	0.68	0.50	Pass
	BLE	1Mbps	1	19	2440	1.01	0.68	0.50	Pass
	BLE	1Mbps	1	39	2480	1.01	0.68	0.50	Pass

						-	RESULTS Power T				
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail	
BLE	1Mbps	1	0	2402	-1.07	30.00	-2.10	-3.17	36.00	Pass	l
BLE	1Mbps	1	19	2440	-0.37	30.00	-2.10	-2.47	36.00	Pass	1
BLE	1Mbps	1	39	2480	-1.53	30.00	-2.10	-3.63	36.00	Pass	1

	<u>TEST RESULTS DATA</u> <u>Average Power Table</u> <u>(Reporting Only)</u>									
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)				
BLE	1Mbps	1	0	2402	2.21	-1.70				
BLE	1Mbps	1	19	2440	2.21	-0.93				
BLE	1Mbps	1	39	2480	2.21	-2.17				

<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail		
BLE	1Mbps	1	0	2402	-2.65	-17.27	-2.10	8.00	Pass		
BLE	1Mbps	1	19	2440	-1.51	-16.24	-2.10	8.00	Pass		
BLE	1Mbps	1	39	2480	-2.82	-17.49	-2.10	8.00	Pass		

Appendix B. Radiated Spurious Emission

Test Engineer	LC Linns and Industry	Temperature :	20~24°C	
Test Engineer :	J.C. Liang and Jacky Hung	Relative Humidity :	50~58%	


2.4GHz 2400~2483.5MHz

				-			-	-		Ī	F	ſ	T
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos	Avg. (P/A)	(НЛЛ
		2342.76	53.34	-20.66	74	51.48	27.03	8.82	33.99	356	340	P	H
		2371.53	43.8	-10.2	54	41.83	27.14	8.82	33.99	356	340	A	Н
	*	2402	92.04	-	-	89.94	27.19	8.89	33.98	356	340	P	н
	*	2402	91.37	-	-	89.27	27.19	8.89	33.98	356	340	A	н
		2402	51.07			00.21	27.15	0.00	00.00	000	040		н
BLE													н
CH 00		2340.98	52.84	-21.16	74	50.98	27.03	8.82	33.99	177	213	Р	V
2402MHz		2388.12	43.95	-10.05	54	41.86	27.19	8.89	33.99	177	213	A	V
	*	2402	91.01	-	-	88.91	27.19	8.89	33.98	177	213	Р	V
	*	2402	90.38	-	-	88.28	27.19	8.89	33.98	177	213	А	V
													V
													V
		2372.86	53.12	-20.88	74	51.15	27.14	8.82	33.99	217	338	Р	Н
		2380.7	43.92	-10.08	54	41.88	27.14	8.89	33.99	217	338	А	Н
	*	2440	94.98	-	-	92.67	27.34	8.94	33.97	217	338	Р	Н
	*	2440	94.42	-	-	92.11	27.34	8.94	33.97	217	338	А	Н
51 5		2499.51	53.56	-20.44	74	51.02	27.5	8.98	33.94	217	338	Ρ	Н
BLE CH 19		2484.6	44.5	-9.5	54	42.02	27.45	8.98	33.95	217	338	А	Н
2440MHz		2355.92	52.62	-21.38	74	50.7	27.09	8.82	33.99	120	206	Ρ	V
∠ヰヰ∪₩౹⊓∠		2333.24	43.73	-10.27	54	42	26.98	8.75	34	120	206	А	V
	*	2440	91.62	-	-	89.31	27.34	8.94	33.97	120	206	Ρ	V
	*	2440	91.07	-	-	88.76	27.34	8.94	33.97	120	206	А	V
		2484.67	53.55	-20.45	74	51.07	27.45	8.98	33.95	120	206	Ρ	V
		2499.65	44.4	-9.6	54	41.86	27.5	8.98	33.94	120	206	А	V

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	(H/V)
	*	2480	94.01	-	-	91.53	27.45	8.98	33.95	240	348	Ρ	Н
	*	2480	92.43	-	-	89.95	27.45	8.98	33.95	240	348	А	Н
		2484.76	54.18	-19.82	74	51.7	27.45	8.98	33.95	240	348	Р	Н
		2492.24	44.57	-9.43	54	42.03	27.5	8.98	33.94	240	348	Α	Н
													Н
BLE													Н
CH 39 2480MHz	*	2480	91.37	-	-	88.89	27.45	8.98	33.95	116	205	Р	V
240010172	*	2480	90.84	-	-	88.36	27.45	8.98	33.95	116	205	А	V
		2491.2	54.28	-19.72	74	51.75	27.5	8.98	33.95	116	205	Р	V
		2488.68	44.71	-9.29	54	42.18	27.5	8.98	33.95	116	205	А	V
													V
													V
Remark		o other spurious		Peak and	Average lim	it line.							

2.4GHz 2400~2483.5MHz

BLE	(Harmonic	@ 3m)	
-----	-----------	-------	--

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4804	31.91	-42.09	74	40.69	31.66	10.65	51.09	100	0	P	H
													Н
													Н
BLE													Н
CH 00		4804	32.32	-41.68	74	41.1	31.66	10.65	51.09	100	0	Р	V
2402MHz													V
													V
													V
		4880	32.54	-41.46	74	40.94	31.78	10.88	51.06	100	0	Р	н
		7320	37.59	-36.41	74	38.02	37.29	12.79	50.51	100	0	Р	Н
													Н
BLE													Н
CH 19 2440MHz		4880	32.88	-41.12	74	41.28	31.78	10.88	51.06	100	0	Р	V
244010112		7320	36.92	-37.08	74	37.35	37.29	12.79	50.51	100	0	Р	V
													V
													V
		4960	33.1	-40.9	74	41.07	31.94	11.12	51.03	100	0	Р	Н
		7440	37.65	-36.35	74	37.84	37.44	12.88	50.51	100	0	Р	Н
BLE													Н
CH 39													Н
2480MHz		4960	33.28	-40.72	74	41.25	31.94	11.12	51.03	100	0	Р	V
240011112		7440	37.18	-36.82	74	37.37	37.44	12.88	50.51	100	0	Р	V
													V
													V
	1. No	o other spurious	s found.										
Remark		results are PA		Peak and	Average lim	it line.							
			-		, , , , , , , , , , , , , , , , , , ,								

Emission below 1GHz

		·· _·
2.4GHz	BLE	(LF)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
		. ,		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	1	(H/V)
		30	23.81	-16.19	40	29.32	25.7	1.29	32.5	-	-	Р	Н
		81.84	20.47	-19.53	40	37.62	13.82	1.51	32.48	-	-	Р	Н
		98.31	21.72	-21.78	43.5	36.83	15.86	1.51	32.48	-	-	Р	Н
		614.3	27.71	-18.29	46	30.66	25.84	3.67	32.46	-	-	Р	Н
		897.1	32.75	-13.25	46	30.68	29.18	4.57	31.68	-	-	Р	Н
		954.5	34.06	-11.94	46	29.94	30.59	4.69	31.16	217	149	Р	Н
													Н
													Н
													Н
													Н
													Н
2.4GHz BLE													Н
LF		40.8	35.4	-	-	46.86	19.74	1.29	32.49	282	137	Р	V
-		40.8	31.48	-8.52	40	42.94	19.74	1.29	32.49	282	137	QP	V
		81.57	27.99	-12.01	40	45.14	13.82	1.51	32.48	-	-	Р	V
		98.31	21.36	-22.14	43.5	36.47	15.86	1.51	32.48	-	-	Ρ	V
		575.8	27.86	-18.14	46	31.56	25.27	3.47	32.44	-	-	Р	V
		872.6	32.18	-13.82	46	30.37	29.04	4.57	31.8	-	-	Р	V
		941.2	34.05	-11.95	46	30.29	30.35	4.69	31.28	-	-	Р	V
													V
													V
													V
													V
													V
Remark		o other spurious		mit line.									

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not
	exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

1. Level(dBµV/m) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

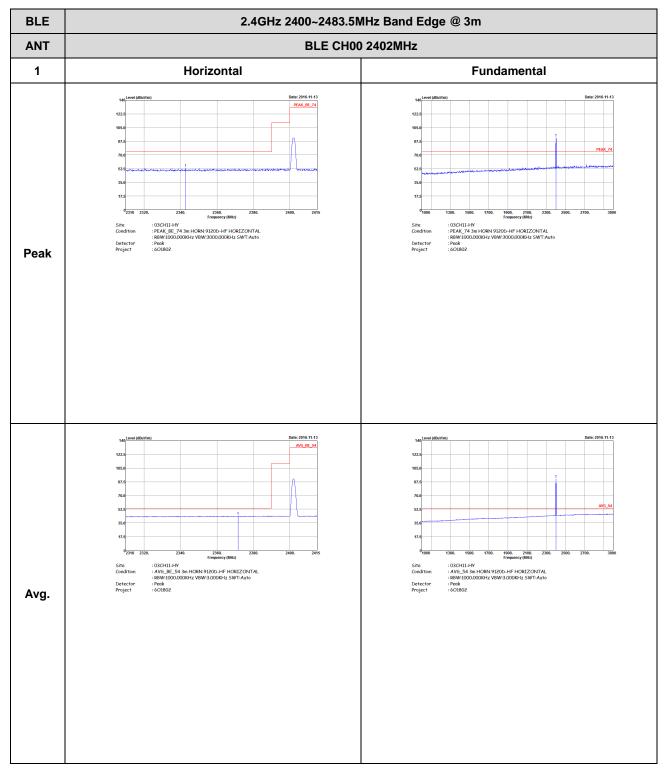
For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

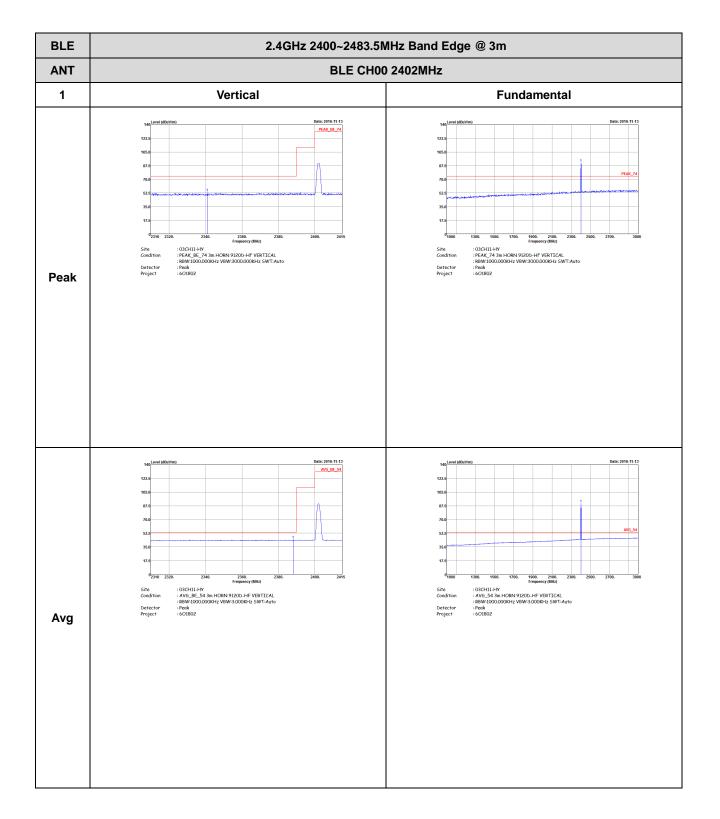
Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix C. Radiated Spurious Emission

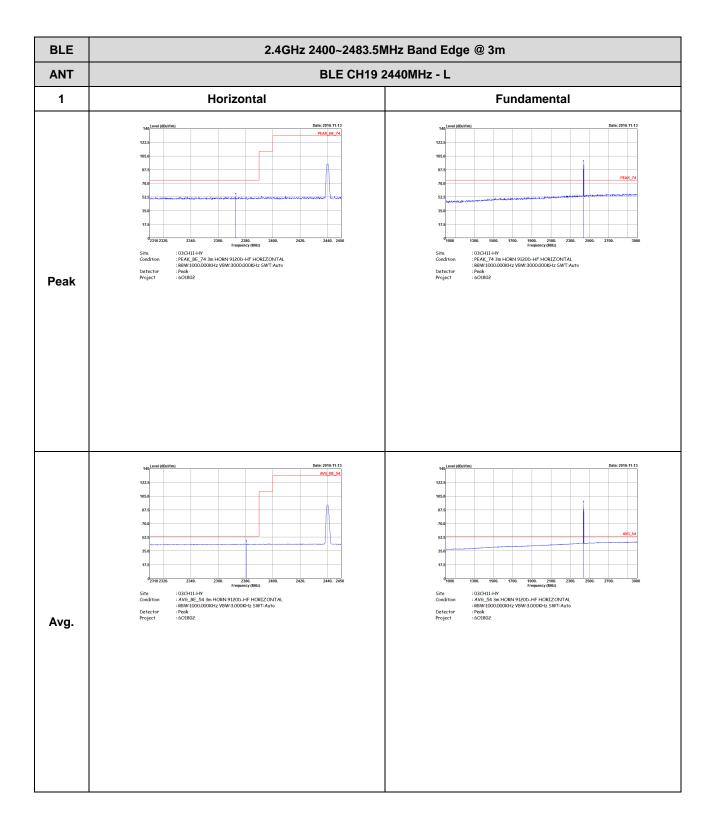
		Temperature :	20~24°C
Test Engineer :	J.C. Liang and Jacky Hung	Relative Humidity :	50~58%

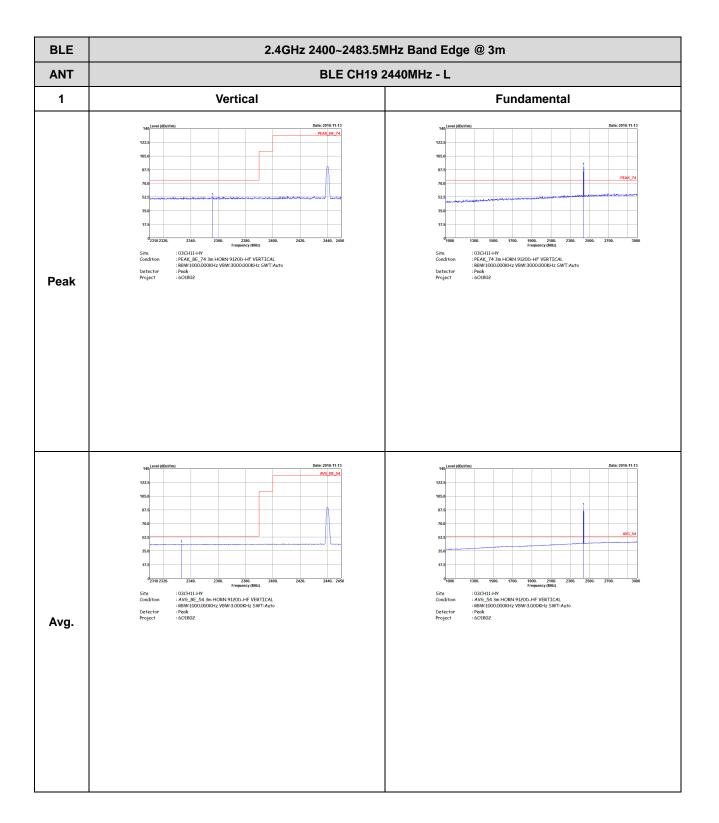

Note symbol

-L	Low channel location
-R	High channel location

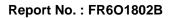

2.4GHz 2400~2483.5MHz

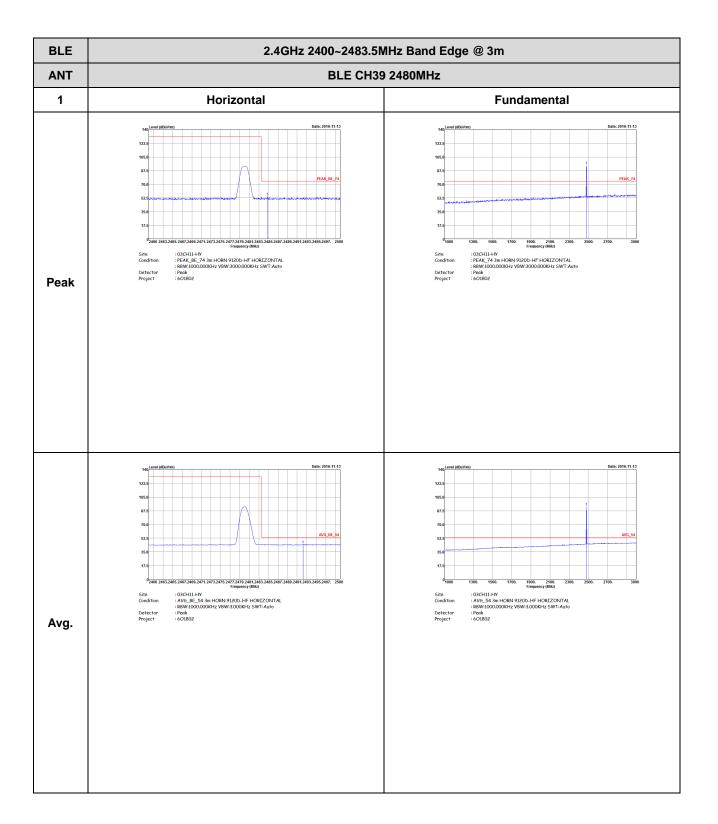
BLE (Band Edge @ 3m)

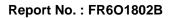




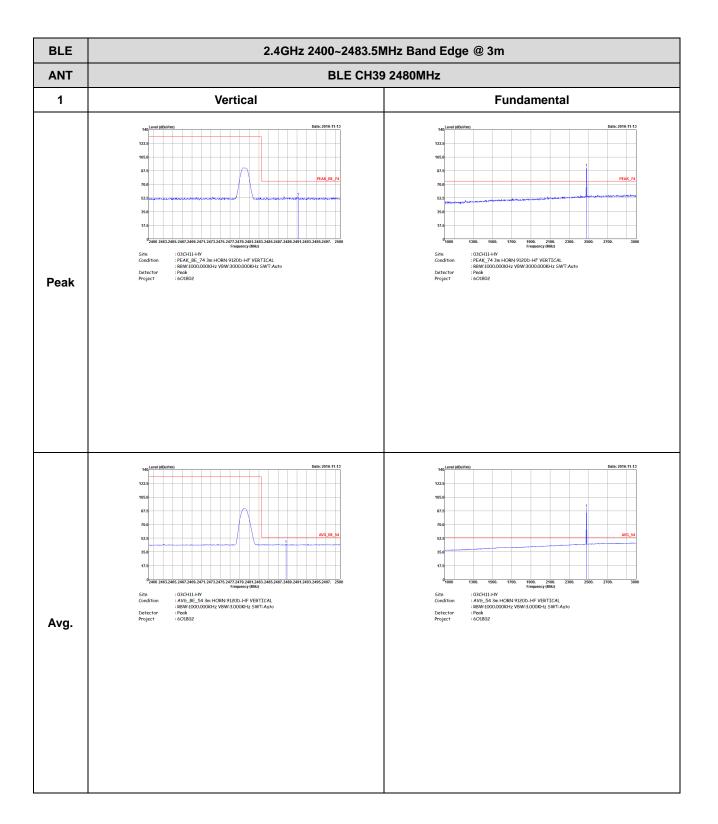
BLE	2.4GHz 2400~2483.5N	/Hz Band Edge @ 3m
ANT	BLE CH19 2	2440MHz - R
1	Horizontal	Fundamental
Peak	Here Effective Dete: 2916-11-13 1223 1 <td< th=""><th>Left blank</th></td<>	Left blank
Avg.	Diff: 2916-11-13 Diff: 2916-1	Left blank

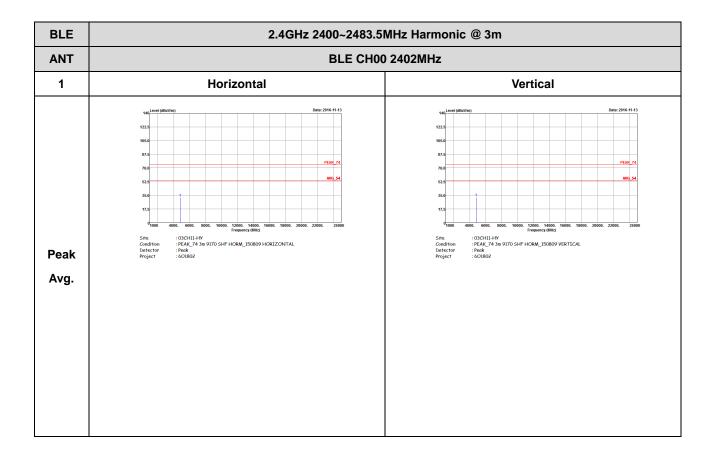


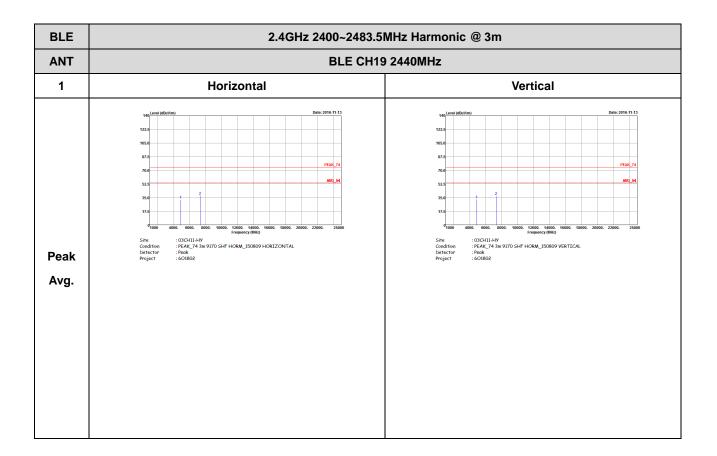




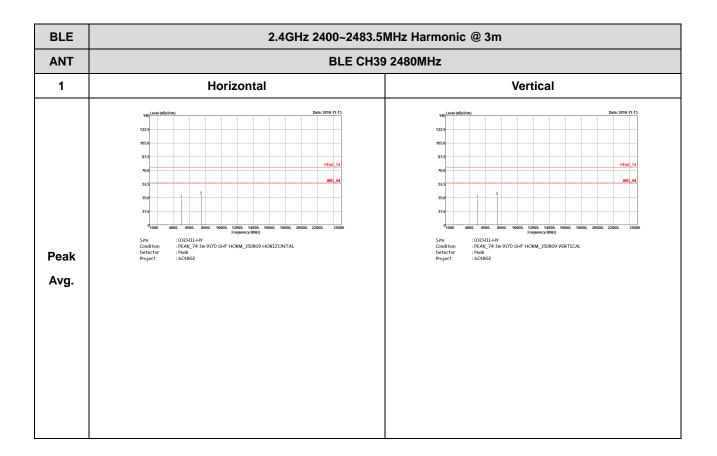
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
ANT	BLE CH19 2440MHz - R					
1	Vertical	Fundamental				
Peak	production of the second secon	Left blank				
Avg.	Here Effect of the full with the full of the full	Left blank				

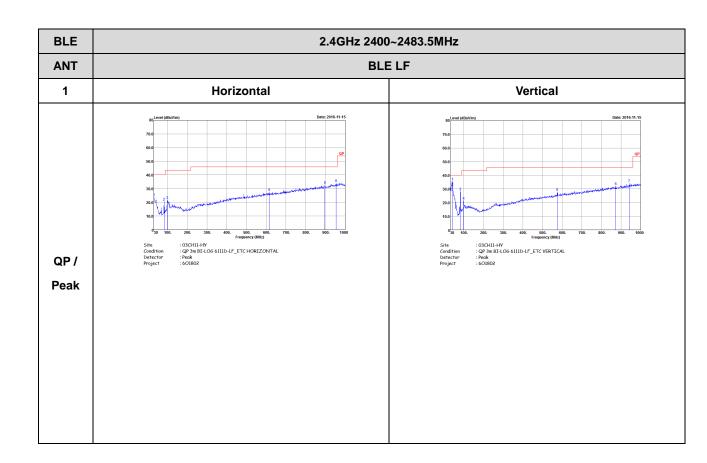




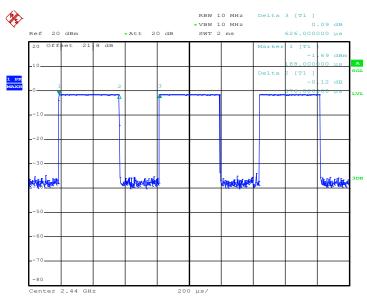

2.4GHz 2400~2483.5MHz

BLE (Harmonic @ 3m)





Emission below 1GHz


2.4GHz BLE (LF)

Appendix D. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth 4.0 – LE	60.06	376.00	2.66	3kHz

Bluetooth 4.0 – LE

Date: 1.NOV.2016 01:13:40