

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

 Shenzhen, Guangdong, China 518057

 Telephone:
 +86 (0) 755 2601 2053

 Fax:
 +86 (0) 755 2671 0594

 Email:
 ee.shenzhen@sgs.com

Report No.: SZEM161201074804 Page: 1 of 78

### **FCC REPORT**

| Application No:  | SZEM1612010748RG                                   |
|------------------|----------------------------------------------------|
| Applicant:       | LG Electronics Mobile Comm USA                     |
| Manufacturer:    | Huaqin Telecom Technology Co. Ltd.                 |
| Factory:         | Dong Guan Huabel Electronic Technology Co.,Ltd     |
| Product Name:    | Mobile Handset                                     |
| Model No.(EUT):  | LG-X230Z                                           |
| Add Model No.:   | LG-X230YK                                          |
| Trade Mark:      | LG                                                 |
| FCC ID:          | ZNFX230Z                                           |
| Standards:       | 47 CFR Part 15, Subpart C (2015)                   |
| Test Method      | KDB 558074 D01 558074 D01 DTS Meas Guidance v03r05 |
|                  | ANSI C63.10 2013                                   |
| Date of Receipt: | 2016-12-18                                         |
| Date of Test:    | 2016-12-20 to 2016-12-30                           |
| Date of Issue:   | 2017-02-23                                         |
| Test Result:     | PASS *                                             |

.\* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Derde yang

Derek Yang Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-en/Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-en/Cerms-and-Conditions/Terms-en/Cerms-and-Conditions/Terms-en/Cerms-and-Conditions/Terms-en/Cerms-and-Conditions/Terms-en/Cerms-and-Conditions/Terms-en/Cerms-and-Conditions/Terms-en/Cerms-and-Conditions/Terms-en/Cerms-and-Conditions/Terms-en/Cerms-and-Conditions/Terms-en/Cerms-and-Conditions/Terms-en/Cerms-and-Conditions/Terms-en/Cerms-and-Conditions/Terms-en/Cerms-and-Conditions/Terms-en/Cerms-and-Conditions/Terms-en/Cerms-and-Conditions/Terms-en/Cerms-and-Conditions/Terms-en/Cerms-and-Conditions/Terms-en/Cerms-en/Cerms-and-Conditions/Terms-en/Cerms-en/Cerms-and-Conditions/Terms-en/Cerms-and-Conditions/Terms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerms-en/Cerm



Report No.: SZEM161201074804 Page: 2 of 78

### 2 Version

| Revision Record |         |            |           |                                                 |  |
|-----------------|---------|------------|-----------|-------------------------------------------------|--|
| Version         | Chapter | Date       | Modifier  | Remark                                          |  |
| 01              |         | 2017-01-05 |           | Original                                        |  |
| 02              |         | 2017-02-21 | Mike Hu   | Revised report to<br>address TCB's<br>questions |  |
| 03              |         | 2017-02-23 | Mike Hu   | Revised report to<br>address TCB's<br>questions |  |
| 04              |         | 2017-03-14 | Mandy Lai | Revised the model No.                           |  |

| Authorized for issue by: |                                        |            |
|--------------------------|----------------------------------------|------------|
| Tested By                | Mike Mu<br>(Mike Hu) /Project Engineer | 2017-01-05 |
|                          |                                        |            |
| Checked By               | John Hong                              | 2017-02-23 |
|                          | (Jim Huang) /Reviewer                  | Date       |



Report No.: SZEM161201074804 Page: 3 of 78

### 3 Test Summary

| Test Item                                                               | Test Requirement                                       | Test method      | Result |
|-------------------------------------------------------------------------|--------------------------------------------------------|------------------|--------|
| Antenna Requirement                                                     | 47 CFR Part 15, Subpart C Section<br>15.203/15.247 (c) | ANSI C63.10 2013 | PASS   |
| AC Power Line<br>Conducted<br>Emission                                  | 47 CFR Part 15, Subpart C Section<br>15.207            | ANSI C63.10 2013 | PASS   |
| Conducted Peak Output<br>Power                                          | 47 CFR Part 15, Subpart C Section<br>15.247 (b)(3)     | ANSI C63.10 2013 | PASS   |
| 6dB Occupied<br>Bandwidth                                               | 47 CFR Part 15, Subpart C Section<br>15.247 (a)(2)     | ANSI C63.10 2013 | PASS   |
| Power Spectral Density                                                  | 47 CFR Part 15, Subpart C Section<br>15.247 (e)        | ANSI C63.10 2013 | PASS   |
| Band-edge for RF<br>Conducted Emissions                                 | 47 CFR Part 15, Subpart C Section<br>15.247(d)         | ANSI C63.10 2013 | PASS   |
| RF Conducted Spurious<br>Emissions                                      | 47 CFR Part 15, Subpart C Section<br>15.247(d)         | ANSI C63.10 2013 | PASS   |
| Radiated Spurious<br>Emissions                                          | 47 CFR Part 15, Subpart C Section<br>15.205/15.209     | ANSI C63.10 2013 | PASS   |
| Restricted bands around<br>fundamental frequency<br>(Radiated Emission) | 47 CFR Part 15, Subpart C Section<br>15.205/15.209     | ANSI C63.10 2013 | PASS   |

Remark:

Model No.: LG-X230Z, LG-X230YK

Only the model LG-X230Z was tested, since the electrical circuit design, layout, components used and internal wiring were identical for all above model only different on sales area.



Report No.: SZEM161201074804 Page: 4 of 78

### 4 Contents

| 1 | COV   | ER PAGE                                              | 1  |
|---|-------|------------------------------------------------------|----|
| 2 | VER   | SION                                                 | 2  |
| 3 | TES   | T SUMMARY                                            | 3  |
| 4 | CON   | ITENTS                                               | 4  |
| 5 | GEN   | ERAL INFORMATION                                     | 5  |
|   | 5.1   | CLIENT INFORMATION                                   |    |
|   | 5.2   | GENERAL DESCRIPTION OF EUT                           |    |
|   | 5.3   | TEST ENVIRONMENT AND MODE                            |    |
|   | 5.4   | DESCRIPTION OF SUPPORT UNITS                         |    |
|   | 5.5   | TEST LOCATION                                        | 7  |
|   | 5.6   | TEST FACILITY                                        | 7  |
|   | 5.7   | DEVIATION FROM STANDARDS                             |    |
|   | 5.8   | ABNORMALITIES FROM STANDARD CONDITIONS               | 8  |
|   | 5.9   | OTHER INFORMATION REQUESTED BY THE CUSTOMER          |    |
|   | 5.10  | MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) |    |
|   | 5.11  | EQUIPMENT LIST                                       | 9  |
| 6 | TES   | T RESULTS AND MEASUREMENT DATA                       | 12 |
|   | 6.1   | ANTENNA REQUIREMENT                                  | 12 |
|   | 6.2   | CONDUCTED EMISSIONS                                  |    |
|   | 6.3   | CONDUCTED PEAK OUTPUT POWER                          | 17 |
|   | 6.4   | 6DB OCCUPY BANDWIDTH                                 | 19 |
|   | 6.5   | Power Spectral Density                               |    |
|   | 6.6   | BAND-EDGE FOR RF CONDUCTED EMISSIONS                 |    |
|   | 6.7   | RF CONDUCTED SPURIOUS EMISSIONS                      | 40 |
|   | 6.8   | RADIATED SPURIOUS EMISSIONS                          |    |
|   | 6.8.1 |                                                      |    |
|   | 6.8.2 |                                                      |    |
|   | 6.9   | RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY        | 61 |
| 7 | PHO   | TOGRAPHS - EUT CONSTRUCTIONAL DETAILS                | 78 |

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sas.com/en/Terms-and-Conditions.aspx">http://www.sas.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sas.com/en/Terms-and-Conditions/Terms-eDocument.aspx">http://www.sas.com/en/Terms-and-Conditions/Terms-eDocument.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions; if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



Report No.: SZEM161201074804 Page: 5 of 78

### 5 General Information

### 5.1 Client Information

| Applicant:               | LG Electronics Mobile Comm USA                                                                          |
|--------------------------|---------------------------------------------------------------------------------------------------------|
| Address of Applicant:    | 1000 Sylvan Avenue Englewood Cliffs,NJ 07632                                                            |
| Manufacturer:            | Huaqin Telecom Technology Co. Ltd.                                                                      |
| Address of Manufacturer: | No.1 Building,399 Keyuan Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai, China                |
| Factory:                 | Dong Guan Huabel Electronic Technology Co.,Ltd                                                          |
| Address of Factory:      | No.9 Industrial Northern Road, National High-Tech Industrial Development Zone, SongShan Lake, Dong Guan |

### 5.2 General Description of EUT

| Make the second                                       |
|-------------------------------------------------------|
| Mobile Handset                                        |
| LG-X230Z, LG-X230YK                                   |
| LG                                                    |
| IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz            |
| IEEE 802.11n(HT40): 2422MHz to 2452MHz                |
| IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels        |
| IEEE 802.11n HT40: 7 Channels                         |
| 5MHz                                                  |
| IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK)               |
| IEEE for 802.11g : OFDM(64QAM, 16QAM, QPSK, BPSK)     |
| IEEE for 802.11n(HT20 and HT40) : OFDM (64QAM, 16QAM, |
| QPSK,BPSK)                                            |
| Portable Device                                       |
| PIFA                                                  |
| -1.8dBi                                               |
| DC3.85V (1 x 3.85V Rechargeable battery) 2500mAh      |
| Battery: Charge by DC 5V                              |
| Model:MCS-02WR2                                       |
| Input: AC100-240V 50/60Hz 0.2A                        |
| Output:DC5.0V 0.85A                                   |
|                                                       |

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sas.com/en/Terms-and-Conditions.aspx">http://www.sas.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sas.com/en/Terms-and-Conditions/Terms-eDocument.aspx">http://www.sas.com/en/Terms-and-Conditions/Terms-eDocument.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions; if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



Report No.: SZEM161201074804 Page: 6 of 78

| Operation Frequency each of channel(802.11b/g/n HT20) |       |           |           |                 |         |     |        |       |    |           |
|-------------------------------------------------------|-------|-----------|-----------|-----------------|---------|-----|--------|-------|----|-----------|
| Channel                                               | Fr    | equency   | Channe    | I Frequency     | Channel | Fre | quency | Chann | el | Frequency |
| 1                                                     | 24    | 412MHz    | 4         | 2427MHz         | 7       | 244 | 42MHz  | 10    |    | 2457MHz   |
| 2                                                     | 24    | 417MHz    | 5         | 2432MHz         | 8       | 244 | 47MHz  | 11    |    | 2462MHz   |
| 3                                                     | 24    | 422MHz    | 6         | 2437MHz         | 9       | 24  | 52MHz  |       |    |           |
| Operation F                                           | Frequ | ency each | of channe | el(802.11n HT40 | )       |     |        |       |    |           |
| Channe                                                |       | Frequ     | ency      | Channel         | Frequen | су  | Chan   | nel   |    | Frequency |
| 3                                                     |       | 24221     | MHz       | 6               | 2437MH  | Ηz  | 9      |       |    | 2452MHz   |
| 4                                                     |       | 24271     | MHz       | 7               | 2442MH  | Ηz  |        |       |    |           |
| 5                                                     |       | 24321     | MHz       | 8               | 2447MF  | Ηz  |        |       |    |           |

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

For 802.11b/g/n (HT20):

| Channel             | Frequency |
|---------------------|-----------|
| The Lowest channel  | 2412MHz   |
| The Middle channel  | 2437MHz   |
| The Highest channel | 2462MHz   |

For 802.11n (HT40):

| Channel             | Frequency |
|---------------------|-----------|
| The Lowest channel  | 2422MHz   |
| The Middle channel  | 2437MHz   |
| The Highest channel | 2452MHz   |



Report No.: SZEM161201074804 Page: 7 of 78

### 5.3 Test Environment and Mode

| Operating Environment: |                                                                                          |  |  |
|------------------------|------------------------------------------------------------------------------------------|--|--|
| Temperature:           | 25.0 °C                                                                                  |  |  |
| Humidity:              | 50 % RH                                                                                  |  |  |
| Atmospheric Pressure:  | 1010 mbar                                                                                |  |  |
| Test mode:             |                                                                                          |  |  |
| Transmitting mode:     | Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate. |  |  |

### 5.4 Description of Support Units

The EUT has been tested independent unit.

### 5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

### 5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

#### • A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

#### • VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

#### • FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

#### Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions/Terms-an



Report No.: SZEM161201074804 Page: 8 of 78

### 5.7 Deviation from Standards

None.

### **5.8 Abnormalities from Standard Conditions**

None.

### 5.9 Other Information Requested by the Customer

None.

### 5.10 Measurement Uncertainty (95% confidence levels, k=2)

| No. | Item                            | Measurement Uncertainty |
|-----|---------------------------------|-------------------------|
| 1   | Total RF power, conducted       | 0.75dB                  |
| 2   | RF power density, conducted     | 2.84dB                  |
| 3   | Spurious emissions, conducted   | 0.75dB                  |
|     |                                 | 4.5dB (30MHz-1GHz)      |
| 4   | Radiated Spurious emission test | 4.8dB (1GHz-25GHz)      |
| 5   | Conduct emission test           | 3.12 dB(9KHz- 30MHz)    |
| 6   | Temperature test                | 1°C                     |
| 7   | Humidity test                   | 3%                      |
| 8   | DC and low frequency voltages   | 0.5%                    |



Report No.: SZEM161201074804 Page: 9 of 78

### 5.11 Equipment List

|      | Conducted Emission |                                                 |                     |                           |                                 |            |  |
|------|--------------------|-------------------------------------------------|---------------------|---------------------------|---------------------------------|------------|--|
| Item | Test Equipment     | uipment Manufacturer Model No. Inventory<br>No. |                     | Cal. date<br>(yyyy-mm-dd) | Cal.Due<br>date<br>(yyyy-mm-dd) |            |  |
| 1    | Shielding Room     | ZhongYu Electron                                | GB-88               | SEM001-06                 | 2016-05-13                      | 2017-05-13 |  |
| 2    | LISN               | Rohde & Schwarz                                 | ENV216              | SEM007-01                 | 2016-10-09                      | 2017-10-09 |  |
| 3    | LISN               | ETS-LINDGREN                                    | 3816/2              | SEM007-02                 | 2016-04-25                      | 2017-04-25 |  |
| 4    | 8 Line ISN         | Fischer Custom<br>Communications Inc.           | FCC-TLISN-<br>T8-02 | EMC0120                   | 2016-09-28                      | 2017-09-28 |  |
| 5    | 4 Line ISN         | Fischer Custom<br>Communications Inc.           | FCC-TLISN-<br>T4-02 | EMC0121                   | 2016-09-28                      | 2017-09-28 |  |
| 6    | 2 Line ISN         | Fischer Custom<br>Communications Inc.           | FCC-TLISN-<br>T2-02 | EMC0122                   | 2016-09-28                      | 2017-09-28 |  |
| 7    | EMI Test Receiver  | Rohde & Schwarz                                 | ESCI                | SEM004-02                 | 2016-04-25                      | 2017-04-25 |  |
| 8    | DC Power Supply    | Zhao Xin                                        | RXN-305D            | SEM011-02                 | 2016-10-09                      | 2017-10-09 |  |

|      | RF connected test |                         |           |               |                           |                              |
|------|-------------------|-------------------------|-----------|---------------|---------------------------|------------------------------|
| Item | Test Equipment    | Manufacturer            | Model No. | Inventory No. | Cal. date<br>(yyyy-mm-dd) | Cal.Due date<br>(yyyy-mm-dd) |
| 1    | DC Power Supply   | ZhaoXin                 | RXN-305D  | SEM011-02     | 2016-10-09                | 2017-10-09                   |
| 2    | Spectrum Analyzer | Rohde &<br>Schwarz      | FSP       | SEM004-06     | 2016-10-17                | 2017-10-17                   |
| 3    | Signal Generator  | Rohde &<br>Schwarz      | SML03     | SEM006-02     | 2016-04-25                | 2017-04-25                   |
| 4    | Power Meter       | Agilent<br>Technologies | N1914A    | W008-02       | 2016-06-27                | 2017-06-27                   |
| 5    | Power Sensor      | Agilent<br>Technologies | U2021XA   | SEM009-01     | 2016-10-09                | 2017-10-09                   |



Report No.: SZEM161201074804 Page: 10 of 78

|      | RE in Chamber                     |                         |           |                  |                           |                              |
|------|-----------------------------------|-------------------------|-----------|------------------|---------------------------|------------------------------|
| Item | Test Equipment                    | Manufacturer            | Model No. | Inventory<br>No. | Cal. date<br>(yyyy-mm-dd) | Cal.Due date<br>(yyyy-mm-dd) |
| 1    | 3m Semi-Anechoic<br>Chamber       | ETS-LINDGREN            | N/A       | SEM001-01        | 2016-05-13                | 2017-05-13                   |
| 2    | EMI Test Receiver                 | Agilent<br>Technologies | N9038A    | SEM004-05        | 2016-09-16                | 2016-09-16                   |
| 3    | BiConiLog Antenna<br>(26-3000MHz) | ETS-LINDGREN            | 3142C     | SEM003-01        | 2014-11-01                | 2017-11-01                   |
| 4    | Double-ridged horn<br>(1-18GHz)   | ETS-LINDGREN            | 3117      | SEM003-11        | 2015-10-17                | 2018-10-17                   |
| 5    | Horn Antenna<br>(18-26GHz)        | ETS-LINDGREN            | 3160      | SEM003-12        | 2014-11-24                | 2017-11-24                   |
| 6    | Pre-amplifier<br>(0.1-1300MHz)    | Agilent<br>Technologies | 8447D     | SEM005-01        | 2016-04-25                | 2017-04-25                   |
| 7    | Band filter                       | Amindeon                | Asi 3314  | SEM023-01        | N/A                       | N/A                          |
| 8    | DC Power Supply                   | Zhao Xin                | RXN-305D  | SEM011-02        | 2016-10-09                | 2017-10-09                   |
| 9    | Loop Antenna                      | Beijing Daze            | ZN30401   | SEM003-09        | 2015-05-13                | 2018-05-13                   |

|      | RE in Chamber                         |                         |           |               |                           |                               |
|------|---------------------------------------|-------------------------|-----------|---------------|---------------------------|-------------------------------|
| Item | Test Equipment                        | Manufacturer            | Model No. | Inventory No. | Cal. Date<br>(yyyy-mm-dd) | Cal. Due date<br>(yyyy-mm-dd) |
| 1    | 10m Semi-Anechoic<br>Chamber          | SAEMC                   | FSAC1018  | SEM001-03     | 2016-05-13                | 2017-05-13                    |
| 2    | EMI Test Receiver<br>(9k-7GHz)        | Rohde & Schwarz         | ESR       | SEM004-03     | 2016-04-25                | 2017-04-25                    |
| 3    | Trilog-Broadband<br>Antenna(30M-1GHz) | Schwarzbeck             | VULB9168  | SEM003-18     | 2016-06-29                | 2019-06-29                    |
| 4    | Pre-amplifier                         | Sonoma Instrument<br>Co | 310N      | SEM005-03     | 2016-07-06                | 2017-07-06                    |
| 5    | .Loop Antenna                         | ETS-Lindgren            | 6502      | SEM003-08     | 2015-08-14                | 2018-08-14                    |



Report No.: SZEM161201074804 Page: 11 of 78

|      | RE in Chamber                     |                         |                           |                  |                           |                              |
|------|-----------------------------------|-------------------------|---------------------------|------------------|---------------------------|------------------------------|
| Item | Test Equipment                    | Manufacturer            | Model No.                 | Inventory<br>No. | Cal. date<br>(yyyy-mm-dd) | Cal.Due date<br>(yyyy-mm-dd) |
| 1    | 3m Semi-Anechoic<br>Chamber       | AUDIX                   | N/A                       | SEM001-02        | 2016-05-13                | 2017-05-13                   |
| 2    | EMI Test Receiver                 | Rohde & Schwarz         | ESIB26                    | SEM004-04        | 2016-04-25                | 2017-04-25                   |
| 3    | BiConiLog Antenna<br>(26-3000MHz) | ETS-Lindgren            | 3142C                     | SEM003-02        | 2014-11-15                | 2017-11-15                   |
| 4    | Amplifier<br>(0.1-1300MHz)        | HP                      | 8447D                     | SEM005-02        | 2016-10-09                | 2017-10-09                   |
| 5    | Horn Antenna<br>(1-18GHz)         | Rohde & Schwarz         | HF907                     | SEM003-07        | 2015-06-14                | 2018-06-14                   |
| 6    | Low Noise Amplifier               | Black Diamond<br>Series | BDLNA-<br>0118-<br>352810 | SEM005-05        | 2016-10-09                | 2017-10-09                   |
| 7    | Band filter                       | Amindeon                | Asi 3314                  | SEM023-01        | N/A                       | N/A                          |



Report No.: SZEM161201074804 Page: 12 of 78

### 6 Test results and Measurement Data

### 6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

#### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -1.8dBi.



Report No.: SZEM161201074804 Page: 13 of 78

| Test Requirement:     | 47 CFR Part 15C Section 15.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Test Method:          | ANSI C63.10: 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Test Frequency Range: | 150kHz to 30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Limit (d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BuV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                       | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Limit:                | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66 to 56*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56 to 46*                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Linint.               | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                       | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                       | * Decreases with the logarithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n of the frequency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Test Procedure:       | <ol> <li>The mains terminal disturb<br/>room.</li> <li>The EUT was connected to<br/>Impedance Stabilization Ne<br/>impedance. The power cat<br/>connected to a second LIS<br/>plane in the same way as t<br/>multiple socket outlet strip<br/>single LISN provided the ra</li> <li>The tabletop EUT was place<br/>ground reference plane. An<br/>placed on the horizontal gr</li> <li>The test was performed wi<br/>of the EUT shall be 0.4 m f<br/>vertical ground reference p<br/>reference plane. The LISN<br/>unit under test and bonded<br/>mounted on top of the grou<br/>between the closest points<br/>the EUT and associated ec</li> <li>In order to find the maximu<br/>equipment and all of the in<br/>ANSI C63.10: 2013 on con</li> </ol> | b AC power source thro<br>etwork) which provides<br>oles of all other units of<br>N 2, which was bonded<br>the LISN 1 for the unit b<br>was used to connect m<br>ating of the LISN was no<br>ced upon a non-metallic<br>nd for floor-standing arr<br>ound reference plane,<br>th a vertical ground refer<br>from the vertical ground<br>blane was bonded to the<br>1 was placed 0.8 m fro<br>to a ground reference<br>und reference plane. The<br>of the LISN 1 and the l<br>quipment was at least 0<br>im emission, the relativi-<br>terface cables must be | ugh a LISN 1 (Line<br>a $50\Omega/50\mu$ H + $5\Omega$ linea<br>the EUT were<br>d to the ground reference<br>being measured. A<br>sultiple power cables to<br>ot exceeded.<br>table 0.8m above the<br>angement, the EUT wat<br>erence plane. The rear<br>d reference plane. The rear<br>d reference plane. The<br>e horizontal ground<br>om the boundary of the<br>plane for LISNs<br>his distance was<br>EUT. All other units of<br>0.8 m from the LISN 2.<br>e positions of |  |

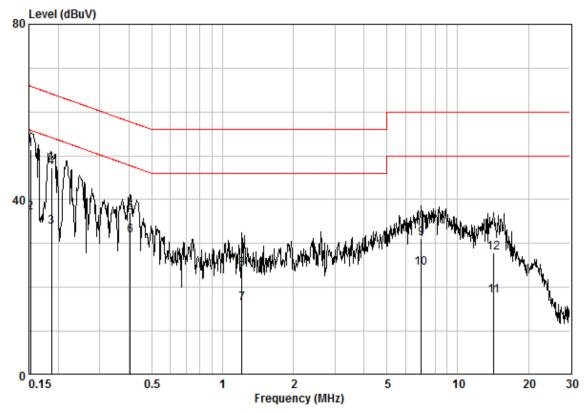
### 6.2 Conducted Emissions



Report No.: SZEM161201074804 Page: 14 of 78

| Test Setup:            | Shielding Room<br>Test Receiver<br>Test |  |  |  |  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Exploratory Test Mode: | Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                        | Charge + Transmitting mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                        | Through Pre-scan, find the 1Mbps of rate of 802.11b at lowest channel is the worst case.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Final Test Mode:       | Charge + Transmitting mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                        | Only the worst case is recorded in the report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Instruments Used:      | Refer to section 5.10 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Test Results:          | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |




Report No.: SZEM161201074804 Page: 15 of 78

#### **Measurement Data**

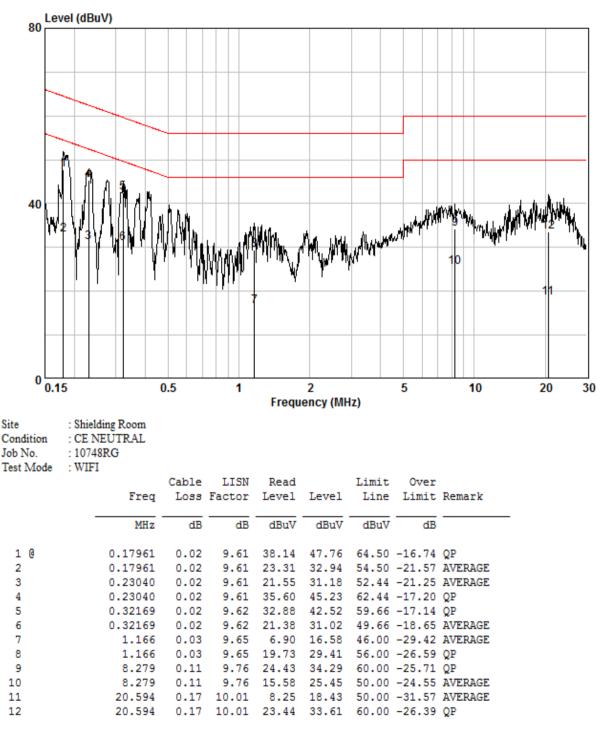
An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:



Site : Shielding Room Condition : CE LINE Job No. : 10748RG Test Mode : WIFI


|    |   | Freq    | Cable<br>Loss | LISN<br>Factor | Read<br>Level |       | Limit<br>Line | Over<br>Limit | Remark  |
|----|---|---------|---------------|----------------|---------------|-------|---------------|---------------|---------|
|    |   | MHz     | dB            | dB             | dBuV          | dBuV  | dBuV          | dB            |         |
| 1  | 0 | 0.15240 | 0.02          | 9.59           | 41.79         | 51.40 | 65.87         | -14.47        | QP      |
| 2  |   | 0.15240 | 0.02          | 9.59           | 27.53         | 37.14 | 55.87         | -18.73        | AVERAGE |
| 3  |   | 0.18738 | 0.02          | 9.60           | 24.21         | 33.83 | 54.15         | -20.33        | AVERAGE |
| 4  |   | 0.18738 | 0.02          | 9.60           | 37.74         | 47.36 | 64.15         | -16.80        | QP      |
| 5  |   | 0.40400 | 0.02          | 9.60           | 27.50         | 37.12 | 57.77         | -20.65        | QP      |
| 6  | 0 | 0.40400 | 0.02          | 9.60           | 22.28         | 31.90 | 47.77         | -15.87        | AVERAGE |
| 7  |   | 1.210   | 0.03          | 9.61           | 6.65          | 16.28 | 46.00         | -29.72        | AVERAGE |
| 8  |   | 1.210   | 0.03          | 9.61           | 14.65         | 24.29 | 56.00         | -31.71        | QP      |
| 9  |   | 6.988   | 0.08          | 9.68           | 21.36         | 31.11 | 60.00         | -28.89        | QP      |
| 10 |   | 6.988   | 0.08          | 9.68           | 14.70         | 24.46 | 50.00         | -25.54        | AVERAGE |
| 11 |   | 14.213  | 0.16          | 9.75           | 8.21          | 18.12 | 50.00         | -31.88        | AVERAGE |
| 12 |   | 14.213  | 0.16          | 9.75           | 17.91         | 27.82 | 60.00         | -32.18        | QP      |

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sg.com/en/Terms-and-Conditions.aspx">http://www.sg.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sg.com/en/Terms-and-Conditions.Terms-e-Document.aspx">http://www.sg.com/en/Terms-and-Conditions.Terms-e-Document.aspx</a>, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is drawn to take the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document is unalvertian of forders may be produced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



Report No.: SZEM161201074804 Page: 16 of 78

Neutral Line:



Notes:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.



Report No.: SZEM161201074804 Page: 17 of 78

### 6.3 Conducted Peak Output Power

| Test Requirement:      | 47 CFR Part 15C Section 15.247 (b)(3)                                                                                                                |  |  |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Test Method:           | ANSI C63.10 :2013 Section 11.9.1.3                                                                                                                   |  |  |  |
| Test Setup:            | POWER METER E.U.T<br>Non-Conducted Table<br>Ground Reference Plane<br>Remark:<br>Offset the High-Frequency cable loss 1dB in the power meter.        |  |  |  |
| Test Instruments:      | Refer to section 5.10 for details                                                                                                                    |  |  |  |
| Exploratory Test Mode: | Transmitting with all kind of modulations, data rates                                                                                                |  |  |  |
|                        | Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;                                                                               |  |  |  |
| Final Test Mode:       | 6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20);13.5Mbps of rate is the worst case of 802.11n(HT40). |  |  |  |
| Limit:                 | 30dBm                                                                                                                                                |  |  |  |
| Test Results:          | Pass                                                                                                                                                 |  |  |  |



Report No.: SZEM161201074804 Page: 18 of 78

#### **Measurement Data**

|              | 802.11b mode            |             |        |  |  |  |
|--------------|-------------------------|-------------|--------|--|--|--|
| Test channel | Peak Output Power (dBm) | Limit (dBm) | Result |  |  |  |
| Lowest       | 19.01                   | 30.00       | Pass   |  |  |  |
| Middle       | 19.50                   | 30.00       | Pass   |  |  |  |
| Highest      | 19.48                   | 30.00       | Pass   |  |  |  |
|              | 802.11g mo              | de          |        |  |  |  |
| Test channel | Peak Output Power (dBm) | Limit (dBm) | Result |  |  |  |
| Lowest       | 21.39                   | 30.00       | Pass   |  |  |  |
| Middle       | 21.93                   | 30.00       | Pass   |  |  |  |
| Highest      | 22.11                   | 30.00       | Pass   |  |  |  |
|              | 802.11n(HT20)           | mode        |        |  |  |  |
| Test channel | Peak Output Power (dBm) | Limit (dBm) | Result |  |  |  |
| Lowest       | 21.62                   | 30.00       | Pass   |  |  |  |
| Middle       | 22.25                   | 30.00       | Pass   |  |  |  |
| Highest      | 22.12                   | 30.00       | Pass   |  |  |  |
|              | 802.11n(HT40)           | mode        |        |  |  |  |
| Test channel | Peak Output Power (dBm) | Limit (dBm) | Result |  |  |  |
| Lowest       | 21.43                   | 30.00       | Pass   |  |  |  |
| Middle       | 22.02                   | 30.00       | Pass   |  |  |  |
| Highest      | 22.30                   | 30.00       | Pass   |  |  |  |



**Test Results:** 

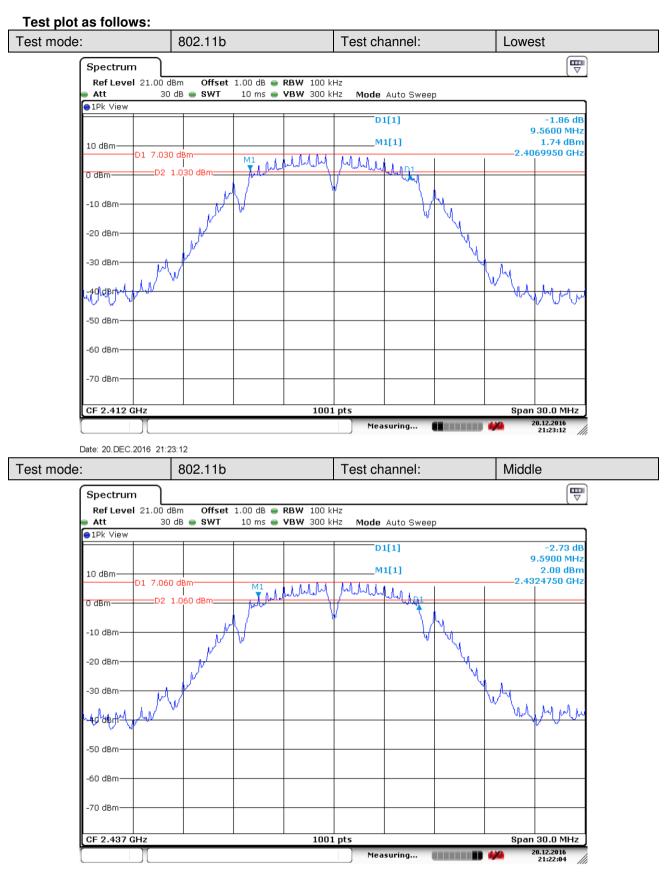
# SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM161201074804 Page: 19 of 78

#### **Test Requirement:** 47 CFR Part 15C Section 15.247 (a)(2) Test Method: ANSI C63.10: 2013 Section 11.8.1 Option 1 Spectrum Analyzer E.U.T c. Test Setup: Non-Conducted Table Ground Reference Plane Instruments Used: Refer to section 5.10 for details Exploratory Test Mode: Transmitting with all kind of modulations, data rates Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst Final Test Mode: case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40). Limit: ≥ 500 kHz

Pass

### 6.4 6dB Occupy Bandwidth

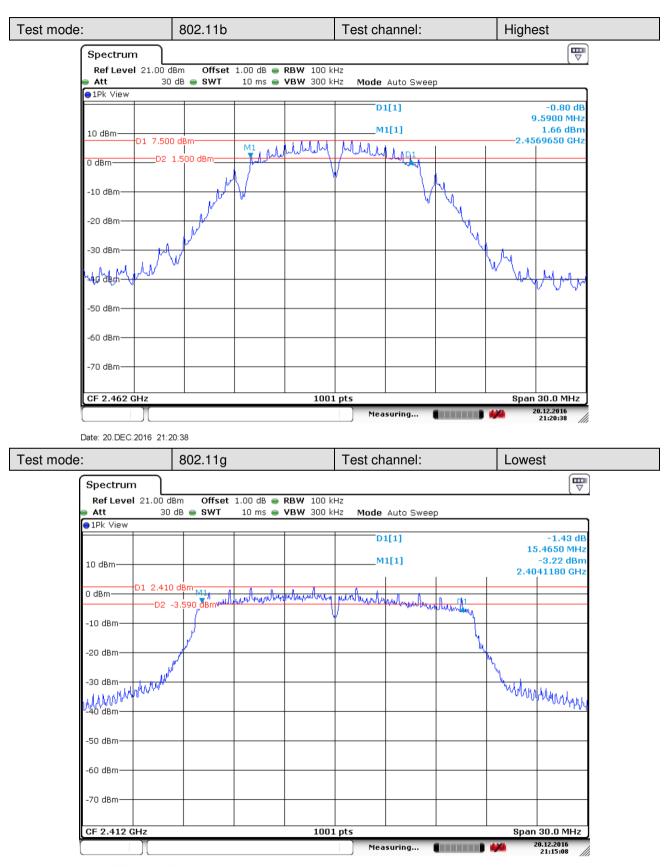



Report No.: SZEM161201074804 Page: 20 of 78

|              | 802.11b mode               |             |        |  |  |  |  |
|--------------|----------------------------|-------------|--------|--|--|--|--|
| Test channel | 6dB Occupy Bandwidth (MHz) | Limit (kHz) | Result |  |  |  |  |
| Lowest       | 9.56                       | ≥500        | Pass   |  |  |  |  |
| Middle       | 9.59                       | ≥500        | Pass   |  |  |  |  |
| Highest      | 9.59                       | ≥500        | Pass   |  |  |  |  |
|              | 802.11g mode               |             |        |  |  |  |  |
| Test channel | 6dB Occupy Bandwidth (MHz) | Limit (kHz) | Result |  |  |  |  |
| Lowest       | 15.47                      | ≥500        | Pass   |  |  |  |  |
| Middle       | 15.73                      | ≥500        | Pass   |  |  |  |  |
| Highest      | 15.50                      | ≥500        | Pass   |  |  |  |  |
|              | 802.11n(HT20) mode         |             |        |  |  |  |  |
| Test channel | 6dB Occupy Bandwidth (MHz) | Limit (kHz) | Result |  |  |  |  |
| Lowest       | 16.09                      | ≥500        | Pass   |  |  |  |  |
| Middle       | 16.15                      | ≥500        | Pass   |  |  |  |  |
| Highest      | 16.09                      | ≥500        | Pass   |  |  |  |  |
|              | 802.11n(HT40) mode         |             |        |  |  |  |  |
| Test channel | 6dB Occupy Bandwidth (MHz) | Limit (kHz) | Result |  |  |  |  |
| Lowest       | 35.49                      | ≥500        | Pass   |  |  |  |  |
| Middle       | 35.54                      | ≥500        | Pass   |  |  |  |  |
| Highest      | 35.19                      | ≥500        | Pass   |  |  |  |  |



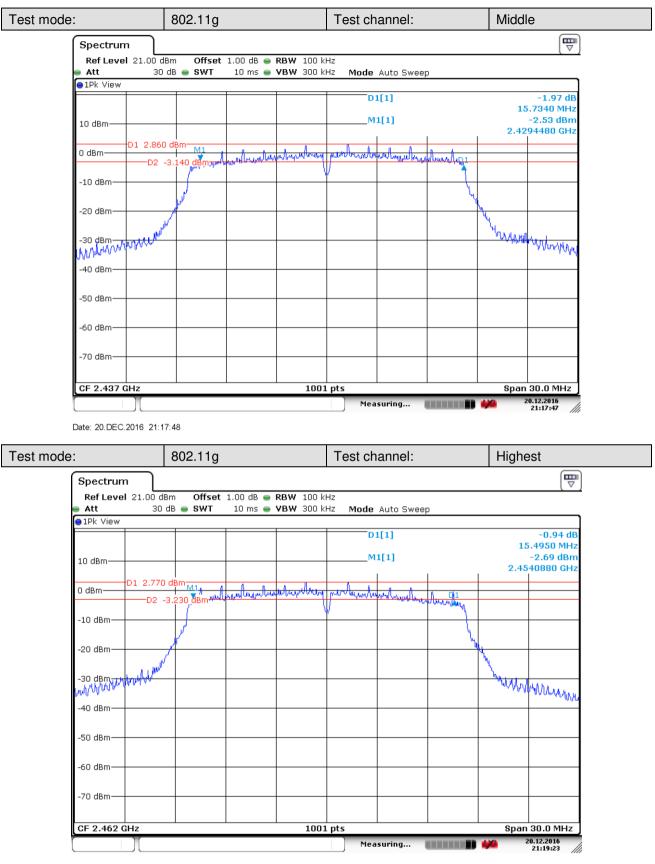
Report No.: SZEM161201074804 Page: 21 of 78




Date: 20.DEC.2016 21:22:05

This document is issued by the Company subject to its General Conditions of Service printed overleat, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-enDocument.aspx">http://www.sgs.com/en/Terms-and-Conditions/Terms-enDocument.aspx</a>, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is drawn to that on any within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

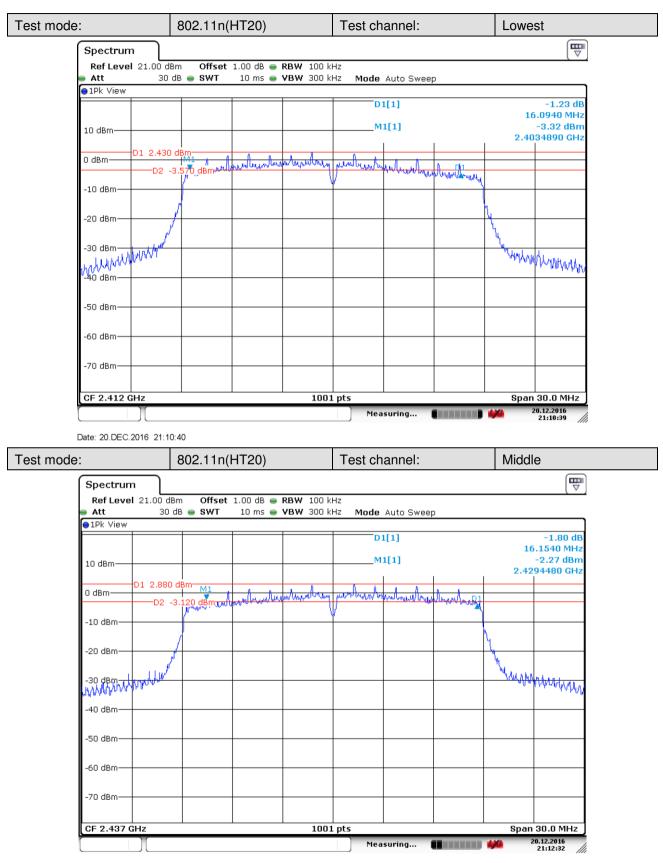



Report No.: SZEM161201074804 Page: 22 of 78



Date: 20.DEC.2016 21:15:09

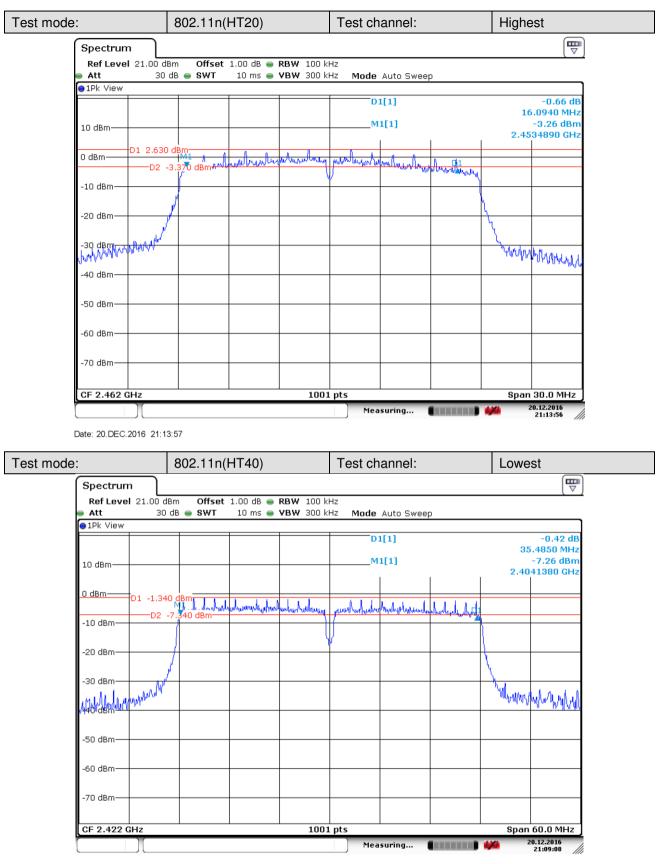



Report No.: SZEM161201074804 Page: 23 of 78



Date: 20.DEC.2016 21:19:23

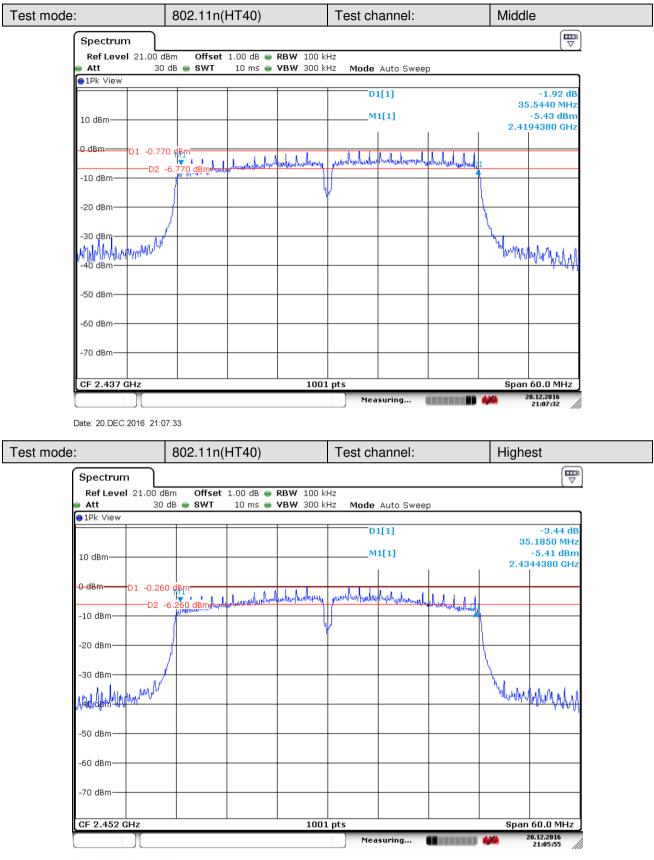



Report No.: SZEM161201074804 Page: 24 of 78



Date: 20.DEC.2016 21:12:32




Report No.: SZEM161201074804 Page: 25 of 78



Date: 20.DEC.2016 21:09:08



Report No.: SZEM161201074804 Page: 26 of 78



Date: 20.DEC.2016 21:05:56

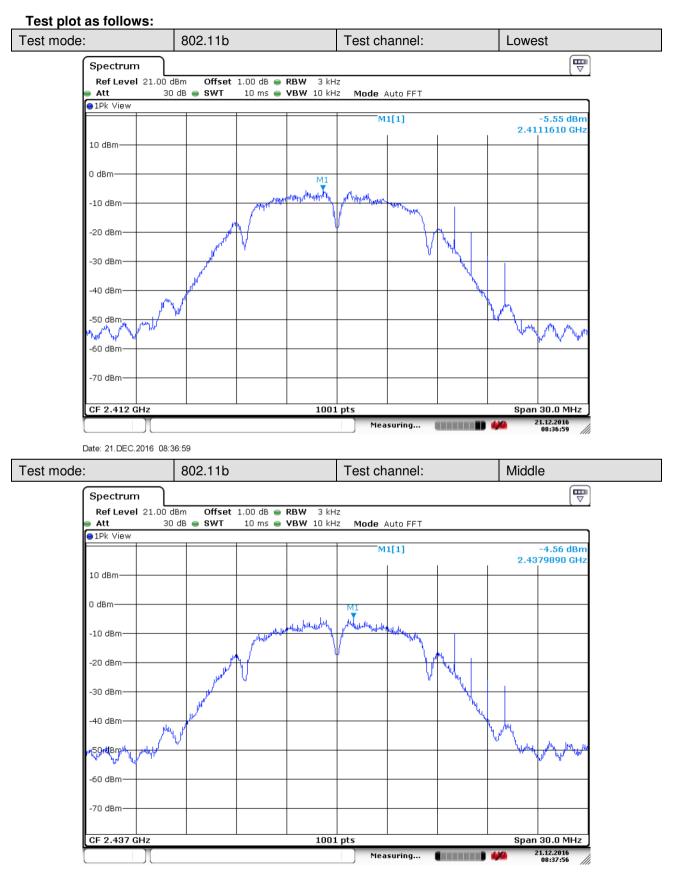


Report No.: SZEM161201074804 Page: 27 of 78

| Test Requirement:      | 47 CFR Part 15C Section 15.247 (e)                                                                                                                                                                                                                                                                                              |  |  |  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Test Method:           | ANSI C63.10 :2013 Section 11.10.2                                                                                                                                                                                                                                                                                               |  |  |  |
| Test Setup:            | Spectrum Analyzer         Image: Spectrum Analyzer         Image: Spectrum Analyzer         Image: Spectrum Analyzer         Image: Spectrum Analyzer         Spectrum Analyzer         Image: Spectrum Analyzer         Spectrum Analyzer         Image: Spectrum Analyzer         Spectrum Analyzer         Spectrum Analyzer |  |  |  |
| Test Instruments:      | Refer to section 5.10 for details                                                                                                                                                                                                                                                                                               |  |  |  |
| Exploratory Test Mode: | Transmitting with all kind of modulations, data rates                                                                                                                                                                                                                                                                           |  |  |  |
| Final Test Mode:       | Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;<br>6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20);13.5Mbps of rate is the worst case of 802.11n(HT40).                                                                                                  |  |  |  |
| Limit:                 | ≤8.00dBm/3kHz                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Test Results:          | Pass                                                                                                                                                                                                                                                                                                                            |  |  |  |

### 6.5 Power Spectral Density

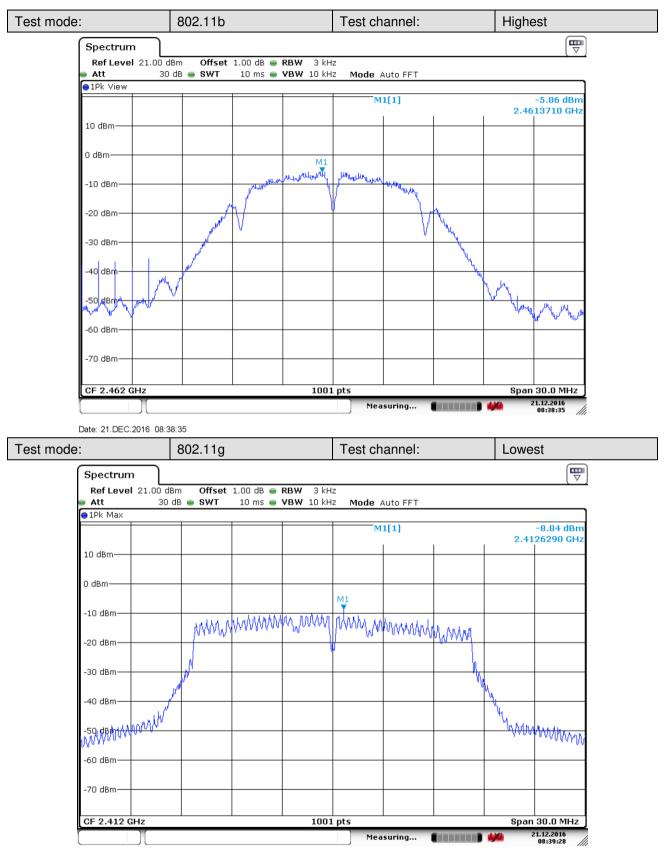



Report No.: SZEM161201074804 Page: 28 of 78

#### **Measurement Data**

| 802.11b mode       |                                   |                  |        |  |  |  |  |
|--------------------|-----------------------------------|------------------|--------|--|--|--|--|
| Test channel       | Power Spectral Density (dBm/3kHz) | Limit (dBm/3kHz) | Result |  |  |  |  |
| Lowest             | -5.55                             | ≤8.00            | Pass   |  |  |  |  |
| Middle             | -4.56                             | ≤8.00            | Pass   |  |  |  |  |
| Highest            | -5.86                             | ≤8.00            | Pass   |  |  |  |  |
|                    | 802.11g mode                      |                  |        |  |  |  |  |
| Test channel       | Power Spectral Density (dBm/3kHz) | Limit (dBm/3kHz) | Result |  |  |  |  |
| Lowest             | -8.84                             | ≤8.00            | Pass   |  |  |  |  |
| Middle             | -9.59                             | ≤8.00            | Pass   |  |  |  |  |
| Highest            | -8.89                             | ≤8.00            | Pass   |  |  |  |  |
|                    | 802.11n(HT20) mode                |                  |        |  |  |  |  |
| Test channel       | Power Spectral Density (dBm/3kHz) | Limit (dBm/3kHz) | Result |  |  |  |  |
| Lowest             | -10.45                            | ≤8.00            | Pass   |  |  |  |  |
| Middle             | -9.22                             | ≤8.00            | Pass   |  |  |  |  |
| Highest            | -9.71                             | ≤8.00            | Pass   |  |  |  |  |
| 802.11n(HT40) mode |                                   |                  |        |  |  |  |  |
| Test channel       | Power Spectral Density (dBm/3kHz) | Limit (dBm/3kHz) | Result |  |  |  |  |
| Lowest             | -14.30                            | ≤8.00            | Pass   |  |  |  |  |
| Middle             | -13.22                            | ≤8.00            | Pass   |  |  |  |  |
| Highest            | -13.67                            | ≤8.00            | Pass   |  |  |  |  |

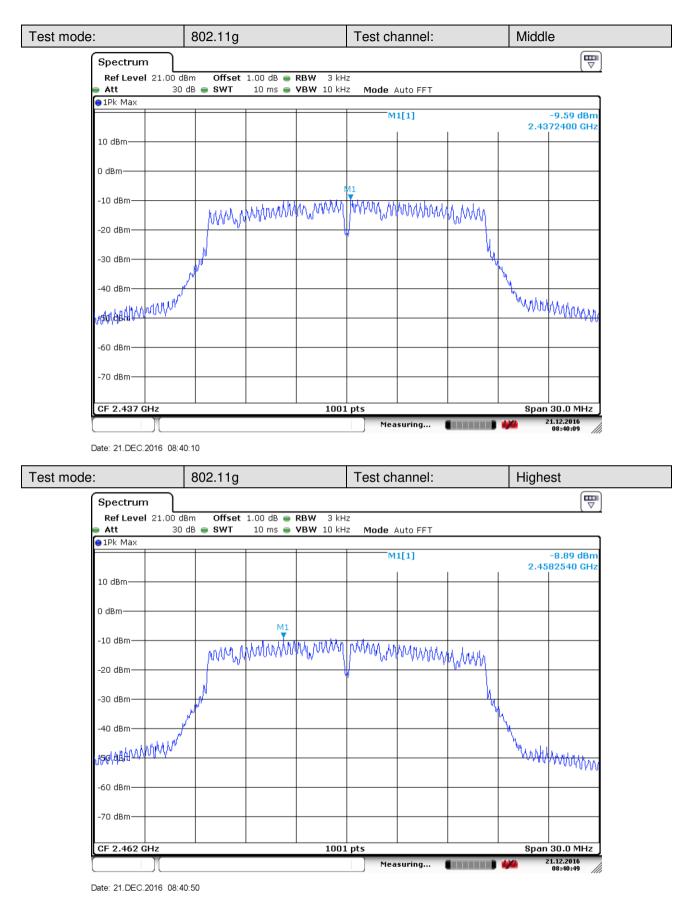



Report No.: SZEM161201074804 Page: 29 of 78



Date: 21.DEC.2016 08:37:56




Report No.: SZEM161201074804 Page: 30 of 78



Date: 21.DEC.2016 08:39:28



Report No.: SZEM161201074804 Page: 31 of 78





Report No.: SZEM161201074804 Page: 32 of 78

| ode:                                                                                 | 802.11n(HT20)                                                                                     | Т                            | Test channel:                                             |      |                | st                          |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------|------|----------------|-----------------------------|
| Spectrum                                                                             |                                                                                                   | ·                            |                                                           |      |                |                             |
| Ref Level 21.00 d                                                                    |                                                                                                   |                              |                                                           |      |                | ( )                         |
| Att 30                                                                               | ) dB 🖷 SWT 10 ms 🖷 V                                                                              | BM IN KHZ                    | Mode Auto FFT                                             |      |                |                             |
|                                                                                      |                                                                                                   |                              | M1[1]                                                     |      |                | 10.45 dBm                   |
| 10 dBm                                                                               |                                                                                                   |                              |                                                           |      | 2.41           | 13710 GHz                   |
|                                                                                      |                                                                                                   |                              |                                                           |      |                |                             |
| 0 dBm                                                                                |                                                                                                   |                              |                                                           |      |                |                             |
| 10 40-                                                                               |                                                                                                   | м1                           |                                                           |      |                |                             |
| -10 dBm                                                                              | NAMANAMANA                                                                                        | ANNANA M                     | WARA ARABARA                                              |      |                |                             |
| -20 dBm                                                                              | 1989391984.00                                                                                     | · .                          | * 10.100000004                                            | MMMM |                |                             |
|                                                                                      |                                                                                                   | ľ                            |                                                           |      |                |                             |
| -30 dBm                                                                              | N I I I I I I I I I I I I I I I I I I I                                                           |                              |                                                           |      |                |                             |
| -40 dBm                                                                              | N                                                                                                 |                              |                                                           |      | <u>h</u>       |                             |
| · · · · · · · · · · · · · · · · · · ·                                                |                                                                                                   |                              |                                                           |      | Y.             |                             |
| 1759.4800 AMALAN                                                                     |                                                                                                   |                              |                                                           |      | - 'yaana       | MARANA                      |
|                                                                                      |                                                                                                   |                              |                                                           |      |                |                             |
| -60 dBm                                                                              |                                                                                                   |                              |                                                           |      |                |                             |
| -70 dBm                                                                              |                                                                                                   |                              |                                                           |      |                |                             |
|                                                                                      |                                                                                                   |                              |                                                           |      |                |                             |
|                                                                                      |                                                                                                   |                              |                                                           |      | - Cnan         | 00.0.00                     |
| CF 2.412 GHz                                                                         | 41:39                                                                                             | 1001 pt                      |                                                           |      | -              | 30.0 MHz                    |
|                                                                                      | 41:39<br>802.11n(HT20)                                                                            |                              |                                                           |      | -              | 1.12.2016<br>08:41:39       |
| Date: 21.DEC.2016 08:4                                                               |                                                                                                   |                              | Measuring                                                 |      | 2 <sup>2</sup> | e                           |
| Date: 21.DEC.2016 08:4<br>ode:<br>Spectrum<br>Ref Level 21.00 d                      | 802.11n(HT20)                                                                                     | <b>Т</b><br>в <b>w</b> з kнz | Measuring                                                 |      | 2 <sup>2</sup> | 1.12.2016<br>08:41:39       |
| Date: 21.DEC.2016 08:4<br>Ode:<br>Spectrum<br>Ref Level 21.00 d<br>Att 30            | 802.11n(HT20)                                                                                     | <b>Т</b><br>в <b>w</b> з kнz | Measuring                                                 |      | 2 <sup>2</sup> | e                           |
| Date: 21.DEC.2016 08:4<br>ode:<br>Spectrum<br>Ref Level 21.00 d                      | 802.11n(HT20)                                                                                     | <b>Т</b><br>в <b>w</b> з kнz | Measuring                                                 |      | Middl          | e<br>-9.22 dBm              |
| Date: 21.DEC.2016 08:4<br>ode:<br>Spectrum<br>Ref Level 21.00 d<br>Att 30<br>1Pk Max | 802.11n(HT20)                                                                                     | <b>Т</b><br>в <b>w</b> з kнz | Measuring<br><b>Fest channel:</b><br>Mode Auto FFT        |      | Middl          | e                           |
| Date: 21.DEC.2016 08:4<br>Ode:<br>Spectrum<br>Ref Level 21.00 d<br>Att 30            | 802.11n(HT20)                                                                                     | <b>Т</b><br>в <b>w</b> з kнz | Measuring<br><b>Fest channel:</b><br>Mode Auto FFT        |      | Middl          | e<br>-9.22 dBm              |
| Date: 21.DEC.2016 08:4<br>ode:<br>Spectrum<br>Ref Level 21.00 d<br>Att 30<br>1Pk Max | 802.11n(HT20)                                                                                     | <b>Т</b><br>в <b>w</b> з kнz | Measuring<br><b>Fest channel:</b><br>Mode Auto FFT        |      | Middl          | e<br>-9.22 dBm              |
| Date: 21.DEC.2016 08:4                                                               | 802.11n(HT20)         dBm       Offset 1.00 dB       R         0 dB       SWT       10 ms       V | BW 3 kHz<br>BW 10 kHz<br>M1  | Measuring<br>Test channel:<br>Mode Auto FFT<br>M1[1]      |      | Middl          | e<br>-9.22 dBm              |
| Date: 21.DEC.2016 08:4                                                               | 802.11n(HT20)         dBm       Offset 1.00 dB       R         0 dB       SWT       10 ms       V | BW 3 kHz<br>BW 10 kHz<br>M1  | Measuring<br>Test channel:<br>Mode Auto FFT<br>M1[1]      |      | Middl          | e<br>-9.22 dBm              |
| Date: 21.DEC.2016 08:4                                                               | 802.11n(HT20)                                                                                     | BW 3 kHz<br>BW 10 kHz<br>M1  | Measuring<br>Test channel:<br>Mode Auto FFT<br>M1[1]      |      | Middl          | e<br>-9.22 dBm              |
| Date: 21.DEC.2016 08:4                                                               | 802.11n(HT20)         dBm       Offset 1.00 dB       R         0 dB       SWT       10 ms       V | BW 3 kHz<br>BW 10 kHz<br>M1  | Measuring<br>Test channel:<br>Mode Auto FFT<br>M1[1]      |      | Middl          | e<br>-9.22 dBm              |
| Date: 21.DEC.2016 08:4                                                               | 802.11n(HT20)         dBm       Offset 1.00 dB       R         0 dB       SWT       10 ms       V | BW 3 kHz<br>BW 10 kHz<br>M1  | Measuring<br>Test channel:<br>Mode Auto FFT<br>M1[1]      |      | Middl          | e<br>-9.22 dBm              |
| Date: 21.DEC.2016 08:4                                                               | 802.11n(HT20)                                                                                     | BW 3 kHz<br>BW 10 kHz<br>M1  | Measuring<br>Test channel:<br>Mode Auto FFT<br>M1[1]      |      | 2.43           | E<br>-9.22 dBm<br>57410 GHz |
| Date: 21.DEC.2016 08:4                                                               | 802.11n(HT20)                                                                                     | BW 3 kHz<br>BW 10 kHz<br>M1  | Measuring<br>Test channel:<br>Mode Auto FFT<br>M1[1]      |      | 2.43           | E<br>-9.22 dBm<br>57410 GHz |
| Date: 21.DEC.2016 08:4                                                               | 802.11n(HT20)                                                                                     | BW 3 kHz<br>BW 10 kHz<br>M1  | Measuring<br>Test channel:<br>Mode Auto FFT<br>M1[1]      |      | 2.43           | e<br>-9.22 dBm              |
| Date: 21.DEC.2016 08:4                                                               | 802.11n(HT20)                                                                                     | BW 3 kHz<br>BW 10 kHz<br>M1  | Measuring  Test channel:  Mode Auto FFT  M1[1]            |      | 2.43           | E<br>-9.22 dBm<br>57410 GHz |
| Date: 21.DEC.2016 08:4                                                               | 802.11n(HT20)                                                                                     | BW 3 kHz<br>BW 10 kHz<br>M1  | Measuring  Test channel:  Mode Auto FFT  M1[1]            |      | 2.43           | E<br>-9.22 dBm<br>57410 GHz |
| Date: 21.DEC.2016 08:4                                                               | 802.11n(HT20)                                                                                     | BW 3 kHz<br>BW 10 kHz<br>M1  | Measuring  Test channel:  Mode Auto FFT  M1[1]            |      | 2.43           | E<br>-9.22 dBm<br>57410 GHz |
| Date: 21.DEC.2016 08:4                                                               | 802.11n(HT20)                                                                                     | BW 3 kHz<br>BW 10 kHz<br>M1  | Measuring  Test channel:  Mode Auto FFT  M1[1]            |      | 2.43           | E<br>-9.22 dBm<br>57410 GHz |
| Date: 21.DEC.2016 08:4                                                               | 802.11n(HT20)                                                                                     | BW 3 kHz<br>BW 10 kHz<br>M1  | Measuring  Fest channel:  Mode Auto FFT  M1[1]  MMMMMMMMM |      | 2.43           | E<br>-9.22 dBm<br>57410 GHz |

Date: 21.DEC.2016 08:42:34

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sas.com/en/Terms-and-Conditions.aspx">http://www.sas.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sas.com/en/Terms-and-Conditions/Terms-eDocument.aspx">http://www.sas.com/en/Terms-and-Conditions/Terms-eDocument.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions; if any. The Company's sole responsibility is to its Client and this document dos not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



Report No.: SZEM161201074804 Page: 33 of 78

| est mode: 802. |                                                                                                                                                         |                       | .11n(ŀ        | n(HT20) Te           |                         |           | Test channel: |        |                    | Highest                             |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|----------------------|-------------------------|-----------|---------------|--------|--------------------|-------------------------------------|--|
| (              | Spectrum                                                                                                                                                | )                     |               |                      |                         |           |               |        | •                  |                                     |  |
|                | Ref Level 21.0<br>Att                                                                                                                                   | 0 dBm (<br>30 dB 👄 \$ |               | 1.00 dB 👄            | RBW 3 kH:<br>VBW 10 kH: |           | Auto FFT      |        |                    |                                     |  |
| _              | 1Pk Max                                                                                                                                                 |                       |               | 10 113               | TOWN TO KIL             |           |               |        |                    |                                     |  |
|                |                                                                                                                                                         |                       |               |                      |                         | м         | 1[1]          |        | 2.46               | -9.71 dBm<br>01120 GHz              |  |
| 1              | 10 dBm                                                                                                                                                  |                       |               |                      |                         |           |               |        |                    |                                     |  |
|                | a da sa                                                                                                                                                 |                       |               |                      |                         |           |               |        |                    |                                     |  |
| U              | ) dBm                                                                                                                                                   |                       |               |                      | M1                      |           |               |        |                    |                                     |  |
| -              | -10 dBm                                                                                                                                                 |                       |               | 14 6.0 8 8.0 6.0 1   | www                     | ΝΑΛΛΙΑ ΑΗ |               |        |                    |                                     |  |
|                | 20 dBm                                                                                                                                                  | NW                    | VVYWV         | <i>ΥΝΝθα</i> άζην    | a Monoral               |           | in a second   | Mindia |                    |                                     |  |
|                |                                                                                                                                                         |                       |               |                      | '                       | U         |               |        |                    |                                     |  |
| -:             | -30 dBm                                                                                                                                                 | f                     |               |                      |                         |           |               |        | 4                  |                                     |  |
|                | .40 dBm                                                                                                                                                 |                       |               |                      |                         |           |               |        | 4                  |                                     |  |
|                | spreaghter www                                                                                                                                          | W .                   |               |                      |                         |           |               |        | Madhar             | k                                   |  |
| M.             | \$PASH V                                                                                                                                                |                       |               |                      |                         |           |               |        | <u>م</u> ر) ه را ا | Antonio                             |  |
| -1             | -60 dBm                                                                                                                                                 |                       |               |                      |                         |           |               |        |                    |                                     |  |
|                | 70 dbr-                                                                                                                                                 |                       |               |                      |                         |           |               |        |                    |                                     |  |
| -              | -70 dBm                                                                                                                                                 |                       |               |                      |                         |           |               |        |                    |                                     |  |
| C              | CF 2.462 GHz                                                                                                                                            |                       |               |                      | 1001                    | pts       |               |        | Span               | 30.0 MHz                            |  |
|                | Ĭ                                                                                                                                                       |                       |               |                      |                         | Mea       | suring        |        | <b>444</b> 2       | 21.12.2016<br>08:43:26              |  |
|                |                                                                                                                                                         |                       |               |                      |                         |           |               |        |                    | 08:43:26                            |  |
|                | ate: 21.DEC.2016 (                                                                                                                                      |                       | 110/4         |                      |                         |           |               |        |                    |                                     |  |
| est mode:      |                                                                                                                                                         |                       | .11n(ŀ        | HT40)                |                         | Test ch   |               |        | Lowe               | st                                  |  |
| est mode:      | Spectrum                                                                                                                                                | 802.                  | ,             |                      | PRW 314                 | Test ch   |               |        | Lowe               |                                     |  |
| est mode:      | Spectrum<br>Ref Level 21.0<br>Att                                                                                                                       | 802.                  | Offset :      | 1.00 dB 👄            | RBW 3 kH<br>VBW 10 kH   | Test ch   |               |        | Lowe               | st                                  |  |
| est mode:      | Spectrum<br>Ref Level 21.0                                                                                                                              | 802.                  | Offset :      | 1.00 dB 👄            |                         | Test ch   | annel:        |        |                    | st                                  |  |
| est mode:      | Spectrum<br>Ref Level 21.0<br>Att<br>01Pk Max                                                                                                           | 802.                  | Offset :      | 1.00 dB 👄            |                         | Test ch   | annel:        |        | -                  | st                                  |  |
| est mode:      | Spectrum<br>Ref Level 21.0<br>Att                                                                                                                       | 802.                  | Offset :      | 1.00 dB 👄            |                         | Test ch   | annel:        |        | -                  | st<br>( ▼<br>14.30 dBm              |  |
| est mode:      | Spectrum<br>Ref Level 21.0<br>Att<br>01Pk Max                                                                                                           | 802.                  | Offset :      | 1.00 dB 👄            |                         | Test ch   | annel:        |        | -                  | st<br>( ▼<br>14.30 dBm              |  |
| est mode:      | Spectrum<br>Ref Level 21.0<br>Att<br>10 dBm                                                                                                             | 802.                  | Offset :      | 1.00 dB 👄            |                         | Test ch   | annel:        |        | -                  | st<br>( ▼<br>14.30 dBm              |  |
| est mode:      | Spectrum<br>Ref Level 21.0<br>Att<br>)1Pk Max                                                                                                           | 802.<br>30 dB • 5     | Offset<br>SWT | 1.00 dB 👄<br>10 ms 🖷 | <b>VBW</b> 10 kH        | Test ch   | annel:        |        | -                  | st<br>( ▼<br>14.30 dBm              |  |
| est mode:      | Spectrum<br>Ref Level 21.0<br>Att<br>10 dBm                                                                                                             | 802.<br>30 dB • 5     | Offset<br>SWT | 1.00 dB 👄<br>10 ms 🖷 |                         | Test ch   | annel:        |        | -                  | st<br>( ▼<br>14.30 dBm              |  |
| est mode:      | Spectrum<br>Ref Level 21.0<br>Att<br>10 dBm<br>10 dBm<br>10 dBm                                                                                         | 802.<br>30 dB • 5     | Offset<br>SWT | 1.00 dB 👄<br>10 ms 🖷 | <b>VBW</b> 10 kH        | Test ch   | annel:        |        | -                  | st<br>( ▼<br>14.30 dBm              |  |
| est mode:      | Spectrum           Ref Level 21.0           Att           1Pk Max           10 dBm           10 dBm           10 dBm           20 dBm                   | 802.<br>30 dB • 5     | Offset<br>SWT | 1.00 dB 👄<br>10 ms 🖷 | <b>VBW</b> 10 kH        | Test ch   | annel:        |        | -                  | st<br>( ▼<br>14.30 dBm              |  |
| est mode:      | Spectrum           Ref Level 21.0           Att           1Pk Max           10 dBm           10 dBm           10 dBm           20 dBm                   | 802.<br>30 dB • 5     | Offset<br>SWT | 1.00 dB 👄<br>10 ms 🖷 | <b>VBW</b> 10 kH        | Test ch   | annel:        |        | -                  | st<br>( ▼<br>14.30 dBm              |  |
| est mode:      | Spectrum           Ref Level 21.0           Att           11Pk Max           10 dBm           10 dBm           20 dBm           30 dBm           40 dBm | 802.                  | Offset<br>SWT | 1.00 dB 👄<br>10 ms 🖷 | <b>VBW</b> 10 kH        | Test ch   | annel:        |        | 2.43               | St<br>(♥)<br>14.30 dBm<br>07510 GHz |  |
| est mode:      | Spectrum           Ref Level         21.0           Att         21.0           1Pk Max         30           10 dBm         30           -10 dBm         | 802.                  | Offset<br>SWT | 1.00 dB 👄<br>10 ms 🖷 | <b>VBW</b> 10 kH        | Test ch   | annel:        |        | 2.43               | st<br>( ▼<br>14.30 dBm              |  |
| est mode:      | Spectrum           Ref Level 21.0           Att           11Pk Max           10 dBm           10 dBm           20 dBm           30 dBm           40 dBm | 802.                  | Offset<br>SWT | 1.00 dB 👄<br>10 ms 🖷 | <b>VBW</b> 10 kH        | Test ch   | annel:        |        | 2.43               | St<br>(♥)  14.30 dBm 07510 GHz      |  |
| est mode:      | Spectrum           Ref Level         21.0           Att         21.0           1Pk Max         30           10 dBm         30           -10 dBm         | 802.                  | Offset<br>SWT | 1.00 dB 👄<br>10 ms 🖷 | <b>VBW</b> 10 kH        | Test ch   | annel:        |        | 2.43               | St<br>(♥)  14.30 dBm 07510 GHz      |  |
| est mode:      | Spectrum           Ref Level         21.0           Att                                                                                                 | 802.                  | Offset<br>SWT | 1.00 dB 👄<br>10 ms 🖷 | <b>VBW</b> 10 kH        | Test ch   | annel:        |        | 2.43               | St<br>(♥)  14.30 dBm 07510 GHz      |  |
| est mode:      | Spectrum           Ref Level         21.0           Att                                                                                                 | 802.                  | Offset<br>SWT | 1.00 dB 👄<br>10 ms 🖷 | <b>VBW</b> 10 kH        | Test ch   | annel:        |        | 2.43               | St<br>(♥)  14.30 dBm 07510 GHz      |  |

Date: 21.DEC.2016 08:44:28

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sas.com/en/Terms-and-Conditions.aspx">http://www.sas.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sas.com/en/Terms-and-Conditions/Terms-eDocument.aspx">http://www.sas.com/en/Terms-and-Conditions/Terms-eDocument.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions; if any. The Company's sole responsibility is to its Client and this document dos not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



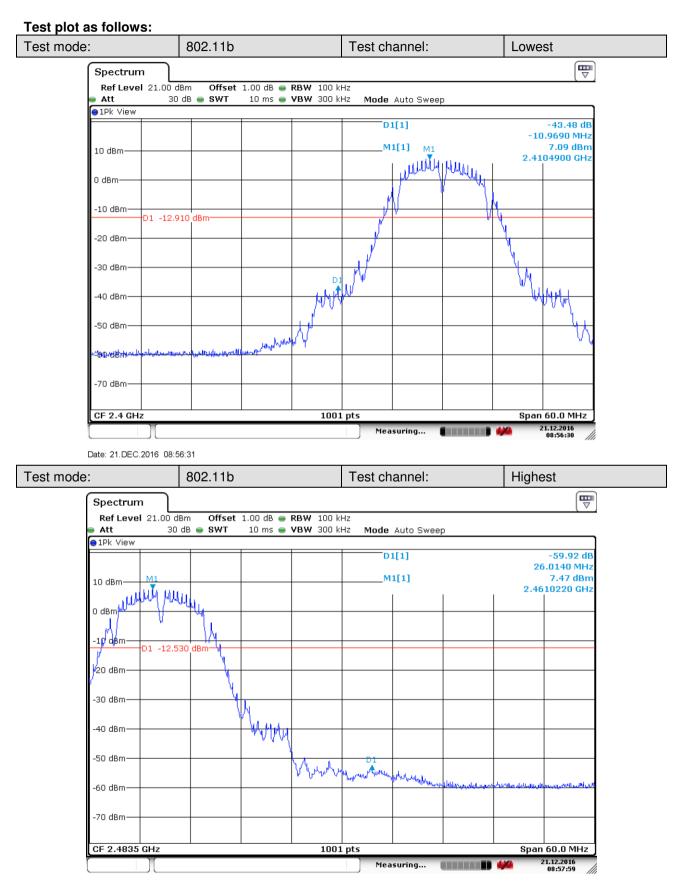
Report No.: SZEM161201074804 Page: 34 of 78

| Test mode:                                                                                                                                                                                                 | 802.11n(HT40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Test channel:                     | Middle                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------|
| Spectrum                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                |
|                                                                                                                                                                                                            | dBm Offset 1.00 dB 👄 RB<br>I dB 👄 SWT 10 ms 👄 VB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                |
| 1Pk Max                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | 10.00.10                       |
|                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1[1]                             | -13.22 dBm<br>2.4357410 GHz    |
| 10 dBm                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                |
| 0 dBm                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                |
| -10 dBm-                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1                                |                                |
|                                                                                                                                                                                                            | A the stand and the stand of th | wanala adultaraditi adultara      | Millitation and a              |
| -20 dBm                                                                                                                                                                                                    | Warden Wernen Anderen Instanten anderen an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   | 1 A L southal min to hind.     |
| -30 dBm                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ¥                                 |                                |
| -40 dBm                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                |
|                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | Mu.                            |
| winflut Alina under production                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | "Maktaryong waaring y day soon |
| -60 dBm                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | <u>nonit</u>                   |
| -70 dBm                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                |
|                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                |
| GF 2.437 GHz                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1001 pts<br>Measuring             | Span 60.0 MHz                  |
|                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | 08:45:15                       |
| Date: 21 DEC 2016_08/2                                                                                                                                                                                     | 45:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                                |
| Date: 21.DEC.2016_08;4                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T-1.1.1                           |                                |
| Test mode:                                                                                                                                                                                                 | <sup>45:15</sup><br>802.11n(HT40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Test channel:                     | Highest                        |
| Test mode:                                                                                                                                                                                                 | 802.11n(HT40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   | Highest                        |
| Test mode:<br>Spectrum<br>Ref Level 21.00 d<br>Att 30                                                                                                                                                      | 802.11n(HT40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W 3 kHz                           |                                |
| Test mode:<br>Spectrum<br>Ref Level 21.00 d                                                                                                                                                                | 802.11n(HT40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W 3 kHz                           | -13.67 dBm                     |
| Test mode:<br>Spectrum<br>Ref Level 21.00 d<br>Att 30                                                                                                                                                      | 802.11n(HT40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W 3 kHz<br>W 10 kHz Mode Auto FFT |                                |
| Test mode:<br>Spectrum<br>Ref Level 21.00 d<br>Att 30<br>10 dBm                                                                                                                                            | 802.11n(HT40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W 3 kHz<br>W 10 kHz Mode Auto FFT | -13.67 dBm                     |
| Test mode:<br>Spectrum<br>Ref Level 21.00 d<br>Att 30<br>PIPk Max                                                                                                                                          | 802.11n(HT40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W 3 kHz<br>W 10 kHz Mode Auto FFT | -13.67 dBm                     |
| Test mode:<br>Spectrum<br>Ref Level 21.00 d<br>Att 30<br>10 dBm                                                                                                                                            | 802.11n(HT40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W 3 kHz<br>W 10 kHz Mode Auto FFT | -13.67 dBm<br>2.4494830 GHz    |
| Test mode:<br>Spectrum<br>Ref Level 21.00 c<br>Att 30<br>1Pk Max<br>10 dBm<br>0 dBm                                                                                                                        | 802.11n(HT40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W 3 kHz<br>W 10 kHz Mode Auto FFT | -13.67 dBm<br>2.4494830 GHz    |
| Spectrum           Ref Level 21.00 d           Att         30           1Pk Max           0 dBm           -10 dBm           -20 dBm                                                                        | 802.11n(HT40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W 3 kHz<br>W 10 kHz Mode Auto FFT | -13.67 dBm<br>2.4494830 GHz    |
| Test mode:<br>Spectrum<br>Ref Level 21.00 o<br>Att 30<br>P1Pk Max<br>10 dBm<br>-10 dBm                                                                                                                     | 802.11n(HT40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W 3 kHz<br>W 10 kHz Mode Auto FFT | -13.67 dBm<br>2.4494830 GHz    |
| Spectrum           Ref Level 21.00 d           Att         30           1Pk Max           0 dBm           -10 dBm           -20 dBm                                                                        | 802.11n(HT40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W 3 kHz<br>W 10 kHz Mode Auto FFT | -13.67 dBm<br>2.4494830 GHz    |
| Spectrum           Ref Level 21.00 d           Att         30           1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                   | 802.11n(HT40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W 3 kHz<br>W 10 kHz Mode Auto FFT | -13.67 dBm<br>2.4494830 GHz    |
| Spectrum           Ref Level 21.00 d           Att         30           1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                   | 802.11n(HT40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W 3 kHz<br>W 10 kHz Mode Auto FFT | -13.67 dBm<br>2.4494830 GHz    |
| Spectrum           Ref Level 21.00 d           Att         30           1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                   | 802.11n(HT40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W 3 kHz<br>W 10 kHz Mode Auto FFT | -13.67 dBm<br>2.4494830 GHz    |
| Spectrum           Ref Level 21.00 d           Att         30           1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                   | 802.11n(HT40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W 3 kHz<br>W 10 kHz Mode Auto FFT | -13.67 dBm<br>2.4494830 GHz    |
| Spectrum           Ref Level 21.00 g           Att         30           1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm | 802.11n(HT40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W 3 kHz<br>W 10 kHz Mode Auto FFT | -13.67 dBm<br>2.4494830 GHz    |

Date: 21.DEC.2016 08:46:07

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sas.com/en/Terms-and-Conditions.aspx">http://www.sas.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sas.com/en/Terms-and-Conditions/Terms-eDocument.aspx">http://www.sas.com/en/Terms-and-Conditions/Terms-eDocument.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions; if any. The Company's sole responsibility is to its Client and this document dos not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

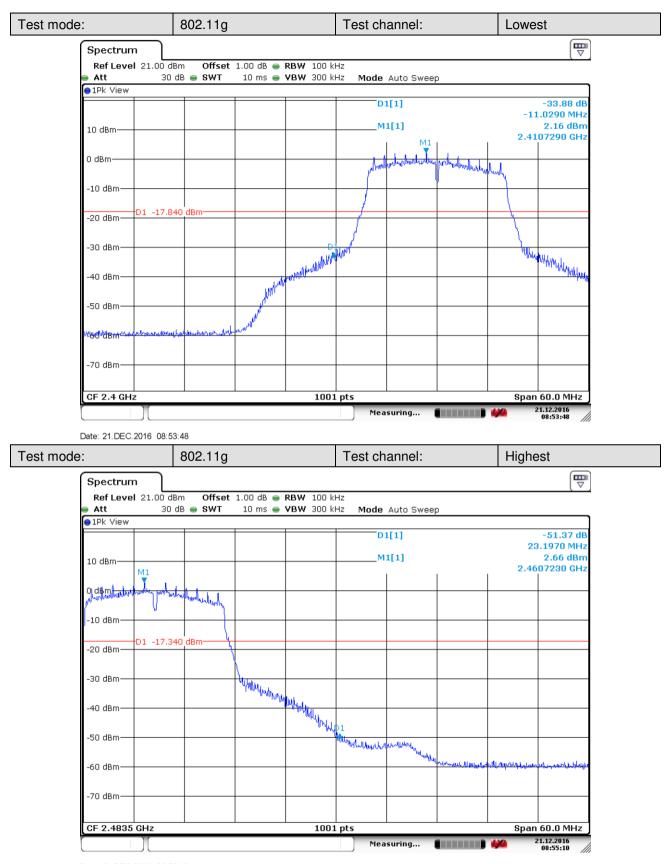



Report No.: SZEM161201074804 Page: 35 of 78

### 6.6 Band-edge for RF Conducted Emissions

| Test Requirement:      | 47 CFR Part 15C Section 15.247 (d)                                                                                                                   |  |  |  |  |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:           | ANSI C63.10: 2013 Section 11.13                                                                                                                      |  |  |  |  |  |
| Test Setup:            | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane<br>Remark:                                                               |  |  |  |  |  |
|                        | Offset the High-Frequency cable loss 1dB in the spectrum analyzer.                                                                                   |  |  |  |  |  |
| Exploratory Test Mode: | Transmitting with all kind of modulations, data rates                                                                                                |  |  |  |  |  |
|                        | Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;                                                                               |  |  |  |  |  |
| Final Test Mode:       | 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40). |  |  |  |  |  |
|                        | In any 100 kHz bandwidth outside the frequency band in which the spread                                                                              |  |  |  |  |  |
|                        | ectrum intentional radiator is operating, the radio frequency power that is                                                                          |  |  |  |  |  |
| Limit:                 | produced by the intentional radiator shall be at least 20 dB below that in the                                                                       |  |  |  |  |  |
| Liiiii.                | 100 kHz bandwidth within the band that contains the highest level of the                                                                             |  |  |  |  |  |
|                        | desired power, based on either an RF conducted or a radiated                                                                                         |  |  |  |  |  |
|                        | measurement.                                                                                                                                         |  |  |  |  |  |
| Instruments Used:      | Refer to section 5.10 for details                                                                                                                    |  |  |  |  |  |
| Test Results:          | Pass                                                                                                                                                 |  |  |  |  |  |

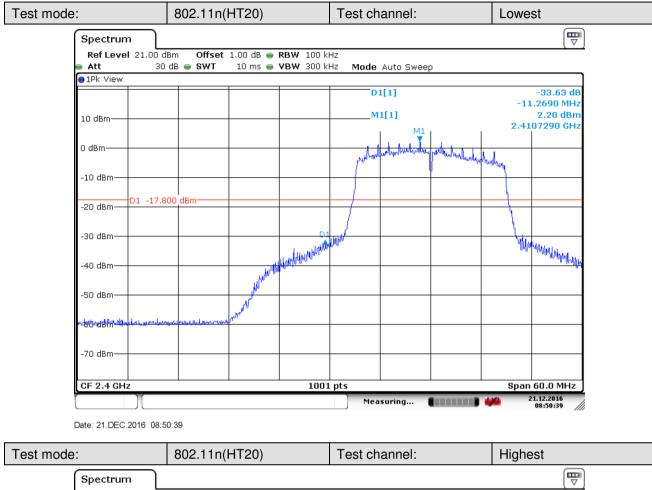


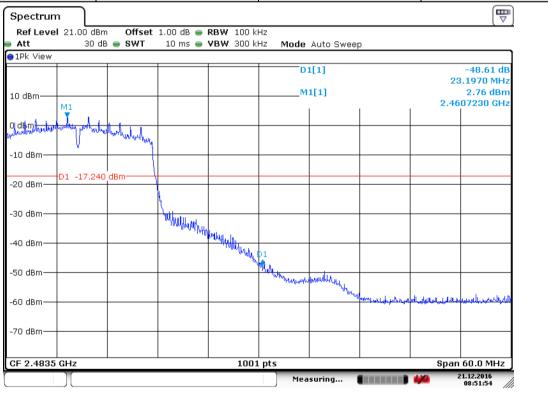

Report No.: SZEM161201074804 Page: 36 of 78



Date: 21.DEC.2016 08:58:00



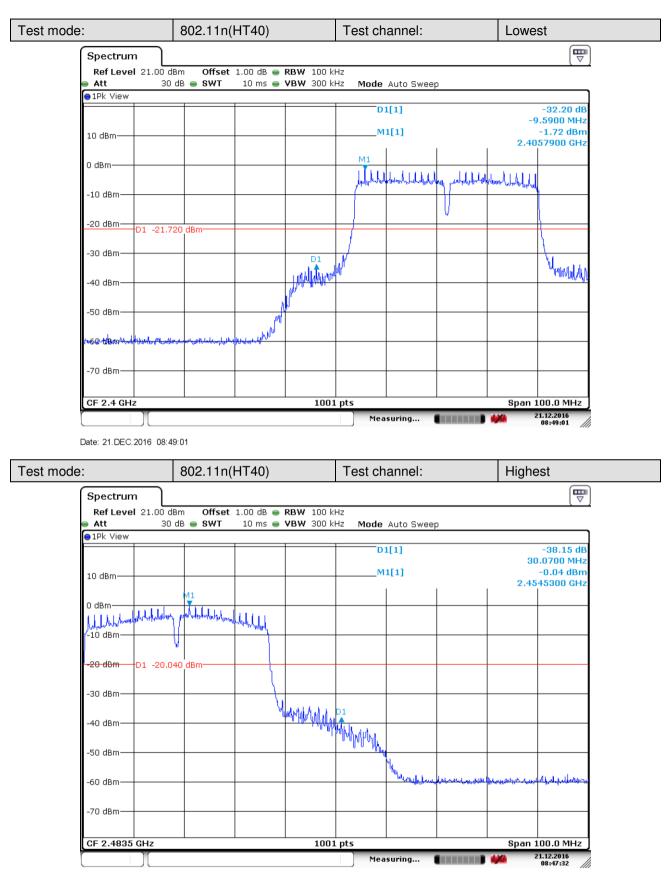

Report No.: SZEM161201074804 Page: 37 of 78




Date: 21.DEC.2016 08:55:10



Report No.: SZEM161201074804 Page: 38 of 78






Date: 21.DEC.2016 08:51:55

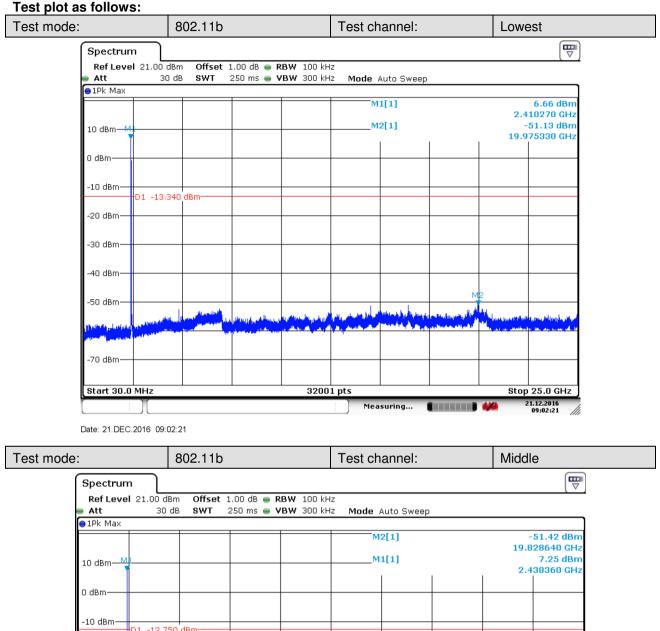


Report No.: SZEM161201074804 Page: 39 of 78



Date: 21.DEC.2016 08:47:32



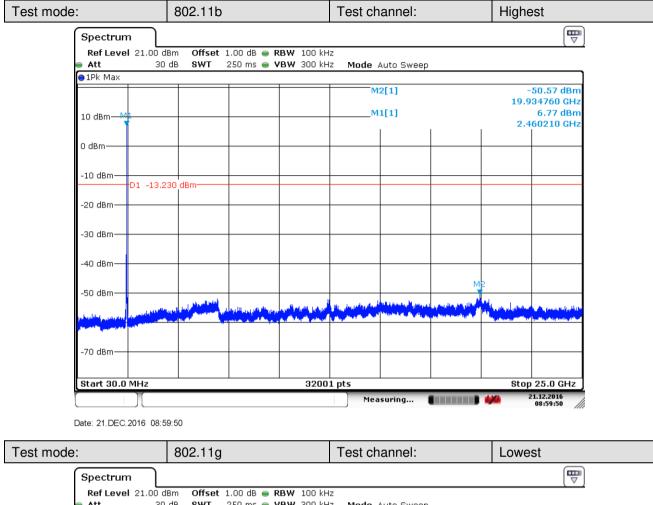

Report No.: SZEM161201074804 Page: 40 of 78

### 6.7 RF Conducted Spurious Emissions

| Test Requirement:      | 47 CFR Part 15C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Test Method:           | ANSI C63.10: 2013 Section 11.11                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| Test Setup:            | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane<br>Remark:<br>Offset the High-Frequency cable loss 1dB in the spectrum analyzer.                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Exploratory Test Mode: | Transmitting with all kind of modulations, data rates                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Final Test Mode:       | Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;<br>6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case<br>of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).                                                                                                                                                      |  |  |  |  |  |  |
| Limit:                 | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |  |
| Instruments Used:      | Refer to section 5.10 for details                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Test Results:          | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |



Report No.: SZEM161201074804 Page: 41 of 78

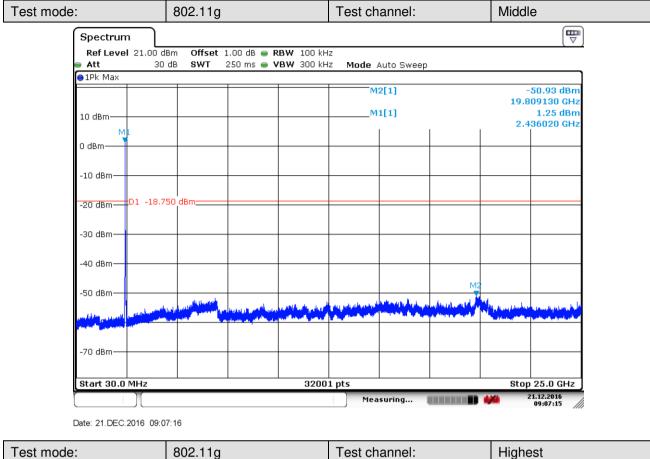



| 10 00111                  | D1 -12.750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dBm                   |                        |                      |                          |                                                                                                                |                                                                                                                  |                                          |                       |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------|----------------------|--------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------|
|                           | D1 -12.730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                        |                      |                          |                                                                                                                |                                                                                                                  |                                          |                       |
| -20 dBm—                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                        |                      |                          |                                                                                                                |                                                                                                                  |                                          |                       |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                        |                      |                          |                                                                                                                |                                                                                                                  |                                          |                       |
| -30 dBm—                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                        |                      |                          |                                                                                                                |                                                                                                                  |                                          |                       |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                        |                      |                          |                                                                                                                |                                                                                                                  |                                          |                       |
| -40 dBm—                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                        |                      |                          |                                                                                                                |                                                                                                                  |                                          |                       |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                        |                      |                          |                                                                                                                |                                                                                                                  |                                          |                       |
| -50 dBm—                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                        |                      |                          |                                                                                                                | M2                                                                                                               |                                          |                       |
|                           | والدر والعاليين                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and a strength of the | يبين وأوألك ومروق والم | a shouth paties      | ألكامية البيكاني من      | and all the state of the second                                                                                | , a literation of the second | an a | ويقدر والمريطون       |
| tered the physical sector | and the property of the second s | Land Contraction      |                        | and a set of the set | أصعالهم بالمودنان بالكرا | State of the second | alfores de la f                                                                                                  | A. Same and the state                    | talications also      |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                        |                      |                          |                                                                                                                |                                                                                                                  |                                          |                       |
| -70 dBm                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                        |                      |                          |                                                                                                                |                                                                                                                  |                                          |                       |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                        |                      |                          |                                                                                                                |                                                                                                                  |                                          |                       |
| Start 30.0                | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                        | 3200                 | 1 pts                    |                                                                                                                |                                                                                                                  | Stop                                     | 25.0 GHz              |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                        |                      | Mea                      | suring                                                                                                         |                                                                                                                  | 2                                        | 1.12.2016<br>09:01:14 |

Date: 21.DEC.2016 09:01:14



Report No.: SZEM161201074804 Page: 42 of 78




Att 30 dB SWT 250 ms 👄 **VBW** 300 kHz Mode Auto Sweep ⊖1Pk Max M2[1] -51.54 dBn 19.950370 GH; M1[1] 1.46 dBm 10 dBm 2.405590 GHz 0 dBm -10 dBm-D1 -18.540 dBm--20 dBm--30 dBm-40 dBm -50 dBm· -70 dBm-Start 30.0 MHz 32001 pts Stop 25.0 GHz 21.12.2016 Measuring... CONTRACTOR OF STREET, 09:05:01

Date: 21.DEC.2016 09:05:01



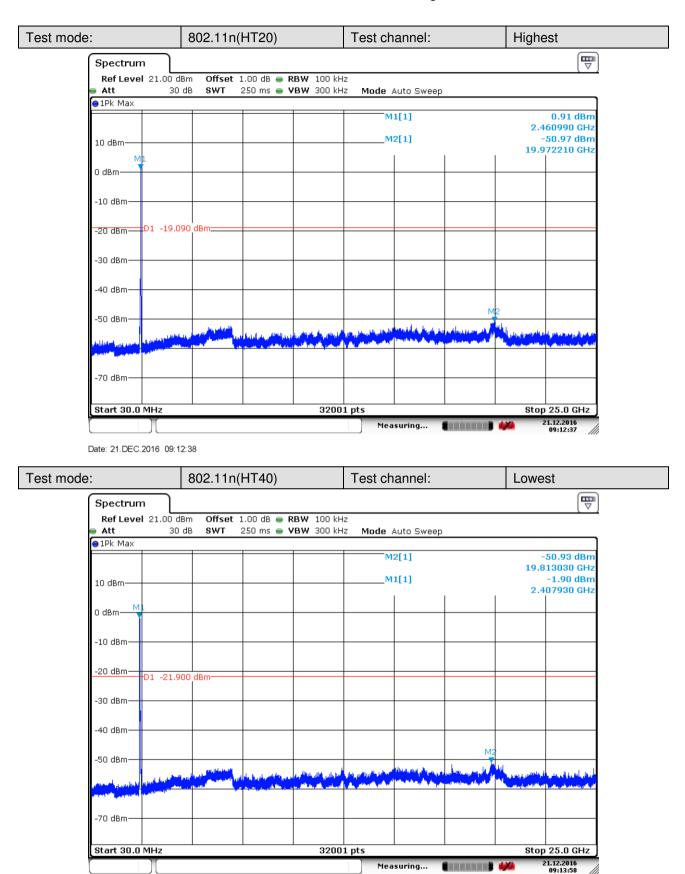
Report No.: SZEM161201074804 Page: 43 of 78



₩ Spectrum Ref Level 21.00 dBm Offset 1.00 dB 👄 RBW 100 kHz Att 30 dB SWT 250 ms 👄 **VBW** 300 kHz Mode Auto Sweep ⊖1Pk Max M2[1] -50.76 dBn 19.949590 GH M1[1] 2.08 dBm 10 dBm 2.463330 GHz 0 dBm -10 dBm dBm -17.920 -20 dBm--30 dBm· 40 dBm -50 dBm· -70 dBm· Start 30.0 MHz 32001 pts Stop 25.0 GHz 21.12.2016 Measuring... 09:08:22

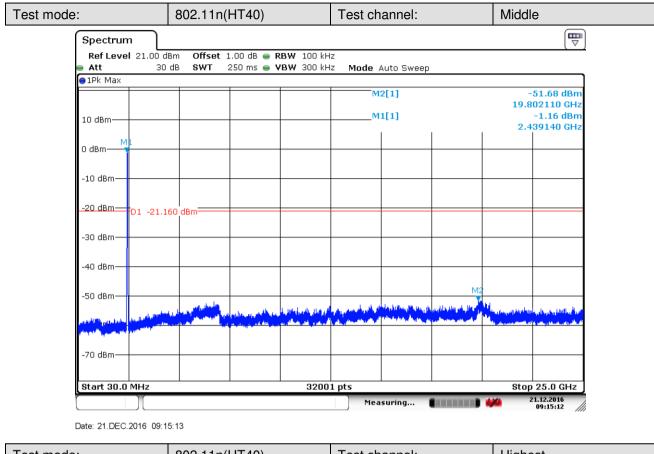
Date: 21.DEC.2016 09:08:22

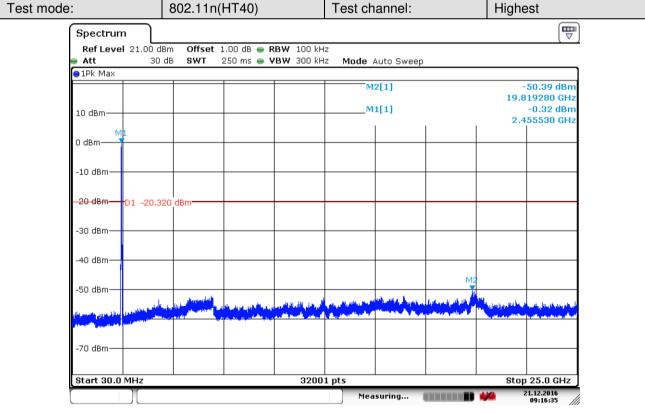



Report No.: SZEM161201074804 Page: 44 of 78

| Test mode:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 802.11n(HT20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Test channel:          | Lowest                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------|
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                         |
| Ref Level 21.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dBm Offset 1.00 dB 👄 RB<br>0 dB SWT 250 ms 👄 VB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                         |
| IPk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M2[1]                  | -50.70 dbm                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M2[1]                  | -50.72 dBm<br>19.799770 GHz<br>1.70 dBm |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 2.413390 GHz                            |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                         |
| -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                         |
| -20 dBm-D1 -18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .300 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                                         |
| -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                         |
| -30 UBII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                         |
| -40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                         |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                         |
| and the state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                         |
| -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                         |
| , e dom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                         |
| Start 30.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32001 pts<br>Measuring | Stop 25.0 GHz                           |
| Date: 21.DEC.2016 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | :09:39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | incusuring             | 09:09:39                                |
| Test mode:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 802.11n(HT20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Test channel:          | Middle                                  |
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ( - /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                                         |
| Ref Level 21.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dBm Offset 1.00 dB 👄 RB<br>0 dB SWT 250 ms 👄 VB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | ( • )                                   |
| IPk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | F0.45 dp                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M2[1]<br>M1[1]         | -50.15 dBm<br>19.813030 GHz<br>1.39 dBm |
| 10 dBm<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 2.436020 GHz                            |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                         |
| -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                         |
| -20 dBm-D1 -18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .610 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                         |
| -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                         |
| -40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                         |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in the second se |                        |                                         |
| dependent of the state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                         |

Date: 21.DEC.2016 09:11:05





Report No.: SZEM161201074804 Page: 45 of 78





Report No.: SZEM161201074804 Page: 46 of 78





Date: 21.DEC.2016 09:16:35

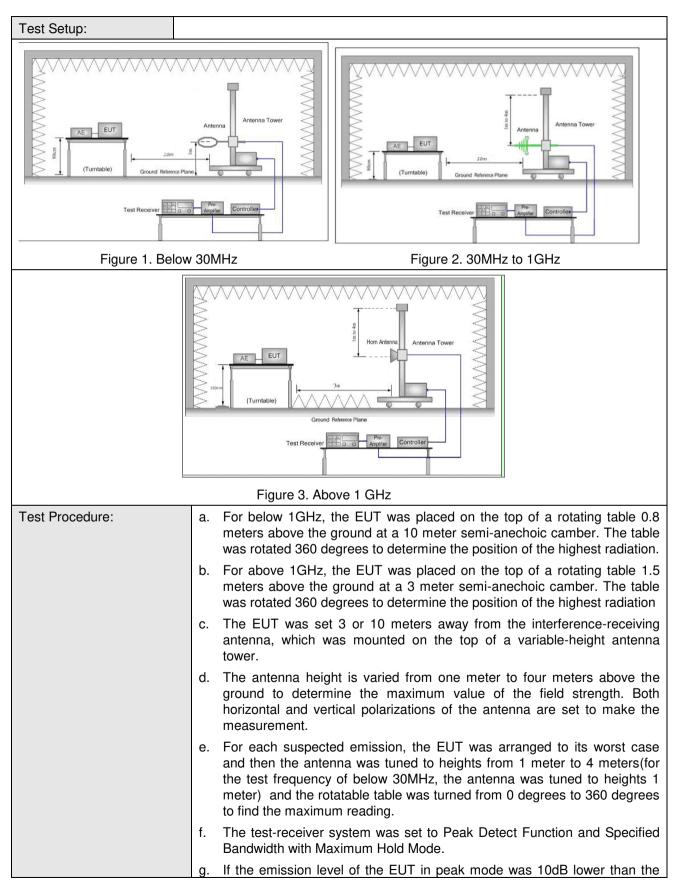


Report No.: SZEM161201074804 Page: 47 of 78

Remark:

Scan from 9kHz to 25GHz, the disturbance below 30MHz was very low, and the above harmonics were the highest point could be found when testing, The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.




Report No.: SZEM161201074804 Page: 48 of 78

### 6.8 Radiated Spurious Emissions

| Test Requirement: | 47 CFR Part 15C Section 15.209 and 15.205               |                                  |                   |                 |                             |  |  |  |  |  |
|-------------------|---------------------------------------------------------|----------------------------------|-------------------|-----------------|-----------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.10 :2013 Section 11.12                         |                                  |                   |                 |                             |  |  |  |  |  |
| Test Site:        | Measurement Distance: 3m or 10m (Semi-Anechoic Chamber) |                                  |                   |                 |                             |  |  |  |  |  |
|                   |                                                         |                                  |                   |                 |                             |  |  |  |  |  |
|                   | Frequency                                               | Detector                         | RBW               | VBW             | Remark                      |  |  |  |  |  |
|                   | 0.009MHz-0.090MHz                                       |                                  | 10kHz             | 30kHz           | Peak                        |  |  |  |  |  |
|                   | 0.009MHz-0.090MHz                                       | Ű                                | 10kHz             | 30kHz           | Average                     |  |  |  |  |  |
|                   | 0.090MHz-0.110MHz                                       | Quasi-peak                       | 10kHz             | 30kHz           | Quasi-peak                  |  |  |  |  |  |
| Receiver Setup:   | 0.110MHz-0.490MHz                                       | Peak                             | 10kHz             | 30kHz           | Peak                        |  |  |  |  |  |
|                   | 0.110MHz-0.490MHz                                       | Average                          | 10kHz             | 30kHz           | Average                     |  |  |  |  |  |
|                   | 0.490MHz -30MHz                                         | Quasi-peak                       | 10kHz             | 30kHz           | Quasi-peak                  |  |  |  |  |  |
|                   | 30MHz-1GHz                                              | Quasi-peak                       | 100 kHz           | 300kHz          | Quasi-peak                  |  |  |  |  |  |
|                   |                                                         | Peak                             | 1MHz              | 3MHz            | Peak                        |  |  |  |  |  |
|                   | Above 1GHz                                              | Peak                             | 1MHz              | 10Hz            | Average                     |  |  |  |  |  |
|                   |                                                         |                                  |                   |                 |                             |  |  |  |  |  |
|                   | Frequency                                               | Field strength (microvolt/meter) | Limit<br>(dBuV/m) | Remark          | Measurement<br>distance (m) |  |  |  |  |  |
|                   | 0.009MHz-0.490MHz                                       | 2400/F(kHz)                      | -                 | -               | 300                         |  |  |  |  |  |
|                   | 0.490MHz-1.705MHz                                       | 24000/F(kHz)                     | -                 | -               | 30                          |  |  |  |  |  |
|                   | 1.705MHz-30MHz                                          | 30                               | -                 | -               | 30                          |  |  |  |  |  |
|                   | 30MHz-88MHz                                             | 100                              | 40.0              | Quasi-peak      | 3                           |  |  |  |  |  |
| Limit:            | 88MHz-216MHz                                            | 150                              | 43.5              | Quasi-peak      | 3                           |  |  |  |  |  |
|                   | 216MHz-960MHz                                           | 200                              | 46.0              | Quasi-peak      | 3                           |  |  |  |  |  |
|                   | 960MHz-1GHz                                             | 500                              | 54.0              | Quasi-peak      | 3                           |  |  |  |  |  |
|                   | Above 1GHz                                              | 500                              | 54.0              | Average         | 3                           |  |  |  |  |  |
|                   | Note: 15.35(b), Unless of                               | herwise specified,               | the limit on p    | beak radio fre  | quency                      |  |  |  |  |  |
|                   | emissions is 20dB above                                 | the maximum per                  | mitted average    | ge emission li  | mit                         |  |  |  |  |  |
|                   | applicable to the equipme                               | ent under test. This             | s peak limit a    | pplies to the t | otal peak                   |  |  |  |  |  |
|                   | emission level radi                                     | ated by the device.              |                   |                 |                             |  |  |  |  |  |



Report No.: SZEM161201074804 Page: 49 of 78





Report No.: SZEM161201074804 Page: 50 of 78

|                        | limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. |  |  |  |  |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                        | h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel                                                                                                                                                                                                |  |  |  |  |  |
|                        | <ul> <li>The radiation measurements are performed in X, Y, Z axis positionin<br/>Transmitting mode, And found the X axis positioning which it is w<br/>case.</li> </ul>                                                                                                       |  |  |  |  |  |
|                        | j. Repeat above procedures until all frequencies measured was complete.                                                                                                                                                                                                       |  |  |  |  |  |
| Exploratory Test Mode: | Transmitting with all kind of modulations, data rates.                                                                                                                                                                                                                        |  |  |  |  |  |
|                        | Charge + Transmitting mode.                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Final Test Mode:       | Pretest the EUT at Charge + Transmitting mode.                                                                                                                                                                                                                                |  |  |  |  |  |
|                        | Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;                                                                                                                                                                                                        |  |  |  |  |  |
|                        | 6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case                                                                                                                                                                                                |  |  |  |  |  |
|                        | of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40)                                                                                                                                                                                                         |  |  |  |  |  |
|                        | For below 1GHz, through Pre-scan, find the 1Mbps of rate of 802.11b at lowest channel is the worst case.                                                                                                                                                                      |  |  |  |  |  |
|                        | Only the worst case is recorded in the report.                                                                                                                                                                                                                                |  |  |  |  |  |
| Instruments Used:      | Refer to section 5.10 for details                                                                                                                                                                                                                                             |  |  |  |  |  |
| Test Results:          | Pass                                                                                                                                                                                                                                                                          |  |  |  |  |  |



Report No.: SZEM161201074804 Page: 51 of 78

#### 6.8.1 Radiated emission below 1GHz

The test was performed at a 10m test site. According to below formulate and the test data at 10m test distance,

 $L_3 / L_{10} = D_{10} / D_3$ 

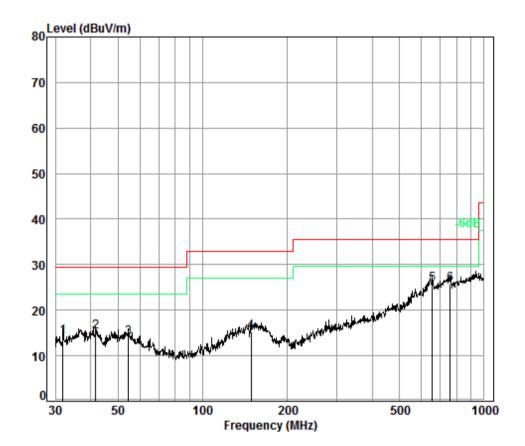
Note:

L<sub>3</sub>: Level @ 3m distance. Unit: uV/m;

L<sub>10</sub>: Level @ 10m distance. Unit: uV/m;

D<sub>3</sub>: 3m distance. Unit: m

D<sub>10</sub>: 10m distance. Unit: m


The level at 3m test distance is below:

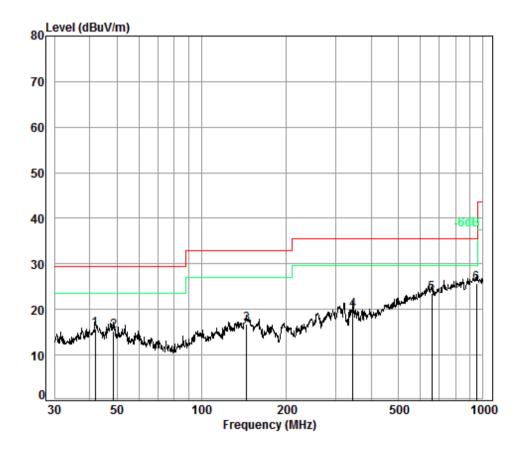
| Frequency<br>(MHz) | Level @<br>10m<br>(dBuV/m) | Level @<br>10m (uV/m) | Level @ 3m<br>(uV/m) | Level @ 3m<br>(dBuV/m) | Limit @ 3m<br>(dBuV/m) | Over Limit<br>(dB) | Ant.<br>Polarization |
|--------------------|----------------------------|-----------------------|----------------------|------------------------|------------------------|--------------------|----------------------|
| 31.95              | 14.07                      | 5.05                  | 16.84                | 24.53                  | 40.00                  | -15.47             | V                    |
| 41.71              | 15.30                      | 5.82                  | 19.40                | 25.76                  | 40.00                  | -14.24             | V                    |
| 54.64              | 13.87                      | 4.94                  | 16.46                | 24.33                  | 40.00                  | -15.67             | V                    |
| 148.96             | 15.34                      | 5.85                  | 19.49                | 25.80                  | 43.50                  | -17.70             | V                    |
| 654.23             | 25.68                      | 19.23                 | 64.10                | 36.14                  | 46.00                  | -9.86              | V                    |
| 758.04             | 25.77                      | 19.43                 | 64.77                | 36.23                  | 46.00                  | -9.77              | V                    |
| 41.86              | 15.70                      | 6.10                  | 20.32                | 26.16                  | 40.00                  | -13.84             | Н                    |
| 48.67              | 15.19                      | 5.75                  | 19.16                | 25.65                  | 40.00                  | -14.35             | Н                    |
| 144.84             | 16.72                      | 6.85                  | 22.85                | 27.18                  | 43.50                  | -16.32             | Н                    |
| 344.39             | 19.74                      | 9.71                  | 32.35                | 30.20                  | 46.00                  | -15.80             | Н                    |
| 658.84             | 23.56                      | 15.07                 | 50.22                | 34.02                  | 46.00                  | -11.98             | Н                    |
| 948.76             | 25.76                      | 19.41                 | 64.70                | 36.22                  | 46.00                  | -9.78              | Н                    |



Report No.: SZEM161201074804 Page: 52 of 78

| 30MHz~1GHz (QP) |                       |          |
|-----------------|-----------------------|----------|
| Test mode:      | Charge + Transmitting | Vertical |




Condition: 10m VERTICAL Job No. : 10748RG Test Mode: Wifi

|                  | Freq                              |              |                         | Preamp<br>Factor                 |                         |                         |                         | Over<br>Limit              |
|------------------|-----------------------------------|--------------|-------------------------|----------------------------------|-------------------------|-------------------------|-------------------------|----------------------------|
|                  | MHz                               | dB           | dB/m                    | dB                               | dBuV                    | dBuV/m                  | dBuV/m                  | dB                         |
| 1<br>2<br>3<br>4 | 31.95<br>41.71<br>54.64<br>148.96 | 6.99<br>7.45 | 13.17<br>12.40<br>13.34 | 32.97<br>32.99<br>32.97<br>32.74 | 28.32<br>27.45<br>27.29 | 15.30<br>13.87<br>15.34 | 29.50<br>29.50<br>33.00 | -14.20<br>-15.63<br>-17.66 |
| 5<br>6 pp        | 654.23<br>758.04                  | 9.04<br>9.20 |                         | 32.60<br>32.60                   |                         |                         |                         |                            |



Report No.: SZEM161201074804 Page: 53 of 78

| Test mode: | Charge + Transmitting | Horizontal |
|------------|-----------------------|------------|
|------------|-----------------------|------------|



Condition: 10m HORIZONTAL Job No. : 10748RG Test Mode: Wifi

|      |        |      |        | Preamp |       |        |        | 0ver   |
|------|--------|------|--------|--------|-------|--------|--------|--------|
|      | Freq   | Loss | Factor | Factor | Level | Level  | Line   | Limit  |
| -    | MHz    | dB   | dB/m   | dB     | dBuV  | dBuV/m | dBuV/m | dB     |
| 1    | 41.86  | 6.80 | 13.16  | 32.99  | 28.73 | 15.70  | 29.50  | -13.80 |
| 2    | 48.67  | 6.87 | 12.81  | 33.00  | 28.51 | 15.19  | 29.50  | -14.31 |
| 3    | 144.84 | 7.43 | 13.08  | 32.75  | 28.96 | 16.72  | 33.00  | -16.28 |
| 4    | 344.39 | 8.22 | 13.74  | 32.60  | 30.38 | 19.74  | 35.60  | -15.86 |
| 5    | 658.84 | 9.05 | 19.64  | 32.60  | 27.47 | 23.56  | 35.60  | -12.04 |
| 6 pp | 948.76 | 9.57 | 22.72  | 32.50  | 25.97 | 25.76  | 35.60  | -9.84  |



Report No.: SZEM161201074804 Page: 54 of 78

| Test mode:         | 802.1                        | 1b                    | Test ch                  | annel:                  | Lowest            | Remar                  | k:                    | Peak         |
|--------------------|------------------------------|-----------------------|--------------------------|-------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Antenna<br>factors<br>(dB/m) | Cable<br>loss<br>(dB) | Preamp<br>Factor<br>(dB) | Read<br>Level<br>(dBuV) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 3831.060           | 33.15                        | 7.75                  | 37.98                    | 44.03                   | 46.95             | 74                     | -27.05                | Vertical     |
| 4824.000           | 34.19                        | 8.9                   | 38.41                    | 41.73                   | 46.41             | 74                     | -27.59                | Vertical     |
| 5820.005           | 34.59                        | 10.06                 | 38.34                    | 44.65                   | 50.96             | 74                     | -23.04                | Vertical     |
| 7236.000           | 36.4                         | 10.69                 | 37.09                    | 41.25                   | 51.25             | 74                     | -22.75                | Vertical     |
| 9648.000           | 37.53                        | 12.52                 | 35.08                    | 37.22                   | 52.19             | 74                     | -21.81                | Vertical     |
| 12314.840          | 38.79                        | 14.3                  | 36.36                    | 36.34                   | 53.07             | 74                     | -20.93                | Vertical     |
| 3786.970           | 33.03                        | 7.74                  | 37.98                    | 44.22                   | 47.01             | 74                     | -26.99                | Horizontal   |
| 4824.000           | 34.19                        | 8.9                   | 38.41                    | 41.72                   | 46.40             | 74                     | -27.60                | Horizontal   |
| 5956.314           | 34.67                        | 10.44                 | 38.31                    | 43.85                   | 50.65             | 74                     | -23.35                | Horizontal   |
| 7236.000           | 36.4                         | 10.69                 | 37.09                    | 41.27                   | 51.27             | 74                     | -22.73                | Horizontal   |
| 9648.000           | 37.53                        | 12.52                 | 35.08                    | 37.89                   | 52.86             | 74                     | -21.14                | Horizontal   |
| 12243.77           | 38.75                        | 14.36                 | 36.19                    | 36.1                    | 53.02             | 74                     | -20.98                | Horizontal   |

#### 6.8.2 Transmitter emission above 1GHz

| Test mode:         | 802.1                        | 1b                    | Test ch                  | annel:                     | Middle                        | Rer            | nark:    | Peak         |
|--------------------|------------------------------|-----------------------|--------------------------|----------------------------|-------------------------------|----------------|----------|--------------|
| Frequency<br>(MHz) | Antenna<br>factors<br>(dB/m) | Cable<br>loss<br>(dB) | Preamp<br>factor<br>(dB) | Reading<br>Level<br>(dBµV) | Emission<br>Level<br>(dBµV/m) | Limi<br>(dBµV/ | I I Imit | Polarization |
| 3836.607           | 33.16                        | 7.75                  | 37.98                    | 44.29                      | 47.22                         | 74             | -26.78   | Vertical     |
| 4874.000           | 34.28                        | 8.97                  | 38.44                    | 42.73                      | 47.54                         | 74             | -26.46   | Vertical     |
| 5820.005           | 34.59                        | 10.06                 | 38.34                    | 44.15                      | 50.46                         | 74             | -23.54   | Vertical     |
| 7311.000           | 36.37                        | 10.72                 | 37.02                    | 41.75                      | 51.82                         | 74             | -22.18   | Vertical     |
| 9764.000           | 37.55                        | 12.58                 | 35.02                    | 37.1                       | 52.21                         | 74             | -21.79   | Vertical     |
| 12279.260          | 38.77                        | 14.33                 | 36.27                    | 37.1                       | 53.93                         | 74             | -20.07   | Vertical     |
| 3776.027           | 33                           | 7.73                  | 37.98                    | 44.58                      | 47.33                         | 74             | -26.67   | Horizontal   |
| 4874.000           | 34.28                        | 8.97                  | 38.44                    | 42.88                      | 47.69                         | 74             | -26.31   | Horizontal   |
| 5939.103           | 34.66                        | 10.39                 | 38.31                    | 44.05                      | 50.79                         | 74             | -23.21   | Horizontal   |
| 7311.000           | 36.37                        | 10.72                 | 37.02                    | 41.37                      | 51.44                         | 74             | -22.56   | Horizontal   |
| 9748.000           | 37.55                        | 12.58                 | 35.03                    | 37.43                      | 52.53                         | 74             | -21.47   | Horizontal   |
| 12120.390          | 38.67                        | 14.46                 | 35.89                    | 36.59                      | 53.83                         | 74             | -20.17   | Horizontal   |



Report No.: SZEM161201074804 Page: 55 of 78

| Test mode:         | 802.1                        | 1b                    | Test ch                  | annel:                     | Highest                       | Remark            | :                     | Peak         |
|--------------------|------------------------------|-----------------------|--------------------------|----------------------------|-------------------------------|-------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Antenna<br>factors<br>(dB/m) | Cable<br>loss<br>(dB) | Preamp<br>factor<br>(dB) | Reading<br>Level<br>(dBµV) | Emission<br>Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Over<br>Limit<br>(dB) | Polarization |
| 3647.151           | 32.63                        | 7.69                  | 37.96                    | 44.55                      | 46.91                         | 74                | -27.09                | Vertical     |
| 4924.000           | 34.37                        | 9.04                  | 38.46                    | 44.01                      | 48.96                         | 74                | -25.04                | Vertical     |
| 6034.386           | 34.73                        | 10.52                 | 38.27                    | 43.55                      | 50.53                         | 74                | -23.47                | Vertical     |
| 7386.000           | 36.34                        | 10.75                 | 36.95                    | 41.47                      | 51.61                         | 74                | -22.39                | Vertical     |
| 9848.000           | 37.57                        | 12.63                 | 34.98                    | 37.59                      | 52.81                         | 74                | -21.19                | Vertical     |
| 12120.390          | 38.67                        | 14.46                 | 35.89                    | 36.66                      | 53.90                         | 74                | -20.10                | Vertical     |
| 3574.015           | 32.42                        | 7.66                  | 37.96                    | 45.45                      | 47.57                         | 74                | -26.43                | Horizontal   |
| 4924.000           | 34.37                        | 9.04                  | 38.46                    | 43.99                      | 48.94                         | 74                | -25.06                | Horizontal   |
| 6069.413           | 34.76                        | 10.47                 | 38.23                    | 43.09                      | 50.09                         | 74                | -23.91                | Horizontal   |
| 7386.000           | 36.34                        | 10.75                 | 36.95                    | 40.88                      | 51.02                         | 74                | -22.98                | Horizontal   |
| 9848.000           | 37.57                        | 12.63                 | 34.98                    | 37.35                      | 52.57                         | 74                | -21.43                | Horizontal   |
| 12067.890          | 38.64                        | 14.5                  | 35.76                    | 36.2                       | 53.58                         | 74                | -20.42                | Horizontal   |

| Test mode:         | 802.1                        | 1g                    | Test ch                  | annel:                     | Lowest                        | Remark            | .:                    | Peak         |
|--------------------|------------------------------|-----------------------|--------------------------|----------------------------|-------------------------------|-------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Antenna<br>factors<br>(dB/m) | Cable<br>loss<br>(dB) | Preamp<br>factor<br>(dB) | Reading<br>Level<br>(dBµV) | Emission<br>Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Over<br>Limit<br>(dB) | Polarization |
| 3842.163           | 33.18                        | 7.76                  | 37.98                    | 43.84                      | 46.8                          | 74                | -27.2                 | Vertical     |
| 4824.000           | 34.19                        | 8.9                   | 38.41                    | 41.46                      | 46.14                         | 74                | -27.86                | Vertical     |
| 6060.637           | 34.75                        | 10.48                 | 38.24                    | 43.96                      | 50.95                         | 74                | -23.05                | Vertical     |
| 7236.000           | 36.4                         | 10.69                 | 37.09                    | 41.93                      | 51.93                         | 74                | -22.07                | Vertical     |
| 9648.000           | 37.53                        | 12.52                 | 35.08                    | 37.4                       | 52.37                         | 74                | -21.63                | Vertical     |
| 12050.440          | 38.63                        | 14.52                 | 35.72                    | 36.11                      | 53.54                         | 74                | -20.46                | Vertical     |
| 3803.444           | 33.07                        | 7.74                  | 37.98                    | 44.05                      | 46.88                         | 74                | -27.12                | Horizontal   |
| 4824.000           | 34.19                        | 8.9                   | 38.41                    | 42.16                      | 46.84                         | 74                | -27.16                | Horizontal   |
| 6078.201           | 34.76                        | 10.46                 | 38.22                    | 43.52                      | 50.52                         | 74                | -23.48                | Horizontal   |
| 7236.000           | 36.4                         | 10.69                 | 37.09                    | 41.58                      | 51.58                         | 74                | -22.42                | Horizontal   |
| 9648.000           | 37.53                        | 12.52                 | 35.08                    | 37.74                      | 52.71                         | 74                | -21.29                | Horizontal   |
| 12137.940          | 38.68                        | 14.45                 | 35.93                    | 36.13                      | 53.33                         | 74                | -20.67                | Horizontal   |



Report No.: SZEM161201074804 Page: 56 of 78

| Test mode:         | 802.1                        | 1g                    | Test ch                  | annel:                     | Middle                        | Remar             | <:                    | Peak         |
|--------------------|------------------------------|-----------------------|--------------------------|----------------------------|-------------------------------|-------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Antenna<br>factors<br>(dB/m) | Cable<br>loss<br>(dB) | Preamp<br>factor<br>(dB) | Reading<br>Level<br>(dBµV) | Emission<br>Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Over<br>Limit<br>(dB) | Polarization |
| 3808.951           | 33.09                        | 7.74                  | 37.98                    | 42.75                      | 45.60                         | 74                | -28.40                | Vertical     |
| 4874.000           | 34.28                        | 8.97                  | 38.44                    | 41.89                      | 46.70                         | 74                | -27.30                | Vertical     |
| 6069.413           | 34.76                        | 10.47                 | 38.23                    | 43.1                       | 50.10                         | 74                | -23.90                | Vertical     |
| 7311.000           | 36.37                        | 10.72                 | 37.02                    | 41.5                       | 51.57                         | 74                | -22.43                | Vertical     |
| 9748.000           | 37.55                        | 12.58                 | 35.03                    | 37.74                      | 52.84                         | 74                | -21.16                | Vertical     |
| 12120.390          | 38.67                        | 14.46                 | 35.89                    | 36.69                      | 53.93                         | 74                | -20.07                | Vertical     |
| 3847.726           | 33.19                        | 7.76                  | 37.98                    | 43.57                      | 46.54                         | 74                | -27.46                | Horizontal   |
| 4874.000           | 34.28                        | 8.97                  | 38.44                    | 40.86                      | 45.67                         | 74                | -28.33                | Horizontal   |
| 6060.637           | 34.75                        | 10.48                 | 38.24                    | 43.35                      | 50.34                         | 74                | -23.66                | Horizontal   |
| 7311.000           | 36.37                        | 10.72                 | 37.02                    | 41.36                      | 51.43                         | 74                | -22.57                | Horizontal   |
| 9748.000           | 37.55                        | 12.58                 | 35.03                    | 36.91                      | 52.01                         | 74                | -21.99                | Horizontal   |
| 12279.260          | 38.77                        | 14.33                 | 36.27                    | 36.95                      | 53.78                         | 74                | -20.22                | Horizontal   |

| Test mode:         | 802.1                        | 1g                    | Test ch                  | annel:                     | Highest                       | Remark            |                       | Peak         |
|--------------------|------------------------------|-----------------------|--------------------------|----------------------------|-------------------------------|-------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Antenna<br>factors<br>(dB/m) | Cable<br>loss<br>(dB) | Preamp<br>factor<br>(dB) | Reading<br>Level<br>(dBµV) | Emission<br>Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Over<br>Limit<br>(dB) | Polarization |
| 3831.060           | 33.15                        | 7.75                  | 37.98                    | 44.57                      | 47.49                         | 74                | -26.51                | Vertical     |
| 4924.000           | 34.37                        | 9.04                  | 38.46                    | 43.91                      | 48.86                         | 74                | -25.14                | Vertical     |
| 6078.201           | 34.76                        | 10.46                 | 38.22                    | 43.99                      | 50.99                         | 74                | -23.01                | Vertical     |
| 7386.000           | 36.34                        | 10.75                 | 36.95                    | 40.95                      | 51.09                         | 74                | -22.91                | Vertical     |
| 9848.000           | 37.57                        | 12.63                 | 34.98                    | 37.66                      | 52.88                         | 74                | -21.12                | Vertical     |
| 12297.040          | 38.78                        | 14.31                 | 36.31                    | 37.07                      | 53.85                         | 74                | -20.15                | Vertical     |
| 3754.236           | 32.94                        | 7.72                  | 37.98                    | 43.9                       | 46.58                         | 74                | -27.42                | Horizontal   |
| 4924.000           | 34.37                        | 9.04                  | 38.46                    | 43.35                      | 48.30                         | 74                | -25.70                | Horizontal   |
| 6016.949           | 34.71                        | 10.54                 | 38.28                    | 43.2                       | 50.17                         | 74                | -23.83                | Horizontal   |
| 7386.000           | 36.34                        | 10.75                 | 36.95                    | 41.08                      | 51.22                         | 74                | -22.78                | Horizontal   |
| 9848.000           | 37.57                        | 12.63                 | 34.98                    | 37.66                      | 52.88                         | 74                | -21.12                | Horizontal   |
| 12314.840          | 38.79                        | 14.3                  | 36.36                    | 36.71                      | 53.44                         | 74                | -20.56                | Horizontal   |



Report No.: SZEM161201074804 Page: 57 of 78

| Test mode:         | 802.1                        | 1n(HT20)              | Test ch                  | annel:                     | Lowest                        | Remark            |                       | Peak         |
|--------------------|------------------------------|-----------------------|--------------------------|----------------------------|-------------------------------|-------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Antenna<br>factors<br>(dB/m) | Cable<br>loss<br>(dB) | Preamp<br>factor<br>(dB) | Reading<br>Level<br>(dBµV) | Emission<br>Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Over<br>Limit<br>(dB) | Polarization |
| 3732.57            | 32.87                        | 7.72                  | 37.97                    | 45.09                      | 47.71                         | 74                | -26.29                | Vertical     |
| 4824.000           | 34.19                        | 8.9                   | 38.41                    | 42.71                      | 47.39                         | 74                | -26.61                | Vertical     |
| 5769.698           | 34.57                        | 9.91                  | 38.35                    | 44.73                      | 50.86                         | 74                | -23.14                | Vertical     |
| 7236.000           | 36.4                         | 10.69                 | 37.09                    | 41.45                      | 51.45                         | 74                | -22.55                | Vertical     |
| 9648.000           | 37.53                        | 12.52                 | 35.08                    | 37.9                       | 52.87                         | 74                | -21.13                | Vertical     |
| 12208.390          | 38.73                        | 14.39                 | 36.1                     | 36.7                       | 53.72                         | 74                | -20.28                | Vertical     |
| 3537.998           | 32.31                        | 7.64                  | 37.95                    | 44.1                       | 46.10                         | 74                | -27.90                | Horizontal   |
| 4824.000           | 34.19                        | 8.9                   | 38.41                    | 42.5                       | 47.18                         | 74                | -26.82                | Horizontal   |
| 5794.797           | 34.58                        | 9.98                  | 38.34                    | 44.4                       | 50.62                         | 74                | -23.38                | Horizontal   |
| 7236.000           | 36.4                         | 10.69                 | 37.09                    | 41.43                      | 51.43                         | 74                | -22.57                | Horizontal   |
| 9648.000           | 37.53                        | 12.52                 | 35.08                    | 37.42                      | 52.39                         | 74                | -21.61                | Horizontal   |
| 12261.500          | 38.76                        | 14.34                 | 36.23                    | 36.5                       | 53.37                         | 74                | -20.63                | Horizontal   |

| Test mode:         | 802.1                        | 1g                    | Test ch                  | annel:                     | Middle                        | Remark            |                       | Peak         |
|--------------------|------------------------------|-----------------------|--------------------------|----------------------------|-------------------------------|-------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Antenna<br>factors<br>(dB/m) | Cable<br>loss<br>(dB) | Preamp<br>factor<br>(dB) | Reading<br>Level<br>(dBµV) | Emission<br>Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Over<br>Limit<br>(dB) | Polarization |
| 3641.878           | 32.62                        | 7.68                  | 37.96                    | 44.2                       | 46.54                         | 74                | -27.46                | Vertical     |
| 4874.000           | 34.28                        | 8.97                  | 38.44                    | 40.7                       | 45.51                         | 74                | -28.49                | Vertical     |
| 6078.201           | 34.76                        | 10.46                 | 38.22                    | 43.5                       | 50.50                         | 74                | -23.50                | Vertical     |
| 7311.000           | 36.37                        | 10.72                 | 37.02                    | 41.41                      | 51.48                         | 74                | -22.52                | Vertical     |
| 9748.000           | 37.55                        | 12.58                 | 35.03                    | 37.19                      | 52.29                         | 74                | -21.71                | Vertical     |
| 12279.260          | 38.77                        | 14.33                 | 36.27                    | 36.88                      | 53.71                         | 74                | -20.29                | Vertical     |
| 3983.689           | 33.56                        | 7.8                   | 38                       | 44.49                      | 47.85                         | 74                | -26.15                | Horizontal   |
| 4874.000           | 34.28                        | 8.97                  | 38.44                    | 42.45                      | 47.26                         | 74                | -26.74                | Horizontal   |
| 6025.661           | 34.72                        | 10.53                 | 38.27                    | 43.97                      | 50.95                         | 74                | -23.05                | Horizontal   |
| 7311.000           | 36.37                        | 10.72                 | 37.02                    | 40.95                      | 51.02                         | 74                | -22.98                | Horizontal   |
| 9748.000           | 37.55                        | 12.58                 | 35.03                    | 37.19                      | 52.29                         | 74                | -21.71                | Horizontal   |
| 12102.870          | 38.66                        | 14.47                 | 35.85                    | 36.13                      | 53.41                         | 74                | -20.59                | Horizontal   |



Report No.: SZEM161201074804 Page: 58 of 78

| Test mode:         | 802.1                        | 1n(HT20)              | Test ch                  | annel:                     | Highest                       | Remark            | :                     | Peak         |
|--------------------|------------------------------|-----------------------|--------------------------|----------------------------|-------------------------------|-------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Antenna<br>factors<br>(dB/m) | Cable<br>loss<br>(dB) | Preamp<br>factor<br>(dB) | Reading<br>Level<br>(dBµV) | Emission<br>Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Over<br>Limit<br>(dB) | Polarization |
| 3949.255           | 33.47                        | 7.79                  | 37.99                    | 46.26                      | 49.53                         | 74                | -24.47                | Vertical     |
| 4924.000           | 34.37                        | 9.04                  | 38.46                    | 44.08                      | 49.03                         | 74                | -24.97                | Vertical     |
| 6051.874           | 34.74                        | 10.49                 | 38.25                    | 43.82                      | 50.80                         | 74                | -23.20                | Vertical     |
| 7386.000           | 36.34                        | 10.75                 | 36.95                    | 41.14                      | 51.28                         | 74                | -22.72                | Vertical     |
| 9848.000           | 37.57                        | 12.63                 | 34.98                    | 37.75                      | 52.97                         | 74                | -21.03                | Vertical     |
| 12243.770          | 38.75                        | 14.36                 | 36.19                    | 37.02                      | 53.94                         | 74                | -20.06                | Vertical     |
| 3847.726           | 33.19                        | 7.76                  | 37.98                    | 44.56                      | 47.53                         | 74                | -26.47                | Horizontal   |
| 4924.000           | 34.37                        | 9.04                  | 38.46                    | 43.54                      | 48.49                         | 74                | -25.51                | Horizontal   |
| 6008.249           | 34.71                        | 10.55                 | 38.29                    | 43.25                      | 50.22                         | 74                | -23.78                | Horizontal   |
| 7386.000           | 36.34                        | 10.75                 | 36.95                    | 41.38                      | 51.52                         | 74                | -22.48                | Horizontal   |
| 9848.000           | 37.57                        | 12.63                 | 34.98                    | 36.83                      | 52.05                         | 74                | -21.95                | Horizontal   |
| 12243.770          | 38.75                        | 14.36                 | 36.19                    | 36.36                      | 53.28                         | 74                | -20.72                | Horizontal   |

| Test mode:         | 802.1                        | 1n(HT40)              | Test ch                  | annel:                     | Lowest                        | Re           | mark |                       | Peak         |
|--------------------|------------------------------|-----------------------|--------------------------|----------------------------|-------------------------------|--------------|------|-----------------------|--------------|
| Frequency<br>(MHz) | Antenna<br>factors<br>(dB/m) | Cable<br>loss<br>(dB) | Preamp<br>factor<br>(dB) | Reading<br>Level<br>(dBµV) | Emission<br>Level<br>(dBµV/m) | Lim<br>(dBµ\ |      | Over<br>Limit<br>(dB) | Polarization |
| 3909.457           | 33.36                        | 7.78                  | 37.99                    | 43.89                      | 47.04                         | 74           |      | -26.96                | Vertical     |
| 4844.000           | 34.23                        | 8.92                  | 38.42                    | 42.53                      | 47.26                         | 74           |      | -26.74                | Vertical     |
| 6043.124           | 34.74                        | 10.5                  | 38.26                    | 43.22                      | 50.20                         | 74           |      | -23.80                | Vertical     |
| 7266.000           | 36.39                        | 10.7                  | 37.06                    | 41.97                      | 52.00                         | 74           |      | -22.00                | Vertical     |
| 9688.000           | 37.54                        | 12.54                 | 35.06                    | 37.61                      | 52.63                         | 74           |      | -21.37                | Vertical     |
| 12067.890          | 38.64                        | 14.5                  | 35.76                    | 36.27                      | 53.65                         | 74           |      | -20.35                | Vertical     |
| 3776.027           | 33                           | 7.73                  | 37.98                    | 43.8                       | 46.55                         | 74           |      | -27.45                | Horizontal   |
| 4844.000           | 34.23                        | 8.92                  | 38.42                    | 42.25                      | 46.98                         | 74           |      | -27.02                | Horizontal   |
| 5811.590           | 34.59                        | 10.03                 | 38.34                    | 43.80                      | 50.08                         | 74           |      | -23.92                | Horizontal   |
| 7266.000           | 36.39                        | 10.7                  | 37.06                    | 40.99                      | 51.02                         | 74           |      | -22.98                | Horizontal   |
| 9688.000           | 37.54                        | 12.54                 | 35.06                    | 37.94                      | 52.96                         | 74           |      | -21.04                | Horizontal   |
| 12120.39           | 38.67                        | 14.46                 | 35.89                    | 36.56                      | 53.80                         | 74           |      | -20.20                | Horizontal   |



Report No.: SZEM161201074804 Page: 59 of 78

| Test mode:         | 802.1                        | 1n(HT40)              | Test ch                  | annel:                     | Middle                        | Remark            |                       | Peak         |
|--------------------|------------------------------|-----------------------|--------------------------|----------------------------|-------------------------------|-------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Antenna<br>factors<br>(dB/m) | Cable<br>loss<br>(dB) | Preamp<br>factor<br>(dB) | Reading<br>Level<br>(dBµV) | Emission<br>Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Over<br>Limit<br>(dB) | Polarization |
| 3558.534           | 32.37                        | 7.65                  | 37.96                    | 43.57                      | 45.63                         | 74                | -28.37                | Vertical     |
| 4874.000           | 34.28                        | 8.97                  | 38.44                    | 41.26                      | 46.07                         | 74                | -27.93                | Vertical     |
| 5769.698           | 34.57                        | 9.91                  | 38.35                    | 43.96                      | 50.09                         | 74                | -23.91                | Vertical     |
| 7311.000           | 36.37                        | 10.72                 | 37.02                    | 41.09                      | 51.16                         | 74                | -22.84                | Vertical     |
| 9748.000           | 37.55                        | 12.58                 | 35.03                    | 37.80                      | 52.90                         | 74                | -21.10                | Vertical     |
| 12261.500          | 38.76                        | 14.34                 | 36.23                    | 36.82                      | 53.69                         | 74                | -20.31                | Vertical     |
| 3532.883           | 32.3                         | 7.64                  | 37.95                    | 43.47                      | 45.46                         | 74                | -28.54                | Horizontal   |
| 4874.000           | 34.28                        | 8.97                  | 38.44                    | 40.88                      | 45.69                         | 74                | -28.31                | Horizontal   |
| 5820.005           | 34.59                        | 10.06                 | 38.34                    | 42.67                      | 48.98                         | 74                | -25.02                | Horizontal   |
| 7311.000           | 36.37                        | 10.72                 | 37.02                    | 40.42                      | 50.49                         | 74                | -23.51                | Horizontal   |
| 9748.000           | 37.55                        | 12.58                 | 35.03                    | 37.24                      | 52.34                         | 74                | -21.66                | Horizontal   |
| 12067.89           | 38.64                        | 14.5                  | 35.76                    | 36.48                      | 53.86                         | 74                | -20.14                | Horizontal   |

| Test mode:         | 802.1                        | 1n(HT40)              | Test ch                  | annel:                     | Highest                       | Remark            | K:                    | Peak         |
|--------------------|------------------------------|-----------------------|--------------------------|----------------------------|-------------------------------|-------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Antenna<br>factors<br>(dB/m) | Cable<br>loss<br>(dB) | Preamp<br>factor<br>(dB) | Reading<br>Level<br>(dBµV) | Emission<br>Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Over<br>Limit<br>(dB) | Polarization |
| 3786.970           | 33.03                        | 7.74                  | 37.98                    | 43.95                      | 46.74                         | 74                | -27.26                | Vertical     |
| 4904.000           | 34.33                        | 9.01                  | 38.45                    | 41.79                      | 46.68                         | 74                | -27.32                | Vertical     |
| 6193.614           | 34.86                        | 10.31                 | 38.11                    | 43.81                      | 50.87                         | 74                | -23.13                | Vertical     |
| 7356.000           | 36.36                        | 10.74                 | 36.98                    | 41.29                      | 51.41                         | 74                | -22.59                | Vertical     |
| 9808.000           | 37.56                        | 12.61                 | 35                       | 36.92                      | 52.09                         | 74                | -21.91                | Vertical     |
| 12190.740          | 38.72                        | 14.4                  | 36.06                    | 36.86                      | 53.92                         | 74                | -20.08                | Vertical     |
| 3584.372           | 32.45                        | 7.66                  | 37.96                    | 44.72                      | 46.87                         | 74                | -27.13                | Horizontal   |
| 4904.000           | 34.33                        | 9.01                  | 38.45                    | 41.90                      | 46.79                         | 74                | -27.21                | Horizontal   |
| 5913.378           | 34.65                        | 10.32                 | 38.32                    | 44.23                      | 50.88                         | 74                | -23.12                | Horizontal   |
| 7356.000           | 36.36                        | 10.74                 | 36.98                    | 40.94                      | 51.06                         | 74                | -22.94                | Horizontal   |
| 9808.000           | 37.56                        | 12.61                 | 35                       | 37.50                      | 52.67                         | 74                | -21.33                | Horizontal   |
| 12067.890          | 38.64                        | 14.5                  | 35.76                    | 35.65                      | 53.03                         | 74                | -20.97                | Horizontal   |



Report No.: SZEM161201074804 Page: 60 of 78

#### Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 2) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.




Report No.: SZEM161201074804 Page: 61 of 78

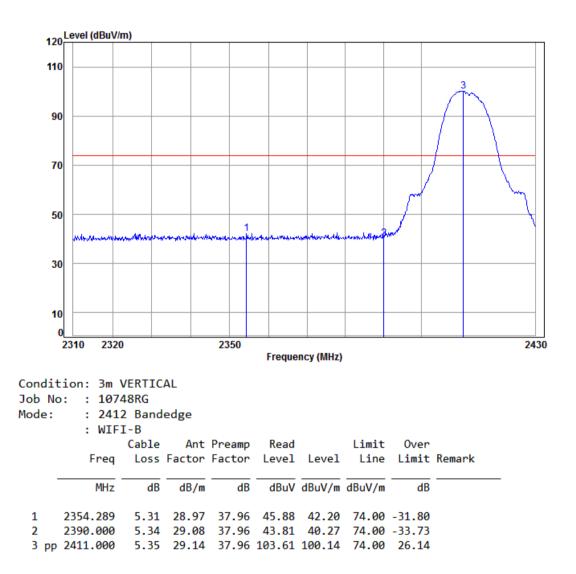
#### 6.9 Restricted bands around fundamental frequency

|                   |                                           | , and the second s |                  |   |  |  |  |  |  |
|-------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---|--|--|--|--|--|
| Test Requirement: | 47 CFR Part 15C Section 15.209 and 15.205 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |   |  |  |  |  |  |
| Test Method:      | ANSI C63.10: 2013 Section                 | ANSI C63.10: 2013 Section 11.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |   |  |  |  |  |  |
| Test Site:        | Measurement Distance: 3m                  | or 10m (Semi-Anechoic C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chamber)         |   |  |  |  |  |  |
|                   | Frequency                                 | Limit (dBuV/m @3m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Remark           |   |  |  |  |  |  |
|                   | 30MHz-88MHz                               | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Quasi-peak Value |   |  |  |  |  |  |
|                   | 88MHz-216MHz                              | 43.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Quasi-peak Value |   |  |  |  |  |  |
| Limit:            | 216MHz-960MHz                             | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Quasi-peak Value |   |  |  |  |  |  |
|                   | 960MHz-1GHz                               | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Quasi-peak Value |   |  |  |  |  |  |
|                   | Above 1GHz                                | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Average Value    |   |  |  |  |  |  |
|                   |                                           | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Peak Value       | I |  |  |  |  |  |
|                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |   |  |  |  |  |  |

Test Setup:



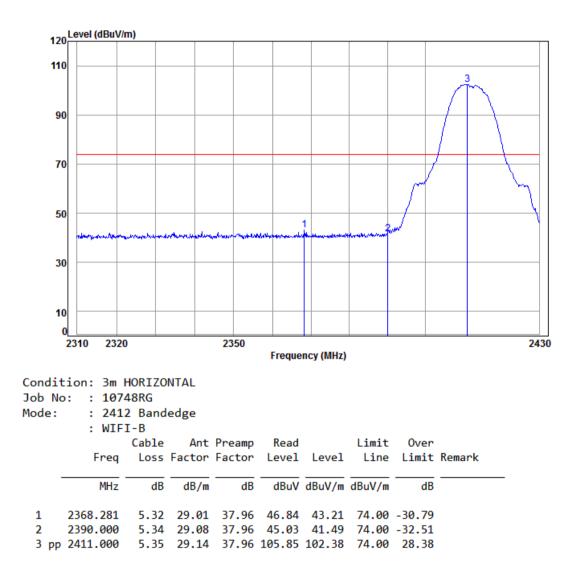



Report No.: SZEM161201074804 Page: 62 of 78

|                        | a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.                                                  |  |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                        | b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.                                                   |  |  |  |
|                        | c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.                                                                                                                            |  |  |  |
|                        | d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.                                             |  |  |  |
| Test Procedure:        | e. For each suspected emission, the EUT was arranged to its worst case<br>and then the antenna was tuned to heights from 1 meter to 4 meters<br>and the rotatable table was turned from 0 degrees to 360 degrees to<br>find the maximum reading.                            |  |  |  |
|                        | f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.                                                                                                                                                                 |  |  |  |
|                        | g. Place a marker at the end of the restricted band closest to the transmit<br>frequency to show compliance. Also measure any emissions in the<br>restricted bands. Save the spectrum analyzer plot. Repeat for each<br>power and modulation for lowest and highest channel |  |  |  |
|                        | h. Test the EUT in the lowest channel , the Highest channel                                                                                                                                                                                                                 |  |  |  |
|                        | i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode,And found the X axis positioning which it is worse case.                                                                                                                      |  |  |  |
|                        | j. Repeat above procedures until all frequencies measured was complete.                                                                                                                                                                                                     |  |  |  |
| Exploratory Test Mode: | Transmitting with all kind of modulations, data rates.                                                                                                                                                                                                                      |  |  |  |
|                        | Charge + Transmitting mode.                                                                                                                                                                                                                                                 |  |  |  |
|                        | Pretest the EUT at Charge +Transmitting mode.                                                                                                                                                                                                                               |  |  |  |
|                        | Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;                                                                                                                                                                                                      |  |  |  |
| Final Test Mode:       | 6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).                                                                                                                       |  |  |  |
|                        | Only the worst case is recorded in the report.                                                                                                                                                                                                                              |  |  |  |
| Instruments Used:      | Refer to section 5.10 for details                                                                                                                                                                                                                                           |  |  |  |
| Test Results:          | Pass                                                                                                                                                                                                                                                                        |  |  |  |
|                        |                                                                                                                                                                                                                                                                             |  |  |  |



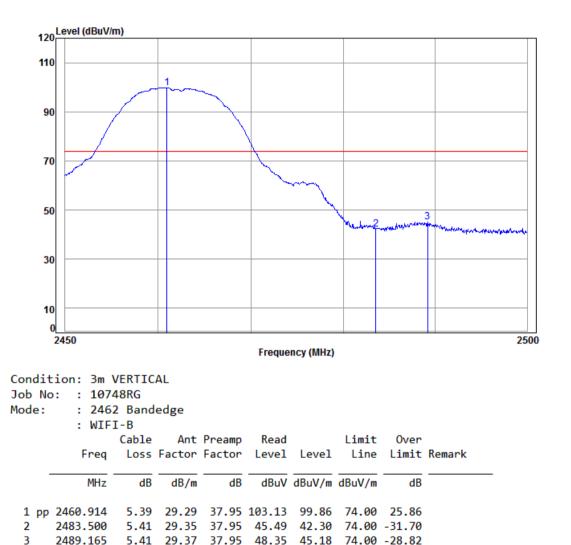
Report No.: SZEM161201074804 Page: 63 of 78


| Test plot as follows | S:      |               |        |         |      |          |
|----------------------|---------|---------------|--------|---------|------|----------|
| Worse case mode:     | 802.11b | Test channel: | Lowest | Remark: | Peak | Vertical |





Report No.: SZEM161201074804 Page: 64 of 78


| Worse case mode: 802.11b | Test channel: | Lowest | Remark: | Peak | Horizontal |
|--------------------------|---------------|--------|---------|------|------------|
|--------------------------|---------------|--------|---------|------|------------|



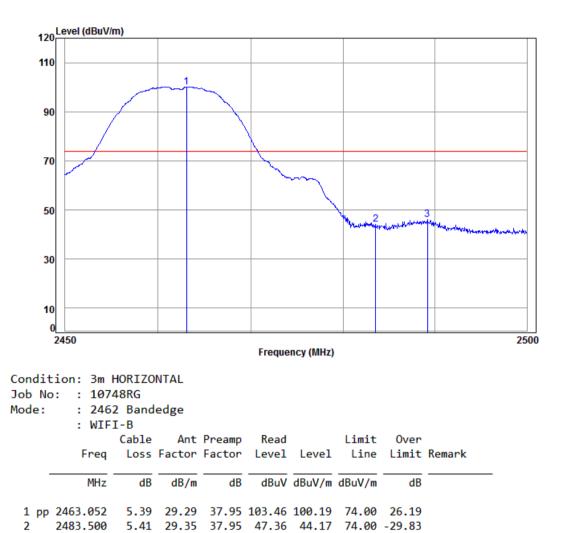


Report No.: SZEM161201074804 Page: 65 of 78

| Worse case mode: | 802.11b | Test channel: | Highest | Remark: | Peak | Vertical |
|------------------|---------|---------------|---------|---------|------|----------|
|------------------|---------|---------------|---------|---------|------|----------|





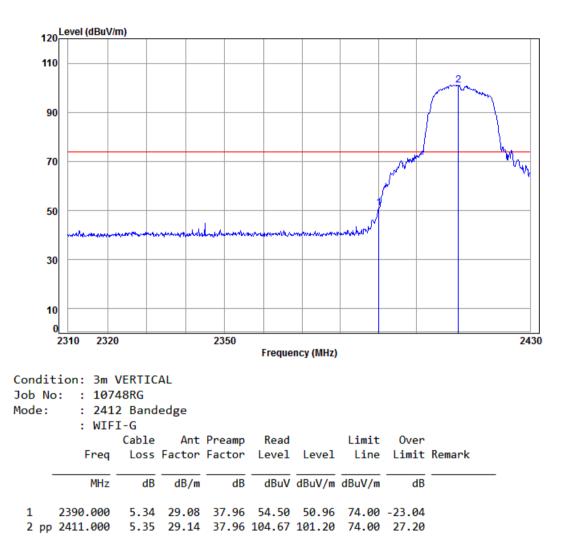

3

2489.165

### SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM161201074804 Page: 66 of 78

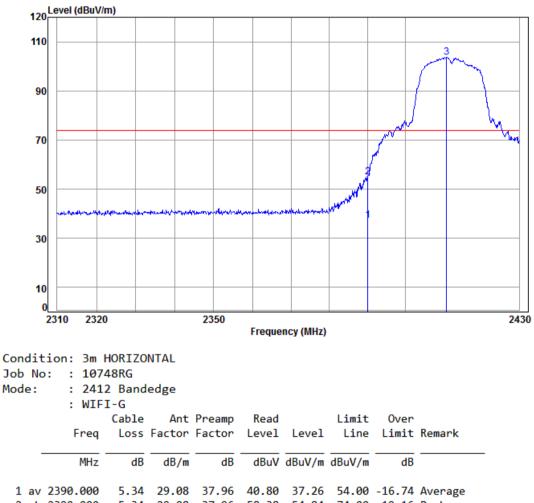
| Worse case mode: 802.11b | Test channel: | Highest | Remark: | Peak | Horizontal |
|--------------------------|---------------|---------|---------|------|------------|
|--------------------------|---------------|---------|---------|------|------------|




5.41 29.37 37.95 49.14 45.97 74.00 -28.03



Report No.: SZEM161201074804 Page: 67 of 78

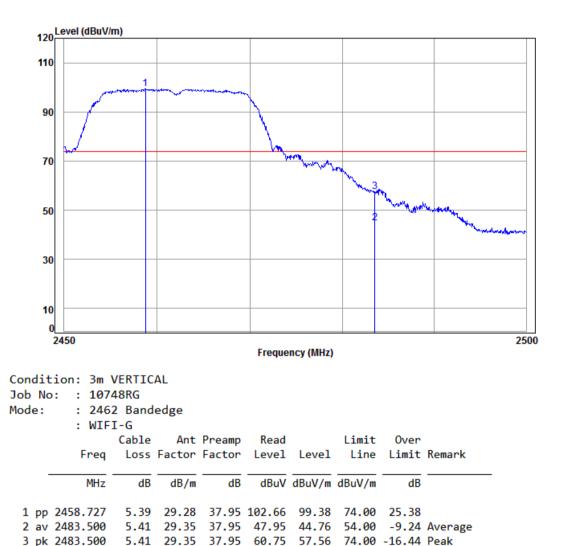

| Worse case mode: | 802.11g | Test channel: | Lowest | Remark: | Peak | Vertical |
|------------------|---------|---------------|--------|---------|------|----------|
|------------------|---------|---------------|--------|---------|------|----------|





Report No.: SZEM161201074804 Page: 68 of 78

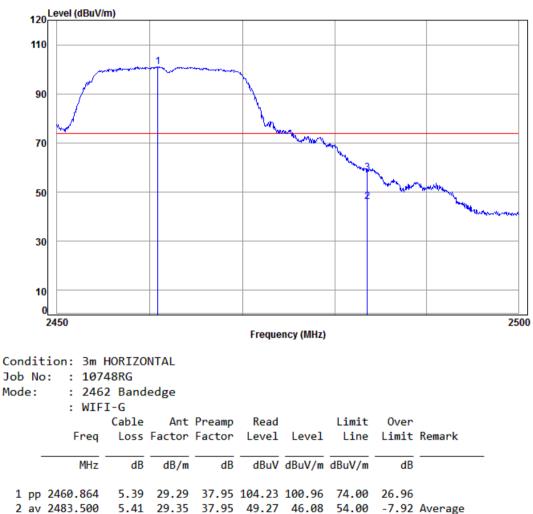
| Worse case mode: | 802.11g | Test channel: | Lowest | Remark: | Peak | Horizontal |
|------------------|---------|---------------|--------|---------|------|------------|
|------------------|---------|---------------|--------|---------|------|------------|




2 pk 2390.000 5.34 29.08 37.96 58.38 54.84 74.00 -19.16 Peak 3 pp 2410.756 5.35 29.14 37.96 107.14 103.67 74.00 29.67



Report No.: SZEM161201074804 Page: 69 of 78

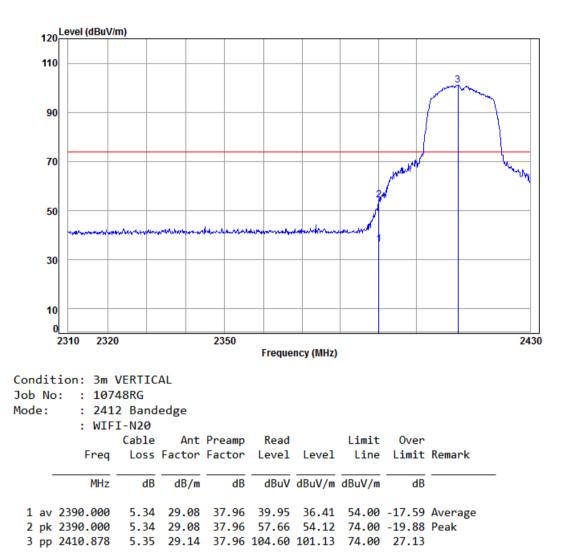

| Worse case mode: 802.11g | Test channel: | Highest | Remark: | Peak | Vertical |
|--------------------------|---------------|---------|---------|------|----------|
|--------------------------|---------------|---------|---------|------|----------|





Report No.: SZEM161201074804 Page: 70 of 78

| Worse case mode: 802.11g Test channel: Highes | st Remark: Peak Horizo | ontal |
|-----------------------------------------------|------------------------|-------|
|-----------------------------------------------|------------------------|-------|




3 pk 2483.500 5.41 29.35 37.95 61.08 57.89 74.00 -16.11 Peak



Report No.: SZEM161201074804 Page: 71 of 78

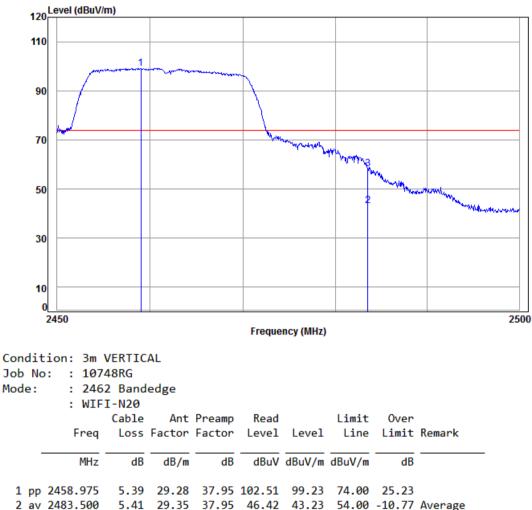
| Worse case mode: | 802.11n(HT20) | Test channel: | Lowest | Remark: | Peak | Vertical |
|------------------|---------------|---------------|--------|---------|------|----------|
|------------------|---------------|---------------|--------|---------|------|----------|





Report No.: SZEM161201074804 Page: 72 of 78

| Worse case mode: | 802.11n(HT20) | Test channel: | Lowest | Remark: | Peak | Horizontal |
|------------------|---------------|---------------|--------|---------|------|------------|
|------------------|---------------|---------------|--------|---------|------|------------|




2 pk 2390.000 5.34 29.08 37.96 62.91 59.37 74.00 -14.63 Pc 3 pp 2411.000 5.35 29.14 37.96 106.58 103.11 74.00 29.11



Report No.: SZEM161201074804 Page: 73 of 78

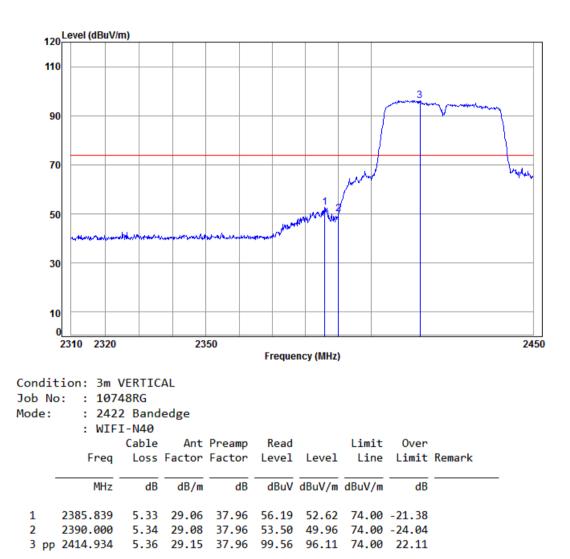
| Worse case mode: | 802.11n(HT20) | Test channel: | Highest | Remark: | Peak | Vertical |
|------------------|---------------|---------------|---------|---------|------|----------|
|------------------|---------------|---------------|---------|---------|------|----------|



3 pk 2483.500 5.41 29.35 37.95 61.52 58.33 74.00 -15.67 Peak



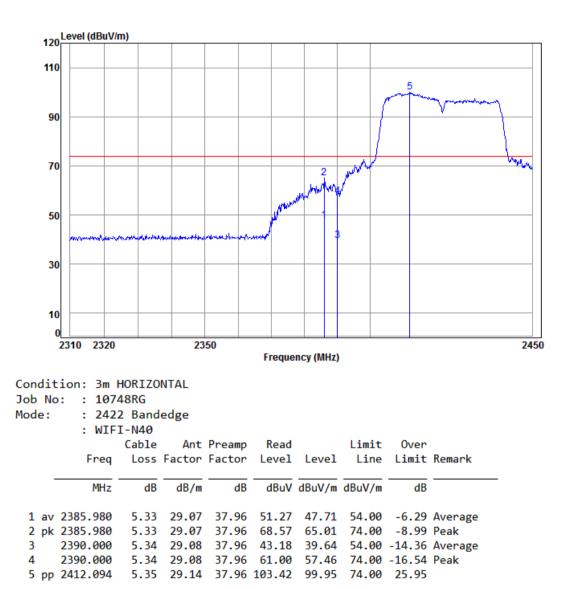
Report No.: SZEM161201074804 Page: 74 of 78


| Worse case mode: | 802.11n(HT20) | Test channel: | Highest | Remark: | Peak | Horizontal |
|------------------|---------------|---------------|---------|---------|------|------------|
|------------------|---------------|---------------|---------|---------|------|------------|





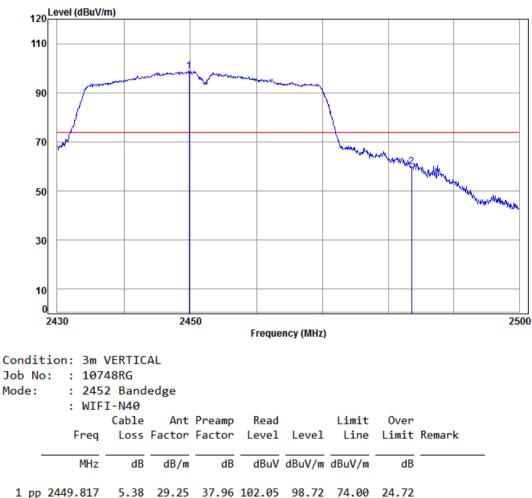
Report No.: SZEM161201074804 Page: 75 of 78


| Worse case mode: 802.11n(HT40) Test channel | I: Lowest F | Remark: Pe | eak Vertical |
|---------------------------------------------|-------------|------------|--------------|
|---------------------------------------------|-------------|------------|--------------|





Report No.: SZEM161201074804 Page: 76 of 78

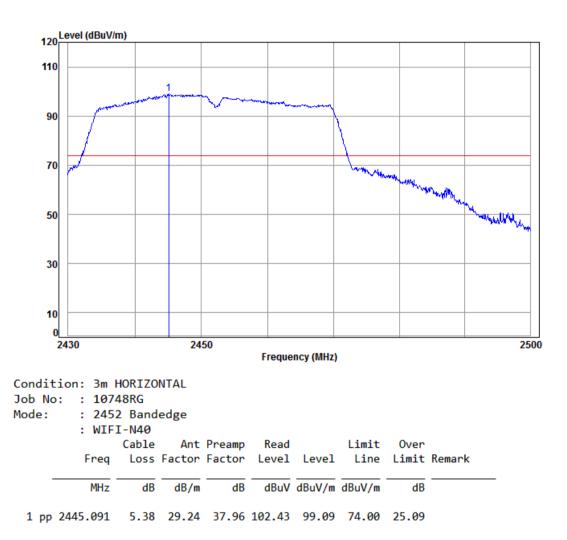

| Worse case mode: 802.11n(HT40) Tes | channel: Lowest | Remark: | Peak | Horizontal |
|------------------------------------|-----------------|---------|------|------------|
|------------------------------------|-----------------|---------|------|------------|





Report No.: SZEM161201074804 Page: 77 of 78

| Worse case mode: | 802.11n(HT40) | Test channel: | Highest | Remark: | Peak | Vertical |
|------------------|---------------|---------------|---------|---------|------|----------|
|------------------|---------------|---------------|---------|---------|------|----------|




2 2483.512 5.41 29.35 37.95 62.91 59.72 74.00 -14.28



Report No.: SZEM161201074804 Page: 78 of 78

| Worse case mode: | 802.11n(HT40) | Test channel: | Highest | Remark: | Peak | Horizontal |
|------------------|---------------|---------------|---------|---------|------|------------|
|------------------|---------------|---------------|---------|---------|------|------------|



#### Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

### 7 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1612010748RG.