

Report No.: SZEM161201074805 Page: 1 of 33

Appendix B

Test Data for SZEM161201074805RG

Report No.: SZEM161201074805 Page: 2 of 33

CONTENT

1	EFFECTIVE (ISOTROPIC) RADIATED POWER OUTPUT DATA	3
2	PEAK-TO-AVERAGE RATIO	4
	2.1 For WCDMA	5
	2.1.1 Test Band = WCDMA 850	5
3	MODULATION CHARACTERISTICS	11
	3.1 For WCDMA	11
	3.1.1 Test Band = WCDMA 850	
4	BANDWIDTH	13
	4.1 For WCDMA	14
	4.1.1 Test Band = WCDMA 850	
5	BAND EDGES COMPLIANCE	20
	5.1 For WCDMA	20
	5.1.1 Test Band = WCDMA 850	20
6	SPURIOUS EMISSION AT ANTENNA TERMINAL	24
	6.1 For WCDMA	24
	6.1.1 Test Band = WCDMA 850	24
7	FIELD STRENGTH OF SPURIOUS RADIATION	30
	7.1 For WCDMA	30
	7.1.1 Test Band = WCDMAband 850	30
8	FREQUENCY STABILITY	31
	8.1 FREQUENCY ERROR VS. VOLTAGE	
	8.2 FREQUENCY ERROR VS. TEMPERATURE	

Report No.: SZEM161201074805 Page: 3 of 33

1 Effective (Isotropic) Radiated Power Output Data

Part I - Test Results

Test Band	Test Mode	Test Channel	Measured[dB]	ERP[dB]	Limit[dBm]	Verdict
		LCH	23.42	23.53	38.45	PASS
	UMTS/TM1	MCH	23.52	23.63	38.45	PASS
WCDMA850		HCH	23.49	23.60	38.45	PASS
W CDIVIA030	UMTS/TM2	LCH	21.41	21.52	38.45	PASS
		MCH	21.35	21.46	38.45	PASS
		HCH	21.39	21.50	38.45	PASS

Note:

a: For getting the ERP (Efficient Radiated Power) in substitution method, the following formula should be taken to calculate it,

ERP [dBm] = SGP [dBm] – Cable Loss [dB] + Gain [dBd]

b: SGP=Signal Generator Level

c: RBW > emission bandwidth, VBW > $3 \times RBW$.

Detector: RMS

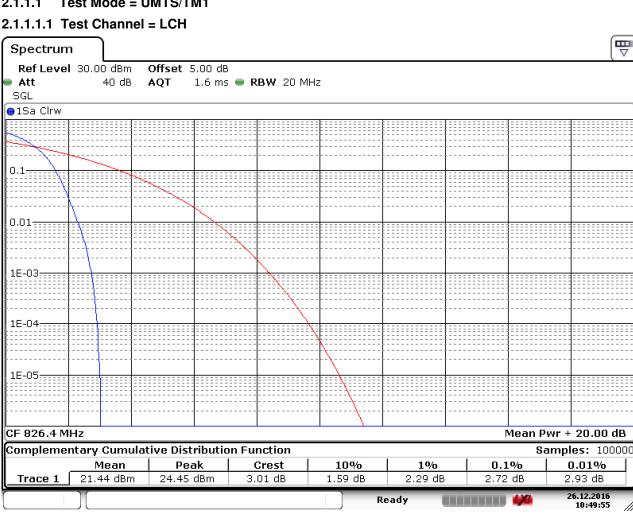
Report No.: SZEM161201074805 Page: 4 of 33

2 Peak-to-Average Ratio

Part I - Test Results	S
-----------------------	---

Test Band	Test Mode	Test Channel	Measured[dB]	Limit [dB]	Verdict
		LCH	2.72	13	PASS
	UMTS/TM1	MCH	2.67	13	PASS
WCDMA850		HCH	2.72	13	PASS
VV CDIVIA050	UMTS/TM2	LCH	2.67	13	PASS
		MCH	2.70	13	PASS
		HCH	2.70	13	PASS

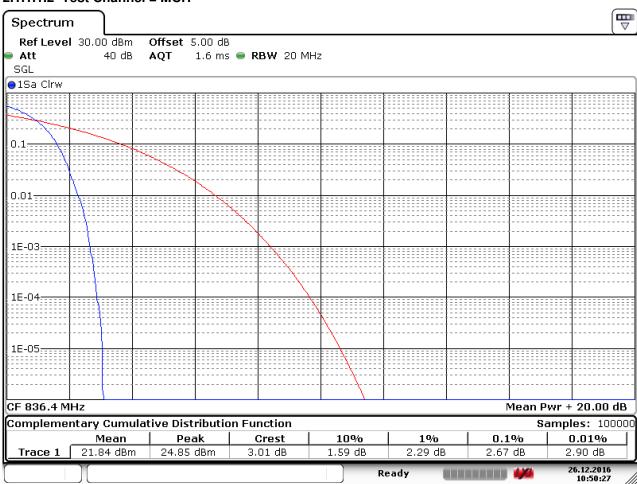
Report No.: SZEM161201074805 Page: 5 of 33


₽

Part II - Test Plots

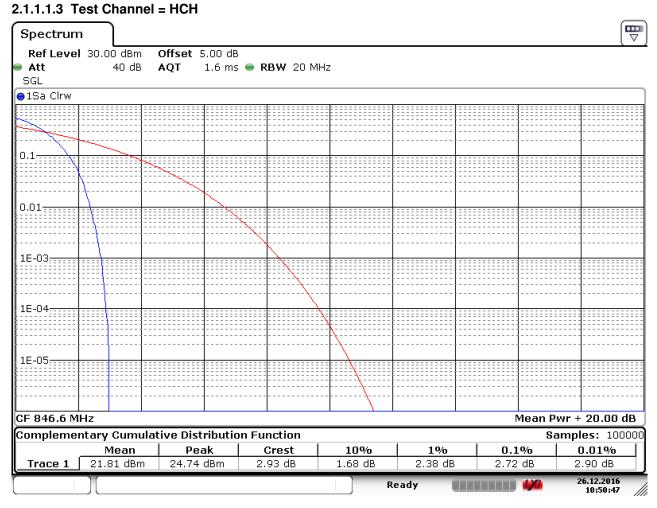
2.1 For WCDMA

2.1.1 Test Band = WCDMA 850


Test Mode = UMTS/TM1 2.1.1.1

Date: 26.DEC.2016 10:49:55

Report No.: SZEM161201074805 Page: 6 of 33


Date: 26.DEC.2016 10:50:28

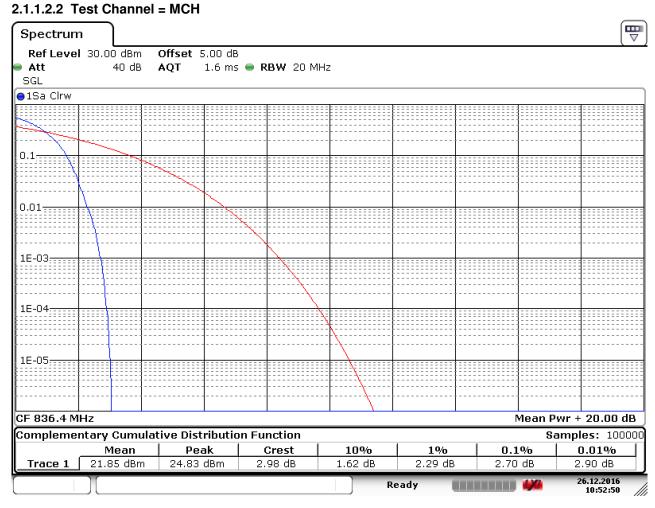
"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

2.1.1.1.2 Test Channel = MCH

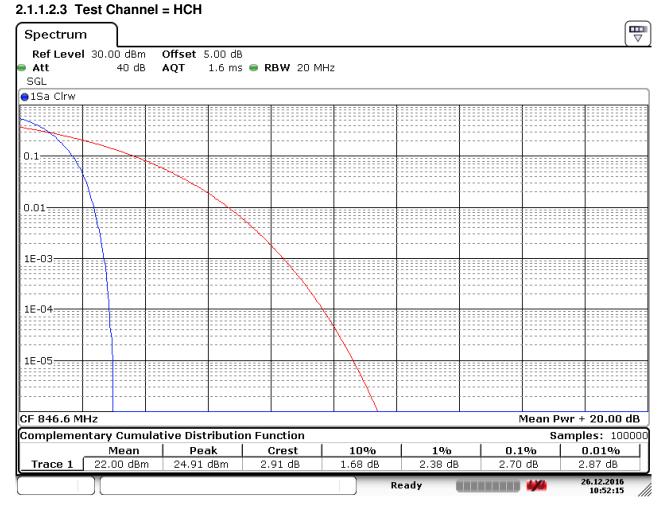
Report No.: SZEM161201074805 Page: 7 of 33

Date: 26.DEC.2016 10:50:48

Report No.: SZEM161201074805 Page: 8 of 33


2.1.1.2 Test Mode = UMTS/TM2

Date: 26.DEC.2016 10:53:13


Report No.: SZEM161201074805 Page: 9 of 33

Date: 26.DEC.2016 10:52:50

Report No.: SZEM161201074805 Page: 10 of 33

Date: 26.DEC.2016 10:52:15

Report No.: SZEM161201074805 Page: 11 of 33

3 Modulation Characteristics

Part I - Test Plots

3.1 For WCDMA

3.1.1 Test Band = WCDMA 850

3.1.1.1 Test Mode = UMTS /TM1

3.1.1.1.1 Test Channel = MCH

	Multi Evalu	ation	PC Measurement	PRACH				Multi
-			MHz Ref. Level: 32.		or: RF1COM Meas. Period: F	ull Slot		Evaluation RUN
100	Q				Statistic Count 20 / 20			RF Settings
1			e (1st Measured Slot Nr Statistics @ Pre. Slot 1 Power [dBm] Power Steps [dB]	0 Current 18.66 0.01	StdDev 0.01 0.01	Trigger
0				•	EVM RMS [%] EVM Peak [%] Magn. Error RMS [%]	1.37 3.56 0.96	0.02 0.22 0.02	
2		6		ł	Magn. Error Peak [%] Phase Error RMS [°] Phase Error Peak [°]	3.10 0.56 -1.86	0.18 0.02 0.16	Display
1			13		IQ Origin Offset [dB] IQ Imbalance [dB] CF Error [Hz]	-57.87 -45.14 0.94	1.22 0.38 0.89	
1 CAL		.1	0		Phase Disc. [°]	-0.36		Signaling Parameter
7		A CPC Circu	it Switched: Established	10 M	ket Switched:	Power: Sync:	QUE QUE	WCDMA-U Signaling ON
F	Routing	External Att. (Input	Frequency / Channel	Expected Nom, Power	User Margin		Ĩ	Config

Report No.: SZEM161201074805 Page: 12 of 33

3.1.1.2 Test Mode = UMTS /TM2

3.1.1.2.1 Test Channel = MCH

Multi H	Evaluation	• TPC Me	asurement	PRACH				Multi
L Freque)	ncy: 836.600	0000 MHz F	Ref. Level: 34	.20 dBm Connect	or: RF1COM Meas. Period: F	ull Slot		Evaluation RUN
Q					Statistic Count 20 / 20			RF Settings
1	•				1st Measured Slot Nr Statistics @ Pre. Slot 2 Power [dBm] Power Steps [dB]	0 Current 14.96 0.85	StdDev 0.73 1.12	Trigger
0			•**		EVM RMS [%] EVM Peak [%] Magn. Error RMS [%]	4.27 31.55 3.77	1.08 15.13 1.23	
			7 5.		Magn. Error Peak [%] Phase Error RMS [°] Phase Error Peak [°]	31.50 68.44 -179.59	15.76 30.52 75.29	Display
1				*.	IQ Origin Offset [dB] IQ Imbalance [dB] CF Error [Hz]	-52.80 -40.13 -0.72	1.73 0.39 3.23	
					Phase Disc. [°]	-0.17		Signaling Paramete
🚯 Selec IQ	t View		ched:		cket Switched:	Power: Sync:	Restaurant Co.	WCDMA-U Signaling ON
elect iew	Ì	Ť		Y	<u>Y</u>	Scale IQ		Config

Report No.: SZEM161201074805 Page: 13 of 33

4 Bandwidth

Part I - Test Results

Test Band	Test Mode	Test Channel	Occupied Bandwidth [MHz]	Emission Bandwidth [MHz]	Verdict
		LCH	4.20	4.88	PASS
	UMTS/TM1 UMTS/TM2	MCH	4.23	4.90	PASS
		HCH	4.19	4.86	PASS
WCDMA850		LCH	4.19	4.88	PASS
		MCH	4.22	4.90	PASS
		HCH	4.20	4.88	PASS

Report No.: SZEM161201074805 Page: 14 of 33

4.1 For WCDMA

4.1.1 Test Band = WCDMA 850

4.1.1.1 Test Mode = UMTS/TM1

4.1.1.1.1 Test Channel = LCH

Spectrun	ı								
	I 30.00 dBm		5.00 dB 😑 I						``
Att	40 dB	SWT 💿	10 ms 😑	VBW 300 ki	Hz Mode	Auto Swee	ep		
⊖1Pk View									
					D	l[1]			-0.34 dB
					_	_			87500 MHz
20 dBm——	D1 17.740 (1 dBm		N	0	CC BW			04196 MHz
		Ī	an would be	on forman particular	mar and well	Al Marine			-8.23 dBm 96200 MHz
10 dBm		T1	and the second s			<u> </u>		023.	90200 MH2
							Ϋ́ν.		
0 dBm							<u> </u>		
		M							
-10 dBm—	U28.:	270 dBm					<u> </u>		
-20 dBm							1		
uagondam	where we have a second	wh					N/W	whether have a	wellert regelieve with
ശാശമ്പലം									- Www.
-40 dBm——									
-50 dBm									
-60 dBm—									
CF 826.4 N	l /IHz	I		1001	pts			l Span	10.0 MHz
						suring		-	26.12.2016
(suring			09:20:27

Date: 26.DEC.2016 09:20:26

Report No.: SZEM161201074805 Page: 15 of 33

₽ Spectrum Ref Level 30.00 dBm Offset 5.00 dB 👄 RBW 100 kHz 40 dB 💿 SWT 10 ms 👄 🗸 🗛 300 kHz Att Mode Auto Sweep ●1Pk View D1[1] -0.35 dB 4.89500 MHz 4.225774226 MHz 20 dBm-Occ Bw D1 18.010 dBm all. -7.92 dBm m. M. M. Le Jun Munhanthally 833.95200 MHz 10 dBm-0 dBm-MJ <u>D2 -</u>7.990 dBi -10 dBm--20 dBm pour the and the line was the set of Month Martin يا ال Munschulun -30 dBm[.] -40 dBm -50 dBm--60 dBm CF 836.4 MHz 1001 pts Span 10.0 MHz 26.12.2016 Measuring... 11 09:22:20

Date: 26.DEC.2016 09:22:20

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

4.1.1.1.2 Test Channel = MCH

Report No.: SZEM161201074805 Page: 16 of 33

Spectrum									
Ref Level	30.00 dBm	Offset	5.00 dB 😑	RBW 100 k	Hz				
🕳 Att	40 dB	SWT		VBW 300 k		Auto Swee	р		
●1Pk View									
					D	1[1]			-0.77 dB
								4.	85500 MHz
20 dBm	D1 18.870 (1 JBm		.15	0	cc Bw		4.1858	14186 MHz
			Jure matthew	White have the	www.hup	Hotelway			-6.62 dBm
10 dBm		Т1				, my	<u>72</u>	844.	15200 MHz
10 0.011							K.		
0 dBm							+		
		M					dı		
-10 dBm—	D2 -7.:	130 dBm					A		
-20 dBm	not when the party	North					h		
-30 dBm							white the second	Norman	alle show with the
-30 UBIII									
-40 dBm									
-50 dBm									
-60 dBm									
CF 846.6 M	lHz			1001	l pts	1		ı Span	10.0 MHz
][]				Mea	isuring		4/4 2	6.12.2016 09:23:42

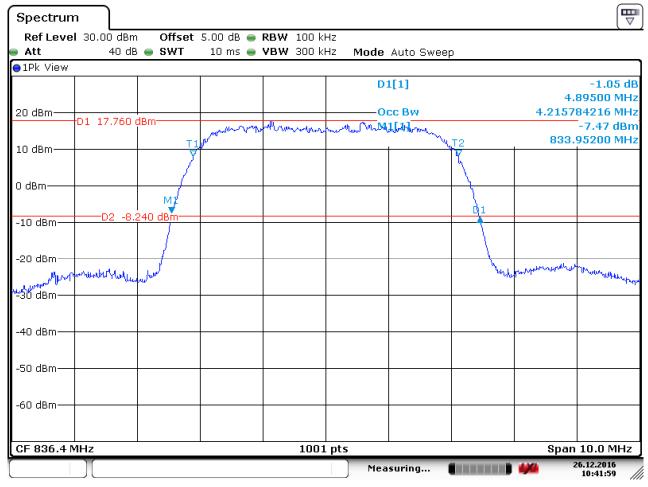
4.1.1.1.3 Test Channel = HCH

Date: 26.DEC.2016 09:23:42

Report No.: SZEM161201074805 Page: 17 of 33

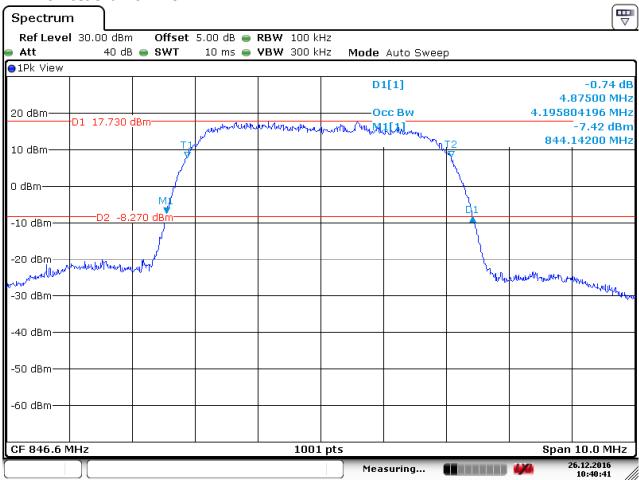
4.1.1.2 Test Mode = UMTS/TM2

4.1.1.2.1 Test Channel = LCH


Spectrum						(₩
Ref Level 30.00 dBm		dB 👄 RBW 100 k				
Att 40 dB	• SWT 10	ms 🔵 VBW 300 k	Hz Mode Auto Swee	p		
			D1[1]			-0.55 dB
20 dBm			Occ Bw			37500 MHz L4186 MHz
D1 17.710	dBm	mound	Mileston w			-8.11 dBm 96200 MHz
10 dBm	Ž			Ϋ́,		
0 dBm	/					
D2 _8 '	290 dBm			41		
-10 dBm						
-20 dBm				$\left \right\rangle$		
w30 dBm	with			W	makfet when all when	themphintery.
						ليلحمن
-40 dBm						
-50 dBm						
-60 dBm						
CF 826.4 MHz		1001	nts		Snap	10.0 MHz
		1003			-	6.12.2016 10:43:20

Date: 26.DEC.2016 10:43:20

Report No.: SZEM161201074805 Page: 18 of 33


4.1.1.2.2 Test Channel = MCH

Date: 26.DEC.2016 10:41:59

Report No.: SZEM161201074805 Page: 19 of 33

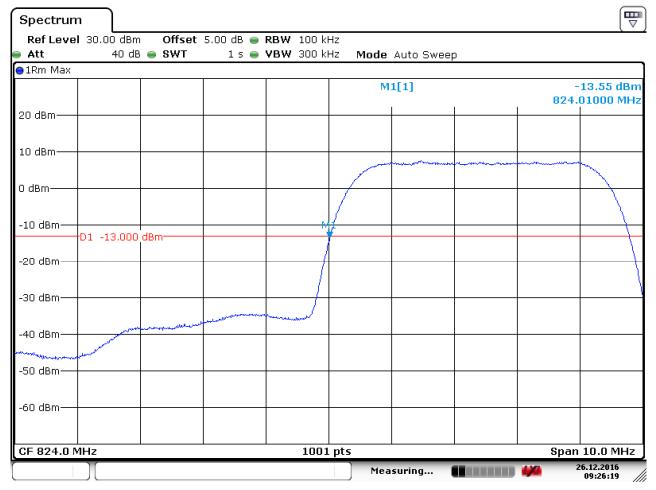
Date: 26.DEC.2016 10:40:42

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

4.1.1.2.3 Test Channel = HCH

Report No.: SZEM161201074805 Page: 20 of 33

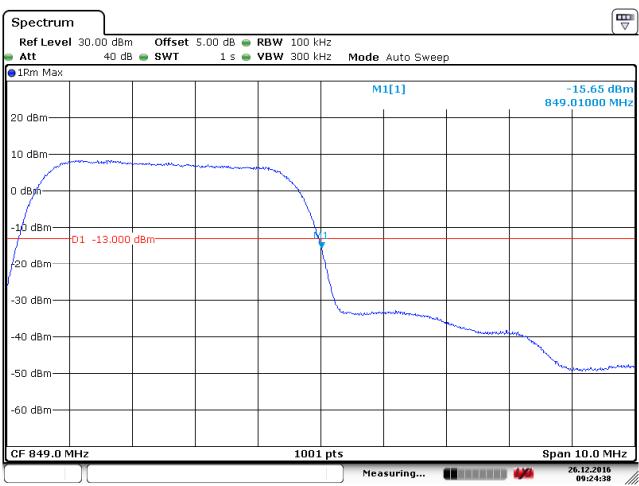
5 Band Edges Compliance


Part I - Test Plots

5.1 For WCDMA

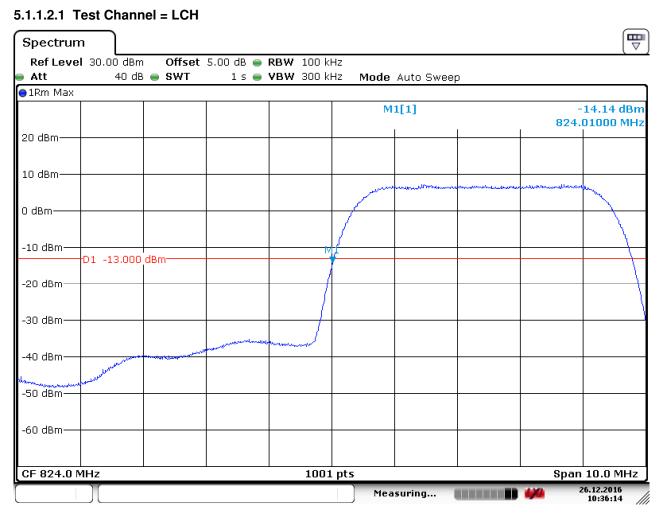
5.1.1 Test Band = WCDMA 850

5.1.1.1 Test Mode = UMTS/TM1


5.1.1.1.1 Test Channel = LCH

Date: 26.DEC.2016 09:26:20

Report No.: SZEM161201074805 Page: 21 of 33


5.1.1.1.2 Test Channel = HCH

Date: 26.DEC.2016 09:24:39

Report No.: SZEM161201074805 Page: 22 of 33

5.1.1.2 Test Mode = UMTS/TM2



Date: 26.DEC.2016 10:36:15

Report No.: SZEM161201074805 Page: 23 of 33

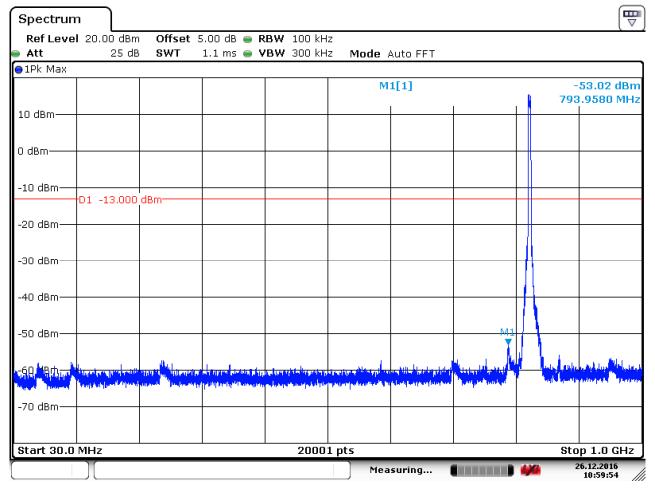
5.1.1.2.2 Test Channel = HCH

Date: 26.DEC.2016 10:36:50

Report No.: SZEM161201074805 Page: 24 of 33

6 Spurious Emission at Antenna Terminal

NOTE: For the averaged unwanted emissions measurements, the measurement points in each sweep is greater than twice the Span/RBW in order to ensure bin-to-bin spacing of < RBW/2 so that narrowband signals are not lost between frequency bins. As to the present test item, the "Measurement Points = k * (Span / RBW)" with k between 4 and 5, which results in an acceptable level error of less than 0.5 dB.


Part I - Test Plots

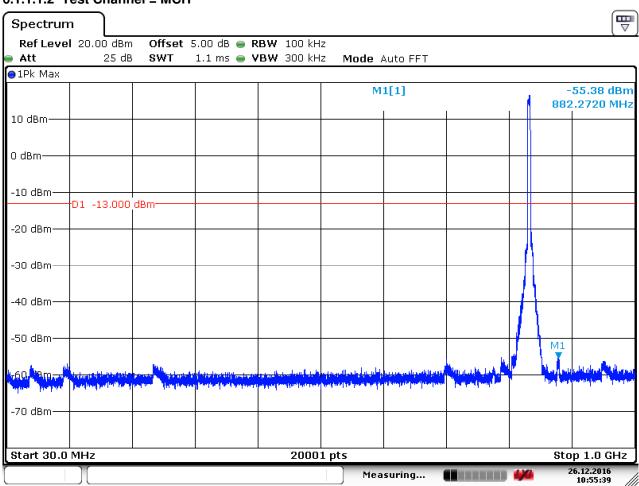
6.1 For WCDMA

6.1.1 Test Band = WCDMA 850

6.1.1.1 Test Mode = UMTS/TM1

6.1.1.1.1 Test Channel = LCH

Date: 26.DEC.2016 10:59:55


Report No.: SZEM161201074805 Page: 25 of 33

Spectrum	ן י								(₩
Ref Level Att	l 20.00 dBm 25 dB		5.00 dB 🥌 R	BW 1 MHz BW 3 MHz					
Att 1Pk Max	23 UB	311	27 IIIS 👿 ¥		MOUE AL	ito Sweep			,
					М	1[1]			39.94 dBm 50890 GHz
10 dBm									
0 dBm									
-10 dBm	D1 -13.000	dBm							
-20 dBm									
-30 dBm									
M1 -40 dBm									
ⁱⁿ Sel ^{an} du	ورسهوا والمعقول والمسوا	and the facility of the	and the design of the	ر ۱۹۹۹ - مربق المربق المربق معالم المربق			the line of the second state of		
ter berecktigt der felter auf die felter	ار السالحة من من المانين ومقرر ا					a superior and a supe	a buat plana barran	alara biya ana baabbaa	and the state of the
-60 dBm									
-70 dBm—									
Start 1.0 G	Hz			2000	1 nts			Ston	10.0 GHz
[)[2000		suring		-	26.12.2016 10:59:23

Date: 26.DEC.2016 10:59:23

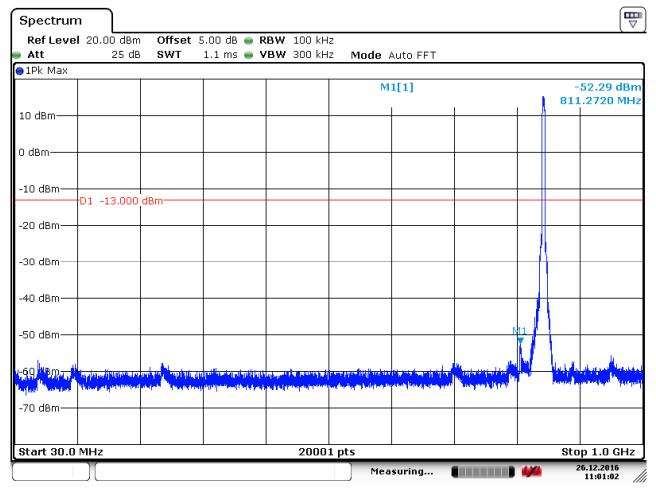
Report No.: SZEM161201074805 Page: 26 of 33

Date: 26.DEC.2016 10:55:40

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

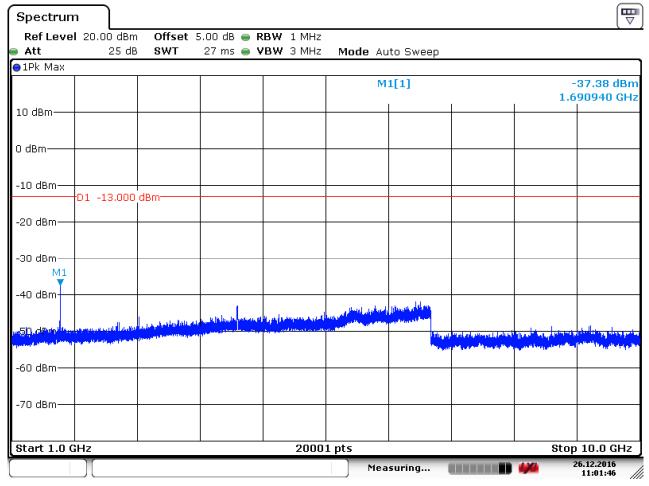
6.1.1.1.2 Test Channel = MCH

Report No.: SZEM161201074805 Page: 27 of 33


Spectrun	n]								
	l 20.00 dBm		5.00 dB 😑 R						
Att	25 dB	SWT	27 ms 🛑 V	BW 3 MHz	Mode Au	ito Sweep			,
⊖1Pk Max	1		1			4541			00.05.dp
					IVI	1[1]			39.35 dBm 86070 GHz
10 dBm							+		
0 dBm									
-10 dBm—									
	D1 -13.000	dBm							
-20 dBm—									
-30 dBm—									
-40 dBm			M1						
	ر مى ئەلەر قىرىلىكى يەل	روانان <mark>الليان م</mark> ين		المتعادية المتعادية					
	Sector Se	and a set of the second	a de la construcción de la constru						And the second s
-60 dBm								. h	•
-70 dBm—									
Start 1.0 C	GHz			2000	1 pts			-	10.0 GHz
][]				Mea	suring		2 2	6.12.2016 10:58:05

Date: 26.DEC.2016 10:58:06

Report No.: SZEM161201074805 Page: 28 of 33


6.1.1.1.3 Test Channel = HCH

Date: 26.DEC.2016 11:01:02

Report No.: SZEM161201074805 Page: 29 of 33

Date: 26.DEC.2016 11:01:46

Report No.: SZEM161201074805 Page: 30 of 33

7 Field Strength of Spurious Radiation

Part I - Test Plots

7.1 For WCDMA

7.1.1 Test Band = WCDMAband 850

7.1.1.1.1 Test Channel = LCH

Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
1442.500	-61.94	-13.00	48.94	Vertical
2632.500	-57.74	-13.00	44.74	Vertical
5910.375	-66.61	-13.00	53.61	Vertical
1498.500	-66.09	-13.00	53.09	Horizontal
2456.000	-56.52	-13.00	43.52	Horizontal
5051.888	-66.87	-13.00	53.87	Horizontal

7.1.1.1.2 Test Channel = MCH

Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
1675.000	-61.47	-13.00	48.47	Vertical
6558.263	-65.78	-13.00	52.78	Vertical
11899.313	-64.18	-13.00	51.18	Vertical
1675.000	-57.49	-13.00	44.49	Horizontal
5991.788	-66.33	-13.00	53.33	Horizontal
10644.975	-64.16	-13.00	51.16	Horizontal

7.1.1.1.3 Test Channel = HCH

Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
1691.500	-60.76	-13.00	47.76	Vertical
6044.925	-66.07	-13.00	53.07	Vertical
10646.925	-63.94	-13.00	50.94	Vertical
1691.500	-56.95	-13.00	43.95	Horizontal
6208.725	-66.07	-13.00	53.07	Horizontal
10649.850	-63.93	-13.00	50.93	Horizontal

NOTE:

1) All modes are tested, but the data presented above is the worst case. the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Report No.: SZEM161201074805 Page: 31 of 33

8 Frequency Stability

8.1 Frequency Error VS. Voltage

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
			TN	VL	-3.44	-0.00416	PASS
		LCH		VN	-0.50	-0.00061	PASS
				VH	2.34	0.00283	PASS
				VL	-3.60	-0.00430	PASS
	UMTS/TM1	MCH	TN	VN	0.33	0.00039	PASS
				VH	-2.27	-0.00271	PASS
		НСН		VL	VL 1.83 0.00216	PASS	
			TN	VN	-4.89	-0.00578	PASS
WCDMA				VH	2.78	0.00328	PASS
850		LCH	TN	VL	-4.02	-0.00486	PASS
				VN	-5.90	-0.00714	PASS
				VH	-4.22	-0.00511	PASS
		МСН	TN	VL	-5.19	-0.00620	PASS
	UMTS/TM2			VN	-5.00	-0.00598	PASS
				VH	-5.99	-0.00716	PASS
		НСН		VL	2.67	0.00315	PASS
			TN	VN	-3.66	-0.00432	PASS
				VH	-4.72	-0.00558	PASS

Report No.: SZEM161201074805 Page: 32 of 33

8.2 Frequency Error VS. Temperature

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				-30	-3.90	-0.00472	PASS
				-20	1.61	0.00195	PASS
				-10	1.22	0.00148	PASS
				0	-4.30	-0.00520	PASS
		LCH	VN	10	1.55	0.00188	PASS
				20	-3.01	-0.00364	PASS
				30	-5.00	-0.00605	PASS
				40	-1.39	-0.00168	PASS
				50	0.68	0.00082	PASS
	UMTS/TM1			-30	1.21	0.00145	PASS
		ИСН	VN	-20	-5.20	-0.00622	PASS
				-10	2.11	0.00252	PASS
WCDMA				0	2.71	0.00324	PASS
850				10	-0.10	-0.00012	PASS
000				20	2.39	0.00286	PASS
				30	4.45	0.00532	PASS
				40	-2.90	-0.00347	PASS
				50	2.34	0.00280	PASS
				-30	3.04	0.00359	PASS
				-20	-3.87	-0.00457	PASS
				-10	2.26	0.00267	PASS
				0	1.77	0.00209	PASS
			VN	10	2.80	0.00331	PASS
				20	-3.19	-0.00377	PASS
				30	1.99	0.00235	PASS
				40	-2.40	-0.00283	PASS
				50	-5.02	-0.00593	PASS

Report No.: SZEM161201074805 Page: 33 of 33

	Fage. 33 01 33						
Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				-30	-3.10	-0.00375	PASS
				-20	1.69	0.00205	PASS
				-10	1.55	0.00188	PASS
				0	1.89	0.00229	PASS
		LCH	VN	10	-3.22	-0.00390	PASS
				20	2.10	0.00254	PASS
				30	-1.77	-0.00214	PASS
				40	-3.73	-0.00451	PASS
				50	-6.03	-0.00730	PASS
				-30	2.56	0.00306	PASS
	UMTS/TM2			-20	-2.28	-0.00273	PASS
				-10	-3.82	-0.00457	PASS
WCDMA				0	-2.22 -0.00265	PASS	
850		//2 MCH	VN	10	2.01	0.00240	PASS
000				20	-3.12	-0.00373	PASS
				30	2.06	0.00246	PASS
				40	-3.59	-0.00429	PASS
				50	-4.23	-0.00506	PASS
				-30	1.33	0.00157	PASS
				-20	-2.33	-0.00275	PASS
				-10	1.37	0.00162	PASS
				0	-3.32	-0.00392	PASS
		HCH	VN	10	2.20	0.00260	PASS
				20	-1.11	-0.00131	PASS
				30	-3.83	-0.00452	PASS
				40	1.67	0.00197	PASS
				50	-2.59	-0.00306	PASS

The End