

Report No.: SZEM161000916705 Page: 1 of 57

Appendix B

Test Data for SZEM1610009167RG

Report No.: SZEM161000916705 Page: 2 of 57

CONTENT

1	EF	FECTIVE (ISOTROPIC) RADIATED POWER OUTPUT DATA	3
2	PE	EAK-TO-AVERAGE RATIO	6
3	M	ODULATION CHARACTERISTICS	9
4	BA	ANDWIDTH	13
5	BA	AND EDGES COMPLIANCE	22
6	SF	PURIOUS EMISSION AT ANTENNA TERMINAL	38
7	FI	ELD STRENGTH OF SPURIOUS RADIATION	54
8	FF		56
	8.1		
	8.2	FREQUENCY ERROR VS. TEMPERATURE	57

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM161000916705 Page: 3 of 57

1 Effective (Isotropic) Radiated Power Output Data

Effective Isotropic Radiated Power of Transmitter (ERP) for LTE BAND 13

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict
				RB1#0	23.87	23.48	34.77	PASS
				RB1#13	23.81	23.42	34.77	PASS
				RB1#24	23.77	23.38	34.77	PASS
			LCH	RB12#0	23.9	23.51	34.77	PASS
				RB12#6	23.91	23.52	34.77	PASS
				RB12#13	23.98	23.59	34.77	PASS
				RB25#0	23.86	23.47	34.77	PASS
				RB1#0	23.83	23.44	34.77	PASS
		5M		RB1#13	23.80	23.41	34.77	PASS
			MCH	RB1#24	23.90	23.51	34.77	PASS
BAND13	LTE/TM1			RB12#0	23.99	23.60	34.77	PASS
				RB12#6	23.97	23.58	34.77	PASS
				RB12#13	24.05	23.66	34.77	PASS
				RB25#0	23.81	23.42	34.77	PASS
				RB1#0	23.83	23.44	34.77	PASS
				RB1#13	23.95	23.56	34.77	PASS
				RB1#24	23.66	23.27	34.77	PASS
			НСН	RB12#0	24.07	23.68	34.77	PASS
				RB12#6	24.03	23.64	34.77	PASS
				RB12#13	23.90	23.51	34.77	PASS
				RB25#0	23.80	23.41	34.77	PASS

Report No.: SZEM161000916705 Page: 4 of 57

Page: 4 of 57																									
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict																	
				RB1#0	23.71	23.32	34.77	PASS																	
				RB1#13	23.71	23.32	34.77	PASS																	
				RB1#24	23.68	23.29	34.77	PASS																	
			LCH	RB12#0	23.86	23.47	34.77	PASS																	
				RB12#6	23.87	23.48	34.77	PASS																	
				RB12#13	23.94	23.55	34.77	PASS																	
		5M						RB25#0	23.82	23.43	34.77	PASS													
				RB1#0	23.71	23.32	34.77	PASS																	
			МСН									RB1#13	23.68	23.29	34.77	PASS									
	LTE/TM2					RB1#24	23.80	23.41	34.77	PASS															
BAND13				RB12#0	23.95	23.56	34.77	PASS																	
				-	RB12#6	23.93	23.54	34.77	PASS																
				RB12#13	24.00	23.61	34.77	PASS																	
				RB25#0	23.88	23.49	34.77	PASS																	
															RB1#0	23.72	23.33	34.77	PASS						
				RB1#13	23.83	23.44	34.77	PASS																	
											RB1#24	23.57	23.18	34.77	PASS										
			НСН	RB12#0	24.03	23.64	34.77	PASS																	
																					RB12#6	23.99	23.60	34.77	PASS
				RB12#13	23.86	23.47	34.77	PASS																	
				RB25#0	23.87	23.48	34.77	PASS																	

Report No.: SZEM161000916705 Page: 5 of 57

		Page:	5 of 57	/					
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	ERP (dBm)	limit (dBm)	Verdict	
				RB1#0	23.79	23.40	34.77	PASS	
				RB1#25	23.72	23.33	34.77	PASS	
	LTE/TM1			RB1#49	23.70	23.31	34.77	PASS	
		10M	MCH	RB25#0	23.85	23.46	34.77	PASS	
					RB25#13	23.82	23.43	34.77	PASS
				RB25#25	23.80	23.41	34.77	PASS	
BAND13				RB50#0	23.78	23.39	34.77	PASS	
D, IND TO				RB1#0	23.93	23.54	34.77	PASS	
				RB1#25	23.88	23.49	34.77	PASS	
				RB1#49	23.88	23.49	34.77	PASS	
	LTE/TM2	10M	MCH	RB25#0	23.77	23.38	34.77	PASS	
				RB25#13	23.84	23.45	34.77	PASS	
				RB25#25	23.82	23.43	34.77	PASS	
				RB50#0	23.84	23.45	34.77	PASS	

Note:

a: For getting the ERP (Efficient Radiated Power) in substitution method, the following formula should be taken to calculate it,

ERP [dBm] = SGP [dBm] – Cable Loss [dB] + Gain [dBd]

- b: SGP=Signal Generator Level
- c: RBW > emission bandwidth, VBW > $3 \times RBW$.

Detector: RMS

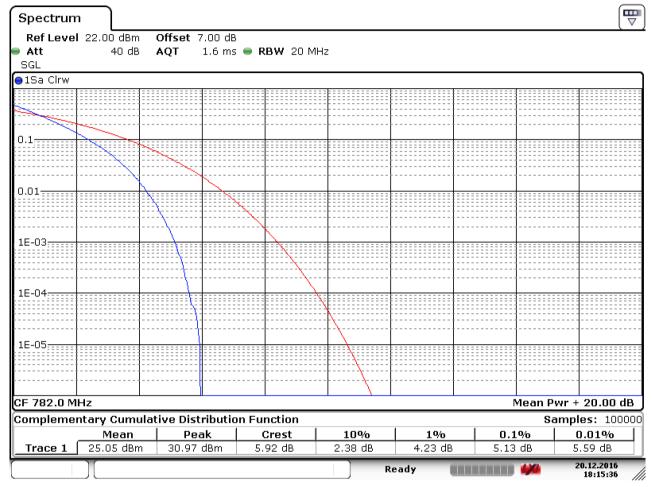
Report No.: SZEM161000916705 Page: 6 of 57

2 Peak-to-Average Ratio

Part I - Test Results

Test Band	Test Mode	Test Channel	Measured[dB]	Limit [dB]	Verdict
		LCH	\	13	PASS
	TM1/10M	MCH	5.13	13	PASS
Dond 12		НСН	\	13	PASS
Band 13	TM2/10M	LCH	\	13	PASS
		MCH	5.62	13	PASS
		HCH	\	13	PASS

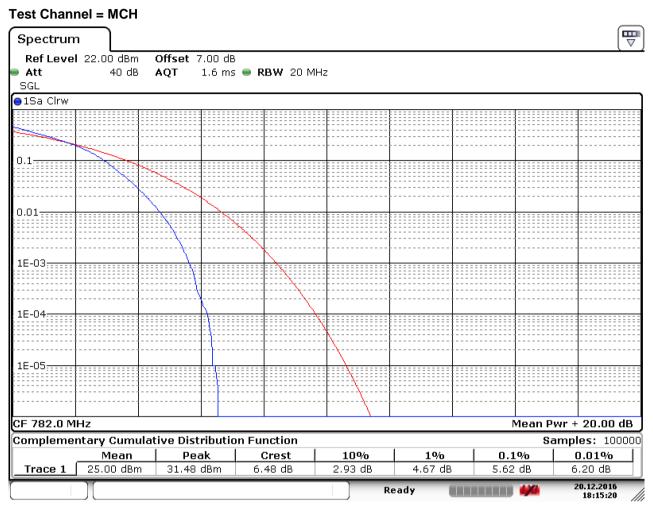
Report No.: SZEM161000916705 Page: 7 of 57


Part II - Test Plots

2.1 For LTE

2.1.1 Test Band = LTE band13

2.1.1.1 Test Mode = LTE/TM1.Bandwidth=10MHz



Date: 20.DEC.2016 18:15:36

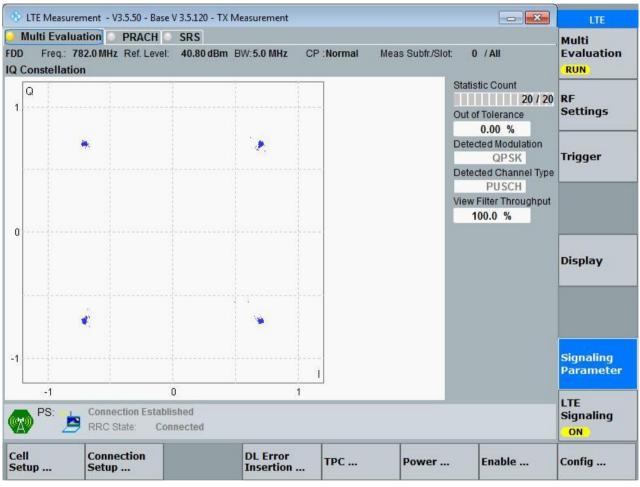
Report No.: SZEM161000916705 Page: 8 of 57

2.1.1.2 Test Mode = LTE/TM2.Bandwidth=10MHz

Date: 20.DEC.2016 18:15:21

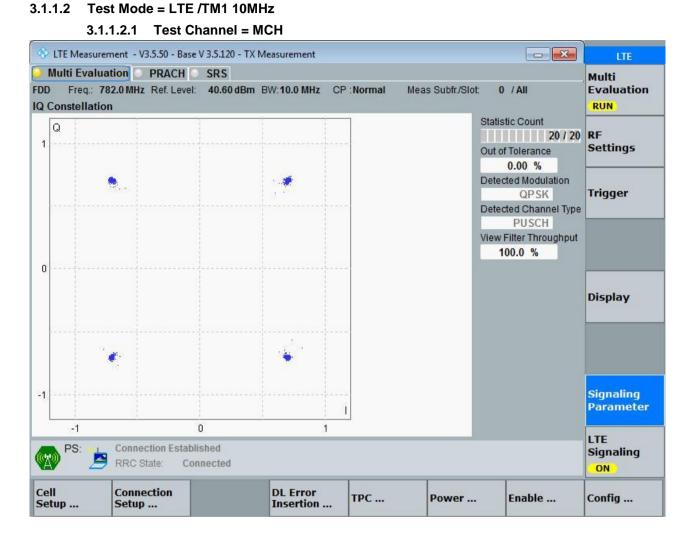
Report No.: SZEM161000916705 Page: 9 of 57

3 Modulation Characteristics

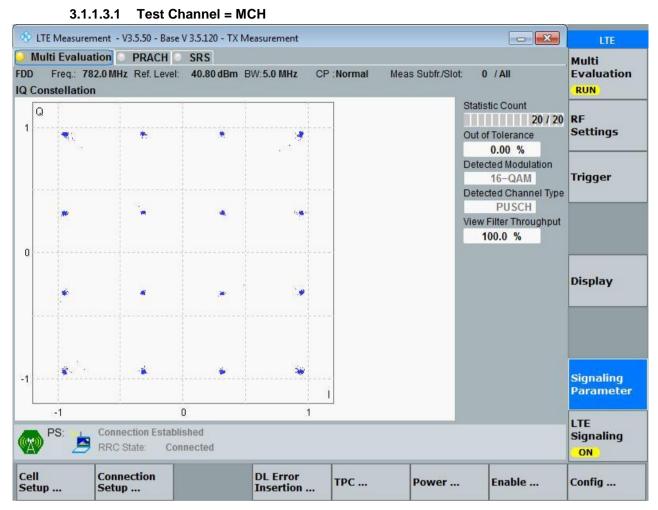

Part I - Test Plots

3.1 For LTE

3.1.1 Test Band = LTE band13

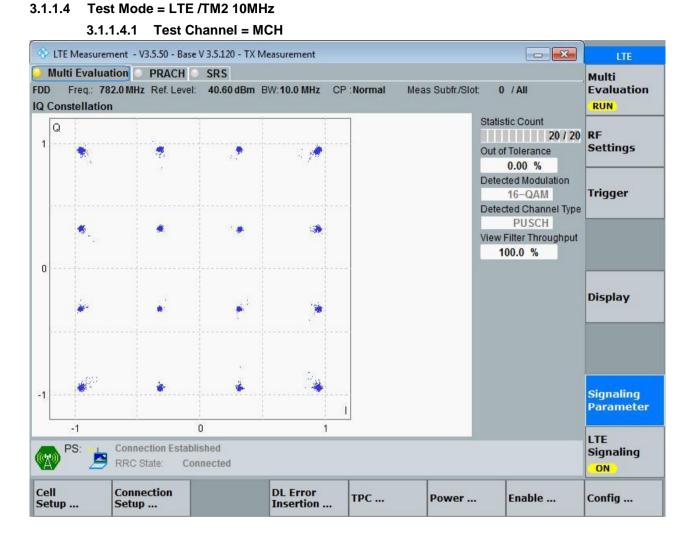

3.1.1.1 Test Mode = LTE /TM1 5MHz

3.1.1.1.1 Test Channel = MCH



Report No.: SZEM161000916705 Page: 10 of 57

Report No.: SZEM161000916705 Page: 11 of 57



"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

3.1.1.3 Test Mode = LTE /TM2 5MHz

Report No.: SZEM161000916705 Page: 12 of 57

Report No.: SZEM161000916705 Page: 13 of 57

4 Bandwidth

Part I - Test Results

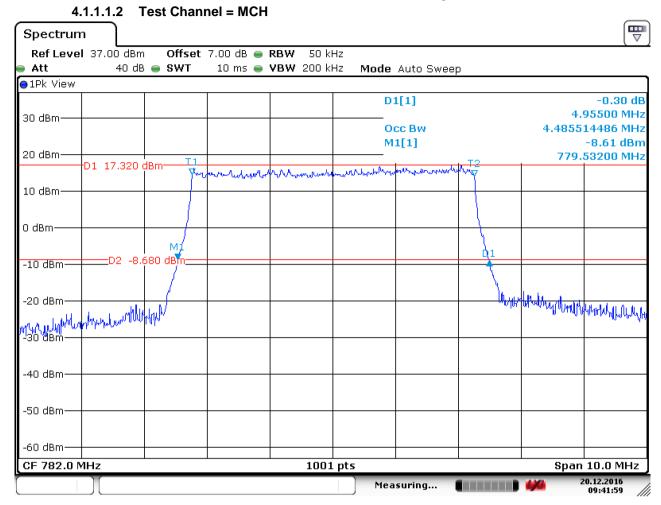
Test Band	Test Mode	Test Channel	Occupied Bandwidth [MHz]	Emission Bandwidth [MHz]	Verdict	
		LCH	4.50	4.97	PASS	
	TM1/ 5MHz	TM1/5MHz MCH		4.49	4.96	PASS
		HCH	4.48	4.94	PASS	
		LCH	4.49	4.99	PASS	
	TM2/ 5MHz	MCH	4.49	4.95	PASS	
		HCH	4.49	4.98	PASS	
Band 13	TM1/10MHz	LCH	/	\	PASS	
		MCH	8.95	9.71	PASS	
		HCH	/	\	PASS	
		LCH	/	١	PASS	
	TM2/ 10MHz	MCH	8.95	9.73	PASS	
		HCH	\	\	PASS	

Report No.: SZEM161000916705 Page: 14 of 57

4.1 For LTE

4.1.1 Test Band = LTE band13

4.1.1.1 Test Mode = LTE/TM1 5MHz


4.1.1.1.1 Test Channel = LCH

Spectrum	ן י								
	37.00 dBm		7.00 dB 👄						
Att	40 dE	B 🔵 SWT	10 ms 👄	VBW 200 kł	Hz Mode	Auto Swee	ep		
⊖1Pk View		1	1						0.70.10
					D	1[1]		4	-0.70 dB 96800 MHz
30 dBm——					0	cc Bw			04496 MHz
					М	1[1]			-8.80 dBm
20 dBm——	D4 46 700					1	L T2	777.	03200 MHz
	D1 16.730	abm yr I	alm the hyper	muhron	Marian	mound	M-Y		
10 dBm									
0 dBm		├					+		
		M					1		
-10 dBm	D2 -9.	270 dBm===					01		
							$- \sum$		
-20 dBm								b ^a lan si b	
-20 dBm— ~~~~~~^^ 20 dBm—	monadal	p M					UN	* www.	Archenter
-30 dBm	••••								
-30 ubiii									
10.15									
-40 dBm—									
-50 dBm									
-60 dBm									
CF 779.5 N	1Hz			1001	pts			Span	10.0 MHz
					Mea	suring		- 4 /4	20.12.2016 09:46:21

Date: 20.DEC.2016 09:46:22

Report No.: SZEM161000916705 Page: 15 of 57

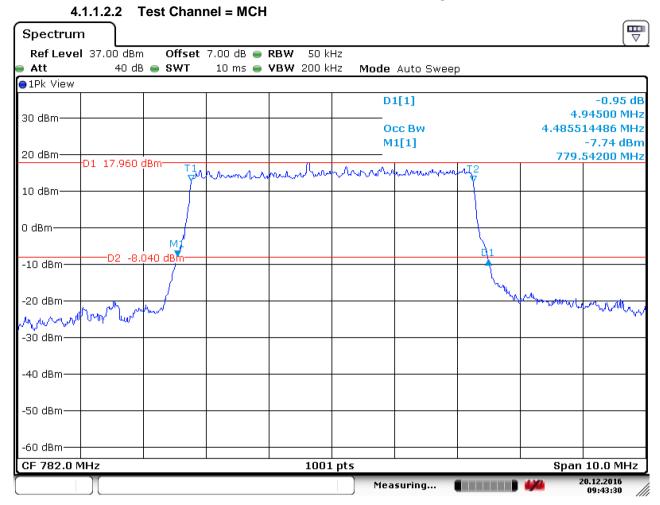
Date: 20.DEC.2016 09:42:00

Report No.: SZEM161000916705 Page: 16 of 57

4.	1.1.1.3	Test Chan	nel = HCH						
Spectrum	ι								
Ref Level	l 37.00 dBr	n Offset	7.00 dB 😑 I	RBW 50 ki	Ηz				
🔵 Att	40 d	B 🔵 SWT	10 ms 👄 '	VBW 200 ki	Hz Mode	Auto Swee	эр		
●1Pk View									
					D	1[1]			-0.79 dB
30 dBm									94300 MHz
						cc Bw		4.4755	24476 MHz
20 dBm					M	1[1]		702	-8.70 dBm 04200 MHz
	D1 16.910	dBm 1	www.		an an chinana		1.72	782.	04200 MHZ
		You	mon	Ulter Marine Ludy	Marrie Contraction	ኯሇጞቚ፝ዹጜኯኯመኯኯጜ	-r r		
10 dBm									
0 dBm		+					+		
		M					$ \rangle$		
-10 dBm	D2 -9	.090 dBm===							
		1					The second secon		
-20 dBm—	. N	and M					hr	MMMUAR A	Murunumpuru
-20 dBm -20 dBm -30 dBm	harm	1194.0.1							WWWWWWWWWWWWW
-30 dBm									
-40 dBm—									
-50 dBm—									
-60 dBm									
CF 784.5 M	/Hz			1001	nts			 Snan	10.0 MHz
)(1001			4		20.12.2016
	Л				Mea	suring			09:47:43

Date: 20.DEC.2016 09:47:43

Report No.: SZEM161000916705 Page: 17 of 57


Ref Level 37.00 dBm Offset 7.00 dB RBW 50 kHz Att 40 dB SWT 10 ms VBW 200 kHz Mode Auto Sweep IPk View 0 D1[1] -0.83 dB 4.98800 MHz 30 dBm 0cc Bw 4.485514466 MHz 4.98800 MHz 20 dBm 01 16.190 dBm T1 -9.69 dBm 10 dBm 0 dBm T2 777.02200 MHz 10 dBm 0 dBm 0 dBm T2 777.02200 MHz 10 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm -10 dBm 02 -9.810 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm -20 dBm 0 dBm <th>4.1.1.2.1</th> <th>Test Chanr</th> <th>nel = LCH</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>_</th>	4.1.1.2.1	Test Chanr	nel = LCH						_
Att 40 dB SWT 10 ms VBW 200 kHz Mode Auto Sweep IPk View 01[1] -0.83 dB 4.98800 MHz 30 dBm 0cc Bw 4.485514486 MHz 20 dBm 01 16.190 dBm T1 10 dBm 02 -9.810 dBm T2 777.02200 MHz 10 dBm 0 dBm 0 dBm 0 dBm 0 dBm -20 dBm 02 -9.810 dBm 0 dBm 0 dBm 0 dBm -20 dBm 02 -9.810 dBm 0 dBm 0 dBm 0 dBm 0 dBm -20 dBm 02 -9.810 dBm 0 dBm	Spectrum								
1Pk View D1[1] -0.83 dB 30 dBm 0cc Bw 4.98800 MHz 20 dBm 0cc Bw 4.485514486 MHz 20 dBm 01 16.190 dBm T2 10 dBm T2 777.02200 MHz 0 dBm 0 dBm T2 -10 dBm 02 -9.810 dBm 0 -20 dBm 02 -9.810 dBm 0 -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm 1001 pts Span 10.0 MHz	Ref Level 37.00 dB	m Offset	7.00 dB 🥃 R	. BW 50 kH	łz				
30 dBm 01[1] -0.83 dB 30 dBm 0cc Bw 4.98800 MHz 20 dBm 01 16.190 dBm T1 10 dBm T2 777.02200 MHz 10 dBm 02 -9.810 dBm T1 -20 dBm M -10 dBm -30 dBm -10 dBm -10 dBm -20 dBm -10 dBm -10 dBm <t< td=""><td>● Att 40 d</td><td>ib 🔵 SWT</td><td>10 ms 👄 V</td><td>'BW 200 kH</td><td>iz Mode</td><td>Auto Sweej</td><td>р</td><td></td><td></td></t<>	● Att 40 d	ib 🔵 SWT	10 ms 👄 V	' BW 200 kH	iz Mode	Auto Sweej	р		
30 dBm 4.98800 MHz 20 dBm 9.69 dBm 20 dBm 11 16.190 dBm 10 dBm 12 0 dBm 12 -10 dBm 10 -20 dBm 02 -9.810 dBm 10 -20 dBm 100 dBm -20 dBm 100 dBm	●1Pk View								
30 dBm Occ Bw 4.485514486 MHz 20 dBm D1 16.190 dBm T2 777.02200 MHz 10 dBm 0 dBm 0 dBm 0 dBm 0 dBm -10 dBm D2 -9.810 dBm 0 dBm 0 dBm -20 dBm -20 dBm 0 dBm 0 dBm					D	l[1]			-0.83 dB
20 dBm M1[1] -9.69 dBm 10 dBm T2 777.02200 MHz 10 dBm 0 dBm 10 -10 dBm D2 -9.810 dBm 10 -20 dBm -20 dBm -0 -30 dBm -0 -0 -60 dBm -0 -0 -50 dBm -0 -0 -60 dBm -0 -0 -20 dBm -0 -0	30 dBm	_							
20 dBm T2 777.02200 MHz 10 dBm 116.190 dBm 11 0 dBm 10 11 -10 dBm D2 -9.810 dBm 11 -20 dBm -20 dBm 11 -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm 50 dBm									
D1 16.190 dBm 12 10 10 dBm 0 dBm 0 0 -10 dBm D2 -9.810 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -50 dBm -10 dBm -50 dBm -10 dBm -20 dBm -20 dBm -20 dBm	00 d0m				M	1[1]			
10 dBm 0 dBm 0 dBm 02 -9.810 dBm -10 dBm 02 -9.810 dBm -20 dBm 0 dBm -30 dBm 0 dBm -50 dBm 0 dBm -60 dBm 0 dBm 60 dBm 0 dBm -50 dBm 0 dBm -60 dBm 0 dBm <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>T2</td><td>///.</td><td>JZZUU MHZ</td></t<>							T2	///.	JZZUU MHZ
0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70 d		Jun Jun	wwwwwww	www.mp	will the second will be a second will be a second with the second se	www.ww	1~1		
-10 dBm D2 -9.810 dBm	10 dBm	+ /					+		
-10 dBm D2 -9.810 dBm									
-10 dBm D2 -9.810 dBm	0 dBm	+ +							
-10 dBm D2 -9.810 dBm									
-20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm CF 779.5 MHz 1001 pts Span 10.0 MHz 20.12:2016		1.17					dı		
-30 dBm -40 dBm -50 dBm -60 dBm CF 779.5 MHz 1001 pts Span 10.0 MHz 20.12.2016	-10 dbm						I ↑		
-30 dBm -40 dBm -50 dBm -60 dBm CF 779.5 MHz 1001 pts Span 10.0 MHz 20.12.2016		/					1 ma	Asha to B	A 11
-30 dBm -40 dBm -50 dBm -60 dBm CF 779.5 MHz 1001 pts Span 10.0 MHz 20.12.2016	-20 dBm when	All					PL,	Maria Maria Maria	Mondary -
-40 dBm -50 dBm -60 dBm CF 779.5 MHz 1001 pts Span 10.0 MHz 20.12.2016	puller -								
-50 dBm -60 dBm CF 779.5 MHz 1001 pts Span 10.0 MHz 20.12.2016	-30 dBm								
-50 dBm -60 dBm CF 779.5 MHz 1001 pts Span 10.0 MHz 20.12.2016									
-50 dBm -60 dBm CF 779.5 MHz 1001 pts Span 10.0 MHz 20.12.2016	-40 dBm								
-60 dBm60 dB									
-60 dBm60 dB									
CF 779.5 MHz 1001 pts Span 10.0 MHz 20.12.2016 Measuring 20.12.2016	-50 dBm								
CF 779.5 MHz 1001 pts Span 10.0 MHz 20.12.2016 Measuring 20.12.2016									
Measuring 20.12.2016	-60 dBm								
	CF 779.5 MHz	· · · · · · · · · · · · · · · · · · ·		1001	pts		·	Span	10.0 MHz
					Mea	suring		470 2	

4.1.1.2 Test Mode = LTE/TM2 5MHz

Date: 20.DEC.2016 09:45:09

Report No.: SZEM161000916705 Page: 18 of 57

Date: 20.DEC.2016 09:43:31

Report No.: SZEM161000916705 Page: 19 of 57

4.	1.1.2.3	lest Chan							
Spectrun	ן ו								
Ref Leve	l 37.00 dBn	n Offset	7.00 dB 😑 I	RBW 50 kH	łz				``````````````````````````````````
Att	40 dE	B 👄 SWT	10 ms 👄 '	VBW 200 kH	lz Mode	Auto Swei	ер		
●1Pk View									
					D	1[1]			-0.68 dB
30 dBm									98300 MHz
						Occ Bw 4.485 M1[1]			14486 MHz
20 dBm					IVI.	1[1]		707	-9.08 dBm 03200 MHz
	D1 16.590	dBm	A	man			1. T2	/02.	00200 0012
		1 30	m www.ru	100. A 6. 00 A 60	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		And		
10 dBm									
							11		
0 dBm		+ +					+		
		M					$ \rangle$		
-10 dBm	D2 -9.	.410 dBm====					<u> 01</u>		
							1		
-20 dBm- / 1	a al						°М	hanna	A.
w Min	and dama	ľ							and a series
-30 dBm—									
-40 dBm—									
-50 dBm									
50 GBII									
-60 dBm									
CF 784.5 N	/IHz			1001	pts			-	10.0 MHz
					Mea	suring) 4/4 2	20.12.2016 09:48:54

4.1.1.2.3 Test Channel = HCH

Date: 20.DEC.2016 09:48:55

Report No.: SZEM161000916705 Page: 20 of 57

4.1.1.3 Test Mode = LTE/TM1 10MHz

4.	.1.1.3.1	Fest Chan	nel = MCH							
Spectrun	n]									
Ref Leve	I 37.00 dBm	n Offset	7.00 dB 🥃 R	BW 100 kł	Ηz					
🖷 Att	40 dE	8 👄 SWT	10 ms 👄 V	' BW 300 kł	Hz Mode	Auto Swee	эp			
⊖1Pk View										
					D	1[1]				-1.26 dB
30 dBm										.7100 MHz
						cc Bw 1[1]			8.9510	48951 MHz -7.39 dBm
20 dBm						1[1]			777	1650 MHz
	D1 17.410	dBm T1 I ⊽∆	war warden	MA. NAMA	work the work	manna	T2			
10 dBm		[~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	PAR 1-0 - 1400.				Ĭ			
10 00111										
0.40							$ \rangle$			
0 dBm——		мі								
								1		
-10 dBm—	U2 -8,	590 ивіп <u>——</u> <mark>/</mark>								
								λ		
-20 dBm—								- When	month	KdA, Juli
moundertwo	Munumma	how a								- we when
-30 dBm										
-40 dBm										
-50 dBm—										
-30 ubili										
-60 dBm—										
CF 782.0 N	MHz			1001	pts		_	_	-	20.0 MHz
					Mea	suring			4/4 2	0.12.2016 09:37:51

Date: 20.DEC.2016 09:37:51

Report No.: SZEM161000916705 Page: 21 of 57

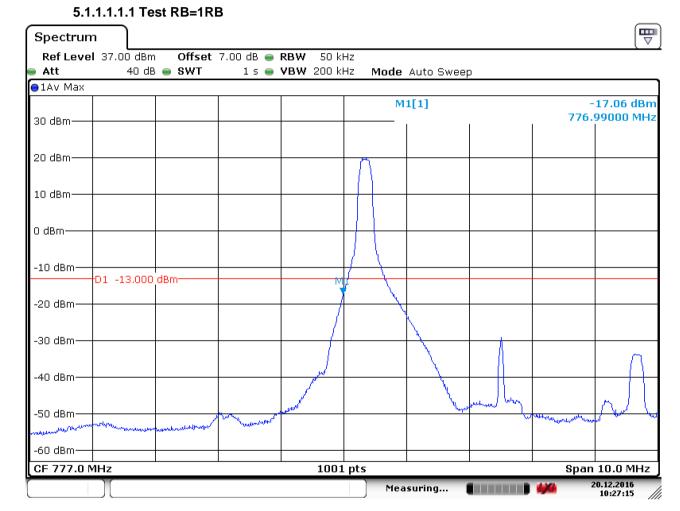
4.1.1.4.1 Test Channel = MCH ∀ Spectrum Ref Level 37.00 dBm Offset 7.00 dB 👄 RBW 100 kHz 40 dB 👄 Att SWT 10 ms 👄 **VBW** 300 kHz Mode Auto Sweep ●1Pk View D1[1] -1.99 dB 9.7300 MHz 30 dBm-Occ Bw 8.951048951 MHz -7.29 dBm M1[1] 20 dBm-777.1850 MHz D1 17.760 dBm mound mound when the source of the water out 1-July 10 dBm-0 dBm· МĮ 10 dBi -10 dBmwhere application of the second second -20 dBm -30 dBm[.] -40 dBm--50 dBm--60 dBm-1001 pts Span 20.0 MHz CF 782.0 MHz 20.12.2016 Measuring... 09:39:52

4.1.1.4 Test Mode = LTE/TM2 10MHz

Date: 20.DEC.2016 09:39:52

Report No.: SZEM161000916705 Page: 22 of 57

5 Band Edges Compliance


Part I –

5.1 For LTE

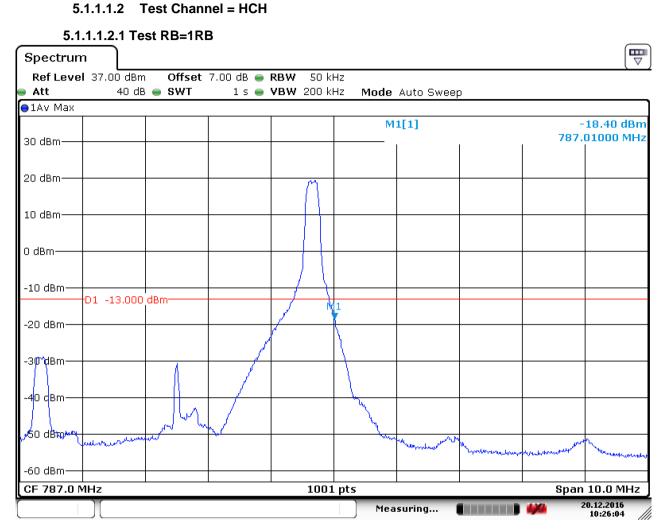
5.1.1 Test Band = LTE band13

5.1.1.1 Test Mode = LTE/TM1 5MHz

5.1.1.1.1 Test Channel = LCH

Date: 20.DEC.2016 10:27:15

Report No.: SZEM161000916705 Page: 23 of 57


Spectrum	ī									[Ţ
Ref Level	37.00 dBn	n Offset	7.00 dB 🔵	RBW 50 ki	Ηz						
🖷 Att	40 di	B 🔵 SWT	1 s 👄	VBW 200 ki	Ηz	Mode	Auto Swei	ер			
⊖1Av Max											
						М	1[1]			28.83 di	
30 dBm							1	1	776.	99000 M 	IHZ
20 dBm											
10 dBm											
						monthe	mannummente	Laleran prayland	mound	March Marcall Annual	٢
0 dBm											4
											1
-10 dBm											4
	D1 -13.000) dBm									+
-20 dBm											
20 0011					J						્ય
-30 dBm				M	1						1
-30 ubiii				Lash of any successful of							
	and the street and the	and the second second section of the second section of the second s	n martidenter Pres	Law and the second second							
-40 dBm	pharter and a second										
myseystatutes and											
-50 dBm—											
-60 dBm—											
CF 777.0 N	1Hz			1001	p†	ts			Span	10.0 MF	Ηz
						Mea	suring		4/4	20.12.2016 10:28:52	

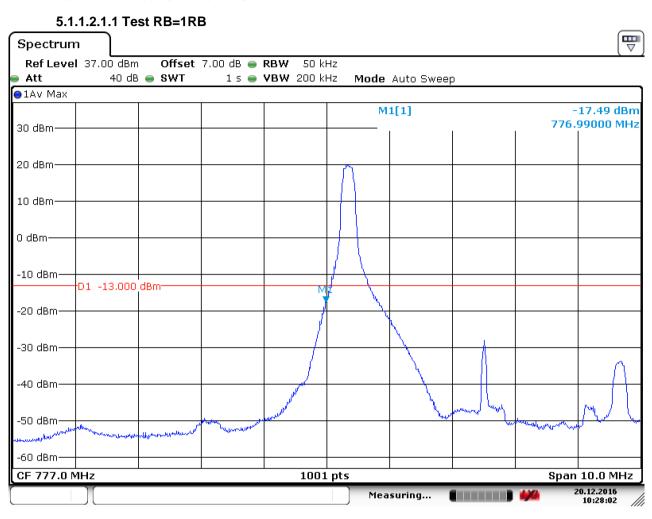
5.1.1.1.1.2 Test RB=25RB

Date: 20.DEC.2016 10:28:52

Report No.: SZEM161000916705 Page: 24 of 57

Date: 20.DEC.2016 10:26:04

Report No.: SZEM161000916705 Page: 25 of 57


5.1.	.1.1.2.2 Te	st RB=25	RB						_
Spectrum	ι								
Ref Level	l 37.00 dBm	Offset	7.00 dB 😑	RBW 50 k	Hz				`
Att	40 dB	🖷 SWT	1 s 👄	VBW 200 k	Hz Mode	: Auto Swee	р		
○1Av Max									
	M1[1] -2								
30 dBm						1	I	787.	01000 MHz
20 dBm—									
10 dBm									
formation	well we have a server	monum	monum	mound					
0 dBm									
-10 dBm									
	D1 -13.000	dBm							
-20 dBm									
				l N	1				
, -30 dBm——					K				
-30 ubiii					mounder	monthemation			
-40 dBm							and the construction of the second	mymme	
-40 aBm									and the
									and and a second
-50 dBm—									
-60 dBm—									
CF 787.0 M	/IHz			1001	. pts			-	10.0 MHz
	J				Me	asuring		4/4	20.12.2016 10:24:22

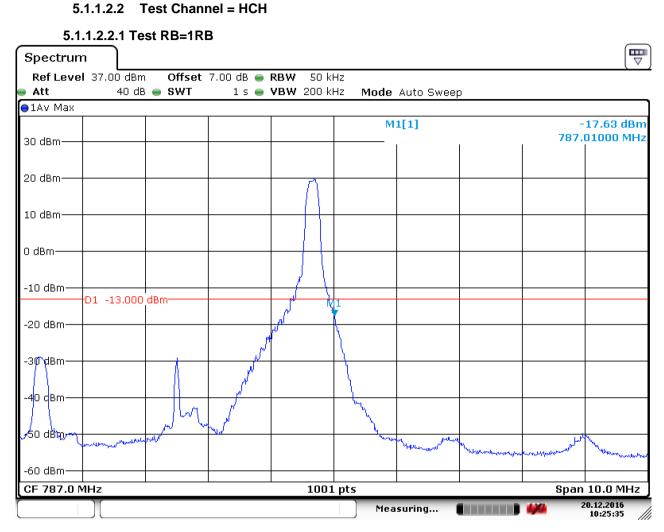
Date: 20.DEC.2016 10:24:23

Report No.: SZEM161000916705 Page: 26 of 57

5.1.1.2 Test Mode = LTE/TM2 5MHz 5.1.1.2.1 Test Channel = LCH

Date: 20.DEC.2016 10:28:02

Report No.: SZEM161000916705 Page: 27 of 57


Spectrum	')									ſ	Ţ
Ref Level	37.00 dBm	Offset	7.00 dB 🔵	RBW 50 ki	Ηz						
🖷 Att	40 dB	s 🔵 SWT	1 s 👄	VBW 200 ki	Ηz	Mode	Auto Swei	ер			
⊖1Av Max											
						M	1[1]			28.08 di 99000 M	
30 dBm									//0.	99000 14	IFIZ
20 dBm											
10 dBm											
						munum	ulen-hashauren-to	and the second	n/hidroriumpetal	enerolitected there is	١
0 dBm											
-10 dBm	D1 -13.000	dBm									+
-20 dBm					ļ						
20 d0				M	¥						Y
-30 aBm	الأربعي ا	well when a short	well-equinar topon and the	philes and the stand							
-30 dBm -40 dBm-	and all the second of the										
-50 dBm											
-60 dBm											
CF 777.0 M	IHz		•	1001	pt	s			Span	10.0 MF	Ηz
[][) Mea	suring		4/4	20.12.2016 10:28:26	

5.1.1.2.1.2 Test RB=25RB

Date: 20.DEC.2016 10:28:26

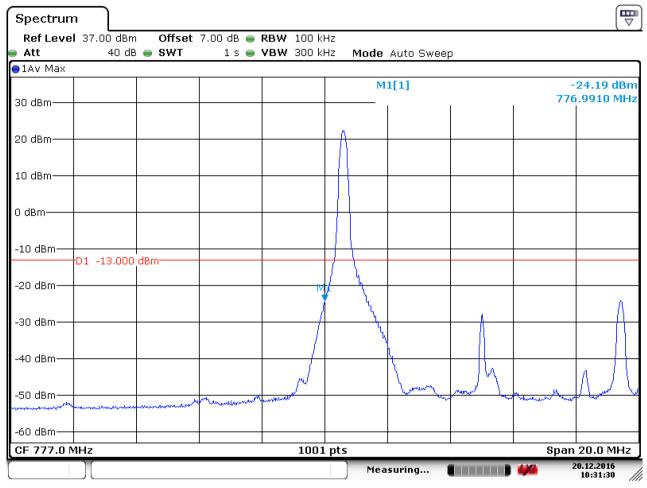
Report No.: SZEM161000916705 Page: 28 of 57

Date: 20.DEC.2016 10:25:36

Report No.: SZEM161000916705 Page: 29 of 57

Spectrum	n								Ē
Ref Leve	l 37.00 dBr	n Offset	7.00 dB 😑	RBW 50 k	Hz				
🖷 Att	40 di	B 👄 SWT	1 s 👄	VBW 200 k	Hz Mode	Auto Sweej	C		
⊖1Av Max									
30 dBm						11[1] 			-25.09 dBm 01000 MHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm	D1 -13.000) dBm							
-20 dBm					1				
/ -30 dBm					hanne	manne	hanne		
-40 dBm								the second se	mun
-50 dBm									
-60 dBm									
CF 787.0 N	MHz			1001	. pts			-	10.0 MHz
[][Mea	asuring		4/4	20.12.2016 10:25:04

5.1.1.2.2.2 Test RB=25RB


Date: 20.DEC.2016 10:25:04

Report No.: SZEM161000916705 Page: 30 of 57

5.1.1.3 Test Mode = LTE/TM1 10MHz 5.1.1.3.1 Test Channel = LCH

5.1.1.3.1.1 Test RB=1RB

Date: 20.DEC.2016 10:31:30

Report No.: SZEM161000916705 Page: 31 of 57

Spectrun	n									
Ref Leve	l 37.00 dB	m Offse	t 7.00 dB 👄	RBW 100 k	Hz					`
🔵 Att	40 c	ib 😑 SWT	1 s 👄	VBW 300 k	Hz	Mode	Auto Swe	ер		
⊖1Av Max										
						M	1[1]			30.30 dBm
30 dBm							1	1	776	5.9910 MHz
20 dBm										
10 dBm										
10 40111										put-all-anne
- I									T .	
0 dBm										
-10 dBm—	D1 -13.00									
	101 -13.00									
-20 dBm—					\square					<u>├</u>
				M	./					
-30 dBm				VI.	1					<u> </u>
				and an an and a start						
-40 dBm		mar allowed and and and and and and and and and an								
io abiii	- market									
	and the second s									
-50 dBm	r -									
-60 dBm—										
CF 777.0 M	MHz			1001	. pt	ts			-	20.0 MHz
						Mea	suring		4/0 2	20.12.2016 10:30:56

5.1.1.3.1.2 Test RB=50RB

Date: 20.DEC.2016 10:30:56

5.1.1.3.2 Test Channel = HCH

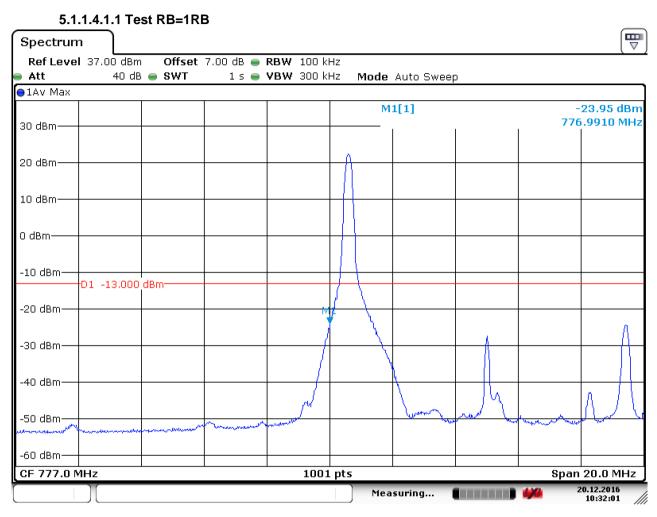
SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM161000916705 Page: 32 of 57

5.1.1.3.2.1 Test RB=1RB ₽ Spectrum Ref Level 37.00 dBm Offset 7.00 dB 👄 RBW 100 kHz Att 40 dB 🔵 SWT 1 s 🔵 **VBW** 300 kHz Mode Auto Sweep ●1Av Max -24.13 dBm M1[1] 787.0200 MHz 30 dBm-20 dBm⁻ 10 dBm-0 dBm--10 dBm-D1 -13.000 dBm -20 dBm[.] -3<mark>b\</mark>dBm 40 dBm ຣ໌ດ ປີ8ຫຼ_ -60 dBm-CF 787.0 MHz 1001 pts Span 20.0 MHz 20.12.2016 Measuring... 10:32:58 ///

Date: 20.DEC.2016 10:32:59

Report No.: SZEM161000916705 Page: 33 of 57


5.1	.1.3.2.2 Te	est RB=50	RB						
Spectrum	Γ								
Ref Level	l 37.00 dBm	n Offset	7.00 dB 🔵	RBW 100 k	Hz				
🗕 Att	40 dE	B 👄 SWT	1 s 👄	VBW 300 k	Hz Mode	Auto Swee	эр		
⊖1Av Max									
					M	1[1]			29.43 dBm
30 dBm						1	1	787	7.0200 MHz
20 dBm									
10 dBm									
		ستحب بمسجى وحنس	minim	many					
0 dBm									
10 -10									
-10 dBm—	D1 -13.000	dBm							
-20 dBm—									
				\v	1				
√-30 dBm				, , , , , , , , , , , , , , , , , , ,	mannen				
						- new man	- mar man along	m	
-40 dBm—								- The second	-
									hanne
-50 dBm—									
-60 dBm—									
CF 787.0 M	l 1Hz	l		1001	l pts			Span	20.0 MHz
)(suring			20.12.2016
									10:33:36 //

Date: 20.DEC.2016 10:33:36

Report No.: SZEM161000916705 Page: 34 of 57

5.1.1.4 Test Mode = LTE/TM2 10MHz 5.1.1.4.1 Test Channel = LCH

Date: 20.DEC.2016 10:32:01

Report No.: SZEM161000916705 Page: 35 of 57

Spectrun	n									
Ref Leve	l 37.00 dBr	m Offset	7.00 dB 😑	RBW 100 k	Hz					
🔵 Att	40 d	IB 👄 SWT	1 s 😑	VBW 300 k	Hz	Mode	Auto Swe	ер		
●1Av Max			_							
						M	1[1]			30.08 dBm
30 dBm							1	1	776	5.9910 MHz
20 dBm										
10 dBm										
10 000								a and a second	man	mm
0 40						- and the second	the second second			
0 dBm										
-10 dBm—	D1 -13.00									
	01 -10,000									
-20 dBm—					H					
				M	1					
-30 dBm					7					
			monumen	and a star on the second star						
-40 dBm		and the second se								
	- Marine									
-50 dBm	1 months									
-JU UBIII	ſ									
-60 dBm—										
CF 777.0 M	MHz			1001	. pt	ts				20.0 MHz
[П					Mea	suring		- 444 2	20.12.2016 10:30:10

5.1.1.4.1.2 Test RB=50RB

Date: 20.DEC.2016 10:30:10

5.1.1.4.2 Test Channel = HCH

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM161000916705 Page: 36 of 57

5.1.1.4.2.1 Test RB=1RB ₽ Spectrum Ref Level 37.00 dBm Offset 7.00 dB 👄 RBW 100 kHz Att 40 dB 🔵 SWT 1 s 🔵 **VBW** 300 kHz Mode Auto Sweep ●1Av Max M1[1] -23.40 dBm 787.0200 MHz 30 dBm-20 dBm⁻ 10 dBm-0 dBm--10 dBm-D1 -13.000 dBm -20 dBm[.] -3<mark>b\</mark>dBm 40 dBm 60 **პ**8დუ -60 dBm-CF 787.0 MHz 1001 pts Span 20.0 MHz 20.12.2016 Measuring... 10:32:35 M

Date: 20.DEC.2016 10:32:35

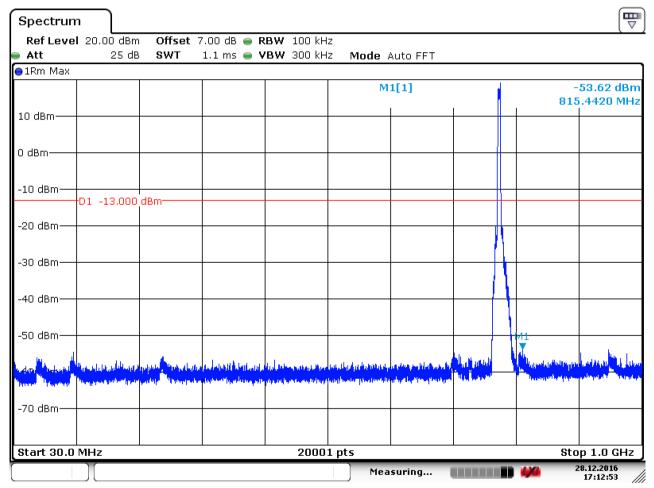
Report No.: SZEM161000916705 Page: 37 of 57

Spectrun	n										
Ref Leve				7.00 dB 👄							
e Att	40	dB 😑	SWT	1 s 😑	VBW 30	DO kHz	: Mode	Auto Swee	0		
⊖1Av Max	1			T	T						
30 dBm							M	1[1]			27.50 dBm '.0200 MHz
20 dBm											
10 dBm											
0 dBm	~					$\left\{ + \right\}$					
-10 dBm—	D1 -13.0	 00_dBm									
-20 dBm—											
-30 dBm—						<u> </u>			m		
-40 dBm											~
-50 dBm—											man
-60 dBm											
CF 787.0 N	MHz			1	1	.001 p	ots	1	1	Span	20.0 MHz
)[Mea	suring		2 2	20.12.2016 10:34:37

5.1.1.4.2.2 Test RB=50RB

Date: 20.DEC.2016 10:34:37

Report No.: SZEM161000916705 Page: 38 of 57


6 Spurious Emission at Antenna Terminal

NOTE: For the averaged unwanted emissions measurements, the measurement points in each sweep is greater than twice the Span/RBW in order to ensure bin-to-bin spacing of < RBW/2 so that narrowband signals are not lost between frequency bins. As to the present test item, the "Measurement Points = k * (Span / RBW)" with k between 4 and 5, which results in an acceptable level error of less than 0.5 dB. Part L - Test Plots

6.1 For LTE

- 6.1.1 Test Band = LTE band13
- 6.1.1.1 Test Mode = LTE / TM1 5MHz RB1#0

6.1.1.1.1 Test Channel = LCH

Date: 28.DEC.2016 17:12:54

Report No.: SZEM161000916705 Page: 39 of 57

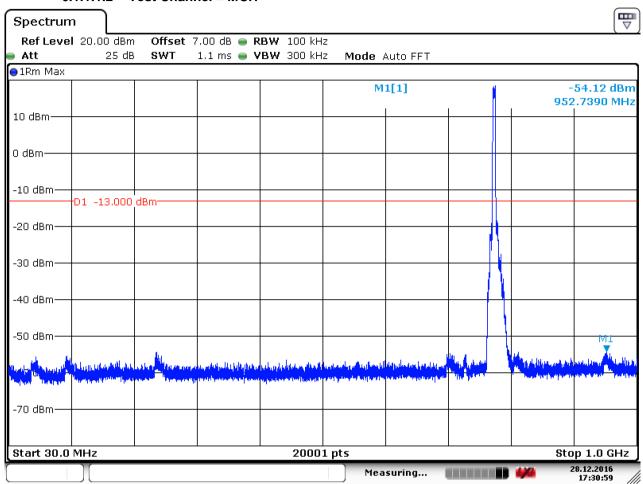
Spectrum	ı]								
Ref Level e Att	l 20.00 dBr 25 d		7.00 dB 👄 R 75.5 µs 👄 V		Mode Au	ito FFT			
😑 1 Rm Max									
10 dBm					М	1[1]	1		39.40 dBm 89860 GHz
0 dBm									
-10 dBm									
	D1 -13.000) dBm							
-20 dBm									
-30 dBm									M
-40 dBm									
hJARANA ABADANDA	mandywala	WWW.	ndata yana yang metapatan	romyntropallarlar	del del competence	and share a state of the state	alampting alphant Mile	laddon persolad a	mall manual for
-60 dBm									
-70 dBm									
Start 1.0 G	 GHz			2000	l pts			Stop :	1.559 GHz
						suring			28.12.2016 17:14:02

Date: 28.DEC.2016 17:14:03

Report No.: SZEM161000916705 Page: 40 of 57

Spectrum	ı)										
Ref Level				7.00 dB 🔵							`
e Att	2!	5 dB 🧉	● SWT	100 µs 👄	VBW 3	MHz	Mode A	uto FFT			
⊖1Rm Max				1							
							M	1[1]			45.96 dBm
								1	1	1.562	03310 GHz
10 dBm											
0 dBm											
-10 dBm—											
-20 dBm									_		
-30 dBm											
40 d0 m	D1 -40.	 									
M1	DI -40.		0111								
-50 dBm											
	~		~~~~			~~~~~					
-60 dBm											
-70 dBm—										+	
Start 1.559	GHz				21)001 p	ts				0 1.61 GHz
					21	.001 h	1		4		28.12.2016
							mea	suring			17:22:30

Date: 28.DEC.2016 17:22:30


Report No.: SZEM161000916705 Page: 41 of 57

Spectrun	n]								
Ref Leve Att	l 20.00 dB 25 (7.00 dB 👄 F 25.2 ms 👄 V		Mode A	uto Sweep			
● 1Rm Max	23 (23.2 113 🚽 י	IDW JIMIZ	Mode At	ио эмеер			
					М	1[1]	1		37.66 dBm 91760 GHz
10 dBm——									
0 dBm									
-10 dBm—	D1 -13.00	10 dBm							
-20 dBm—									
-30 dBm——		M1							
-40 dBm				hillin an a triathan bill	andar a maler and ena	و الد			
	المقتدا وروسي المراج	and the property line	a la calanda da serie da serie da la composición de la composición de la composición de la composición de la c	اليورية في منهورية المالية. محمد المراجع المالية	والمعود الشبي ومعلام	1 1			
and the property of the second	hand a second	and the particular sector of the sector of t	and the second second second						and the subled statistic
-60 dBm—									
-70 dBm—									
Start 1.61	011-				1 mtc				10.0.01-
[SCART 1.61	GHZ			2000					10.0 GHz
					Mea	suring		676	17:17:03

Date: 28.DEC.2016 17:17:03

Report No.: SZEM161000916705 Page: 42 of 57

6.1.1.1.2 Test Channel = MCH

Date: 28.DEC.2016 17:30:59

Report No.: SZEM161000916705 Page: 43 of 57

Spectrum	ı]								[₩
Ref Level Att	l 20.00 dBm 25 dB		7.00 dB 👄 R 75.5 μs 👄 V		Mode Au	Ito FFT			
⊖1Rm Max			•						
10 dBm					М	1[1]			42.36 dBm 89860 GHz
0 dBm									
-10 dBm	D1 -13.000	dBm							
-20 dBm									
-30 dBm									
-40 dBm						sul there are			M
MERMHARITY	ha the	the second s	e,Maharata.tri/M	"Half II." Mada wali	Angendanyan	alahay na manakana ana	AND	kundenne for fan de	to/distant
-60 dBm									
-70 dBm									
Start 1.0 G	Hz			2000	1 pts			Stop :	L.559 GHz
					Mea	suring		444 2	8.12.2016 17:30:03

Date: 28.DEC.2016 17:30:03

Report No.: SZEM161000916705 Page: 44 of 57

Spectrum	,)								
	20.00 dBm			RBW 1 MHz					``
e Att	25 dE	B 👄 SWT	100 µs 👄	VBW 3 MHz	Mode A	uto FFT			
⊖1Rm Max		1	1	,					
					M	1[1]			42.45 dBm
10 40						I	1	1.566	34490 GHz
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-50 dbiii									
	M1								
-40 dBm	D1 40.000	dBm							
	\sim								
-50 dBm-	/								
r I		<u> </u>	<u> </u>	+	~~~~				\sim
-60 dBm									
-70 dBm									
Start 1.559	9 GHz			20001	. pts				1.61 GHz
]				Mea	suring		4/4	28.12.2016 17:19:48

Date: 28.DEC.2016 17:19:49

Report No.: SZEM161000916705 Page: 45 of 57

Spectrum	ι								
	l 20.00 dBn		7.00 dB 😑 RI						
e Att	25 dE	B SWT	25.2 ms 🥌 V I	BW 3 MHz	Mode Au	ito Sweep			
⊖1Rm Max	1	T							
					M	1[1]			38.92 dBm
10 dBm								3.9	03920 GHz
0 dBm									
10 40									
-10 dBm—	D1 -13.000	dBm							
-20 dBm									
-30 dBm									
-40 dBm		M1							
				الاردىن باريان	la t _{ana} datta dan	and the state			
<u>հ50.dBm- </u> կ	والالباب احبيلي	and the second s	الأردان واريم بيرين المعير الأردار. الأردان واريم بيرين ومريق من الأردان	in er en de seguerations Autor conficere, black i	والأور والأسرير ومرادات	1.01	و باروالغام موجعات العرب	and the second second	Andrika in state
a bar we design the lip	and a lot of a set of the set of the	and provide the second s	and discriminations			A second second	1.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		and the second sec
-60 dBm									
-70 dBm									
Start 1.61	GHz		· ·	2000	1 pts				10.0 GHz
][]				Mea	suring		- 44	8.12.2016 17:17:51

Date: 28.DEC.2016 17:17:52

Report No.: SZEM161000916705 Page: 46 of 57

Spectrun	n									
	1 20.00 dBn		7.00 dB 👄 R							
e Att	25 dB	B SWT	1.1 ms 👄 🖌	′BW 300 kH	z Mode /	Auto FFT				
⊖1Rm Max										
					M	1[1]				54.64 dBm
						ı	I		950	.4600 MHz
10 dBm										
0 dBm										
								1		
-10 dBm										
-10 dbiii	D1 -13.000) dBm								
-20 dBm—								╢		
								11		
-30 dBm								4		
-40 dBm								1		
-40 4611										
								1		
-50 dBm—										M1
4									Maria and Andrea	. <u>.</u>
Len Adure	has pasada a		Human							n frankriger Telefor
parent liperated	a top and the base	ana	and califold and solar	discussed as to be about the	hatter metalistic	Authlinen obereiden	and the second s		1 Dentrolsoftable	and a strength
-70 dBm—										
-70 übili										
Start 30.0	MHz	1	I	2000	1 pts		1		Sto	p 1.0 GHz
)(suring				
					J	Saringin				17:35:36

6.1.1.1.3 Test Channel = HCH

Date: 28.DEC.2016 17:35:36

Report No.: SZEM161000916705 Page: 47 of 57

Spectrun	n]								[₩
Ref Leve e Att	l 20.00 dB 25 c		7.00 dB 👄 F 75.5 µs 👄 V		Mode Au	ito FFT			
⊖1Rm Max									······
					М	1[1]	1		46.26 dBm 65880 GHz
10 dBm									
0 dBm									
-10 dBm—	D1 -13.00	0 dBm							
-20 dBm—									
-30 dBm—									
-40 dBm—						M1			
analika.alikaalikaani	to many and the second second	mudantati	Monte production	epperateral at the	tomp proposition and	www.weinethol ^{eubo} linika	and here was and	Manyton Charlestown	Henry Constrainty of the
-60 dBm——									
-70 dBm—									
Start 1.0 G	GHz			2000	1 pts			_	1.559 GHz
					Mea	suring		- 4/4 2	8.12.2016 17:36:30

Date: 28.DEC.2016 17:36:30

Report No.: SZEM161000916705 Page: 48 of 57

Spectrum								
	20.00 dBm			RBW 1 MHz				`
Att	25 dB	SWT 😑 SWT	100 µs 😑	VBW 3 MHz	Mode A	uto FFT		
⊖1Rm Max			1	T T				
					M	1[1]		41.18 dBm
10 dBm							1.509	17270 012
0 dBm								
-10 dBm								
-20 dBm——								
-30 dBm								
-40 dBm	D1 -40.000	dBm						
-50 dBm	\square							
-60 dBm								
-70 dBm								
Start 1.559	GHz			20001	pts			1.61 GHz
	Υ					suring		28.12.2016
<u></u>						-		17:37:13

Date: 28.DEC.2016 17:37:14

Report No.: SZEM161000916705 Page: 49 of 57

Spectrum	ı]								
Ref Level Att	20.00 dE 25		7.00 dB 👄 I 25.2 ms 👄 Y		Modo A	uto Sweep			
●1Rm Max	20	ab b M1	20,2 115 🚽 -		MOUE AU	in oweeh			
10 - 10					М	1[1]	1		40.00 dBm 16510 GHz
10 dBm									
0 dBm									
-10 dBm——	D1 -13.00	00 dBm							
-20 dBm									
-30 dBm		M1							
-40 dBm			ورو والمربعة والمحمد والم	المحمد والمرواقية والمروا		اليونيوني) محمد المحمد الم			
WEQ. dBdamt p		lena októw date połoszała	n a na stal a transmit na stal a stal poli	and a state of the second s			a <mark>ya ana ana ana ana ana ana ana ana ana a</mark>	A DESCRIPTION OF THE OWNER OWNER OWNER OWNER O	and the state of t
-60 dBm									
-70 dBm									
Start 1.61	GHz			2000	1 pts				10.0 GHz
					Mea	suring		4/4	28.12.2016 17:38:00

Date: 28.DEC.2016 17:38:00

6.1.1.2 Test Mode = LTE / TM1 10MHz RB1#0

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM161000916705 Page: 50 of 57

6.1.1.2.1 Test Channel = MCH ₩ Spectrum Ref Level 20.00 dBm Offset 7.00 dB 👄 RBW 100 kHz Att 25 dB 🔵 SWT 1.1 ms 👄 **VBW** 300 kHz Mode Auto FFT ∋1Rm Max M1[1] -49.72 dBm 736.9730 MHz 10 dBm-0 dBm--10 dBm-D1 -13.000 dBm--20 dBm--30 dBm-40 dBm-M1 -50 dBm--70 dBm[.] Start 30.0 MHz 20001 pts Stop 1.0 GHz 28.12.2016 Measuring... 17:41:11 ///

Date: 28.DEC.2016 17:41:11

Report No.: SZEM161000916705 Page: 51 of 57

Spectrum	ı)								
	l 20.00 dBn			RBW 1 MHz					
Att	25 di	B 🕳 SWT	100 µs 😑	VBW 3 MHz	Mode A	uto FFT.			
⊖1Rm Max									<u></u>
					M	1[1]			35.69 dBm 51850 GHz
10 dBm								1.00	
0 dBm									
-10 dBm—	-D1 -13.000) dBm							
-20 dBm—									
-30 dBm									Mi
-40 dBm									
							я.		
-50 dBm	hipita hannya kala h	and the second second	antimitiviti lantantini	NAMAMAN	ndel kapateri terretari	many with the	the property with the state	halphallichural	Marine And And
-60 dBm									
-70 dBm									
Start 1.0 G	Hz	·	·	2000:	L pts	·	·	Stop :	1.559 GHz
					Mea	suring		4/4 2	8.12.2016 17:40:19

Date: 28.DEC.2016 17:40:20

Report No.: SZEM161000916705 Page: 52 of 57

Spectrum	ī									
Ref Level Att			Offse SWT	t 7.00 dB 👄	RBW 1 MHz VBW 3 MHz	Mode A				
1Rm Max	2	.J UD	- 3111	100 µ3 🚽	TOW STMITZ	moue A				
						М	1[1]			53.07 dBm 19280 GHz
10 dBm										
0 dBm										
-10 dBm										
-20 dBm										
-30 dBm										
	D1 -40	,000 (dBm							
-50 dBm		~	~~~~					MI		
-60 dBm										
-70 dBm——										
Start 1.559	9 GHz				20001	pts				1.61 GHz
						Mea	suring		- 44	28.12.2016 17:39:45

Date: 28.DEC.2016 17:39:45

Report No.: SZEM161000916705 Page: 53 of 57

Spectrum	ı]								
	l 20.00 dBm		7.00 dB 😑 F		_				
Att	25 dB	SWT 2	25.2 ms 😑 \	BW 3 MHz	Mode Au	uto Sweep			
⊖1Rm Max	1		1						
					M	1[1]			32.47 dBm
10 dBm								3.8	88400 GHz
0 dBm									
-10 dBm—	D1 -13.000	dB m							
	DI -13,000								
-20 dBm									
-30 dBm		M1							
		Ĭ							
-40 dBm——					una y Jahranda Bah	<mark>.</mark>			
50 d&datate		Parline In Provide Street	and the first second second	ألطيطي حليب والمايا	nersen gesterneren etterne metalen in seineren etterne	A CONTRACTOR OF			
and and other for the factor of	and a state of the	Riamperchipsel Hades	ande alle de transford (de 1,64 g)	yarelisi yakaparatis			ومعاناه وتسرار سايلاترال		in the second
-60 dBm—						fillinge delfe	a a shi ta ba an a sa ka fa fara da ya	teritik (₁₉₁₀ en literitika)	
00 0.0									
-70 dBm—									
Start 1.61	GHz	I	I	2000	1 pts	I	I	Stop	10.0 GHz
					Mea	suring		4/4 2	8.12.2016 17:39:09

Date: 28.DEC.2016 17:39:10

Report No.: SZEM161000916705 Page: 54 of 57

7 Field Strength of Spurious Radiation

7.1 For LTE

7.1.1 Test Band = LTE band13

7.1.1.1 Test Mode =LTE/TM1 5MHz RB1#0

7.1.1.1.1	Test Channel = LCH			
Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
1595.000	-65.93	-40.00	-25.93	Vertical
3975.000	-68.44	-13.00	55.44	Vertical
5145.000	-67.54	-13.00	54.54	Vertical
7192.500	-65.61	-13.00	52.61	Vertical
1529.000	-66.16	-13.00	53.16	Horizontal
1606.000	-65.83	-40.00	-25.83	Horizontal
1870.000	-63.12	-13.00	50.12	Horizontal
2608.000	-58.50	-13.00	45.50	Horizontal

7.1.1.1.2 Test Channel = MCH

Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
1245.500	-65.23	-13.00	52.23	Vertical
1588.000	-61.32	-40.00	21.32	Vertical
2350.000	-59.12	-13.00	46.12	Vertical
4368.000	-63.73	-13.00	50.73	Vertical
1354.000	-64.26	-13.00	51.26	Horizontal
1591.000	-63.43	-40.00	23.43	Horizontal
1869.000	-65.72	-13.00	52.72	Horizontal
5456.000	-64.24	-13.00	51.24	Horizontal

7.1.1.1.3 Test Channel = HCH

Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
1463.000	-66.70	-13.00	53.70	Vertical
1595.000	-65.93	-40.00	-25.93	Vertical
2432.000	-58.66	-13.00	45.66	Vertical
5925.000	-66.98	-13.00	53.98	Vertical
1111.000	-67.01	-13.00	54.01	Horizontal
1584.000	-65.86	-40.00	-25.86	Horizontal
3292.500	-69.75	-13.00	56.75	Horizontal
5145.000	-67.47	-13.00	54.47	Horizontal

Report No.: SZEM161000916705 Page: 55 of 57

Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
1595.000	-65.93	-40.00	25.93	Vertical
1991.000	-61.51	-13.00	48.51	Vertical
2200.000	-59.12	-13.00	46.12	Vertical
2568.000	-58.70	-13.00	45.70	Vertical
1111.000	-67.01	-13.00	54.01	Horizontal
1199.000	-67.09	-13.00	54.09	Horizontal
1595.000	-65.77	-40.00	25.77	Horizontal
2256.000	-59.29	-13.00	46.29	Horizontal

7.1.1.2 Test Mode =LTE/TM1 10MHz RB1#0

NOTE:

1) The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM161000916705 Page: 56 of 57

8 Frequency Stability

8.1 Frequency Error VS. Voltage

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
		MCH		VL	-5.11	-0.00653	PASS
	LTE/TM1 10MHz LTE/TM2 10MHz		TN	TN VN -3.32 -0.0042	-0.00425	PASS	
LTE band				VH	-2.64	-0.00338	PASS
13		MCH	TN	VL	-4.43	-0.00566	PASS
				VN	-1.82	-0.00233	PASS
				VH	3.63	0.00464	PASS

Report No.: SZEM161000916705 Page: 57 of 57

8.2 Frequency Error VS. Temperature

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				-30	-2.45	-0.00313	PASS
				-20	-1.64	-0.00210	PASS
				-10	2.18	0.00279	PASS
				0	1.69	0.00216	PASS
	LTE/TM1 20MHz	MCH	VN	10	-1.22	-0.00156	PASS
				20	0.59	0.00075	PASS
				30 -1.81 -	-0.00231	PASS	
				40	-2.33	-0.00298	PASS
LTEband13				50	-3.54	-0.00453	PASS
		МСН	VN	-30	-3.80	-0.00486	PASS
				-20	-2.91	-0.00372	PASS
				-10	-1.49	-0.00191	PASS
				0	-4.17	-0.00533	PASS
	LTE/TM1 20MHz			10	-2.03	-0.00260	PASS
				20	-5.22	-0.00668	PASS
				30	-3.18	-0.00407	PASS
				40	-4.69	-0.00600	PASS
				50	-2.78	-0.00355	PASS

The End