

Report No.: SZEM161000916705 Page: 1 of 134

Appendix B

Test Data for SZEM1610009167RG

Report No.: SZEM161000916705 Page: 2 of 134

CONTENT

1	EFFECTIVE (ISOTROPIC) RADIATED POWER OUTPUT DATA	3
2	PEAK-TO-AVERAGE RATIO	11
	2.1 For LTE	12
	2.1.1 Test Band = LTE band7	12
3	MODULATION CHARACTERISTICS	18
	3.1 For LTE	18
	3.1.1 Test Band = LTE band7	18
4	BANDWIDTH	26
	4.1 For LTE	27
	4.1.1 Test Band = LTE band7	27
5	BAND EDGES COMPLIANCE	51
	5.1 For LTE	51
	5.1.1 Test Band = LTE band7	51
6	SPURIOUS EMISSION AT ANTENNA TERMINAL	83
	6.1 For LTE	83
	6.1.1 Test Band = LTE band7	83
7	FIELD STRENGTH OF SPURIOUS RADIATION	. 131
	7.1 For LTE	131
	7.1.1 Test Band = LTE band7	. 131
8	FREQUENCY STABILITY	. 132
	8.1 FREQUENCY ERROR VS. VOLTAGE	132
	8.2 FREQUENCY ERROR VS. TEMPERATURE	133

Report No.: SZEM161000916705 Page: 3 of 134

1 Effective (Isotropic) Radiated Power Output Data

Effective Isotropic Radiated Power of Transmitter (EIRP) for LTE BAND 7

Test Band(LTE)	Test Mode	c Radiated Po Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	23.54	24.03	33.00	PASS
				RB1#13	23.58	24.07	33.00	PASS
				RB1#24	23.58	24.07	33.00	PASS
			LCH	RB12#0	22.72	23.21	33.00	PASS
				RB12#6	22.74	23.23	33.00	PASS
				RB12#13	22.79	23.28	33.00	PASS
		5M		RB25#0	22.71	23.20	33.00	PASS
				RB1#0	23.95	24.44	33.00	PASS
				RB1#13	23.94	24.43	33.00	PASS
			МСН	RB1#24	23.91	24.40	33.00	PASS
BAND7	LTE/TM1			RB12#0	23.10	23.59	33.00	PASS
				RB12#6	23.07	23.56	33.00	PASS
				RB12#13	23.11	23.60	33.00	PASS
				RB25#0	23.03	23.52	33.00	PASS
				RB1#0	23.68	24.17	33.00	PASS
				RB1#13	23.71	24.20	33.00	PASS
				RB1#24	23.65	24.14	33.00	PASS
			НСН	RB12#0	22.83	23.32	33.00	PASS
				RB12#6	22.85	23.34	33.00	PASS
				RB12#13	22.87	23.36	33.00	PASS
				RB25#0	22.81	23.30	33.00	PASS

Report No.: SZEM161000916705 Page: 4 of 134

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	22.43	22.92	33.00	PASS
				RB1#13	22.51	23.00	33.00	PASS
				RB1#24	22.50	22.99	33.00	PASS
			LCH	RB12#0	21.70	22.19	33.00	PASS
	LTE/TM2			RB12#6	21.72	22.21	33.00	PASS
				RB12#13	21.75	22.24	33.00	PASS
				RB25#0	21.66	22.15	33.00	PASS
		5M		RB1#0	22.83	23.32	33.00	PASS
				RB1#13	22.82	23.31	33.00	PASS
			МСН	RB1#24	22.81	23.30	33.00	PASS
BAND7				RB12#0	22.10	22.59	33.00	PASS
				RB12#6	22.07	22.56	33.00	PASS
				RB12#13	22.07	22.56	33.00	PASS
				RB25#0	22.00	22.49	33.00	PASS
				RB1#0	22.83	23.32	33.00	PASS
				RB1#13	22.55	23.04	33.00	PASS
				RB1#24	22.58	23.07	33.00	PASS
			НСН	RB12#0	22.53	23.02	33.00	PASS
				RB12#6	21.81	22.30	33.00	PASS
				RB12#13	21.79	22.28	33.00	PASS
				RB25#0	21.81	22.30	33.00	PASS

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM161000916705 Page: 5 of 134

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	23.60	24.09	33.00	PASS
				RB1#25	23.73	24.22	33.00	PASS
				RB1#49	23.84	24.33	33.00	PASS
			LCH	RB25#0	22.84	23.33	33.00	PASS
				RB25#13	22.89	23.38	33.00	PASS
				RB25#25	22.95	23.44	33.00	PASS
				RB50#0	22.94	23.43	33.00	PASS
	LTE/TM1	10M		RB1#0	24.01	24.50	33.00	PASS
				RB1#25	23.99	24.48	33.00	PASS
			МСН	RB1#49	24.01	24.50	33.00	PASS
BAND7				RB25#0	23.18	23.67	33.00	PASS
				RB25#13	23.15	23.64	33.00	PASS
				RB25#25	23.19	23.68	33.00	PASS
				RB50#0	23.30	23.79	33.00	PASS
				RB1#0	23.72	24.21	33.00	PASS
				RB1#25	23.72	24.21	33.00	PASS
				RB1#49	23.77	24.26	33.00	PASS
			НСН	RB25#0	22.88	23.37	33.00	PASS
				RB25#13	22.88	23.37	33.00	PASS
				RB25#25	22.91	23.40	33.00	PASS
				RB50#0	22.94	23.43	33.00	PASS

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM161000916705 Page: 6 of 134

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	22.61	23.10	33.00	PASS
				RB1#25	22.77	23.26	33.00	PASS
				RB1#49	22.91	23.40	33.00	PASS
			LCH	RB25#0	21.75	22.24	33.00	PASS
				RB25#13	21.83	22.32	33.00	PASS
				RB25#25	21.89	22.38	33.00	PASS
				RB50#0	21.85	22.34	33.00	PASS
				RB1#0	23.02	23.51	33.00	PASS
		10M		RB1#25	23.02	23.51	33.00	PASS
	LTE/TM2		МСН	RB1#49	23.07	23.56	33.00	PASS
BAND7				RB25#0	22.10	22.59	33.00	PASS
				RB25#13	22.09	22.58	33.00	PASS
				RB25#25	22.11	22.60	33.00	PASS
				RB50#0	22.13	22.62	33.00	PASS
				RB1#0	22.75	23.24	33.00	PASS
				RB1#25	22.76	23.25	33.00	PASS
				RB1#49	22.78	23.27	33.00	PASS
			НСН	RB25#0	21.83	22.32	33.00	PASS
				RB25#13	21.80	22.29	33.00	PASS
				RB25#25	21.82	22.31	33.00	PASS
				RB50#0	21.81	22.30	33.00	PASS

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM161000916705 Page: 7 of 134

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	23.65	24.14	33.00	PASS
				RB1#38	23.87	24.36	33.00	PASS
				RB1#74	24.08	24.57	33.00	PASS
			LCH	RB36#0	22.94	23.43	33.00	PASS
				RB36#18	23.02	23.51	33.00	PASS
				RB36#39	23.15	23.64	33.00	PASS
				RB75#0	23.08	23.57	33.00	PASS
		15M		RB1#0	24.03	24.52	33.00	PASS
				RB1#38	23.97	24.46	33.00	PASS
			МСН	RB1#74	24.09	24.58	33.00	PASS
BAND7	LTE/TM1			RB36#0	23.17	23.66	33.00	PASS
				RB36#18	23.17	23.66	33.00	PASS
				RB36#39	23.20	23.69	33.00	PASS
				RB75#0	23.19	23.68	33.00	PASS
				RB1#0	23.75	24.24	33.00	PASS
				RB1#38	23.78	24.27	33.00	PASS
				RB1#74	23.87	24.36	33.00	PASS
			HCH	RB36#0	22.93	23.42	33.00	PASS
				RB36#18	22.97	23.46	33.00	PASS
				RB36#39	22.99	23.48	33.00	PASS
				RB75#0	22.98	23.47	33.00	PASS

Report No.: SZEM161000916705 Page: 8 of 134

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	22.56	23.05	33.00	PASS
				RB1#38	22.77	23.26	33.00	PASS
				RB1#74	22.99	23.48	33.00	PASS
			LCH	RB36#0	21.91	22.40	33.00	PASS
				RB36#18	21.99	22.48	33.00	PASS
				RB36#39	22.14	22.63	33.00	PASS
				RB75#0	22.02	22.51	33.00	PASS
		15M		RB1#0	22.90	23.39	33.00	PASS
				RB1#38	22.85	23.34	33.00	PASS
			МСН	RB1#74	22.96	23.45	33.00	PASS
BAND7	LTE/TM2			RB36#0	22.13	22.62	33.00	PASS
				RB36#18	22.13	22.62	33.00	PASS
				RB36#39	22.18	22.67	33.00	PASS
				RB75#0	22.14	22.63	33.00	PASS
				RB1#0	22.68	23.17	33.00	PASS
				RB1#38	22.67	23.16	33.00	PASS
				RB1#74	22.74	23.23	33.00	PASS
			HCH	RB36#0	21.89	22.38	33.00	PASS
				RB36#18	21.92	22.41	33.00	PASS
				RB36#39	21.97	22.46	33.00	PASS
				RB75#0	21.93	22.42	33.00	PASS

Report No.: SZEM161000916705 Page: 9 of 134

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	23.53	24.02	33.00	PASS
				RB1#50	23.72	24.21	33.00	PASS
				RB1#99	23.69	24.18	33.00	PASS
			LCH	RB50#0	22.77	23.26	33.00	PASS
				RB50#25	22.81	23.30	33.00	PASS
				RB50#50	22.83	23.32	33.00	PASS
				RB100#0	22.79	23.28	33.00	PASS
				RB1#0	23.77	24.26	33.00	PASS
				RB1#50	23.64	24.13	33.00	PASS
				RB1#99	23.69	24.18	33.00	PASS
BAND7	LTE/TM1	20M	МСН	RB50#0	22.84	23.33	33.00	PASS
				RB50#25	22.77	23.26	33.00	PASS
				RB50#50	22.78	23.27	33.00	PASS
				RB100#0	22.80	23.29	33.00	PASS
				RB1#0	23.42	23.91	33.00	PASS
				RB1#50	23.39	23.88	33.00	PASS
				RB1#99	23.52	24.01	33.00	PASS
			НСН	RB50#0	22.53	23.02	33.00	PASS
				RB50#25	22.60	23.09	33.00	PASS
				RB50#50	22.65	23.14	33.00	PASS
				RB100#0	22.55	23.04	33.00	PASS

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM161000916705 Page: 10 of 134

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
Dand(ETE)	mode	Banatinatin		RB1#0	22.73	23.22	33.00	PASS
				RB1#50	22.95	23.44	33.00	PASS
				RB1#99	23.11	23.60	33.00	PASS
			LCH	RB50#0	21.72	22.21	33.00	PASS
				RB50#25	21.79	22.28	33.00	PASS
				RB50#50	21.92	22.41	33.00	PASS
				RB100#0	21.77	22.26	33.00	PASS
				RB1#0	22.99	23.48	33.00	PASS
				RB1#50	22.88	23.37	33.00	PASS
				RB1#99	22.93	23.42	33.00	PASS
BAND7	LTE/TM2	20M	МСН	RB50#0	21.79	22.28	33.00	PASS
				RB50#25	21.73	22.22	33.00	PASS
				RB50#50	21.76	22.25	33.00	PASS
				RB100#0	21.75	22.24	33.00	PASS
				RB1#0	22.67	23.16	33.00	PASS
				RB1#50	22.65	23.14	33.00	PASS
				RB1#99	22.72	23.21	33.00	PASS
			НСН	RB50#0	21.50	21.99	33.00	PASS
				RB50#25	21.48	21.97	33.00	PASS
				RB50#50	21.51	22.00	33.00	PASS
				RB100#0	21.48	21.97	33.00	PASS

Note:

a: For getting the EIRP (Efficient Isotropic Radiated Power) in substitution method, the following formula should be taken to calculate it,

EIRP [dBm] = SGP [dBm] - Cable Loss [dB] + Gain [dBi]

b: SGP=Signal Generator Level

c: RBW > emission bandwidth, VBW > $3 \times RBW$.

Detector: RMS

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

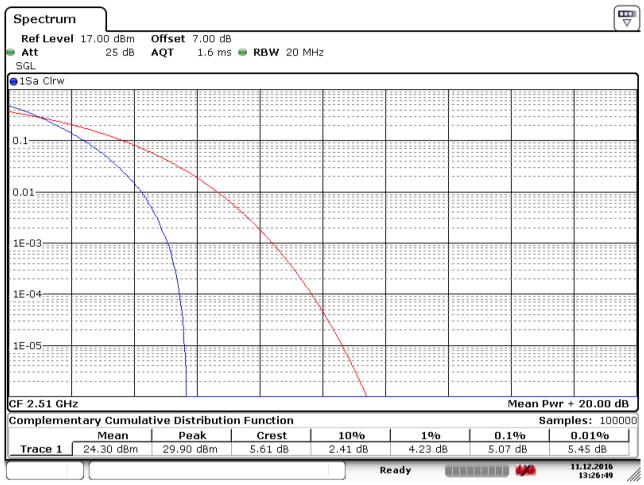
Report No.: SZEM161000916705 Page: 11 of 134

2 Peak-to-Average Ratio

Part I - Test Results

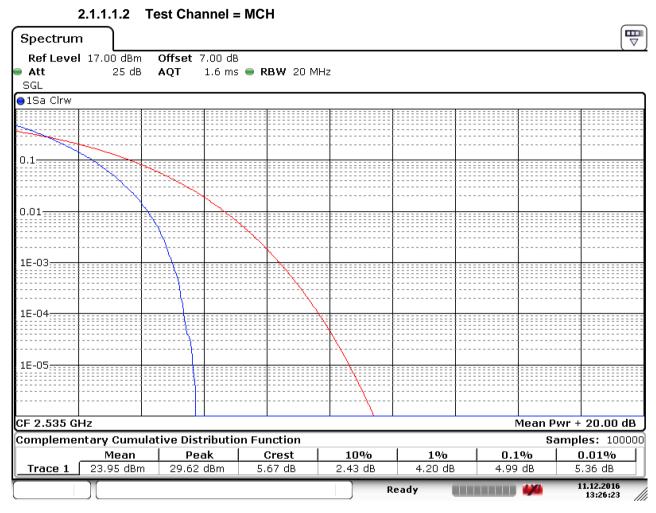
Test Band	Test Mode	Test Channel	Measured[dB]	Limit [dB]	Verdict
		LCH	5.07	13	PASS
	TM1/20M	MCH	4.99	13	PASS
Dond 7		HCH	4.90	13	PASS
Band 7	TM2/20M	LCH	5.74	13	PASS
		MCH	5.57	13	PASS
		HCH	5.54	13	PASS

Report No.: SZEM161000916705 Page: 12 of 134

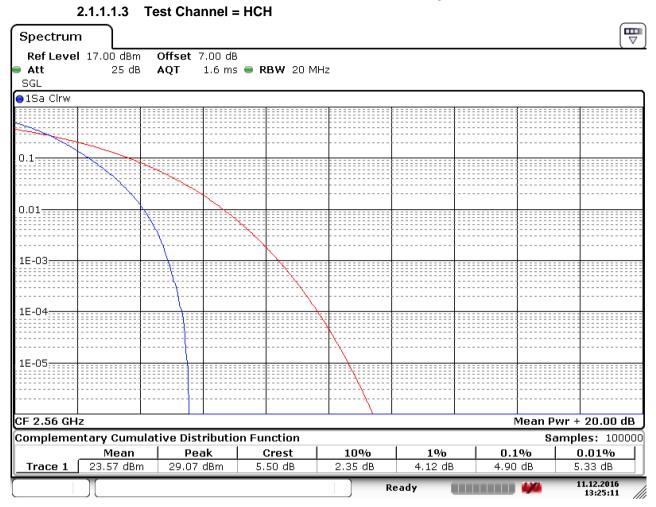

Part II - Test Plots

2.1 For LTE

2.1.1 Test Band = LTE band7


2.1.1.1.1 Test Channel = LCH

Date: 11.DEC.2016 13:26:50


Report No.: SZEM161000916705 Page: 13 of 134

Date: 11.DEC.2016 13:26:24

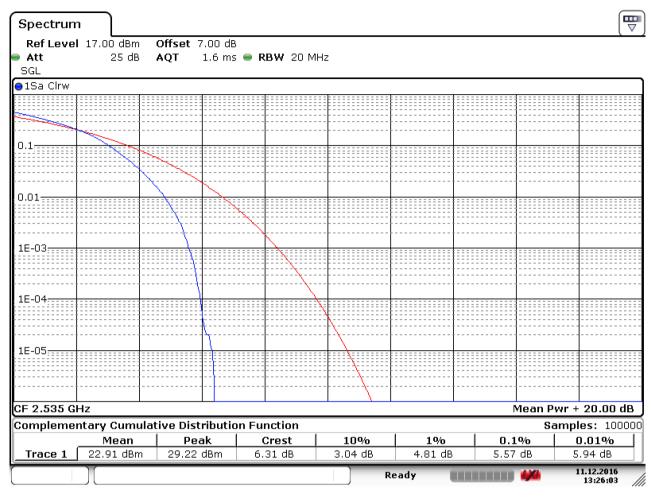
Report No.: SZEM161000916705 Page: 14 of 134

Date: 11.DEC.2016 13:25:12

2.1.1.2 Test Mode = LTE/TM2.Bandwidth=20MHz

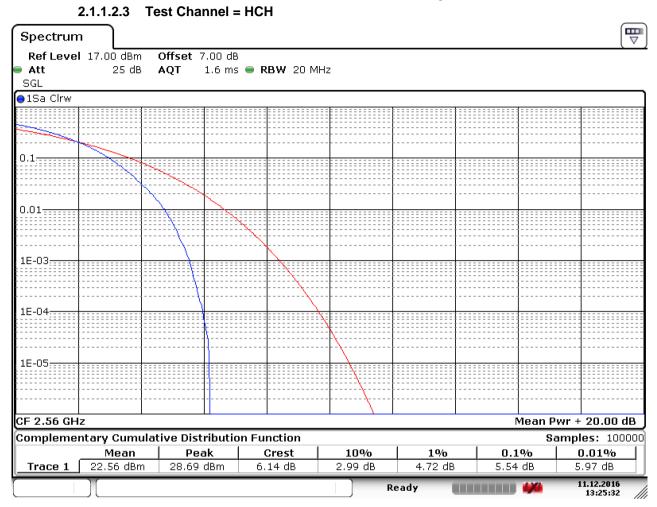
SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM161000916705 Page: 15 of 134


2.1.1.2.1 Test Channel = LCH Ŧ Spectrum Ref Level 17.00 dBm Offset 7.00 dB Att 1.6 ms 👄 RBW 20 MHz 25 dB AQT SGL ∋1Sa Clrw 0.1_{2} 0.01 1E-03: 1E-04 1E-05: CF 2.51 GHz Mean Pwr + 20.00 dB Complementary Cumulative Distribution Function Samples: 100000 Mean Peak Crest 10%1% 0.1%0.01%23.28 dBm 29.87 dBm Trace 1 6.59 dB 2.99 dB 4.87 dB 5.74 dB 6.26 dB 11.12.2016 Ready 13:27:08

Date: 11.DEC.2016 13:27:09

Report No.: SZEM161000916705 Page: 16 of 134

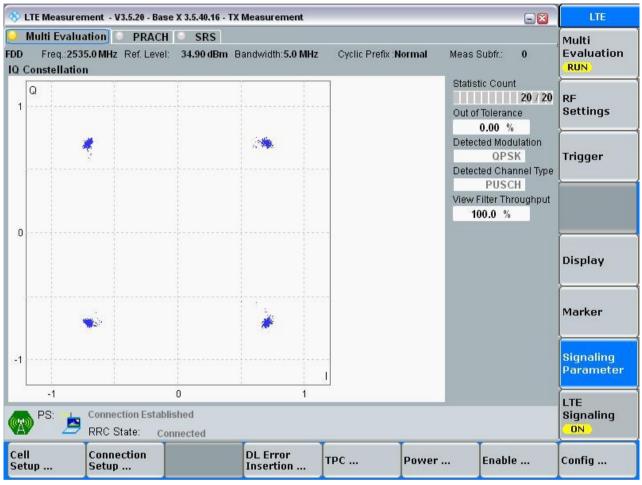


Date: 11.DEC.2016 13:26:03

Report No.: SZEM161000916705 Page: 17 of 134

Date: 11.DEC.2016 13:25:33

Report No.: SZEM161000916705 Page: 18 of 134


3 Modulation Characteristics

3.1 For LTE

3.1.1 Test Band = LTE band7

3.1.1.1 Test Mode = LTE /TM1 5MHz

3.1.1.1.1 Test Channel = MCH

Report No.: SZEM161000916705 19 of 134 Page:

ON

Config ...

Enable ...

3.1.1.2 Test Mode = LTE /TM1 10MHz 3.1.1.2.1 Test Channel = MCH 🚸 LTE Measurement - V3.5.20 - Base X 3.5.40.16 - TX Measurement - 2 Multi Evaluation PRACH SRS Multi Freq.: 2535.0 MHz Ref. Level: 36.60 dBm Bandwidth: 10.0 MHz Evaluation FDD Cyclic Prefix :Normal Meas Subfr.: 0 RIIN **IQ** Constellation Statistic Count Q 20 / 20 RF 1 Settings Out of Tolerance 15.00 % **Detected Modulation** OPSK Trigger Detected Channel Type PUSCH View Filter Throughput 100.0 % 0 Display Marker Signaling -1 Parameter -1 0 1 LTE **Connection Established** PS: Signaling

DL Error

Insertion ...

трс ...

Power ...

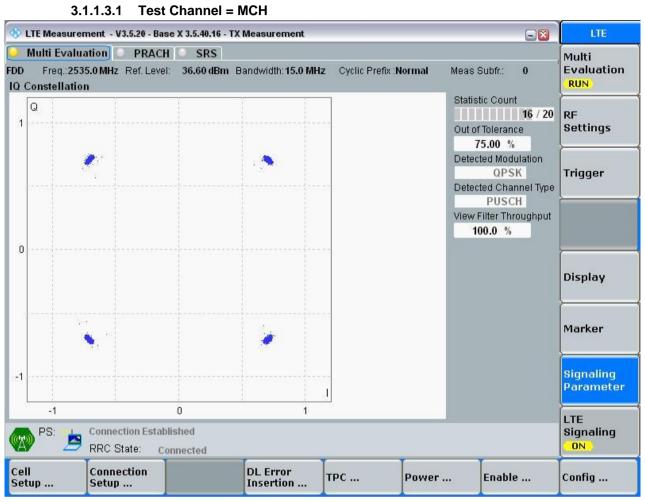
"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

RRC State:

Connection

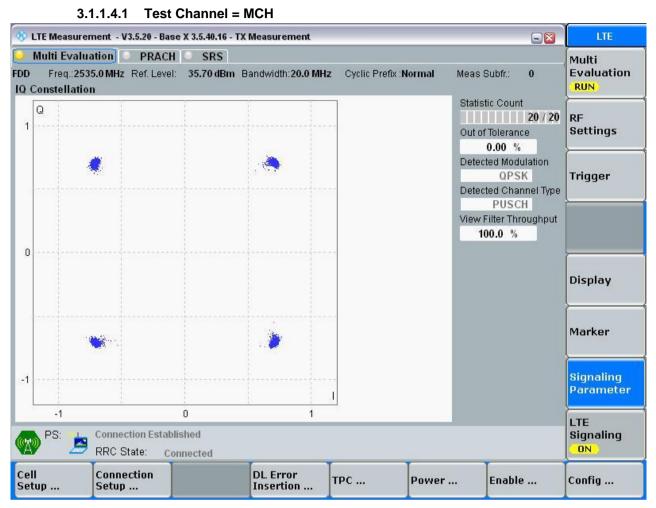
Setup ...

Cell


Setup ...

Connected

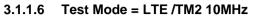
Report No.: SZEM161000916705 Page: 20 of 134


3.1.1.3 Test Mode = LTE /TM1 15MHz

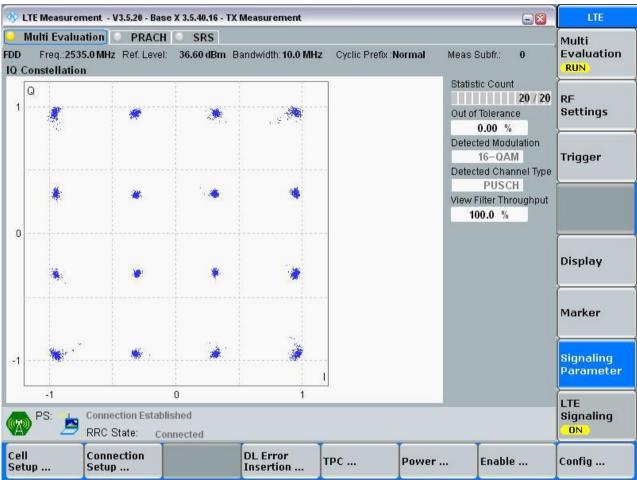
Report No.: SZEM161000916705 Page: 21 of 134

3.1.1.4 Test Mode = LTE /TM1 20MHz

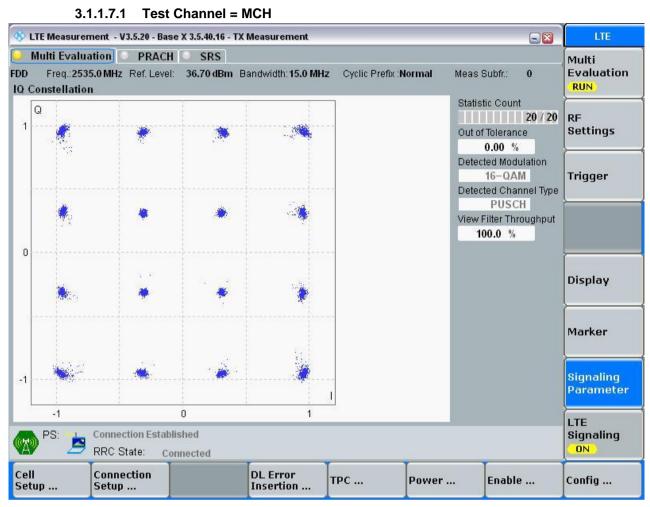
Report No.: SZEM161000916705 Page: 22 of 134


3.1.1.5.1 Test Channel = MCH 🚸 LTE Measurement - V3.5.20 - Base X 3.5.40.16 - TX Measurement - 2 Multi Evaluation PRACH SRS Multi Freq.: 2535.0 MHz Ref. Level: 34.90 dBm Bandwidth: 5.0 MHz 0 Evaluation FDD Cyclic Prefix :Normal Meas Subfr.: RUN **IQ** Constellation Statistic Count Q 20 / 20 RF 1 Settings Out of Tolerance 0.00 % **Detected Modulation** 16-QAM Trigger Detected Channel Type PUSCH is a -5 View Filter Throughput 100.0 % 0 Display ٠ Marker a. 1 Signaling -1 Parameter -1 0 1 LTE **Connection Established** Signaling PS: ON RRC State: Connected Statistic Measurement Assign Channel Stop Repetition ... Config ... Views Condition ... Bandwidth ... Subframes ... Count ...

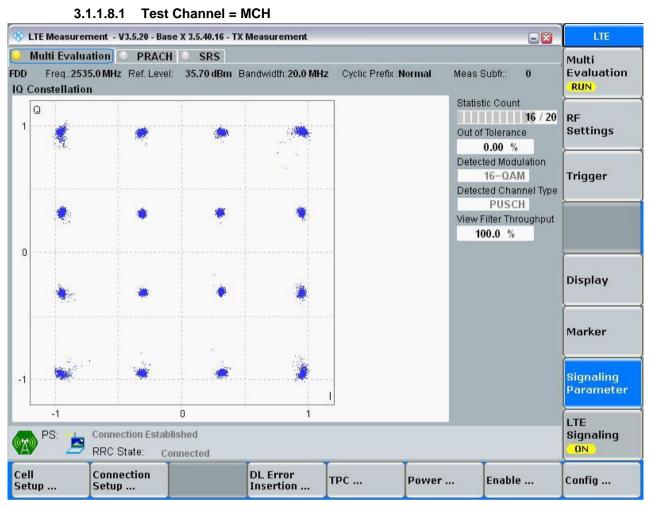
"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."


3.1.1.5 Test Mode = LTE /TM2 5MHz

Report No.: SZEM161000916705 Page: 23 of 134



Report No.: SZEM161000916705 Page: 24 of 134


3.1.1.7 Test Mode = LTE /TM2 15MHz

Report No.: SZEM161000916705 Page: 25 of 134

3.1.1.8 Test Mode = LTE /TM2 20MHz

Report No.: SZEM161000916705 Page: 26 of 134

4 Bandwidth

Part I - Test Results

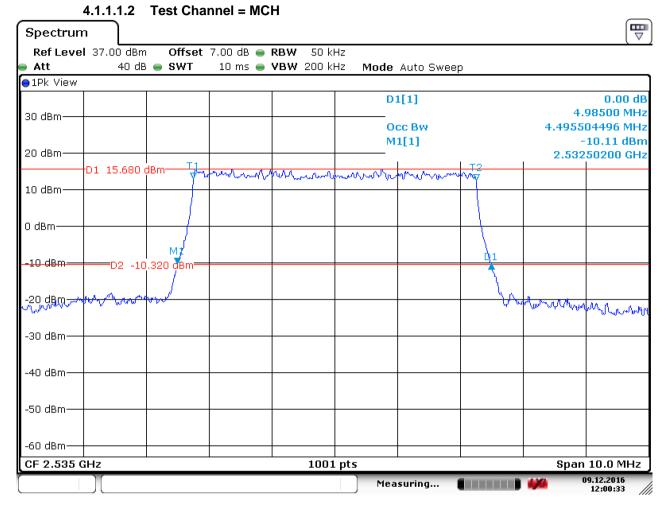
Test Band	Test Mode	Test Channel	Occupied Bandwidth [MHz]	Emission Bandwidth [MHz]	Verdict
		LCH	4.50	4.98	PASS
	TM1/ 5MHz	MCH	4.50	4.99	PASS
		HCH	4.48	4.95	PASS
		LCH	4.50	4.99	PASS
	TM2/ 5MHz	MCH	4.49	4.95	PASS
		HCH	4.50	5.00	PASS
		LCH	8.93	9.71	PASS
	TM1/10MHz	MCH	8.97	9.77	PASS
		HCH	8.95	9.77	PASS
		LCH	8.95	9.79	PASS
	TM2/ 10MHz	MCH	8.95	9.65	PASS
Band 7		HCH	8.95	9.75	PASS
Dallu 7	TM1/ 15MHz	LCH	13.49	14.87	PASS
		MCH	13.52	14.99	PASS
		HCH	13.43	14.84	PASS
		LCH	13.55	14.96	PASS
	TM2/ 15MHz	MCH	13.52	14.87	PASS
		HCH	13.49	14.81	PASS
		LCH	17.94	19.42	PASS
	TM1/ 20MHz	MCH	17.94	19.42	PASS
		HCH	17.94	19.62	PASS
		LCH	18.02	19.62	PASS
	TM2/ 20MHz	MCH	18.02	19.58	PASS
		HCH	17.94	19.42	PASS

Report No.: SZEM161000916705 Page: 27 of 134

Part II –Test Plots

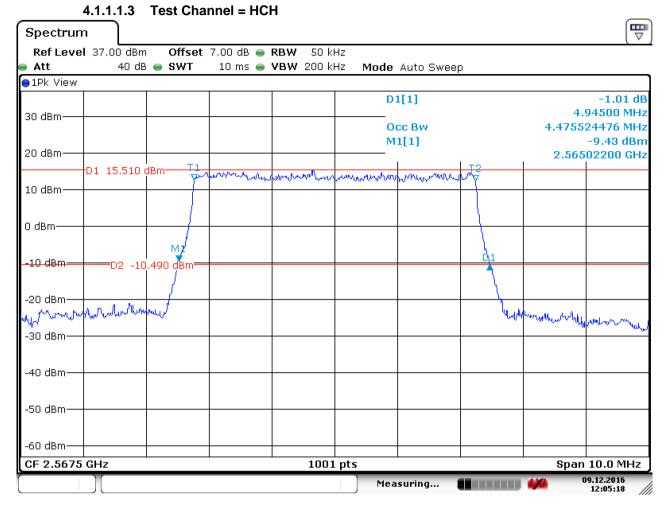
4.1 For LTE

4.1.1 Test Band = LTE band7


4.1.1.1 Test Mode = LTE/TM1 5MHz

	4.1.1.1.1	Test Cha	nnel = LCH	1					_
Spectru	ım								
Ref Lev	el 37.00 dBm		7.00 dB 👄 I	RBW 50 kH	Ηz				
Att		B 👄 SWT	10 ms 😑 🕻	VBW 200 kł	Hz Mode	Auto Swe	ер		
<mark>⊜</mark> 1Pk Viev	v	1							
					D	1[1]			-0.91 dB
30 dBm—						cc Bw			97500 MHz 04496 MHz
						1[1]		7.7500	-9.02 dBm
20 dBm—		T 1						2.500	02200 GHz
	D1 16.460	dBm T1	manhan	whenton	Unroma.	manun	Ant -		
10 dBm—									
0 dBm									
0.00111							$ \rangle$		
-10 dBm-	<u></u>	M1 540 dBm===					<u> </u>		
-10 ubiii—							1		
		INN					White de	. AL	
᠂ᡸᠰᡥᡃᢂᡯᠴ	Www.man						- collins	ᢦᠬᢦᢦᠻᡗᡃᠰᡳ	Winath
									1.0045
-30 dBm—									
-40 dBm—									
-50 dBm—									
-60 dBm—									
CF 2.502	 25 GHz			1001	nts			Snan	10.0 MHz
(1301		curina	6		9.12.2016
L					Mea	suring		.	12:01:44

Date: 9.DEC.2016 12:01:44


Report No.: SZEM161000916705 Page: 28 of 134

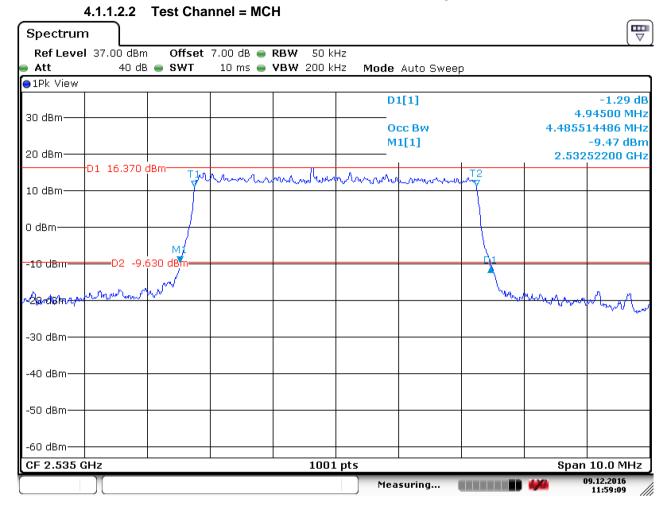
Date: 9.DEC.2016 12:00:33

Report No.: SZEM161000916705 Page: 29 of 134

Date: 9.DEC.2016 12:05:18

4.1.1.2 Test Mode = LTE/TM2 5MHz

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch


Report No.: SZEM161000916705 Page: 30 of 134

4.1.1.2.1 Test Channel = LCH ₽ Spectrum Ref Level 37.00 dBm Offset 7.00 dB 🖷 RBW 50 kHz 40 dB 👄 SWT 10 ms 🔵 **VBW** 200 kHz Att Mode Auto Sweep ■1Pk View -0.25 dB D1[1] 4.98500 MHz 30 dBm-4.495504496 MHz Occ Bw M1[1] -10.81 dBm 20 dBm-2.50001200 GHz D1 15.080 dBm Munuhan mount 2 A Mar 10 dBm-0 dBm· M -10 dBm -D2 -10.920 dBm mma ക്കുപ്പുക്ക്ഷിപ്പ moun -30 dBm[.] -40 dBm--50 dBm--60 dBm-CF 2.5025 GHz 1001 pts Span 10.0 MHz 09.12.2016 Measuring... 12:02:46

Date: 9.DEC.2016 12:02:46

Report No.: SZEM161000916705 Page: 31 of 134

Date: 9.DEC.2016 11:59:09

Report No.: SZEM161000916705 Page: 32 of 134

Spectrum									
	37.00 dBm		7.00 dB 👄						
Att	40 dE	8 🔵 SWT	10 ms 😑	VBW 200 kH	lz Mode	Auto Swe	ер		
●1Pk View									
					D	1[1]			-0.45 dB
30 dBm						D			99500 MHz
						cc Bw 1[1]			04496 MHz 11.51 dBm
20 dBm					milij			2.56498300 GHz	
	01 14 000	 					То		
10 dBm	D1 14.090		human	unimanitation	mound	much	NM S		
10 0.0111									
0.40									
0 dBm									
		MI							
-10 dBm	D2 -11	L.910 dBm-					41		
20 dBm	ъĎ	n 19					<u> </u>		
-20 dBm	Ala Maria	rv.					WW	munullylylyly	herollower rol
-30 dBm——									
-40 dBm									
-50 dBm									
-30 ubiii									
50 ID									
-60 dBm	~								
CF 2.5675	GHZ			1001	pts			_	10.0 MHz
<u> </u>	」				Mea	suring		4/4	19.12.2016 12:04:10

4.1.1.2.3 Test Channel = HCH

Date: 9.DEC.2016 12:04:11

4.1.1.3 Test Mode = LTE/TM1 10MHz

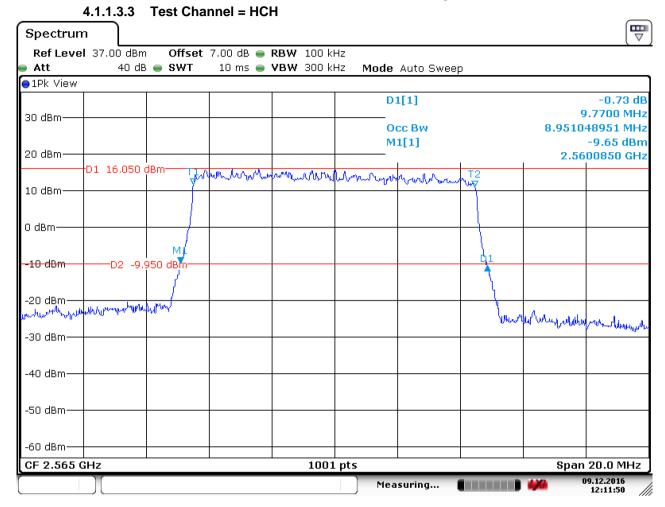
SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM161000916705 Page: 33 of 134

4.1.1.3.1 Test Channel = LCH ₽ Spectrum Ref Level 37.00 dBm Offset 7.00 dB 👄 RBW 100 kHz 40 dB 👄 SWT 10 ms 🔵 **VBW** 300 kHz Att Mode Auto Sweep ●1Pk View D1[1] -1.13 dB 9.7100 MHz 30 dBm-Occ Bw 8.931068931 MHz -8.87 dBm M1[1] 20 dBm-2.5001650 GHz τ. D1 16.840 dBm marine الدروسيريد montenan A. one of 10 dBm-0 dBm-M =D2 -9.160 dBm -10 dBm--20 dBmwhen when her were and -- com and a ward 12-16--30 dBm[.] -40 dBm--50 dBm--60 dBm-1001 pts Span 20.0 MHz CF 2.505 GHz 09.12.2016 Measuring... 12:10:42

Date: 9.DEC.2016 12:10:42

Report No.: SZEM161000916705 Page: 34 of 134


Spectrum	Γ									
	l 37.00 dBn			RBW 100 k						
Att	40 dE	B 🖷 SWT	10 ms 😑	VBW 300 k	Hz Mode	Auto Sw	еер			
⊖1Pk View					_				0.40.10	
					D1[1]			-0.19 dB 9.7700 MHz		
30 dBm					Occ Bw			8.971028971 MHz		
					M1[1]			-9.21 dBm		
20 dBm		-						2.53	00850 GHz	
	D1 16.580	dBm <u></u> ∕I	mannon	manun	moundan	howway	Mart T2			
10 dBm		Y Y								
0 dBm										
		м								
-10 dBm	D2 -9.	.420 dBm					<u>[]</u> 1			
10 0.0111										
ന പറംപം	America Ale	mound								
12918Autrent	P 97500	1					Weberge	watura	WWWWWWW IN	
									. o . ro . Ma . Mari	
-30 dBm										
-40 dBm										
-50 dBm										
-60 dBm										
CF 2.535 C	L GHz	1		<u> </u>	l Lpts	1		Span	20.0 MHz	
	Υ					asuring			9.12.2016	
									12:06:47	

4.1.1.3.2 Test Channel = MCH

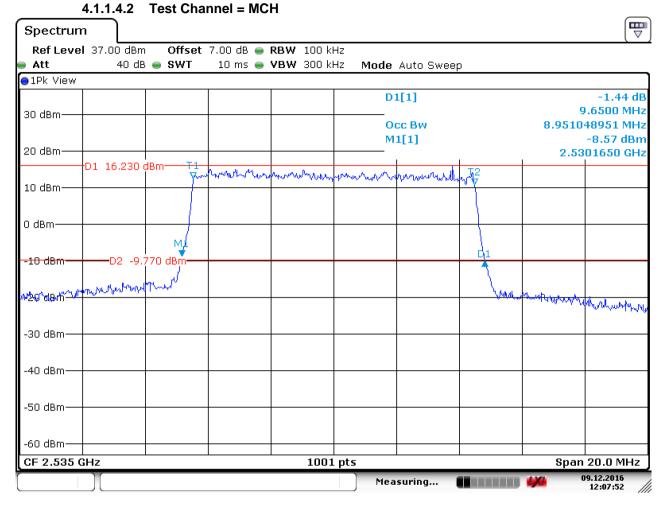
Date: 9.DEC.2016 12:06:48

Report No.: SZEM161000916705 Page: 35 of 134

Date: 9.DEC.2016 12:11:50

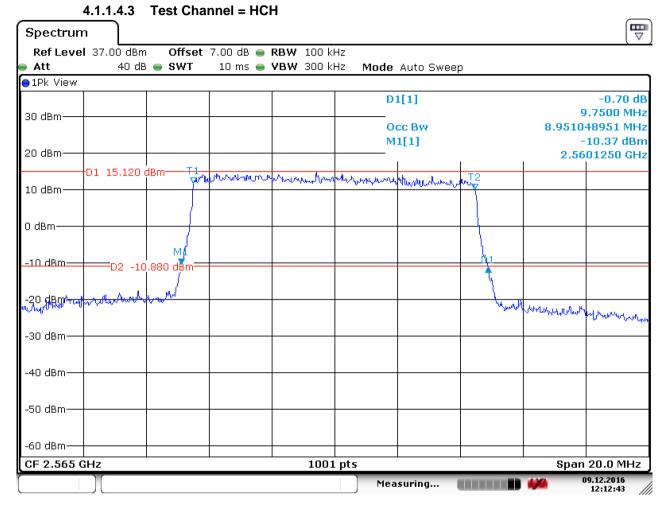
4.1.1.4 Test Mode = LTE/TM2 10MHz

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch


Report No.: SZEM161000916705 Page: 36 of 134

4.1.1.4.1 Test Channel = LCH ₽ Spectrum Ref Level 37.00 dBm Offset 7.00 dB 👄 RBW 100 kHz 40 dB 👄 SWT 10 ms 🔵 **VBW** 300 kHz Att Mode Auto Sweep ●1Pk View -0.76 dB D1[1] 9.7900 MHz 30 dBm-Occ Bw 8.951048951 MHz M1[1] -10.25 dBm 20 dBm-2.5001050 GHz D1 15.630 dBm 10 dBm-0 dBm· M3 -10 dBm D2 -10.370 dBm <mark>/20_d&m</mark>~_ W. marke -30 dBm--40 dBm--50 dBm--60 dBm-CF 2.505 GHz 1001 pts Span 20.0 MHz 09.12.2016 Measuring... 12:09:30

Date: 9.DEC.2016 12:09:30


Report No.: SZEM161000916705 Page: 37 of 134

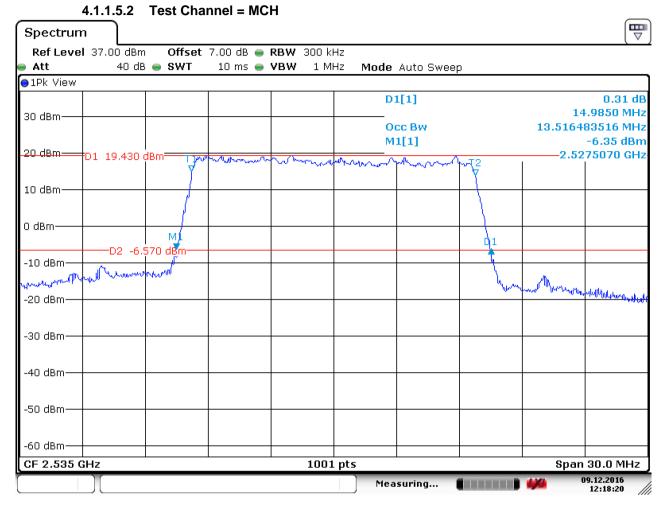
Date: 9.DEC.2016 12:07:53

Report No.: SZEM161000916705 Page: 38 of 134

Date: 9.DEC.2016 12:12:43

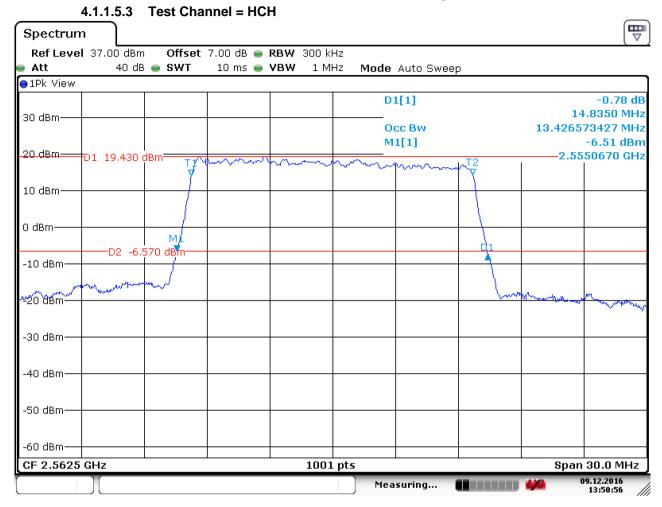
4.1.1.5 Test Mode = LTE/TM1 15MHz

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch


Report No.: SZEM161000916705 Page: 39 of 134

4.1.1.5.1 Test Channel = LCH ₽ Spectrum Ref Level 37.00 dBm Offset 7.00 dB 👄 RBW 300 kHz 40 dB 👄 SWT 10 ms 🔵 VBW Att 1 MHz Mode Auto Sweep ■1Pk View -0.48 dB D1[1] 14.8650 MHz 30 dBm-Occ Bw 13.486513487 MHz M1[1] -4.99 dBm 20 dBm D1 19.990 dBm 2.5001270 GHz 10 dBm-0 dBm-ΜÅ **rh**1 D2 -6.010 dBm -10 dBm u. ±20 à8m∙ -30 dBm--40 dBm--50 dBm--60 dBm-CF 2.5075 GHz 1001 pts Span 30.0 MHz 09.12.2016 Measuring... 12:21:35

Date: 9.DEC.2016 12:21:35


Report No.: SZEM161000916705 Page: 40 of 134

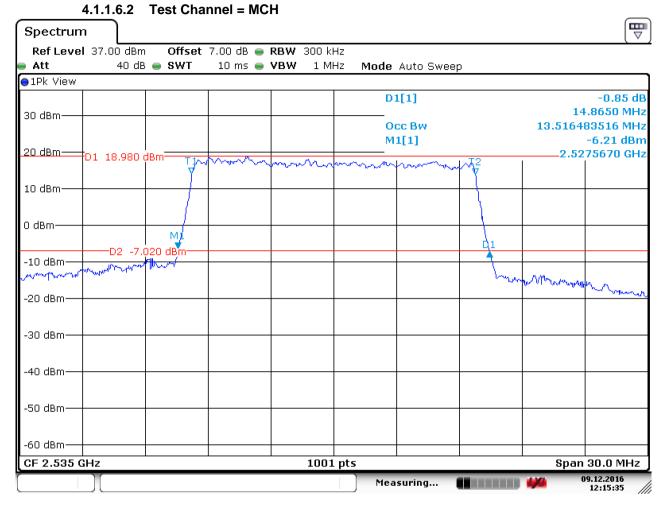
Date: 9.DEC.2016 12:18:20

Report No.: SZEM161000916705 Page: 41 of 134

Date: 9.DEC.2016 13:50:56

Report No.: SZEM161000916705 Page: 42 of 134

4.1.1.6.1 Test Channel = LCH ₽ Spectrum Ref Level 37.00 dBm Offset 7.00 dB 👄 RBW 300 kHz 40 dB 👄 SWT 10 ms 👄 VBW Att 1 MHz Mode Auto Sweep ■1Pk View -0.25 dB D1[1] 14.9550 MHz 30 dBm-Occ Bw 13.546453546 MHz M1[1] -7.04 dBm 2.5000670 GHz 20 dBm— D1 18.790 dBm----Τ1, mon 10 dBm-0 dBm-M ·D2 -7.210 dBm -10 dBm--20 dBm--30 dBm--40 dBm--50 dBm--60 dBm-CF 2.5075 GHz 1001 pts Span 30.0 MHz 09.12.2016 Measuring... 13:45:20


Date: 9.DEC.2016 13:45:20

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

4.1.1.6 Test Mode = LTE/TM2 15MHz

Report No.: SZEM161000916705 Page: 43 of 134

Date: 9.DEC.2016 12:15:35

Report No.: SZEM161000916705 Page: 44 of 134

Spectrun	n								
	l 37.00 dBm			RBW 300 ki					
Att	40 dB	s 😑 SWT	10 ms 😑	VBW 1 M	Hz Mode	Auto Swee	эр		
⊖1Pk View	1								
					D	1[1]			-0.33 dB
30 dBm						cc Bw			19497 MHz
						сс вм 1[1]		13.4803	13487 MHz -6.91 dBm
20 dBm		 				1[1]		2.55	50670 GHz
	D1 18.420(asm <u> </u>		h	$\sim\sim\sim\sim$	m	Ψ_{γ}^{12}		
10 dBm							+		
0 dBm									
		мį							
	D2 -7.5	580 dBm					<u> </u>		
-10 dBm—	an N	when							
www	Man and a	1					many	monu	the second
-20 dBm——									- MCDAN COM
-30 dBm—									
-40 dBm									
10 0.011									
-50 dBm									
-60 dBm									
CF 2.5625	GHz			1001	pts			-	30.0 MHz
)[Mea	suring		4/4	9.12.2016 13:48:10

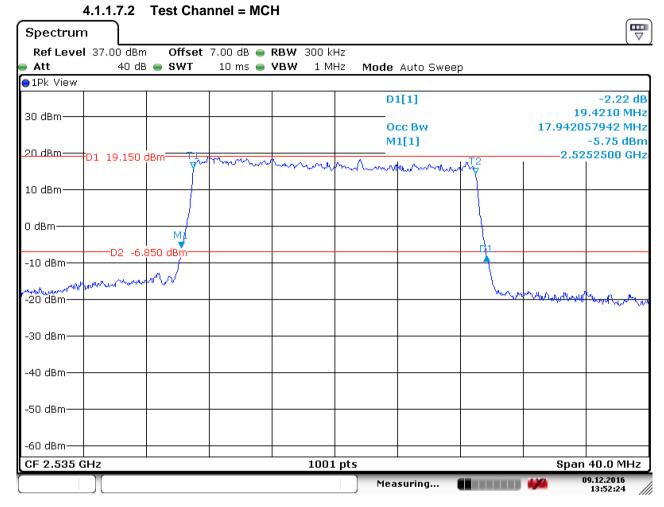
4.1.1.6.3 Test Channel = HCH

Date: 9.DEC.2016 13:48:11

4.1.1.7

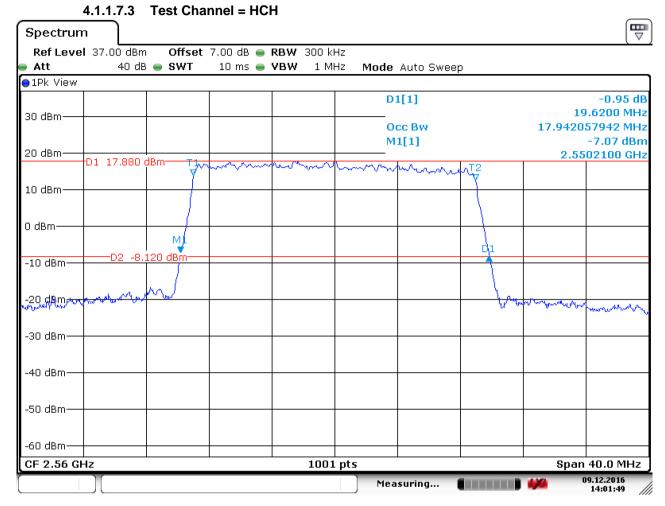
Test Mode = LTE/TM1 20MHz

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch


Report No.: SZEM161000916705 Page: 45 of 134

4.1.1.7.1 Test Channel = LCH ₽ Spectrum Ref Level 37.00 dBm Offset 7.00 dB 👄 RBW 300 kHz 40 dB 👄 SWT 10 ms 🔵 VBW Att 1 MHz Mode Auto Sweep ■1Pk View -1.38 dB D1[1] 19.4210 MHz 30 dBm-Occ Bw 17.942057942 MHz M1[1] -5.18 dBm 20 dBm D1 20.010 dBm 2.5004100 GHz 10 dBm-0 dBm-M -D2 -5.990 dBr -10 dBm -20 գթրո -30 dBm--40 dBm--50 dBm--60 dBm-1001 pts Span 40.0 MHz CF 2.51 GHz 09.12.2016 Measuring... 13:56:37

Date: 9.DEC.2016 13:56:38


Report No.: SZEM161000916705 Page: 46 of 134

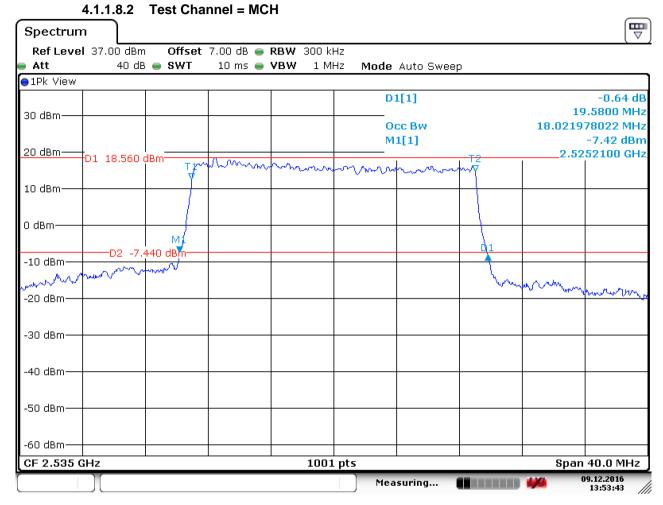
Date: 9.DEC.2016 13:52:25

Report No.: SZEM161000916705 Page: 47 of 134

Date: 9.DEC.2016 14:01:49

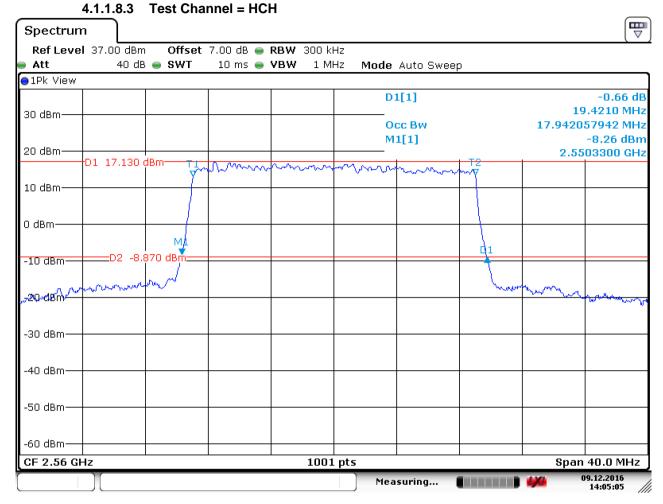
4.1.1.8 Test Mode = LTE/TM2 20MHz

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch


Report No.: SZEM161000916705 Page: 48 of 134

4.1.1.8.1 Test Channel = LCH ₽ Spectrum Ref Level 37.00 dBm Offset 7.00 dB 👄 RBW 300 kHz 40 dB 👄 SWT Att 10 ms 🔵 VBW 1 MHz Mode Auto Sweep ■1Pk View D1[1] -0.61 dB 19.6200 MHz 30 dBm-Occ Bw 18.021978022 MHz M1[1] -6.70 dBm 20 dBm— 2.5002100 GHz D1 18.640 dBm-Т1 www 10 dBm-0 dBm-M) D2 -7.360 dBm -10 dBm or total day 20'dBm -30 dBm[.] -40 dBm--50 dBm--60 dBm-1001 pts Span 40.0 MHz CF 2.51 GHz 09.12.2016 Measuring... 13:55:02

Date: 9.DEC.2016 13:55:03


Report No.: SZEM161000916705 Page: 49 of 134

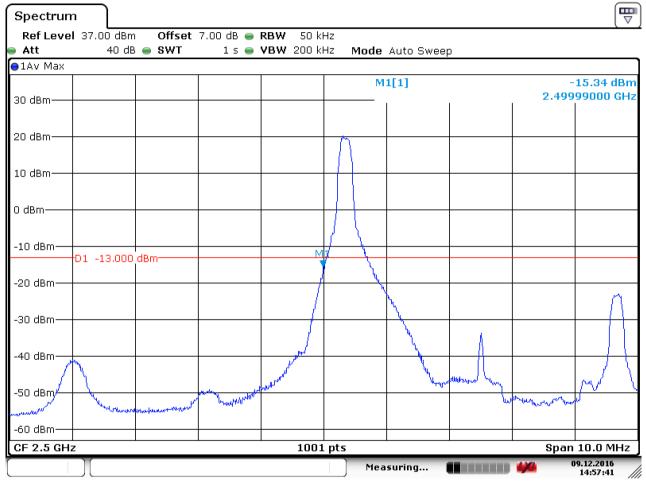
Date: 9.DEC.2016 13:53:43

Report No.: SZEM161000916705 Page: 50 of 134

Date: 9.DEC.2016 14:05:06

Report No.: SZEM161000916705 Page: 51 of 134

5 Band Edges Compliance


5.1 For LTE

5.1.1 Test Band = LTE band7

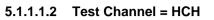
5.1.1.1 Test Mode = LTE/TM1 5MHz

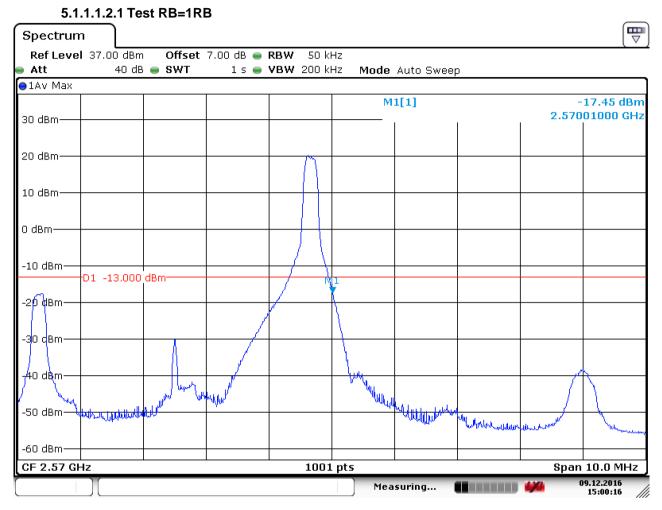
5.1.1.1.1 Test Channel = LCH

5.1.1.1.1.1 Test RB=1RB

Date: 9.DEC.2016 14:57:41

Report No.: SZEM161000916705 Page: 52 of 134


Spectrum										
Ref Level			7.00 dB 👄							
Att	40 dB	SWT	1 s 👄	VBW 200 ki	Ηz	Mode	Auto Swee	эр		
⊖1Av Max										
						M	1[1]			24.78 dBm
30 dBm							I	1	2.499	99000 GHz
20 dBm										
10 dBm										
						ponomen	and the market of	munum	- margineterment	human
0 dBm										
-10 dBm	21 12 000	dD								
L	01 -13.000	ивш								
-20 dBm				M	ų/					
				and a second second	r					X
-30 dBm	Junk we have here	of the second second	a summer water and							
enerode vero and										
-40 dBm										
-50 dBm——										
-60 dBm										
CF 2.5 GHz			·	1001	pt	s	·	·	Span	10.0 MHz
	Π					Mea	suring		474	09.12.2016 14:57:18

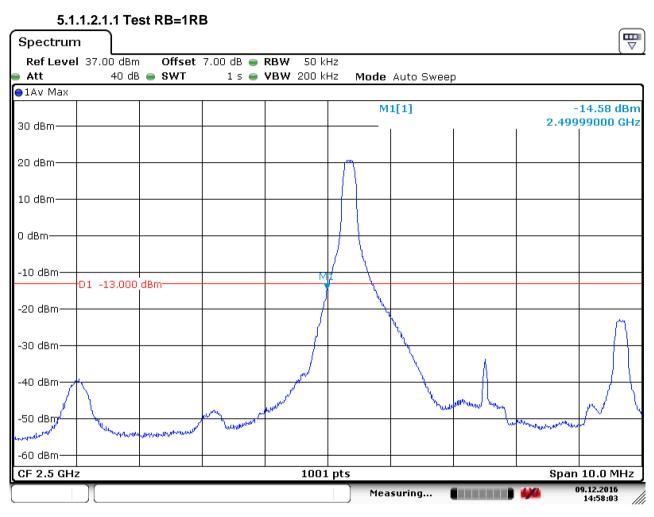

5.1.1.1.1.2 Test RB=25RB

Date: 9.DEC.2016 14:57:18

Report No.: SZEM161000916705 Page: 53 of 134

Date: 9.DEC.2016 15:00:16

Report No.: SZEM161000916705 Page: 54 of 134


5.1	.1.1.2.2 Te	est RB=25	RB						_
Spectrum	n								(₩
Ref Leve	l 37.00 dBn	n Offset	7.00 dB 😑	RBW 50 k	Hz				
Att	40 dE	B 🔵 SWT	1 s 👄	VBW 200 k	Hz Mode	Auto Swee	р		
⊖1Av Max									
					M	1[1]			29.28 dBm
30 dBm						1	1	2.570	01000 GHz
20 dBm									
10 dBm									
murren	- water and the second	Munumenter	man	monory					
0 dBm									
-1 <mark>0 dBm</mark>									
	D1 -13.000) dBm							
-20 dBm									
/				1 \	1				
-30 dBm				19	-				
					haurranner	Acres and the			
-40 dBm							and the second with	manner	~
10 40111									monum
-50 dBm—									
SO GDIII									
-60 dBm—									
CF 2.57 GF	 			1001	Inte				10.0 MHz
	12			1001					10.0 MHZ
L I					Mea	suring			15:01:38

Date: 9.DEC.2016 15:01:39

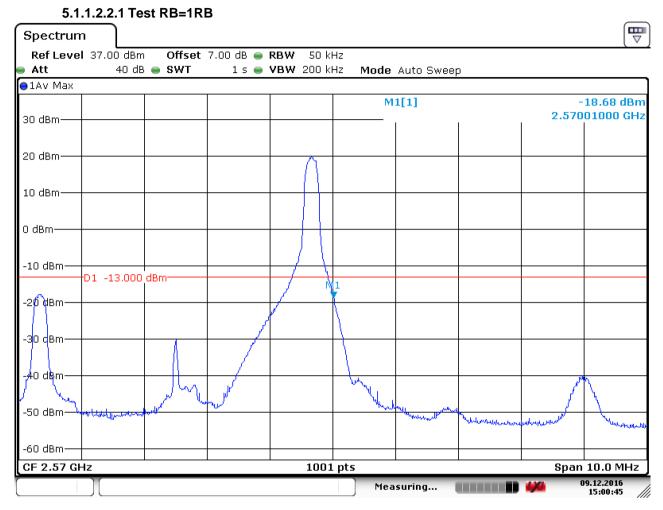
Report No.: SZEM161000916705 Page: 55 of 134

5.1.1.2 Test Mode = LTE/TM2 5MHz 5.1.1.2.1 Test Channel = LCH

Date: 9.DEC.2016 14:58:04

Report No.: SZEM161000916705 Page: 56 of 134

Spectrum	ι									
	37.00 dBm		7.00 dB 😑							
🗕 Att	40 dB	SWT 😑	1 s 👄	VBW 200 kł	Ηz	Mode	Auto Swee	p		
●1Av Max										
						M	1[1]			25.52 dBm
30 dBm							I	1	2.499	99000 GHz
20 dBm										ļ
10 dBm										
						Sector and the	an and a set of the	10 No		mana
						[
0 dBm										
-10 dBm——										
	D1 -13.000	abm								
-20 dBm—				M	$\frac{1}{2}$					<u> </u>
					1					\ \
-30 dBm	0		1	my and mark						
(~~	Contraction and a second	whenever	1							
-40 dBm										
-40 0011										
-50 dBm—										
-60 dBm										
CF 2.5 GHz	z		•	1001	pt	ts			Span	10.0 MHz
						Mea	suring		444 ()9.12.2016 14:56:49


5.1.1.2.1.2 Test RB=25RB

Date: 9.DEC.2016 14:56:50

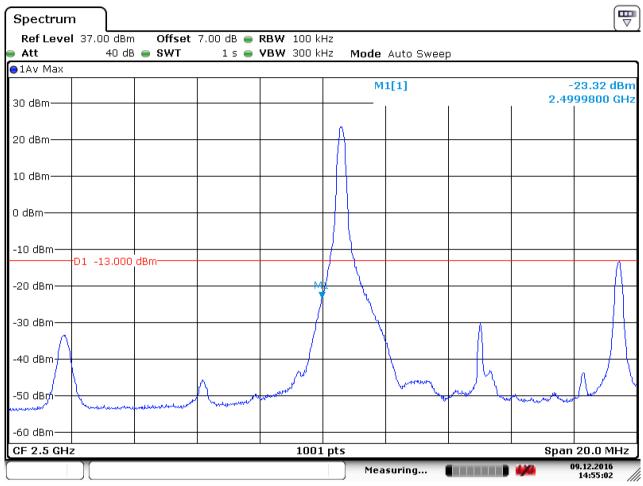
Report No.: SZEM161000916705 Page: 57 of 134

Date: 9.DEC.2016 15:00:44

Report No.: SZEM161000916705 Page: 58 of 134

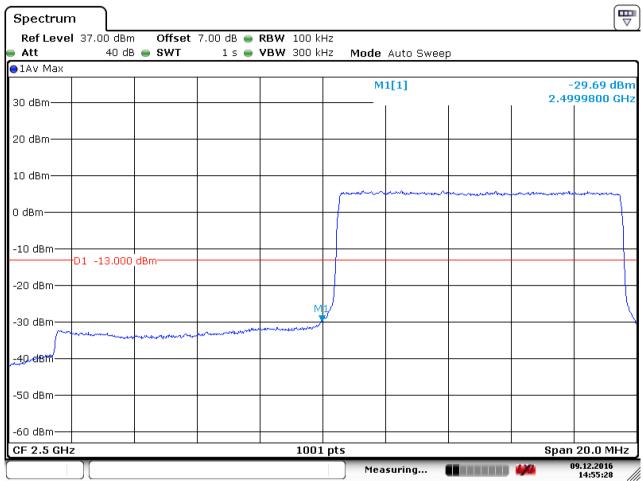
Spectrum	Γ									
	37.00 dBm		7.00 dB 😑		50 k⊢					
Att	40 dB	SWT 😑 SWT	1 s 😑	VBW 20)O k⊢	lz Mode	Auto Swe	ер		
⊖1Av Max			1							
30 dBm						M	1[1]	1		28.45 dBm 01000 GHz
20 dBm										
10 dBm	and the second states of the	Anna	an and the second	-	~					
0 dBm					$\left\{ \right\}$					
-10 dBm—	D1 -13.000	dBm								
-20 dBm—					$\left\{ \right\}$					
/ -30 dBm					_N	1				
-40 dBm							manne	the manalust march	manner	-un
										and the second
-50 dBm—										
-60 dBm	17				001	ntc				10.0 MU-
[CF 2.37 GF	12			1	001					10.0 MHz
Į – – – –	Л					Mea	suring			15:01:12

5.1.1.2.2.2 Test RB=25RB


Date: 9.DEC.2016 15:01:12

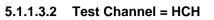
Report No.: SZEM161000916705 Page: 59 of 134

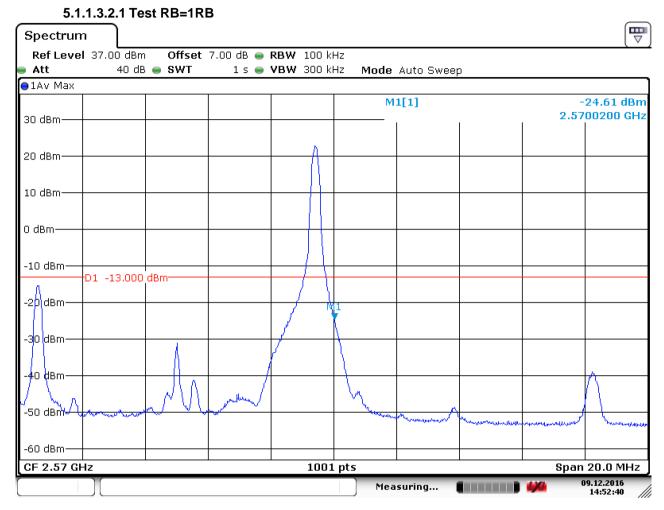
5.1.1.3 Test Mode = LTE/TM1 10MHz 5.1.1.3.1 Test Channel = LCH


5.1.1.3.1.1 Test RB=1RB

Date: 9.DEC.2016 14:55:02

Report No.: SZEM161000916705 Page: 60 of 134




5.1.1.3.1.2 Test RB=50RB

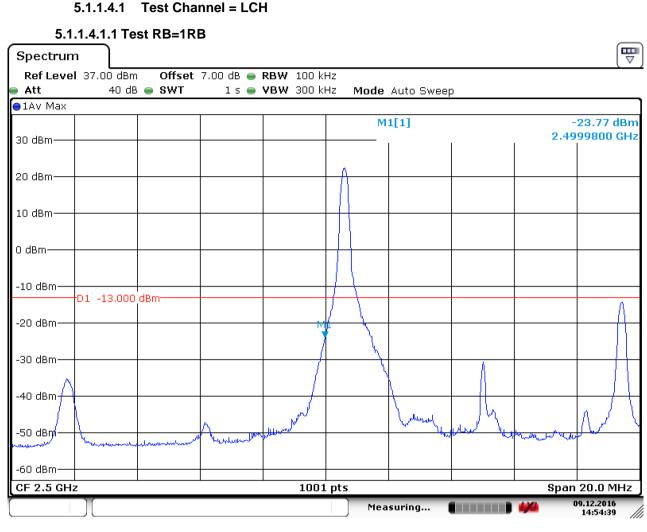
Date: 9.DEC.2016 14:55:28

Report No.: SZEM161000916705 Page: 61 of 134

Date: 9.DEC.2016 14:52:40

Report No.: SZEM161000916705 Page: 62 of 134

		51 ND=301	10						Ē
Spectrum									
Ref Level	37.00 dBm 40 dB	Offset		RBW 100 k VBW 300 k		Auto Swee	n		
●1Av Max		_					Γ		
30 dBm					M	1[1]	1		33.17 dBm 00200 GHz
20 dBm									
10 dBm									
		//w//w//fin-way-w							
-10 dBm	D1 -13.000	dBm							
-20 dBm									
-30 dBm					1				
-40 dBm						a and an	a statements Marriage		provenance
-50 dBm									
-60 dBm									
CF 2.57 GH	lz			1001	. pts			-	20.0 MHz
	Л				Mea	suring		4/4)9.12.2016 14:52:13


5.1.1.3.2.2 Test RB=50RB

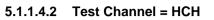
Date: 9.DEC.2016 14:52:14

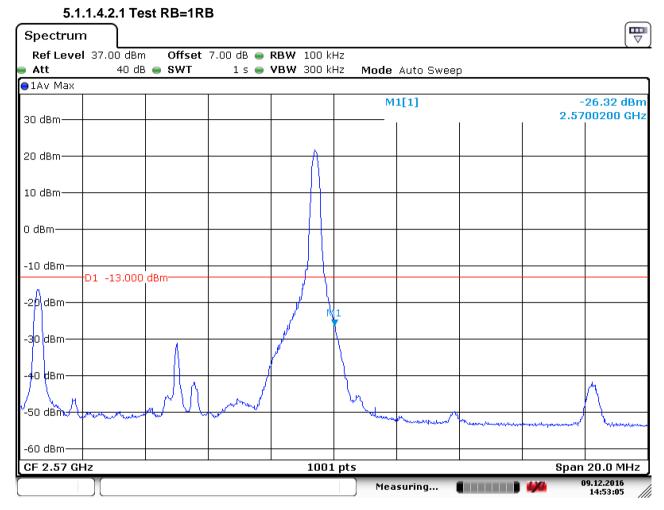
Report No.: SZEM161000916705 Page: 63 of 134

5.1.1.4 Test Mode = LTE/TM2 10MHz

Date: 9.DEC.2016 14:54:40

Report No.: SZEM161000916705 Page: 64 of 134


Spectrun	n									
	I 37.00 dBm		7.00 dB 👄							
Att	40 dE	B 🔵 SWT	1 s 👄	VBW 300 k	κΗz	Mode	Auto Swee	p		
⊖1Av Max										
						M	1[1]			28.15 dBm
30 dBm									2.49	99800 GHz
20 dBm										
20 0011										
10 dBm										
						مستنهم	harmon		-	
0 dBm										
						1				
-10 dBm—										
	D1 -13.000	dBm			+					
-20 dBm										
-20 uBiii]					
				N						
-30 dBm—		- Annon		and grade provide a second						
and the second										
-40 dBm										
-50 dBm										
co do-										
-60 dBm									_	
CF 2.5 GH:	z			100	1 pt	5				20.0 MHz
[Д					Mea	suring		4/4	9.12.2016 14:55:59


5.1.1.4.1.2 Test RB=50RB

Date: 9.DEC.2016 14:55:58

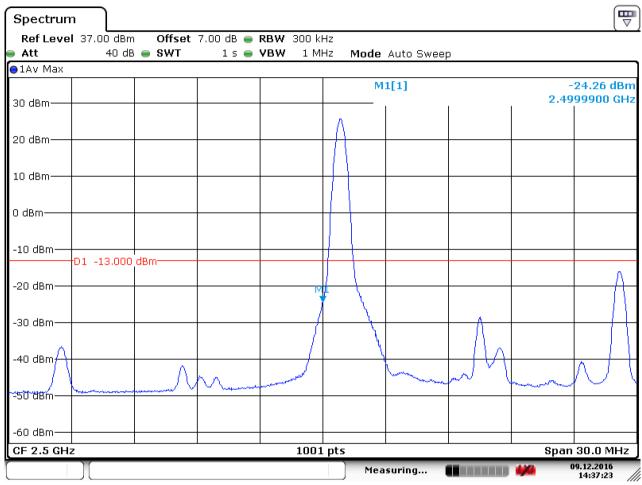
Report No.: SZEM161000916705 Page: 65 of 134

Date: 9.DEC.2016 14:53:05

Report No.: SZEM161000916705 Page: 66 of 134

Spectrum	ι								
	37.00 dBm		: 7.00 dB 👄						`
Att	40 dE	B 👄 SWT	1 s 👄	VBW 300	kHz Mode	Auto Swee	р		
●1Av Max									
					IV	11[1]			31.04 dBm
30 dBm			_			1	1	2.57	'00200 GHz I
20 dBm—									
10 dBm									
				many					
0 dBm									
-10 dBm—									
	D1 -13.000	dBm							
-20 dBm			_						
-30 dBm				l l	M1				
-40 dBm—									m
-40 uBIII									marken
-50 dBm—									
-60 dBm—			-						
CF 2.57 GF	łz	1	1	100	1 pts	1	1	Span	20.0 MHz
					Me	asuring		4/4	09.12.2016 14:51:43

5.1.1.4.2.2 Test RB=50RB


Date: 9.DEC.2016 14:51:43

Report No.: SZEM161000916705 Page: 67 of 134

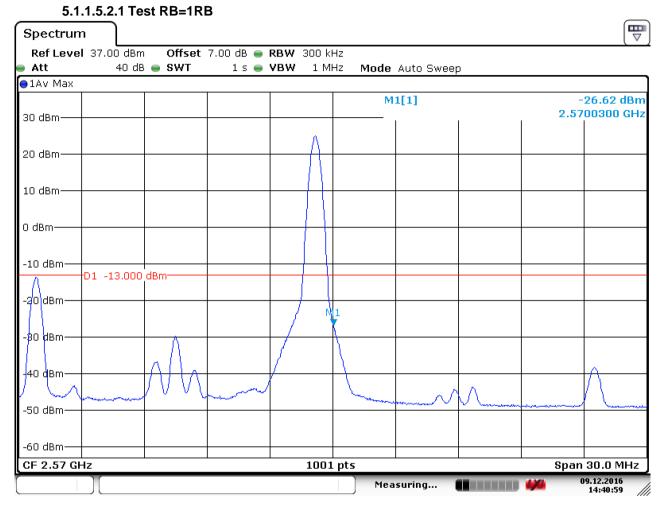
5.1.1.5 Test Mode = LTE/TM1 15MHz 5.1.1.5.1 Test Channel = LCH

5.1.1.5.1.1 Test RB=1RB

Date: 9.DEC.2016 14:37:24

Report No.: SZEM161000916705 Page: 68 of 134

Spectrum	r								
Ref Level	l 37.00 dBm	offset	7.00 dB 😑	RBW 300 kH	łz				
Att	40 dE	s 🔵 SWT	1 s 👄	VBW 1 MF	lz Mode	Auto Swe	ер		
○1Av Max									
30 dBm					M	1[1]	1		26.32 dBm 99900 GHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm	D1 -13.000	dBm							
-30 dBm				M	¥				L
	and the second second		T						
⊷≃40 dBm									
-50 dBm									
-60 dBm									
CF 2.5 GHz	z			1001	pts				30.0 MHz
[Л				Mea	suring		4/4	09.12.2016 14:38:48


5.1.1.5.1.2 Test RB=75RB

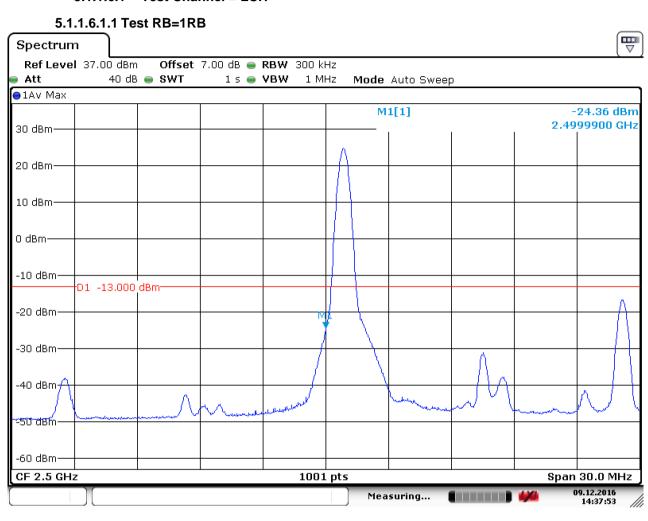
Date: 9.DEC.2016 14:38:49

Report No.: SZEM161000916705 Page: 69 of 134

Date: 9.DEC.2016 14:41:00

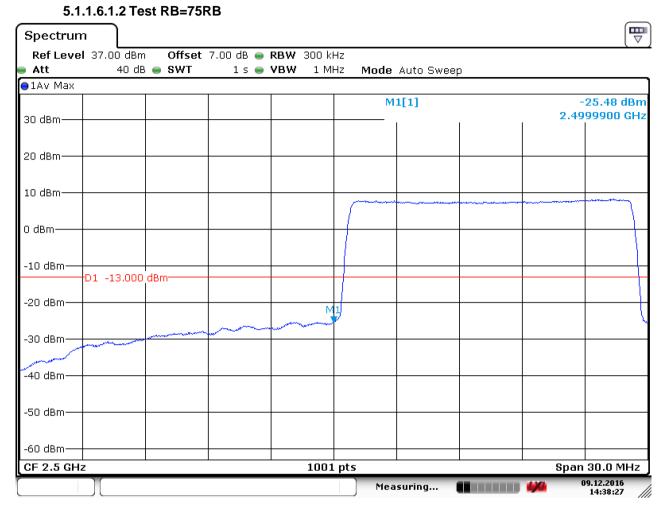
Report No.: SZEM161000916705 Page: 70 of 134

		SI KD=7 31							
Spectrum	1								
Ref Level Att	37.00 dBm 40 dB) Offset S SWT	7.00 dB 👄 1 s 👄	RBW 300 ki VBW 1 Mi		Auto Swe	- n		
● 1Av Max	70 UL) - 3141	15 🚽		ind infoue	Auto Swe	eh		
_					М	1[1]			28.63 dBm
30 dBm								2.57	'00300 GHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
	D1 -13.000	dBm							
-20 dBm					1				
-30 dBm									5
-40 dBm									
-50 dBm									
60 db									
-60 dBm CF 2.57 GH	1-1			1001	ntc				20.0 MU-
	12			1001					30.0 MHz
Į – – – –	Л				Mea	asuring			14:39:33


5.1.1.5.2.2 Test RB=75RB

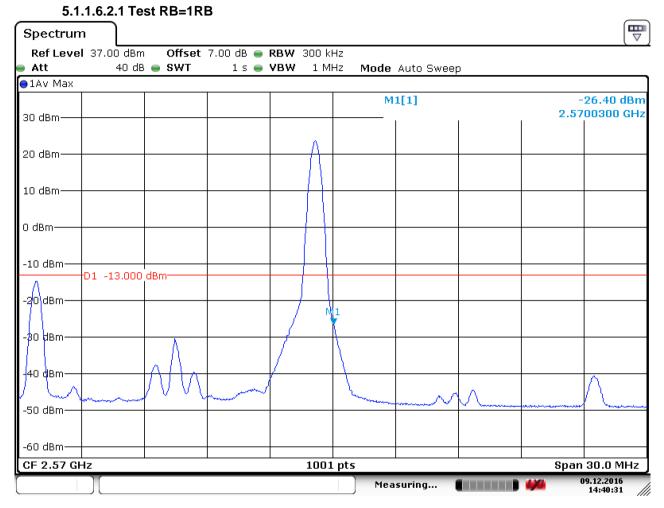
Date: 9.DEC.2016 14:39:34

Report No.: SZEM161000916705 Page: 71 of 134


5.1.1.6 Test Mode = LTE/TM2 15MHz 5.1.1.6.1 Test Channel = LCH

Date: 9.DEC.2016 14:37:53


Report No.: SZEM161000916705 Page: 72 of 134



Date: 9.DEC.2016 14:38:27

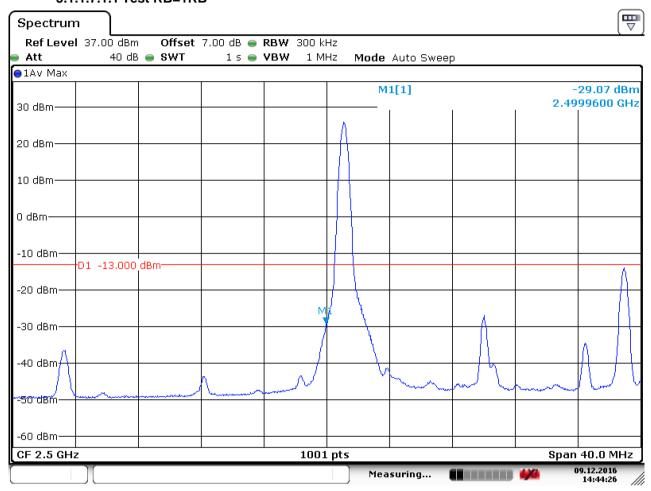
Report No.: SZEM161000916705 Page: 73 of 134

Date: 9.DEC.2016 14:40:31

Report No.: SZEM161000916705 Page: 74 of 134

Ref Level 37.00 dBm Offset 7.00 dB RBW 300 kHz • Att 40 dB • SWT 1 s • VBW 1 MHz Mode Auto Sweep • 1Av Max	Spectrum	ι								
• 1Av Max • 11[1] • -27.57 dE 2.5700300 G 20 dBm • 10 dBm • 10 dBm 10 dBm • 10 dBm • 10 dBm • 20 dBm • 10 dBm • 10 dBm • 10 dBm • 11 • 120 dBm • 20 dBm • 11 • 120 dBm • 20 dBm • 11 • 120 • 20 dBm • 11 • 12 • -20 dBm • 11 • -20 dBm • 11 • -20 dBm • 11 • -20 dBm • 1 • -20 dBm • 1 • -20 dBm • 1 • -20 dBm • -20 dBm • -20 dBm	Ref Level	37.00 dBm	offset	7.00 dB 😑	RBW 300 k	Hz				
30 dBm M1[1] -27.57 dE 20 dBm 2.5700300 G 10 dBm 1 0 dBm 1 -10 dBm 1 -20 dBm 1 -30 dBm 1 -50 dBm 1 -60 dBm 1	🗕 Att	40 dB	s 🔵 SWT	1 s 👄	VBW 1 M	Hz Mode	Auto Swee	р		
30 dBm 2.5700300 G 20 dBm 2.5700300 G 10 dBm 2.5700300 G 0 dBm 2.5700300 G 10 dBm 2.5700300 G 10 dBm 2.5700300 G 20 dBm 2.5700300 G 10 dBm 2.5700300 G 20 dBm 2.5700300 G 20 dBm 2.5700300 G -10 dBm 2.5700300 G -10 dBm 1 -10 dBm 1 <td>⊖1Av Max</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	⊖1Av Max									
10 dBm 0 dBm -10 dB	30 dBm					M	1[1] 			27.57 dBm 00300 GHz
D dBm	20 dBm									
-10 dBm D1 -13.000 dBm	10 dBm									
D1 -13.000 dBm 1 -20 dBm 1 -30 dBm 1 -40 dBm 1 -50 dBm 1 -60 dBm 1	0 dBm									
-30 dBm -40 dBm -50 dBm -60 dBm		D1 -13.000	dBm							
-40 dBm -50 dBm -60 dBm	-20 dBm					1				
-50 dBm	-30 dBm				Ň					~
-60 dBm	-40 dBm									
	-50 dBm									
Lor 2.37 anz 1001 pts Span 30.0 MH		17			1001	ntc				20.0 MU-
() () Measuring ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●					1001		euring		· · ·	9.12.2016

5.1.1.6.2.2 Test RB=75RB


Date: 9.DEC.2016 14:40:00

Report No.: SZEM161000916705 Page: 75 of 134

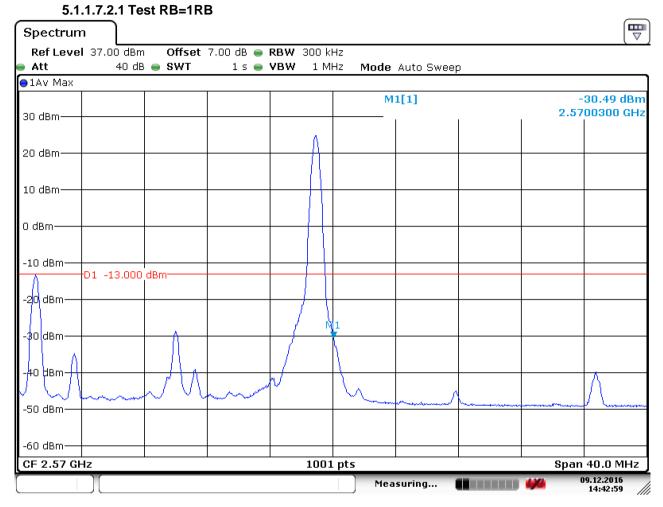
5.1.1.7 Test Mode = LTE/TM1 20MHz 5.1.1.7.1 Test Channel = LCH

5.1.1.7.1.1 Test RB=1RB

Date: 9.DEC.2016 14:44:26

Report No.: SZEM161000916705 Page: 76 of 134

Spectrun	n									
Ref Leve	l 37.00 dBm		: 7.00 dB 👄	RBW 300 ki	Ηz					
🗕 Att	40 dE	SWT 😑 SWT	1 s 👄	VBW 1 MI	Ηz	Mode	Auto Swee	ep		
⊖1Av Max										
						M	1[1]			29.29 dBm
30 dBm							I	1	2.49	99600 GHz
20 dBm										
10 dBm										
					1					
0 dBm										
-10 dBm—										
10 0.011	D1 -13.000	dBm			+					
-20 dBm										
-20 ubiii					Τ					
an in				M						
-30 dBm—		يستعمر	and the second s	and a second						
· · · · ·										
-40 dBm										
and the second sec										
-50 dBm										
-60 dBm—										
CF 2.5 GH:	z	·		1001	pts		·		Span	40.0 MHz
						Mea	suring		##)9.12.2016 14:45:01


5.1.1.7.1.2 Test RB=100RB

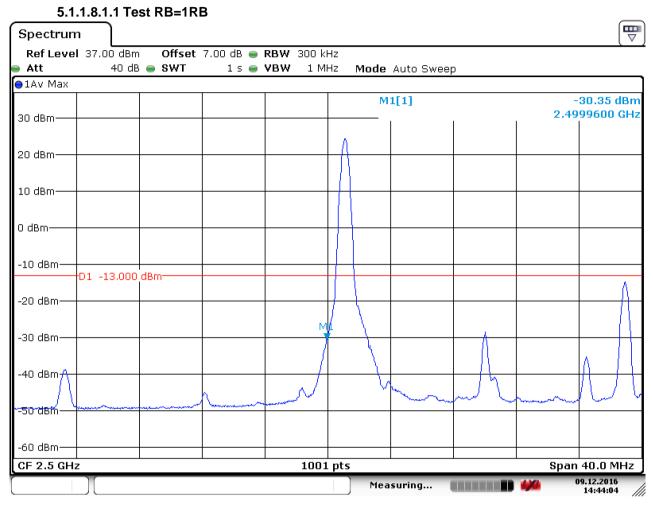
Date: 9.DEC.2016 14:45:02

Report No.: SZEM161000916705 Page: 77 of 134

Date: 9.DEC.2016 14:42:59

Report No.: SZEM161000916705 Page: 78 of 134

5.1	5.1.1.7.2.2 Test RB=100RB										
Spectrun	n									(₩	
Ref Leve	l 37.00 dBm	n Offset	7.00 dB 👄	RBW	300 ki	Ηz					
👄 Att	40 dB	B 🔵 SWT	1 s 👄	VBW	1 M	Hz Mode	Auto Swee	p			
●1Av Max											
						M	1[1]		-	30.65 dBm	
30 dBm							1	1	2.57	00300 GHz	
20 dBm											
10 dBm											
10 dbiii				hanne							
0 dBm											
-10 dBm—	D1 -13.000	dBm									
	10,000										
-20 dBm—											
					- Iv	1					
∕-30 dBm—					G						
							mon		him		
-40 dBm—											
										- marine	
-50 dBm											
-60 dBm											
-00 ubiii CF 2.57 Gł					1001	nte				40.0 MHz	
	חב רוב				1001				-	40.0 MHZ	
						Mea	suring		4	14:42:23	


Date: 9.DEC.2016 14:42:23

Report No.: SZEM161000916705 Page: 79 of 134

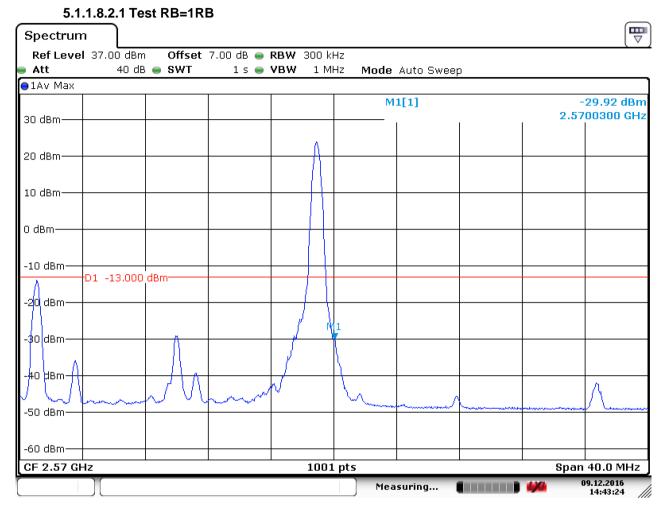
5.1.1.8 Test Mode = LTE/TM2 20MHz

5.1.1.8.1 Test Channel = LCH

Date: 9.DEC.2016 14:44:04

Report No.: SZEM161000916705 Page: 80 of 134

Spectrun	n								
	l 37.00 dBm			RBW 300 ki					`
Att	40 dB	SWT 🔵	1 s 👄	VBW 1 MI	Hz N	1ode Auto	Sweep		
⊖1Av Max									
						M1[1]			-27.57 dBm
30 dBm								2.4	999600 GHz
20 dBm									
20 0011									
10 dBm									
									1
0 dBm					\square				+
-10 dBm—									
	D1 -13.000	dBm							+
-20 dBm									
-20 uBiii				м	-				
					ţ,				
-30 dBm—			water and the second	and the second descent					
	North and a strand								
-40 dBm									
- A Contraction of the second s									
-50 dBm									
00 4011									
-60 dBm—									
CF 2.5 GH:	z			1001	pts			Spa	n 40.0 MHz
[Measuring			09.12.2016 14:45:22


5.1.1.8.1.2 Test RB=100RB

Date: 9.DEC.2016 14:45:23

Report No.: SZEM161000916705 Page: 81 of 134

Date: 9.DEC.2016 14:43:25

Report No.: SZEM161000916705 Page: 82 of 134

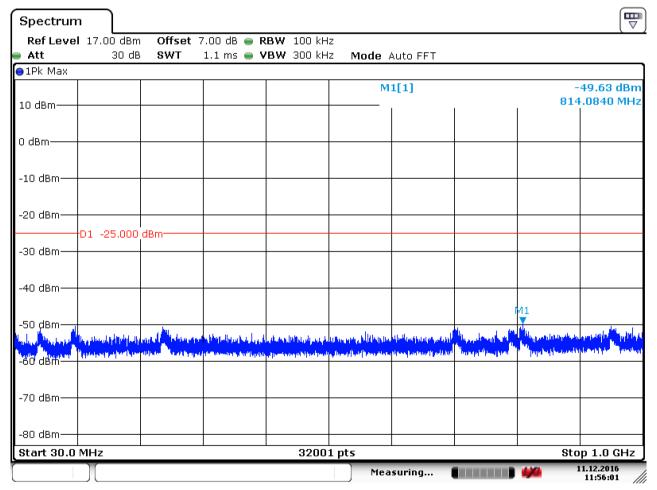
Spectrum	ı)										
	37.00 dBm		set 7.00								<u>`</u>
🗕 Att	40 dB	6 😑 SW	Т	1 s 😑	VBW	1 MH	z Mode	e Auto Swe	ер		
😑 1Av Max											
							N	41[1]			29.44 dBm
30 dBm								1		2.57	00300 GHz
20 dBm											
10 dBm											
0 HBm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				·						
-10 dBm											
	D1 -13.000	dBm									
-20 dBm						M	L				
-30 dBm							- Carrow			han	
-40 dBm											and have a second
-50 dBm											
-60 dBm											
CF 2.57 GH	lz					1001	pts			Span	40.0 MHz
							Me	asuring		4/4)9.12.2016 14:41:43

5.1.1.8.2.2 Test RB=100RB

Date: 9.DEC.2016 14:41:43

Report No.: SZEM161000916705 Page: 83 of 134

6 Spurious Emission at Antenna Terminal


NOTE: For the averaged unwanted emissions measurements, the measurement points in each sweep is greater than twice the Span/RBW in order to ensure bin-to-bin spacing of < RBW/2 so that narrowband signals are not lost between frequency bins. As to the present test item, the "Measurement Points = k * (Span / RBW)" with k between 4 and 5, which results in an acceptable level error of less than 0.5 dB.

Part I - Test Plots

6.1 For LTE

- 6.1.1 Test Band = LTE band7
- 6.1.1.1 Test Mode = LTE / TM1 5MHz RB1#0

6.1.1.1.1 Test Channel = LCH

Date: 11.DEC.2016 11:56:01