

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

 Shenzhen, Guangdong, China 518057

 Telephone:
 +86 (0) 755 2601 2053

 Fax:
 +86 (0) 755 2671 0594

 Email:
 ee.shenzhen@sgs.com

Report No.: SZEM161000916704 Page: 1 of 81

FCC REPORT

Application No:	SZEM1610009167RG
Applicant:	LG Electronics Mobile Comm USA
Manufacturer:	Huaqin Telecom Technology Co. Ltd.
Factory:	Dong Guan Huabel Electronic Technology Co.,Ltd
Product Name:	Mobile Handset
Model No.(EUT):	LG-X230H
Trade Mark:	LG
FCC ID:	ZNFX230H
Standards:	47 CFR Part 15, Subpart C (2015)
Date of Receipt:	2016-11-28
Date of Test:	2016-11-28 to 2016-12-14
Date of Issue:	2016-12-15
Test Result:	PASS *

.* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Derele yang

Derek Yang Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.spx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its instructions, if any. The Company's sole responsibility is to its Client and this document is advised that information contained hereon reflects the Company's findings at the time of its alter rights and obligations under the transaction documents. This document company is sole responsibility is to its Client and this document does not excerted parties to a transaction from exercising all their rights and obligations under the transaction documents. This document company can be prosecuted to the full without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is and will and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161000916703 Page: 2 of 81

2 Version

	Revision Record					
Version	Chapter	Date	Modifier	Remark		
01		2016-12-15		Original		

Authorized for issue by:		
Tested By	Mike Mu	2016-12-15
	(Mike Hu) /Project Engineer	Date
Checked By	Jim Hug)/Reviewer	2016-12-15

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.sep and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161000916703 Page: 3 of 81

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

Report No.: SZEM161000916703 Page: 4 of 81

4 Contents

Page

1	COV	ER PAGE	. 1
2	VER	SION	. 2
3	TES	T SUMMARY	. 3
4	CON	TENTS	. 4
5	GEN	ERAL INFORMATION	. 5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST LOCATION	. 7
	5.6	TEST FACILITY	
	5.7	DEVIATION FROM STANDARDS	-
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	-
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.10	MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
	5.11	EQUIPMENT LIST	. 9
6	TES	T RESULTS AND MEASUREMENT DATA	11
	6.1	ANTENNA REQUIREMENT	11
	6.2	CONDUCTED EMISSIONS	
	6.3	CONDUCTED PEAK OUTPUT POWER	
	6.4	6DB OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.7	RF CONDUCTED SPURIOUS EMISSIONS	
	6.8	RADIATED SPURIOUS EMISSIONS	
	6.8.1		
	6.8.2		
	6.9	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
7	PHO	TOGRAPHS - EUT CONSTRUCTIONAL DETAILS	81

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.sep and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161000916703 Page: 5 of 81

5 General Information

5.1 Client Information

Applicant:	LG Electronics Mobile Comm USA
Address of Applicant:	1000 Sylvan Avenue Englewood Cliffs,NJ 07632
Manufacturer:	Huaqin Telecom Technology Co. Ltd.
Address of Manufacturer:	No.1 Building,399 Keyuan Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai, China
Factory:	Dong Guan Huabel Electronic Technology Co.,Ltd
Address of Factory:	No.9 Industrial Northern Road, National High-Tech Industrial Development Zone, SongShan Lake, Dong Guan

5.2 General Description of EUT

Product Name:	Mobile Handset
Model No.:	LG-X230H
Trade Mark:	LG
Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz
Operation Frequency:	IEEE 802.11n(HT40): 2422MHz to 2452MHz
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels
Channel Numbers.	IEEE 802.11n HT40: 7 Channels
Channel Separation:	5MHz
	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK)
Type of Modulation:	IEEE for 802.11g : OFDM(64QAM, 16QAM, QPSK, BPSK)
	IEEE for 802.11n(HT20 and HT40) : OFDM (64QAM, 16QAM,
	QPSK,BPSK)
Sample Type:	Portable Device
Antenna Type:	PIFA
Antenna Gain:	-1.8dBi
Power Supply	DC3.85V (1 x 3.85V Rechargeable battery) 2500mAh
Fower Supply	Battery: Charge by DC 5V
	Model:MCS-02WR2
AC adaptor:	Input: AC100-240V 50/60Hz 0.2A
	Output:DC5.0V 0.85A

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.sep and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161000916703 Page: 6 of 81

Operation F	Operation Frequency each of channel(802.11b/g/n HT20)									
Channel	Fr	equency	Channe	I Frequency	Channel	Fre	quency	Chan	nnel	Frequency
1	24	412MHz	4	2427MHz	7	244	42MHz	10)	2457MHz
2	24	417MHz	5	2432MHz	8	244	47MHz	11		2462MHz
3	24	422MHz	6	2437MHz	9	245	52MHz			
Operation F	requ	ency each	of channe	el(802.11n HT40))					
Channe	I	Frequ	ency	Channel	Frequen	су	Chan	nel		Frequency
3		2422	ИНz	6	2437MF	łz	9			2452MHz
4		2427	ИНz	7	2442MF	łz				
5		2432	MHz	8	2447MF	łz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

For 802.11b/g/n (HT20):

Channel	Frequency
The Lowest channel	2412MHz
The Middle channel	2437MHz
The Highest channel	2462MHz

For 802.11n (HT40):

Channel	Frequency
The Lowest channel	2422MHz
The Middle channel	2437MHz
The Highest channel	2452MHz

Report No.: SZEM161000916703 Page: 7 of 81

5.3 Test Environment and Mode

Operating Environment:			
Temperature:	25.0 °C		
Humidity:	50 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.		

5.4 Description of Support Units

The EUT has been tested independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

· CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

• VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1,

Report No.: SZEM161000916703 Page: 8 of 81

4620C-2, 4620C-3.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Total RF power, conducted	0.75dB
2	RF power density, conducted	2.84dB
3	Spurious emissions, conducted	0.75dB
_		4.5dB (30MHz-1GHz)
4	Radiated Spurious emission test	4.8dB (1GHz-25GHz)
5	Conduct emission test	3.12 dB(9KHz- 30MHz)
6	Temperature test	1°C
7	Humidity test	3%
8	DC and low frequency voltages	0.5%

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-end-Conditions.terms-end-Conditis.terms-end-Conditions.terms-end-Conditions.terms-en

Report No.: SZEM161000916703 Page: 9 of 81

5.11 Equipment List

Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)	
1	Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2016-05-13	2017-05-13	
2	LISN	Rohde & Schwarz	ENV216	SEM007-01	2016-10-09	2017-10-09	
3	LISN	ETS-LINDGREN	3816/2	SEM007-02	2016-04-25	2017-04-25	
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	EMC0120	2016-09-28	2017-09-28	
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	EMC0121	2016-09-28	2017-09-28	
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	EMC0122	2016-09-28	2017-09-28	
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2016-04-25	2017-04-25	
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2016-10-09	2017-10-09	

RF connected test						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
2	Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-17	2017-10-17
3	Signal Generator	Rohde & Schwarz	SML03	SEM006-02	2016-04-25	2017-04-25
4	Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09

Report No.: SZEM161000916703 Page: 10 of 81

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2016-05-13	2017-05-13
2	EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2016-09-16	2016-09-16
3	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2014-11-01	2017-11-01
4	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEM003-11	2015-10-17	2018-10-17
5	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEM003-12	2014-11-24	2017-11-24
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2016-04-25	2017-04-25
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
9	Loop Antenna	Beijing Daze	ZN30401	SEM003-09	2015-05-13	2018-05-13

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2016-05-13	2017-05-13
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEM004-04	2016-04-25	2017-04-25
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2014-11-15	2017-11-15
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2016-10-09	2017-10-09
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-14
6	Low Noise Amplifier	Black Diamond Series	BDLNA- 0118- 352810	SEM005-05	2016-10-09	2017-10-09
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.sep and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161000916703 Page: 11 of 81

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)					
15.203 requirement:	15.203 requirement:					
An intentional radiator shall b	be designed to ensure that no antenna other than that furnished by the					
responsible party shall be us	ed with the device. The use of a permanently attached antenna or of an					
antenna that uses a unique c	coupling to the intentional radiator, the manufacturer may design the unit					
so that a broken antenna car	n be replaced by the user, but the use of a standard antenna jack or					
electrical connector is prohib	ited.					
15.247(b) (4) requirement:						
The conducted output power	limit specified in paragraph (b) of this section is based on the use of					
antennas with directional gai	ns that do not exceed 6 dBi. Except as shown in paragraph (c) of this					
section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output						
power from the intentional ra	diator shall be reduced below the stated values in paragraphs (b)(1),					
$(\mathbf{a}\rangle (0)$ and $(\mathbf{a}\rangle (0)$ of the index of	\mathbf{r}					

(b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -1.8dBi.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-end-Conditions.terms-end-Conditis.terms-end-Conditions.terms-end-Conditions.terms-en

Report No.: SZEM161000916703 Page: 12 of 81

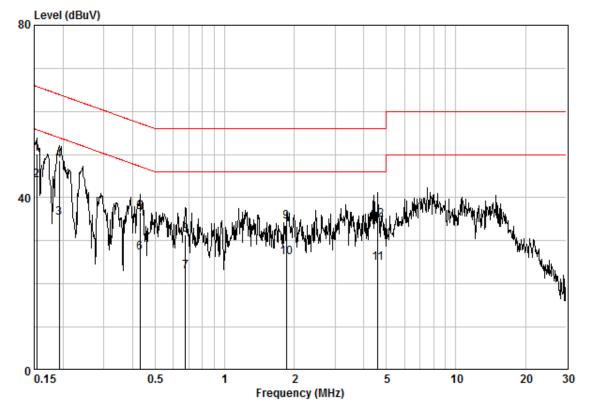
Test Requirement:	47 CFR Part 15C Section 15.207				
Test Method:	ANSI C63.10: 2013				
Test Frequency Range:	150kHz to 30MHz				
		Limit (d	BuV)		
Limit:	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithn	n of the frequency.			
Test Procedure:	 The mains terminal disturbution room. The EUT was connected to Impedance Stabilization Nuimpedance. The power call connected to a second LIS plane in the same way as a multiple socket outlet strip single LISN provided the rational structure plane on the horizontal ground reference plane. An placed on the horizontal gradient of the EUT shall be 0.4 m for vertical ground reference plane. The LISN unit under test and bonded mounted on top of the grout between the closest points the EUT and associated equipment and all of the im ANSI C63.10: 2013 on cor 	b AC power source thro etwork) which provides oles of all other units of SN 2, which was bonded the LISN 1 for the unit b was used to connect m ating of the LISN was ne ced upon a non-metallic nd for floor-standing arr round reference plane, th a vertical ground refe from the vertical ground blane was bonded to the 1 was placed 0.8 m fro to a ground reference und reference plane. The of the LISN 1 and the quipment was at least 0 um emission, the relativit terface cables must be	rugh a LISN 1 (Line a 50Ω/50µH + 5Ω line the EUT were d to the ground refere being measured. A nultiple power cables to ot exceeded. c table 0.8m above the rangement, the EUT v erence plane. The real d reference plane. The read reference plane. The e horizontal ground om the boundary of th plane for LISNs his distance was EUT. All other units of 0.8 m from the LISN 2 e positions of	ear nce to a e was ar e f	

6.2 Conducted Emissions

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.sep and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161000916703 Page: 13 of 81

Test Setup:	Shielding Room Test Receiver EUT_AE CMains LISN1 LISN2 Cround Reference Plane				
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.				
	Charge + Transmitting mode.				
First Test Mark	Through Pre-scan, find the 1Mbps of rate of 802.11b at lowest channel is the worst case.				
Final Test Mode:	Charge + Transmitting mode.				
	Only the worst case is recorded in the report.				
Instruments Used:	Refer to section 5.10 for details				
Test Results:	Pass				

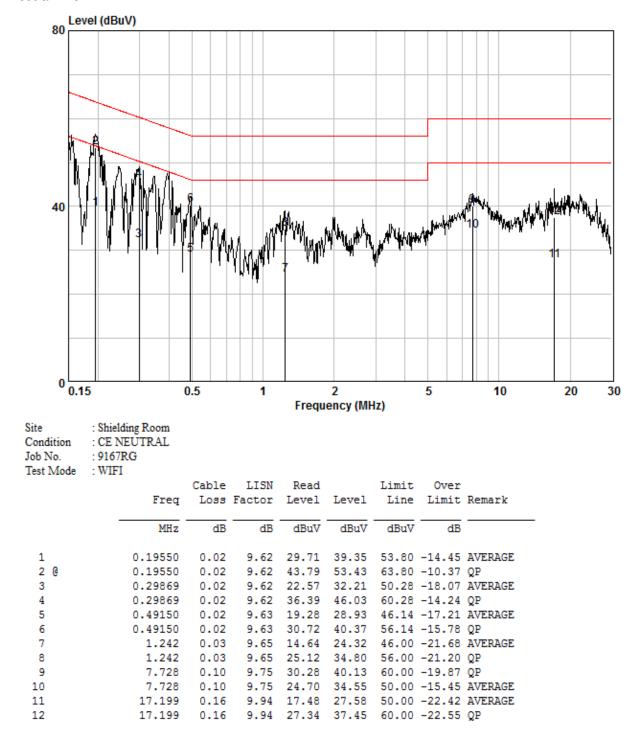

Report No.: SZEM161000916703 Page: 14 of 81

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:


Site : Shielding Room Condition : CE LINE Job No. : 9167RG Test Mode : WIFI

		Cable	LISN	Read		Limit	Over	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.15403	0.02	9.59	40.53	50.14	65.78	-15.64	QP
20	0.15403	0.02	9.59	34.43	44.04	55.78	-11.74	AVERAGE
3	0.19242	0.02	9.60	25.64	35.26	53.93	-18.67	AVERAGE
4	0.19242	0.02	9.60	39.03	48.65	63.93	-15.28	QP
5	0.43052	0.02	9.60	26.92	36.54	57.24	-20.70	QP
6	0.43052	0.02	9.60	17.57	27.19	47.24	-20.06	AVERAGE
7	0.67544	0.02	9.61	13.33	22.96	46.00	-23.04	AVERAGE
8	0.67544	0.02	9.61	21.83	31.46	56.00	-24.54	QP
9	1.848	0.03	9.62	24.76	34.42	56.00	-21.58	QP
10	1.848	0.03	9.62	16.43	26.09	46.00	-19.91	AVERAGE
11	4.598	0.02	9.64	15.18	24.84	46.00	-21.16	AVERAGE
12	4.598	0.02	9.64	25.13	34.79	56.00	-21.21	QP

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.terms-en-Document.terms-and-Conditions.terms-en-Document.terms-en-Docume

Report No.: SZEM161000916703 Page: 15 of 81

Neutral Line:

Notes:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

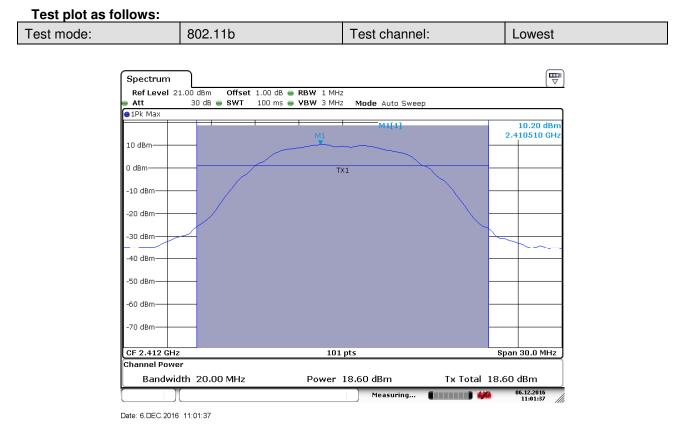
2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.terms-en-Document.terms-and-Conditions.terms-en-Document.terms-en-Docume

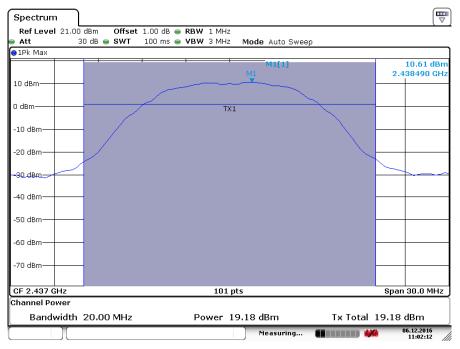
Report No.: SZEM161000916703 Page: 16 of 81

6.3 Conducted Peak Output Power

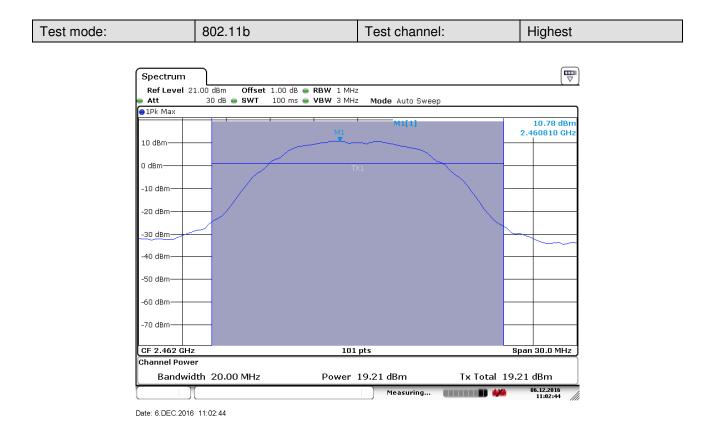
Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)			
Test Method:	ANSI C63.10 :2013 Section 11.9.1			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark:			
	Offset the High-Frequency cable loss 1dB in the spectrum analyzer.			
Test Instruments:	Refer to section 5.10 for details			
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates			
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20);13.5Mbps of rate is the worst case of 802.11n(HT40).			
Limit:	30dBm			
Test Results:	Pass			


Report No.: SZEM161000916703 Page: 17 of 81

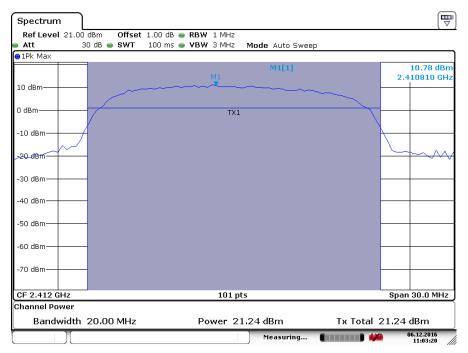
Measurement Data


802.11b mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	18.60	30.00	Pass		
Middle	19.18	30.00	Pass		
Highest	19.21	30.00	Pass		
	802.11g mo	de			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	21.24	30.00	Pass		
Middle	21.84	30.00	Pass		
Highest	21.42	30.00	Pass		
	802.11n(HT20)	mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	21.30	30.00	Pass		
Middle	21.95	30.00	Pass		
Highest	21.72	30.00	Pass		
802.11n(HT40)mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	21.32	30.00	Pass		
Middle	21.51	30.00	Pass		
Highest	21.93	30.00	Pass		

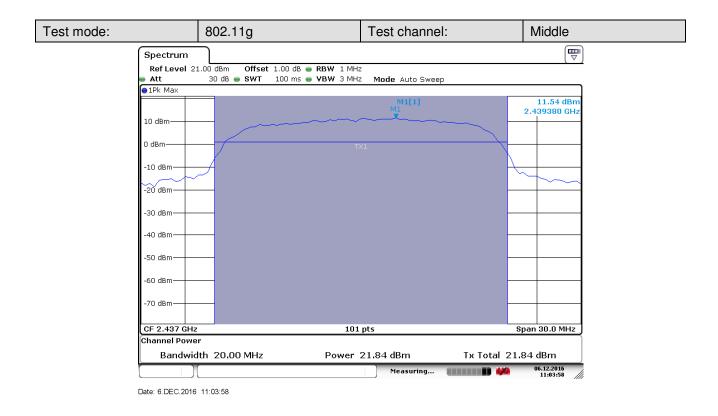
Report No.: SZEM161000916703 Page: 18 of 81



Date: 6.DEC.2016 11:02:13


This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sas.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sas.com/en/Terms-and-Conditions/Terms-eDocument.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document document document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

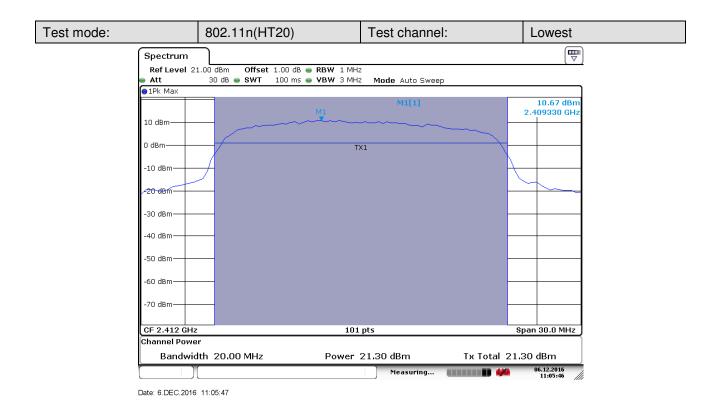
Report No.: SZEM161000916703 Page: 19 of 81

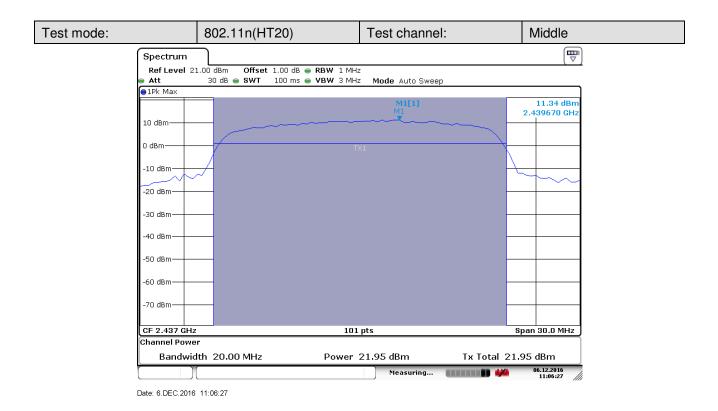



Date: 6.DEC.2016 11:03:20

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sas.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sas.com/en/Terms-and-Conditions/Terms-eDocument.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

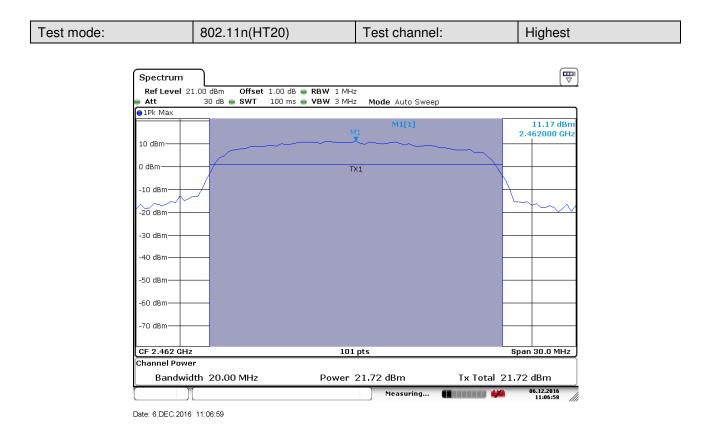
Report No.: SZEM161000916703 Page: 20 of 81

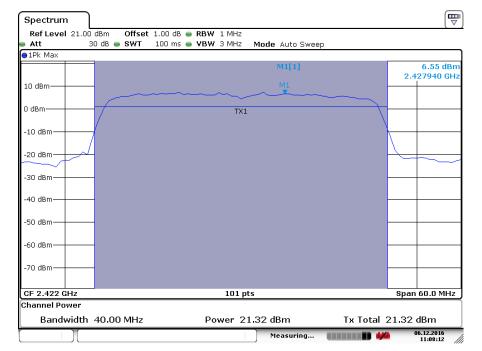



Date: 6.DEC.2016 11:04:31

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.spx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgrery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161000916703 Page: 21 of 81




This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.terms-en-Document.terms-and-Conditions.terms-en-Document.terms-en-Docume

Report No.: SZEM161000916703 Page: 22 of 81

Test mode:	802.11n(HT40)	Test channel:	Lowest

Date: 6.DEC.2016 11:08:13

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.terms-en-Document.terms-and-Conditions.terms-en-Document.terms-en-Docume

Report No.: SZEM161000916703 Page: 23 of 81

Test mode:	802.11n(HT40)	Test channel:	Middle
Spectrum Ref Level Att ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm			
CF 2.437 GF	lz 1	01 pts	Span 60.0 MHz
Channel Pow		· · ·	
Bandw	idth 40.00 MHz Powe	r 21.51 dBm	.51 dBm
Date: 6.DEC.20	6 11:08:53	Measuring 🚺 🚺 🥠	06.12.2016 11:08:53

Test mode:	802.11n(HT40)	Test channel:	Highest

Spectrum								
Ref Level	21.00	dBm Offset	: 1.00 dB 👄	RBW 1 MHz				
e Att	3	O dB 😑 SWT	100 ms 👄	VBW 3 MHz	Mode Auto St	weep		
●1Pk Max							_	
					M1[1]		2.4	8.77 dBm 154380 GHz
10 dBm								
0 dBm		1		TX1				
-10 dBm	/							
-20 dBm—	$ \rightarrow$							$\langle \rangle$
-30 dBm							-	
-40 dBm							-	
-50 dBm							-	
-60 dBm							-	
-70 dBm								
CF 2.452 G				101 p	ts		Spar	1 60.0 MHz
Channel Por Bandv		40.00 MHz		Power 2	1.93 dBm	Tx Tota	l 21.93	dBm
					Measuring	j (1 111111) (1 70	06.12.2016 11:09:39

Date: 6.DEC.2016 11:09:40

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

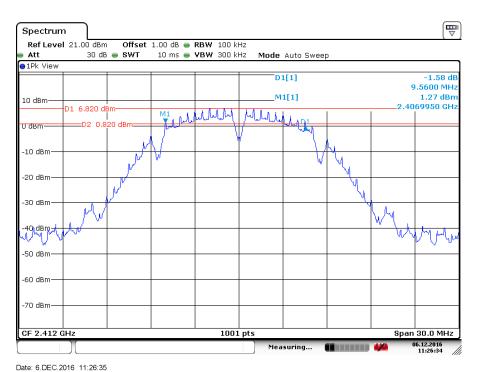
Report No.: SZEM161000916703 Page: 24 of 81

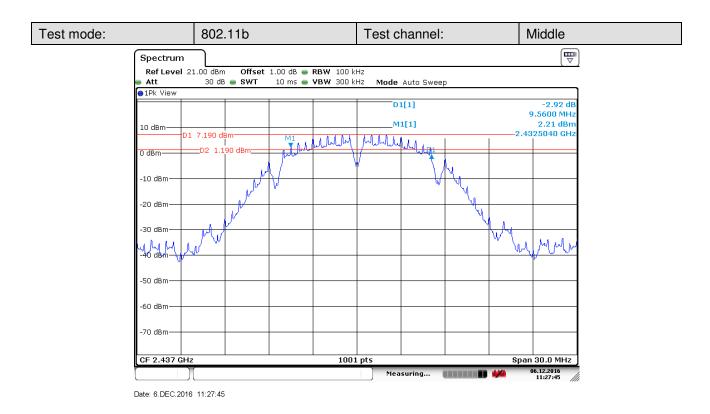
6.4 6dB Occupy Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10: 2013 Section 11.8		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Instruments Used:	Refer to section 5.10 for details		
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates		
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).		
Limit:	≥ 500 kHz		
Test Results:	Pass		

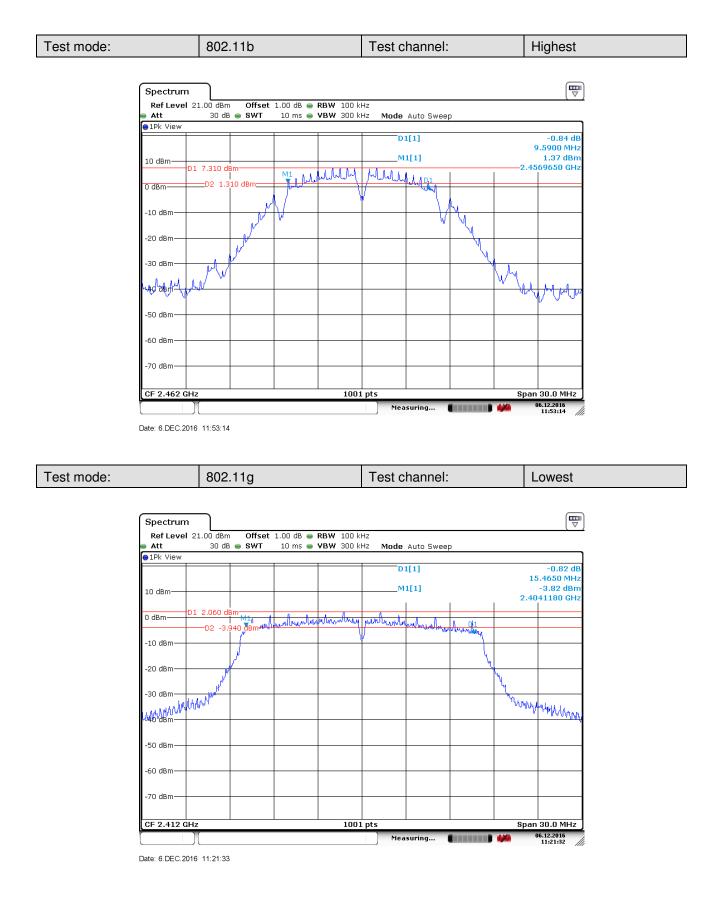
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.sep and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161000916703 Page: 25 of 81

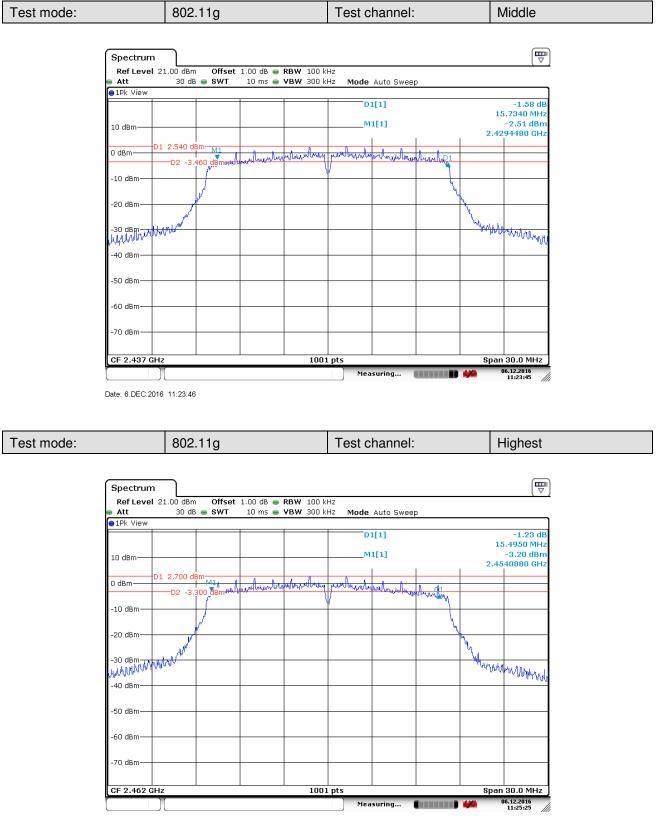

Measurement Data


802.11b mode					
Test channel	6dB Occupy Bandwidth (MHz) Limit (kHz)		Result		
Lowest	9.56	≥500	Pass		
Middle	9.56	≥500	Pass		
Highest	9.59 ≥500		Pass		
	802.11g mode				
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result		
Lowest	15.47	≥500	Pass		
Middle	15.73	≥500	Pass		
Highest	15.50	≥500	Pass		
802.11n(HT20) mode					
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result		
Lowest	15.14	≥500	Pass		
Middle	16.12	≥500	Pass		
Highest	15.14	≥500	Pass		
802.11n(HT40) mode					
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result		
Lowest	35.66	≥500	Pass		
Middle	35.54	≥500	Pass		
Highest	35.19	≥500	Pass		

Report No.: SZEM161000916703 Page: 26 of 81

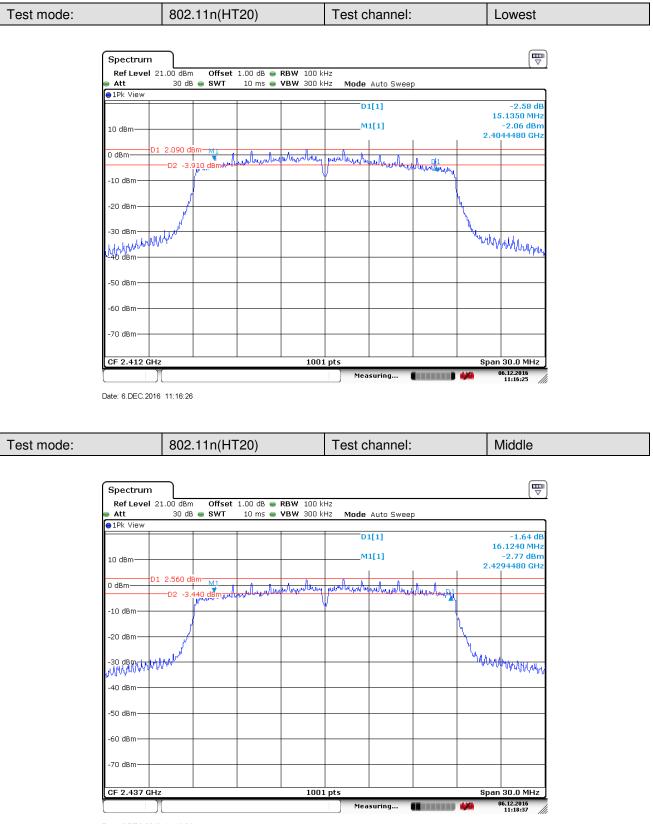


This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.


Report No.: SZEM161000916703 Page: 27 of 81

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.spx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgrery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

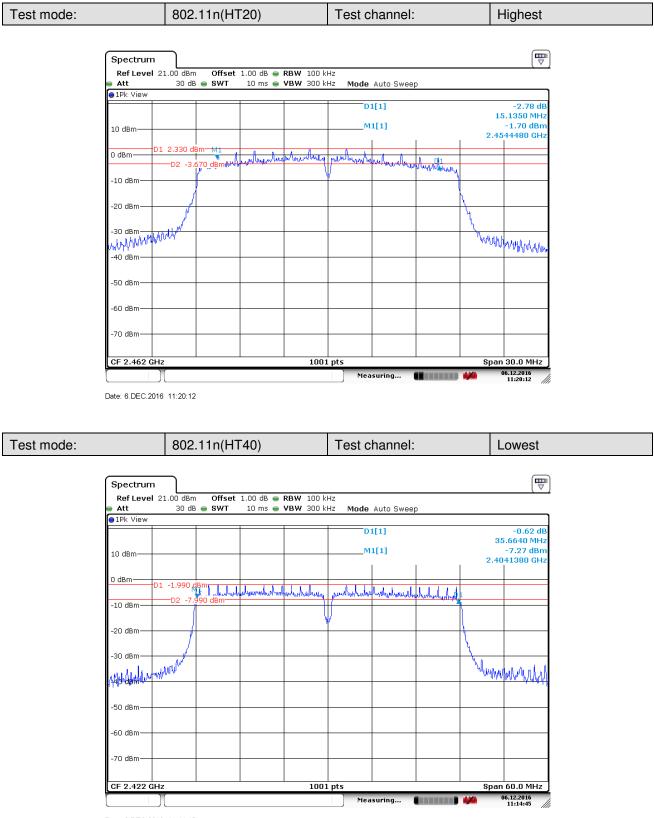
Report No.: SZEM161000916703 Page: 28 of 81



Date: 6.DEC.2016 11:25:25

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.spx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgrery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161000916703 Page: 29 of 81



Date: 6.DEC.2016 11:18:38

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sas.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sas.com/en/Terms-and-Conditions/Terms-eDocument.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161000916703 Page: 30 of 81

Date: 6.DEC.2016 11:14:45

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.spx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgrery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161000916703 Page: 31 of 81

Test mode:	802.11n(HT40)	Test channel:	Middle	
Spectrum				
Ref Level 21 Att	1.00 dBm Offset 1.00 dB ● RBW 100 30 dB ● SWT 10 ms ● VBW 300			
●1Pk View		D1[1]	-1.39 dB	
10 dBm		M1[1]	35.5440 MHz -5.73 dBm 2.4194380 GHz	
_0_dBmD1	-0.790 dBm			
-10 dBm	-D2 -6.790 dBm to the two alles but whether	weeterterterterterterterterterterterterte		
-20 dBm		V I I		
		N		
-30 dBm	WWW .		monenaple	
-40 dBm			- WWWW	
-50 dBm				
-60 dBm				
-70 dBm				
CF 2.437 GHz		11 pts 8	pan 60.0 MHz	
		Measuring 🚺 🗰 🗰	06.12.2016 11:13:12	
Date: 6.DEC.2016	11:13:12			
Test mode:	802.11n(HT40)	Test channel:	Highest	
			_	
Spectrum	Spectrum 🕎			
	1 00 dBm Offset 1 00 dB = RBW 100	kHz		
Ref Level 21 Att	1.00 dBm Offset 1.00 dB ● RBW 100 30 dB ● SWT 10 ms ● VBW 300			
Ref Level 21			-2.30 dB 35.1850 MHz	
Ref Level 21 Att		kHz Mode Auto Sweep D1[1] M1[1]	-2.30 dB	
Ref Level 21 Att 1Pk View 10 dBm	30 dB • SWT 10 ms • VBW 300	kHz Mode Auto Sweep	-2.30 dB 35.1850 MHz -6.45 dBm	
Ref Level 21 Att PIPk View 10 dBm	30 dB • SWT 10 ms • VBW 300	kHz Mode Auto Sweep	-2.30 dB 35.1850 MHz -6.45 dBm	
Ref Level 21 Att PIPk View 10 dBm -0-dBm D1	30 dB • SWT 10 ms • VBW 300	Mode Auto Sweep D1[1] M1[1] Multiplication of the state of t	-2.30 dB 35.1850 MHz -6.45 dBm	
Ref Level 21 Att PIPk View 10 dBm OdBm -10 dBm	30 dB • SWT 10 ms • VBW 300	Mode Auto Sweep D1[1] M1[1] Multiplication of the state of t	-2.30 dB 35.1850 MHz -6.45 dBm	
Ref Level 21 Att 1Pk View 10 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	-0.350 dBm -0.350	Mode Auto Sweep D1[1] M1[1] Multiplication of the state of t	-2.30 dB 35.1850 MHz -6.45 dBm 2.4344380 GHz	
Ref Level 21 Att PIPk View 10 dBm -0-dBm -10 dBm -20 dBm -30 dBm -30 dBm	30 dB • SWT 10 ms • VBW 300	Mode Auto Sweep D1[1] M1[1] Multiplication of the state of t	-2.30 dB 35.1850 MHz -6.45 dBm	
Ref Level 21 Att 1Pk View 10 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	-0.350 dBm -0.350	Mode Auto Sweep D1[1] M1[1] Multiplication of the state of t	-2.30 dB 35.1850 MHz -6.45 dBm 2.4344380 GHz	
Ref Level 21 Att PIPk View 10 dBm -0-dBm -10 dBm -20 dBm -30 dBm -30 dBm	-0.350 dBm -0.350	Mode Auto Sweep D1[1] M1[1] Multiplication of the state of t	-2.30 dB 35.1850 MHz -6.45 dBm 2.4344380 GHz	
Ref Level 21 Att 1Pk View 10 dBm -0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	-0.350 dBm -0.350	Mode Auto Sweep D1[1] M1[1] Multiplication of the state of t	-2.30 dB 35.1850 MHz -6.45 dBm 2.4344380 GHz	

Date: 6.DEC.2016 11:11:23

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161000916703 Page: 32 of 81

6.5 Power Spectral Density

Test Requirement:	47 CFR Part 15C Section 15.247 (e)		
Test Method:	ANSI C63.10 :2013 Section 11.10.2		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1dB in the spectrum analyzer.		
Test Instruments:	Refer to section 5.10 for details		
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates		
	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;		
Final Test Mode:	6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20);13.5Mbps of rate is the worst case of 802.11n(HT40).		
Limit:	≤8.00dBm/3kHz		
Test Results:	Pass		

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.sep and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

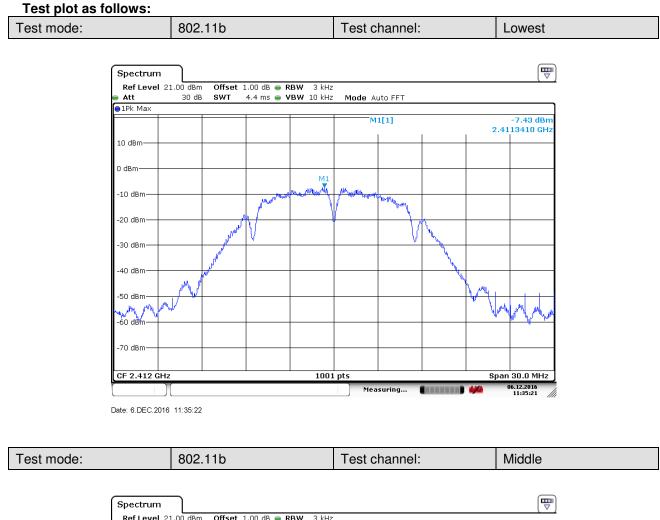
Report No.: SZEM161000916703 Page: 33 of 81

≤8.00

Pass

802.11b mode Test channel Power Spectral Density (dBm/3kHz) Limit (dBm/3kHz) Result Lowest -7.43 ≤8.00 Pass <u>Mi</u>ddle Pass -6.16 ≤8.00 -6.75 ≤8.00 Highest Pass 802.11g mode Test channel Power Spectral Density (dBm/3kHz) Limit (dBm/3kHz) Result Lowest -10.83 ≤8.00 Pass Middle -10.21 ≤8.00 Pass Highest -10.47 ≤8.00 Pass 802.11n(HT20) mode Test channel Power Spectral Density (dBm/3kHz) Limit (dBm/3kHz) Result -11.22 Lowest ≤8.00 Pass Middle -10.31 ≤8.00 Pass -10.32 ≤8.00 Highest Pass 802.11n(HT40) mode Test channel Power Spectral Density (dBm/3kHz) Limit (dBm/3kHz) Result Lowest -14.23 ≤8.00 Pass Middle -14.00 ≤8.00 Pass

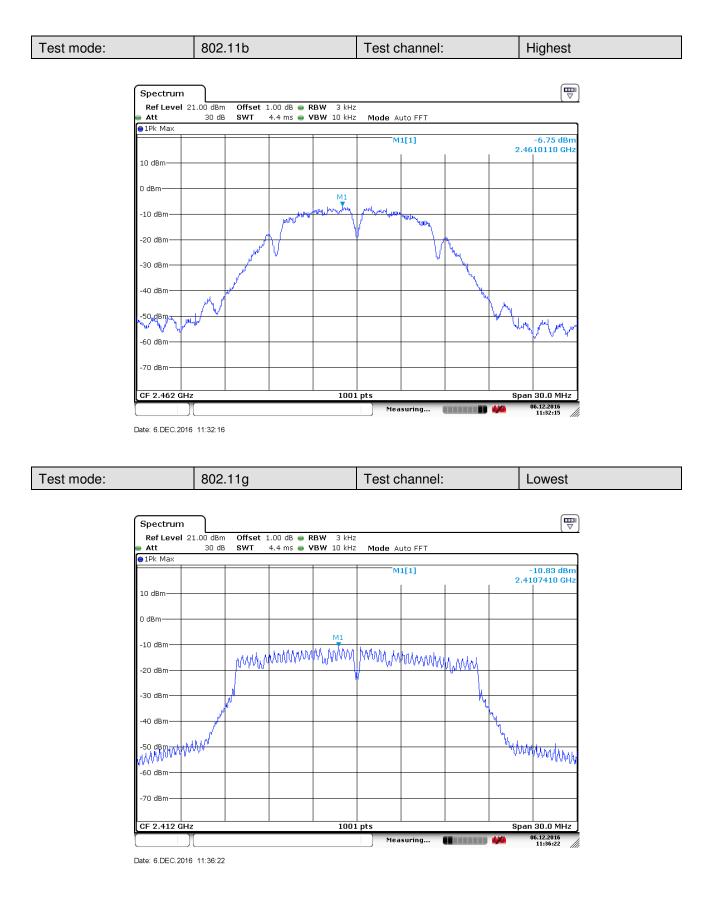
-13.93


Measurement Data

Highest

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161000916703 Page: 34 of 81



Date: 6.DEC.2016 11:34:40

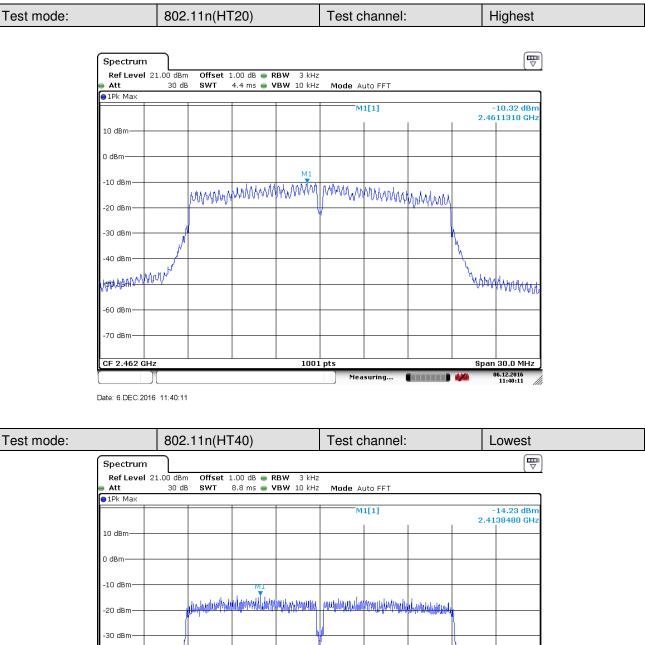
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161000916703 Page: 35 of 81

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.terms-en-Document.terms-and-Conditions.terms-en-Document.terms-en-Docume

Report No.: SZEM161000916703 Page: 36 of 81

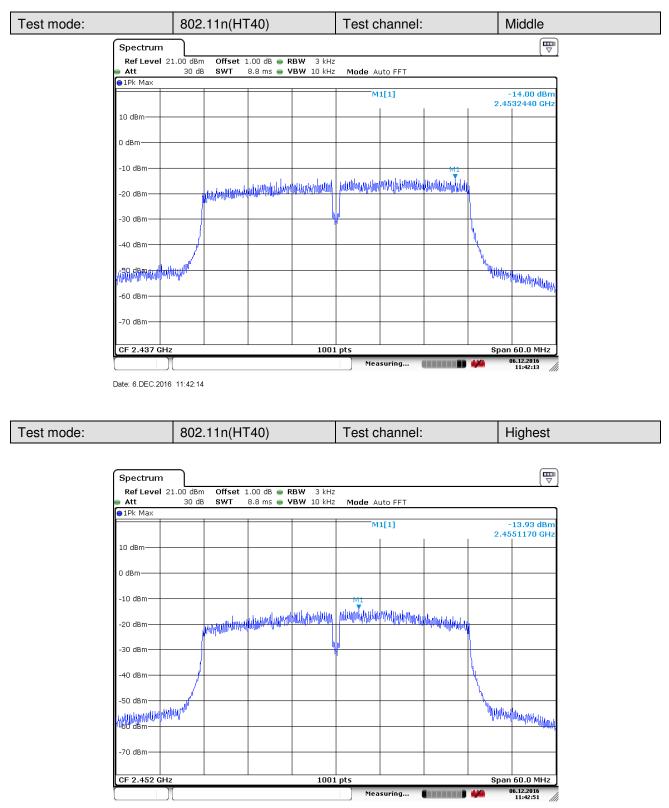
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.terms-en-Document.terms-and-Conditions.terms-en-Document.terms-en-Docume


Report No.: SZEM161000916703 Page: 37 of 81

Test mode:	802.11n(H	T20)	Test channel	:	Lowest	
	_					
Spectrum Ref Level	21.00 dBm Offset	1.00 dB 👄 RBW 3 kH;	:			
● Att ● 1Pk Max	30 dB SWT	4.4 ms 👄 VBW 10 kHz				
10 dBm			M1[1]	2	-11.22 dBm .4132590 GHz	
0 dBm			M1			
-20 dBm	MNMM	hannannan	philipping	Madalana		
-30 dBm			W. Internet in the second seco			
-40 dBm	ſ			h,		
	1ANAN L			h h	6.4m.	
-50 dBm y/// / ////////////////////////////////	4VY			V	whimme	
-70 dBm						
CF 2.412 GF		100	1 pts		oan 30.0 MHz	
)[100	Measuring	a ••••••••••••••••••••••••••••••••••••	06.12.2016 11:38:40	
	0 44-00-40					
Date: 6.DEC.201	16 11:38:40					
		T20)	Test shapped		Middlo	
Test mode:	802.11n(H	T20)	Test channel	l:	Middle	
		T20)	Test channel	l:	Middle	
Test mode: Spectrum Ref Level Att	802.11n(H	T20) 1.00 dB ● RBW 3 kHz 4.4 ms ● VBW 10 kHz	2	l:		
Test mode: Spectrum Ref Level	802.11n(H	1.00 dB 👄 RBW 3 kHz	2		-10.31 dBm	
Test mode: Spectrum Ref Level Att	802.11n(H	1.00 dB 👄 RBW 3 kHz	: 2 Mode Auto FFT			
Test mode: Spectrum Ref Level • Att • 1Pk Max	802.11n(H	1.00 dB 👄 RBW 3 kHz	Mode Auto FFT		-10.31 dBm	
Test mode: Spectrum Ref Level • Att • 10 dBm	802.11n(H	1.00 dB ● RBW 3 kH; 4.4 ms ● VBW 10 kH;	Mode Auto FFT	2	-10.31 dBm	
Test mode: Spectrum Ref Level • Att • 1Pk Max 10 dBm • 0 dBm	802.11n(H	1.00 dB 👄 RBW 3 kHz	Mode Auto FFT	2	-10.31 dBm	
Test mode: Spectrum Ref Level • Att • 10 dBm -10 dBm	802.11n(H	1.00 dB ● RBW 3 kH; 4.4 ms ● VBW 10 kH;	Mode Auto FFT	2	-10.31 dBm	
Test mode: Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	802.11n(H	1.00 dB ● RBW 3 kH; 4.4 ms ● VBW 10 kH;	Mode Auto FFT	2 Min Min Min Min Min Min Min Min Min Min	-10.31 dBm .4394880 GHz	
Test mode: Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm	802.11n(H	1.00 dB ● RBW 3 kH; 4.4 ms ● VBW 10 kH;	Mode Auto FFT	2 Min Min Min Min Min Min Min Min Min Min	-10.31 dBm	
Test mode: Spectrum Ref Level • Att • ID dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm -40 dBm -40 dBm	802.11n(H	1.00 dB ● RBW 3 kH; 4.4 ms ● VBW 10 kH;	Mode Auto FFT	2 Min Min Min Min Min Min Min Min Min Min	-10.31 dBm .4394880 GHz	
Test mode: Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm	802.11n(H	1.00 dB • RBW 3 kH; 4.4 ms • VBW 10 kH;	Mode Auto FFT	2 MmWWM N N N N N N N N N N N N N N N N N N	-10.31 dBm .4394880 GHz	

Date: 6.DEC.2016 11:39:21

Report No.: SZEM161000916703 Page: 38 of 81

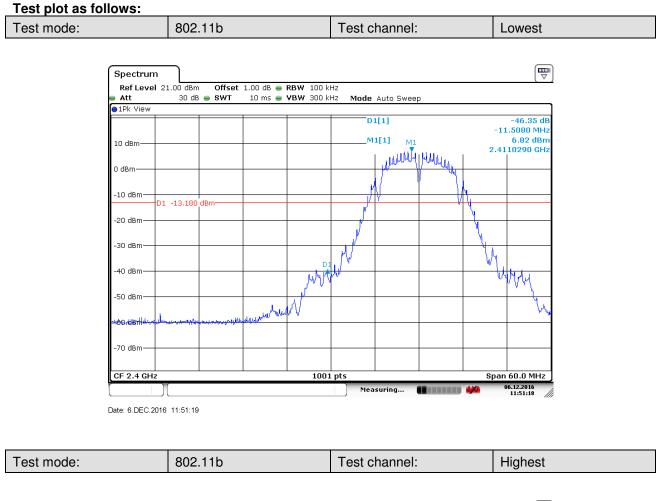


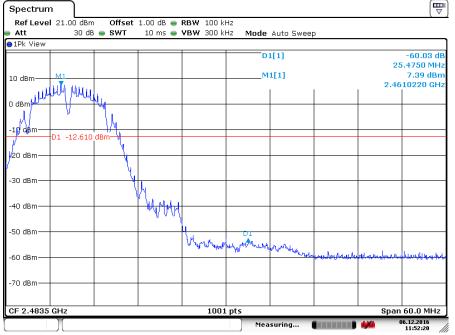
-30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -70 dBm -70

Date: 6.DEC.2016 11:41:13

Report No.: SZEM161000916703 Page: 39 of 81

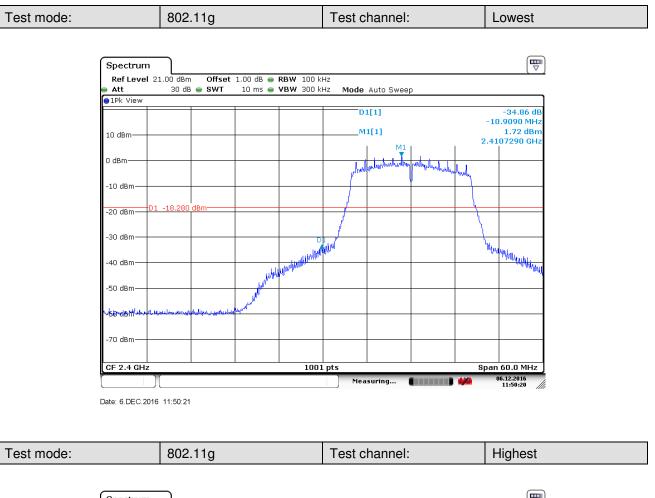
Date: 6.DEC.2016 11:42:51

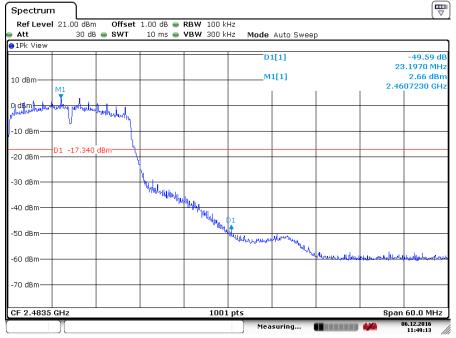

Report No.: SZEM161000916703 Page: 40 of 81


6.6 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)					
Test Method:	ANSI C63.10: 2013 Section 11.13					
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark:					
	Offset the High-Frequency cable loss 1dB in the spectrum analyzer.					
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates					
	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;					
Final Test Mode:	6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20) ; 13.5Mbps of rate is the worst case of 802.11n(HT40).					
	In any 100 kHz bandwidth outside the frequency band in which the spread					
	spectrum intentional radiator is operating, the radio frequency power that is					
Limit:	produced by the intentional radiator shall be at least 20 dB below that in the					
	100 kHz bandwidth within the band that contains the highest level of the					
	desired power, based on either an RF conducted or a radiated					
	measurement.					
Instruments Used:	Refer to section 5.10 for details					
Test Results:	Pass					

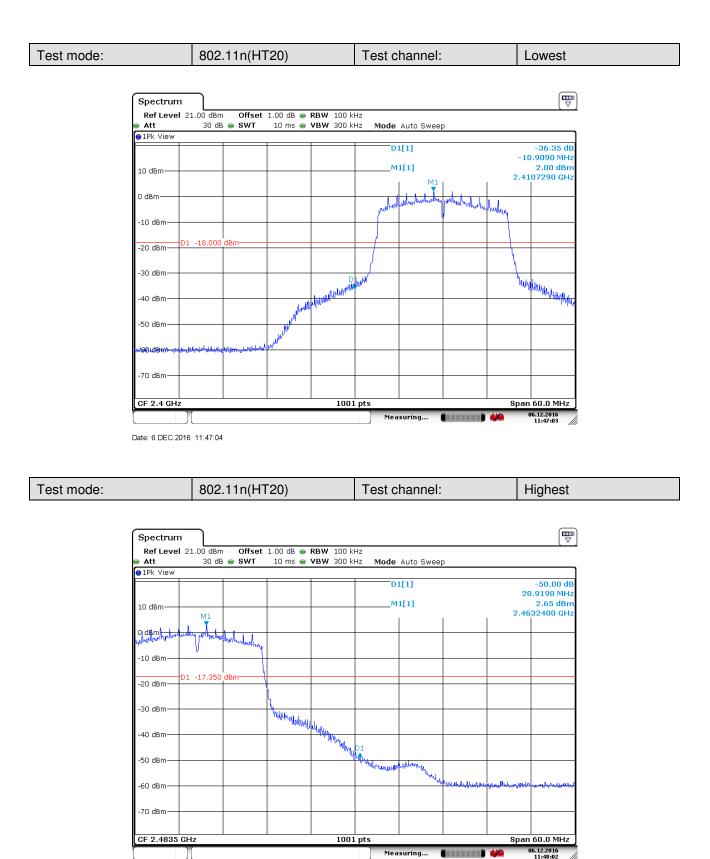
Report No.: SZEM161000916703 Page: 41 of 81





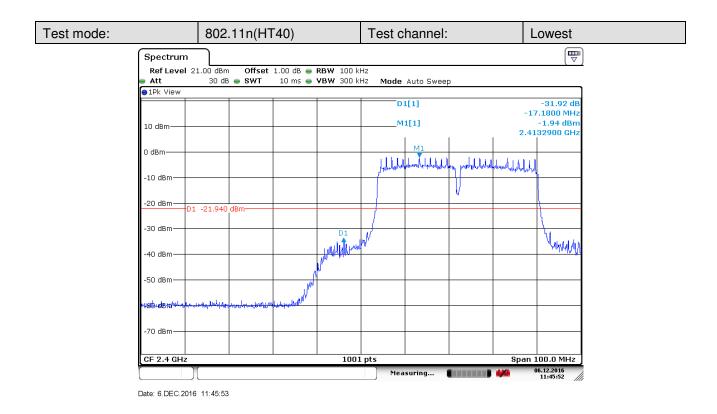
Date: 6.DEC.2016 11:52:20

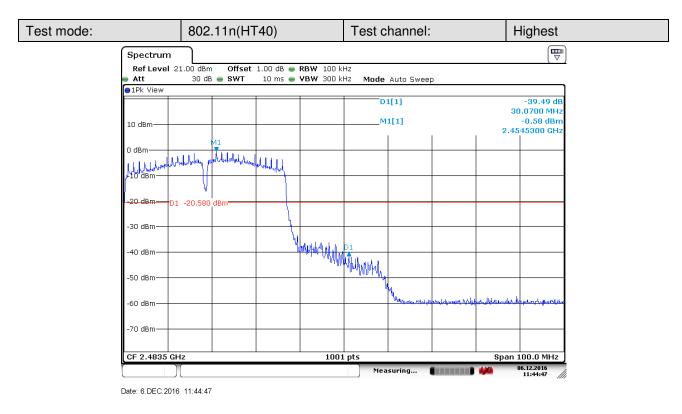
Report No.: SZEM161000916703 Page: 42 of 81



Date: 6.DEC.2016 11:49:14

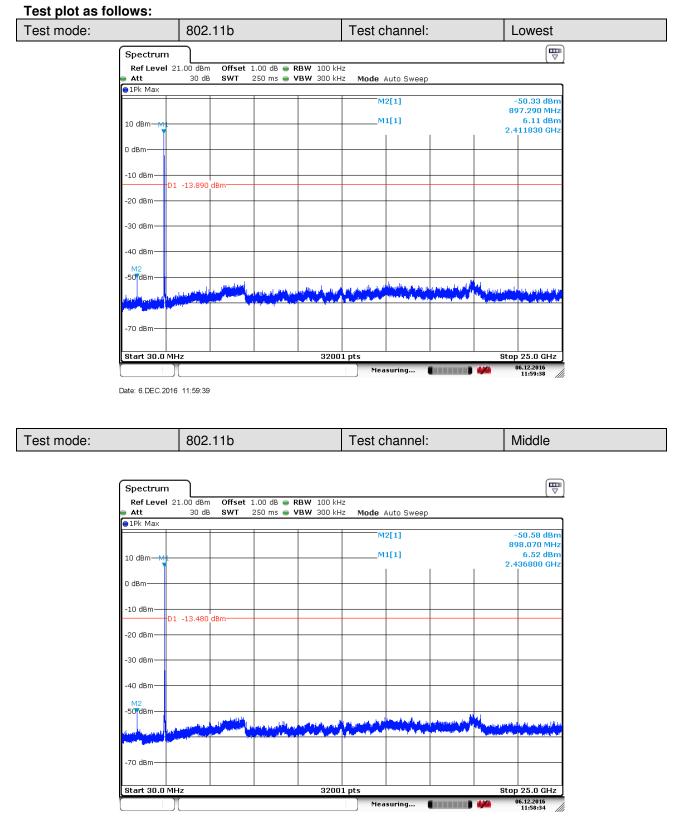
Report No.: SZEM161000916703 Page: 43 of 81




Date: 6.DEC.2016 11:48:02

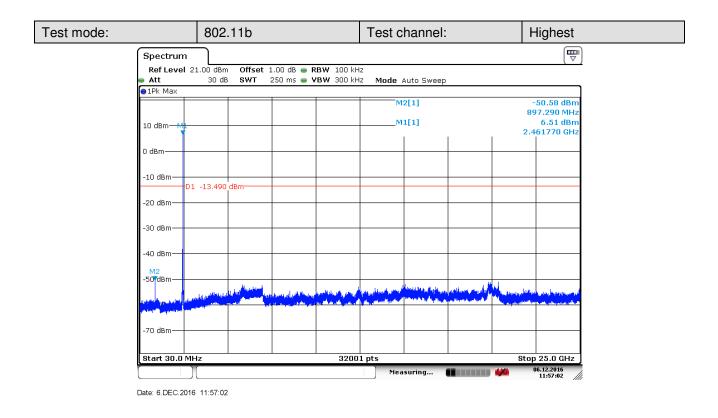
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-en-Document.aspx. Attention is drawn to the limitation only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161000916703 Page: 44 of 81


Report No.: SZEM161000916703 Page: 45 of 81

6.7 RF Conducted Spurious Emissions

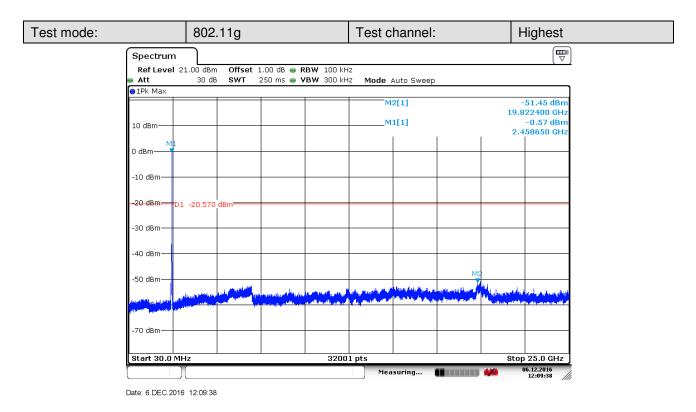
Test Requirement:	47 CFR Part 15C Section 15.247 (d)					
Test Method:	ANSI C63.10: 2013 Section 11.11					
Test Setup:	Spectrum Analyzer F.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1dB in the spectrum analyzer.					
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates					
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Instruments Used:	Refer to section 5.10 for details					
Test Results:	Pass					


Report No.: SZEM161000916703 Page: 46 of 81

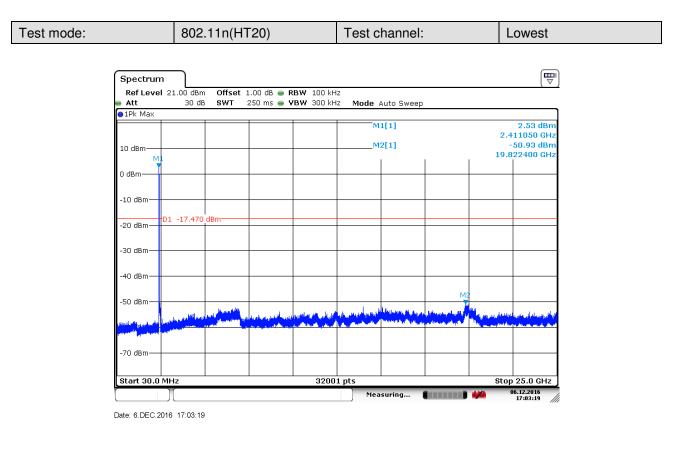
Date: 6.DEC.2016 11:58:35

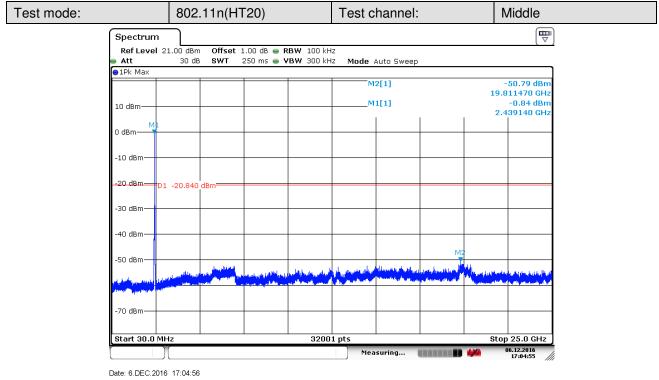
Report No.: SZEM161000916703 Page: 47 of 81

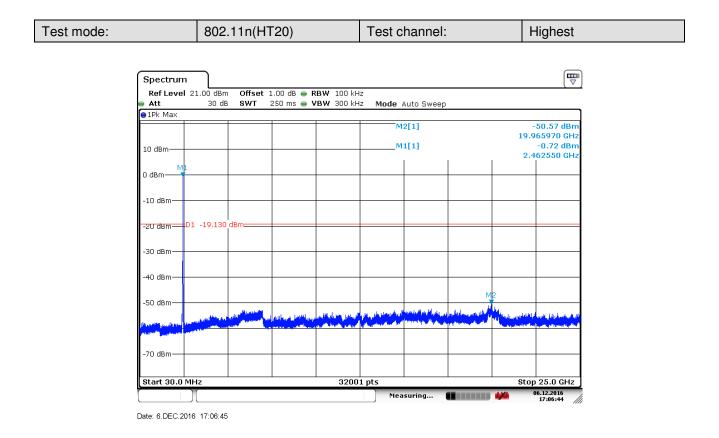
Test mode:	802.11g	Test channel:	Lowest
rootmodor	001119	r oot onamion	Lonool

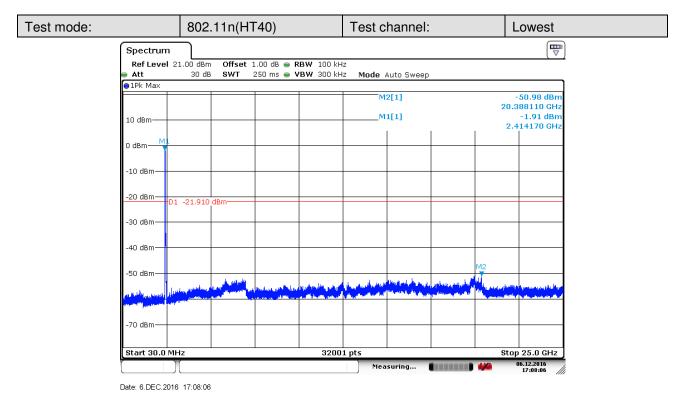

	l 21.00 dBm			RBW 100 kH					
Att 1Pk Max	30 dB	SWT	250 ms 👄 🕻	/BW 300 kH	z Mode /	Auto Sweep			
IPK Max					м	2[1]			-50.64 dBn 941000 GH
10 dBm					M	1[1]			-0.02 dBr 407930 GH
0 dBm	L								
-10 dBm									
- 20 dBm	D1 -20.020	dBm							
-30 dBm—-									
40 dBm—-									
-50 dBm—-							M	2	
and a particular			المرحلة المرجع والمرجع المرجع المرجع المرجع المرجع المرجع المرجع المرجع والمرجع والمرجع المرجع والمرجع المرجع محمد والمكاسم والمرجع والمرجع المرجع المرجع المرجع المرجع المرجع المرجع والمرجع والمرجع والمرجع المرجع والمرجع و				and the control of the second s		and a state of the second
70 dBm	-								
								Sto	

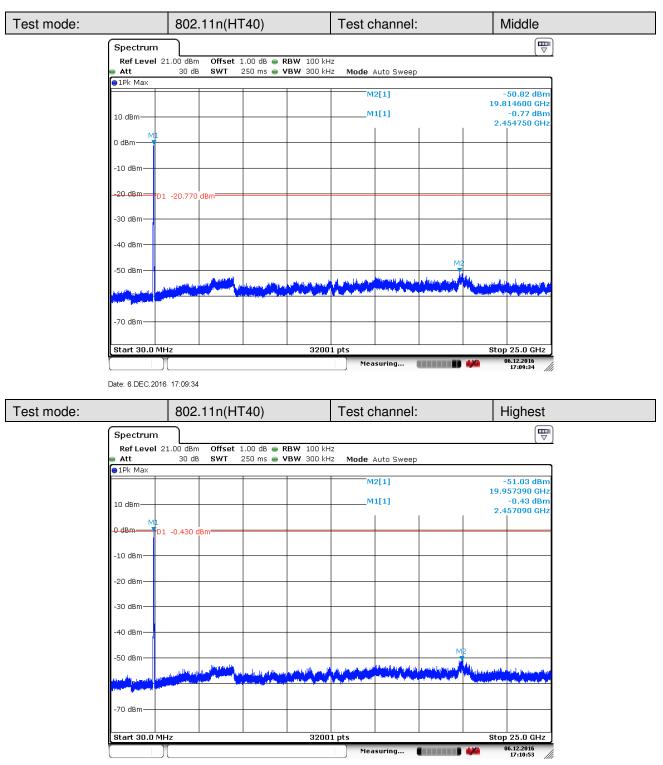
Date: 6.DEC.2016 12:00:51


Report No.: SZEM161000916703 Page: 48 of 81



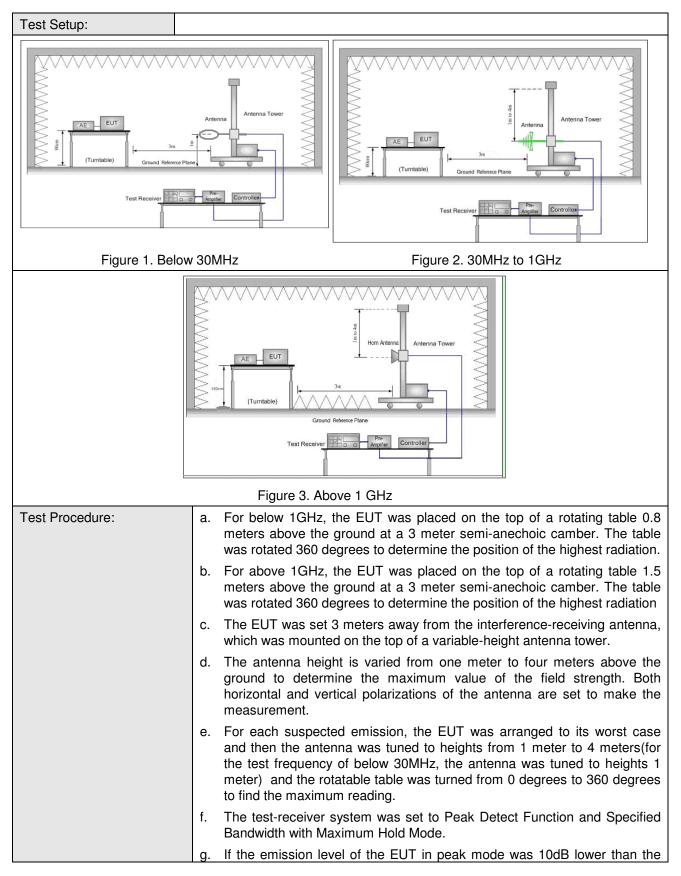

Report No.: SZEM161000916703 Page: 49 of 81




Report No.: SZEM161000916703 Page: 50 of 81

Report No.: SZEM161000916703 Page: 51 of 81

Date: 6.DEC.2016 17:10:53

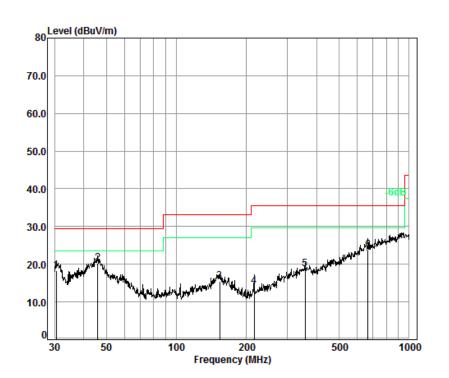

Report No.: SZEM161000916703 Page: 52 of 81

6.8 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10 :2013 Section 11.12								
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
	Frequency	Detector	RBW	VBW	Remark				
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak				
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average				
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
Receiver Setup:	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak				
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average				
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak				
	Above 1GHz	Peak	1MHz	3MHz	Peak				
	Above IGH2	Peak	1MHz	10Hz	Average				
	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)				
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300				
	0.490MHz-1.705MHz	24000/F(kHz)	-	_	30				
	1.705MHz-30MHz	30	-	-	30				
	30MHz-88MHz	100	40.0	Quasi-peak	3				
Limit:	88MHz-216MHz	150	43.5	Quasi-peak	3				
	216MHz-960MHz	200	46.0	Quasi-peak	3				
	960MHz-1GHz	500	54.0	Quasi-peak	3				
	Above 1GHz	500	54.0	Average	3				
	Note: 15.35(b), Unless ot	herwise specified,	the limit on p	eak radio fre	quency				
	emissions is 20dB above	the maximum peri	mitted averag	ge emission li	mit				
	applicable to the equipme	ent under test. This	peak limit a	pplies to the t	otal peak				
	emission level radia	ated by the device.							

Report No.: SZEM161000916703 Page: 53 of 81

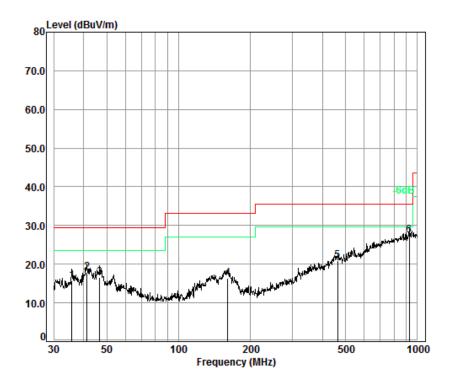
Report No.: SZEM161000916703 Page: 54 of 81


Test Results:	Pass
Instruments Used:	Refer to section 5.10 for details
	Only the worst case is recorded in the report.
	For below 1GHz, through Pre-scan, find the 1Mbps of rate of 802.11b at lowest channel is the worst case.
	of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40)
	6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case
	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;
Final Test Mode:	Pretest the EUT at Charge + Transmitting mode.
	Charge + Transmitting mode.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.
	j. Repeat above procedures until all frequencies measured was complete.
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
	h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
	limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Report No.: SZEM161000916703 Page: 55 of 81

6.8.1 Radiated emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Charge + Transmitting	Vertical


Condition: 10m VERTICAL Job No. : 9167RG Test Mode: b

	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 pp 3 4 5 6	30.53 46.02 153.74 216.02 357.93 665.80	6.82 7.47 7.68 8.29	12.87 13.40 9.91 14.02	32.97 32.99 32.74 32.68 32.60 32.60	33.62 27.36 29.32 28.98	20.32 15.49 14.23 18.69	29.50 33.10 35.60 35.60	-9.18 -17.61 -21.37 -16.91

Report No.: SZEM161000916703 Page: 56 of 81

Test mode:	Charge + Transmitting	Horizontal
root modo.	onargo i manomitang	rionzontal

Condition: 10m HORIZONTAL Job No. : 9167RG Test Mode: b

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	35,75	6 72	12 75	32.98	29 29	15 78	29 50	-13 72
2	41.42			32.99				
3	46.83			33.00				
4	160.35	7.50	13.36	32.73	28.26	16.39	33.10	-16.71
5	463.97	8.46	16.33	32.60	28.68	20.87	35.60	-14.73
6 pp	925.76	9.51	22.57	32.50	27.92	27.50	35.60	-8.10

Report No.: SZEM161000916703 Page: 57 of 81

Test mode:	802.1	1b	Test ch	annel:	Lowest	Remark		Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3759.672	32.95	7.73	38.59	44.39	46.48	74	-27.52	Vertical
4824.000	34.19	8.9	39.04	45.42	49.47	74	-24.53	Vertical
6060.637	34.75	10.48	38.96	44.46	50.73	74	-23.27	Vertical
7236.000	36.4	10.69	38.15	42.68	51.62	74	-22.38	Vertical
9648.000	37.53	12.52	36.97	39.89	52.97	74	-21.03	Vertical
12243.770	38.75	14.36	38.55	38.97	53.53	74	-20.47	Vertical
3858.877	33.22	7.76	38.64	45.17	47.51	74	-26.49	Horizontal
4824.000	34.19	8.9	39.04	45.58	49.63	74	-24.37	Horizontal
6034.386	34.73	10.52	38.98	44.75	51.02	74	-22.98	Horizontal
7236.000	36.4	10.69	38.15	43.58	52.52	74	-21.48	Horizontal
9648.000	37.53	12.52	36.97	40.54	53.62	74	-20.38	Horizontal
12731.570	38.85	14.81	39.04	38.28	52.90	74	-21.10	Horizontal

6.8.2 Transmitter emission above 1GHz

Test mode:	802.1	1b	Test ch	annel:	Middle	Remark	:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3966.435	33.51	7.8	38.69	44.53	47.15	74	-26.85	Vertical
4874.000	34.28	8.97	39.05	45.46	49.66	74	-24.34	Vertical
5939.103	34.66	10.39	39.01	44.78	50.82	74	-23.18	Vertical
7311.000	36.37	10.72	38.07	43.10	52.12	74	-21.88	Vertical
9748.000	37.55	12.58	36.92	39.68	52.89	74	-21.11	Vertical
12120.390	38.67	14.46	38.42	38.40	53.11	74	-20.89	Vertical
3836.607	33.16	7.75	38.63	43.89	46.17	74	-27.83	Horizontal
4874.000	34.28	8.97	39.05	46.19	50.39	74	-23.61	Horizontal
5956.314	34.67	10.44	39	45.04	51.15	74	-22.85	Horizontal
7311.000	36.37	10.72	38.07	44.00	53.02	74	-20.98	Horizontal
9748.000	37.55	12.58	36.92	40.55	53.76	74	-20.24	Horizontal
12243.770	38.75	14.36	38.55	39.00	53.56	74	-20.44	Horizontal

Report No.: SZEM161000916703 Page: 58 of 81

Test mode:	802.1	1b	Test ch	annel:	Highest	Remark	:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3842.163	33.18	7.76	38.63	44.75	47.06	74	-26.94	Vertical
4924.000	34.37	9.04	39.07	45.14	49.48	74	-24.52	Vertical
6034.386	34.73	10.52	38.98	44.68	50.95	74	-23.05	Vertical
7386.000	36.34	10.75	38	42.88	51.97	74	-22.03	Vertical
9848.000	37.57	12.63	36.87	39.13	52.46	74	-21.54	Vertical
12350.530	38.81	14.27	38.66	39.13	53.55	74	-20.45	Vertical
3847.726	33.19	7.76	38.63	44.30	46.62	74	-27.38	Horizontal
4924.000	34.37	9.04	39.07	44.79	49.13	74	-24.87	Horizontal
6157.871	34.83	10.36	38.9	44.61	50.90	74	-23.10	Horizontal
7386.000	36.34	10.75	38	43.42	52.51	74	-21.49	Horizontal
9848.000	37.57	12.63	36.87	39.85	53.18	74	-20.82	Horizontal
12386.320	38.83	14.24	38.7	38.54	52.91	74	-21.09	Horizontal

Test mode:	802.1	1g	Test ch	annel:	Lowest	Remark		Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3960.700	33.5	7.8	38.68	44.18	46.80	74	-27.20	Vertical
4824.000	34.19	8.9	39.04	44.50	48.55	74	-25.45	Vertical
6184.658	34.85	10.32	38.88	44.61	50.90	74	-23.1	Vertical
7236.000	36.4	10.69	38.15	43.33	52.27	74	-21.73	Vertical
9648.000	37.53	12.52	36.97	39.05	52.13	74	-21.87	Vertical
12494.320	38.9	14.15	38.8	38.55	52.80	74	-21.20	Vertical
3574.015	32.42	7.66	38.5	45.81	47.39	74	-26.61	Horizontal
4824.000	34.19	8.9	39.04	44.38	48.43	74	-25.57	Horizontal
5786.418	34.58	9.96	39.02	45.23	50.75	74	-23.25	Horizontal
7236.000	36.4	10.69	38.15	43.37	52.31	74	-21.69	Horizontal
9648.000	37.53	12.52	36.97	40.15	53.23	74	-20.77	Horizontal
12155.510	38.69	14.43	38.46	38.33	52.99	74	-21.01	Horizontal

Report No.: SZEM161000916703 Page: 59 of 81

Test mode:	802.1	1g	Test ch	annel:	Middle	Rem	ark:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/n	n) Over Limit (dB)	Polarization
3954.973	33.48	7.79	38.68	45.03	47.62	74	-26.38	Vertical
4874.000	34.28	8.97	39.05	45.67	49.87	74	-24.13	Vertical
6113.481	34.79	10.41	38.93	45.28	51.55	74	-22.45	Vertical
7311.000	36.37	10.72	38.07	43.79	52.81	74	-21.19	Vertical
9748.000	37.55	12.58	36.92	40.02	53.23	74	-20.77	Vertical
12173.120	38.71	14.42	38.48	38.77	53.42	74	-20.58	Vertical
3966.435	33.51	7.8	38.69	44.35	46.97	74	-27.03	Horizontal
4874.000	34.28	8.97	39.05	46.32	50.52	74	-23.48	Horizontal
5930.516	34.66	10.37	39.01	44.86	50.88	74	-23.12	Horizontal
7311.000	36.37	10.72	38.07	43.77	52.79	74	-21.21	Horizontal
9748.000	37.55	12.58	36.92	40.10	53.31	74	-20.69	Horizontal
12279.260	38.77	14.33	38.59	39.36	53.87	74	-20.13	Horizontal

Test mode:	802.1	1g	Test ch	annel:	Highest	Remark	(:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3831.060	33.15	7.75	38.62	45.43	47.71	74	-26.29	Vertical
4924.000	34.37	9.04	39.07	45.8	50.14	74	-23.86	Vertical
6104.642	34.79	10.42	38.93	44.98	51.26	74	-22.74	Vertical
7386.000	36.34	10.75	38	44.17	53.26	74	-20.74	Vertical
9848.000	37.57	12.63	36.87	39.96	53.29	74	-20.71	Vertical
12512.420	38.9	14.19	38.82	39.32	53.59	74	-20.41	Vertical
3825.521	33.13	7.75	38.62	45.33	47.59	74	-26.41	Horizontal
4924.000	34.37	9.04	39.07	46.17	50.51	74	-23.49	Horizontal
6069.413	34.76	10.47	38.96	46.00	52.27	74	-21.73	Horizontal
7386.000	36.34	10.75	38	44.17	53.26	74	-20.74	Horizontal
9848.000	37.57	12.63	36.87	40.08	53.41	74	-20.59	Horizontal
12458.220	38.88	14.18	38.77	38.50	52.79	74	-21.21	Horizontal

Report No.: SZEM161000916703 Page: 60 of 81

Test mode:	802.1	1n(HT20)	Test ch	annel:	Lowest	Remark	:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3972.178	33.53	7.8	38.69	45.22	47.86	74	-26.14	Vertical
4824.000	34.19	8.9	39.04	45.45	49.50	74	-24.50	Vertical
5947.702	34.67	10.42	39	45.46	51.55	74	-22.45	Vertical
7236.000	36.4	10.69	38.15	44.93	53.87	74	-20.13	Vertical
9648.000	37.53	12.52	36.97	40.58	53.66	74	-20.34	Vertical
12422.220	38.85	14.21	38.73	39.55	53.88	74	-20.12	Vertical
3610.398	32.53	7.67	38.52	45.51	47.19	74	-26.81	Horizontal
4824.000	34.19	8.9	39.04	46.14	50.19	74	-23.81	Horizontal
6104.642	34.79	10.42	38.93	45.48	51.76	74	-22.24	Horizontal
7236.000	36.4	10.69	38.15	43.79	52.73	74	-21.27	Horizontal
9648.000	37.53	12.52	36.97	40.22	53.30	74	-20.70	Horizontal
12226.070	38.74	14.37	38.53	38.44	53.02	74	-20.98	Horizontal

Test mode:	802.1	1g	Test ch	annel:	Middle	Remark	:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	.imit ⊭µV/m)	Over Limit (dB)	Polarization
3881.276	33.28	7.77	38.65	44.01	46.41	74	-27.59	Vertical
4874.000	34.28	8.97	39.05	45.59	49.79	74	-24.21	Vertical
6078.201	34.76	10.46	38.95	45.43	51.70	74	-22.30	Vertical
7311.000	36.37	10.72	38.07	43.35	52.37	74	-21.63	Vertical
9748.000	37.55	12.58	36.92	39.69	52.90	74	-21.10	Vertical
12621.510	38.88	14.5	38.93	39.37	53.82	74	-20.18	Vertical
3610.398	32.53	7.67	38.52	45.51	47.19	74	-26.81	Horizontal
4874.000	34.28	8.97	39.05	46.13	50.33	74	-23.67	Horizontal
6104.642	34.79	10.42	38.93	45.48	51.76	74	-22.24	Horizontal
7311.000	36.37	10.72	38.07	43.76	52.78	74	-21.22	Horizontal
9748.000	37.55	12.58	36.92	40.21	53.42	74	-20.58	Horizontal
12621.510	38.88	14.5	38.93	39.11	53.56	74	-20.44	Horizontal

Report No.: SZEM161000916703 Page: 61 of 81

Test mode:	802.1	1n(HT20)	Test ch	annel:	Highest	Remark		Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3853.298	33.21	7.76	38.64	45.52	47.85	74	-26.15	Vertical
4924.000	34.37	9.04	39.07	45.01	49.35	74	-24.65	Vertical
5973.576	34.68	10.49	39	44.66	50.83	74	-23.17	Vertical
7386.000	36.34	10.75	38	44.13	53.22	74	-20.78	Vertical
9848.000	37.57	12.63	36.87	39.83	53.16	74	-20.84	Vertical
12386.320	38.83	14.24	38.7	39.22	53.59	74	-20.41	Vertical
3949.255	33.47	7.79	38.68	44.86	47.44	74	-26.56	Horizontal
4924.000	34.37	9.04	39.07	46.01	50.35	74	-23.65	Horizontal
6060.637	34.75	10.48	38.96	44.57	50.84	74	-23.16	Horizontal
7386.000	36.34	10.75	38	44.06	53.15	74	-20.85	Horizontal
9848.000	37.57	12.63	36.87	39.78	53.11	74	-20.89	Horizontal
12694.780	38.86	14.7	39	39.17	53.73	74	-20.27	Horizontal

Test mode:	802.1	1n(HT40)	Test ch	annel:	Lowest	Remark	:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3836.607	33.16	7.75	38.63	45.96	48.24	74	-25.76	Vertical
4844.000	34.23	8.92	39.04	46.16	50.27	74	-23.73	Vertical
5947.702	34.67	10.42	39	45.42	51.51	74	-22.49	Vertical
7266.000	36.39	10.7	38.12	44.72	53.69	74	-20.31	Vertical
9688.000	37.54	12.54	36.95	40.75	53.88	74	-20.12	Vertical
12676.420	38.86	14.65	38.99	39.36	53.88	74	-20.12	Vertical
3909.457	33.36	7.78	38.66	45.51	47.99	74	-26.01	Horizontal
4844.000	34.23	8.92	39.04	46.29	50.40	74	-23.60	Horizontal
6016.949	34.71	10.54	38.99	44.66	50.92	74	-23.08	Horizontal
7266.000	36.39	10.7	38.12	43.81	52.78	74	-21.22	Horizontal
9688.000	37.54	12.54	36.95	39.77	52.90	74	-21.10	Horizontal
12386.32	38.83	14.24	38.7	39.18	53.55	74	-20.45	Horizontal

Report No.: SZEM161000916703 Page: 62 of 81

Test mode:	802.1	1n(HT40)	Test ch	annel:	Middle	Remark		Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3836.607	33.16	7.75	38.63	45.96	48.24	74	-25.76	Vertical
4874.000	34.28	8.97	39.05	46.25	50.45	74	-23.55	Vertical
5947.702	34.67	10.42	39	45.42	51.51	74	-22.49	Vertical
7311.000	36.37	10.72	38.07	44.09	53.11	74	-20.89	Vertical
9748.000	37.55	12.58	36.92	39.74	52.95	74	-21.05	Vertical
12676.42	38.86	14.65	38.99	39.36	53.88	74	-20.12	Vertical
3808.951	33.09	7.74	38.61	44.67	46.89	74	-27.11	Horizontal
4874.000	34.28	8.97	39.05	45.42	49.62	74	-24.38	Horizontal
6051.874	34.74	10.49	38.97	44.95	51.21	74	-22.79	Horizontal
7311.000	36.37	10.72	38.07	44.10	53.12	74	-20.88	Horizontal
9748.000	37.55	12.58	36.92	40.56	53.77	74	-20.23	Horizontal
12332.670	38.8	14.29	38.64	38.91	53.36	74	-20.64	Horizontal

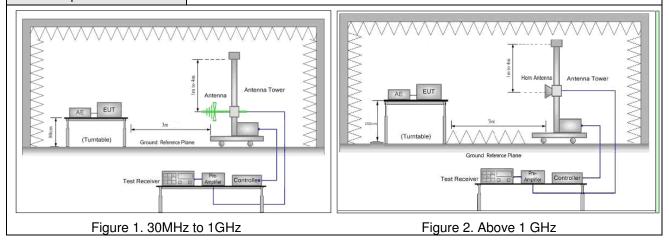
Test mode:		802.1	1n(HT40)	Test ch	annel:	Highest	Remark	:	Peak
Frequency (MHz)	fact	enna tors 8/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit BµV/m)	Over Limit (dB)	Polarization
3792.453	33.	.04	7.74	38.61	45.65	47.82	74	-26.18	Vertical
4904.000	34.	.33	9.01	39.07	45.81	50.08	74	-23.92	Vertical
5845.324	34.	.61	10.13	39.01	45.08	50.81	74	-23.19	Vertical
7356.000	36.	.36	10.74	38.03	44.05	53.12	74	-20.88	Vertical
9808.000	37.	.56	12.61	36.89	39.44	52.72	74	-21.28	Vertical
12314.840	38.	.79	14.3	38.62	39.11	53.58	74	-20.42	Vertical
3781.495	33.	.01	7.73	38.6	45.09	47.23	74	-26.77	Horizontal
4904.000	34.	.33	9.01	39.07	45.23	49.50	74	-24.50	Horizontal
5921.94	34.	.65	10.34	39.01	45.70	51.68	74	-22.32	Horizontal
7356.000	36.	.36	10.74	38.03	44.25	53.32	74	-20.68	Horizontal
9808.000	37.	.56	12.61	36.89	40.11	53.39	74	-20.61	Horizontal
12085.370	38.	.65	14.49	38.39	38.78	53.53	74	-20.47	Horizontal

Report No.: SZEM161000916703 Page: 63 of 81

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

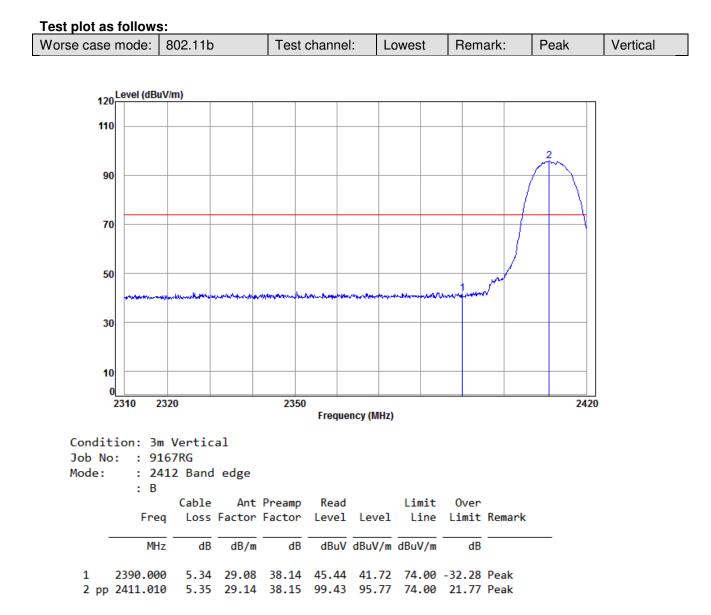
Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor


- 2) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Report No.: SZEM161000916703 Page: 64 of 81

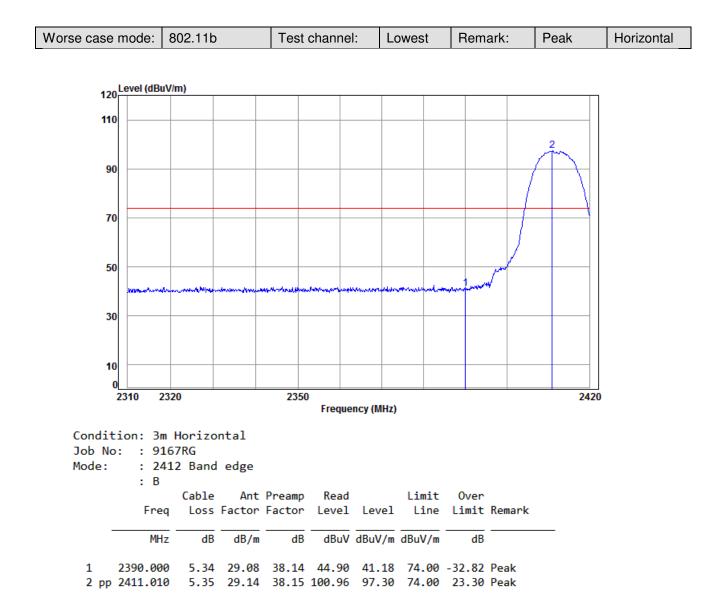
6.9 Restricted bands around fundamental frequency

Toot Poquiromont:	47 CEP Part 15C Section	47 CFR Part 15C Section 15.209 and 15.205								
Test Requirement:										
Test Method:	ANSI C63.10: 2013 Section	ANSI C63.10: 2013 Section 11.12								
Test Site:	Measurement Distance: 3r	Measurement Distance: 3m (Semi-Anechoic Chamber)								
	Frequency	Limit (dBuV/m @3m)	Remark							
	30MHz-88MHz	40.0	Quasi-peak Value							
	88MHz-216MHz	43.5	Quasi-peak Value							
Limit:	216MHz-960MHz	46.0	Quasi-peak Value							
	960MHz-1GHz	54.0	Quasi-peak Value							
	Above 1GHz	54.0 Average Valu								
		74.0 Peak Value								
Test Setup:										

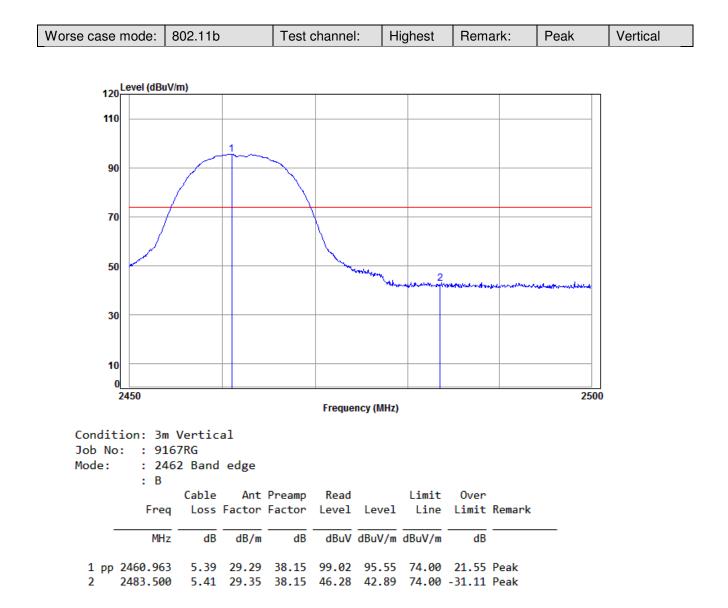


Report No.: SZEM161000916703 Page: 65 of 81

	a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
Test Procedure:	e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
	h. Test the EUT in the lowest channel , the Highest channel
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode,And found the X axis positioning which it is worse case.
	j. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.
	Charge + Transmitting mode.
	Pretest the EUT at Charge +Transmitting mode.
	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;
Final Test Mode:	6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of $802.11n(HT20)$; 13.5Mbps of rate is the worst case of $802.11n(HT40)$.
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

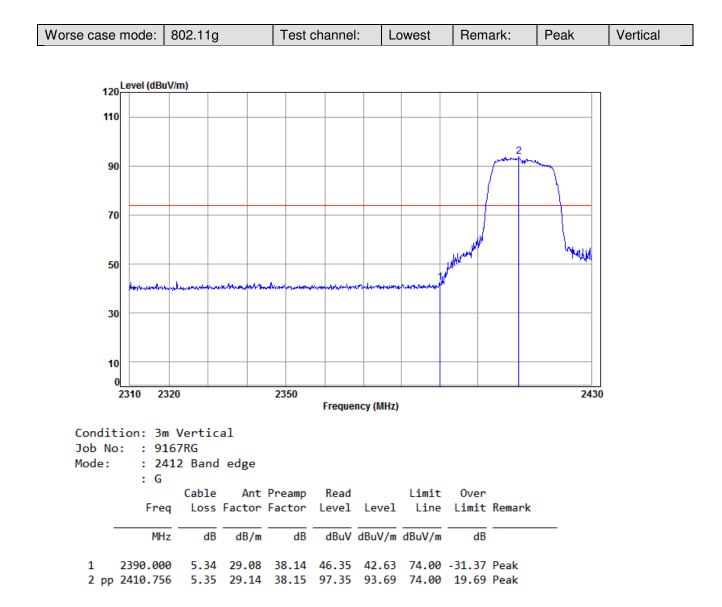


Report No.: SZEM161000916703 Page: 66 of 81



Report No.: SZEM161000916703 Page: 67 of 81

Report No.: SZEM161000916703 Page: 68 of 81

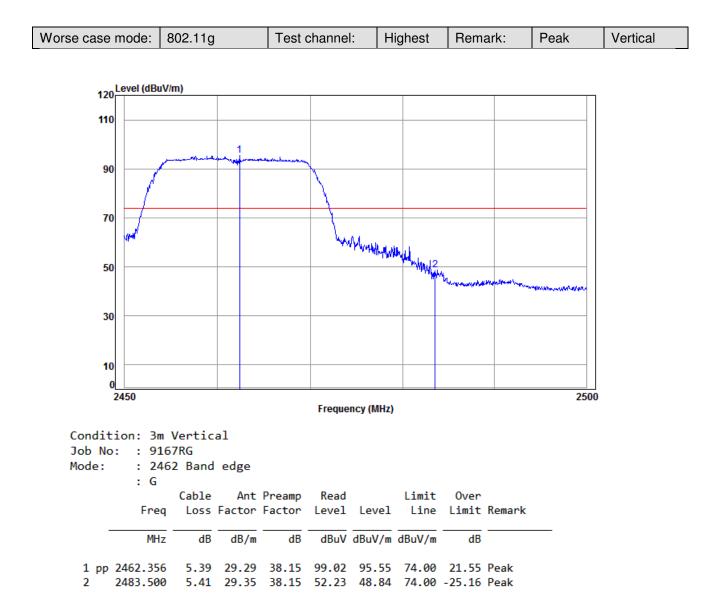


Report No.: SZEM161000916703 Page: 69 of 81

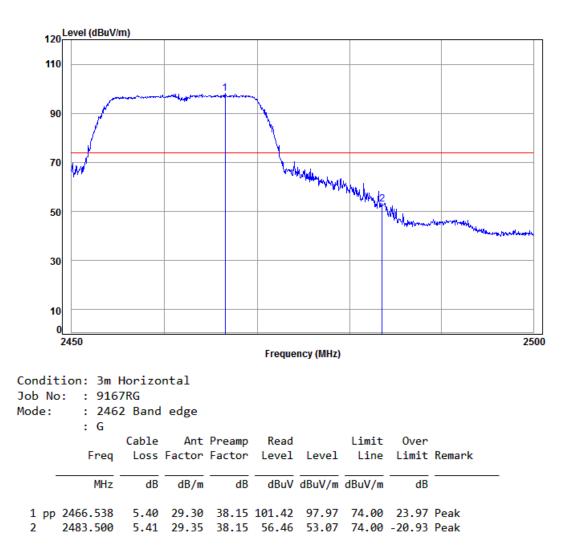
Worse case mode:	802.11b	Test	channel:	Hig	ghest	Rem	ark:	Peak	Horizontal
120 Level (dB	uV/m)								
110									
		-							
90		+							
70									
			- war	m					
50				A.M.	2	and weble	have the same		

30									
10									
0									
2450			Frequence	cy (MHz)				2500	
Condition: 3	m Horizonta	al							
Job No: : 9	167RG								
	462 Band eo	dge							
: B	Cable	Ant Preamp	Read		Limit	0ver			
Fre	eq Loss Fa	ctor Factor	Level	Level	Line	Limit	Remark		
M	lz dB	dB/m dB	dBuV d	BuV/m	dBuV/m	dB			
1 pp 2463.05		9.29 38.15							
2 2483.56	00 5.41 2	9.35 38.15	46.94	43.55	74.00	-30.45	Peak		

Report No.: SZEM161000916703 Page: 70 of 81

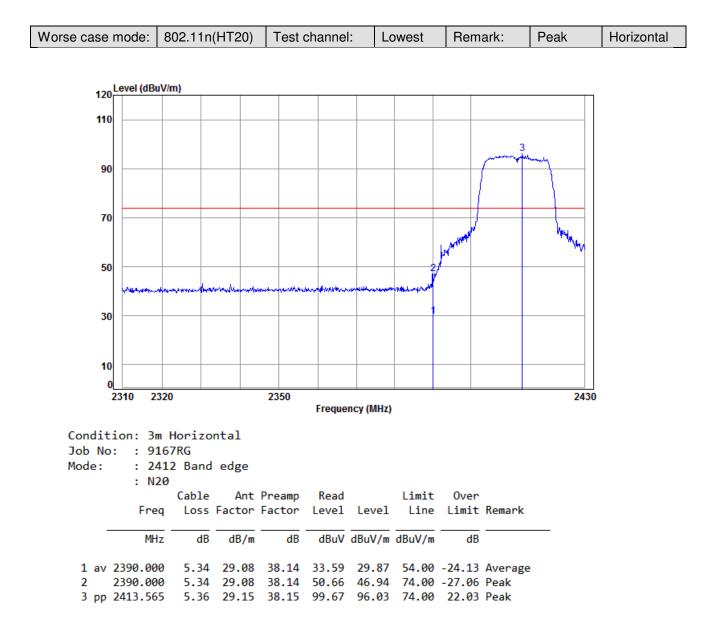

Report No.: SZEM161000916703 Page: 71 of 81

Worse case mode: 802.11g	Test channel:	Lowest	Remark:	Peak	Horizontal
--------------------------	---------------	--------	---------	------	------------


Report No.: SZEM161000916703 Page: 72 of 81

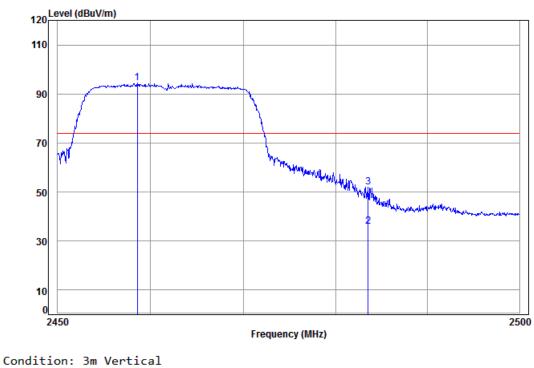
Report No.: SZEM161000916703 Page: 73 of 81

Worse case mode: 802.11g	Test channel:	Highest	Remark:	Peak	Horizontal
--------------------------	---------------	---------	---------	------	------------



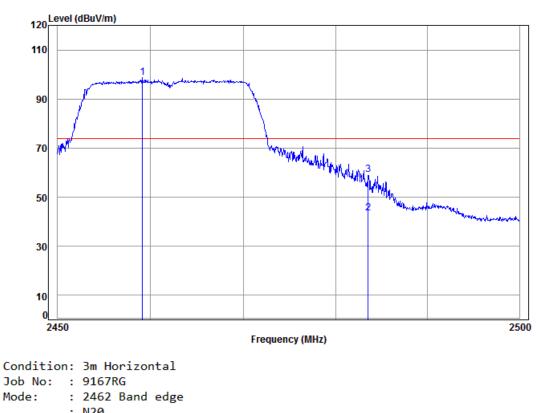
Report No.: SZEM161000916703 Page: 74 of 81

Worse case	mode	: 8	02.11r	n(HT20)	Test	channe	l: L	owest	Rem	nark:	Peak	Vertical
<u> </u>												
	Level (d	RuV/r	m)									
120			,									
110)											
											. I	
90												
70												
										·		
									and the state of t		WY WWW	
50								2				
		why days a	KANGA ANG ANG	an a	Announce	monten	and the second second second	**************************************				
30) —											
10												
(2310	2320)		2350						2430	
						Freque	ency (MHz					
Condit	ion:	3m \	Vertio	al								
Job No												
Mode:			2 Band	d edge								
	:	N20	Cable	Ant	Preamp	Read		Limit	0ver			
	F	req								Remark		
-												
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	3		
1 av	2390.	000	5.34	29.08	38.14	31.49	27.77	54.00	-26.23	Average		
2	2390.	000	5.34	29.08	38.14	47.46	43.74	74.00	-30.26	Peak		
3 рр	2411.	244	5.35	29.14	38.15	97.42	93.76	74.00	19.76	Peak		


Report No.: SZEM161000916703 Page: 75 of 81

Report No.: SZEM161000916703 Page: 76 of 81

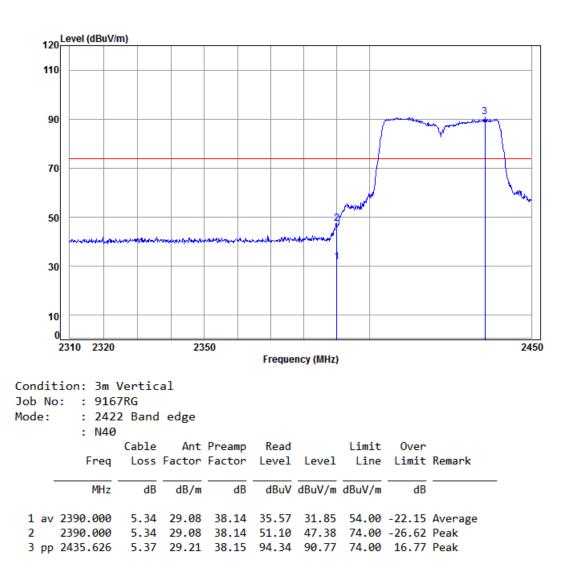
Worse case mode: 802.11n(HT20)	Test channel:	Highest	Remark:	Peak	Vertical
--------------------------------	---------------	---------	---------	------	----------



CONGIN			u 1						
Job No	o: : 916	7RG							
Mode:	: 246	2 Band	edge						
	: N20								
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp	2458.578	5.39	29.28	38.15	97.96	94.48	74.00	20.48	Peak
2 av	2483.500	5.41	29.35	38.15	39.30	35.91	54.00	-18.09	Average
3	2483.500	5.41	29.35	38.15	55.52	52.13	74.00	-21.87	Peak

Report No.: SZEM161000916703 Page: 77 of 81

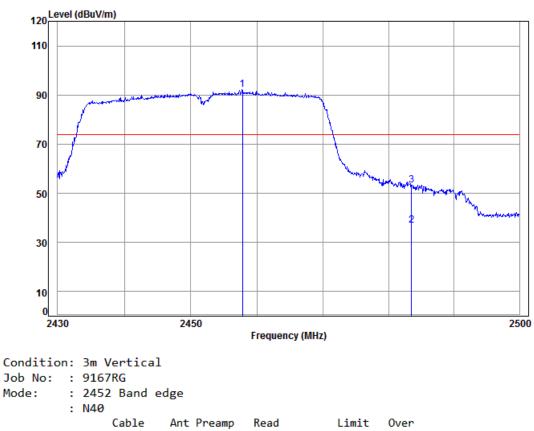
Worse case mode:	802.11n(HT20)	Test channel:	Highest	Remark:	Peak	Horizontal



Freq					Level			Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp 2459.124 2 av 2483.500 3 2483.500	5.41	29.35	38.15	46.80	43.41	54.00	-10.59	Average

Report No.: SZEM161000916703 Page: 78 of 81

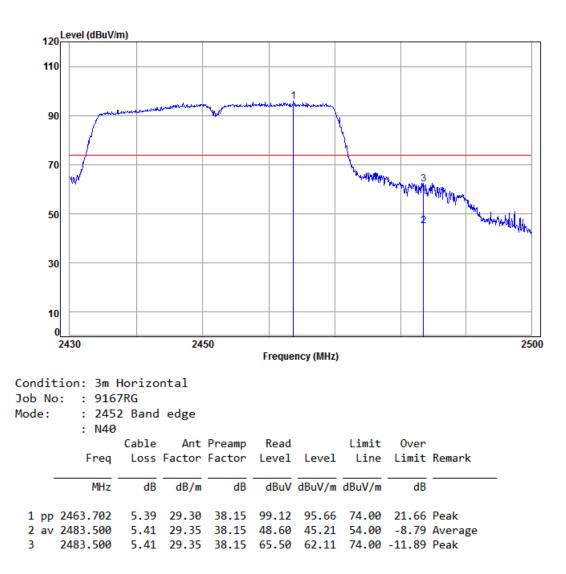
Worse case mode:	802.11n(HT40)	Test channel:	Lowest	Remark:	Peak	Vertical


Report No.: SZEM161000916703 Page: 79 of 81

Worse case mode:	802.11n(HT40)	Test c	hannel	: Lo	owest	Rem	ark:	Peak	Horizontal
120 Level (dB	uV/m)									
120										
110										
90							angune,	any personale	atring	
						1	'	•		
70						1			hin	
						Sund			100 M	
50					1 Au	ř –				
No. Amara and	A	wanter	anter and an	en surger and the	Words My					
30										
50										
10										
0 2310 23	20	235	50						2450	
2510 25	20	233		Freque	ncy (MHz)				2430	
Condition: 3	m Horizon	tal								
	167RG									
Mode: : 2	422 Band	edge								
: N		At -1	D	Deed			0			
Fre	Cable		Preamp Factor	Read		Limit		Romank		
	-y 2055	actor	actor	LEVEL	LEVEL	LTHE	CIMIC	Nemai N		
MH	lz dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			
1 av 2390.00	00 5.34	29.08	38.14	38.29	34.57	54.00	-19.43	Average		
2 2390.00					50.72		-23.28	_		
3 pp 2409.39	9 5.35	29.14	38.15	96.86	93.20	74.00	19.20	Peak		

Report No.: SZEM161000916703 Page: 80 of 81

Worse case mode:	802.11n(HT40)	Test channel:	Highest	Remark:	Peak	Vertical



Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp 2457.762 2 av 2483.500 3 2483.500	5.41	29.35	38.15	40.20	36.81	54.00	-17.19	Average

Report No.: SZEM161000916703 Page: 81 of 81

Worse case mode: 802.1	1n(HT40) Test channel:	Highest	Remark:	Peak	Horizontal
------------------------	------------------------	---------	---------	------	------------

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

7 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1610009167RG.