

Report No.: SZEM161201075001 Page: 1 of 134

Appendix B

Test Data for SZEM161201075001RG

Report No.: SZEM161201075001 Page: 2 of 134

CONTENT

1	EFFECTIVE (ISOTROPIC) RADIATED POWER OUTPUT DATA	3
2	PEAK-TO-AVERAGE RATIO	11
	2.1 For LTE	12
	2.1.1 Test Band = LTE band7	12
3	MODULATION CHARACTERISTICS	18
	3.1 For LTE	18
	3.1.1 Test Band = LTE band7	18
4	BANDWIDTH	26
	4.1 For LTE	27
	4.1.1 Test Band = LTE band7	27
5	BAND EDGES COMPLIANCE	51
	5.1 For LTE	51
	5.1.1 Test Band = LTE band7	51
6	SPURIOUS EMISSION AT ANTENNA TERMINAL	83
	6.1 For LTE	83
	6.1.1 Test Band = LTE band7	83
7	FIELD STRENGTH OF SPURIOUS RADIATION	. 131
	7.1 For LTE	. 131
	7.1.1 Test Band = LTE band7	. 131
8	FREQUENCY STABILITY	. 132
	8.1 FREQUENCY ERROR VS. VOLTAGE	. 132
	8.2 FREQUENCY ERROR VS. TEMPERATURE	. 133

Report No.: SZEM161201075001 Page: 3 of 134

1 Effective (Isotropic) Radiated Power Output Data

Effective Isotropic Radiated Power of Transmitter (EIRP) for LTE BAND 7

Test Band(LTE)	Test Mode	c Radiated Po Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	23.57	24.06	33.00	PASS
				RB1#13	23.55	24.04	33.00	PASS
				RB1#24	23.70	24.19	33.00	PASS
			LCH	RB12#0	22.62	23.11	33.00	PASS
				RB12#6	23.70	24.19	33.00	PASS
				RB12#13	22.64	23.13	33.00	PASS
				RB25#0	23.70	24.19	33.00	PASS
		Л1 5M		RB1#0	23.61	24.10	33.00	PASS
				RB1#13	23.50	23.99	33.00	PASS
			MCH	RB1#24	23.69	24.18	33.00	PASS
BAND7	LTE/TM1			RB12#0	22.63	23.12	33.00	PASS
				RB12#6	23.69	24.18	33.00	PASS
				RB12#13	22.49	22.98	33.00	PASS
				RB25#0	23.69	24.18	33.00	PASS
				RB1#0	23.32	23.81	33.00	PASS
				RB1#13	23.30	23.79	33.00	PASS
				RB1#24	23.31	23.80	33.00	PASS
			НСН	RB12#0	22.23	22.72	33.00	PASS
				RB12#6	23.31	23.80	33.00	PASS
				RB12#13	22.30	22.79	33.00	PASS
				RB25#0	23.31	23.80	33.00	PASS

Report No.: SZEM161201075001 Page: 4 of 134

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	22.84	23.33	33.00	PASS
				RB1#13	23.70	24.19	33.00	PASS
				RB1#24	23.04	23.53	33.00	PASS
			LCH	RB12#0	23.70	24.19	33.00	PASS
				RB12#6	21.65	22.14	33.00	PASS
				RB12#13	23.70	24.19	33.00	PASS
				RB25#0	21.55	22.04	33.00	PASS
		5M		RB1#0	22.98	23.47	33.00	PASS
				RB1#13	23.69	24.18	33.00	PASS
			МСН	RB1#24	22.6	23.09	33.00	PASS
BAND7	LTE/TM2			RB12#0	23.69	24.18	33.00	PASS
				RB12#6	21.46	21.95	33.00	PASS
				RB12#13	23.69	24.18	33.00	PASS
				RB25#0	21.49	21.98	33.00	PASS
				RB1#0	22.78	23.27	33.00	PASS
				RB1#13	23.31	23.80	33.00	PASS
				RB1#24	22.58	23.07	33.00	PASS
			НСН	RB12#0	23.31	23.80	33.00	PASS
				RB12#6	21.22	21.71	33.00	PASS
				RB12#13	23.31	23.80	33.00	PASS
				RB25#0	21.18	21.67	33.00	PASS

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms_and_conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms_e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM161201075001 Page: 5 of 134

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	23.61	24.10	33.00	PASS
				RB1#25	23.59	24.08	33.00	PASS
				RB1#49	23.70	24.19	33.00	PASS
			LCH	RB25#0	22.64	23.13	33.00	PASS
				RB25#13	23.70	24.19	33.00	PASS
				RB25#25	22.66	23.15	33.00	PASS
				RB50#0	23.70	24.19	33.00	PASS
		10M		RB1#0	23.64	24.13	33.00	PASS
				RB1#25	23.53	24.02	33.00	PASS
			МСН	RB1#49	23.69	24.18	33.00	PASS
BAND7	LTE/TM1			RB25#0	22.66	23.15	33.00	PASS
				RB25#13	23.69	24.18	33.00	PASS
				RB25#25	22.52	23.01	33.00	PASS
				RB50#0	23.69	24.18	33.00	PASS
				RB1#0	23.27	23.76	33.00	PASS
				RB1#25	23.32	23.81	33.00	PASS
				RB1#49	23.31	23.80	33.00	PASS
			НСН	RB25#0	22.27	22.76	33.00	PASS
				RB25#13	23.31	23.80	33.00	PASS
				RB25#25	22.32	22.81	33.00	PASS
				RB50#0	23.31	23.80	33.00	PASS

Report No.: SZEM161201075001 Page: 6 of 134

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	22.84	23.33	33.00	PASS
				RB1#25	23.70	24.19	33.00	PASS
				RB1#49	23.08	23.57	33.00	PASS
			LCH	RB25#0	23.70	24.19	33.00	PASS
				RB25#13	21.66	22.15	33.00	PASS
				RB25#25	23.70	24.19	33.00	PASS
				RB50#0	21.57	22.06	33.00	PASS
				RB1#0	23.00	23.49	33.00	PASS
		2 10M		RB1#25	23.69	24.18	33.00	PASS
			MCH	RB1#49	22.63	23.12	33.00	PASS
BAND7	LTE/TM2			RB25#0	23.69	24.18	33.00	PASS
				RB25#13	21.49	21.98	33.00	PASS
				RB25#25	23.69	24.18	33.00	PASS
				RB50#0	21.54	22.03	33.00	PASS
				RB1#0	22.81	23.30	33.00	PASS
				RB1#25	23.31	23.80	33.00	PASS
				RB1#49	22.61	23.10	33.00	PASS
			НСН	RB25#0	23.31	23.80	33.00	PASS
				RB25#13	21.26	21.75	33.00	PASS
				RB25#25	23.31	23.80	33.00	PASS
				RB50#0	21.19	21.68	33.00	PASS

Report No.: SZEM161201075001 Page: 7 of 134

r	-		-	1	Page:	7 of 13	94	
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	23.70	24.19	33.00	PASS
				RB1#38	23.63	24.12	33.00	PASS
				RB1#74	23.70	24.19	33.00	PASS
			LCH	RB36#0	22.67	23.16	33.00	PASS
				RB36#18	23.70	24.19	33.00	PASS
				RB36#39	22.69	23.18	33.00	PASS
				RB75#0	23.70	24.19	33.00	PASS
				RB1#0	23.69	24.18	33.00	PASS
				RB1#38	23.57	24.06	33.00	PASS
			МСН	RB1#74	23.69	24.18	33.00	PASS
BAND7	LTE/TM1	FE/TM1 15M		RB36#0	22.67	23.16	33.00	PASS
				RB36#18	23.69	24.18	33.00	PASS
				RB36#39	22.56	23.05	33.00	PASS
				RB75#0	23.69	24.18	33.00	PASS
				RB1#0	23.31	23.80	33.00	PASS
				RB1#38	23.33	23.82	33.00	PASS
				RB1#74	23.31	23.80	33.00	PASS
			HCH	RB36#0	22.28	22.77	33.00	PASS
				RB36#18	23.31	23.80	33.00	PASS
				RB36#39	22.34	22.83	33.00	PASS
				RB75#0	23.31	23.80	33.00	PASS

Report No.: SZEM161201075001 Page: 8 of 134

				1	Page:	8 of 13	94						
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict					
				RB1#0	22.84	23.33	33.00	PASS					
				RB1#38	23.70	24.19	33.00	PASS					
				RB1#74	23.11	23.60	33.00	PASS					
			LCH	RB36#0	23.70	24.19	33.00	PASS					
				RB36#18	21.68	22.17	33.00	PASS					
				RB36#39	23.70	24.19	33.00	PASS					
				RB75#0	21.60	22.09	33.00	PASS					
				RB1#0	23.03	23.52	33.00	PASS					
		15M		RB1#38	23.69	24.18	33.00	PASS					
			МСН	RB1#74	22.65	23.14	33.00	PASS					
BAND7	LTE/TM2			RB36#0	23.69	24.18	33.00	PASS					
				RB36#18	21.53	22.02	33.00	PASS					
				RB36#39	23.69	24.18	33.00	PASS					
				RB75#0	21.59	22.08	33.00	PASS					
				RB1#0	22.84	23.33	33.00	PASS					
				RB1#38	23.31	23.80	33.00	PASS					
									RB1#74	22.62	23.11	33.00	PASS
			HCH	RB36#0	23.31	23.80	33.00	PASS					
				RB36#18	21.28	21.77	33.00	PASS					
				RB36#39	23.31	23.80	33.00	PASS					
				RB75#0	21.23	21.72	33.00	PASS					

Report No.: SZEM161201075001 Page: 9 of 134

Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	23.65	24.14	33.00	PASS
				RB1#50	23.66	24.15	33.00	PASS
				RB1#99	23.58	24.07	33.00	PASS
			LCH	RB50#0	22.71	23.20	33.00	PASS
				RB50#25	22.68	23.17	33.00	PASS
				RB50#50	22.72	23.21	33.00	PASS
				RB100#0	22.73	23.22	33.00	PASS
				RB1#0	23.71	24.20	33.00	PASS
		LTE/TM1 20M		RB1#50	23.58	24.07	33.00	PASS
			МСН	RB1#99	23.46	23.95	33.00	PASS
BAND7	LTE/TM1			RB50#0	22.72	23.21	33.00	PASS
				RB50#25	22.65	23.14	33.00	PASS
				RB50#50	22.57	23.06	33.00	PASS
				RB100#0	22.62	23.11	33.00	PASS
				RB1#0	23.40	23.89	33.00	PASS
				RB1#50	23.35	23.84	33.00	PASS
				RB1#99	23.36	23.85	33.00	PASS
			НСН	RB50#0	22.32	22.81	33.00	PASS
				RB50#25	22.32	22.81	33.00	PASS
				RB50#50	22.36	22.85	33.00	PASS
				RB100#0	22.35	22.84	33.00	PASS

Report No.: SZEM161201075001 Page: 10 of 134

					Page:	10 of 1		[
Test Band(LTE)	Test Mode	Test Bandwidth	Test channel	Test RB	Measured (dBm)	EIRP (dBm)	limit (dBm)	Verdict
				RB1#0	22.88	23.37	33.00	PASS
				RB1#50	22.92	23.41	33.00	PASS
				RB1#99	23.15	23.64	33.00	PASS
			LCH	RB50#0	21.62	22.11	33.00	PASS
				RB50#25	21.69	22.18	33.00	PASS
				RB50#50	21.68	22.17	33.00	PASS
				RB100#0	21.64	22.13	33.00	PASS
				RB1#0	23.04	23.53	33.00	PASS
				RB1#50	23.14	23.63	33.00	PASS
				RB1#99	22.68	23.17	33.00	PASS
BAND7	LTE/TM2	20M	МСН	RB50#0	21.63	22.12	33.00	PASS
				RB50#25	21.53	22.02	33.00	PASS
				RB50#50	21.52	22.01	33.00	PASS
				RB100#0	21.61	22.10	33.00	PASS
				RB1#0	22.88	23.37	33.00	PASS
				RB1#50	22.60	23.09	33.00	PASS
				RB1#99	22.65	23.14	33.00	PASS
			НСН	RB50#0	21.26	21.75	33.00	PASS
				RB50#25	21.29	21.78	33.00	PASS
				RB50#50	21.26	21.75	33.00	PASS
				RB100#0	21.27	21.76	33.00	PASS

Note:

a: For getting the EIRP (Efficient Isotropic Radiated Power) in substitution method, the following formula should be taken to calculate it,

EIRP [dBm] = SGP [dBm] – Cable Loss [dB] + Gain [dBi]

b: SGP=Signal Generator Level

c: RBW > emission bandwidth, VBW > $3 \times RBW$.

Detector: RMS

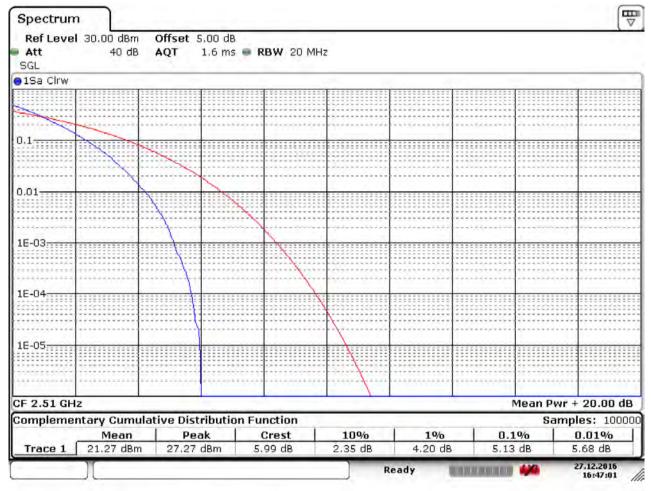
Report No.: SZEM161201075001 Page: 11 of 134

2 Peak-to-Average Ratio

Part I - Test Results

Test Band	Test Mode	Test Channel	Measured[dB]	Limit [dB]	Verdict
		LCH	5.13	13	PASS
	TM1/20M	MCH	5.16	13	PASS
Dond 7		НСН	5.30	13	PASS
Band 7		LCH	5.91	13	PASS
	TM2/20M	MCH	5.80	13	PASS
		НСН	5.86	13	PASS

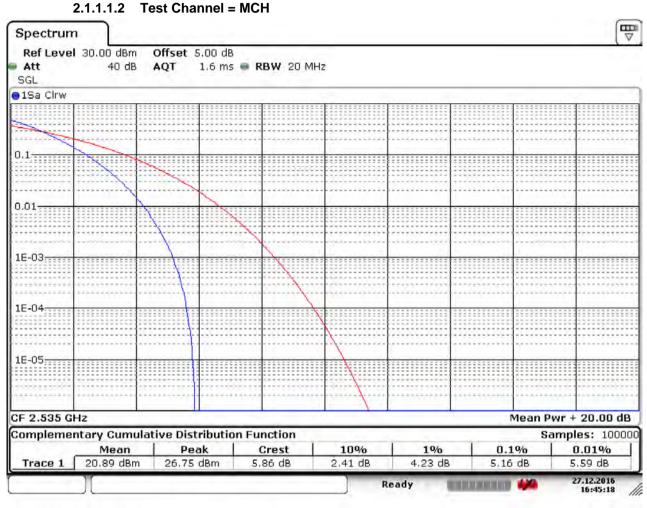
Report No.: SZEM161201075001 Page: 12 of 134


Part II - Test Plots

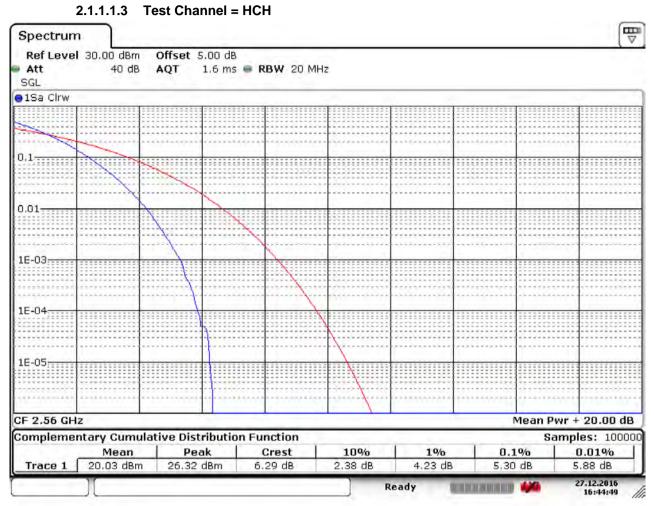
2.1 For LTE

2.1.1 Test Band = LTE band7

2.1.1.1 Test Mode = LTE/TM1.Bandwidth=20MHz

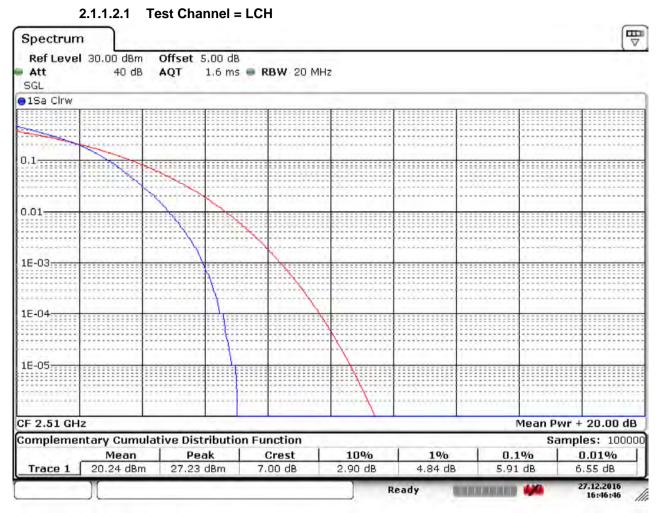

2.1.1.1.1 Test Channel = LCH

Date: 27.DEC.2016 16:47:01


Report No.: SZEM161201075001 Page: 13 of 134

Date: 27.DEC.2016 16:45:19

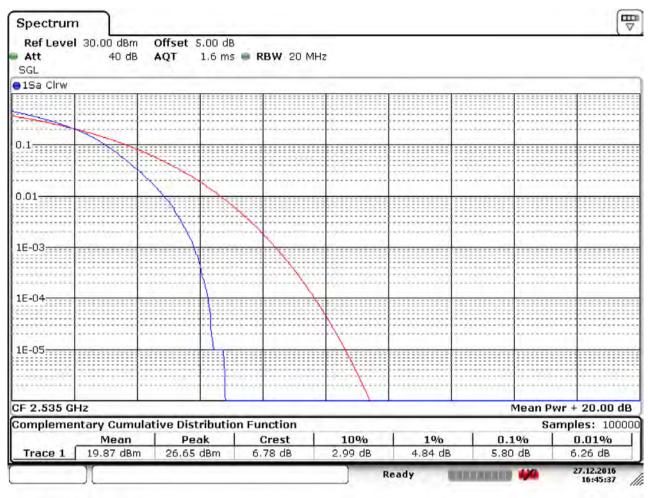
Report No.: SZEM161201075001 Page: 14 of 134



Date: 27.DEC.2016 16:44:50

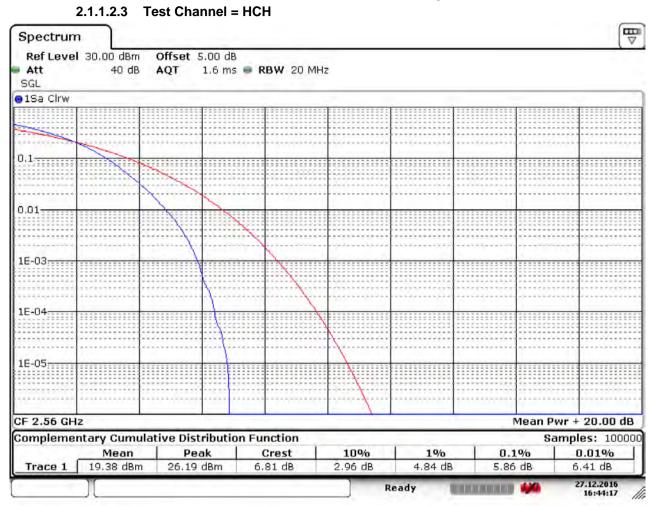
Report No.: SZEM161201075001 Page: 15 of 134

2.1.1.2 Test Mode = LTE/TM2.Bandwidth=20MHz



Date: 27.DEC.2016 16:46:46

Report No.: SZEM161201075001 Page: 16 of 134

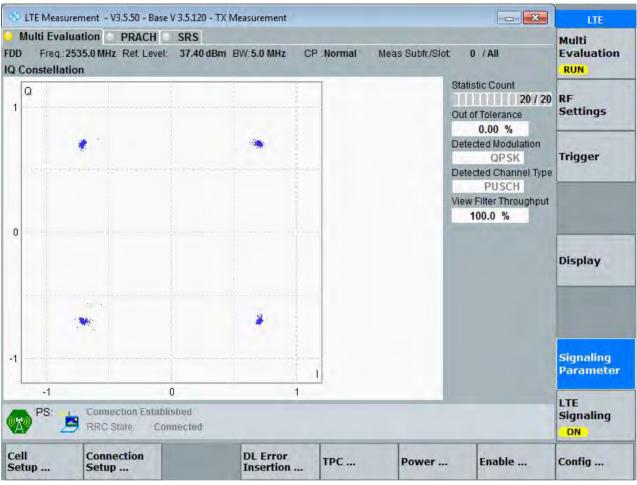


Date: 27.DEC.2016 16:45:37

Report No.: SZEM161201075001 Page: 17 of 134

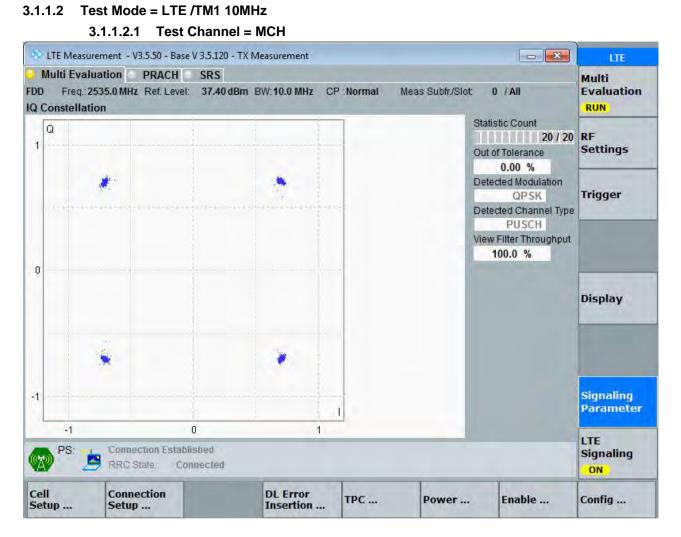
Date: 27.DEC.2016 16:44:17

Report No.: SZEM161201075001 Page: 18 of 134

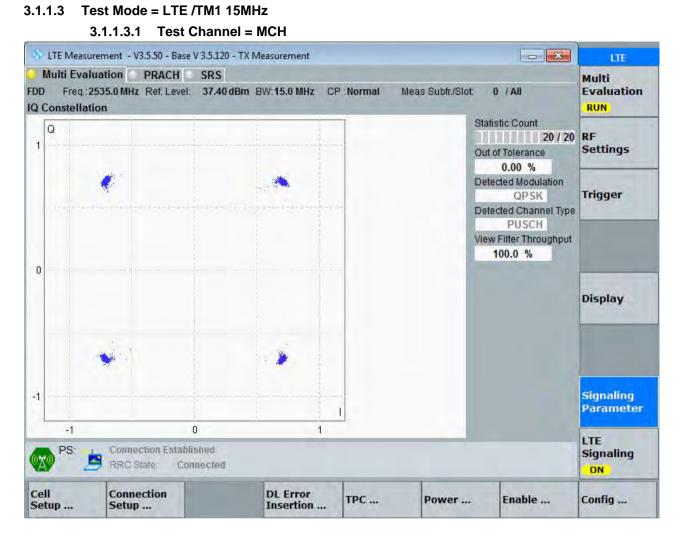

3 Modulation Characteristics

3.1 For LTE

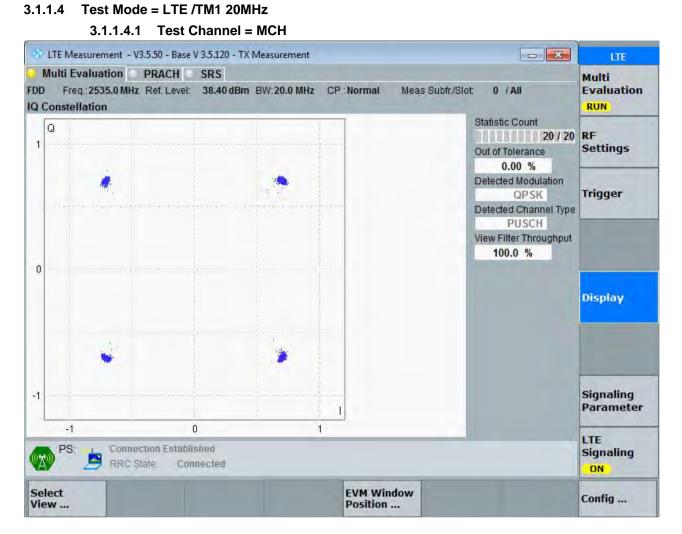
3.1.1 Test Band = LTE band7


3.1.1.1 Test Mode = LTE /TM1 5MHz

3.1.1.1.1 Test Channel = MCH



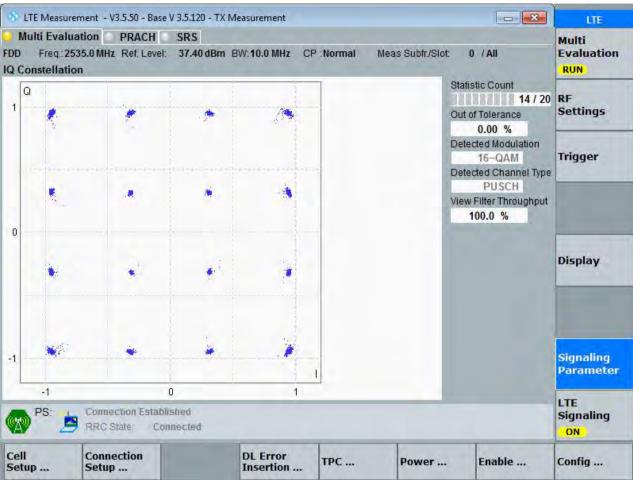
Report No.: SZEM161201075001 Page: 19 of 134



Report No.: SZEM161201075001 Page: 20 of 134

Report No.: SZEM161201075001 Page: 21 of 134

Report No.: SZEM161201075001 Page: 22 of 134



Report No.: SZEM161201075001 Page: 23 of 134

3.1.1.6 Test Mode = LTE /TM2 10MHz

3.1.1.6.1 Test Channel = MCH

Setup ...

Setup ...

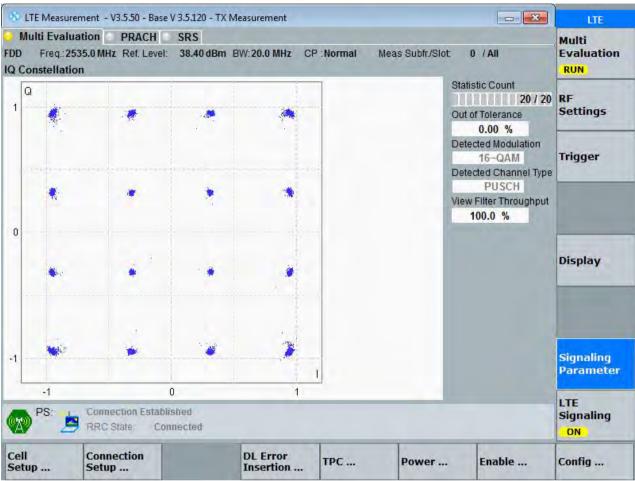
SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM161201075001 24 of 134 Page:

3.1.1.7.1 Test Channel = MCH LTE Measurement - V3.5.50 - Base V 3.5.120 - TX Measurement - X LTE Multi Evaluation PRACH SRS Multi Freq.: 2535.0 MHz Ref. Level: 37.40 dBm BW: 15.0 MHz CP : Normal Meas Subfr./Slot: Evaluation FDD 0 / All RUN **IQ** Constellation Statistic Count Q 17 / 20 RF 1 Settings Out of Tolerance 0.00 % **Detected Modulation** 16-QAM Trigger Detected Channel Type PUSCH 1 **View Filter Throughput** 100.0 % 0 Display Signaling -1 Parameter 1 -1 n 1 LTE PS **Connection Established** Signaling RRC State: Connected ON Cell Connection **DL Error** TPC Power ... Enable ... Config ...

Insertion ...

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."


3.1.1.7 Test Mode = LTE /TM2 15MHz

Report No.: SZEM161201075001 Page: 25 of 134

3.1.1.8 Test Mode = LTE /TM2 20MHz

3.1.1.8.1 Test Channel = MCH

Report No.: SZEM161201075001 Page: 26 of 134

4 Bandwidth

Part I - Test Results

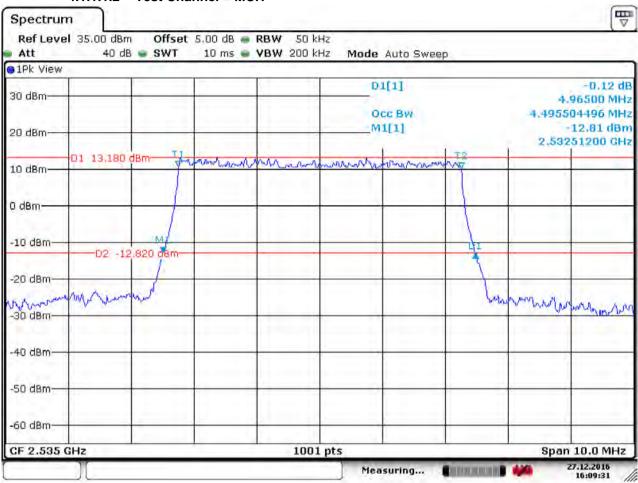
Test Band	Test Mode	Test Channel	Occupied Bandwidth [MHz]	Emission Bandwidth [MHz]	Verdict
		LCH	4.49	4.96	PASS
	TM1/ 5MHz	MCH	4.50	4.97	PASS
		HCH	4.48	4.96	PASS
		LCH	4.50	4.98	PASS
	TM2/ 5MHz	MCH	4.49	4.96	PASS
		HCH	4.50	4.98	PASS
		LCH	8.93	9.71	PASS
	TM1/10MHz	MCH	8.97	9.79	PASS
		HCH	8.93	9.69	PASS
		LCH	8.95	9.77	PASS
	TM2/ 10MHz	MCH	8.95	9.69	PASS
Band 7		HCH	8.95	9.71	PASS
Dallu /	TM1/ 15MHz	LCH	13.46	14.96	PASS
		MCH	13.55	14.99	PASS
		HCH	13.49	14.96	PASS
		LCH	13.52	14.93	PASS
	TM2/ 15MHz	MCH	13.52	14.87	PASS
		HCH	13.49	14.84	PASS
		LCH	18.02	19.66	PASS
	TM1/20MHz	MCH	17.94	19.42	PASS
		HCH	17.86	19.36	PASS
		LCH	17.98	19.54	PASS
	TM2/ 20MHz	MCH	17.98	19.42	PASS
		HCH	17.86	19.60	PASS

Report No.: SZEM161201075001 Page: 27 of 134

Part II –Test Plots

4.1 For LTE

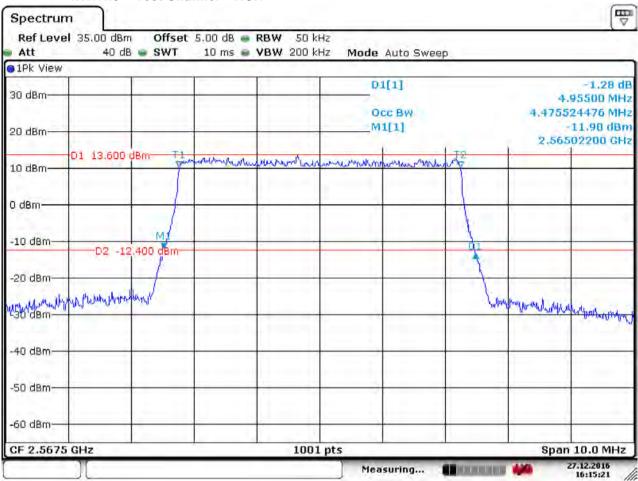
4.1.1 Test Band = LTE band7


4.1.1.1 Test Mode = LTE/TM1 5MHz

4.1.1.1.1 Test Channel = LCH Spectrum Ref Level 35.00 dBm Offset 5.00 dB 📾 RBW 50 kHz Att 40 dB 🖷 SWT 10 ms 🖷 VBW 200 kHz Mode Auto Sweep 1Pk View D1[1] 2.46 dB 30 dBm-4.95500 MHz 4,485514486 MHz OCC BW -9.97 dBm M1[1] 20 dBm 2.50003200 GHz D1 14,100 dBm dengaterraria bring developed Munnharen un. 10 dBm-0 dBm M -10 dBm D2 -11,900 dBm Add to all all the the distribution of the -20 dBm -30 dBm 40 dBm -50 dBm -60 dBm-Span 10.0 MHz CF 2.5025 GHz 1001 pts 27.12.2015 Measuring... THE DESIGNATION OF THE OWNER. 11. 16:13:28

Date: 27.DEC.2016 16:13:28

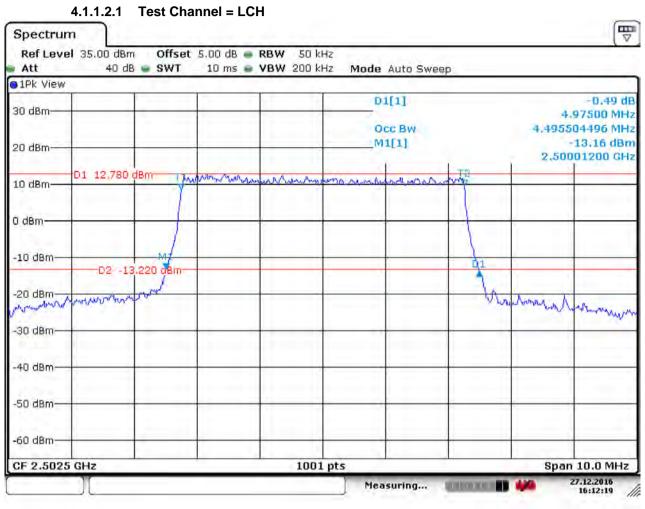
Report No.: SZEM161201075001 Page: 28 of 134



4.1.1.1.2 Test Channel = MCH

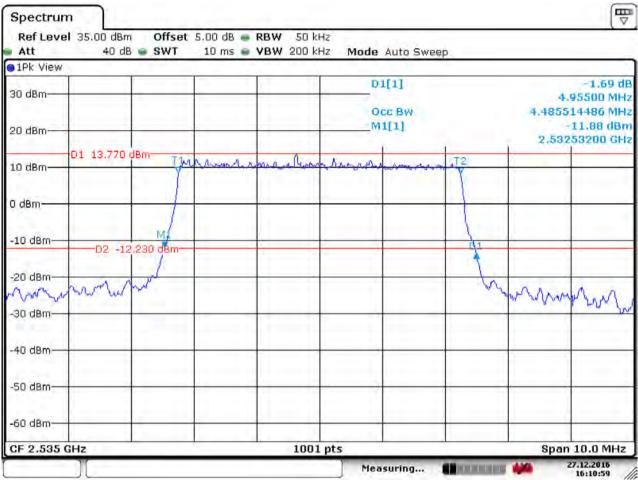
Date: 27.DEC.2016 16:09:31

Report No.: SZEM161201075001 Page: 29 of 134


4.1.1.1.3 Test Channel = HCH

Date: 27.DEC.2016 16:15:21

Report No.: SZEM161201075001 Page: 30 of 134


4.1.1.2 Test Mode = LTE/TM2 5MHz

Date: 27.DEC.2016 16:12:20

Report No.: SZEM161201075001 Page: 31 of 134

4.1.1.2.2 Test Channel = MCH

Date: 27.DEC.2016 16:10:59

Report No.: SZEM161201075001 Page: 32 of 134

1Pk View	40 dB 🖷 SWT	10 ms 🖷 VB1	H LOUNIL MUU	e Auto Swee	Ρ		
30 dBm			- 15	D1[1] Occ Bw M1[1]		4,4955	-0.10 dB 97500 MHz 04496 MHz -14.28 dBm 500200 GHz
10 dBm-01 k	11.510 dBm	and the second	Marine the marine and a	-	TE	2.00	
D dBm							
-10 dBm	-D2 -14.390 dBm-				dı	-	
-20 dBm				-	- Tu		
-30 dBm	000 00				10.0	Narmin	have where
-40 dBm		· · · · · · · · · · · · · · · · · · ·					
-50 dBm	_						

4.1.1.2.3 Test Channel = HCH

Date: 27.DEC.2016 16:17:56

Report No.: SZEM161201075001 Page: 33 of 134

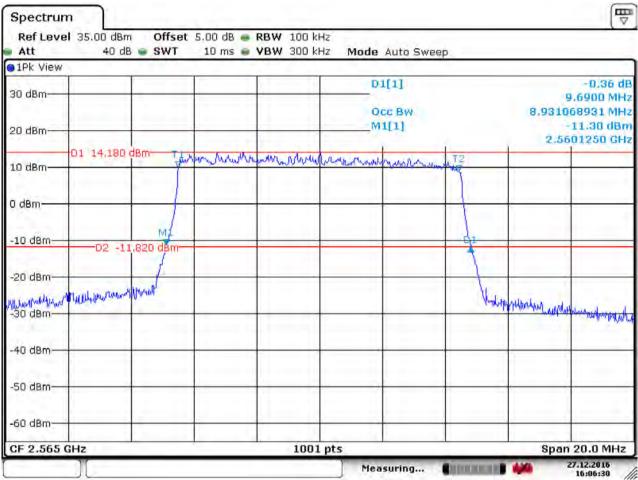
4.1.1.3 Test Mode = LTE/TM1 10MHz

4.1.1.3.1 Test Channel = LCH

1Pk View		1.00		1997 - S. C. S. S.						
30 dBm					Oc M1	(1) x BW ([1]			-1.29 di 9.7100 MH 8.931068931 MH -11.34 dBn 2.5001650 GH	
10 dBm	D1 14.310	dBm 11	washington	monorman	monthman	monterprov	Anny		-	
0 dBm		+	-					-		
-10 d8m		M.					1			
-20 dBm							1		_	
voo dam	ndrumbindiller	phone					July 1	roundury	minnapping	
-40 dBm		-	-							
-50 dBm						_				
-60 dBm			<u></u>							

Date: 27.DEC.2016 16:03:57

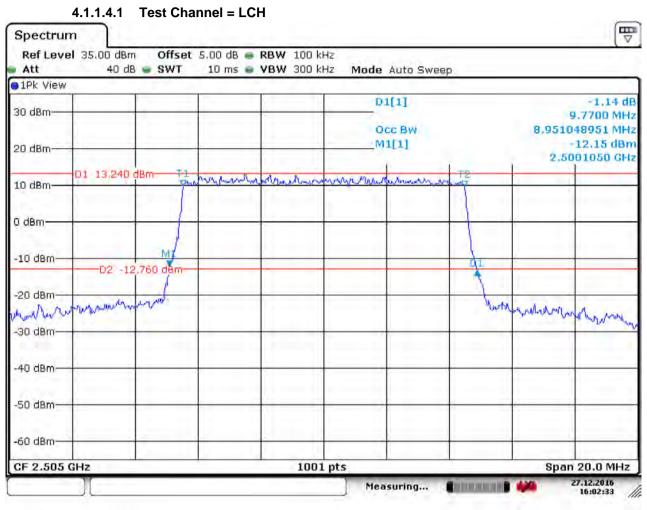
Report No.: SZEM161201075001 Page: 34 of 134


Spectrur	And a state of the		5 00 d5 -							
Att	1 35.00 dBr 40 d	n Offset B 🖷 SWT		RBW 100 kHz VBW 300 kHz	Mode	Auto Swee	p			
1Pk View	· · · · · ·									
30 dBm					01[1] Occ Bw			-0.46 dB 9.7900 MHz 8.971028971 MHz		
20 dBm	1		-		M1[1]		-11.69 dBm 2.5300650 GHz			
10 dBm-	D1 13.950	dBm Th	An American	mannan	mon	www.www.	T2 P			
0 dBm					-					
-10 d8m	D2 -1	M/ 2,050 dBm-					di.			
-20 dBm—										
-30 dBm-	when	w parte					hun	the control wat was	Warder the second	
-40 dBm			-							
-50 dBm						_		c		
-60 dBm										
CF 2.535	GHz		1	1001 p	ts		J	Spar	1 20.0 MHz	
-					Meas	suring		-	27.12.2016 15:58:49	

4.1.1.3.2 Test Channel = MCH

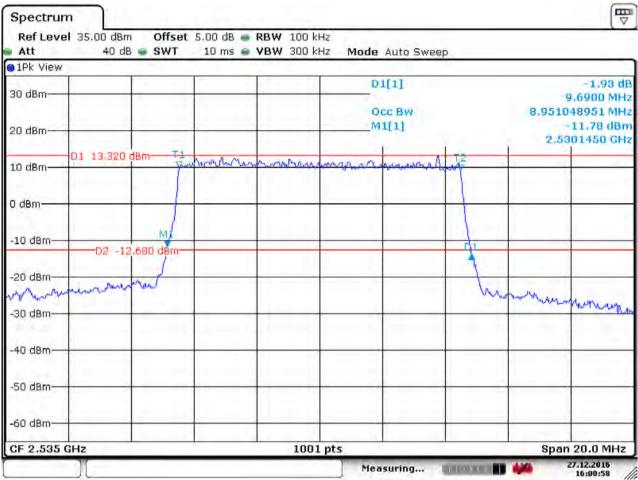
Date: 27.DEC.2016 15:58:49

Report No.: SZEM161201075001 Page: 35 of 134


4.1.1.3.3 Test Channel = HCH

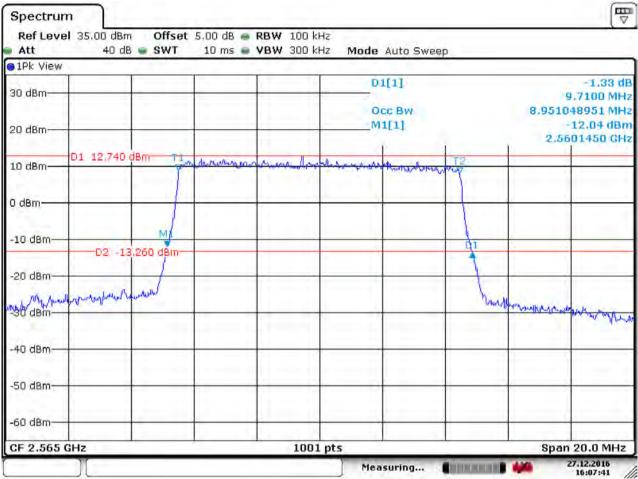
Date: 27.DEC.2016 16:06:31

Report No.: SZEM161201075001 Page: 36 of 134


4.1.1.4 Test Mode = LTE/TM2 10MHz

Date: 27.DEC.2016 16:02:34

Report No.: SZEM161201075001 Page: 37 of 134



4.1.1.4.2 Test Channel = MCH

Date: 27.DEC.2016 16:00:58

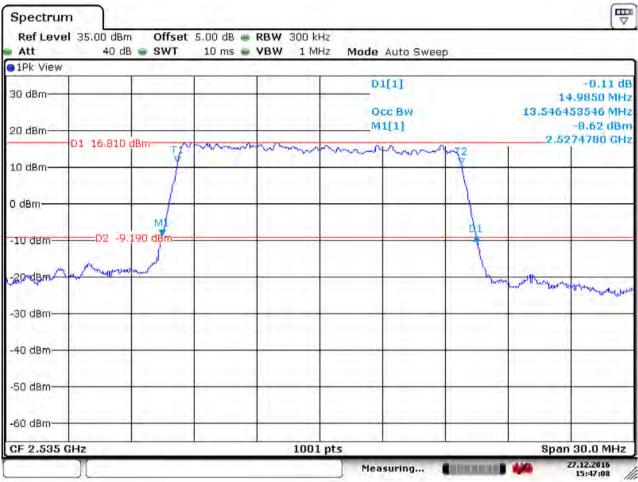
Report No.: SZEM161201075001 Page: 38 of 134

4.1.1.4.3 Test Channel = HCH

Date: 27.DEC.2016 16:07:42

Report No.: SZEM161201075001 Page: 39 of 134

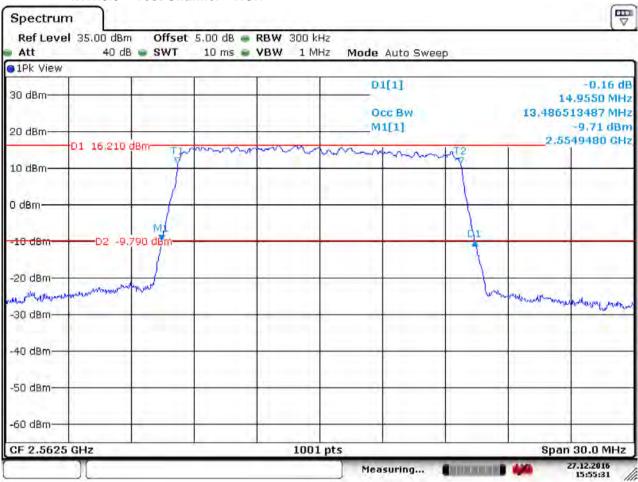
4.1.1.5 Test Mode = LTE/TM1 15MHz


4.1.1.5.1 Test Channel = LCH

1Pk View			19. J. 19. 19					
30 dBm	_	-			D1[1] Occ Bw			-0.36 dE 1.9550 MH: 43457 MH;
20 dBm	01 17.670	dBm			M1[1]		2.50	-8.23 dBn
10 dBm		1	Martinetar	her war we have	ine internets, at your is t	monde		
0 dBm	_		-					
-10 dBm	—D2 -8,	330 dBm-				dı		
AZCAIERIDA HONH	on-clipitestimashill	permant				how	hole with the second stars	in the states
-30 dBm						_		
-40 dBm							-	
-50 dBm	-					_		
-60 dBm								

Date: 27.DEC.2016 15:52:37

Report No.: SZEM161201075001 Page: 40 of 134



4.1.1.5.2 Test Channel = MCH

Date: 27.DEC.2016 15:47:08

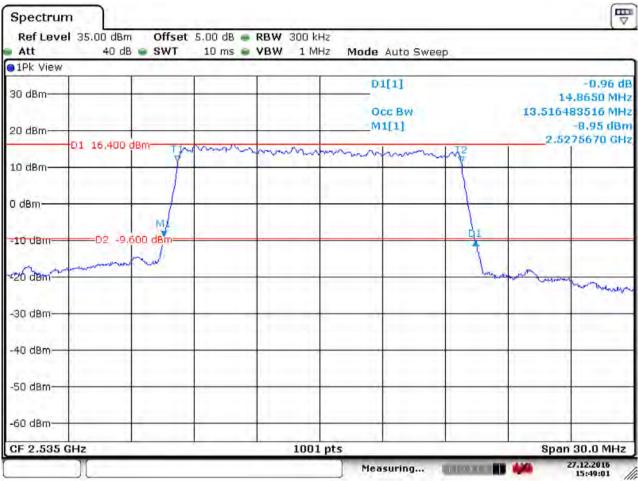
Report No.: SZEM161201075001 Page: 41 of 134

4.1.1.5.3 Test Channel = HCH

Date: 27.DEC.2016 15:55:31

Report No.: SZEM161201075001 Page: 42 of 134

4.1.1.6 Test Mode = LTE/TM2 15MHz


4.1.1.6.1 Test Channel = LCH

31Pk View								
30 dBm				D1[0cc 	BW			-1.26 di 1.9250 MH 83516 MH -9.15 dBn
	16,350 dBm-	TIMAN	0.0	1		42	2.50	00670 GH
10 dBm		- And	mm	mm		Ť		
0 dBm						1		
-10 dBm	-D2 -9.650 dB	F				<u>dı</u>		
-20 dBR	manun					Therease	Muranyo	paper to
When the most of the second								
-30 dBm		-						
-40 dBm								
-50 dBm				·				

Date: 27.DEC.2016 15:50:42

Report No.: SZEM161201075001 Page: 43 of 134

4.1.1.6.2 Test Channel = MCH

Date: 27.DEC.2016 15:49:01

Report No.: SZEM161201075001 Page: 44 of 134

1Pk View					Hz Mode Auto Sv		
30 dBm					D1[1] Occ Bw		-D.25 dB 14.8350 MHz 13.486513487 MHz -9.79 dBm
20 dBm		diff and	and the second		M1[1]		2.5550670 GHz
10 dBm	D1 16.070	abm Tr	and the prover presence	and a grant	Monoraliante	mmt2	
0 dBm							
-10 dBm		930 dBm-				di	
-20 dBmar	www.lipladau.woulde	haven yes				Mounde	and we have a strategic the stand of the sta
-30 dBm—							
-40 dBm	-						
-50 dBm—							
				,			

4.1.1.6.3 Test Channel = HCH

Date: 27.DEC.2016 15:57:03

Report No.: SZEM161201075001 Page: 45 of 134

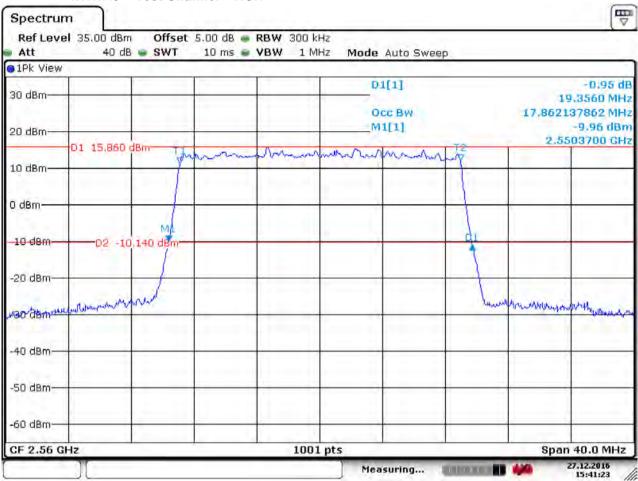
4.1.1.7 Test Mode = LTE/TM1 20MHz

4.1.1.7.1 Test Channel = LCH

30 dBm					D1[1] Occ BW M1[1]		18,021	-0.73 di 9.6600 MH 978022 MH -8.67 dBn
D	1 16.530 dBm-	Think	monto	amos	man	142	2.5	002500 GH
10 dBm		1				1 t		
0 dBm								
-10 dBm		v14				di		
10 000		1				T.		
-20 dBm	monum						mannen	round
-30 dBm		_	-	-		-		
-40 dBm			_		-			
-50 dBm					-		c	

Date: 27.DEC.2016 15:43:58

Report No.: SZEM161201075001 Page: 46 of 134


1Pk View	VBW 1 MHz Mode Auto Sweep	
0 dBm-	D1[1] Occ Bw M1[1]	-0.38 dE 19.4210 MHz 17.942057942 MHz -9.32 dBm
0 dBm-01 16,350 dBm-11		2.5252100 GHz
0 dBm	mmmmmmmmmm	ALZ
dBm-		
10 dBm		du.
20 dBm		
manual		and an
30 dBm		
40 dBm		
50 dBm-		
50 dBm		

4.1.1.7.2 Test Channel = MCH

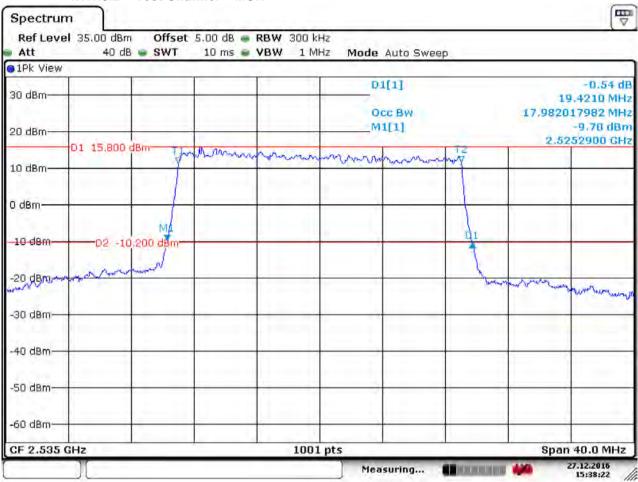
Date: 27.DEC.2016 15:36:48

Report No.: SZEM161201075001 Page: 47 of 134


4.1.1.7.3 Test Channel = HCH

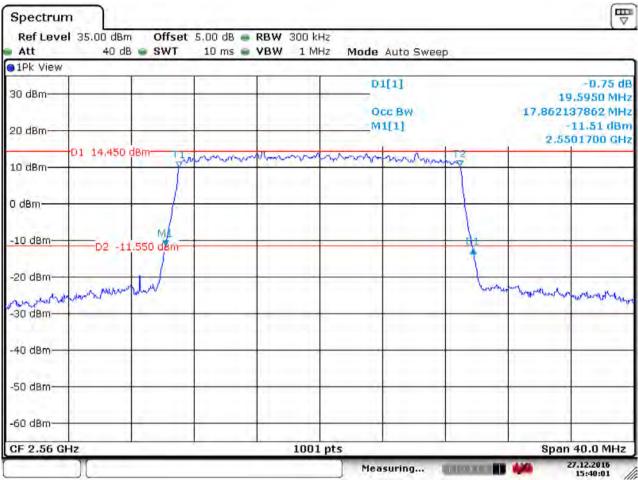
Date: 27.DEC.2016 15:41:24

Report No.: SZEM161201075001 Page: 48 of 134


4.1.1.8 Test Mode = LTE/TM2 20MHz

Date: 27.DEC.2016 15:45:23

Report No.: SZEM161201075001 Page: 49 of 134



4.1.1.8.2 Test Channel = MCH

Date: 27.DEC.2016 15:38:22

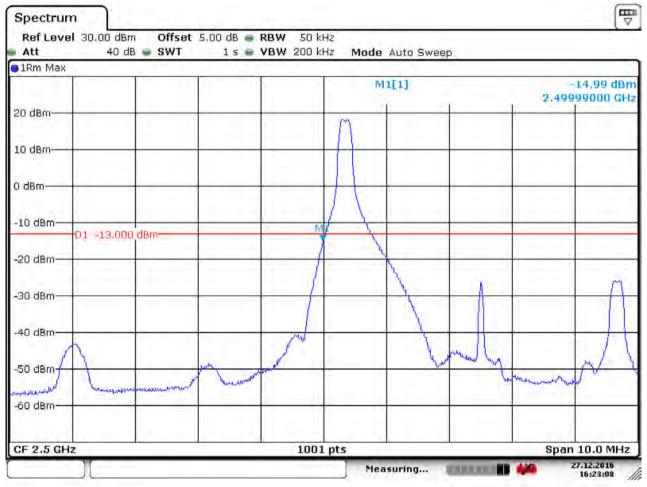
Report No.: SZEM161201075001 Page: 50 of 134

4.1.1.8.3 Test Channel = HCH

Date: 27.DEC.2016 15:40:02

Report No.: SZEM161201075001 Page: 51 of 134

5 Band Edges Compliance


5.1 For LTE

5.1.1 Test Band = LTE band7

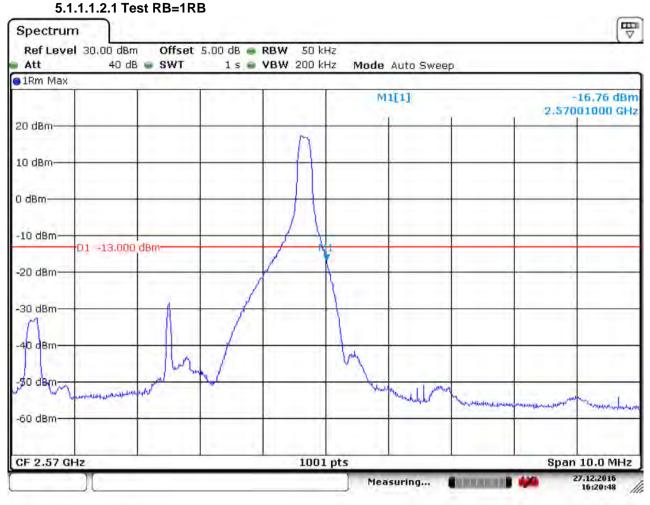
5.1.1.1 Test Mode = LTE/TM1 5MHz

5.1.1.1.1 Test Channel = LCH

5.1.1.1.1.1 Test RB=1RB

Date: 27.DEC.2016 16:23:08

Report No.: SZEM161201075001 Page: 52 of 134



Date: 27.DEC.2016 16:23:46

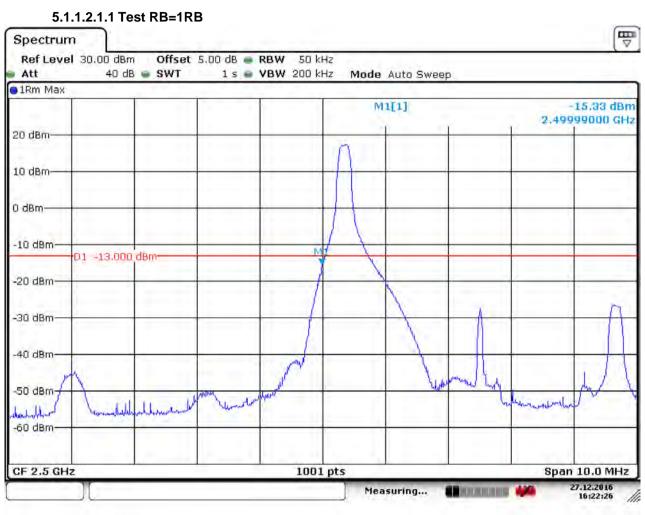
Report No.: SZEM161201075001 Page: 53 of 134

5.1.1.1.2 Test Channel = HCH

Date: 27.DEC.2016 16:20:48

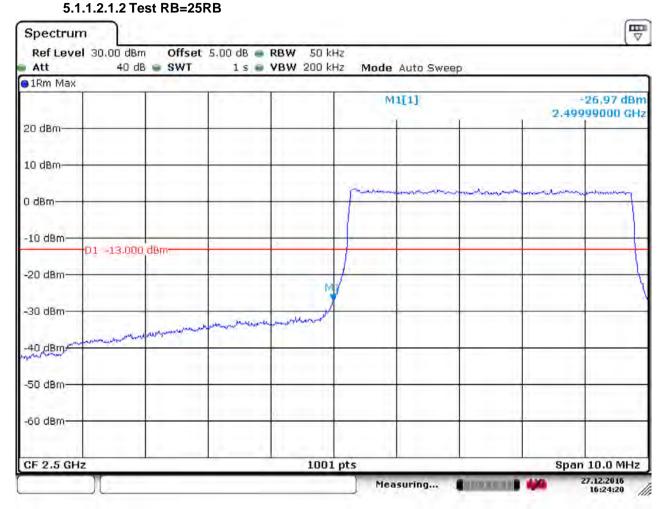
Report No.: SZEM161201075001 Page: 54 of 134

Att	l 30.00 dBn 40 dB		5.00 dB 🖷 1 s 🖷			e Auto Swe	ер	_	
●1Rm Max	-		1		-				
						M1[1]			-29,12 dBm 001000 GHz
20 dBm						1	-	-	
10 dBm									
0 dBm	hanna	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	har and the second second	ming		-			
-10 dBm	D1 -13.000	dBm	<u>+</u>	(<u>) () ()</u>					
-20 dBm-						-	-	-	
/ -30 dBm—				Y	1		-	-	
-40 dBm					Junerower	and more thank of the			m
-50 dBm								and the second and the	himmen
-60 dBm							-	¢	
CF 2.57 G	Hz		· *	1001	pts			Spar	10.0 MHz


5.1.1.1.2.2 Test RB=25RB

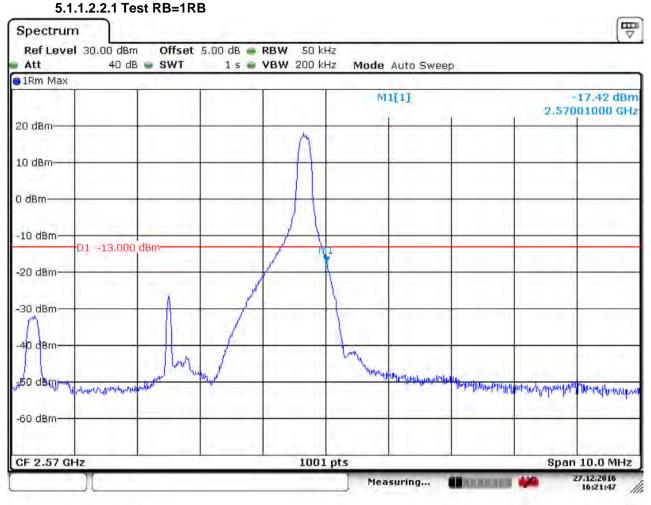
Date: 27.DEC.2016 16:19:59

Report No.: SZEM161201075001 Page: 55 of 134


5.1.1.2 Test Mode = LTE/TM2 5MHz 5.1.1.2.1 Test Channel = LCH

Date: 27.DEC.2016 16:22:27

Report No.: SZEM161201075001 Page: 56 of 134



Date: 27.DEC.2016 16:24:20

Report No.: SZEM161201075001 Page: 57 of 134

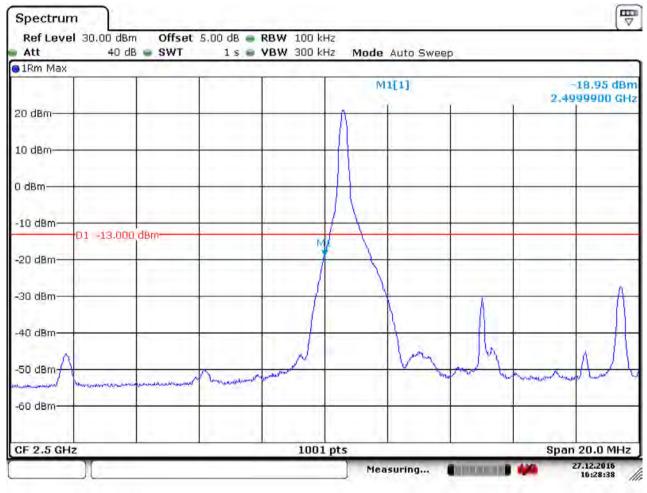
5.1.1.2.2 Test Channel = HCH

Date: 27.DEC.2016 16:21:47

Report No.: SZEM161201075001 Page: 58 of 134

Ref Level Att			5.00 dB 🖷 1 s 🖷	RBW 50 k VBW 200 k		Auto Swe	ер		
●1Rm Max									
					M	1[1]			-29.78 dBm 001000 GHz
20 dBm	100-00-0								
10 dBm									
0 dBm		······	mmmmm	my			-		
-10 dBm	01 -13.000	dBm	-						
-20 dBm				-	-		-	-	
-30 dBm				A A	1		-	-	
-40 dBm					hourse	Anna and	and	mention	
-50 dBm									and provide the
-60 dBm									
CF 2.57 GH:	z		· *	1001	pts			Spar	n 10.0 MHz

5.1.1.2.2.2 Test RB=25RB


Date: 27.DEC.2016 16:19:10

Report No.: SZEM161201075001 Page: 59 of 134

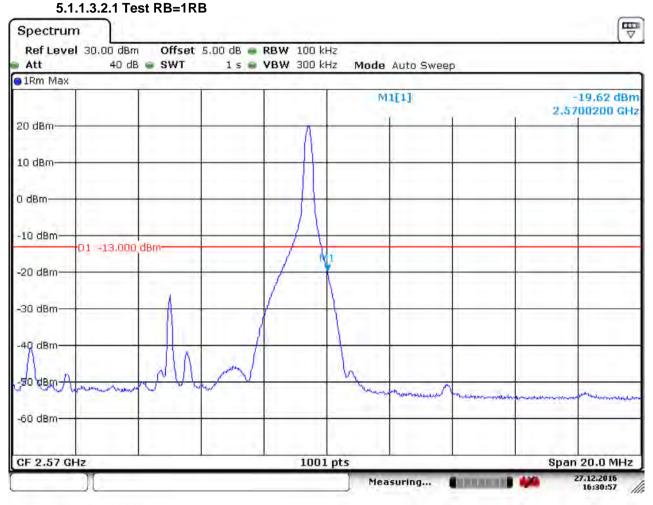
5.1.1.3 Test Mode = LTE/TM1 10MHz 5.1.1.3.1 Test Channel = LCH

5.1.1.3.1.1 Test RB=1RB

Date: 27.DEC.2016 16:28:38

Report No.: SZEM161201075001 Page: 60 of 134

Spectrur	n								
Ref Leve Att	el 30.00 dBm 40 dB		t 5.00 dB 👄 I 1 s 👄 '			1ode Auto Sw	еер		
31Rm Max	3			11 A 14					
						M1[1]	a		-31.25 dBm 999900 GHz
20 dBm									
10 dBm					-		-		+
0 dBm					F			minutur	many
-10 dBm-	-D1 -13.000	dBm							
-20 dBm—							-		-
-30 dBm				M	<u> </u>	_			
-40 dBm		- Marine Marine		mont			_		
-50 dBm—	1						-		
-60 dBm									
CF 2.5 GH	Iz			1001	pts			Spa	n 20.0 MHz
)[]	Measuring	CONTRACTOR OF		27.12.2016


5.1.1.3.1.2 Test RB=50RB

Date: 27.DEC.2016 16:28:00

Report No.: SZEM161201075001 Page: 61 of 134

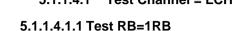
5.1.1.3.2 Test Channel = HCH

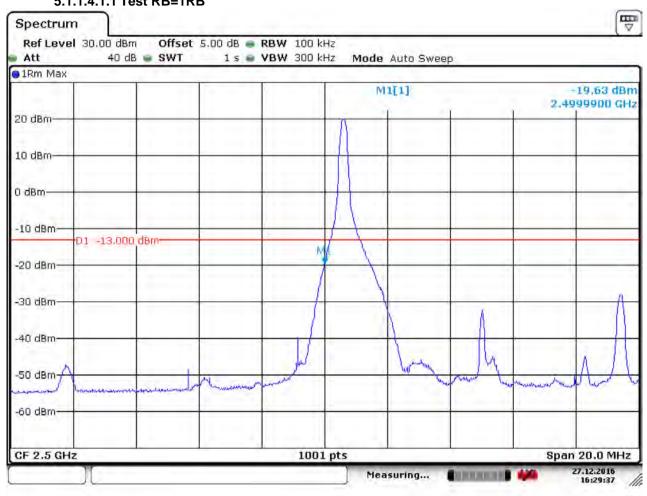
Date: 27.DEC.2016 16:30:57

5 1 1 3 2 2 Tost DB-50DB

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

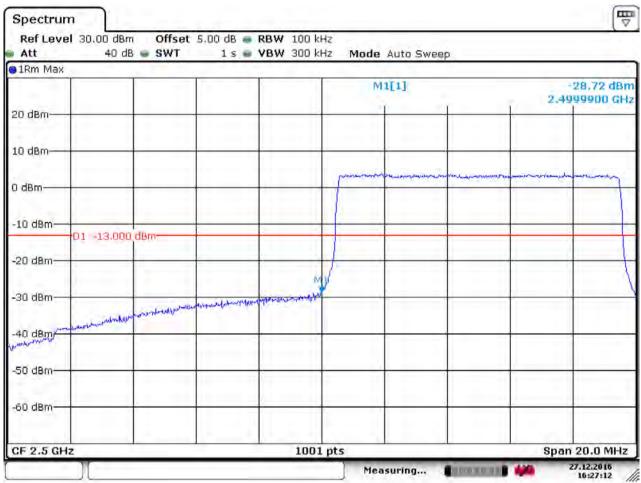
Report No.: SZEM161201075001 Page: 62 of 134


Spectrum Ref Level Att	30.00 dBm		5.00 dB 🖷 1 s 🖨			Mode Auto Swe	Pen		
1Rm Max			0.0.0			induce many service	- YP		
						M1[1]		2,5	-35.79 dBm 700200 GHz
20 dBm					1				
10 dBm		· · · · ·					-		
0 dBm	min	and the second		harring	-				
-10 dBm	D1 -13.000	dBm			_				
-20 dBm			-	-	1		-	<	
-30 dBm					1				
-40 dBm					how	miles male was more	and a street of the street		-
-50 dBm									linnen
-60 dBm					-			-	
CF 2.57 GH	Iz	-	- ·	100	1 pts			Spa	n 20.0 MHz
CF 2.57 GH				100	1 pts	Measuring	-10100-001	Spa M	27.12.2016 16:31:27


Date: 27.DEC.2016 16:31:27

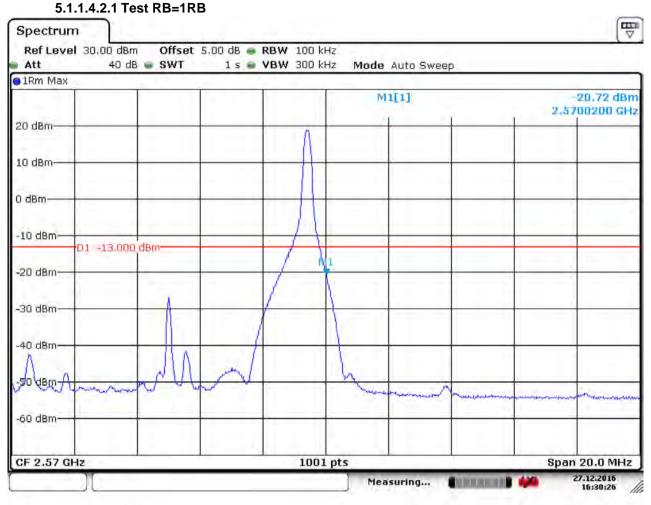
Report No.: SZEM161201075001 Page: 63 of 134

5.1.1.4 Test Mode = LTE/TM2 10MHz 5.1.1.4.1 Test Channel = LCH



Date: 27.DEC.2016 16:29:37

Report No.: SZEM161201075001 Page: 64 of 134


5.1.1.4.1.2 Test RB=50RB

Date: 27.DEC.2016 16:27:12

Report No.: SZEM161201075001 Page: 65 of 134

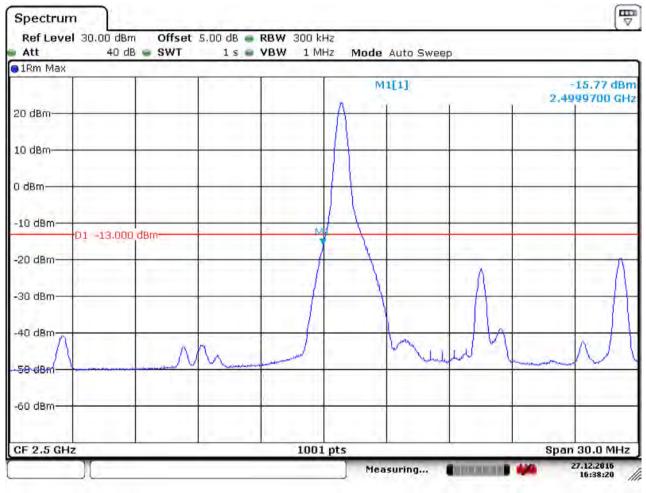
5.1.1.4.2 Test Channel = HCH

Date: 27.DEC.2016 16:30:27

Report No.: SZEM161201075001 Page: 66 of 134

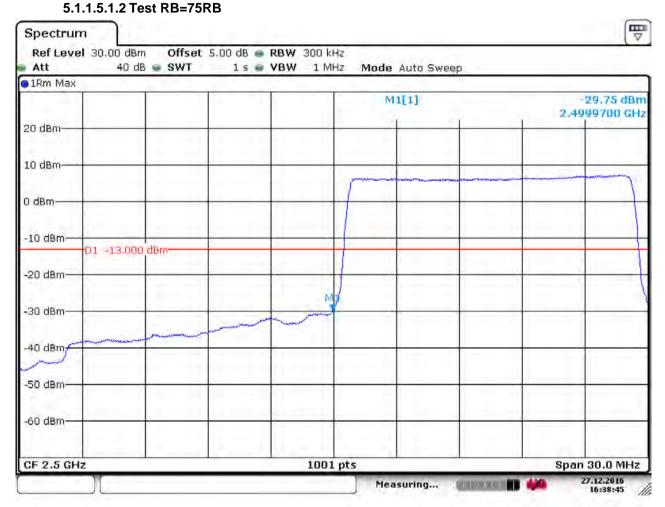
Spectrum		1.1	£						
Att	30.00 dBn 40 dB		5.00 dB 🖷 1 s 🖷			ode Auto Sv	veep		
●1Rm Max			_	- 1 - C					
						2.	-35.79 dBm 5700200 GHz		
20 dBm									
10 dBm							_		
0 dBm	and and a second se		m				_		
-10 dBm	D1 -13.000	udBm 			_				
-20 dBm					-	-	-		-
-30 dBm	_				1	-	-	-	-
-40 dBm		-			Induces	aharrow for an and the second	- Morresources the have	and the property	-
-50 dBm					-				
-60 dBm									
CF 2.57 GH	lz.		· · · · ·	100	1 pts			Spa	an 20.0 MHz
	1					Measuring		-	27.12.2016

5.1.1.4.2.2 Test RB=50RB


Date: 27.DEC.2016 16:32:06

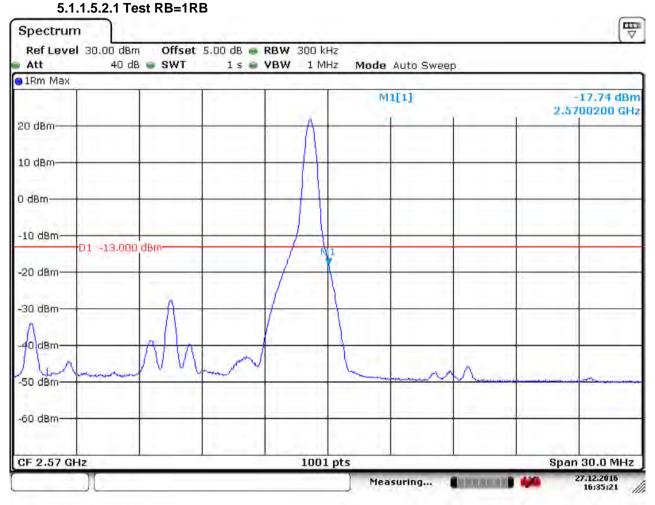
Report No.: SZEM161201075001 Page: 67 of 134

5.1.1.5 Test Mode = LTE/TM1 15MHz 5.1.1.5.1 Test Channel = LCH


5.1.1.5.1.1 Test RB=1RB

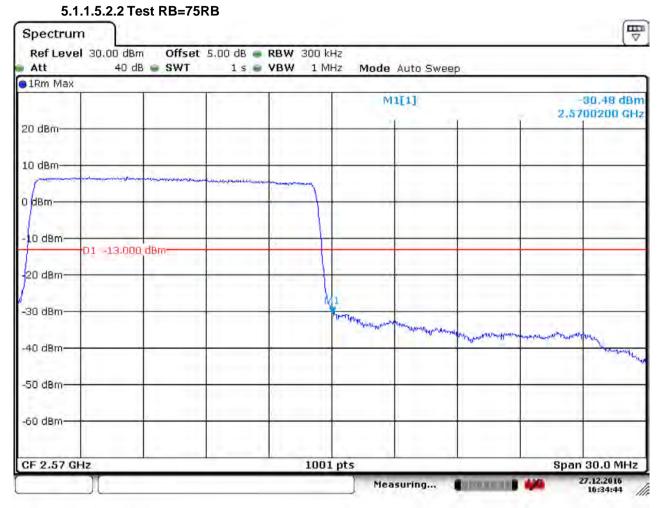
Date: 27.DEC.2016 16:38:20

Report No.: SZEM161201075001 Page: 68 of 134



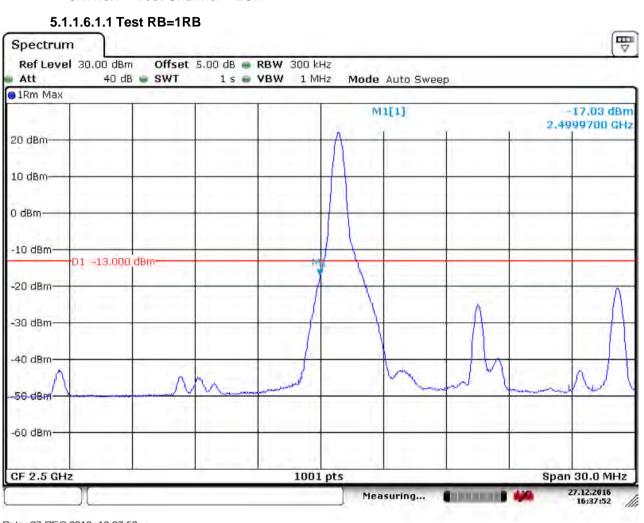
Date: 27.DEC.2016 16:38:46

Report No.: SZEM161201075001 Page: 69 of 134


5.1.1.5.2 Test Channel = HCH

Date: 27.DEC.2016 16:35:22

Report No.: SZEM161201075001 Page: 70 of 134



Date: 27.DEC.2016 16:34:44

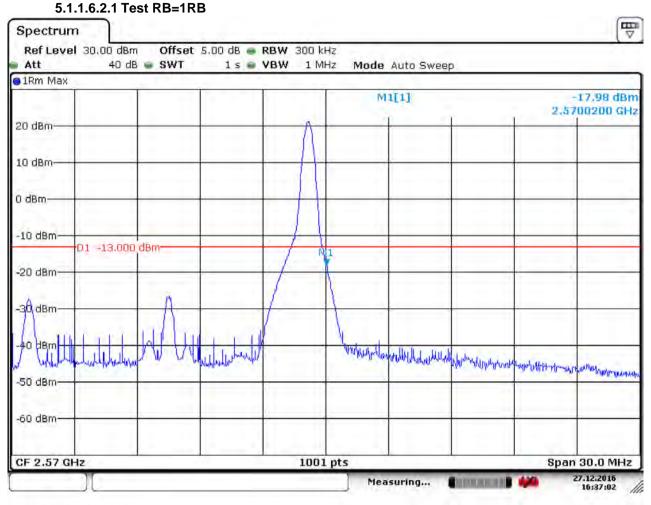
Report No.: SZEM161201075001 Page: 71 of 134

5.1.1.6 Test Mode = LTE/TM2 15MHz 5.1.1.6.1 Test Channel = LCH

Date: 27.DEC.2016 16:37:53

Report No.: SZEM161201075001 Page: 72 of 134

Att			: 5.00 dB 🖷 1 1 s 🖷 1			de Auto Swee	p		
1Rm Max					-				
			1.1.1			M1[1]			30.16 dBm 99700 GHz
20 dBm	-	-				-			
10 d0m			1.0			11 mar 1			
10 dBm								A 40.00	may
0 dBm					1	-		-	
-10 dBm									
	D1 -13.000	dBm			1	-		-	1
-20 dBm	1	-	-		-	-			
-30 dBm				M	1				1
-30 0511	1			and the second second second					
-40 dBm-						-			
-50 dBm									
-60 dBm									
CF 2.5 GH	7	-	- · · · ·	1001	nts	1		Snan	30.0 MHz


5.1.1.6.1.2 Test RB=75RB

Date: 27.DEC.2016 16:39:13

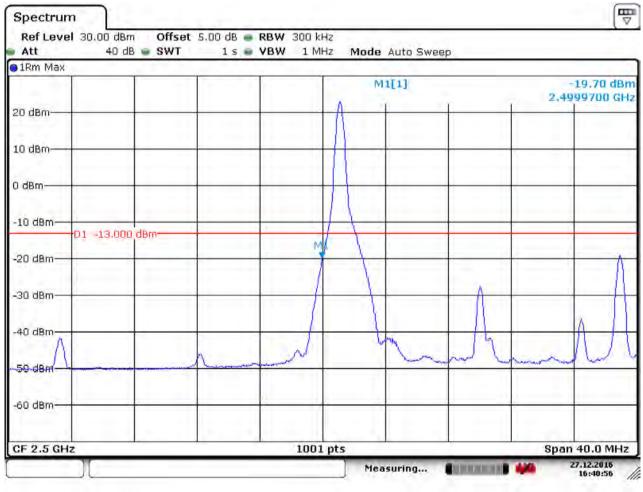
Report No.: SZEM161201075001 Page: 73 of 134

Date: 27.DEC.2016 16:37:02

Report No.: SZEM161201075001 Page: 74 of 134

Att	40 dB	SWT	1 s 🖷	VBW 1N	IHz Mode	Auto Swee	ep.		
1Rm Max					N	11[1]			-32.03 dBm 700200 GHz
20 dBm	100		10						
10 dBm			0		1				
0 dBm				many					
-10 dBm	01 -13.000	dBm							
20 dBm							-		
-30 dBm	_				1	-			-
-40 dBm						m	have	nener	and ment
-50 dBm					-				
-60 dBm								-	

5.1.1.6.2.2 Test RB=75RB


Date: 27.DEC.2016 16:33:32

Report No.: SZEM161201075001 Page: 75 of 134

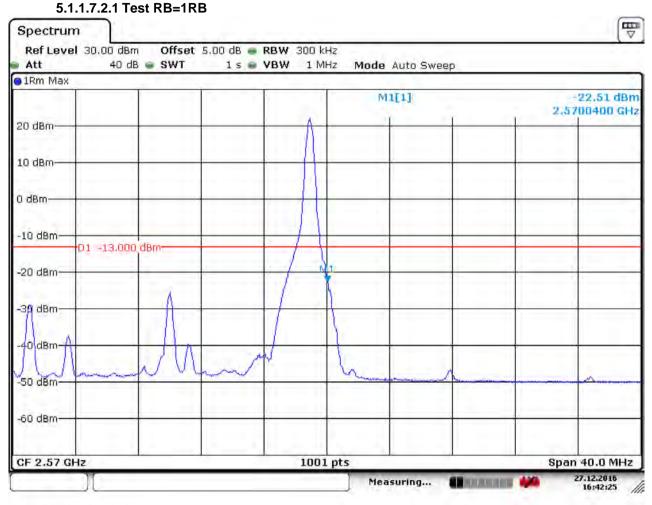
5.1.1.7 Test Mode = LTE/TM1 20MHz 5.1.1.7.1 Test Channel = LCH

5.1.1.7.1.1 Test RB=1RB

Date: 27.DEC.2016 16:40:56

Report No.: SZEM161201075001 Page: 76 of 134

Spectrun	n									
Ref Leve Att			5.00 dB 🖷 1 s 🖷			ode Auto Swe	ер			
0 1Rm Max						1.4				
						M1[1]	2,4	-33,90 dBm 2,4999700 GHz		
20 dBm										
10 dBm									hump	
0 dBm					F					
-10 dBm	D1 -13.000	dire		2						
-20 dBm	01 -13.000							-		
-30 dBm				14	/				1	
-40 dBm		and a start of the	and an and the second second		ſ					
-50 dBm-								-		
-60 dBm							-	-		
CF 2.5 GH	z	-	÷	1001	pts			Spa	n 40.0 MHz	
)[Measuring	CITORE IN		27.12.2016	


5.1.1.7.1.2 Test RB=100RB

Date: 27.DEC.2016 16:40:27

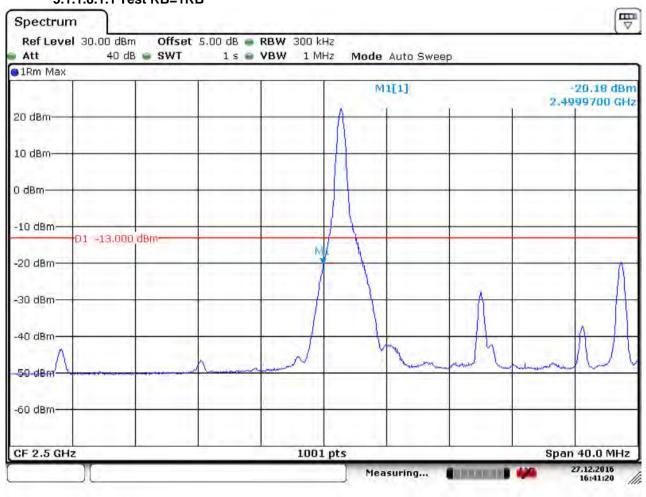
Report No.: SZEM161201075001 Page: 77 of 134

Date: 27.DEC.2016 16:42:25

Report No.: SZEM161201075001 Page: 78 of 134

Spectrum		1.1							
Ref Level Att			5.00 dB 🖷 1 s 🖷			de Auto Swa	зер		
●1Rm Max			-						
						M1[1]	à		-35.40 dBm 700400 GHz
20 dBm	100		10.000.00	1				1	
10 dBm			10				-		-
0 dBm				my		-	-	-	
-10 dBm	D1 -13.000	dBm			-	1			
-20 dBm							-	<	-
30 dBm				1	1	-			
-40 dBm	1	-				-			~~~~
-50 dBm									hanne
-60 dBm						_			
CF 2.57 GH	Iz	-	· · · ·	1001	L pts			Spa	n 40.0 MHz
)(leasuring	CONC. IN	-	27.12.2016

5.1.1.7.2.2 Test RB=100RB


Date: 27.DEC.2016 16:42:57

Report No.: SZEM161201075001 Page: 79 of 134

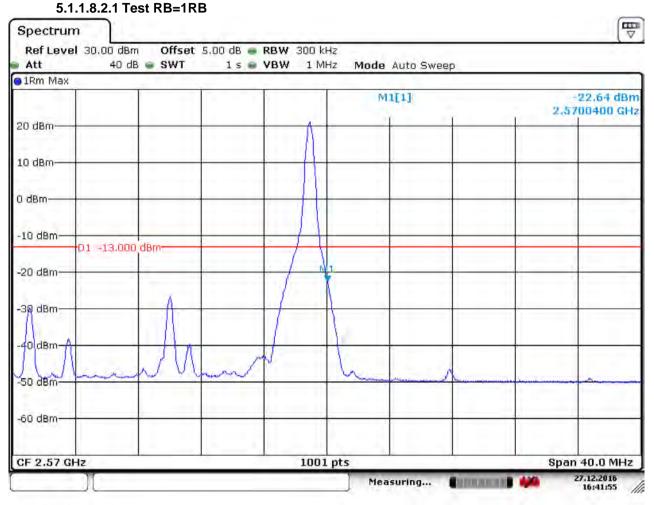
5.1.1.8 Test Mode = LTE/TM2 20MHz 5.1.1.8.1 Test Channel = LCH

5.1.1.8.1.1 Test RB=1RB

Date: 27.DEC.2016 16:41:21

Report No.: SZEM161201075001 Page: 80 of 134

Spectrum									
Ref Level 3 Att		Offse	t 5.00 dB 🖷 1 s 🖷			ode Auto Swa	еер		
●1Rm Max			-			1.1			_
- 1						M1[1]		2.4	-33,61 dBm
20 dBm								-	
10 dBm		-							
0 dBm	_				F				
-10 dBm	1 -13.000	dBm		2					
-20 dBm							-		
-30 dBm	_			M	/	-	-		
-40 dBm			ne manuna		-			-	
-50 dBm-					-				
-60 dBm						-			
CF 2.5 GHz				1001	. pts			Spa	in 40.0 MHz
						Measuring	Concerne a	444	27.12.2016


5.1.1.8.1.2 Test RB=100RB

Date: 27.DEC.2016 16:40:00

Report No.: SZEM161201075001 Page: 81 of 134

5.1.1.8.2 Test Channel = HCH

Date: 27.DEC.2016 16:41:55

Report No.: SZEM161201075001 Page: 82 of 134

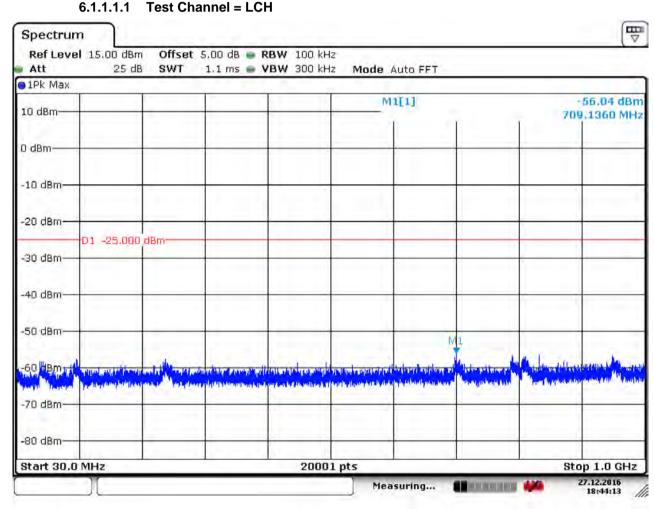
Att 1Rm Max	40 dE	SWT	1 s 🗑	VBW 1	AHz Mode	e Auto Swee	ab.		
- 1						M1[1]			-35,10 dBm 700400 GHz
20 dBm	1.00		10	11					
10 dBm						-			
D dBm				hand	-				
-10 dBm	D1 -13.000	dBm	-						
-20 dBm	01 13.000						-	-	
-30 dBm	_				1				
-40 dBm					hann				
-50 dBm						-			hours
-60 dBm	-						-	-	

5.1.1.8.2.2 Test RB=100RB

Date: 27.DEC.2016 16:43:29

Report No.: SZEM161201075001 Page: 83 of 134

6 Spurious Emission at Antenna Terminal


NOTE: For the averaged unwanted emissions measurements, the measurement points in each sweep is greater than twice the Span/RBW in order to ensure bin-to-bin spacing of < RBW/2 so that narrowband signals are not lost between frequency bins. As to the present test item, the "Measurement Points = k * (Span / RBW)" with k between 4 and 5, which results in an acceptable level error of less than 0.5 dB.

Part I - Test Plots

6.1 For LTE

6.1.1 Test Band = LTE band7

6.1.1.1 Test Mode = LTE / TM1 5MHz RB1#0

Date: 27.DEC.2016 18:44:14

Report No.: SZEM161201075001 Page: 84 of 134

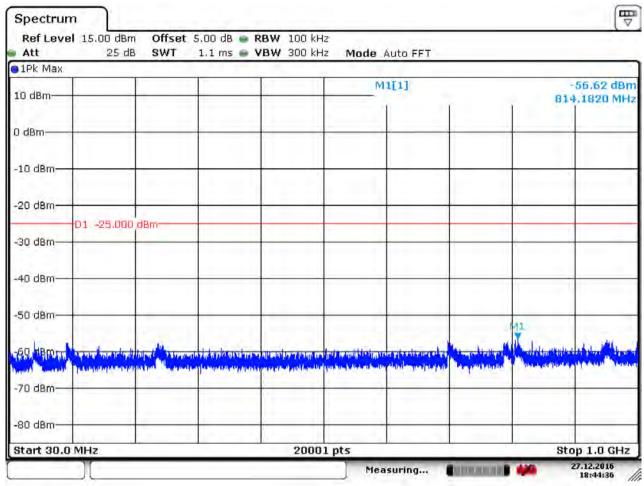
Spectrun	n	1		20							
Ref Leve Att) dBm 25 dB	Offset SWT		RBW 1 MHz VBW 3 MHz		ito Sweep	1.0			
1Pk Max.											
10 dBm						M	1[1]	r I	-42,40 dBm 5,000970 GHz		
0 dBm											
-10 dBm			_		1			-			
-20 dBm					-			1		_	
-30 dBm	D1 -2	5.000 c	18m								
-40 dBm					MI	and the strength of a	and the lot of the				
150 deale	ed data a	a Addition	A DE LA DE LA DELLA DELLA DELLA DELLA DELLA DELLA DE	hay his di	and states are considered and states	and the second state	A State of the Sta		and and an and	A Louis and Property allow	
tested in the second second second	Constanting of the				1		100 May	anans worther p	In the second framework the second	and the second sec	
-60 dBm			-	1	-						
-70 dBm		-				\rightarrow					
-80 dBm											
Start 1.0 (GHz				2000	1 pts				p 10.0 GHz	
						Mea	suring	STREET, STREET, ST		27.12.2016 16:56:24	

Date: 27.DEC.2016 16:56:24

Report No.: SZEM161201075001 Page: 85 of 134

Spectrun	n									
Ref Leve Att		lBm Offset dB SWT	5.00 dB 👄 30 ms 👄	RBW 1 MHz VBW 3 MHz	Mode A	uto Sweep				
1Pk Max			10 T							
10 dBm					M	1[1]		-46.26 dBm 19.978750 GHz		
0 dBm										
-10 dBm										
-20 dBm								-		
-30 dBm	D1 -25.0	IDD dBm								
-40 dBm							-		M	
h E Q although		alle and all all and all all all all all all all all all al		and the second states in the s	an an tao an Alasan I Tao amin'ny sora dia mampi	Para Parlant	and attent and and		della dell	
-60 dBm		-								
-70 dBm		-						()		
-80 dBm										
Start 10.0	GHz	1		2000	1 pts			Stop	20.0 GHz	
					Mea	asuring		440	27.12.2016 18:54:15	

Date: 27.DEC.2016 18:54:16


Report No.: SZEM161201075001 Page: 86 of 134

Spectrun	n									
Ref Leve Att	l 15.00 dBr 25 d		5.00 dB 👄 🕅 30 ms 👄 V	RBW 1 MHz /BW 3 MHz	Mode A	uto Sweep				
1Pk Max	A		A. 1973	. T						
10 dBm					M	11[1]	i i	-46.71 dBm 28.516820 GHz		
0 dBm		-				-	-			
-10 dBm										
-20 dBm		-						-		
-30 dBm	-D1 -25.00(J dBm					-			
-40 dBm	1						-	M1		
udan mellenande		And the second second second	A	And the state	a _{n be} ntati <mark>be</mark> r Abham Menyaman an an Abham	a fill additions also	and a second		ling a latera da fina da Antonio da fina da fina da	
-60 dBm										
-70 dBm		-					-	(<u> </u>		
-80 dBm		-								
Start 20.0	GHz		1	2000	1 pts			Stop	30.0 GHz	
					Mea	asuring	CHINOLOGIA	440 2	27.12.2016 18:56:12	

Date: 27.DEC.2016 18:56:13

Report No.: SZEM161201075001 Page: 87 of 134

6.1.1.1.2 Test Channel = MCH

Date: 27.DEC.2016 18:44:37

Report No.: SZEM161201075001 Page: 88 of 134

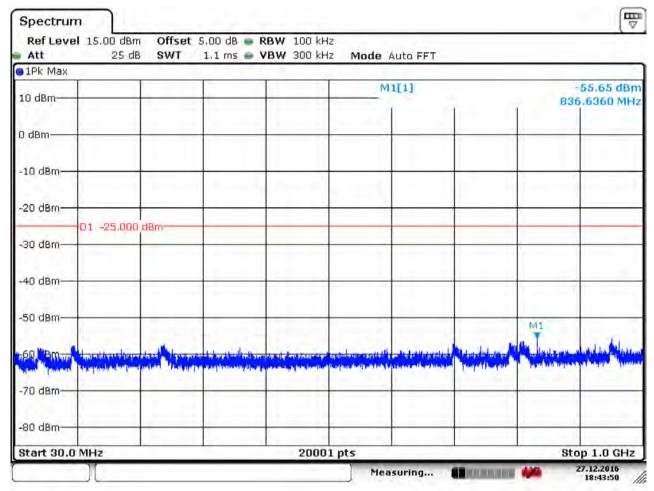
Spectru	the second se	1			-							
Ref Levi		dBm 25 dB	Offset SWT		RBW 1 MHz VBW 3 MHz	Mode Au	uto Sweep	e.				
1Pk Max.												
10 dBm			_			M	1[1]	21	ĩ	-41,05 dBm 5,066220 GHz		
0 dBm		++					-	-				
-10 dBm—			_							_		
-20 dBm—		$\left \right $		-				-				
-30 d8m	-D1 -25	.000 d	IBm-			-		-	-			
-40 dBm—			-		MI							
+BOL dett. M		hun	مرور می اور	ab damandar			Junity and a set		ing the state of the state	and the th ath and the ball of the		
-60 dBm—			_	-								
-70 dBm—		-	_							_		
-80 dBm—								-	_			
Start 1.0	GHz	_		1	2000	1 pts		-	S	top 10.0 GHz		
						Mea	isuring		1111 🊧	27.12.2016 16:55:39		

Date: 27.DEC.2016 16:55:39

Report No.: SZEM161201075001 Page: 89 of 134

Spectru	m										
Ref Lev	el 15.00 dBn 25 dB		5.00 dB 👄 M 30 ms 👄 M	RBW 1 MHz VBW 3 MHz	Mode A	uto Sweep					
1Pk Max.											
10 dBm					N	11[1]	i i		-45,92 dBm 19,965750 GHz		
0 dBm		-			-						
-10 dBm—				1							
-20 dBm—		-			-						
-30 d8m—	-D1 -25.000	dBm-						-			
-40 dBm—	-						-		M		
n FQ of the public			a provide dallamente	har manine shale		-	And the state of the second state of the secon	interest of south	and the state of the		
-60 dBm—	-										
-70 dBm—							-	<			
-80 dBm—											
Start 10.	0 GHz		1	2000	1 pts			Stop	20.0 GHz		
					Me	asuring	Concorre 1	444	27.12.2016 18:54:39		

Date: 27.DEC.2016 18:54:39


Report No.: SZEM161201075001 Page: 90 of 134

Spectrun	Second Second		5 00 lb - 1						
Att	l 15.00 dB 25 d		5.00 dB 🖷 I 30 ms 🖷 1	VBW 3 MHz	Mode A	uto Sweep			
1Pk Max			11 T						
10 dBm					M	11[1]	i l		47.02 dBm 998250 GHz
0 d8m		-							
-10 dBm									
-20 dBm				-					
-30 dBm	-01 -25.00	0 dBm							
-40 dBm	1	-					-		D
all			a the same grant of a second sec	الاربية الحرير مالك المربية المربية المربية	tan davidar of the fo	In the second second second		and a state of a state of the s	Ladenthe stalings
-60 dBm									
-70 dBm								e	
-80 dBm		-							
Start 20.0	GHz		1	2000	1 pts			Stop	30.0 GHz
					Mea	asuring	anti-conce a	444	27.12.2015 18:55:49

Date: 27.DEC.2016 18:55:48

Report No.: SZEM161201075001 Page: 91 of 134

6.1.1.1.3 Test Channel = HCH

Date: 27.DEC.2016 18:43:50

Report No.: SZEM161201075001 Page: 92 of 134

Spectrur	Second Second			1	-					
Ref Leve Att		dBm 25 dB	Offset SWT		RBW 1 MHz VBW 3 MHz		uto Sweep			
1Pk Max.						12122				
10 dBm						M	11[1]	à i		-40.64 dBm 131020 GHz
0 d8m		-			-				-	
-10 dBm	_		_							
-20 dBm—				_	-			-		
-30 d8m—	-D1 -25	.000	dBm							
-40 dBm—			_	_	M1					
1850 standard	A che de de cara		A CALLADEA	al and had be	100			er i navanski er egije.	-	and the splanter of
-60 dBm				-						
-70 dBm		-	-	-	-					-
-80 dBm—										
Start 1.0	GHz			-	2000	1 pts			Sto	p 10.0 GHz
						Mea	asuring	. CONTRACTOR		27.12.2016 16:57:28

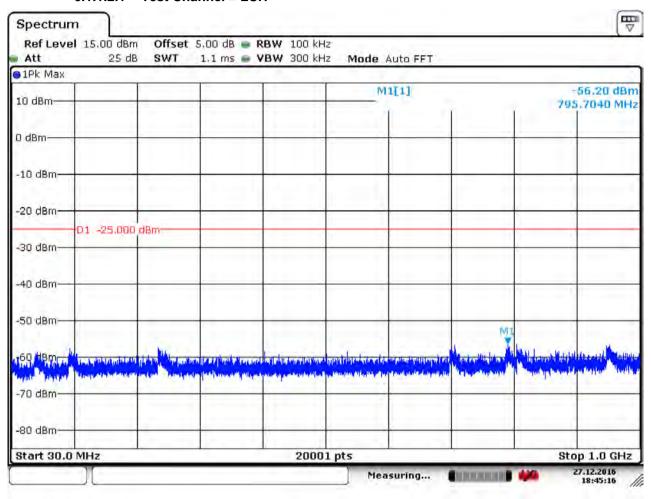
Date: 27.DEC.2016 16:57:28

Report No.: SZEM161201075001 Page: 93 of 134

Spectrun	Second Second	1		20						
Ref Leve Att		dBm 25 dB	Offset SWT		RBW 1 MH		uto Sweep			
1Pk Max				2 C T	1.1.1					
10 dBm		-				P	M1[1]	i i		-45.40 dBm 149750 GHz
0 d8m	-		_		-	-	-		-	
-10 dBm		_	_							
-20 dBm		+		-	-			-		
-30 dBm	D1 -25	.000 de	3m			-		-	-	
-40 dBm		_	_							M
رانیوسونی (CON	and the state of t	direct and the		le martile to	دورا کا الی پیدان ^ا الی	and the state of the second	and the second	An and the second second	and a solution of a sol	dia mala di
-60 dBm										
-70 dBm					-			-	•	
-80 dBm	-						-			
Start 10.0	GHz			1	200	01 pts	1		Stop	20.0 GHz
						Me	asuring	CHOOCH N	440	27.12.2016 18:55:03

Date: 27.DEC.2016 18:55:03

Report No.: SZEM161201075001 Page: 94 of 134


Spectrun	n		201						
Ref Leve Att	l 15.00 dBr 25 d		5.00 dB 👄 30 ms 👄	RBW 1 MHz VBW 3 MHz		uto Sweep			
1Pk Max			1000						
10 dBm					M	1[1]	r i		47.08 dBm 93250 GHz
0 dBm		-	-						
-10 dBm									
-20 dBm		+			-			-	
-30 dBm	01 -25.000	dBm						<	
-40 dBm		-							D.
			de annatie a lance		the better to the		The strengthered	der ander ander	and the second second
-60 dBm									
-70 dBm								ic	
-80 dBm		-							
Start 20.0	GHz		1	2000	1 pts			Stop	30.0 GHz
					Mea	asuring	Litter and the	440	27.12.2016 18:55:24

Date: 27.DEC.2016 18:55:25

Report No.: SZEM161201075001 Page: 95 of 134

6.1.1.2 Test Mode = LTE / TM1 10MHz RB1#0 6.1.1.2.1 Test Channel = LCH

Date: 27.DEC.2016 18:45:16

Report No.: SZEM161201075001 Page: 96 of 134

Spectrun	n	1								
Ref Leve Att) dBm 25 dB	Offset SWT		RBW 1 MHz VBW 3 MHz	Mode Au	to Sweep			
1Pk Max.					· · · · · · · ·					
10 dBm						M	1[1]	i l		-41.79 dBm 100970 GHz
0 dBm								1		
-10 dBm			_							
-20 dBm					-			1		
-30 dBm	D1 -25	5.000 (dBm-		-				-	
-40 dBm					MI	والمراجع والمحمد والم	ماليون رايور مراجعة رايور			
50 Mollow	A Laboration		a da antikadi. Mga maringan	And and all and a second s					and a set of the state of the state	California produce and
-60 dBm		-							-	
-70 dBm		-		-		$ \longrightarrow $		-		
-80 dBm									-	
Start 1.0 C	GHz				2000	1 pts			Stop	0 10.0 GHz
						Mea	suring			27.12.2016 16:59:26

Date: 27.DEC.2016 16:59:26

Report No.: SZEM161201075001 Page: 97 of 134

Spectrun	n		201						
Ref Leve Att	l 15.00 dBr 25 d		5.00 dB 👄 30 ms 👄	RBW 1 MHz VBW 3 MHz	Mode A	uto Sweep			
1Pk Max	A		10 C 10						
10 dBm					N	11[1]	i i		-46.52 dBm 462430 GHz
0 dBm		-					1		
-10 dBm									
-20 dBm		-						-	
-30 dBm	D1 -25.000) d8m						-	
-40 dBm	-					M1			
LED. NO.	The second second	and a start of the second		And Antonio and	haddfor diag dd Cyprificau annor	and the state	a la parte de la composition d	all part of the	and a state (()
-60 dBm									
-70 dBm								()	
-80 dBm									
Start 10.0	GHz		1	2000	1 pts		d.	Stop	p 20.0 GHz
)[Mea	asuring	() in contraction	440	27.12.2015 18:53:48

Date: 27.DEC.2016 18:53:49

Report No.: SZEM161201075001 Page: 98 of 134

Spectrun	Sector Sector		200						
Ref Leve Att	l 15.00 dBr 25 d		5.00 dB 👄 30 ms 👄	RBW 1 MHz VBW 3 MHz	Mode A	uto Sweep			
1Pk Max									
10 dBm					N	11[1]	1		46.68 dBm 07820 GHz
0 d8m		-			-	-			
-10 dBm					_	-			
-20 dBm			-					-	
-30 d8m	01 -25.000	d8m						-	
-40 dBm						-	-	M1	
WWW Helm	-	Million Million	allang dash tidada	and the particular of	hadara a Abil Ata	The ball of the second second	III. A State of the second	a share a stall we have be	
-60 dBm	1		-		-				
-70 dBm	*					-		¢ i	
-80 dBm		-							
Start 20.0	GHz		*	2000	1 pts			Stop	30.0 GHz
					Me	asuring			27.12.2016 18:56:30

Date: 27.DEC.2016 18:56:31

Report No.: SZEM161201075001 Page: 99 of 134

1Pk Max	()		1.11.11	. A					
10 dBm					M	1[1]	i c		56.22 dBm .9000 MHz
0 dBm									
-10 dBm—			_						
-20 dBm—			-						
-30 dBm—	-D1 -25.000	dBm							
-40 dBm—			_						
-50 dBm—						N	1		
-AA HAM				til store til på befordeler Angelsforset uter sederer			And the second s	Hutter	the set
-70 dBm-	- AN DESCRIPTION OF A	Mar Pub	date of second states	and the second se	a near the second s				
-80 dBm-									-

6.1.1.2.2 Test Channel = MCH

Date: 27.DEC.2016 18:44:54

Report No.: SZEM161201075001 Page: 100 of 134

Spectrun	1 m m			20						
Ref Leve Att		dBm 25 dB			RBW 1 MHz VBW 3 MHz		uto Sweep			
1Pk Max.					1. T					
10 dBm						M	1[1]	ù.	5	-41,37 dBm .061720 GHz
0 dBm		-					-		-	-
-10 dBm			_							
-20 dBm					-			-	-	
-30 dBm	D1 -25	i.000 a	IBm-						-	
-40 dBm		-	_		M1		A.A.A. Mittheward			
rtED.deataine	healthang	len	Hall Ald Anna	1.5. 15.2.2.5. aurel 41.4.5.	utilis, _{i a} nd atlemennet معرف مربع معرف م		a state of the sta	angen between er er ber eine seine	and a second second second	
-60 dBm		-	_							-
-70 dBm		-	_							-
-80 dBm			-							-
Start 1.0 (GHz	-		1	2000	1 pts	1		Sto	op 10.0 GHz
						Mea	asuring			27.12.2016 16:58:14

Date: 27.DEC.2016 16:58:14

Report No.: SZEM161201075001 Page: 101 of 134

Spectrun	n								
Ref Leve Att	l 15.00 dB 25 c		5.00 dB 👄 30 ms 👄	RBW 1 MHz VBW 3 MHz	Mode A	uto Sweep			
1Pk Max	A		10 T						
10 dBm					N	11[1]	i i		-45.01 dBm 336260 GHz
0 dBm									
-10 dBm		-							
-20 dBm									
-30 d8m	D1 -25.00	U OBM							
-40 dBm		-					-		M1
L50 Patrade		-		An Allichten Alle	Henry BC and a start of the second	laterate laterate		letter and an area	A CONTRACTOR OF THE OWNER
-60 dBm								-	
-70 dBm								¢	
-80 dBm									
Start 10.0	GHz		10	2000	1 pts			Stop	20.0 GHz
					Me	asuring	CHOICE I		27.12.2016 18:53:21

Date: 27.DEC.2016 18:53:21

Report No.: SZEM161201075001 Page: 102 of 134

Spectrun	Sector Se		201						
Ref Leve Att	l 15.00 dBn 25 di			RBW 1 MHz VBW 3 MHz	Mode A	uto Sweep			
1Pk Max.									
10 dBm					IV	11[1]			-46.37 dBm 362280 GHz
0 dBm		-							
-10 dBm									
-20 dBm									
-30 dBm	D1 -25.000) dBm						-	
-40 dBm						-			Mi
A all then the		and and the second	and the state of the		lation to deal allowing	A la face de la casa d	and the second second	Harris Miller and	And a state of the
-60 dBm					-				
-70 dBm								¢ i	
-80 dBm									
Start 20.0	GHz		10	2000	1 pts			Stop	30.0 GHz
)[]				Me	asuring	antro ne s	440	27.12.2016 18:56:49

Date: 27.DEC.2016 18:56:49

Report No.: SZEM161201075001 Page: 103 of 134

Spectrur	n		100						
Ref Leve Att	el 15.00 dBr 25 d			RBW 100 kH VBW 300 kH		Auto FFT			
1Pk Max.			10.00	A		1.1			
10 dBm					P	11[1]	à l	9	-56.58 dBm 51.6720 MHz
0 dBm									
-10 dBm						-			
-20 dBm									
-30 dBm	-D1 -25.00(D dBm					-		
-40 dBm—	-							-	-
-50 dBm									MI
-69 HBM							THE STREET DOWNER	AL DESIGNATION	test days
-70 dBm-	I water the second s	an alignan _{an A} gilananan.	n poor fan de	and a star of a star o			and Ny particul from		
-80 dBm—									
Start 30.0	MHz	-1		2000	1 pts			S	top 1.0 GHz
)[Me	asuring		444	27.12.2015

6.1.1.2.3 Test Channel = HCH

Date: 27.DEC.2016 18:47:13

Report No.: SZEM161201075001 Page: 104 of 134

Spectrun	n										
Ref Leve Att		dBm 5 dB	Offset SWT	5.00 dB 27 ms	RBW VBW		Mode Au	uto Sweep			
1Pk Max	1			100	1.1		. C.L				
10 dBm							M	1[1]	n l	Ĩ.	-40.80 dBn 5.121120 GH:
0 dBm		-						-	-		_
-10 dBm			_							_	
-20 dBm					-	_			-		_
-30 d8m	D1 -25.	.000 d	Bm			_	_				
-40 dBm			-			M1		. Here la hadront			_
h50H18-mlife	n Dere Hude	hur	Light) ^{al} lates geography com	al dissuited to	noolgili <mark>,</mark> ileepaadi hoolgili, ileepaadi	ditilar prillion 					
-60 dBm		-	_			_					-
-70 dBm		-	_				;			-	_
-80 dBm							-				_
Start 1.0 (Hz	-1-		1		2000	L pts	1	0	3	Stop 10.0 GHz
							Mea	asuring			27.12.2016 17:00:13

Date: 27.DEC.2016 17:00:13

Report No.: SZEM161201075001 Page: 105 of 134

Spectrun Ref Leve	the second se		Offerst	5.00 dB	00111	1.6411-					
Att		25 dB	SWT		VBW		Mode	Auto Sweep			
1Pk Max				100							
10 dBm								M1[1]	1		-45.84 dBm 446930 GHz
0 dBm		-									
-10 dBm		_	_		-						
-20 dBm		-			-			-			
-30 dBm	D1 -25	5.000 c	IBm 		-					-	
-40 dBm		-	-		-			M1			
-50, all 9-11-1-	- I bila	-	and the second			ning orth	atter humaning	Real Blow and the second	W. Mar	مير و من المرائد و المراد مريد المرائد و مراد و	A CONTRACTOR
-60 dBm								-			
-70 dBm		-	-						-	ic	
-80 dBm		-		-							
Start 10.0	GHz			1		2000	1 pts	1		Sto	p 20.0 GHz
) M	easuring	STREET, STREET	-	27.12.2015 18:52:50

Date: 27.DEC.2016 18:52:51

Report No.: SZEM161201075001 Page: 106 of 134

Spectrur	n								
Ref Leve Att	l 15.00 dBr 25 d		5.00 dB 🖷 30 ms 🖷	RBW 1 MHz VBW 3 MHz	Mode A	uto Sweep			
01Pk Max	A		100						
10 dBm					n	M1[1] -46.: 20.1322			
0 dBm									
-10 dBm									
-20 dBm	-01 -25.00			-					
-30 d8m	101 -23.000	J QBM							
-40 dBm									
and Andrews	and the second second		1990	an <mark>an an a</mark>	a an Allan ann Fraistean an	lenste dan reader	and and the still of the date	Maller portation of the second	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
-60 dBm—					-				
-70 dBm		-	-			-	-	· · · ·	
-80 dBm		-							
Start 20.0	GHz		<i>i</i>	2000	1 pts			Stop	30.0 GHz
	JL				Me	asuring		440	27.12.2015 18:57:11

Date: 27.DEC.2016 18:57:11

Report No.: SZEM161201075001 Page: 107 of 134

Ref Leve Att	l 15.00 dBr 25 d		5.00 dB 👄 1	RBW 100 kH VBW 300 kH		Auto FFT			
1Pk Max									
10 dBm			1		M	1[1]	-56.67 dE 815,1030 M		
0 dBm									
-10 dBm—									
-20 dBm—		+	-	-					
-30 dBm	-D1 -25.000) dBm						-	
-40 dBm									
-50 dBm—					-			M1	
-99 1 80	ANA DIST, NUMBER OF	Astrono Materiation	on densideres organ	a teri a tiperni a tirati			-	The second second	discont and a
-70 dBm-			Sale of a large series		and hole such				
-80 dBm					-			_	
Start 30.0	MHz	1	1	2000	1 pts			Sto	p 1.0 GHz

6.1.1.3 Test Mode = LTE / TM1 15MHz RB1#0 6.1.1.3.1 Test Channel = LCH

Date: 27.DEC.2016 18:48:46

Report No.: SZEM161201075001 Page: 108 of 134

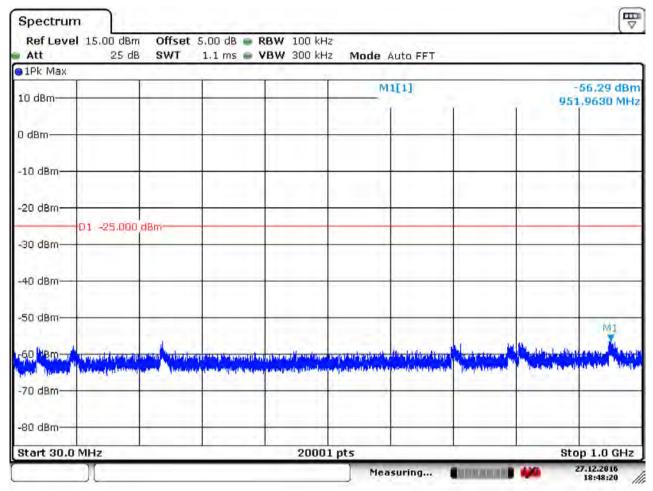
Spectrun	n	1		1							
Ref Leve Att) dBm 25 dB	Offset SWT		RBW 1 MHz VBW 3 MHz		uto Sweep				
1Pk Max.	1										
10 dBm	m				M1[1]			-40,94 dBm 5,001870 GHz			
0 dBm								-	-		
-10 dBm			_							-	
-20 dBm								-		-	
-30 d8m	D1 -2	5.000 r	1Bm						-		
-40 dBm					MI					_	
-50-40#1-1	de latidades		lean and feedar.	the part of the last				-	1. 18 Martin 10 Mart		
-60 dBm						,,					
-70 dBm		-				$ \longrightarrow $			-	-	
-80 dBm			-	-					-		
Start 1.0 C	SHz	-		1	2000	1 pts			S	top 10.0 GHz	
						Mea	asuring	THE OWNER		27.12.2016 17:02:12	

Date: 27.DEC.2016 17.02.13

Report No.: SZEM161201075001 Page: 109 of 134

Spectrun	n								
Ref Leve Att	l 15.00 dBr 25 dl		5.00 dB 🖷 1 30 ms 🖷 1	RBW 1 MHz BW 3 MHz	Mode Au	uto Sweep			
1Pk Max.	A		10 T						
10 dBm					M	1[1]	i i		46.55 dBm 39250 GHz
0 dBm									
-10 dBm									
-20 dBm			-		_		-		
-30 dBm	D1 -25.000) dBm	-						
-40 dBm	_						-		M
				and a state of the state of the	Lessen ich yn far far far stal Dige far generat yn gener far	ally brain and	And the second s	al forder and a loss of the second	-
-60 dBm									
-70 dBm	_						-	c	
-80 dBm									
Start 10.0	GHz		1	2000	1 pts		J	Stop	20.0 GHz
)[]				Mea	suring	In the second second	-	27.12.2015 18:51:33

Date: 27.DEC.2016 18:51:34


Report No.: SZEM161201075001 Page: 110 of 134

Spectrun	Second Second		201						
Ref Leve Att	l 15.00 dBr 25 di		5.00 dB 👄 1 30 ms 👄 1	RBW 1 MHz VBW 3 MHz	Mode A	uto Sweep			
1Pk Max									
10 dBm					P	M1[1]	i i		-46.21 dBm)34350 GH;
0 d8m					-	-		-	
-10 dBm									
-20 dBm		-	-		-				
-30 dBm	D1 -25.000	dBm	-						
-40 dBm		-					-	M1	
the least	the second second second		NI		an hiller and the	and posterio and		il the state in the	And the second second
-60 dBm					1				
-70 dBm							-	1 C	
-80 dBm									
Start 20.0	GHz		1	2000	1 pts	1		Stop	30.0 GHz
)[]				Me	asuring	CHINGS IN	444	27.12.2016 18:58:19

Date: 27.DEC.2016 18:58:19

Report No.: SZEM161201075001 Page: 111 of 134

6.1.1.3.2 Test Channel = MCH

Date: 27.DEC.2016 18:48:21

Report No.: SZEM161201075001 Page: 112 of 134

Spectrun					-					
Ref Leve Att		dBm 25 dB	Offset SWT		RBW 1 MHz VBW 3 MHz	Mode Au	uto Sweep			
1Pk Max				11 C 1	1. Y					
10 dBm	-					M	1[1]	à i		41.54 dBm 156770 GHz
0 dBm			_				-			
-10 dBm			_							
-20 dBm			,	-	-			-		
-30 d8m	D1 -25	1.000 d	IBm-							
-40 dBm					MI	and a second				
50 decelutor	Lind Friedran	1 Louds	PleaseWiller	A State State State		and part of the second states	ALL AND	1 manual house	and the state	
a and a strength of the second se	-							and the sublic body	department of the second	and the state of the state
-60 dBm	1		-	-	-					
-70 dBm		-	-		-	\rightarrow				
-80 dBm										
Start 1.0 (GHz			2	2000	1 pts				0 10.0 GHz
	JI_					Mea	isuring	CHOOCH 1		27.12.2016 17:01:25

Date: 27.DEC.2016 17.01:26

Report No.: SZEM161201075001 Page: 113 of 134

Spectrun	n								
Ref Leve Att	l 15.00 dBr 25 dl		5.00 dB 👄 30 ms 👄	RBW 1 MHz VBW 3 MHz	Mode A	uto Sweep	1.1		
1Pk Max	A		10 T						
10 dBm					M	11[1]	i i		45.12 dBm 49750 GHz
0 dBm						-		*	
-10 dBm					-				
-20 dBm					-				
-30 dBm	D1 -25.000								
-40 dBm							-	-	M
#50 alabasida		and the second			alinea la que constitu Naparte constituentes	Mag Cart		and the state of t	-
-60 dBm									
-70 dBm		_						ic	
-80 dBm									
Start 10.0	GHz		1	2000	1 pts			Stop	20.0 GHz
)[]				Mea	asuring	CHOOSE N	444	27.12.2016 18:51:58

Date: 27.DEC.2016 18:51:58

Report No.: SZEM161201075001 Page: 114 of 134

Spectrun	n								
Ref Leve Att	l 15.00 dBn 25 dB		5.00 dB 🖷 1 30 ms 🝙 '	RBW 1 MHz VBW 3 MHz	Mode A	uto Sweep	1		
1Pk Max			1000						
10 dBm					N	11[1]	i i		-46.53 dBm 523270 GHz
0 dBm					-				
-10 dBm									
-20 dBm				-					
-30 dBm	-D1 -25.000	d8m						-	
-40 dBm			-		-			1	M1
whethed mean	ar reported a least and	Lange and the second	all and the second s	and and the second	reporter to booting	and a part of the last	lan gamaha attar Pangatatan gama	dente de la composition	- Marthanthe
-60 dBm								-	
-70 dBm			-				-	-	
-80 dBm									
Start 20.0	GHz			2000	1 pts			Stop	30.0 GHz
					Me	asuring	DI TOTO COLI IL	-	27.12.2015 18:57:53

Date: 27.DEC.2016 18:57:54

Report No.: SZEM161201075001 Page: 115 of 134

Spectrur	Acres 1. Automation		201						
Ref Leve Att	el 15.00 dBr 25 d		5.00 dB 🖷	RBW 100 ki VBW 300 ki		Auto FFT			
1Pk Max.			1.11.11	1. A					
10 dBm					N	11[1]	11		56.93 dBm).0970 MHz
0 dBm									
-10 dBm	-								
-20 dBm									
-30 dBm—	-D1 -25.00(U dBm							
-40 dBm—									
-50 dBm—		MI	_						
-60 [#] Bm	and a second		and the section of					The land the House	Langer and Antonia
-70 dBm			and the pair of the			1.1.2.4			
-80 dBm—									-
Start 30.0	MHz			2000	01 pts		1		p 1.0 GHz
	JL				Me	asuring		440 3	27.12.2016 18:47:57

6.1.1.3.3 Test Channel = HCH

Date: 27.DEC.2016 18:47:57

Report No.: SZEM161201075001 Page: 116 of 134

Spectrun	L											
Ref Leve Att		dBm 5 dB	Offset SWT	5.00 dB	RBW BW		Mode	Auto Swee	p			
IPk Max.												
10 dBm								M1[1]	à.)	Ī.		89.51 dBm 12120 GHz
0 dBm				-			_				_	
-10 dBm		+	_		_				_		_	
-20 dBm					-				-		_	
-30 d8m	D1 -25	.000 d	Bm-						-	-		
-40 dBm			-			M1	. Lubra le ser	and a secol defetted				-
-50 -101-0			1. [10] 1. 4. 5 4. ^{[1} 6]	and a partition	len tiden diate Sector	Haller and Kaller	rollel to or	A feet participation of the second se			Walter and	
-60 dBm		+		-	-	_		-			-	
-70 dBm		-	_				_		-	-		
-80 dBm						_			-			
Start 1.0 C	Hz	-				2000	1 pts			,	Stop	10.0 GHz
) M	easuring				7.12.2016 17:03:01

Date: 27.DEC.2016 17:03:01

Report No.: SZEM161201075001 Page: 117 of 134

Spectru	m		22						
Ref Lev	el 15.00 dBr 25 d		5.00 dB 👄 30 ms 👄	RBW 1 MHz VBW 3 MHz	Mode A	uto Sweep			
1Pk Max.	Q								
10 dBm					M	1[1]	11		46.19 dBm 99260 GHz
0 dBm		-							
-10 dBm—									
-20 dBm—		-							
-30 d8m—	-D1 -25.000) d8m						-	
-40 dBm—							-		Ml
50 dPs				and the second sec	ni alexa da pri	-	الارد اللامريم مالا بالإما الروحية مريم الإمار	destatively and	in marte lange the
-60 dBm—									
-70 dBm—		-							
-80 dBm—									
Start 10.	0 GHz		1	2000	1 pts			Stop	20.0 GHz
					Mea	suring			27.12.2016 18:52:29

Date: 27.DEC.2016 18:52:29

Report No.: SZEM161201075001 Page: 118 of 134

Spectrun	n								
Ref Leve Att	l 15.00 dBn 25 dl		5.00 dB 📦 1 30 ms 👄 1	RBW 1 MHz VBW 3 MHz	Mode A	uto Sweep			
1Pk Max	A		10 C 17						
10 dBm					M	1[1]	11.0		-46,76 dBm 165240 GHz
0 dBm									
-10 dBm									
-20 dBm					-			1	
-30 dBm	01 -25.000								
-40 dBm M1						A difference and the second states	المراجع المراجع المراجع	and a second provide	a contrate formation
And a state of the	No. which for the statistics	all and the second	and the second distances of	and the sure half the sure of the	Successful and a statistic	Contraction and the second	have a subscription of the	a har an	Constant of the second
-60 dBm									
-70 dBm							-		
-80 dBm									
Start 20.0	GHz		1	2000	1 pts			Stop	30.0 GHz
)(Mea	asuring			27.12.2016 18:57:34

Date: 27.DEC.2016 18:57:34

Report No.: SZEM161201075001 Page: 119 of 134

6.1.1.4 Test Mode = LTE / TM1 20MHz RB1#0 6.1.1.4.1 Test Channel = LCH

Att 1Pk Max	25 d	B SWT		VBW 300 kH	- moue	Auto FFT			
10 dBm					M	1[1]	-55,49 dBm 259,1270 MHz		
0 dBm			-						
-10 dBm			-						
-20 dBm		-							
-30 dBm	D1 -25.00	0 dBm	-						
-40 dBm—									
-50 dBm—		Ml							
169 "3m-	Himple to and it we			n leghiliseda haled			Concept States	A Star Late Later	
-70 dBm			to a second second						
-80 dBm		-			,				

Date: 27.DEC.2016 18:49:08

Report No.: SZEM161201075001 Page: 120 of 134

Spectrun	n	1								
Ref Leve Att) dBm 25 dB	Offset SWT		RBW 1 MHz VBW 3 MHz		o Sweep			
1Pk Max				100						
10 dBm						Ma	[1]	à i c		-41.73 dBm 102320 GHz
0 dBm			-	-	-			-		
-10 dBm			_				_	-		
-20 dBm				-				1	h	
-30 dBm	D1 -25	3.000	dBm-					-	-	
-40 dBm					MI	and the second second	ana jalijatet			
#历DudDowski	n, enderst	u unit	aldressiando	and a special sector in the sec	(all) by us particulated for					Ale de la segura provincia
-60 dBm										
-70 dBm		-				\rightarrow		-	(i	
-80 dBm										
Start 1.0 (GHz	-		-	2000)1 pts			Stop	0 10.0 GHz
						Meas	uring	THE OWNER WAT		27.12.2016 17:05:02

Date: 27.DEC.2016 17:05:02

Report No.: SZEM161201075001 Page: 121 of 134

Spectru	m								
Ref Lev	el 15.00 dBr 25 d		5.00 dB 🖷 1 30 ms 🖷 1	RBW 1 MHz VBW 3 MHz		uto Sweep			
1Pk Max.	Q								
10 dBm					M	11[1]	11		45.88 dBm 42260 GHz
0 dBm		-							
-10 dBm—								-	
-20 dBm—		-			-			1	
-30 d8m—	-D1 -25.000) d8m							
-40 dBm—	-				-				M1
-50.49 DAN	N. S. Dall	the and the second		and and the second second	la shert ya mit life	Internation and		den sallert Lein	
-60 dBm—			the L						
-70 dBm—								(<u> </u>	
-80 dBm—									
Start 10.	0 GHz			2000	1 pts			Stop	20.0 GHz
					Mea	asuring			27.12.2016 18:51:12

Date: 27.DEC.2016 18:51:12

Report No.: SZEM161201075001 Page: 122 of 134

Spectru	a france in the second		2.4						
Ref Levi	el 15.00 dBn 25 dB		5.00 dB 🖷 N 30 ms 🝙 N	RBW 1 MHz /BW 3 MHz		uto Sweep			
1Pk Max.			100						
10 dBm					M	11[1]			46.64 dBm 51250 GHz
0 dBm			-						
-10 dBm—					-				
-20 dBm—								-	
-30 dBm—	-01 -25.000							-	
-40 dBm—							-		м
tube Alberter	Angenetary for Marks		In the superior of the literature	المراجع المحاصل	lan an a				A stall a stall a
-60 dBm—	-								
-70 dBm—		-			$ \longrightarrow $			(i	
-80 dBm—									
Start 20.0	0 GHz			2000	1 pts			Stop	30.0 GHz
)[]				Mea	asuring	THE R. P.	440	27.12.2016 18:58:43

Date: 27.DEC.2016 18:58:43

Report No.: SZEM161201075001 Page: 123 of 134

Spectrun	Second Second		22						
Ref Leve Att	l 15.00 dBm 25 dB			RBW 100 kH		Auto FFT			
1Pk Max			1. C. T. T.						
10 dBm					M	11[1]	i i		55.35 dBm 2.6420 MHz
0 dBm			-						
-10 dBm		-							
-20 dBm		-							
-30 dBm	D1 -25.000	abm							
-40 dBm									
-50 dBm			_						M1
-60 ⁴⁸ m-			tin is monthly by	i poning pining and and inter-	er element innet	disconstant dark	Asternio-states		the second
-70 dBm									
-80 dBm									
Start 30.0	MHz			2000	1 pts			Sto	p 1.0 GHz
					Mea	asuring	CONTRACTOR OF STREET,		27.12.2015 18:49:31

6.1.1.4.2 Test Channel = MCH

Date: 27.DEC.2016 18:49:32

Report No.: SZEM161201075001 Page: 124 of 134

Spectrun	n			20	1							
Ref Leve Att		dBm 25 dB	Offset SWT	5.00 dB 27 ms		1 MHz 3 MHz	Mode A	uto Sweep				
1Pk Max.	1000											
10 dBm							M	11[1]	2	ī		41.46 dBm 52720 GHz
0 dBm											_	
-10 dBm			-								_	
-20 dBm			10						-		_	
-30 dBm	D1 -25		18m							-		
-40 dBm						MI	Contract Contract	a data ter et				
-Sauthauthu	land and a da	Ant	no ka lingth Ind		Martin Contraction	ergenske konstande	Read of the second s		a satisfication of the			
-60 dBm	1											
-70 dBm		-				_					_	
-80 dBm												
Start 1.0 (GHz			-		2000	1 pts	<u> </u>				10.0 GHz
							Mea	asuring	- North Concession		2	7.12.2016 17:04:06

Date: 27.DEC.2016 17:04:06

Report No.: SZEM161201075001 Page: 125 of 134

Spectrur	n								
Ref Leve Att	l 15.00 dB 25 (5.00 dB 📦 1 30 ms 👜 1	RBW 1 MHz VBW 3 MHz		uto Sweep			
1Pk Max			1000						
10 dBm					n	41[1]	ì i		46.52 dBm 52260 GHz
0 dBm						-			
-10 dBm		-						-	
-20 d8m				-					
-30 dBm	D1 -25.00								
-40 dBm	-								M1
	the second s		all and a state of the	Logical Marine Street	top/ belles de	and a second state of the second	hard the same deal has	and the second second second	-
-60 dBm									
-70 dBm		-					-	e	
-80 dBm									
Start 10.0	GHz		1	2000	1 pts	1.	d.	Stop	20.0 GHz
					Me	asuring	() in contraction	#	27.12.2016 18:50:50

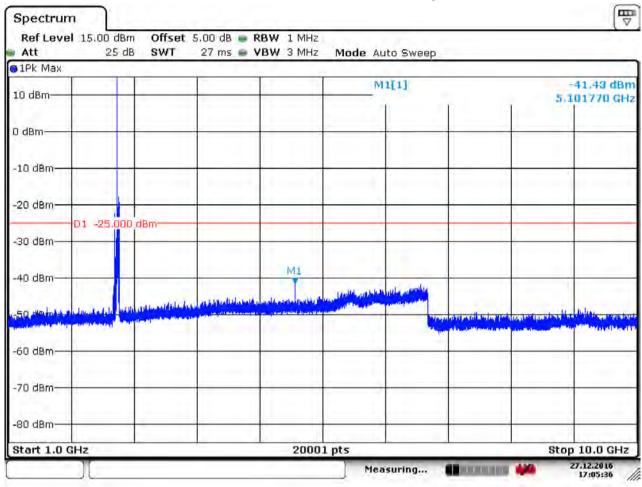
Date: 27.DEC.2016 18:50:51

Report No.: SZEM161201075001 Page: 126 of 134

Spectrun	n								
Ref Leve Att	l 15.00 dB 25 d		5.00 dB 📦 30 ms 📦	RBW 1 MHz VBW 3 MHz	Mode Au	uto Sweep			
1Pk Max	A		10 T						
10 dBm					M1[1] 20				45.64 dBm 03750 GHz
0 dBm									
-10 dBm									
-20 dBm		-	_				-	-	
-30 dBm	D1 -25.00	IU dBm						-	
-40 dBm	-	-					-		
- Louiside Martin	and the state of the			la parti periodita anta	halingla press	and hope and sold a sol	nappilitan dadar	المربع المربع وما المربع المربع ومناطق من المربع المربع	. In Manual as
-60 dBm									
-70 dBm		-	-				-	-	
-80 dBm			-						
Start 20.0	GHz	1	1	2000	1 pts			Stop	30.0 GHz
					Mea	asuring	() or reality	#	27.12.2016 18:59:04

Date: 27.DEC.2016 18:59.05

Report No.: SZEM161201075001 Page: 127 of 134


Spectrun	n		2.2						
Ref Leve Att	l 15.00 dBm 25 dB			RBW 100 kHz VBW 300 kHz		Auto FFT			
1Pk Max	A		1						
10 dBm					M	1[1]			56,35 dBm 0,1060 MHz
0 dBm		-				-			
-10 dBm								-	
-20 dBm								1	
-30 dBm	D1 -25.000	dBm-							
-40 dBm									
-50 dBm			-				M I		
160 Bm-	ingeneration and the second	and the second second	The second second second	Performance Pe			Manhall	And the second second	and all the same
-70 dBm									
-80 dBm									-
Start 30.0	MHz			20001	pts		T.	Sto	pp 1.0 GHz
			-		Mea	suring	CONTRACTOR NO.		27.12.2016 18:49:52

6.1.1.4.3 Test Channel = HCH

Date: 27.DEC.2016 18:49:52

Report No.: SZEM161201075001 Page: 128 of 134

Date: 27.DEC.2016 17:05:36

Report No.: SZEM161201075001 Page: 129 of 134

Spectru	m								
Ref Lev Att	el 15.00 dBn 25 dB		5.00 dB 👄 🕅 30 ms 👄 V	RBW 1 MHz /BW 3 MHz	Mode A	uto Sweep	11		
1Pk Max.	Q		S. 199						
10 dBm					M	11[1]	1		46.25 dBm 47250 GHz
0 dBm			-						
-10 dBm—									
-20 dBm—	1.0.00				-				
-30 d8m—	-D1 -25.000	dBm-							
-40 dBm—									M
In SQ Marking	and the space of the	TUNNIN	tradapar ti bisin bast	م مراجع المرجع والم	Autoritation provide the	- Instanti dana sa		Langer Langer	Alternation and the
-60 dBm—			admin. where						
-70 dBm—		-					-	ic i	
-80 dBm—									
Start 10.	0 GHz			2000	1 pts			Stop	20.0 GHz
					Mea	asuring	CHOOCH N	-	27.12.2016 18:50:15

Date: 27.DEC.2016 18:50:16

Report No.: SZEM161201075001 Page: 130 of 134

Spectrun	n								
Ref Leve Att	l 15.00 dBr 25 d		5.00 dB 🖷 1 30 ms 🖷 1	RBW 1 MHz VBW 3 MHz	Mode A	uto Sweep			
1Pk Max			A 1 1						
10 dBm					N	11[1]	Î.		-46.61 dBm 107420 GHz
0 dBm		-				-			
-10 dBm									
-20 dBm		-		-					
-30 dBm	+D1 -25.000	dBm-							
-40 dBm						Ml			
	and particular and the state	Louis Laboration	and second s	and a second	Strange Alter Strange Strate	and the later of	a second life particular	land a share being being the start	an a
-60 dBm		-						-	
-70 dBm							-	¢i	
-80 dBm		-							
Start 20.0	GHz		1	2000	1 pts			Stop	30.0 GHz
					Me	asuring	Concerne P		27.12.2015 18:59:26

Date: 27.DEC.2016 18:59:26

Report No.: SZEM161201075001 Page: 131 of 134

Polarization

7 Field Strength of Spurious Radiation

7.1 For LTE

7.1.1 Test Band = LTE band7

7.1.1.1 Test Channel = LCH Frequency (MHz) Level (dBm) Limit Line (dBm) Over Limit (dB) 2864.000 -50.28 -25.00 25.28

	· · · ·	· · · ·		
2864.000	-50.28	-25.00	25.28	Vertical
4852.500	-67.42	-25.00	42.42	Vertical
10605.000	-64.32	-25.00	39.32	Vertical
2864.000	-56.49	-25.00	31.49	Horizontal
4950.000	-67.08	-25.00	42.08	Horizontal
10605.000	-64.36	-25.00	39.36	Horizontal

7.1.1.1.2 Test Channel = MCH

Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
1199.000	-66.00	-25.00	41.00	Vertical
2744.000	-57.40	-25.00	32.40	Vertical
5730.000	-66.96	-25.00	41.96	Vertical
1100.000	-66.49	-25.00	41.49	Horizontal
2680.000	-57.37	-25.00	32.37	Horizontal
5145.000	-67.04	-25.00	42.04	Horizontal

7.1.1.1.3 Test Channel = HCH

Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
1353.000	-67.62	-25.00	42.62	Vertical
2456.000	-57.64	-25.00	32.64	Vertical
4267.500	-67.56	-25.00	42.56	Vertical
1375.000	-67.43	-25.00	42.43	Horizontal
4462.500	-67.91	-25.00	42.91	Horizontal
6120.000	-66.00	-25.00	41.00	Horizontal

NOTE:

1) All modes are tested, but the data presented above is the worst case.the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Report No.: SZEM161201075001 Page: 132 of 134

8 Frequency Stability

8.1 Frequency Error VS. Voltage

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				VL	4.26	0.00170	PASS
		LCH	TN	VN	-2.58	-0.00103	PASS
				VH	-6.40	-0.00255	PASS
				VL	-0.72	-0.00029	PASS
	LTE/TM1 20MHz	MCH	TN	VN	5.42	0.00214	PASS
				VH	-5.79	-0.00229	PASS
				VL	5.33	0.00208	PASS
		HCH	TN	VN	0.00184	PASS	
LTE band 7				VH	4.06	0.00159	PASS
LIE band 7				VL	4.23	0.00169	PASS
		LCH	TN	VN	5.64	0.00225	PASS
				VH	-4.62	-0.00184	PASS
				VL	-0.59	-0.00023	PASS
	LTE/TM2 20MHz	MCH	TN	VN	-3.60	-0.00142	PASS
				VH	-5.95	-0.00235	PASS
				VL	1.81	0.00071	PASS
		HCH	TN	VN	0.70	0.00027	PASS
				VH	5.10	0.00199	PASS

Report No.: SZEM161201075001 Page: 133 of 134

8.2 Frequency Error VS. Temperature

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
LTEband7	LTE/TM1 20MHz	LCH	VN	-30	6.13	0.00244	PASS
				-20	4.79	0.00191	PASS
				-10	-4.27	-0.00170	PASS
				0	3.76	0.00150	PASS
				10	4.96	0.00197	PASS
				20	-6.69	-0.00266	PASS
				30	-6.62	-0.00264	PASS
				40	-3.03	-0.00121	PASS
				50	1.69	0.00067	PASS
		МСН	VN	-30	0.68	0.00027	PASS
				-20	5.67	0.00224	PASS
				-10	-6.92	-0.00273	PASS
				0	-2.63	-0.00104	PASS
				10	-2.19	-0.00086	PASS
				20	-4.17	-0.00164	PASS
				30	4.78	0.00188	PASS
				40	-1.71	-0.00067	PASS
				50	-4.76	-0.00188	PASS
		НСН	VN	-30	-5.83	-0.00228	PASS
				-20	-5.13	-0.00200	PASS
				-10	-2.39	-0.00093	PASS
				0	-2.52	-0.00099	PASS
				10	-3.96	-0.00155	PASS
				20	-6.09	-0.00238	PASS
				30	-4.58	-0.00179	PASS
				40	-1.70	-0.00066	PASS
				50	-0.10	-0.00004	PASS

Report No.: SZEM161201075001 Page: 134 of 134

Page: 134 of 134						134 01 134	
Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
LTE band7	LTE/TM2 20MHz	LCH	VN	-30	-3.01	-0.00120	PASS
				-20	3.70	0.00147	PASS
				-10	-4.69	-0.00187	PASS
				0	-6.14	-0.00245	PASS
				10	-4.18	-0.00166	PASS
				20	5.23	0.00208	PASS
				30	2.04	0.00081	PASS
				40	-6.37	-0.00254	PASS
				50	0.70	0.00028	PASS
		МСН	VN	-30	6.27	0.00247	PASS
				-20	-3.37	-0.00133	PASS
				-10	-6.43	-0.00254	PASS
				0	-4.18	-0.00165	PASS
				10	3.88	0.00153	PASS
				20	-0.18	-0.00007	PASS
				30	-6.77	-0.00267	PASS
				40	-2.22	-0.00088	PASS
				50	-5.50	-0.00217	PASS
		НСН	VN	-30	6.86	0.00268	PASS
				-20	-3.43	-0.00134	PASS
				-10	-3.89	-0.00152	PASS
				0	6.14	0.00240	PASS
				10	1.08	0.00042	PASS
				20	-6.54	-0.00256	PASS
				30	-6.19	-0.00242	PASS
				40	1.70	0.00066	PASS
				50	-4.80	-0.00187	PASS

The End