

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

 Shenzhen, Guangdong, China 518057

 Telephone:
 +86 (0) 755 2601 2053

 Fax:
 +86 (0) 755 2671 0594

 Email:
 ee.shenzhen@sgs.com

Report No.: SZEM161201075004 Page: 1 of 78

FCC REPORT

Application No:	SZEM1612010750RG	
Applicant:	LG Electronics Mobile Comm USA	
Manufacturer:	Huaqin Telecom Technology Co. Ltd.	
Factory:	Dong Guan Huabel Electronic Technology Co., Ltd	
Product Name:	Mobile Handset	
Model No.(EUT):	LG-X230ds	
Trade Mark:	LG	
FCC ID:	ZNFX230DS	
Standards:	47 CFR Part 15, Subpart C (2015)	
Test Method	KDB 558074 D01 558074 D01 DTS Meas Guidance v03r05	
	ANSI C63.10 2013	
Date of Receipt:	2016-12-18	
Date of Test:	2016-12-20 to 2016-12-28	
Date of Issue:	2017-02-16	
Test Result:	PASS *	

.* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Derele yang

Derek Yang Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.spx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its instructions, if any. The Company's sole responsibility is to its Client and this document is advised that information contained hereon reflects the Company's findings at the time of its alter rights and obligations under the transaction documents. This document company is sole responsibility is to its Client and this document does not excerted parties to a transaction from exercising all their rights and obligations under the transaction documents. This document company can be prosecuted to the full without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is and will and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161201075004 Page: 2 of 78

2 Version

	Revision Record						
Version	Chapter	Date	Modifier	Remark			
01		2017-01-06		Original			
02		2017-02-16	Jim Huang	Revised report to address TCB's questions			

Authorized for issue by:		
Tested By	Mike Mu	2017-01-06
	(Mike Hu) /Project Engineer	Date
Checked By	John Hong	2017-02-16
	(Jim Huang) /Reviewer	Date

Report No.: SZEM161201075004 Page: 3 of 78

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

Report No.: SZEM161201075004 Page: 4 of 78

4 Contents

Page

1	COV	ER PAGE	. 1
2	VER	SION	. 2
3	TES	T SUMMARY	. 3
4	CON	TENTS	. 4
5	GEN	ERAL INFORMATION	. 5
	5.1	CLIENT INFORMATION	. 5
	5.2	GENERAL DESCRIPTION OF EUT	. 5
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	. 7
	5.5	TEST LOCATION	
	5.6	TEST FACILITY	
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	-
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER.	
	5.10	MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) EQUIPMENT LIST	
	5.11		
6	TES	T RESULTS AND MEASUREMENT DATA	12
	6.1	ANTENNA REQUIREMENT	12
	6.2	CONDUCTED EMISSIONS	
	6.3	CONDUCTED PEAK OUTPUT POWER 1	17
	6.4	6DB OCCUPY BANDWIDTH	19
	6.5	Power Spectral Density	
	6.6	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.7	RF CONDUCTED SPURIOUS EMISSIONS	
	6.8	RADIATED SPURIOUS EMISSIONS	
	6.8.1		
	6.8.2		
	6.9	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	51
7	PHO	TOGRAPHS - EUT CONSTRUCTIONAL DETAILS	78

Report No.: SZEM161201075004 Page: 5 of 78

5 General Information

5.1 Client Information

Applicant:	LG Electronics Mobile Comm USA
Address of Applicant:	1000 Sylvan Avenue Englewood Cliffs, NJ 07632
Manufacturer:	Huaqin Telecom Technology Co. Ltd.
Address of Manufacturer:	No.1 Building,399 Keyuan Road ,Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai, China
Factory:	Dong Guan Huabel Electronic Technology Co., Ltd
Address of Factory:	No.9 Industrial Northern Road, National High-Tech Industrial Development Zone, SongShan Lake, Dong Guan

5.2 General Description of EUT

Product Name:	Mobile Handset
Model No.:	LG-X230ds
Trade Mark:	LG
Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz
Operation Frequency.	IEEE 802.11n(HT40): 2422MHz to 2452MHz
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels
Channel Numbers.	IEEE 802.11n HT40: 7 Channels
Channel Separation:	5MHz
	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK)
Type of Modulation:	IEEE for 802.11g : OFDM(64QAM, 16QAM, QPSK, BPSK)
	IEEE for 802.11n(HT20 and HT40) : OFDM (64QAM, 16QAM,
	QPSK,BPSK)
Sample Type:	Portable Device
Antenna Type:	PIFA
Antenna Gain:	-1.8dBi
Bower Supply	DC3.85V (1 x 3.85V Rechargeable battery) 2500mAh
Power Supply	Battery: Charge by DC 5V
	Model:MCS-02WR2
AC adaptor:	Input: AC100-240V 50/60Hz 0.2A
	Output:DC5.0V 0.85A

Report No.: SZEM161201075004 Page: 6 of 78

Operation Frequency each of channel(802.11b/g/n HT20)										
Channel	Fr	equency	Channe	Frequency	Channel	Fre	quency	Char	nnel	Frequency
1	24	412MHz	4	2427MHz	7	244	42MHz	10)	2457MHz
2	24	417MHz	5	2432MHz	8	244	47MHz	11		2462MHz
3	24	422MHz	6	2437MHz	9	245	52MHz			
Operation F	requ	ency each	of channe	l(802.11n HT40)	I					
Channe	I	Frequ	ency	Channel	Frequen	су	Chan	nel		Frequency
3		2422	MHz	6	2437MF	łz	9			2452MHz
4		2427	MHz	7	2442MF	łz				
5		2432	MHz	8	2447MF	łz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

For 802.11b/g/n (HT20):

Channel	Frequency
The Lowest channel	2412MHz
The Middle channel	2437MHz
The Highest channel	2462MHz

For 802.11n (HT40):

Channel	Frequency
The Lowest channel	2422MHz
The Middle channel	2437MHz
The Highest channel	2452MHz

Report No.: SZEM161201075004 Page: 7 of 78

5.3 Test Environment and Mode

Operating Environment:			
Temperature:	25.0 °C		
Humidity:	50 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.		

5.4 Description of Support Units

The EUT has been tested independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

· CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

• VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1,

Report No.: SZEM161201075004 Page: 8 of 78

4620C-2, 4620C-3.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty	
1	Total RF power, conducted	0.75dB	
2	RF power density, conducted	2.84dB	
3	Spurious emissions, conducted	0.75dB	
_		4.5dB (30MHz-1GHz)	
4	Radiated Spurious emission test	4.8dB (1GHz-25GHz)	
5	Conduct emission test	3.12 dB(9KHz- 30MHz)	
6	Temperature test	1°C	
7	Humidity test	3%	
8	DC and low frequency voltages	0.5%	

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-end-Conditions.terms-end-Conditis.terms-end-Conditions.terms-end-Conditions.terms-en

Report No.: SZEM161201075004 Page: 9 of 78

5.11 Equipment List

	Conducted Emission										
Item	Test Equipment	Manufacturer	anufacturer Model No.		Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)					
1	Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2016-05-13	2017-05-13					
2	LISN	Rohde & Schwarz	ENV216	SEM007-01	2016-10-09	2017-10-09					
3	LISN	ETS-LINDGREN	3816/2	SEM007-02	2016-04-25	2017-04-25					
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	EMC0120	2016-09-28	2017-09-28					
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	EMC0121	2016-09-28	2017-09-28					
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	EMC0122	2016-09-28	2017-09-28					
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2016-04-25	2017-04-25					
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2016-10-09	2017-10-09					

	RF connected test					
ltem	Test Equipment Manufacturer Model No.		Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)	
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
2	Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-17	2017-10-17
3	Signal Generator	Rohde & Schwarz	SML03	SEM006-02	2016-04-25	2017-04-25
4	Power Meter	Agilent Technologies	N1914A	W008-02	2016-06-27	2017-06-27
5	Power Sensor	Agilent Technologies	U2021XA	SEM009-01	2016-10-09	2017-10-09

Report No.: SZEM161201075004 Page: 10 of 78

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2016-05-13	2017-05-13
2	EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2016-09-16	2017-09-16
3	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2014-11-01	2017-11-01
4	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEM003-11	2015-10-17	2018-10-17
5	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEM003-12	2014-11-24	2017-11-24
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2016-04-25	2017-04-25
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
9	Loop Antenna	Beijing Daze	ZN30401	SEM003-09	2015-05-13	2018-05-13

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)
1	10m Semi-Anechoic Chamber	SAEMC	FSAC1018	SEM001-03	2016-05-13	2017-05-13
2	EMI Test Receiver (9k-7GHz)	Rohde & Schwarz	ESR	SEM004-03	2016-04-25	2017-04-25
3	Trilog-Broadband Antenna(30M-1GHz)	Schwarzbeck	VULB9168	SEM003-18	2016-06-29	2019-06-29
4	Pre-amplifier	Sonoma Instrument Co	310N	SEM005-03	2016-07-06	2017-07-06
5	.Loop Antenna	ETS-Lindgren	6502	SEM003-08	2015-08-14	2018-08-14

Report No.: SZEM161201075004 Page: 11 of 78

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2016-05-13	2017-05-13
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEM004-04	2016-04-25	2017-04-25
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2014-11-15	2017-11-15
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2016-10-09	2017-10-09
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-14
6	Low Noise Amplifier	Black Diamond Series	BDLNA- 0118- 352810	SEM005-05	2016-10-09	2017-10-09
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A

Report No.: SZEM161201075004 Page: 12 of 78

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)							
15.203 requirement:	15.203 requirement:							
An intentional radiator sha	l be designed to ensure that no antenna other than that furnished by the							
responsible party shall be	used with the device. The use of a permanently attached antenna or of an							
antenna that uses a unique	e coupling to the intentional radiator, the manufacturer may design the unit							
so that a broken antenna o	an be replaced by the user, but the use of a standard antenna jack or							
electrical connector is prof	ibited.							
15.247(b) (4) requirement:								
The conducted output pow	er limit specified in paragraph (b) of this section is based on the use of							
antennas with directional g	antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this							
section, if transmitting ante	section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output							
power from the intentional	radiator shall be reduced below the stated values in paragraphs (b)(1),							
(b)(2), and (b)(3) of this se	ction, as appropriate, by the amount in dB that the directional gain of the							

antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -1.8dBi.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-end-Conditions.terms-end-Conditis.terms-end-Conditions.terms-end-Conditions.terms-en

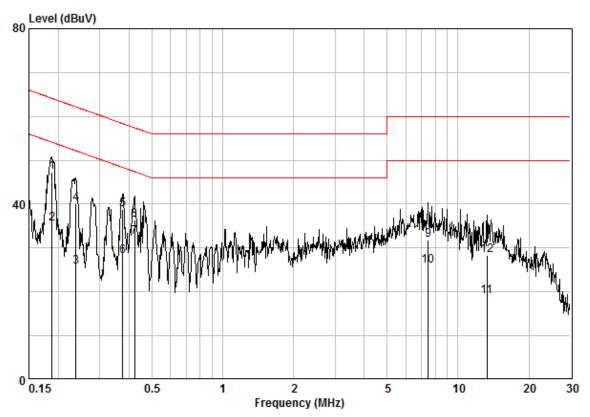
Report No.: SZEM161201075004 Page: 13 of 78

Test Requirement:	47 CFR Part 15C Section 15.2	207					
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	150kHz to 30MHz						
		Limit (d	lBuV)				
	Frequency range (MHz)	Quasi-peak	Average				
Limit:	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm	n of the frequency.		-			
Test Procedure:	 The mains terminal disturb room. The EUT was connected to Impedance Stabilization Ne impedance. The power cal connected to a second LIS plane in the same way as to multiple socket outlet strip single LISN provided the ra The tabletop EUT was place ground reference plane. An placed on the horizontal gr The test was performed with of the EUT shall be 0.4 m to vertical ground reference plane. The LISN unit under test and bonded mounted on top of the grout between the closest points the EUT and associated exe In order to find the maximute equipment and all of the in ANSI C63.10: 2013 on cor 	b AC power source thro etwork) which provides oles of all other units of SN 2, which was bonded the LISN 1 for the unit k was used to connect m ating of the LISN was n ced upon a non-metallic nd for floor-standing and round reference plane, th a vertical ground refer from the vertical ground blane was bonded to the 1 was placed 0.8 m fro to a ground reference und reference plane. The of the LISN 1 and the quipment was at least 0 im emission, the relativit terface cables must be	bugh a LISN 1 (Line a $50\Omega/50\mu$ H + 5Ω line the EUT were d to the ground reference being measured. A nultiple power cables ot exceeded. to table 0.8m above the rangement, the EUT erence plane. The red d reference plane. The e horizontal ground om the boundary of the plane for LISNs his distance was EUT. All other units of 0.8 m from the LISN are positions of	near ence to a ne was ar ne he of 2.			

6.2 Conducted Emissions

Report No.: SZEM161201075004 Page: 14 of 78

Test Setup:	Shielding Room Test Receiver Test Receiver Image: Shielding Room Image: Shielding Room Test Receiver Image: Shielding Room Image: Shielding Room					
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.					
	Charge + Transmitting mode.					
First Test Made	Through Pre-scan, find the 1Mbps of rate of 802.11b at lowest channel is the worst case.					
Final Test Mode:	Charge + Transmitting mode.					
	Only the worst case is recorded in the report.					
Instruments Used:	Refer to section 5.10 for details					
Test Results:	Pass					


Report No.: SZEM161201075004 Page: 15 of 78

Measurement Data

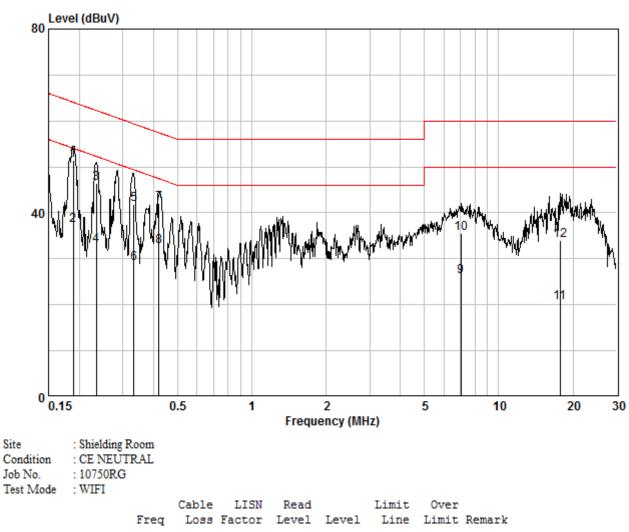
An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:

Site : Shielding Room Condition : CE LINE Job No. : 10750RG Test Mode : WIFI

	Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.18838	0.02	9.60	37.65	47.27	64.11	-16.84	QP
2	0.18838	0.02	9.60	25.91	35.53	54.11	-18.57	AVERAGE
3	0.23784	0.02	9.60	16.13	25.75	52.17	-26.42	AVERAGE
4	0.23784	0.02	9.60	30.55	40.17	62.17	-22.01	QP
5	0.37512	0.02	9.60	29.20	38.81	58.39	-19.57	QP
6	0.37512	0.02	9.60	18.59	28.20	48.39	-20.18	AVERAGE
7 @	0.42149	0.02	9.60	22.78	32.40	47.42	-15.02	AVERAGE
8	0.42149	0.02	9.60	26.72	36.34	57.42	-21.08	QP
9	7.486	0.09	9.69	22.06	31.84	60.00	-28.16	QP
10	7.486	0.09	9.69	16.21	25.99	50.00	-24.01	AVERAGE
11	13.267	0.15	9.74	9.11	19.00	50.00	-31.00	AVERAGE
12	13.267	0.15	9.74	18.45	28.34	60.00	-31.66	QP


This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.terms-en-Document.terms-and-Conditions.terms-en-Document.terms-en-Docume

Neutral Line:

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM161201075004 Page: 16 of 78

			Capite	101014	neau			OVEL	
		Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	-	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0	0.18938	0.02	9.61	41.87	51.50	64.06	-12.56	QP
2		0.18938	0.02	9.61	27.58	37.22	54.06	-16.84	AVERAGE
3		0.23433	0.02	9.61	36.76	46.40	62.29	-15.90	QP
4		0.23433	0.02	9.61	23.39	33.02	52.29	-19.27	AVERAGE
5		0.33282	0.02	9.62	32.24	41.88	59.38	-17.50	QP
6		0.33282	0.02	9.62	19.33	28.97	49.38	-20.41	AVERAGE
7		0.41967	0.02	9.62	32.48	42.12	57.45	-15.33	QP
8	0	0.41967	0.02	9.62	23.04	32.68	47.45	-14.77	AVERAGE
9		7.029	0.08	9.74	16.23	26.05	50.00	-23.95	AVERAGE
10		7.029	0.08	9.74	25.61	35.43	60.00	-24.57	QP
11		17.755	0.16	9.95	10.42	20.53	50.00	-29.47	AVERAGE
12		17.755	0.16	9.95	23.80	33.91	60.00	-26.09	QP

Notes:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM161201075004 Page: 17 of 78

6.3 Conducted Peak Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)					
Test Method:	ANSI C63.10 :2013 Section 11.9.1.3					
Test Setup:	POWER METER E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1dB in the spectrum analyzer.					
Test Instruments:	Refer to section 5.10 for details					
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates					
	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;					
Final Test Mode:	6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20);13.5Mbps of rate is the worst case of 802.11n(HT40).					
Limit:	30dBm					
Test Results:	Pass					

Report No.: SZEM161201075004 Page: 18 of 78

802.11b mode Peak Output Power (dBm) Test channel Limit (dBm) Result Lowest 19.41 30.00 Pass Middle 19.70 30.00 Pass 19.79 Highest 30.00 Pass 802.11g mode Test channel Peak Output Power (dBm) Limit (dBm) Result 21.70 30.00 Lowest Pass Middle 22.04 30.00 Pass Highest 21.99 30.00 Pass 802.11n(HT20)mode Limit (dBm) Test channel Peak Output Power (dBm) Result 21.45 30.00 Lowest Pass Pass Middle 22.07 30.00 21.94 30.00 Highest Pass 802.11n(HT40)mode Test channel Peak Output Power (dBm) Limit (dBm) Result 30.00 Lowest 21.39 Pass Middle 21.76 30.00 Pass Highest 21.95 30.00 Pass

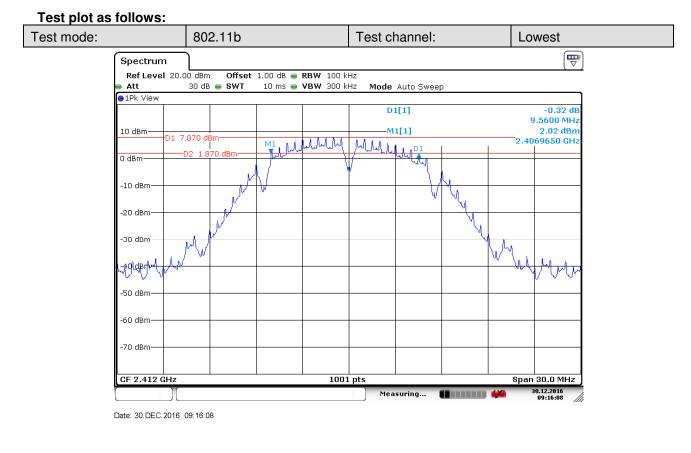
Measurement Data

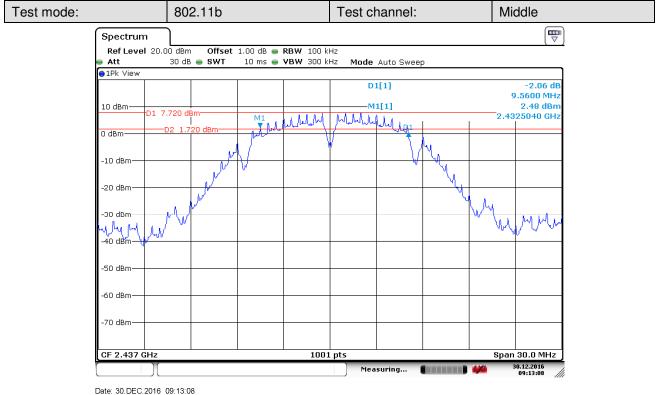
Report No.: SZEM161201075004 Page: 19 of 78

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(2) Test Method: ANSI C63.10: 2013 Section 11.8.1 Spectrum Analyzer E.U.T G Test Setup: Non-Conducted Table **Ground Reference Plane** Instruments Used: Refer to section 5.10 for details Exploratory Test Mode: Transmitting with all kind of modulations, data rates Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst Final Test Mode: case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40). Limit: ≥ 500 kHz **Test Results:** Pass

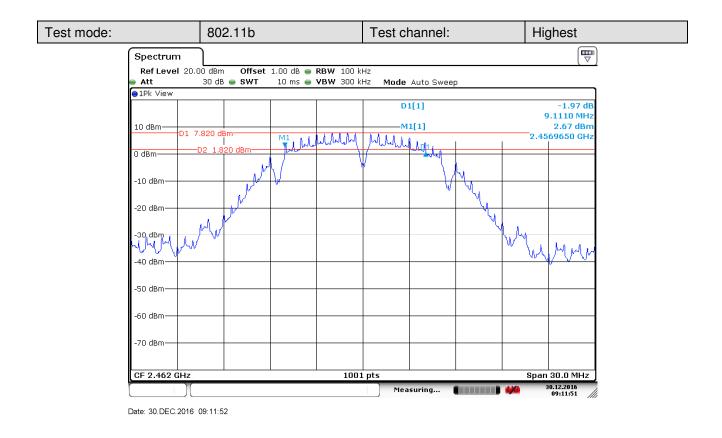
6.4 6dB Occupy Bandwidth

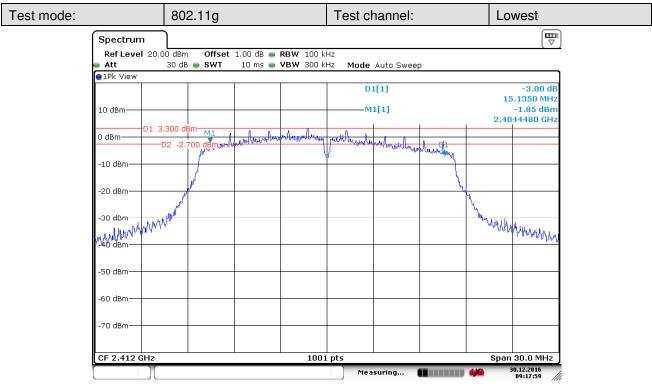
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.terms-en-Document.terms-and-Conditions.terms-en-Document.terms-en-Docume


Report No.: SZEM161201075004 Page: 20 of 78

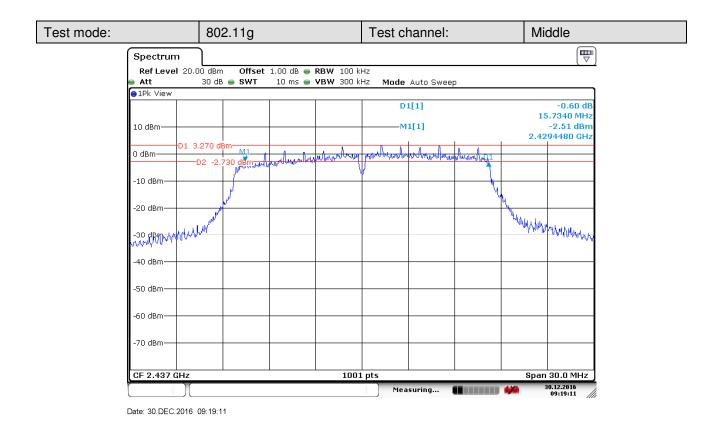

802.11b mode Test channel 6dB Occupy Bandwidth (MHz) Limit (kHz) Result Lowest 9.56 ≥500 Pass Middle 9.56 Pass ≥500 ≥500 Highest 9.11 Pass 802.11g mode Test channel 6dB Occupy Bandwidth (MHz) Limit (kHz) Result Lowest 15.14 ≥500 Pass Middle 15.73 ≥500 Pass Highest 15.73 ≥500 Pass 802.11n(HT20) mode 6dB Occupy Bandwidth (MHz) Test channel Limit (kHz) Result 15.14 ≥500 Lowest Pass Middle 16.36 ≥500 Pass 16.36 ≥500 Highest Pass 802.11n(HT40) mode Test channel 6dB Occupy Bandwidth (MHz) Limit (kHz) Result Lowest 35.19 ≥500 Pass Middle 35.17 ≥500 Pass Highest 35.15 ≥500 Pass

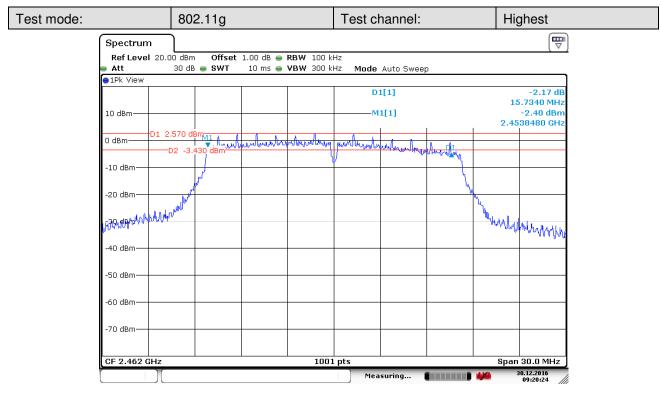
Measurement Data


Report No.: SZEM161201075004 Page: 21 of 78



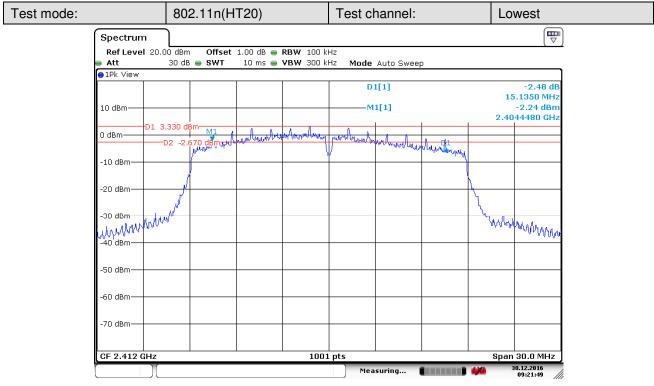
Report No.: SZEM161201075004 Page: 22 of 78

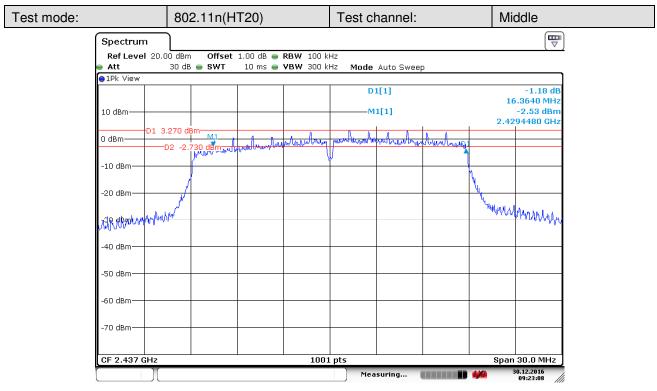




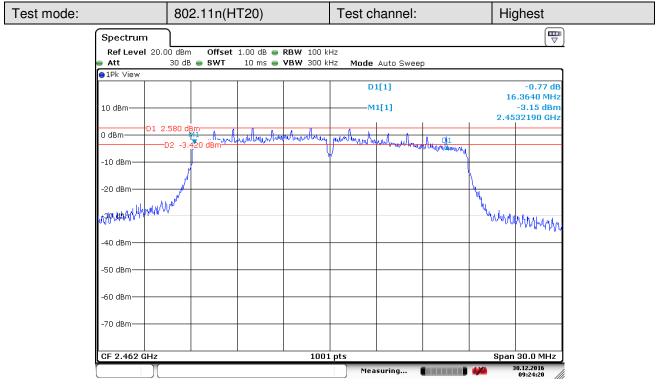
Date: 30.DEC.2016 09:17:59

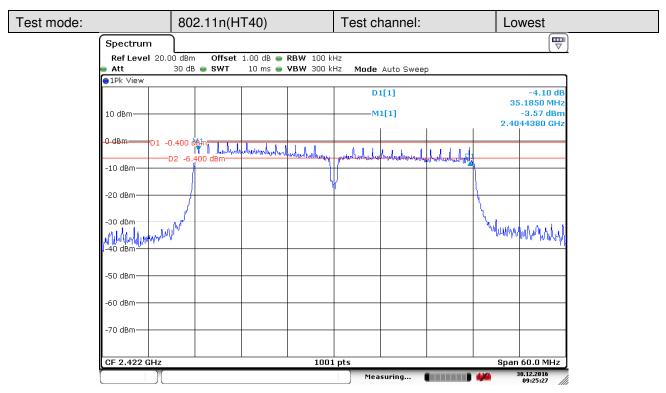
Report No.: SZEM161201075004 Page: 23 of 78



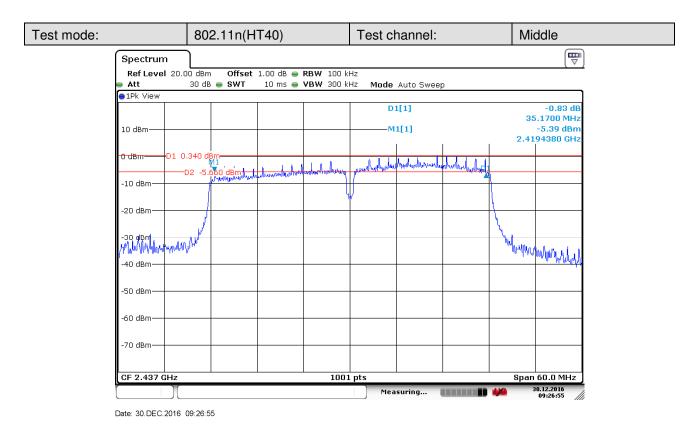

Date: 30.DEC.2016 09:20:24

Report No.: SZEM161201075004 Page: 24 of 78


Date: 30.DEC.2016 09:21:50


Date: 30.DEC.2016 09:23:09

Report No.: SZEM161201075004 Page: 25 of 78


Date: 30.DEC.2016 09:24:20

Date: 30.DEC.2016 09:25:27

Report No.: SZEM161201075004 Page: 26 of 78

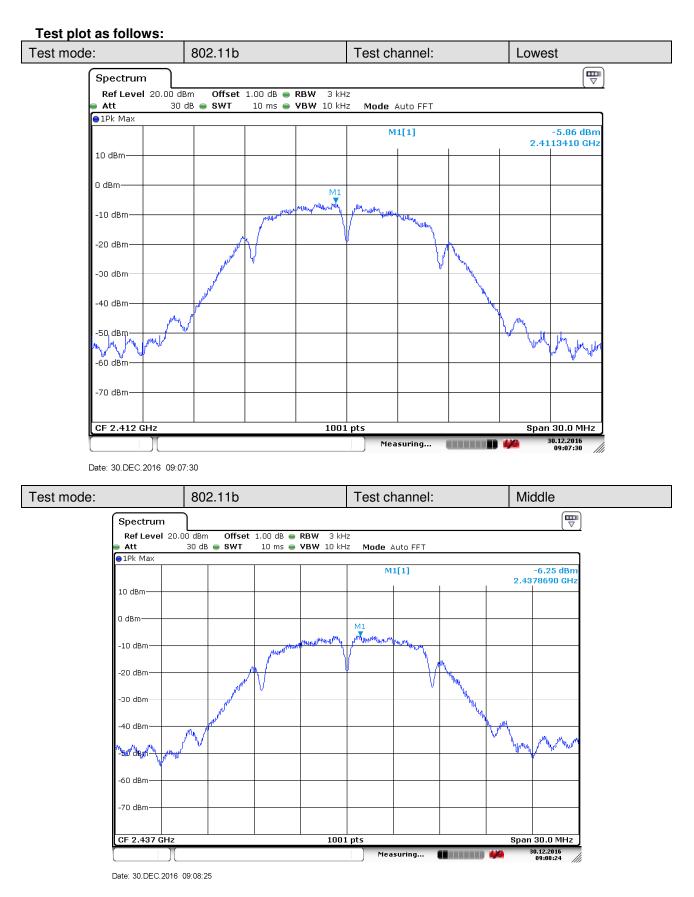
Test mode:		802.11n(HT40	0)	Test channel:		Highest	
	Spectrum	`					
	Ref Level 20 Att		∣dB ● RBW 100 kH ms ● VBW 300 kH		0		
	●1Pk View	1					
	10 dBm			D1[1] M1[1]	1 1	-5.21 dB 35.1540 MHz -4.30 dBm 2.4344980 GHz	
	0 dBm D1	1.000 den	ulan walker burleway	public harden berten beren fu			
	-10 dBm	hallynunan			www.huludhyte		
	-20 dBm						
		WW			- North Contraction of the second sec	haman han hal	
	-50 dBm						
	-60 dBm						
	-70 dBm						
	CF 2.452 GHz		1001	pts	· · · · · ·	Span 60.0 MHz	
				Measuring	•	30.12.2016 09:27:49	

Date: 30.DEC.2016 09:27:50

Report No.: SZEM161201075004 Page: 27 of 78

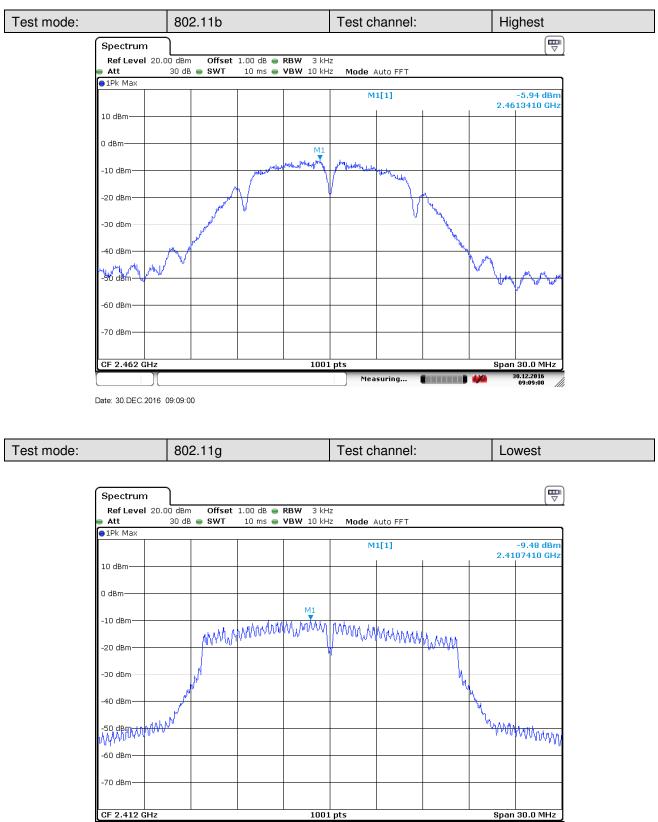
6.5 Power Spectral Density

Test Requirement:	47 CFR Part 15C Section 15.247 (e)	
Test Method:	ANSI C63.10 :2013 Section 11.10.2	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1dB in the spectrum analyzer.	
Test Instruments:	Refer to section 5.10 for details	
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates	
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;	
	6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20);13.5Mbps of rate is the worst case of 802.11n(HT40).	
Limit:	≤8.00dBm/3kHz	
Test Results:	Pass	

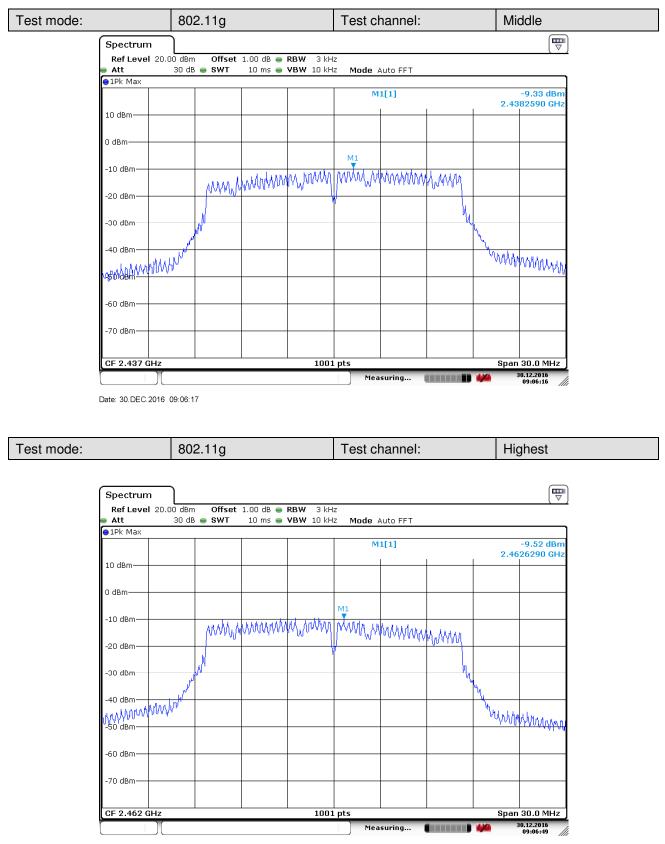

Report No.: SZEM161201075004 Page: 28 of 78

Measurement Data

802.11b mode				
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result	
Lowest	-5.86	≤8.00	Pass	
Middle	-6.25	≤8.00	Pass	
Highest	-5.94	≤8.00	Pass	
802.11g mode				
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result	
Lowest	-9.48	≤8.00	Pass	
Middle	-9.33	≤8.00	Pass	
Highest	-9.52	≤8.00	Pass	
802.11n(HT20) mode				
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result	
Lowest	-9.09	≤8.00	Pass	
Middle	-9.74	≤8.00	Pass	
Highest	-10.03	≤8.00	Pass	
802.11n(HT40) mode				
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result	
Lowest	-13.15	≤8.00	Pass	
Middle	-12.77	≤8.00	Pass	
Highest	-12.57	≤8.00	Pass	

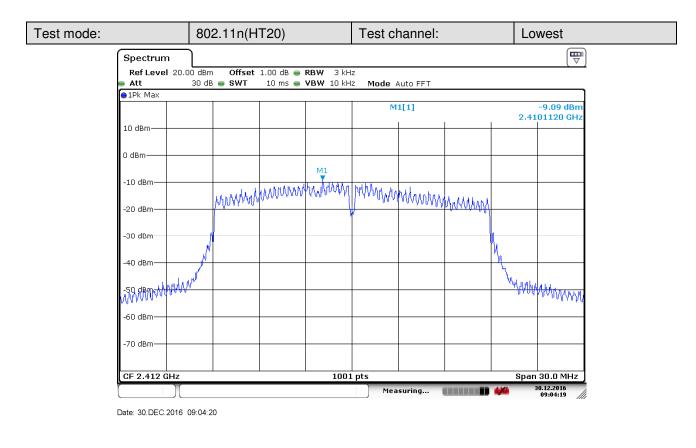


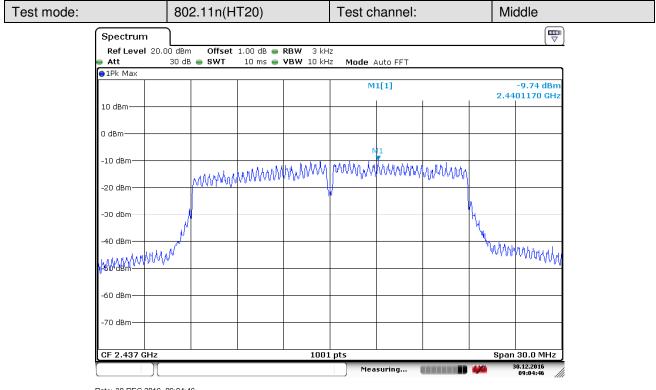
Report No.: SZEM161201075004 Page: 29 of 78


Report No.: SZEM161201075004 Page: 30 of 78

Date: 30.DEC.2016 09:05:46

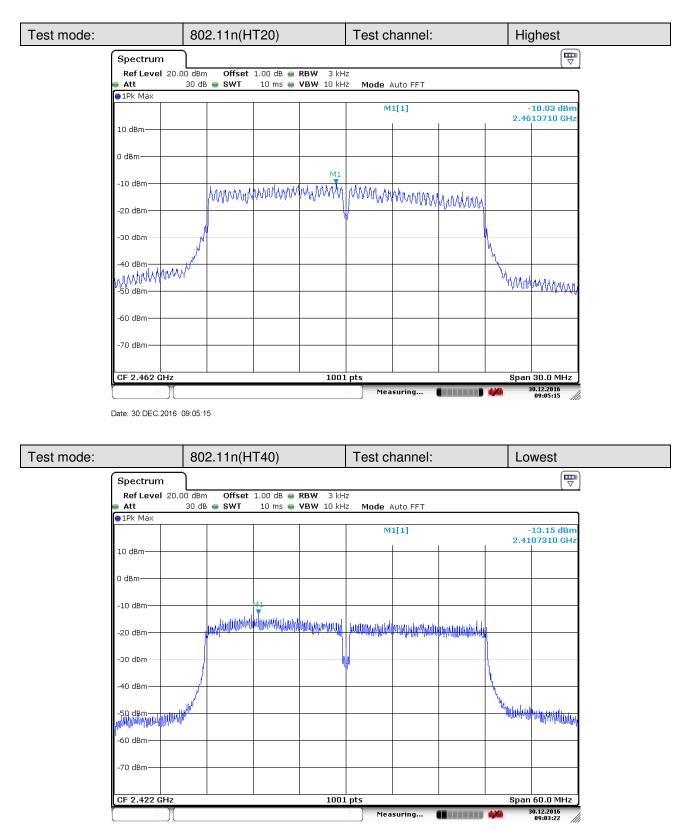
Report No.: SZEM161201075004 Page: 31 of 78




Date: 30.DEC.2016 09:06:49

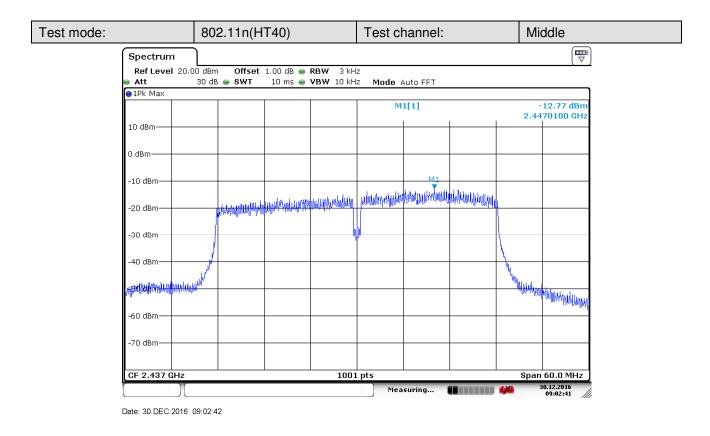
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-en-Document.aspx. Attention is drawn to the limitation only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

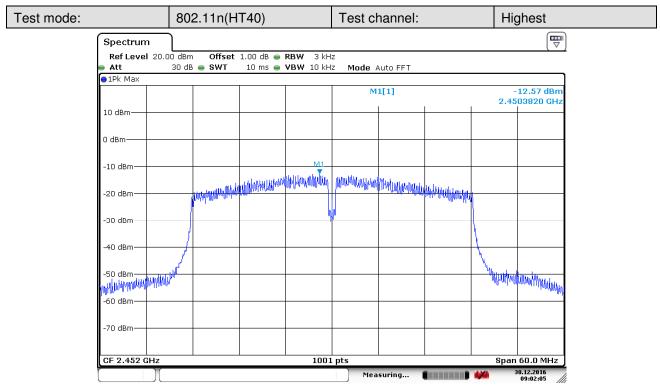
Report No.: SZEM161201075004 Page: 32 of 78



Date: 30.DEC.2016 09:04:46

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-en-Document.aspx. Attention is drawn to the limitation only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

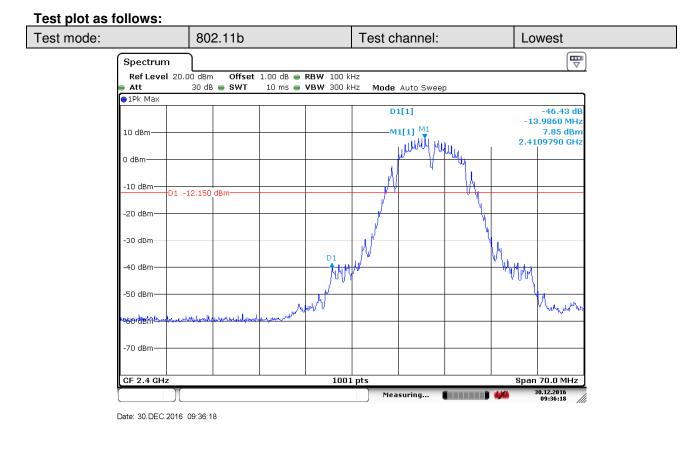

Report No.: SZEM161201075004 Page: 33 of 78

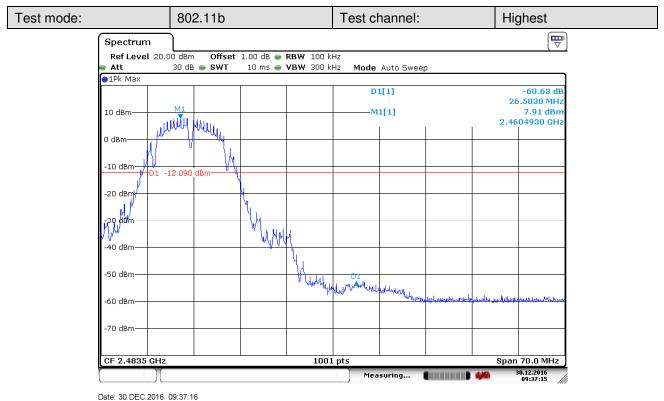


Date: 30.DEC.2016 09:03:22

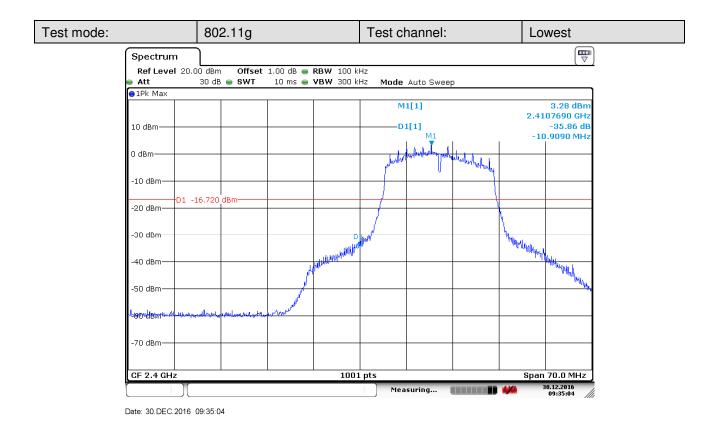
Report No.: SZEM161201075004 Page: 34 of 78

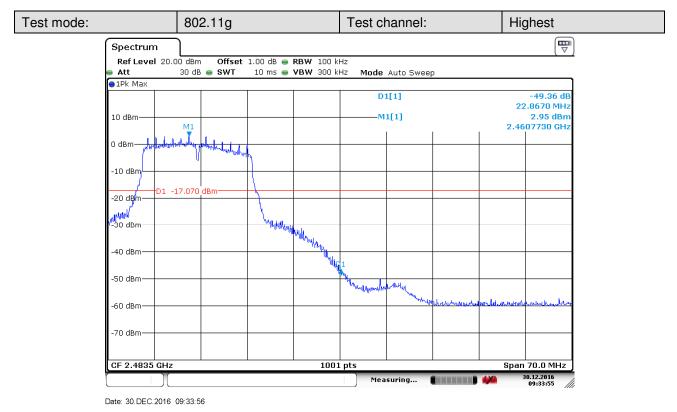
Date: 30.DEC.2016 09:02:05

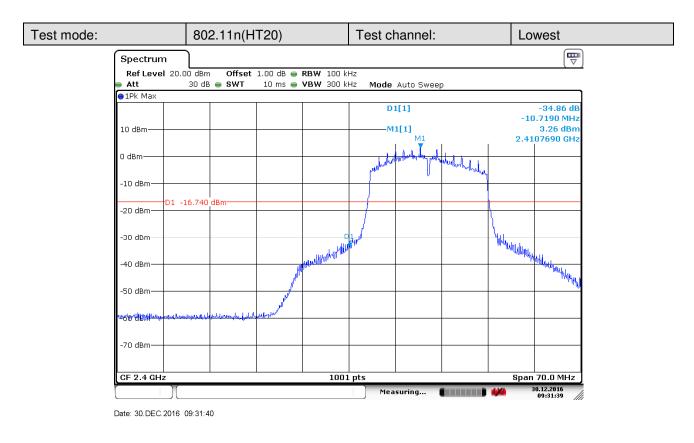

Report No.: SZEM161201075004 Page: 35 of 78

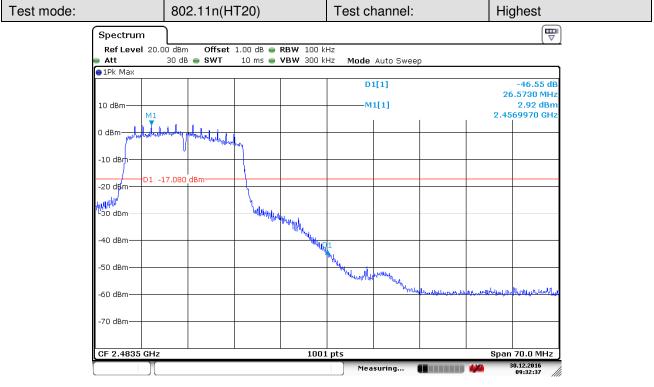

6.6 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)		
Test Method:	ANSI C63.10: 2013 Section 11.13		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark:		
	Offset the High-Frequency cable loss 1dB in the spectrum analyzer.		
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates		
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20) ; 13.5Mbps of rate is the worst case of 802.11n(HT40).		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread		
	spectrum intentional radiator is operating, the radio frequency power that is		
	produced by the intentional radiator shall be at least 20 dB below that in the		
	100 kHz bandwidth within the band that contains the highest level of the		
	desired power, based on either an RF conducted or a radiated		
	measurement.		
Instruments Used:	Refer to section 5.10 for details		
Test Results:	Pass		

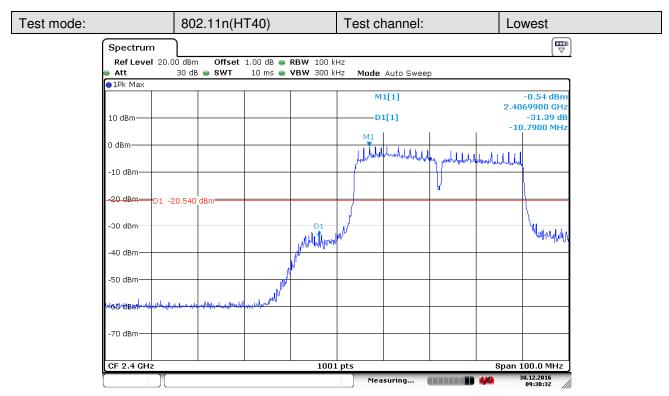

Report No.: SZEM161201075004 Page: 36 of 78

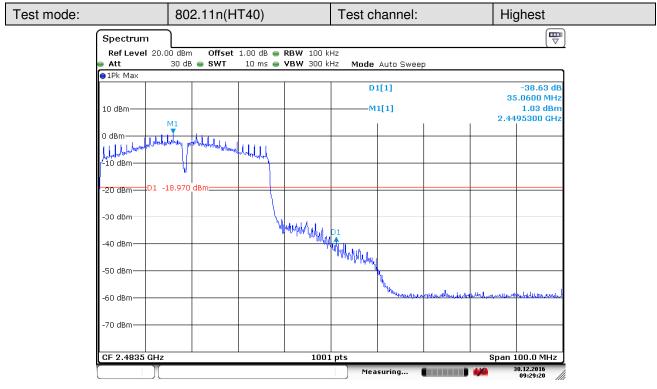



Report No.: SZEM161201075004 Page: 37 of 78



Report No.: SZEM161201075004 Page: 38 of 78

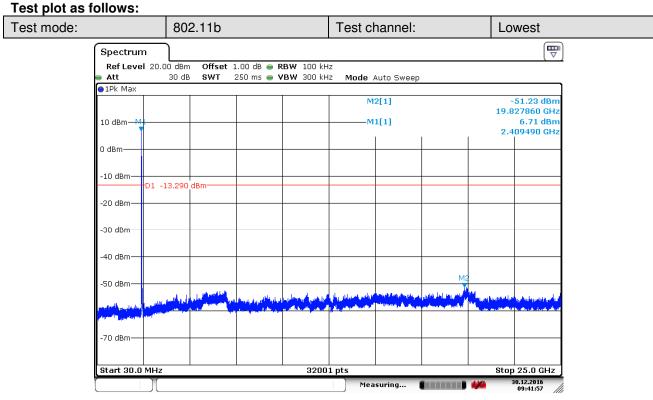



Date: 30.DEC.2016 09:32:38

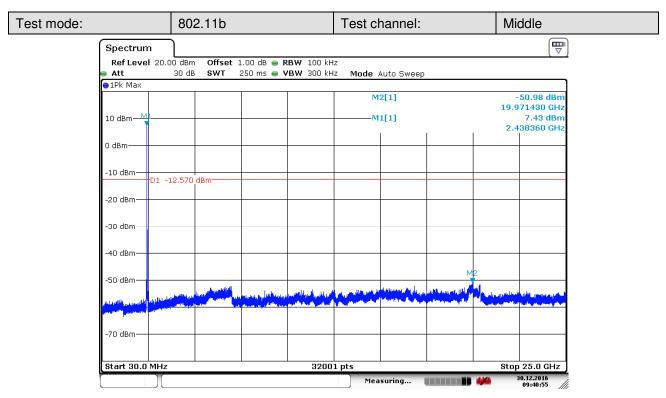
Report No.: SZEM161201075004 Page: 39 of 78

Date: 30.DEC.2016 09:30:32

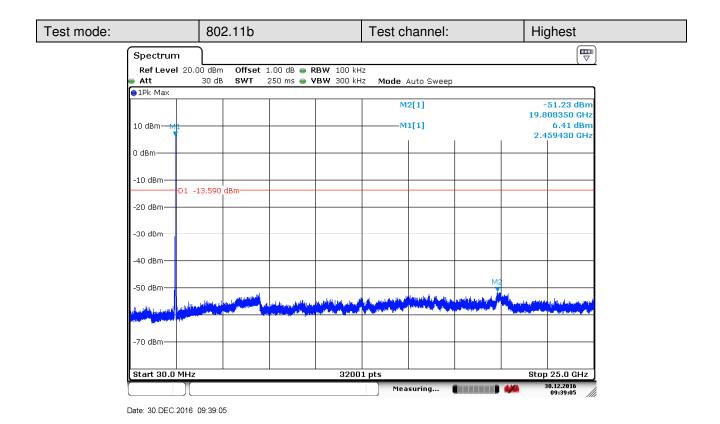
Date: 30.DEC.2016 09:29:20

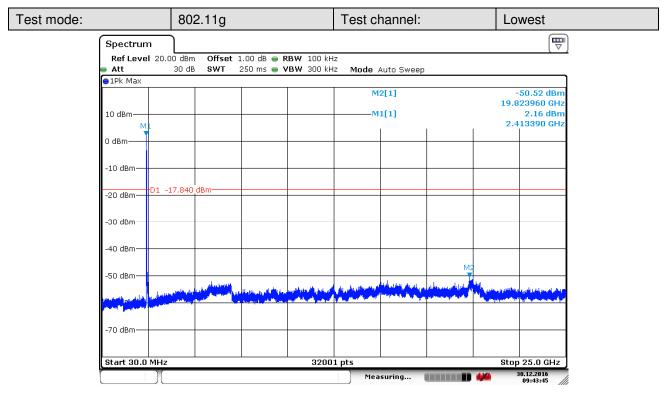

Report No.: SZEM161201075004 Page: 40 of 78

6.7 RF Conducted Spurious Emissions


Test Requirement:	47 CFR Part 15C Section 15.247 (d)				
Test Method:	ANSI C63.10: 2013 Section 11.11				
Test Setup:	Spectrum Analyzer F.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1dB in the spectrum analyzer.				
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates				
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Instruments Used:	Refer to section 5.10 for details				
Test Results:	Pass				

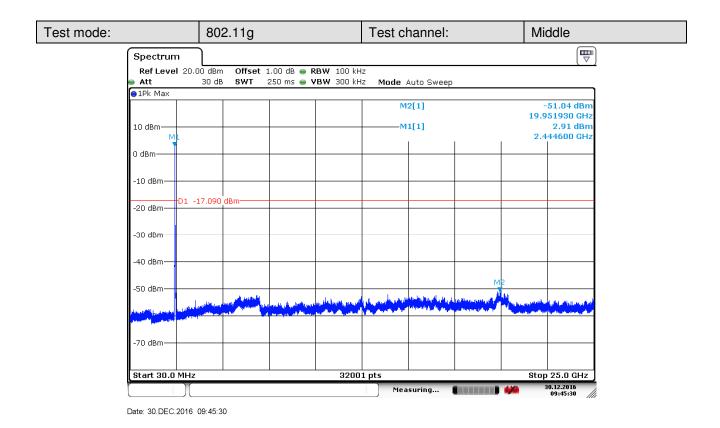
Report No.: SZEM161201075004 Page: 41 of 78

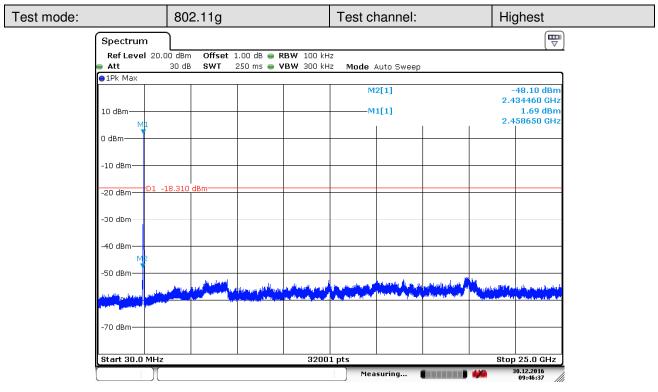




Date: 30.DEC.2016 09:40:56

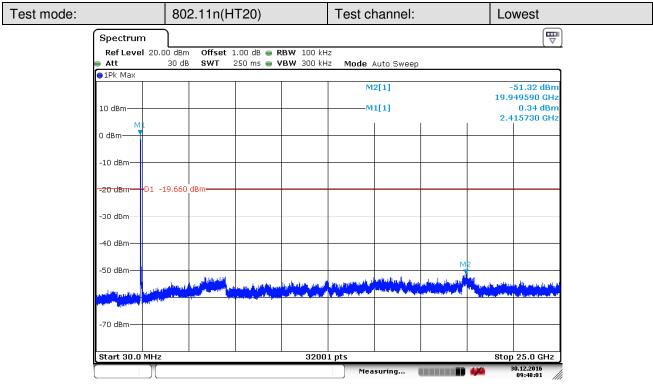
Report No.: SZEM161201075004 Page: 42 of 78

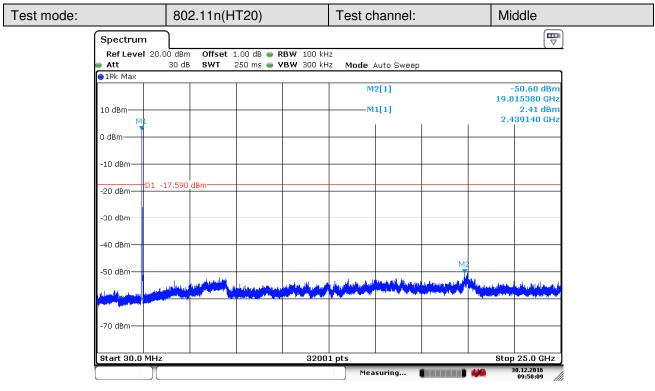




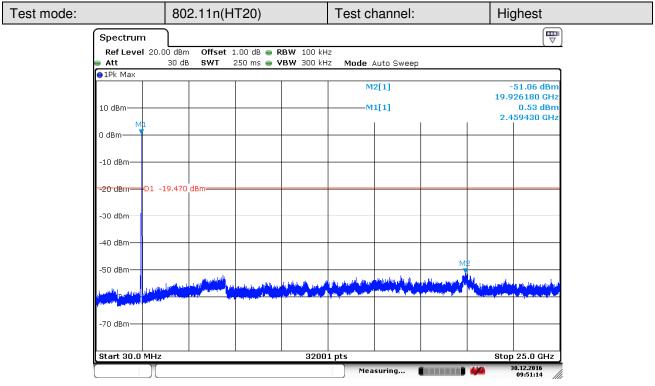
Date: 30.DEC.2016 09:43:46

Report No.: SZEM161201075004 Page: 43 of 78



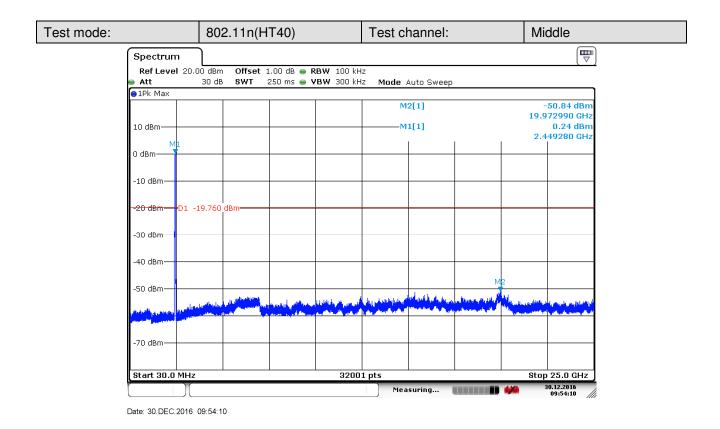

Date: 30.DEC.2016 09:46:37

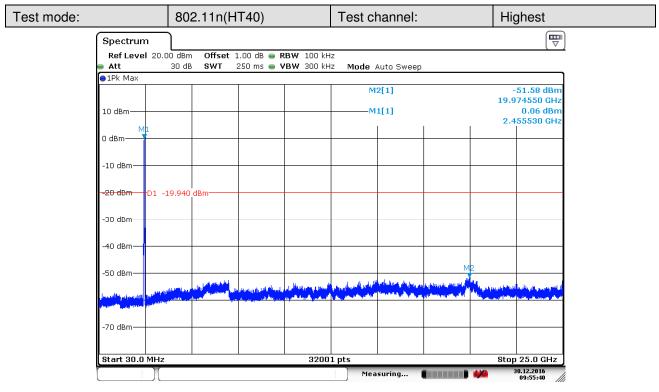
Report No.: SZEM161201075004 Page: 44 of 78


Date: 30.DEC.2016 09:48:02

Date: 30.DEC.2016 09:50:10

Report No.: SZEM161201075004 Page: 45 of 78


Date: 30.DEC.2016 09:51:14


est mode:	802.11n(HT40)	Test channel:	Lowest
Spectrum Ref Level 2	20.00 dBm Offset 1.00 dB • R	BW 100 kHz	
🕳 Att		BW 300 kHz Mode Auto Sweep	
● 1Pk Max		M2[1]	-51.06 dBm
10 dBm		M1[1]	19.756850 GHz -0.41 dBm 2.407930 GHz
0 dBm			
-10 dBm			
- -20 dBm+ D1	1 -20.410 dBm		
-30 dBm			
-40 dBm			M2
and the last of th	مرد مرد الله والي المرد المراجع المراجع والمراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع		
-70 dBm			
Start 30.0 M	Hz	32001 pts	Stop 25.0 GHz
]	· .	30.12.2016 09:52:28

Date: 30.DEC.2016 09:52:28

Report No.: SZEM161201075004 Page: 46 of 78

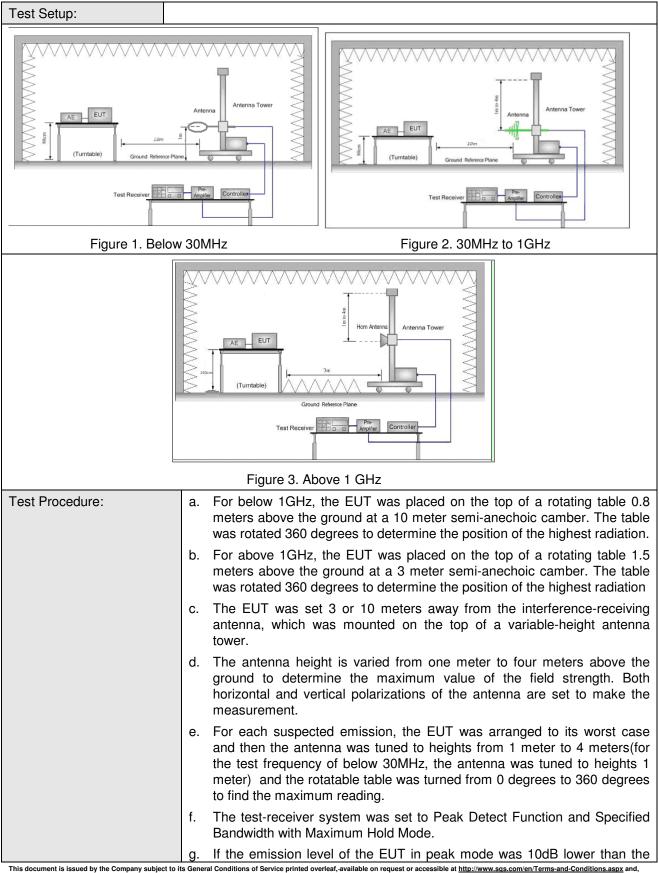
Date: 30.DEC.2016 09:55:41

Report No.: SZEM161201075004 Page: 47 of 78

Remark:

Scan from 9kHz to 25GHz, the disturbance below 30MHz was very low, and the above harmonics were the highest point could be found when testing, The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-end-Conditions.terms-end-Conditis.terms-end-Conditions.terms-end-Conditions.terms-en


Report No.: SZEM161201075004 Page: 48 of 78

6.8 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205									
Test Method:	ANSI C63.10 :2013 Section 11.12									
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)									
	Frequency	Detector	RBW	VBW	Remark					
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak					
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average					
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak					
Receiver Setup:	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak					
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average					
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak					
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak					
	Above 1GHz	Peak	1MHz	3MHz	Peak					
	Above IGH2	Peak	1MHz	10Hz	Average					
	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)					
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300					
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30					
	1.705MHz-30MHz	30	-	-	30					
	30MHz-88MHz	100	40.0	Quasi-peak	3					
Limit:	88MHz-216MHz	150	43.5	Quasi-peak	3					
	216MHz-960MHz	200	46.0	Quasi-peak	3					
	960MHz-1GHz	500	54.0	Quasi-peak	3					
	Above 1GHz	500	54.0	Average	3					
	Note: 15.35(b), Unless ot	herwise specified,	the limit on p	beak radio fre	quency					
	emissions is 20dB above	the maximum peri	mitted average	ge emission li	mit					
	applicable to the equipme	ent under test. This	s peak limit a	pplies to the t	otal peak					
	emission level radia	ated by the device.								

Report No.: SZEM161201075004 Page: 49 of 78

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-en-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of tis intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM161201075004 Page: 50 of 78

	limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
	j. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.
	Charge + Transmitting mode.
Final Test Mode:	Pretest the EUT at Charge + Transmitting mode.
	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;
	6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case
	of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40)
	For below 1GHz, through Pre-scan, find the 1Mbps of rate of 802.11b at lowest channel is the worst case.
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Report No.: SZEM161201075004 Page: 51 of 78

6.8.1 Radiated emission below 1GHz

The test was performed at a 10m test site. According to below formulate and the test data at 10m test distance,

 $L_3 / L_{10} = D_{10} / D_3$

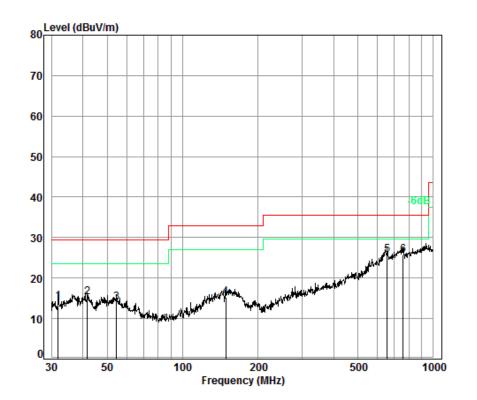
Note:

L₃: Level @ 3m distance. Unit: uV/m;

L₁₀: Level @ 10m distance. Unit: uV/m;

D₃: 3m distance. Unit: m

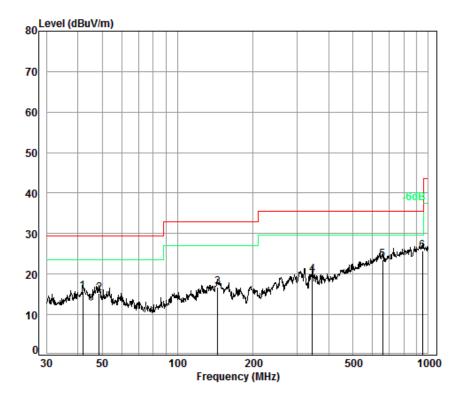
D₁₀: 10m distance. Unit: m


The level at 3m test distance is below:

Frequency (MHz)	Level @ 10m (dBuV/m)	Level @ 10m (uV/m)	Level @ 3m (uV/m)	Level @ 3m (dBuV/m)	Limit @ 3m (dBuV/m)	Margin (dB)	Ant. Polarization
31.95	14.07	5.05	16.84	24.53	40.00	-15.47	V
41.71	15.30	5.82	19.40	25.76	40.00	-14.24	V
54.64	13.87	4.94	16.46	24.33	40.00	-15.67	V
148.96	15.34	5.85	19.49	25.80	43.50	-17.70	V
654.23	25.68	19.23	64.10	36.14	46.00	-9.86	V
758.04	25.77	19.43	64.77	36.23	46.00	-9.77	V
41.86	15.70	6.10	20.32	26.16	40.00	-13.84	Н
48.67	15.19	5.75	19.16	25.65	40.00	-14.35	Н
144.84	16.72	6.85	22.85	27.18	43.50	-16.32	Н
344.39	19.74	9.71	32.35	30.20	46.00	-15.80	Н
658.84	23.56	15.07	50.22	34.02	46.00	-11.98	Н
948.76	25.76	19.41	64.70	36.22	46.00	-9.78	Н

Report No.: SZEM161201075004 Page: 52 of 78

30MHz~1GHz (QP)		
Test mode:	Charge + Transmitting	Vertical


Condition: 10m VERTICAL Job No. : 10750RG Test Mode: Wifi

	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	31.95	6.70	12.54	32.97	27.80	14.07	29.50	-15.43
2	41.71	6.80	13.17	32.99	28.32	15.30	29.50	-14.20
3	54.64	6.99	12.40	32.97	27.45	13.87	29.50	-15.63
4	148.96	7.45	13.34	32.74	27.29	15.34	33.00	-17.66
5 6 pp	654.23 758.04			32.60 32.60				

Report No.: SZEM161201075004 Page: 53 of 78

Test mode: Charge + Transmitting	Horizontal
----------------------------------	------------

Condition: 10m HORIZONTAL Job No. : 10750RG Test Mode: Wifi

	Freq			Ant Preamp Read actor Factor Level Level				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 3 4	41.86 48.67 144.84 344.39	6.87 7.43 8.22	12.81 13.08 13.74	32.99 33.00 32.75 32.60	28.51 28.96 30.38	15.19 16.72 19.74	29.50 33.00 35.60	-14.31 -16.28 -15.86
5 6 pr	658.84 948.76			32.60 32.50				

Report No.: SZEM161201075004 Page: 54 of 78

Test mode:	802.1	1b	Test ch	annel:	Lowest	Remark	:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3842.163	33.18	7.76	37.98	44.67	47.63	74	-26.37	Vertical
4874.000	34.28	8.97	38.44	43.65	48.46	74	-25.54	Vertical
6069.413	34.76	10.47	38.23	43.51	50.51	74	-23.49	Vertical
7311.000	36.37	10.72	37.02	41.84	51.91	74	-22.09	Vertical
9748.000	37.55	12.58	35.03	37.26	52.36	74	-21.64	Vertical
11998.25	38.6	14.56	35.6	35.70	53.26	74	-20.74	Vertical
3754.236	32.94	7.72	37.98	44.18	46.86	74	-27.14	Horizontal
4824.000	34.19	8.9	38.41	43.41	48.09	74	-25.91	Horizontal
5811.590	34.59	10.03	38.34	44.12	50.40	74	-23.60	Horizontal
7236.000	36.4	10.69	37.09	41.59	51.59	74	-22.41	Horizontal
9648.000	37.53	12.52	35.08	37.17	52.14	74	-21.86	Horizontal
12297.040	38.78	14.31	36.31	37.18	53.96	74	-20.04	Horizontal

6.8.2 Transmitter emission above 1GHz

Test mode:	802.1	1b	Test ch	annel:	Middle	Remark	:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3831.06	33.15	7.75	37.98	44.83	47.75	74	-26.25	Vertical
4874.000	34.28	8.97	38.44	43.28	48.09	74	-25.91	Vertical
6069.413	34.76	10.47	38.23	43.09	50.09	74	-23.91	Vertical
7311.000	36.37	10.72	37.02	41.13	51.20	74	-22.80	Vertical
9748.000	37.55	12.58	35.03	36.97	52.07	74	-21.93	Vertical
12050.440	38.63	14.52	35.72	36.50	53.93	74	-20.07	Vertical
3842.163	33.18	7.76	37.98	44.47	47.43	74	-26.57	Horizontal
4924.000	34.37	9.04	38.46	43.62	48.57	74	-25.43	Horizontal
6078.201	34.76	10.46	38.22	43.37	50.37	74	-23.63	Horizontal
7386.000	36.34	10.75	36.95	41.31	51.45	74	-22.55	Horizontal
9848.000	37.57	12.63	34.98	37.76	52.98	74	-21.02	Horizontal
12243.770	38.75	14.36	36.19	36.99	53.91	74	-20.09	Horizontal

Report No.: SZEM161201075004 Page: 55 of 78

Test mode:	802.1	1b	Test ch	channel: Highest Remark:		Peak		
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3842.163	33.18	7.76	37.98	44.47	47.43	74	-26.57	Vertical
4924.000	34.37	9.04	38.46	43.62	48.57	74	-25.43	Vertical
6078.201	34.76	10.46	38.22	43.37	50.37	74	-23.63	Vertical
7386.000	36.34	10.75	36.95	41.31	51.45	74	-22.55	Vertical
9848.000	37.57	12.63	34.98	37.76	52.98	74	-21.02	Vertical
12243.770	38.75	14.36	36.19	36.99	53.91	74	-20.09	Vertical
3442.058	32.1	7.62	37.94	43.89	45.67	74	-28.33	Horizontal
4924.000	34.37	9.04	38.46	43.95	48.90	74	-25.10	Horizontal
6078.201	34.76	10.46	38.22	43.51	50.51	74	-23.49	Horizontal
7386.000	36.34	10.75	36.95	40.91	51.05	74	-22.95	Horizontal
9848.000	37.57	12.63	34.98	37.15	52.37	74	-21.63	Horizontal
12137.940	38.68	14.45	35.93	36.23	53.43	74	-20.57	Horizontal

Test mode:	802.1	1g	Test ch	annel:	Lowest	Remark		Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3842.163	33.18	7.76	37.98	44.41	47.37	74	-26.63	Vertical
4824.000	34.19	8.9	38.41	42.73	47.41	74	-26.59	Vertical
5947.702	34.67	10.42	38.31	43.8	50.58	74	-23.42	Vertical
7236.000	36.4	10.69	37.09	41.48	51.48	74	-22.52	Vertical
9648.000	37.53	12.52	35.08	37.39	52.36	74	-21.64	Vertical
12102.870	38.66	14.47	35.85	36.62	53.90	74	-20.10	Vertical
3594.760	32.48	7.67	37.96	44.81	47.00	74	-27.00	Horizontal
4824.000	34.19	8.9	38.41	43.11	47.79	74	-26.21	Horizontal
5794.797	34.58	9.98	38.34	44.53	50.75	74	-23.25	Horizontal
7236.000	36.4	10.69	37.09	41.76	51.76	74	-22.24	Horizontal
9648.000	37.53	12.52	35.08	37.9	52.87	74	-21.13	Horizontal
12102.87	38.66	14.47	35.85	35.76	53.04	74	-20.96	Horizontal

Report No.: SZEM161201075004 Page: 56 of 78

Test mode:	802.1	1g	Test ch	annel:	Middle	Remark	(:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3765.116	32.97	7.73	37.98	44.52	47.24	74	-26.76	Vertical
4874.000	34.28	8.97	38.44	41.82	46.63	74	-27.37	Vertical
5820.005	34.59	10.06	38.34	44.67	50.98	74	-23.02	Vertical
7311.000	36.37	10.72	37.02	41.04	51.11	74	-22.89	Vertical
9748.000	37.55	12.58	35.03	37.1	52.20	74	-21.80	Vertical
12190.740	38.72	14.4	36.06	36.01	53.07	74	-20.93	Vertical
3781.495	33.01	7.73	37.98	43.94	46.70	74	-27.30	Horizontal
4874.000	34.28	8.97	38.44	43.3	48.11	74	-25.89	Horizontal
5956.314	34.67	10.44	38.31	43.84	50.64	74	-23.36	Horizontal
7311.000	36.37	10.72	37.02	41.08	51.15	74	-22.85	Horizontal
9748.000	37.55	12.58	35.03	37.48	52.58	74	-21.42	Horizontal
12261.500	38.76	14.34	36.23	36.69	53.56	74	-20.44	Horizontal

Test mode:	802.1	1g	Test ch	annel:	Highest	Remark	:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	₋imit 3μV/m)	Over Limit (dB)	Polarization
3836.607	33.16	7.75	37.98	45.95	48.88	74	-25.12	Vertical
4924.000	34.37	9.04	38.46	42.93	47.88	74	-26.12	Vertical
5956.314	34.67	10.44	38.31	43.49	50.29	74	-23.71	Vertical
7386.000	36.34	10.75	36.95	41.76	51.90	74	-22.10	Vertical
9848.000	37.57	12.63	34.98	36.82	52.04	74	-21.96	Vertical
12208.390	38.73	14.39	36.1	36.05	53.07	74	-20.93	Vertical
3842.163	33.18	7.76	37.98	45.71	48.67	74	-25.33	Horizontal
4924.000	34.37	9.04	38.46	43.39	48.34	74	-25.66	Horizontal
6069.413	34.76	10.47	38.23	43.95	50.95	74	-23.05	Horizontal
7386.000	36.34	10.75	36.95	41.85	51.99	74	-22.01	Horizontal
9848.000	37.57	12.63	34.98	37.69	52.91	74	-21.09	Horizontal
12067.890	38.64	14.5	35.76	36.47	53.85	74	-20.15	Horizontal

Report No.: SZEM161201075004 Page: 57 of 78

Test mode:	802.1	1n(HT20)	Test ch	annel:	Lowest	Remark	:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3847.726	33.19	7.76	37.98	44.48	47.45	74	-26.55	Vertical
4824.000	34.19	8.9	38.41	42.01	46.69	74	-27.31	Vertical
5973.576	34.68	10.49	38.31	43.39	50.25	74	-23.75	Vertical
7236.000	36.4	10.69	37.09	41.03	51.03	74	-22.97	Vertical
9648.000	37.53	12.52	35.08	37.66	52.63	74	-21.37	Vertical
12120.390	38.67	14.46	35.89	36.70	53.94	74	-20.06	Vertical
3574.015	32.42	7.66	37.96	44.96	47.08	74	-26.92	Horizontal
4824.000	34.19	8.9	38.41	42.20	46.88	74	-27.12	Horizontal
6025.661	34.72	10.53	38.27	43.04	50.02	74	-23.98	Horizontal
7236.000	36.4	10.69	37.09	41.61	51.61	74	-22.39	Horizontal
9648.000	37.53	12.52	35.08	37.69	52.66	74	-21.34	Horizontal
12102.870	38.66	14.47	35.85	36.48	53.76	74	-20.24	Horizontal

Test mode:	802.1	1g	Test ch	annel:	Middle	Re	mark	:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Lim (dBµV		Over Limit (dB)	Polarization
3842.163	33.18	7.76	37.98	44.69	47.65	74		-26.35	Vertical
4874.000	34.28	8.97	38.44	43.19	48.00	74		-26.00	Vertical
6060.637	34.75	10.48	38.24	43.19	50.18	74		-23.82	Vertical
7311.000	36.37	10.72	37.02	41.65	51.72	74		-22.28	Vertical
9748.000	37.55	12.58	35.03	37.81	52.91	74		-21.09	Vertical
12137.94	38.68	14.45	35.93	36.13	53.33	74		-20.67	Vertical
3915.118	33.38	7.78	37.99	44.03	47.20	74		-26.80	Horizontal
4874.000	34.28	8.97	38.44	41.10	45.91	74		-28.09	Horizontal
5769.698	34.57	9.91	38.35	44.12	50.25	74		-23.75	Horizontal
7311.000	36.37	10.72	37.02	41.03	51.10	74		-22.90	Horizontal
9748.000	37.55	12.58	35.03	37.85	52.95	74		-21.05	Horizontal
12102.870	38.66	14.47	35.85	36.02	53.30	74		-20.70	Horizontal

Report No.: SZEM161201075004 Page: 58 of 78

Test mode:	802.1	1n(HT20)	Test ch	annel:	Highest	Remark	(:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3858.877	33.22	7.76	37.99	43.9	46.89	74	-27.11	Vertical
4924.000	34.37	9.04	38.46	41.98	46.93	74	-27.07	Vertical
6087.002	34.77	10.45	38.21	43.36	50.37	74	-23.63	Vertical
7386.000	36.34	10.75	36.95	41.67	51.81	74	-22.19	Vertical
9848.000	37.57	12.63	34.98	37.44	52.66	74	-21.34	Vertical
12440.210	38.86	14.2	36.66	37.17	53.57	74	-20.43	Vertical
3847.726	33.19	7.76	37.98	44.99	47.96	74	-26.04	Horizontal
4924.000	34.37	9.04	38.46	42.07	47.02	74	-26.98	Horizontal
5939.103	34.66	10.39	38.31	43.62	50.36	74	-23.64	Horizontal
7386.000	36.34	10.75	36.95	41.04	51.18	74	-22.82	Horizontal
9748.000	37.55	12.58	35.03	37.49	52.59	74	-21.41	Horizontal
12137.940	38.68	14.45	35.93	36.57	53.77	74	-20.23	Horizontal

Test mode:	802.1	1n(HT40)	Test ch	annel:	Lowest	Remark	:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3842.163	33.18	7.76	37.98	43.55	46.51	74	-27.49	Vertical
4844.000	34.23	8.92	38.42	41.07	45.80	74	-28.20	Vertical
6025.661	34.72	10.53	38.27	43.24	50.22	74	-23.78	Vertical
7266.000	36.39	10.7	37.06	41.58	51.61	74	-22.39	Vertical
9688.000	37.54	12.54	35.06	37.30	52.32	74	-21.68	Vertical
11998.250	38.6	14.56	35.6	35.61	53.17	74	-20.83	Vertical
3842.163	33.18	7.76	37.98	44.74	47.70	74	-26.30	Horizontal
4844.000	34.23	8.92	38.42	41.50	46.23	74	-27.77	Horizontal
5956.314	34.67	10.44	38.31	43.67	50.47	74	-23.53	Horizontal
7266.000	36.39	10.7	37.06	41.61	51.64	74	-22.36	Horizontal
9688.000	37.54	12.54	35.06	37.16	52.18	74	-21.82	Horizontal
12120.390	38.67	14.46	35.89	36.18	53.42	74	-20.58	Horizontal

Report No.: SZEM161201075004 Page: 59 of 78

Test mode:	802.1	1n(HT40)	Test ch	annel:	Middle	Rema	rk:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3797.945	33.06	7.74	37.98	43.92	46.74	74	-27.26	Vertical
4874.000	34.28	8.97	38.44	42.94	47.75	74	-26.25	Vertical
6087.002	34.77	10.45	38.21	43.04	50.05	74	-23.95	Vertical
7311.000	36.37	10.72	37.02	41.87	51.94	74	-22.06	Vertical
9748.000	37.55	12.58	35.03	37.82	52.92	74	-21.08	Vertical
12332.670	38.8	14.29	36.4	37.18	53.87	74	-20.13	Vertical
3831.060	33.15	7.75	37.98	44.31	47.23	74	-26.77	Horizontal
4874.000	34.28	8.97	38.44	41.47	46.28	74	-27.72	Horizontal
5947.702	34.67	10.42	38.31	43.92	50.70	74	-23.30	Horizontal
7311.000	36.37	10.72	37.02	41.89	51.96	74	-22.04	Horizontal
9748.000	37.55	12.58	35.03	37.54	52.64	74	-21.36	Horizontal
12033.020	38.62	14.53	35.68	36.46	53.93	74	-20.07	Horizontal

Test mode:	802.1	1n(HT40)	Test ch	annel:	Highest	Remark	:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable loss (dB)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3842.163	33.18	7.76	37.98	44.93	47.89	74	-26.11	Vertical
4904.000	34.33	9.01	38.45	43.62	48.51	74	-25.49	Vertical
6069.413	34.76	10.47	38.23	43.55	50.55	74	-23.45	Vertical
7356.000	36.36	10.74	36.98	41.07	51.19	74	-22.81	Vertical
9808.000	37.56	12.61	35	36.98	52.15	74	-21.85	Vertical
12102.870	38.66	14.47	35.85	36.61	53.89	74	-20.11	Vertical
3954.973	33.48	7.79	38	44.76	48.03	74	-25.97	Horizontal
4904.000	34.33	9.01	38.45	42.86	47.75	74	-26.25	Horizontal
6193.614	34.86	10.31	38.11	43.51	50.57	74	-23.43	Horizontal
7356.000	36.36	10.74	36.98	41.46	51.58	74	-22.42	Horizontal
9808.000	37.56	12.61	35	37.50	52.67	74	-21.33	Horizontal
12102.870	38.66	14.47	35.85	36.15	53.43	74	-20.57	Horizontal

Report No.: SZEM161201075004 Page: 60 of 78

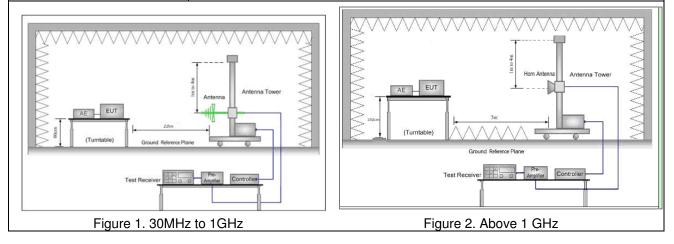
Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 2) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.terms-en-Document.terms-and-Conditions.terms-en-Document.terms-en-Docume

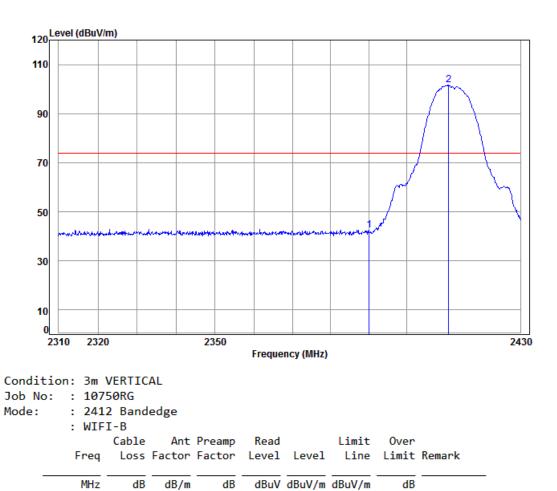


Report No.: SZEM161201075004 Page: 61 of 78

6.9 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 1	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2013 Section	ANSI C63.10: 2013 Section 11.12								
Test Site:	Measurement Distance: 3m	Measurement Distance: 3m (Semi-Anechoic Chamber)								
	Frequency	Limit (dBuV/m @3m)	Remark							
	30MHz-88MHz	40.0	Quasi-peak Value							
	88MHz-216MHz	43.5	Quasi-peak Value							
Limit:	216MHz-960MHz	46.0	Quasi-peak Value							
	960MHz-1GHz	54.0	Quasi-peak Value							
	Above 1011	54.0	Average Value							
	Above 1GHz	74.0	Peak Value							
Tost Sotup:			· · · · · · · · · · · · · · · · · · ·							

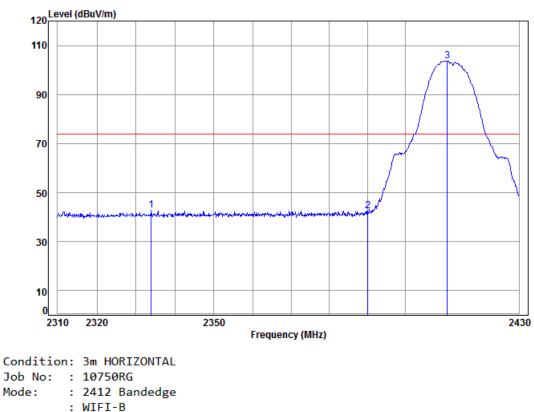
Test Setup:


Report No.: SZEM161201075004 Page: 62 of 78

	a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
Test Procedure:	e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
	h. Test the EUT in the lowest channel, the Highest channel
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode,And found the X axis positioning which it is worse case.
	j. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.
	Charge + Transmitting mode.
	Pretest the EUT at Charge +Transmitting mode.
	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;
Final Test Mode:	6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of $802.11n(HT20)$; 13.5Mbps of rate is the worst case of $802.11n(HT40)$.
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Report No.: SZEM161201075004 Page: 63 of 78

Test plot as follows:										
Worse case mode:	802.11b	Test channel:	Lowest	Remark:	Peak	Vertical				



1	2390.000	5.34	29.08	37.96	46.10	42.56	74.00	-31.44	
2 pp	2411.000	5.35	29.14	37.96	105.06	101.59	74.00	27.59	

Report No.: SZEM161201075004 Page: 64 of 78

Worse case mode:	802.11b	Test channel:	Lowest	Remark:	Peak	Horizontal

		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
			-			-			
1	2333.871	5.29	28.91	37.97	46.65	42.88	74.00	-31.12	
2	2390.000	5.34	29.08	37.96	45.92	42.38	74.00	-31.62	
3 1	op 2411.000	5.35	29.14	37.96	107.22	103.75	74.00	29.75	
- 1									

3

2487.807

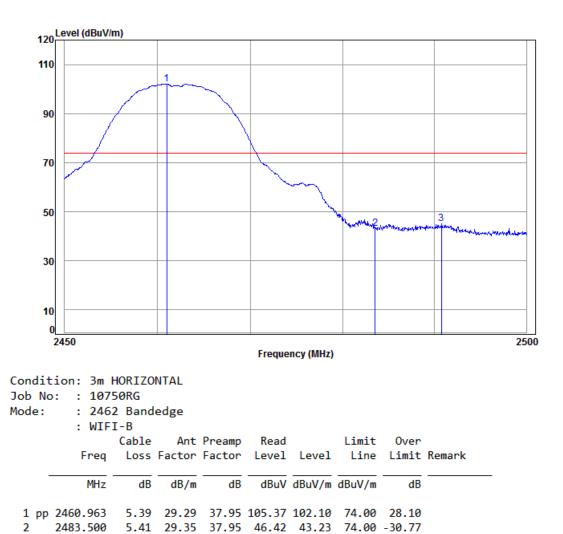
SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM161201075004 Page: 65 of 78

Worse case mode: 802.11b	Test channel:	Highest	Remark:	Peak	Vertical
--------------------------	---------------	---------	---------	------	----------

5.41 29.36 37.95 48.88 45.70 74.00 -28.30

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.terms-en-Document.terms-and-Conditions.terms-en-Document.terms-en-Docume



3

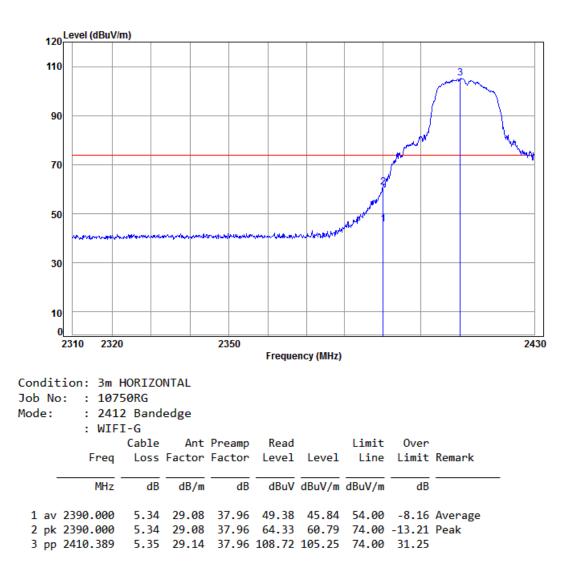
SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM161201075004 Page: 66 of 78

Worse case mode: 802.11b	Test channel:	Highest	Remark:	Peak	Horizontal
--------------------------	---------------	---------	---------	------	------------

2490.724 5.41 29.37 37.95 48.22 45.05 74.00 -28.95

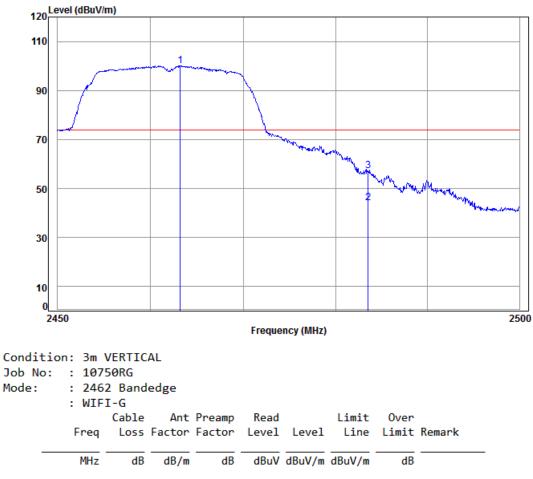
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.terms-en-Document.terms-and-Conditions.terms-en-Document.terms-en-Docume


Report No.: SZEM161201075004 Page: 67 of 78

Worse case mode:	802.11g	Test channe	el: Lowest	Remark:	Peak	Vertical
_						
120 Level (dB	uV/m)					
110						
				2	、	
90						
90						
					<u> </u>	
70				1	-Ander	
50				r		
and a second	Anna and the second sec	hadden of the second and the second	Address and a second with the			
30						
10						
0						
2310 2	320	2350 Freque	ency (MHz)		2430	
Condition: 3	m VERTICAL					
	0750RG					
	412 Bandedge					
: W	IFI-G Cable An	t Preamp Read	1 4 - 2 4	0ver		
Fre	eq Loss Factor					
MI	lz dB dB/I	n dB dBuV	dBuV/m dBuV/m	dB		
1 pk 2390.00 2 pp 2410.87		3 37.96 56.87 4 37.96 106.25				
z hh z+10.01	29.1	+ 57.50 100.25	102.70 74.00	20.70		

Report No.: SZEM161201075004 Page: 68 of 78

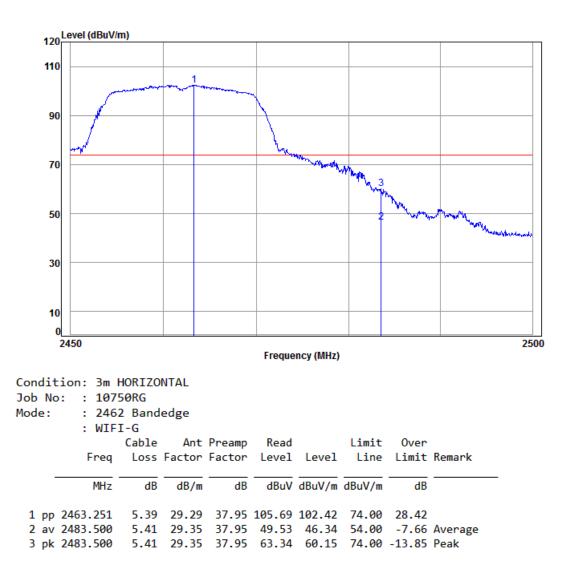
Worse case mode: 802.11g Test channel:	Lowest	Remark:	Peak	Horizontal
--	--------	---------	------	------------



This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.terms-en-Document.terms-and-Conditions.terms-en-Document.terms-en-Docume

Report No.: SZEM161201075004 Page: 69 of 78

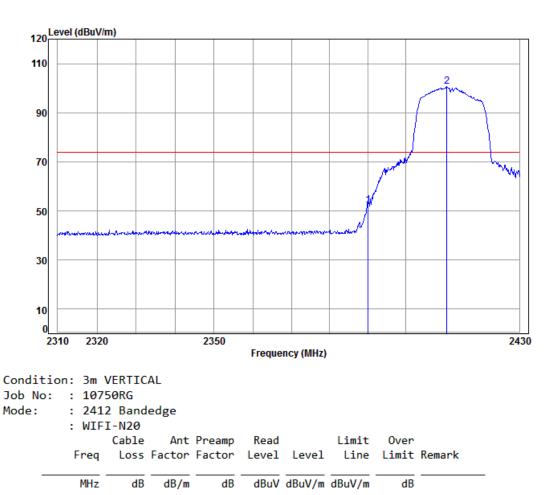
Worse case mode: 802.11g	Test channel:	Highest	Remark:	Peak	Vertical
--------------------------	---------------	---------	---------	------	----------



1 pp 2463.202	5.39	29.29	37.95	103.37	100.10	74.00	26.10
2 av 2483.500	5.41	29.35	37.95	47.19	44.00	54.00	-10.00 Average
3 pk 2483.500	5.41	29.35	37.95	60.34	57.15	74.00	-16.85 Peak

Report No.: SZEM161201075004 Page: 70 of 78

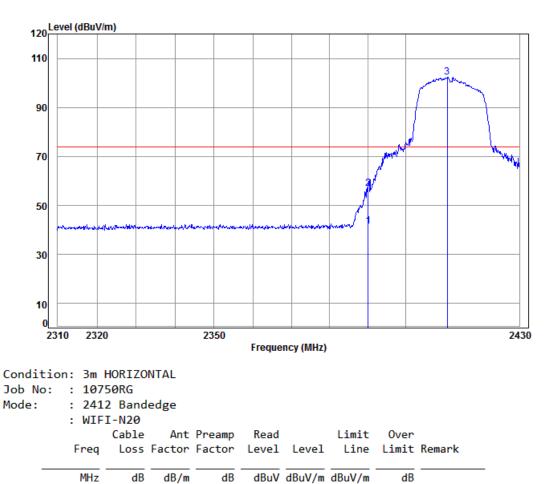
Worse case mode: 8	302.11g	Test channel:	Highest	Remark:	Peak	Horizontal
--------------------	---------	---------------	---------	---------	------	------------



This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.terms-en-Document.terms-and-Conditions.terms-en-Document.terms-en-Docume

Report No.: SZEM161201075004 Page: 71 of 78

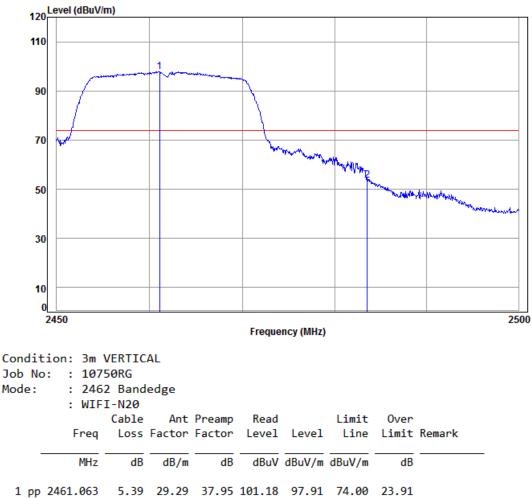
Worse case mode: 802.11n(HT20)	Test channel:	Lowest	Remark:	Peak	Vertical
--------------------------------	---------------	--------	---------	------	----------



1 pk 2390.000	5.34	29.08	37.96	55.96	52.42	74.00	-21.58 Peak
2 pp 2410.756	5.35	29.14	37.96	104.22	100.75	74.00	26.75

Report No.: SZEM161201075004 Page: 72 of 78

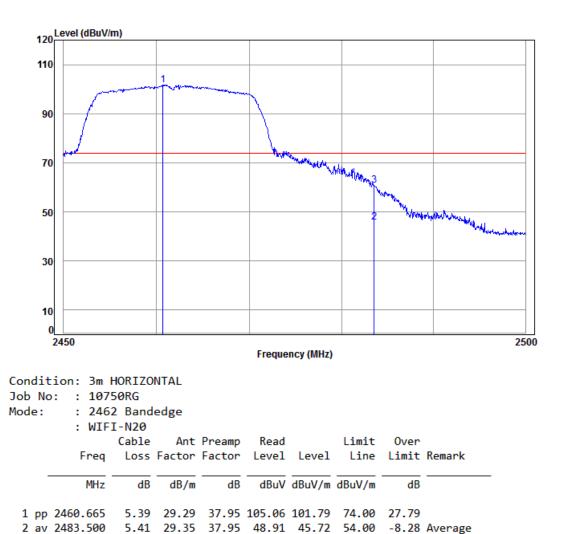
Worse case mode: 802.11n(HT20)	Test channel:	Lowest	Remark:	Peak	Horizontal
--------------------------------	---------------	--------	---------	------	------------



1 av 2390.000	5.34	29.08	37.96	45.14	41.60	54.00	-12.40 Average
2 pk 2390.000	5.34	29.08	37.96	60.57	57.03	74.00	-16.97 Peak
3 pp 2410.878	5.35	29.14	37.96	105.73	102.26	74.00	28.26

Report No.: SZEM161201075004 Page: 73 of 78

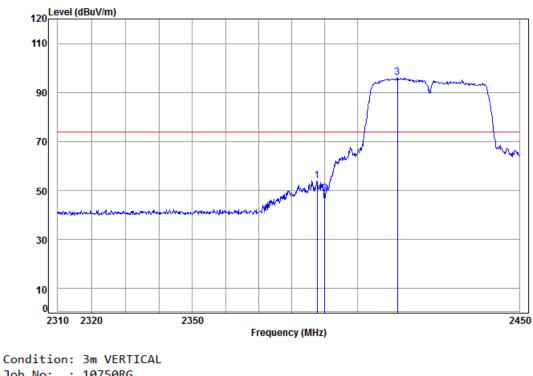
Worse case mode: 802.11n(HT20) Te	est channel: High	hest Remark:	Peak	Vertical
-----------------------------------	-------------------	--------------	------	----------


2 2483.500 5.41 29.35 37.95 56.92 53.73 74.00 -20.27

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.terms-en-Document.terms-and-Conditions.terms-en-Document.terms-en-Docume

Report No.: SZEM161201075004 Page: 74 of 78

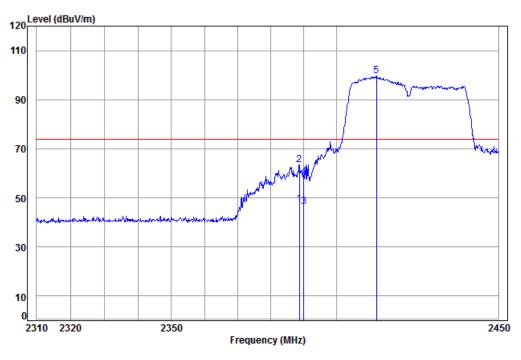
Worse case mode: 802.11n(HT20) Test cha	annel: Highest	Remark: Peak	Horizontal
---	----------------	--------------	------------


3 pk 2483.500 5.41 29.35 37.95 63.94 60.75 74.00 -13.25 Peak

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.terms-en-Document.terms-and-Conditions.terms-en-Document.terms-en-Docume

Report No.: SZEM161201075004 Page: 75 of 78

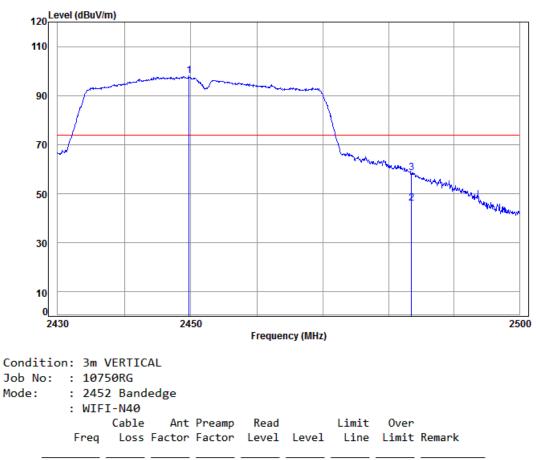
Worse case mode: 802.11n(HT40)	Test channel:	Lowest	Remark:	Peak	Vertical
--------------------------------	---------------	--------	---------	------	----------



Job No	: : 107	50RG							
Mode:	: 242	2 Band	edge						
	: WIF	I-N40							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
_									
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2387.665	5.34	29.07	37.96	57.49	53.94	74.00	-20.06	
2	2390.000	5.34	29.08	37.96	52.15	48.61	74.00	-25.39	
3 pp	2412.236	5.35	29.14	37.96	99.55	96.08	74.00	22.08	

Report No.: SZEM161201075004 Page: 76 of 78

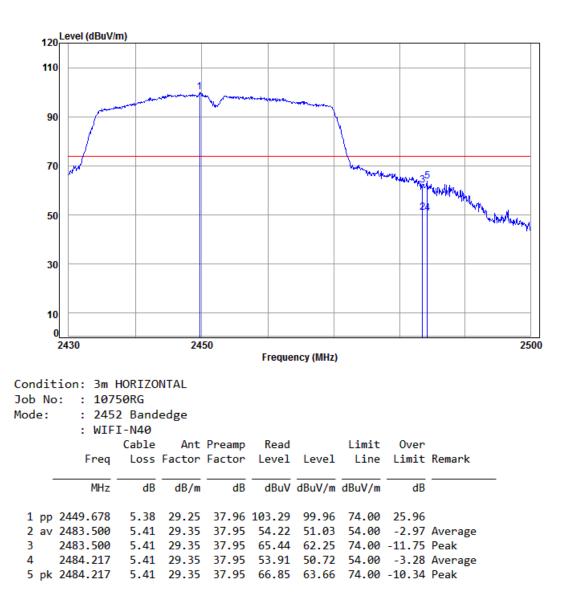
Worse case mode: 802.11n(HT40)	Test channel:	Lowest	Remark:	Peak	Horizontal
--------------------------------	---------------	--------	---------	------	------------



Condit Job No	ion: 3m : : 107		NTAL						
Mode:	: 242	2 Band	edge						
	: WIF	I-N40							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
_									
			10.4						
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	MHZ	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 av	MHz 2388.649		dB/m 29.07						Average
		5.34		37.96		47.37		-6.63	
	2388.649	5.34	29.07 29.07	37.96 37.96	50.92	47.37 63.51	, 54.00 74.00	-6.63 -10.49	
2 pk	2388.649 2388.649	5.34 5.34 5.34	29.07 29.07	37.96 37.96 37.96	50.92 67.06	47.37 63.51 46.46	, 54.00 74.00	-6.63 -10.49 -7.54	Peak Average
2 pk 3 4	2388.649 2388.649 2390.000	5.34 5.34 5.34 5.34	29.07 29.07 29.08	37.96 37.96 37.96 37.96	50.92 67.06 50.00	47.37 63.51 46.46 58.56	54.00 74.00 54.00 74.00	-6.63 -10.49 -7.54 -15.44	Peak Average

Report No.: SZEM161201075004 Page: 77 of 78

Worse case mode: 802.11n(HT40) Tes	channel: Highest	Remark:	Peak	Vertical
------------------------------------	------------------	---------	------	----------



MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 pp 2449.748	5.38	29.25	37.96	101.53	98.20	74.00	24.20
2 av 2483.500	5.41	29.35	37.95	49.29	46.10	54.00	-7.90 Average
3 pk 2483.500	5.41	29.35	37.95	61.79	58.60	74.00	-15.40 Peak

Report No.: SZEM161201075004 Page: 78 of 78

Worse case mode: 802.	.11n(HT40) Test channel:	Highest	Remark:	Peak	Horizontal
-----------------------	--------------------------	---------	---------	------	------------

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

7 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1612010750RG.