

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

SAR EVALUATION REPORT

Applicant Name: LG Electronics U.S.A., Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States Date of Testing: 10/29/18 - 10/31/18 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 1M1810290199-03.ZNF

FCC ID: ZNFX212TA

APPLICANT: LG ELECTRONICS U.S.A., INC.

DUT Type: Portable Handset

Application Type: Class II Permissive Change

FCC Rule Part(s): CFR §2.1093 Model: LM-X220MA

Additional Model(s): LMX220MA, X220MA

Permissive Change(s): See FCC Change Document

Date of Original Certification 03/28/2018

Equipment	Band & Mode	Tx Frequency	SAR		
Class	Jana a mous		1g Head (W/kg)	1g Body- Worn (W/kg)	1g Hotspot (W/kg)
PCE	LTE Band 26 (Cell)	814.7 - 848.3 MHz	0.51	0.81	0.81
PCE	LTE Band 25 (PCS)	1850.7 - 1914.3 MHz	0.68	0.96	0.96
Simultaneous	s SAR per KDB 690783 D	1.57	1.50	1.59	

Note: The table above shows Test data evaluated for the current test report. Please refer to RF Exposure Technical Report S/N 1M1802060016-01-R1.ZNF for original compliance evaluation.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 1 of 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 1 of 45

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE INF	ORMATION	7
3	INTROD	UCTION	8
4	DOSIME	TRIC ASSESSMENT	9
5	DEFINIT	ION OF REFERENCE POINTS	10
6	TEST CO	ONFIGURATION POSITIONS	11
7	RF EXP	OSURE LIMITS	14
8	FCC ME	ASUREMENT PROCEDURES	15
9	RF CON	DUCTED POWERS	17
10	SYSTEM	1 VERIFICATION	23
11	SAR DA	TA SUMMARY	25
12	FCC MU	LTI-TX AND ANTENNA SAR CONSIDERATIONS	29
13	SAR ME	ASUREMENT VARIABILITY	40
14	EQUIPM	ENT LIST	41
15	MEASUF	REMENT UNCERTAINTIES	42
16	CONCLU	JSION	43
17	REFERE	ENCES	44
APPEN APPEN	NDIX A: NDIX B: NDIX C: NDIX D:	SAR TEST PLOTS SAR DIPOLE VERIFICATION PLOTS PROBE AND DIPOLE CALIBRATION CERTIFICATES SAR TISSUE SPECIFICATIONS	
APPEN	NDIX E:	SAR SYSTEM VALIDATION	
APPEN	IDIX E.	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	

FCC ID: ZNFX212TA	PETEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 0 -f 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 2 of 45
18 PCTEST Engineering Laboratory,	Inc.			REV 20.07 M

1 DEVICE UNDER TEST

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
GSM/GPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1750	Voice/Data	1712.4 - 1752.6 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 71	Voice/Data	665.5 - 695.5 MHz
LTE Band 12	Voice/Data	699.7 - 715.3 MHz
LTE Band 26 (Cell)	Voice/Data	814.7 - 848.3 MHz
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz
LTE Band 66 (AWS)	Voice/Data	1710.7 - 1779.3 MHz
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 25 (PCS)	Voice/Data	1850.7 - 1914.3 MHz
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz
2.4 GHz WLAN	Voice/Data	2412 - 2462 MHz
U-NII-1	Voice/Data	5180 - 5240 MHz
U-NII-2A	Voice/Data	5260 - 5320 MHz
U-NII-2C	Voice/Data	5500 - 5720 MHz
U-NII-3	Voice/Data	5745 - 5825 MHz
Bluetooth	Data	2402 - 2480 MHz

1.2 Power Reduction for SAR

This device uses an independent fixed level power reduction mechanism for WLAN operations during voice or VoIP held to ear scenarios. Per FCC Guidance, the held-to-ear exposure conditions were evaluated at reduced power according to the head SAR positions described in IEEE 1528-2013. Detailed descriptions of the power reduction mechanism are included in the operational description.

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	(1) LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 2 -f 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 3 of 45

 $\ @\ 2018\ PCTEST\ Engineering\ Laboratory,\ Inc.$

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

1.3.1 Maximum Output Power

Mode / Band	Modulated Average (dBm)	
LTE Dand 26 (Call)	Maximum	24.7
LTE Band 26 (Cell)	Nominal	24.2
LTE Band 25 (PCS)	Maximum	24.7
LIE Dallu 25 (PCS)	Nominal	24.2

1.4 DUT Antenna Locations

The overall dimensions of this device are > 9 x 5 cm. The overall diagonal dimension of the device is \leq 160 mm and the diagonal display is \leq 150 mm. A diagram showing the location of the device antennas can be found in Appendix F.

Table 1-1
Device Edges/Sides for SAR Testing

Device Sides/Edges for SAR Testing						
Mode	Back	Front	Тор	Bottom	Right	Left
LTE Band 26 (Cell)	Yes	Yes	No	Yes	Yes	Yes
LTE Band 25 (PCS)	Yes	Yes	No	Yes	Yes	Yes

Note: Particular DUT edges were not required to be evaluated for wireless router SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02r01 Section III. The distances between the transmit antennas and the edges of the device are included in the filing.

1.5 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 4 of 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 4 of 45

© 2018 PCTEST Engineering Laboratory, Inc.

Table 1-2 **Simultaneous Transmission Scenarios**

No.	Capable Transmit Configuration	Head	Body-Worn Accessory	Wireless Router	Notes
1	GSM voice + 2.4 GHz WI-FI	Yes	Yes	N/A	
2	GSM voice + 5 GHz WI-FI	Yes	Yes	N/A	
3	GSM voice + 2.4 GHz Bluetooth	N/A	Yes	N/A	
4	UMTS + 2.4 GHz WI-FI	Yes	Yes	Yes	
5	UMTS + 5 GHz WI-FI	Yes	Yes	Yes	
6	UMTS + 2.4 GHz Bluetooth	N/A	Yes	N/A	
7	LTE + 2.4 GHz WI-FI	Yes	Yes	Yes	
8	LTE + 5 GHz WI-FI	Yes	Yes	Yes	
9	LTE + 2.4 GHz Bluetooth	N/A	Yes	N/A	
10	GPRS/EDGE + 2.4 GHz WI-FI	Yes*	Yes*	Yes	* Pre-installed VOIP applications are considered
11	GPRS/EDGE + 5 GHz WI-FI	Yes*	Yes*	Yes	* Pre-installed VOIP applications are considered
12	GPRS/EDGE + 2.4 GHz Bluetooth	N/A	Yes*	N/A	* Pre-installed VOIP applications are considered

- 1. 2.4 GHz WLAN, 5 GHz WLAN, and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.
- 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 4. Per the manufacturer, WIFI Direct is expected to be used in conjunction with a held-to-ear or body-worn accessory voice call. Therefore, the simultaneous transmission scenarios involving WIFI direct are listed in the above table.
- This device supports VoLTE and VoWIFI.

1.6 **Miscellaneous SAR Test Considerations**

(A) WIFI/BT

Since the permissive change was not applicable to the unlicensed transmitter(s), additional unlicensed SAR testing was not required. See RF Exposure Technical Report S/N 1M1802060016-01-R1.ZNF for SAR compliance evaluation and complete RF conducted output power measurements and SAR test results.

(B) Licensed Transmitter(s)

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

This device supports LTE capabilities with overlapping transmission frequency ranges. When the supported frequency range of an LTE Band falls completely within an LTE band with a larger transmission frequency range, both LTE bands have the same target power (or the band with the larger transmission frequency range has a higher target power), and both LTE bands share the same transmission path and signal characteristics, SAR was only assessed for the band with the larger transmission frequency range.

1.7 **Guidance Applied**

- IEEE 1528-2013
- FCC KDB Publication 941225, D05v02r04, D06v02r01 (4G and Hotspot)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg F of 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 5 of 45

1.8 **Device Serial Numbers**

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 11.

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D C -f 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset	Page 6 of 45

	LTE Information				
FCC ID		ZNFX212TA			
Form Factor		Portable Handset			
requency Range of each LTE transmission band		LTE Band 71 (665.5 - 695.5 MHz	2)		
		LTE Band 12 (699.7 - 715.3 MHz	2)		
	L	TE Band 26 (Cell) (814.7 - 848.3 N	ИHz)		
	LTE Band 5 (Cell) (824.7 - 848.3 MHz)				
		Band 66 (AWS) (1710.7 - 1779.3			
		Band 4 (AWS) (1710.7 - 1754.3			
		Band 25 (PCS) (1850.7 - 1914.3			
		E Band 2 (PCS) (1850.7 - 1909.3	,		
Channel Bandwidths		Sand 71: 5 MHz, 10 MHz, 15 MHz,			
		Band 12: 1.4 MHz, 3 MHz, 5 MHz,			
		(Cell): 1.4 MHz, 3 MHz, 5 MHz, 1			
		nd 5 (Cell): 1.4 MHz, 3 MHz, 5 MH			
		S): 1.4 MHz, 3 MHz, 5 MHz, 10 M S): 1.4 MHz, 3 MHz, 5 MHz, 10 MH			
		S): 1.4 MHz, 3 MHz, 5 MHz, 10 MI			
		6): 1.4 MHz, 3 MHz, 5 MHz, 10 MH			
Channel Numbers and Frequencies (MHz)	Low Low-Mid	Mid	Mid-High High		
TE Band 71: 5 MHz	665.5 (133147)	680.5 (133297)	695.5 (133447)		
TE Band 71: 10 MHz	668 (133172)	680.5 (133297)	693 (133422)		
TE Band 71: 15 MHz	670.5 (133197)	680.5 (133297)	690.5 (133397)		
TE Band 71: 10 MHz	673 (133222)	680.5 (133297)	688 (133372)		
TE Band 12: 1.4 MHz	699.7 (23017)	707.5 (23095)	715.3 (23173)		
TE Band 12: 3 MHz	700.5 (23025)	707.5 (23095)	714.5 (23165)		
TE Band 12: 5 MHz	701.5 (23035)	707.5 (23095)	713.5 (23155)		
TE Band 12: 10 MHz	704 (23060)	707.5 (23095)	711 (23130)		
TE Band 26 (Cell): 1.4 MHz	814.7 (26697)	831.5 (26865)	848.3 (27033)		
TE Band 26 (Cell): 3 MHz	815.5 (26705)	831.5 (26865)	847.5 (27025)		
TE Band 26 (Cell): 5 MHz	816.5 (26715)	831.5 (26865)	846.5 (27015)		
TE Band 26 (Cell): 10 MHz	819 (26740)	831.5 (26865)	844 (26990)		
TE Band 26 (Cell): 15 MHz	821.5 (26765)	831.5 (26865)	841.5 (26965)		
TE Band 5 (Cell): 1.4 MHz	824.7 (20407)	836.5 (20525)	848.3 (20643)		
TE Band 5 (Cell): 3 MHz	825.5 (20415)	836.5 (20525)	847.5 (20635)		
TE Band 5 (Cell): 5 MHz	826.5 (20425)	836.5 (20525)	846.5 (20625)		
TE Band 5 (Cell): 10 MHz	829 (20450)	836.5 (20525)	844 (20600)		
TE Band 66 (AWS): 1.4 MHz	1710.7 (131979)	1745 (132322)	1779.3 (132665)		
TE Band 66 (AWS): 3 MHz	1711.5 (131987)	1745 (132322)	1778.5 (132657)		
TE Band 66 (AWS): 5 MHz	1712.5 (131997)	1745 (132322)	1777.5 (132647)		
TE Band 66 (AWS): 10 MHz	1715 (132022)	1745 (132322)	1775 (132622)		
TE Band 66 (AWS): 15 MHz	1717.5 (132047)	1745 (132322)	1772.5 (132597)		
TE Band 66 (AWS): 20 MHz	1720 (132072)	1745 (132322)	1770 (132572)		
TE Band 4 (AWS): 1.4 MHz	1710.7 (19957)	1732.5 (20175)	1754.3 (20393)		
TE Band 4 (AWS): 3 MHz	1711.5 (19965)	1732.5 (20175)	1753.5 (20385)		
TE Band 4 (AWS): 5 MHz	1712.5 (19975)	1732.5 (20175)	1752.5 (20375)		
TE Band 4 (AWS): 10 MHz	1715 (20000)	1732.5 (20175)	1750 (20350)		
TE Band 4 (AWS): 15 MHz	1717.5 (20025)	1732.5 (20175)	1747.5 (20325)		
TE Band 4 (AWS): 20 MHz	1720 (20050)	1732.5 (20175)	1745 (20300)		
TE Band 25 (PCS): 1.4 MHz	1850.7 (26047)	1882.5 (26365)	1914.3 (26683)		
TE Band 25 (PCS): 3 MHz	1851.5 (26055)	1882.5 (26365)	1913.5 (26675)		
TE Band 25 (PCS): 5 MHz	1852.5 (26065)	1882.5 (26365)	1912.5 (26665)		
TE Band 25 (PCS): 10 MHz	1855 (26090)	1882.5 (26365)	1910 (26640)		
TE Band 25 (PCS): 15 MHz	1857.5 (26115)	1882.5 (26365)	1907.5 (26615)		
TE Band 25 (PCS): 20 MHz	1860 (26140)	1882.5 (26365)	1905 (26590)		
TE Band 2 (PCS): 1.4 MHz	1850.7 (18607)	1880 (18900)	1909.3 (19193)		
TE Band 2 (PCS): 3 MHz	1851.5 (18615)	1880 (18900)	1908.5 (19185)		
TE Band 2 (PCS): 5 MHz	1852.5 (18625)	1880 (18900)	1907.5 (19175)		
TE Band 2 (PCS): 10 MHz	1855 (18650)	1880 (18900)	1905 (19150)		
TE Band 2 (PCS): 15 MHz	1857.5 (18675)	1880 (18900)	1902.5 (19125)		
TE Band 2 (PCS): 20 MHz	1860 (18700)	1880 (18900)	1900 (19100)		
E Category		6			
fodulations Supported in UL		QPSK, 16QAM			
TE MPR Permanently implemented per 3GPP TS					
6.101 section 6.2.3~6.2.5? (manufacturer attestation		YES			
be provided)					
A-MPR (Additional MPR) disabled for SAR Testing?		YES			
TE Carrier Aggregation Possible Combinations		N/A			
TE Additional Information	This device does not support full CA for	enturos on 3GPP Pologos 40, All	nlink communications are identi!		
	This device does not support full CA for Release 8 Specifications. The following				
	I widase o opecinications. The followin	g LTE Release To Features are no Offloading, MDH, eMBMS, Cross-(n supponeu. Canner Aggregation, R		

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dania 7 of 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 7 of 45
118 DCTEST Engineering Laboratory Inc	•			DEV/ 20 07 M

INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 **SAR Definition**

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 **SAR Mathematical Equation**

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 0 -f 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 8 of 45
018 PCTEST Engineering Laboratory, Inc.		•		REV 20.07 M

© 2018 PCTEST Engineering Laboratory, Inc.

4 DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a
 distance no greater than 5.0 mm from the inner surface of the shell. The area
 covered the entire dimension of the device-head and body interface and the
 horizontal grid resolution was determined per FCC KDB Publication 865664
 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

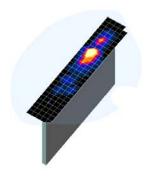


Figure 4-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1

Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

_	Maximum Area Scan	Maximum Zoom Scan	Maximum Zoom Scan Spatial Resolution (mm)		Minimum Zoom Scan	
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	Resolution (mm) (Δχ _{200m} , Δγ _{200m})	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)
	,,	,,	Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	, ,,, ,
≤ 2 GHz	≤15	≤8	≤5	≤4	≤ 1.5*Δz _{zoom} (n-1)	≥ 30
2-3 GHz	≤12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤10	≤ 4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤10	≤ 4	≤ 2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥22

^{*}Also compliant to IEEE 1528-2013 Table 6

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dog 0 of 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset	Page 9 of 45

© 2018 PCTEST Engineering Laboratory, Inc.

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

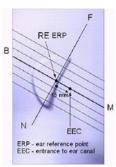


Figure 5-1 Close-Up Side view of ERP

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2 Front, back and side view of SAM Twin Phantom

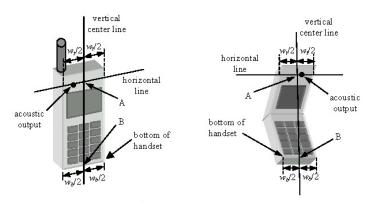


Figure 5-3 **Handset Vertical Center & Horizontal Line Reference Points**

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 10 of 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 10 of 45
18 PCTEST Engineering Laboratory, In	C.	·		REV 20.07 M

additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM

6 TEST CONFIGURATION POSITIONS

6.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

6.2 Positioning for Cheek

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

6.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

FCC ID: ZNFX212TA	PCTEST'	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dog 11 of 15
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 11 of 45

© 2018 PCTEST Engineering Laboratory, Inc.

Figure 6-2 Front, Side and Top View of Ear/15° Tilt Position

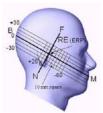


Figure 6-3
Side view w/ relevant markings

6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEEE 1528-2013, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

6.5 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot

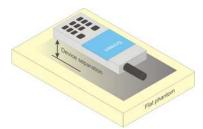


Figure 6-4 Sample Body-Worn Diagram

mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 12 of 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 12 of 45

© 2018 PCTEST Engineering Laboratory, Inc.

with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.6 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1g body and 10g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

6.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W \geq 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

FCC	ID: ZNFX212TA	PCTEST	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Docu	ıment S/N:	Test Dates:	DUT Type:		Dog 12 of 45
	310290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 13 of 45

7 RF EXPOSURE LIMITS

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 7-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUN	MAN EXPOSURE LIMITS	
	UNCONTROLLED ENVIRONMENT	CONTROLLED ENVIRONMENT
	General Population (W/kg) or (mW/g)	Occupational (W/kg) or (mW/g)
Peak Spatial Average SAR Head	1.6	8.0
Whole Body SAR	0.08	0.4
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 14 of 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset	Page 14 of 45

© 2018 PCTEST Engineering Laboratory, Inc.

8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

8.3 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

8.3.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

8.3.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

8.3.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

FCC ID: ZNFX212TA	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 45 -f 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 15 of 45
18 DCTEST Engineering Laboratory Inc.				DEV/ 20 07 M

© 2018 PCTEST Engineering Laboratory, Inc.

8.3.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 16 of 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 16 of 45
10 DCTECT Engineering Laboratory Inc.				DEV/ 20 07 M

9 RF CONDUCTED POWERS

9.1 LTE Conducted Powers

9.1.1 LTE Band 26

Table 9-1
LTE Band 26 Conducted Powers - 15 MHz Bandwidth

			LTE Band 26 (Cell)		
			15 MHz Bandwidth		
			Mid Channel		
Modulation	RB Size	RB Offset	26865 (831.5 MHz)	MPR Allowed per	MPR [dB]
			Conducted Power	3GPP [dB]	
			[dBm]		
	1	0	24.11		0
	1	36	24.41	0	0
	1	74	23.95		0
QPSK	36	0	23.21		1
	36	18	22.94	0-1	1
	36	37	22.92	0-1	1
	75	0	22.92		1
	1	0	22.85		1
	1	36	22.67	0-1	1
	1	74	22.76		1
16QAM	36	0	21.92		2
	36	18	21.97	0-2	2
	36	37	21.96	0-2	2
	75	0	21.93		2

Note: LTE Band 26 at 15 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 9-2 LTE Band 26 Conducted Powers - 10 MHz Bandwidth

				LTE Band 26 (Cell) 10 MHz Bandwidth			
Modulation	RB Size	RB Offset	26740 (819.0 MHz)	Mid Channel 26865 (831.5 MHz) Conducted Power [dBm	High Channel 26990 (844.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	24.08	24.15	23.99		0
	1	25	24.23	24.23	24.24	0	0
	1	49	24.19	24.12	24.17	0-1	0
QPSK	25	0	23.23	23.22	23.24		1
	25	12	23.10	23.22	23.22		. 1
	25	25	23.05	23.15	23.22		1
	50	0	23.10	23.15	23.23		1
	1	0	23.23	23.02	23.17		1
	1	25	23.20	23.18	23.22	0-1	1
	1	49	23.18	23.01	23.23		1
16QAM	25	0	22.14	22.18	22.19	0-2	2
	25	12	22.14	22.20	22.20		2
	25	25	22.17	22.22	22.23		2
	50	0	22.12	22.23	22.11		2

FCC	ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Docu	ıment S/N:	Test Dates:	DUT Type:		Dogo 17 of 45
	310290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 17 of 45

 $\ @\ 2018\ PCTEST\ Engineering\ Laboratory,\ Inc.$

Table 9-3 LTE Band 26 Conducted Powers - 5 MHz Bandwidth

				LTE Band 26 (Cell) 5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26715 (816.5 MHz)	26865 (831.5 MHz)	27015 (846.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm			
	1	0	24.19	23.97	24.26		0
	1	12	24.34	24.18	24.38	0	0
	1	24	24.30	23.97	24.17		0
QPSK	12	0	23.34	23.29	23.42		1
	12	6	23.35	23.38	23.41	0-1	1
	12	13	23.25	23.30	23.30	0-1	1
	25	0	23.26	23.31	23.41		1
	1	0	22.96	23.30	23.04		1
	1	12	22.95	23.06	22.83	0-1	1
	1	24	22.98	22.91	22.75		1
16QAM	12	0	22.21	22.18	22.33		2
	12	6	22.22	22.41	22.17	0-2	2
	12	13	22.15	22.20	22.41	0-2	2
	25	0	22.26	22.17	22.36		2

Table 9-4 LTE Band 26 Conducted Powers - 3 MHz Bandwidth

				LTE Band 26 (Cell) 3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26705 (815.5 MHz)	26865 (831.5 MHz)	27025 (847.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	24.12	24.22	24.09		0
	1	7	24.22	24.22	24.15	0	0
	1	14	24.27	24.06	24.26		0
QPSK	8	0	23.27	23.22	23.20	0-1	1
	8	4	23.29	23.23	23.17		1
	8	7	23.27	23.17	23.06	0-1	1
	15	0	23.25	23.21	23.15		1
	1	0	23.20	23.22	22.96		1
	1	7	22.91	23.27	23.45	0-1	1
	1	14	22.82	23.12	23.21		1
16QAM	8	0	22.29	22.23	22.21		2
	8	4	22.27	22.25	22.16	0.2	2
	8	7	22.20	22.09	22.23	0-2	2
	15	0	22.26	22.20	22.24	1	2

	FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dog 10 of 45
	1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset	Page 18 of 45
١1	9 DCTEST Engineering Laboratory Inc.			DEV/ 20.07 M

Table 9-5 I TF Band 26 Conducted Powers - 1 4 MHz Bandwidth

		LIE	Danu 20 Cono	lucted Powers -	- 1.4 WITZ Dallu	iwiatii	
				LTE Band 26 (Cell)			
			Law Channal	1.4 MHz Bandwidth	High Channel		
			Low Channel	Mid Channel	High Channel	MDD Allowed non	
Modulation	RB Size	RB Offset	26697	26865	27033	MPR Allowed per	MPR [dB]
			(814.7 MHz) (831.5 MHz) (848.3 MHz)	3GPP [dB]			
				Conducted Power [dBm]		
	1	0	24.22	24.31	24.04		0
	1	2	24.26	24.33	24.12	0	0
	1	5	24.36	23.99	24.04		0
QPSK	3	0	24.22	24.21	24.37		0
	3	2	24.26	24.33	24.23		0
	3	3	24.20	24.30	24.27		0
	6	0	23.24	23.30	23.10	0-1	1
	1	0	23.25	23.21	22.88		1
	1	2	23.01	23.25	22.87		1
	1	5	23.19	23.02	22.84	0-1	1
16QAM	3	0	23.46	22.98	22.76	0-1	1
	3	2	23.51	23.02	23.33		1
	3	3	23.46	22.98	23.25		1
	6	0	22.35	22.05	22.28	0-2	2

9.1.2 LTE Band 25

Table 9-6 LTE Band 25 Conducted Powers - 20 MHz Bandwidth

				aactea i e ii e i	ze iiii z zaiia		
				LTE Band 25 (PCS) 20 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26140	Mid Channel 26365	High Channel 26590	MPR Allowed per 3GPP [dB]	MPR [dB]
			(1860.0 MHz)	(1882.5 MHz) Conducted Power [dBm	(1905.0 MHz)	SGFF [ub]	
	1	0	23.90	24.07	24.05		0
	1	50	23.67	24.17	23.96	0	0
	1	99	23.90	23.78	24.01		0
QPSK	50	0	22.94	22.93	22.73	0-1	1
	50	25	22.89	23.01	22.89		1
	50	50	22.71	22.55	22.53		1
	100	0	22.78	22.80	22.68		1
	1	0	22.70	22.90	23.00		1
	1	50	23.52	23.20	23.10	0-1	1
	1	99	22.70	22.90	22.90		1
16QAM	50	0	21.92	21.90	21.73		2
	50	25	21.82	21.97	21.90	0-2	2
	50	50	21.78	21.55	21.60	0-2	2
	100	0	21.86	21.80	21.68		2

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 40 -f 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 19 of 45

Table 9-7 LTF Band 25 Conducted Powers - 15 MHz Bandwidth

		LII	E Danu 25 Cond	auctea Powers	- 15 WITZ Danuv	viatri	
				LTE Band 25 (PCS)			
		I		15 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel	MDD Allaurad man	
Modulation	RB Size	RB Offset	26115	26365	26615	MPR Allowed per	MPR [dB]
			(1857.5 MHz)	(1882.5 MHz) Conducted Power [dBm	(1907.5 MHz)	3GPP [dB]	
		_					
	1	0	24.09	23.86	23.86		0
	1	36	24.02	24.06	23.98	0	0
	1	74	24.06	23.99	23.91		0
QPSK	36	0	23.10	23.10	22.99		1
	36	18	23.01	23.08	23.04	0-1	1
	36	37	23.09	23.00	22.92	0-1	1
	75	0	23.07	23.06	22.91		1
	1	0	23.02	23.09	23.08		1
	1	36	23.09	23.09	23.09	0-1	1
	1	74	23.10	23.09	23.10		1
16QAM	36	0	22.03	22.08	22.09		2
	36	18	21.96	22.06	22.08	0-2	2
	36	37	21.86	21.93	22.09	0-2	2
	75	0	21.95	21.96	21.89		2

Table 9-8 LTE Band 25 Conducted Powers - 10 MHz Bandwidth

				LTE Band 25 (PCS)			
			Low Channel	10 MHz Bandwidth Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26090 (1855.0 MHz)	26365 (1882.5 MHz)	26640 (1910.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			·	Conducted Power [dBm]		
	1	0	24.17	24.15	24.06		0
	1	25	24.18	24.17	24.17	0	0
	1	49	24.17	24.16	24.14		0
QPSK	25	0	23.11	23.17	23.17	0-1	1
	25	12	23.14	23.17	23.16		1
	25	25	23.14	23.05	23.04		1
	50	0	23.18	23.18	23.08		1
	1	0	23.17	22.57	23.10		1
	1	25	23.14	23.18	23.17	0-1	1
	1	49	23.18	23.10	23.16		1
16QAM	25	0	22.09	22.18	22.14		2
	25	12	22.12	22.18	22.13		2
	25	25	21.97	22.18	22.10	0-2	2
	50	0	22.10	22.16	22.17		2

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 20 of 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 20 of 45
10 DCTEST Engineering Laboratory Inc.				DEV/ 20 07 M

Table 9-9 LTE Band 25 Conducted Powers -5 MHz Bandwidth

			L Bana 23 Con	iducied Powers	-5 WILL Dallaw	idii			
				LTE Band 25 (PCS)					
				5 MHz Bandwidth					
			Low Channel	Mid Channel	High Channel		MPR [dB] 0 0 0 1 1 1 1 1 1		
Modulation	RB Size	RB Offset	26065	26365	26665	MPR Allowed per	MPR [dR]		
modulation	I NE GIEG	TAB GIIGGE	(1852.5 MHz)	(1882.5 MHz)	(1912.5 MHz)	3GPP [dB]	iii it [uD]		
			(Conducted Power [dBm]				
	1	0	23.82	23.84	23.95		0		
	1	12	23.98	23.78	23.99	0	0		
	1	24	23.80	23.66	23.93		0		
QPSK	12	0	22.93	22.99	22.98		1		
QPSK _	12	6	22.94	22.99	22.99	0-1	1		
	12	13	22.96	22.96	22.95	0-1	1		
	25	0	23.00	22.99	22.99		1		
	1	0	22.81	22.86	22.73		1		
	1	12	22.97	22.56	22.55	0-1	1		
	1	24	22.87	22.46	22.53		1		
16QAM	12	0	21.86	22.00	21.99		2		
	12	6	21.99	21.92	21.96	0-2	2		
	12	13	21.88	21.88	22.00	0-2	2		
	25	0	21.85	21.91	21.89	1	2		

Table 9-10 LTE Band 25 Conducted Powers -3 MHz Bandwidth

				LTE Dand OF (DCC)			
				LTE Band 25 (PCS)			
QPSK 8 0 22.99 8 4 23.01 8 7 22.99 15 0 22.97 1 0 22.92 1 7 22.63 1 14 22.54 16QAM 8 0 22.01		3 MHz Bandwidth					
QPSK				Mid Channel	High Channel		
	RB Size	RB Offset		26365	26675 (1913.5 MHz)	MPR Allowed per	MPR [dB]
	112 0.20	1.2 0001		(1882.5 MHz)	3GPP [dB]		
			(Conducted Power [dBm			
	1	0	23.84	23.94	23.81		0
	1	7	23.94	23.94	23.87	0	0
	1	14	23.99	23.78	23.98		0
QPSK	8	0	22.99	22.94	22.92		1
G OK	8	4	23.01	22.95	22.89	0-1	1
	8	7	22.99	22.89	22.78	0-1	1
	15	0	22.97	22.93	22.87		1
	1	0	22.92	22.94	22.68		1
	1	7	22.63	22.99	23.17	0-1	1
	1	14	22.54	22.84	22.93		1
16QAM	8	0	22.01	21.95	21.93		2
	8	4	21.99	21.97	21.88	0-2	2
	8	7	21.92	21.81	21.95	U-2	2
[15	0	21.98	21.92	21.96		2

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 21 of 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 21 of 45
10 DCTEST Engineering Laboratory In-	^			DEV/ 20 07 M

Table 9-11 LTF Band 25 Conducted Powers -1 4 MHz Bandwidth

		LII	E Ballu 25 Coll	auctea Powers	-1.4 WINZ Dallu	width	
				LTE Band 25 (PCS)			
		1	1 01 1	1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel	 	
Modulation	RB Size	RB Offset	26047	26365	26683 (1914.3 MHz)	MPR Allowed per	MPR [dB]
			(1850.7 MHz)	(1882.5 MHz)	3GPP [dB]	• •	
			(Conducted Power [dBm			
	1	0	24.15	24.24	23.97		0
	1	2	24.19	24.26	24.05		0
	1	5	24.29	23.92	23.97	0	0
QPSK	3	0	24.15	24.14	24.30	U	0
	3	2	24.19	24.26	24.16		0
	3	3	24.13	24.23	24.20		0
	6	0	23.17	23.23	23.03	0-1	1
	1	0	23.18	23.14	22.81		1
	1	2	22.94	23.18	22.80		1
	1	5	23.12	22.95	22.77	0-1	1
16QAM	3	0	23.39	22.91	22.69	J 0-1	1
	3	2	23.44	22.95	23.26		1
	3	3	23.39	22.91	23.18		1
	6	0	22.28	21.98	22.21	0-2	2

	FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dags 22 of 45
	1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset	Page 22 of 45
٠.	0 DOTECT Engineering Laboratory Inc.			DEV/ 20 07 M

10.1 Tissue Verification

Table 10-1
Head Measured Tissue Properties

Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
			820	0.892	42.771	0.899	41.578	-0.78%	2.87%
10/29/2018	835H	19.8	835	0.909	42.538	0.900	41.500	1.00%	2.50%
			850	0.925	42.326	0.916	41.500	0.98%	1.99%
			1850	1.388	38.276	1.400	40.000	-0.86%	-4.31%
10/30/2018	1900H	22.8	1880	1.405	38.234	1.400	40.000	0.36%	-4.42%
			1910	1.425	38.209	1.400	40.000	1.79%	-4.48%

Table 10-2

Body Measured Tissue Properties

					<u> </u>				
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
			820	0.982	53.925	0.969	55.258	1.34%	-2.41%
10/30/2018	835B	20.1	835	0.989	53.882	0.970	55.200	1.96%	-2.39%
			850	0.997	53.836	0.988	55.154	0.91%	-2.39%
			1850	1.539	51.573	1.520	53.300	1.25%	-3.24%
10/31/2018	1900B	22.3	1880	1.560	51.532	1.520	53.300	2.63%	-3.32%
			1910	1.582	51.516	1.520	53.300	4.08%	-3.35%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

PCTEST*	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
Test Dates:	DUT Type:		Dogo 22 of 45
10/29/18 - 10/31/18	Portable Handset		Page 23 of 45
	Test Dates:	Test Dates: DUT Type:	Test Dates: DUT Type:

10.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

Table 10-3
System Verification Results

					, , , , , , , , , , , , , , , , , , , 							
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN	Probe SN	Measured SAR¹9 (W/kg)	1 W Target SAR ₁₉ (W/kg)	1 W Normalized SAR ₁₉ (W/kg)	Deviation _{1g} (%)
Е	835	HEAD	10/29/2018	21.9	19.8	0.200	4d132	3213	1.960	9.360	9.800	4.70%
D	1900	HEAD	10/30/2018	22.3	21.5	0.100	5d148	7357	4.200	40.100	42.000	4.74%
J	835	BODY	10/30/2018	20.0	20.1	0.200	4d133	3347	1.970	9.750	9.850	1.03%
J	1900	BODY	10/31/2018	20.0	22.1	0.100	5d148	3347	4.210	39.600	42.100	6.31%

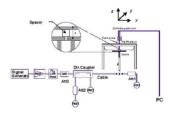


Figure 10-1
System Verification Setup Diagram

Figure 10-2
System Verification Setup Photo

	FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dogo 24 of 45
	1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 24 of 45
1	9 DCTEST Engineering Laboratory Inc.				DEV/ 20 07 M

SAR DATA SUMMARY

11.1 **Standalone Head SAR Data**

Table 11-1 LTE Band 26 Head SAR

								MEAS	UREM	ENT RES	SULTS								
FR	EQUENCY	′	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	С	h.	mode	[MHz]	Power [dBm]	Power [dBm]	Drift [dB]	inir ix [ub]	Olde	Position	Modulation	ND 0126	KB Oliset	Number	Cycle	(W/kg)	Factor	(W/kg)	1100#
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.7	24.41	0.01	0	Right	Cheek	QPSK	1	36	02751	1:1	0.475	1.069	0.508	A1
831.50	26865	Mid	LTE Band 26 (Cell)	15	23.7	23.21	0.02	1	Right	Cheek	QPSK	36	0	02751	1:1	0.359	1.119	0.402	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.7	24.41	-0.12	0	Right	Tilt	QPSK	1	36	02751	1:1	0.290	1.069	0.310	
831.50	26865	Mid	LTE Band 26 (Cell)	15	23.7	23.21	-0.04	1	Right	Tilt	QPSK	36	0	02751	1:1	0.221	1.119	0.247	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.7	24.41	-0.11	0	Left	Cheek	QPSK	1	36	02751	1:1	0.351	1.069	0.375	
831.50	26865	Mid	LTE Band 26 (Cell)	15	23.7	23.21	-0.01	1	Left	Cheek	QPSK	36	0	02751	1:1	0.286	1.119	0.320	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.7	24.41	-0.11	0	Left	Tilt	QPSK	1	36	02751	1:1	0.287	1.069	0.307	
831.50	26865	Mid	LTE Band 26 (Cell)	15	23.7	23.21	-0.02	1	Left	Tilt	QPSK	36	0	02751	1:1	0.215	1.119	0.241	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population								Head 1.6 W/kg (mW/g) averaged over 1 gram										

Table 11-2 LTE Band 25 Head SAR

								MEA	SUREM	ENT RE	SULTS								
FR	EQUENCY	1	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	h.		[MHZ]	Power [dBm]	Power (abm)	опт (ав)			Position				Number	Сусіе	(W/kg)	ractor	(W/kg)	ı
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.7	24.17	0.10	0	Right	Cheek	QPSK	1	50	02793	1:1	0.366	1.130	0.414	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.7	23.01	0.06	1	Right	Cheek	QPSK	50	25	02793	1:1	0.261	1.172	0.306	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.7	24.17	0.13	0	Right	Tilt	QPSK	1	50	02793	1:1	0.189	1.130	0.214	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.7	23.01	0.16	1	Right	Tilt	QPSK	50	25	02793	1:1	0.149	1.172	0.175	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	23.90	0.03	0	Left	Cheek	QPSK	1	0	02793	1:1	0.545	1.202	0.655	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.7	24.17	-0.01	0	Left	Cheek	QPSK	1	50	02793	1:1	0.596	1.130	0.673	A2
1905.00	26590	High	LTE Band 25 (PCS)	20	24.7	24.05	-0.12	0	Left	Cheek	QPSK	1	0	02793	1:1	0.589	1.161	0.684	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.7	23.01	-0.06	1	Left	Cheek	QPSK	50	25	02793	1:1	0.437	1.172	0.512	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.7	24.17	-0.06	0	Left	Tilt	QPSK	1	50	02793	1:1	0.280	1.130	0.316	
1882.50 26365 Mid LTE Band 25 (PCS) 20 23.7 23.01 -0.04 1							1	Left	Tilt	QPSK	50	25	02793	1:1	0.198	1.172	0.232		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population							Head 1.6 W/kg (mW/g) averaged over 1 gram											

FCC ID: ZNFX212TA	PCTEST INCIDENCE LABORATORY, INC.	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 25 of 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 25 of 45
10 DCTEST Engineering Laboratory Inc.				DEV/ 20 07 M

11.2 Standalone Body-Worn SAR Data

Table 11-3 LTE Body-Worn SAR

	MEASUREMENT RESULTS																		
FR	EQUENCY	r	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power (dBm)	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	С	h.		[INITE]	Power [dBm]	rower [abin]	Dint [db]		Number						Oycle	(W/kg)	racioi	(W/kg)	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.7	24.41	-0.08	0	02774	QPSK	1	36	10 mm	back	1:1	0.756	1.069	0.808	A3
831.50	26865	Mid	LTE Band 26 (Cell)	15	23.7	23.21	-0.08	1	02774	QPSK	36	0	10 mm	back	1:1	0.592	1.119	0.662	
831.50	26865	Mid	LTE Band 26 (Cell)	15	23.7	22.92	0.02	1	02774	QPSK	75	0	10 mm	back	1:1	0.571	1.197	0.683	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	23.90	-0.14	0	02793	QPSK	1	0	10 mm	back	1:1	0.796	1.202	0.957	A4
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.7	24.17	-0.02	0	02793	QPSK	1	50	10 mm	back	1:1	0.791	1.130	0.894	
1905.00	26590	High	LTE Band 25 (PCS)	20	24.7	24.05	0.02	0	02793	QPSK	1	0	10 mm	back	1:1	0.701	1.161	0.814	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.7	23.01	-0.08	1	02793	QPSK	50	25	10 mm	back	1:1	0.588	1.172	0.689	
1882.50	50 26365 Mid LTE Band 25 (PCS) 20 23.7 22.80 -0.02								02793	QPSK	100	0	10 mm	back	1:1	0.612	1.230	0.753	
			ANSI / IEEE C	295.1 1992	- SAFETY LII	MIT			Body										
				Spatial Pea	ak									1.6 W/kg	(mW/g)			
	Uncontrolled Exposure/General Population							averaged over 1 gram											

11.3 Standalone Hotspot SAR Data

Table 11-4 LTE Band 26 Hotspot SAR

								MEASUREMENT RESULTS											
F	REQUENCY	′	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	Ch	ì.		[WHZ]	Power [dBm]	Power (abm)	Driit [dB]		Number							(W/kg)	ractor	(W/kg)	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.7	24.41	-0.08	0	02774	QPSK	1	36	10 mm	back	1:1	0.756	1.069	0.808	A3
831.50	26865	Mid	LTE Band 26 (Cell)	15	23.7	23.21	-0.08	1	02774	QPSK	36	0	10 mm	back	1:1	0.592	1.119	0.662	
831.50	26865	Mid	LTE Band 26 (Cell)	15	23.7	22.92	0.02	1	02774	QPSK	75	0	10 mm	back	1:1	0.571	1.197	0.683	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.7	24.41	0.08	0	02774	QPSK	1	36	10 mm	front	1:1	0.530	1.069	0.567	
831.50	26865	Mid	LTE Band 26 (Cell)	15	23.7	23.21	-0.01	1	02774	QPSK	36	0	10 mm	front	1:1	0.418	1.119	0.468	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.7	24.41	-0.03	0	02774	QPSK	1	36	10 mm	bottom	1:1	0.229	1.069	0.245	
831.50	26865	Mid	LTE Band 26 (Cell)	15	23.7	23.21	-0.05	1	02774	QPSK	36	0	10 mm	bottom	1:1	0.180	1.119	0.201	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.7	24.41	0.03	0	02774	QPSK	1	36	10 mm	right	1:1	0.618	1.069	0.661	
831.50	26865	Mid	LTE Band 26 (Cell)	15	23.7	23.21	-0.01	1	02774	QPSK	36	0	10 mm	right	1:1	0.521	1.119	0.583	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.7	24.41	-0.03	0	02774	QPSK	1	36	10 mm	left	1:1	0.373	1.069	0.399	
831.50	26865	Mid	LTE Band 26 (Cell)	15	23.7	23.21	-0.04	1	02774	QPSK	36	0	10 mm	left	1:1	0.299	1.119	0.335	
			ANSI / IEEE C95.	1 1992 - S/	AFETY LIMIT			Body											
			Spa	atial Peak									1.6 V	//kg (mV	V/g)				
		Uı	ncontrolled Expo	sure/Gene	ral Populatio	n							average	ed over 1	gram				

	FCC ID: ZNFX212TA	PCTEST	SAR EVALUATION REPORT LG	Approved by: Quality Manager
ı	Document S/N:	Test Dates:	DUT Type:	Daga 26 of 45
1	1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset	Page 26 of 45
10	DCTECT Engineering Laboratory Inc.			DEV/ 20 07 M

Table 11-5 LTE Band 25 Hotspot SAR

								MEASU	REMENT	RESULT	S								
FRE	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	Ch			[2]	Power [dBm]	· onc. [ab]	S.m. [GD]		Number							(W/kg)	1 40101	(W/kg)	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	23.90	-0.14	0	02793	QPSK	1	0	10 mm	back	1:1	0.796	1.202	0.957	A4
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.7	24.17	-0.02	0	02793	QPSK	1	50	10 mm	back	1:1	0.791	1.130	0.894	
1905.00	26590	High	LTE Band 25 (PCS)	20	24.7	24.05	0.02	0	02793	QPSK	1	0	10 mm	back	1:1	0.701	1.161	0.814	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.7	23.01	-0.08	1	02793	QPSK	50	25	10 mm	back	1:1	0.588	1.172	0.689	
1882.50	(PCS)							1	02793	QPSK	100	0	10 mm	back	1:1	0.612	1.230	0.753	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	23.90	0.14	0	02793	QPSK	1	0	10 mm	front	1:1	0.740	1.202	0.889	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.7	24.17	0.08	0	02793	QPSK	1	50	10 mm	front	1:1	0.761	1.130	0.860	
1905.00	26590	High	LTE Band 25 (PCS)	20	24.7	24.05	-0.17	0	02793	QPSK	1	0	10 mm	front	1:1	0.698	1.161	0.810	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.7	23.01	0.00	1	02793	QPSK	50	25	10 mm	front	1:1	0.584	1.172	0.684	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.7	22.80	-0.01	1	02793	QPSK	100	0	10 mm	front	1:1	0.598	1.230	0.736	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.7	24.17	-0.01	0	02793	QPSK	1	50	10 mm	bottom	1:1	0.390	1.130	0.441	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.7	23.01	-0.06	1	02793	QPSK	50	25	10 mm	bottom	1:1	0.288	1.172	0.338	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.7	24.17	-0.08	0	02793	QPSK	1	50	10 mm	right	1:1	0.168	1.130	0.190	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.7	23.01	-0.05	1	02793	QPSK	50	25	10 mm	right	1:1	0.121	1.172	0.142	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.7	24.17	-0.07	0	02793	QPSK	1	50	10 mm	left	1:1	0.512	1.130	0.579	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.7	23.01	-0.05	1	02793	QPSK	50	25	10 mm	left	1:1	0.380	1.172	0.445	
		A	NSI / IEEE C95.1	1992 - SA	FETY LIMIT									Body					
			- • -	tial Peak										/kg (mV	•				
	Uncontrolled Exposure/General Population											average	ed over 1	gram					

	FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dags 27 of 45
	1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset	Page 27 of 45
٠.	O DOTECT Engineering Laboratory Inc.			DEV/ 20 07 M

11.4 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported body-worn SAR was ≤ 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were required.
- 8. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 13 for variability analysis.

LTE Notes:

- 1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 8.3.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 00 -f 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 28 of 45

12 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with builtin unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

Please see the original compliance evaluation in RF Exposure Technical Report S/N: 1M1802060016-01-R1.ZNF for the standalone reported SAR for modes and bands not evaluated for this permissive change.

Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g or 10g SAR.

Head SAR Simultaneous Transmission Analysis 12.3

(*) For test positions that were not required to be evaluated for WLAN SAR per FCC KDB publication 248227, the worst case WLAN SAR result for applicable exposure conditions was used for simultaneous transmission analysis.

Table 12-1 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

Simult Tx	Configurat	ion	26 (Band Cell) (W/kg)	WL	4 GHz AN SAR W/kg)	Σ SAR (W/kg)
				1		2	1+2
	Right Che	ek	0.5	508	().486	0.994
Head SAF	Right Til	t	0.0	310	1	.192*	1.502
Head SAF	Left Chee	ek	0.0	375	1	1.192	1.567
	Left Tilt		0.0	307	().725	1.032
Simult Tx	Configuration	25 (EBand (PCS) (W/kg)	2.4 G WLAN (W/F	SAR	Σ SAR (W/kg)	SPLSR
			1	2		1+2	1+2
	Right Cheek	0.	414	0.48	36	0.900	N/A
Head SAR	Right Tilt	0.	214	1.19	2*	1.406	N/A
I load SAIN	Left Cheek	0.	684	1.19	92	See Note	1 0.03
	Left Tilt	0.	316	0.72	25	1.041	N/A

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 20 of 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 29 of 45

Table 12-2 Simultaneous Transmission Scenario with 5 GHz WLAN (Held to Ear)

Simult Tx	Configuration	LTE Band 26 (Cell) SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Right Cheek	0.508	0.993	1.501	N/A
Head SAR	Right Tilt	0.310	0.783	1.093	N/A
neau SAR	Left Cheek	0.375	1.289	See Note 1	0.03
	Left Tilt	0.307	0.894	1.201	N/A
Simult Tx	Configuration	LTE Band 25 (PCS) SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Right Cheek	0.414	0.993	1.407	N/A
Head SAR	Right Tilt	0.214	0.783	0.997	N/A
I IEAU SAR	Left Cheek	0.684	1.289	See Note 1	0.03
	Left Tilt	0.316	0.894	1.210	N/A

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 20 of 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 30 of 45
10 DCTEST Engineering Laboratory Inc				DEV/ 20 07 M

12.4 Body-Worn Simultaneous Transmission Analysis

Table 12-3
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 1.0 cm)

Cimaranovae Transmission Section With 214 Still Treat (Body World at 115 Still					<u>ut 110 0111</u>
Exposure Condition	. I IVIOGE		2G/3G/4G SAR (W/kg) 2.4 GHz WLAN SAR (W/kg)		SPLSR
		1	2	1+2	1+2
Body-Worn	LTE Band 26 (Cell)	0.808	0.695	1.503	N/A
	LTE Band 25 (PCS)	0.957	0.695	See Note 1	0.02

Table 12-4
Simultaneous Transmission Scenario with 5 GHz WLAN (Body-Worn at 1.0 cm)

Exposure Condition	· IVIOGE		5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg) SPLSR	
		1	2	1+2	1+2
Body-Worn	LTE Band 26 (Cell)	0.808	0.933	See Note 1	0.04
	LTE Band 25 (PCS)	0.957	0.933	See Note 1	0.03

Table 12-5
Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 1.0 cm)

Exposure Condition	Mode	LTE SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
Body-Worn	LTE Band 26 (Cell)	0.808	0.210	1.018
	LTE Band 25 (PCS)	0.957	0.210	1.167

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dog 24 of 45	
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 31 of 45	

Hotspot SAR Simultaneous Transmission Analysis

Per FCC KDB Publication 941225 D06v02r01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

(*) For test positions that were not required to be evaluated for WLAN SAR per FCC KDB publication 248227, the worst case WLAN SAR result for applicable exposure conditions was used for simultaneous transmission analysis.

Table 12-6 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Hotspot at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
Hotspot	LTE Band 26 (Cell)	0.808	0.695	1.503
SAR	LTE Band 25 (PCS)	0.957	0.695	See Table Below

Simult Tx	Configuration	LTE Band 25 (PCS) SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Back	0.957	0.695	See Note 1	0.02
	Front	0.889	0.695	1.584	N/A
Hotspot	Тор	-	0.695*	0.695	N/A
SAR	Bottom	0.441	-	0.441	N/A
	Right	0.190	0.695*	0.885	N/A
	Left	0.579	-	0.579	N/A

FCC ID: ZNFX212TA	PCTEST	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 22 of 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset	Page 32 of 45

Table 12-7
Simultaneous Transmission Scenario with 5 GHz WLAN (Hotspot at 1.0 cm)

Simult Tx	Configuration	LTE Band 26 (Cell) SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Back	0.808	0.785	1.593	N/A
	Front	0.567	0.575	1.142	N/A
Hotspot	Тор	-	1.036*	1.036	N/A
SAR	Bottom	0.245	-	0.245	N/A
	Right	0.661	1.036	See Note 1	0.03
	Left	0.399	_	0.399	N/A
				0.000	
Simult Tx	Configuration	LTE Band 25 (PCS) SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
Simult Tx		LTE Band 25 (PCS)	WLAN SAR	Σ SAR	
Simult Tx		LTE Band 25 (PCS) SAR (W/kg)	WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
Simult Tx	Configuration	LTE Band 25 (PCS) SAR (W/kg)	WLAN SAR (W/kg)	Σ SAR (W/kg) 1+2	SPLSR 1+2
Simult Tx Hotspot	Configuration Back	LTE Band 25 (PCS) SAR (W/kg) 1 0.957	WLAN SAR (W/kg) 2 0.785	Σ SAR (W/kg) 1+2 See Note 1	SPLSR 1+2 0.03
	Configuration Back Front	LTE Band 25 (PCS) SAR (W/kg) 1 0.957	WLAN SAR (W/kg) 2 0.785 0.575	Σ SAR (W/kg) 1+2 See Note 1 1.464	SPLSR 1+2 0.03 N/A
Hotspot	Configuration Back Front Top	LTE Band 25 (PCS) SAR (W/kg) 1 0.957 0.889	WLAN SAR (W/kg) 2 0.785 0.575	Σ SAR (W/kg) 1+2 See Note 1 1.464 1.036	1+2 0.03 N/A N/A

Notes:

1. No evaluation was performed to determine the aggregate 1g SAR for these configurations as the SPLS ratio between the antenna pairs was not greater than 0.04 per FCC KDB 447498 D01v06. See Section 12.6 for detailed SPLS ratio analysis.

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 22 -f 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 33 of 45

12.6 SPLSR Evaluation and Analysis

Per FCC KDB Publication 447498 D01v06, when the sum of the standalone transmitters is more than 1.6 W/kg for 1g, the SAR sum to peak locations can be analyzed to determine SAR distribution overlaps. When the SAR peak to location ratio (shown below) for each pair of antennas is ≤ 0.04 for 1g, simultaneous SAR evaluation is not required. The distance between the transmitters was calculated using the following formula.

$$\begin{split} \text{Distance}_{\text{Tx1-Tx2}} &= \text{Ri} = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2} \quad \text{(Head)} \\ \text{Distance}_{\text{Tx1-Tx2}} &= \text{Ri} = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \quad \text{(Body-worn, Hotspot)} \\ \text{SPLS Ratio} &= \frac{(SAR_1 + SAR_2)^{1.5}}{R_i} \end{split}$$

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 24 -f 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 34 of 45

12.6.1 Head SPLSR Evaluation and Analysis

Table 12-8
Peak SAR Locations for Left Cheek

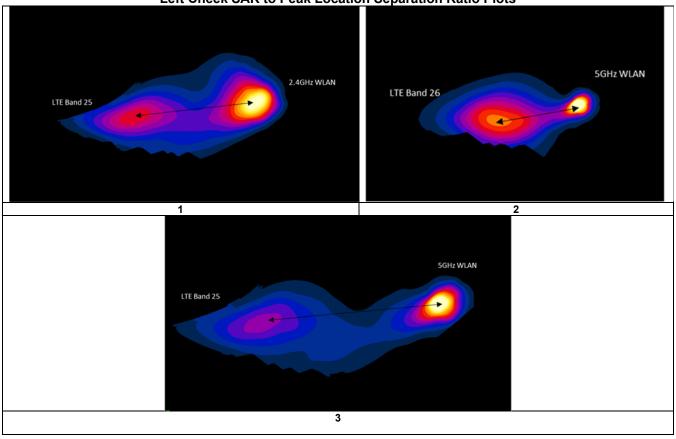

Teak OAK Locations for Left Officek						
Mode/Band	x (mm)	y (mm)	z (mm)			
2.4 GHz WLAN	13.80	327.55	-174.35			
5 GHz WLAN	13.06	335.95	-173.03			
LTE Band 26 (Cell)	41.56	270.86	-174.55			
LTE Band 25 (PCS)	54.29	246.81	-171.48			

Table 12-9
Left Cheek SAR to Peak Location Separation Ratio Calculations

Antenna Pair			one SAR /kg)	Standalone SAR Sum (W/kg)	Peak SAR Separation Distance (mm)	SPLS Ratio	Plot Number
Ant "a"	Ant "b"	а	b	a+b	D _{a-b}	(a+b) ^{1.5} /D _{a-b}	
2.4 GHz WLAN	LTE Band 25 (PCS)	1.192	0.684	1.876	90.37	0.03	1
5 GHz WLAN	LTE Band 26 (Cell)	1.289	0.375	1.664	71.07	0.03	2
5 GHz WLAN	LTE Band 25 (PCS)	1.289	0.684	1.973	98.23	0.03	3

SUGINITATION LABORATORY, INC.	SAR EVALUATION REPORT	Approved by Quality Manag
Test Dates:	DUT Type:	Dog 25 of 45
10/29/18 - 10/31/18	Portable Handset	Page 35 of 45
	Test Dates:	Test Dates: DUT Type:

Table 12-10 Left Cheek SAR to Peak Location Separation Ratio Plots

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dog 26 of 45	
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 36 of 45	

12.6.2

Body-Worn Back side SPLSR Evaluation and Analysis

Peak SAR Locations for Body-Worn Back Side

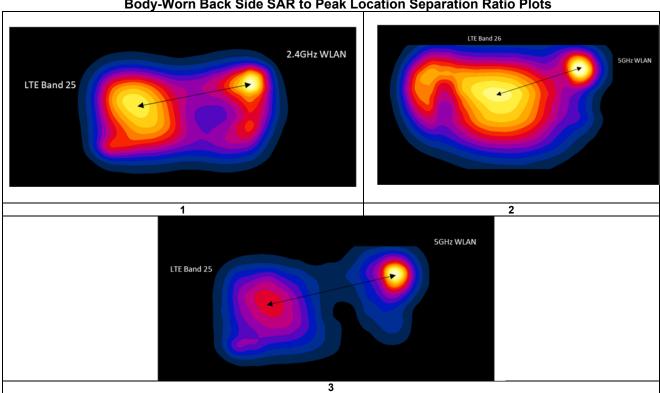

can critic boarding for Boar World Back Glac					
Mode/Band	x (mm)	y (mm)			
2.4 GHz WLAN	-50.20	58.80			
5 GHz WLAN	-48.00	57.00			
LTE Band 26 (Cell)	-35.50	-1.50			
LTE Band 25 (PCS)	-26.00	-33.00			

Table 12-12

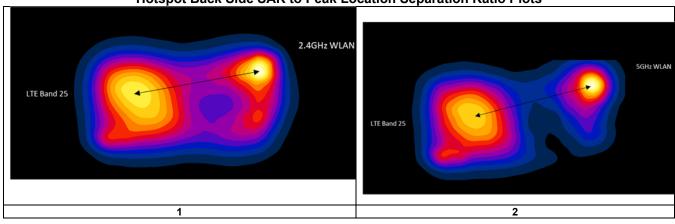
Body-Worn Back Side SAR to Peak Location Separation Ratio Calculations

Antenna Pair		Standalone SAR (W/kg)		Standalone SAR Sum (W/kg)	Peak SAR Separation Distance (mm)	SPLS Ratio	Plot Number
Ant "a"	Ant "b"	а	b	a+b	D _{a-b}	(a+b) ^{1.5} /D _{a-b}	
2.4 GHz WLAN	LTE Band 25 (PCS)	0.695	0.957	1.652	94.94	0.02	1
5 GHz WLAN	LTE Band 26 (Cell)	0.933	0.808	1.741	59.82	0.04	2
5 GHz WLAN	LTE Band 25 (PCS)	0.933	0.957	1.890	92.65	0.03	3

Table 12-13
Body-Worn Back Side SAR to Peak Location Separation Ratio Plots

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dog 27 of 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset	Page 37 of 45

12.6.3 Hotspot Back side SPLSR Evaluation and Analysis


Table 12-14
Peak SAR Locations for Hotspot Back Side

Teak OAK Locations for Hotspot Back olde						
Mode/Band	x (mm)	y (mm)				
2.4 GHz WLAN	-50.20	58.80				
5 GHz WLAN	-48.00	55.00				
LTE Band 25 (PCS)	-26.00	-33.00				

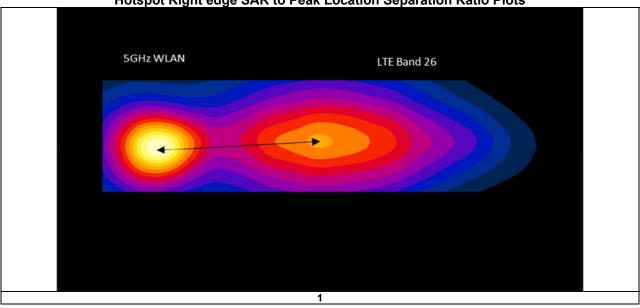
Table 12-15
Hotspot Back Side SAR to Peak Location Separation Ratio Calculations

Anten	Antenna Pair		Standalone SAR (W/kg)		Peak SAR Separation Distance (mm)	SPLS Ratio	Plot Number	
Ant "a"	Ant "b"	а	b	a+b	D _{a-b}	$(a+b)^{1.5}/D_{a-b}$		
2.4 GHz WLAN	LTE Band 25 (PCS)	0.695	0.957	1.652	94.94	0.02	1	
5 GHz WLAN	LTE Band 25 (PCS)	0.785	0.957	1.742	90.71	0.03	2	

Table 12-16
Hotspot Back Side SAR to Peak Location Separation Ratio Plots

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 20 -f 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 38 of 45
18 PCTEST Engineering Laboratory In	nc			REV 20.07 M

12.6.4 Hotspot Right edge SPLSR Evaluation and Analysis


Table 12-17 Peak SAR Locations for Hotspot Right edge

Mode/Band	x (mm)	y (mm)			
5 GHz WLAN	-21.50	-70.00			
LTE Band 26 (Cell)	-28.00	-1.50			

Table 12-18 Hotspot Right edge SAR to Peak Location Separation Ratio Calculations

Anten	Antenna Pair		Standalone SAR (W/kg)		Peak SAR Separation Distance (mm)	SPLS Ratio	Plot Number
Ant "a"	Ant "b"	а	a b		D _{a-b}	(a+b) ^{1.5} /D _{a-b}	
5 GHz WLAN	LTE Band 26 (Cell)	1.036	0.661	1.697	68.81	0.03	1

Table 12-19 Hotspot Right edge SAR to Peak Location Separation Ratio Plots

12.7 Simultaneous Transmission Conclusion

The above numerical summed SAR results and SPLSR analysis are sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528- 2013 Section 6.3.4.1.

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 20 -f 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 39 of 45

13 SAR MEASUREMENT VARIABILITY

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was not assessed for each frequency band, since all measured SAR values are < 0.80 W/kg for 1 g SAR.

13.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 40 -f 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset	Page 40 of 45

14 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8594A	(9kHz-2.9GHz) Spectrum Analyzer	N/A	N/A	N/A	3051A00187
Agilent	8753ES	S-Parameter Network Analyzer	7/30/2018	Annual	7/30/2019	MY40000670
Agilent	8753ES	S-Parameter Vector Network Analyzer	8/30/2018	Annual	8/30/2019	MY40003841
Agilent	E4432B	ESG-D Series Signal Generator	4/19/2018	Annual	4/19/2019	US40053896
Agilent	E4438C	ESG Vector Signal Generator	3/24/2017	Biennial	3/24/2019	MY42082385
Agilent	E5515C	Wireless Communications Test Set	1/29/2016	Triennial	1/29/2019	GB46310798
Agilent	E5515C	Wireless Communications Test Set	2/7/2018	Triennial	2/7/2021	GB43304447
Agilent	N5182A	MXG Vector Signal Generator	11/1/2017	Annual	11/1/2018	MY47420603
Agilent	N5182A-506	MXG Vector Signal Generator	6/19/2018	Annual	6/19/2019	MY48180366
Agilent	N9020A	MXA Signal Analyzer	1/24/2018	Annual	1/24/2019	US46470561
Amplifier Research	150A100C	DC Amplifier	CBT	N/A	CBT	348812
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433972
Amplifier Research	15S1G6	Amplifier	СВТ	N/A	СВТ	433974
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433976
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433978
Anritsu	MA24106A	USB Power Sensor	4/18/2018	Annual	4/18/2019	1349514
Anritsu	MA24106A	USB Power Sensor	1/19/2018	Annual	1/19/2019	1344554
Anritsu	MA24106A	USB Power Sensor	7/16/2018	Annual	7/16/2019	1520505
Anritsu	MA24106A	USB Power Sensor	8/20/2018	Annual	8/20/2019	1520504
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1339018
Anritsu	ML2496A	Power Meter	5/21/2018	Annual	5/21/2019	1351001
Anritsu	MT8821C	Radio Communication Analyzer	7/26/2018	Annual	7/26/2019	6201144418
Anritsu	MT8821C	Radio Communication Analyzer	7/24/2018	Annual	7/24/2019	6201664756
COMTech	AR85729-5	Solid State Amplifier	CBT	N/A	CBT	M1S5A00-009
COMTECH	AR85729-5/5759B	Solid State Amplifier	CBT	N/A	CBT	M3W1A00-1002
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	3/3/2017	Biennial	3/3/2019	170155534
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
MCL	BW-N6W5+	6dB Attenuator	CBT	CBT	CBT	1139
MiniCircuits	SLP-2400+	Low Pass Filter	CBT	CBT	CBT	R8979500903
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	CBT	CBT	1226
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	CBT	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	СВТ	CBT	CBT	N/A
Mitutoyo	CD-6"CSX	Digital Caliper	4/18/2018	Biennial	4/18/2020	13264165
Narda	4772-3	Attenuator (3dB)	CBT	CBT	CBT	9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	CBT	CBT	120
Pasternack	PE2208-6	Bidirectional Coupler	CBT	CBT	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	СВТ	CBT	СВТ	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
Rohde & Schwarz	CMW500	Radio Communication Tester	6/8/2018	Annual	6/8/2019	112347
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	5/29/2018	Annual	5/29/2019	161662
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/15/2018	Annual	5/15/2019	1070
SPEAG	D835V2	835 MHz SAR Dipole	1/15/2018	Annual	1/15/2019	4d132
SPEAG	D1900V2	1900 MHz SAR Dipole	2/7/2018	Annual	2/7/2019	5d148
SPEAG	D835V2	835 MHz SAR Dipole	10/19/2018	Annual	10/19/2019	4d133
SPEAG	ES3DV3	SAR Probe	2/13/2018	Annual	2/13/2019	3213
SPEAG	EX3DV4	SAR Probe	4/18/2018	Annual	4/18/2019	7357
SPEAG	ES3DV3	SAR Probe	3/27/2018	Annual	3/27/2019	3347
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/9/2018	Annual	2/9/2019	1272
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/11/2018	Annual	4/11/2019	1407
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/15/2018	Annual	2/15/2019	665
Note 1: CRT (Calib		Drier to testing the measurement noths conta			puotor couple	

Note 1: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

Note 2: All Equipment was used within the calibration period.

FCC ID: ZNFX212TA	PCTEST	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 41 of 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset	Page 41 of 45

© 2018 PCTEST Engineering Laboratory, Inc.

01/30/2018

a	С	d	e=	f	g	h =	i =	k
			f(d,k)			c x f/e	c x g/e	
	Tol.	Prob.		Ci	Ci	1gm	10gms	
Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	v _i
	(= /0/	2.50				(± %)	(± %)	''
Measurement System				•	•			
Probe Calibration	6.55	Ν	1	1.0	1.0	6.6	6.6	œ
Axial Isotropy	0.25	Ν	1	0.7	0.7	0.2	0.2	œ
Hemishperical Isotropy	1.3	Ν	1	0.7	0.7	0.9	0.9	œ
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	œ
Linearity	0.3	Ν	1	1.0	1.0	0.3	0.3	œ
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	œ
Readout Electronics	0.3	Ν	1	1.0	1.0	0.3	0.3	œ
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	œ
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	œ
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	œ
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	œ
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	œ
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	œ
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	œ
Test Sample Related								
Test Sample Positioning	2.7	Ν	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	Ν	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	œ
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	œ
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	œ
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	N	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	oc
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	œ
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	oc o
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	00
Combined Standard Uncertainty (k=1)		RSS	L J	2.00		11.5	11.3	60
Expanded Uncertainty		k=2				23.0	22.6	
(95% CONFIDENCE LEVEL)						23.0		

FCC ID: ZNFX212TA	PCTEST	SAR EVALUATION REPORT	(†) LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 40 -f 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 42 of 45

© 2018 PCTEST Engineering Laboratory, Inc.

REV 20.07 M

16 CONCLUSION

16.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dog 42 of 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 43 of 45

17 REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1-124.
- K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.

additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dog 44 of 45
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 44 of 45

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: ZNFX212TA	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 4F of 4F
1M1810290199-03.ZNF	10/29/18 - 10/31/18	Portable Handset		Page 45 of 45

additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

APPENDIX A: SAR TEST DATA

DUT: ZNFX212TA; Type: Portable Handset; Serial: 02751

Communication System: UID 0, LTE Band 26; Frequency: 831.5 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 831.5 \text{ MHz}; \ \sigma = 0.905 \text{ S/m}; \ \epsilon_r = 42.592; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

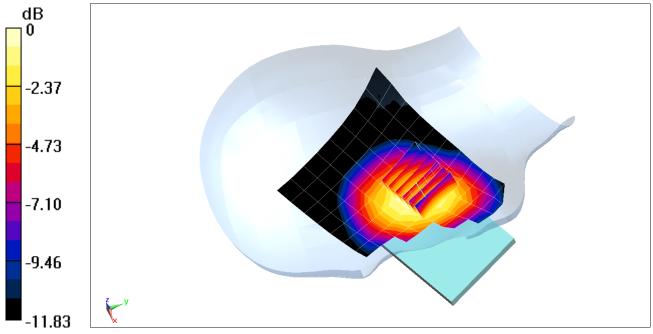
Test Date: 10-29-2018; Ambient Temp: 21.9°C; Tissue Temp: 19.8°C

Probe: ES3DV3 - SN3213; ConvF(6.42, 6.42, 6.42) @ 831.5 MHz; Calibrated: 2/13/2018 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018

Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Mode: LTE Band 26 (Cell.), Right Head, Cheek, Mid.ch, 15 MHz Bandwidth, QPSK, 1 RB, 36 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.12 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.617 W/kg

SAR(1 g) = 0.475 W/kg

0 dB = 0.521 W/kg = -2.83 dBW/kg

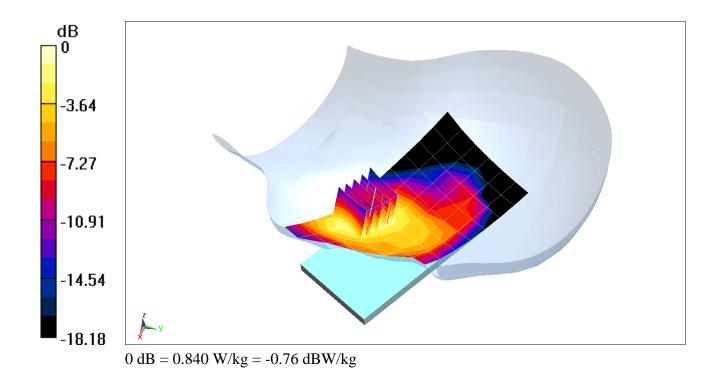
DUT: ZNFX212TA; Type: Portable Handset; Serial: 02793

Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1882.5 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): $f = 1882.5 \text{ MHz}; \ \sigma = 1.407 \text{ S/m}; \ \epsilon_r = 38.232; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 10-30-2018; Ambient Temp: 22.3°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7357; ConvF(8.47, 8.47, 8.47) @ 1882.5 MHz; Calibrated: 4/18/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/11/2018
Phantom: SAM with CRP v5.0 Left; Type: QD000P40CD; Serial: 1687
Measurement SW: DASY52, Version 52.10 (1);SEMCAD X Version 14.6.11 (7439)

Mode: LTE Band 25 (PCS), Left Head, Cheek, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.02 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.998 W/kg

SAR(1 g) = 0.596 W/kg

DUT: ZNFX212TA; Type: Portable Handset; Serial: 02774

Communication System: UID 0, LTE Band 26; Frequency: 831.5 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): $f = 831.5 \text{ MHz}; \ \sigma = 0.987 \text{ S/m}; \ \epsilon_r = 53.892; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

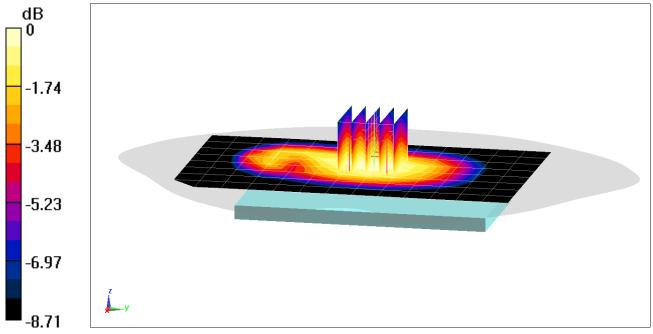
Test Date: 10-30-2018; Ambient Temp: 20.0°C; Tissue Temp: 20.1°C

Probe: ES3DV3 - SN3347; ConvF(6.37, 6.37, 6.37) @ 831.5 MHz; Calibrated: 3/27/2018 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/15/2018

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1800 Measurement SW: DASY52, Version 52.10 (1);SEMCAD X Version 14.6.11 (7439)

Mode: LTE Band 26 (Cell.), Body SAR, Back side, Mid.ch,

Mode: LTE Band 26 (Cell.), Body SAR, Back side, Mid.ch, 15 MHz Bandwidth, QPSK, 1 RB, 36 RB Offset


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.37 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.953 W/kg

SAR(1 g) = 0.756 W/kg

0 dB = 0.830 W/kg = -0.81 dBW/kg

DUT: ZNFX212TA; Type: Portable Handset; Serial: 02793

Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1860 \text{ MHz}; \ \sigma = 1.546 \text{ S/m}; \ \epsilon_r = 51.559; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-31-2018; Ambient Temp: 20.0°C; Tissue Temp: 22.1°C

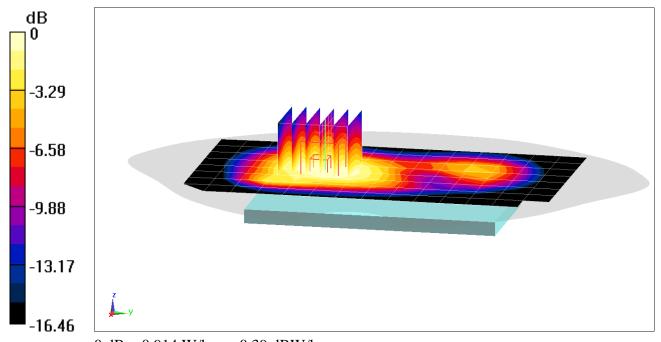
Probe: ES3DV3 - SN3347; ConvF(4.94, 4.94, 4.94) @ 1860 MHz; Calibrated: 3/27/2018 Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn665; Calibrated: 2/15/2018

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1800

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Mode: LTE Band 25 (PCS), Body SAR, Back side, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.09 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 1.19 W/kg

SAR(1 g) = 0.796 W/kg

0 dB = 0.914 W/kg = -0.39 dBW/kg

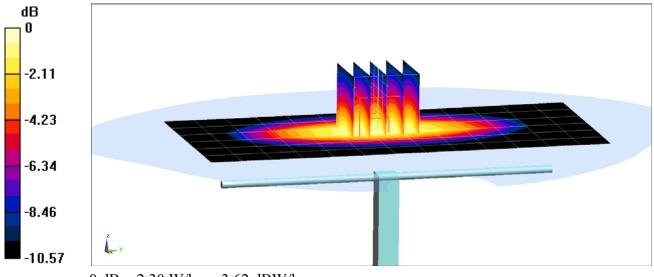
APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.909 \text{ S/m}; \ \epsilon_r = 42.538; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 10-29-2018; Ambient Temp: 21.9°C; Tissue Temp: 19.8°C

Probe: ES3DV3 - SN3213; ConvF(6.42, 6.42, 6.42) @ 835 MHz; Calibrated: 2/13/2018


Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018

Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.89 W/kg SAR(1 g) = 1.96 W/kg Deviation(1 g) = 4.70%

0 dB = 2.30 W/kg = 3.62 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.418 \text{ S/m}; \ \epsilon_r = 38.217; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-30-2018; Ambient Temp: 22.3°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN7357; ConvF(8.47, 8.47, 8.47) @ 1900 MHz; Calibrated: 4/18/2018 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1407; Calibrated: 4/11/2018

Phantom: SAM with CRP v5.0 Left; Type: QD000P40CD; Serial: 1687 Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 8.28 W/kg

SAR(1 g) = 4.2 W/kg

Deviation(1 g) = 4.74%

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d133

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.989 \text{ S/m}; \ \epsilon_r = 53.882; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 10-30-2018; Ambient Temp: 20.0°C; Tissue Temp: 20.1°C

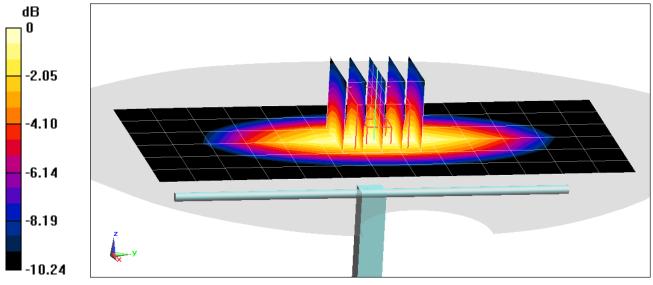
Probe: ES3DV3 - SN3347; ConvF(6.37, 6.37, 6.37) @ 835 MHz; Calibrated: 3/27/2018

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/15/2018

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1800

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.89 W/kg

SAR(1 g) = 1.97 W/kg

Deviation(1 g) = 1.03%

0 dB = 2.29 W/kg = 3.60 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148

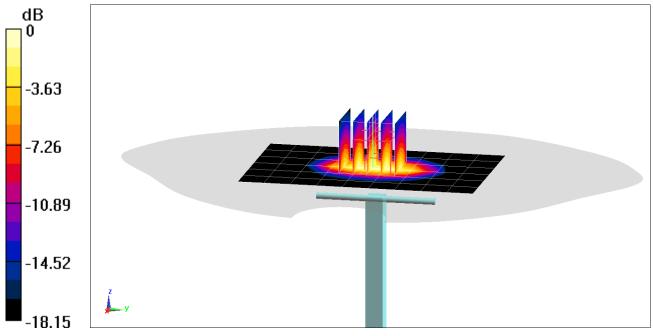
Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1900 \text{ MHz}; \ \sigma = 1.575 \text{ S/m}; \ \epsilon_r = 51.521; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-31-2018; Ambient Temp: 20.0°C; Tissue Temp: 22.1°C

Probe: ES3DV3 - SN3347; ConvF(4.94, 4.94, 4.94) @ 1900 MHz; Calibrated: 3/27/2018

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/15/2018

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1800


Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.61 W/kgSAR(1 g) = 4.21 W/kgDeviation(1 g) = 6.31%

0 dB = 5.29 W/kg = 7.23 dBW/kg

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D835V2-4d132_Jan18

CALIBRATION CERTIFICATE

Object

D835V2 - SN:4d132

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

BNV

Calibration date:

January 15, 2018

N-25-2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check; Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Sed aller
Approved by:	Katja Pokovic	Technical Manager	Alle-

Issued: January 15, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5.0 mm$	<u> </u>
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.7 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.36 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.55 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.10 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.8 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.47 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.71 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.39 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8 Ω - 2.9 jΩ
Return Loss	- 29.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.4 Ω - 5.7 jΩ
Return Loss	- 23.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.386 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 22, 2011

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3.

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L
---------	------------------	-----------------------------

SAR result with SAM Head (Top)

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.41 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.58 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.21 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.47 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.69 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.64 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.45 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.22 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.59 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.25 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.03 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	7.96 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.39 W/kg ± 16.9 % (k=2)

Certificate No: D835V2-4d132_Jan18

DASY5 Validation Report for Head TSL

Date: 08.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 40.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.9, 9.9, 9.9); Calibrated: 30.12.2017;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

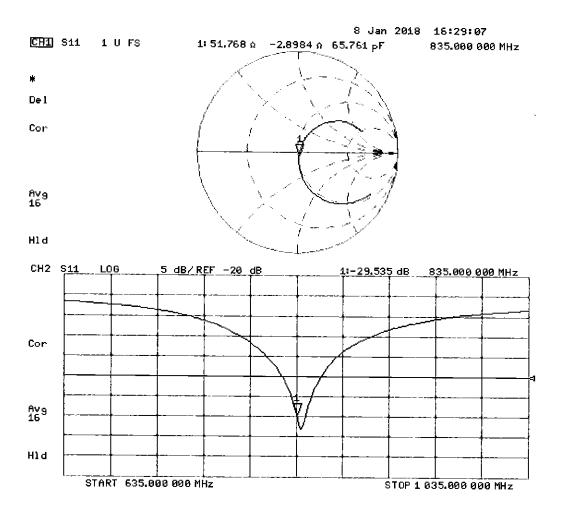
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 63.23 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 3.64 W/kg


SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.55 W/kg

Maximum value of SAR (measured) = 3.22 W/kg

0 dB = 3.22 W/kg = 5.08 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 08.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 54.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.05, 10.05, 10.05); Calibrated: 30.12.2017;

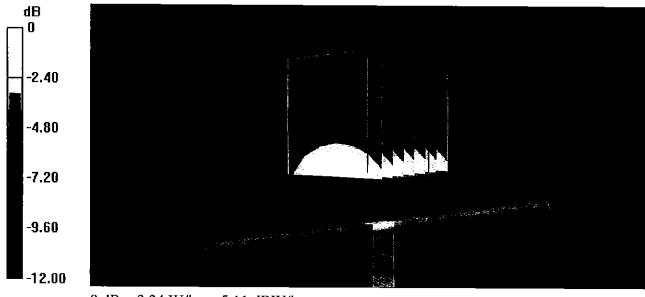
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

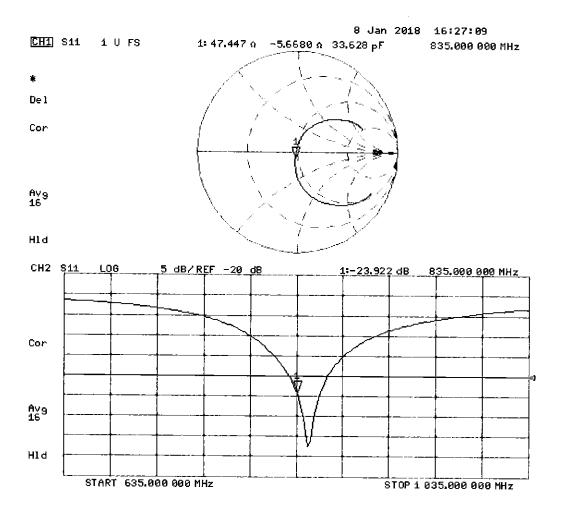
DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.55 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 3.66 W/kg


SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.62 W/kg

Maximum value of SAR (measured) = 3.24 W/kg

0 dB = 3.24 W/kg = 5.11 dBW/kg

Impedance Measurement Plot for Body TSL

DASY5 Validation Report for SAM Head

Date: 15.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 44.1$; $\rho = 1000$ kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.9, 9.9, 9.9); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

SAM Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 61.00 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.56 W/kg

SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.58 W/kg

Maximum value of SAR (measured) = 3.16 W/kg

SAM Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.99 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 3.65 W/kg

SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.64 W/kg

Maximum value of SAR (measured) = 3.19 W/kg

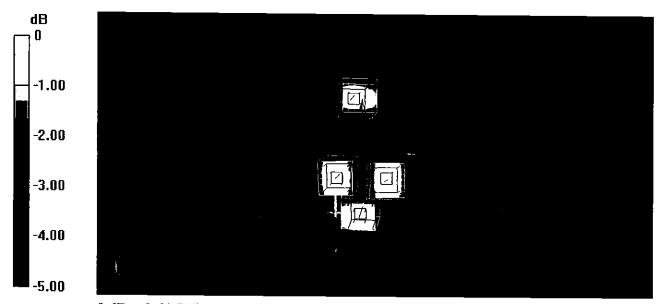
SAM Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.20 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 3.33 W/kg

SAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.59 W/kg

Maximum value of SAR (measured) = 3.04 W/kg


SAM Head/Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.03 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 2.90 W/kg

SAR(1 g) = 2.03 W/kg; SAR(10 g) = 1.37 W/kg

Maximum value of SAR (measured) = 2.61 W/kg

0 dB = 2.61 W/kg = 4.17 dBW/kg

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D1900V2-5d148_Feb18

CALIBRATION CERTIFICATE

Object

D1900V2 - SN:5d148

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

BN1-

Calibration date:

February 07, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
Calibrated by:	Name Claudio Leubler	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	All

Issued: February 7, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d148_Feb18

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.7 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	***	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.95 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.0 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.2 ± 6 %	1.48 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.68 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 16.5 % (k=2)

Page 3 of 8

Certificate No: D1900V2-5d148_Feb18

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω + 5.8 jΩ
Return Loss	- 24.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$47.8 \Omega + 6.5 j\Omega$
Return Loss	- 23.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	4.400
Liectrical Delay (one direction)	1.199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 11, 2011

DASY5 Validation Report for Head TSL

Date: 07.02.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ S/m}$; $\varepsilon_r = 40.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.18, 8.18, 8.18); Calibrated: 30.12.2017;

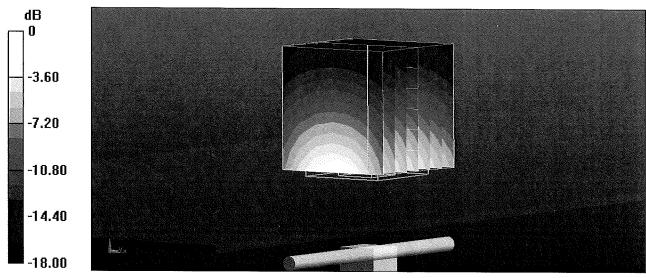
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 26.10.2017

• Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

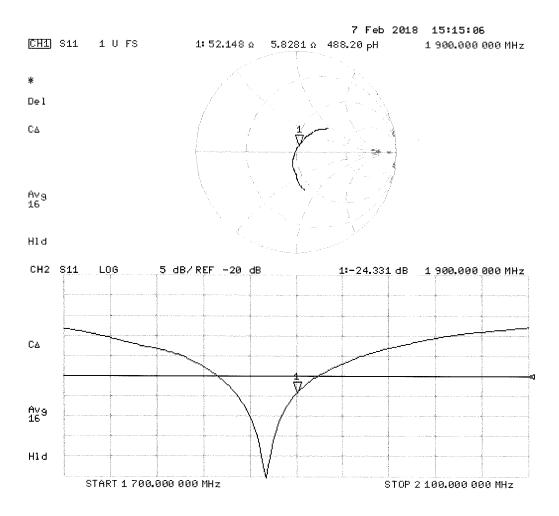
• DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 109.6 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 18.5 W/kg


SAR(1 g) = 9.95 W/kg; SAR(10 g) = 5.22 W/kg

Maximum value of SAR (measured) = 15.3 W/kg

0 dB = 15.3 W/kg = 11.85 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 07.02.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.48 \text{ S/m}$; $\varepsilon_r = 55.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.15, 8.15, 8.15); Calibrated: 30.12.2017;

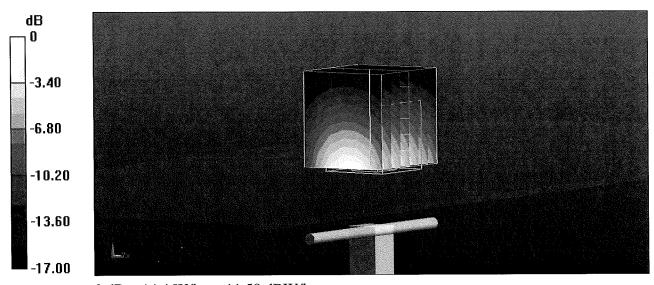
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

• Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

• DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

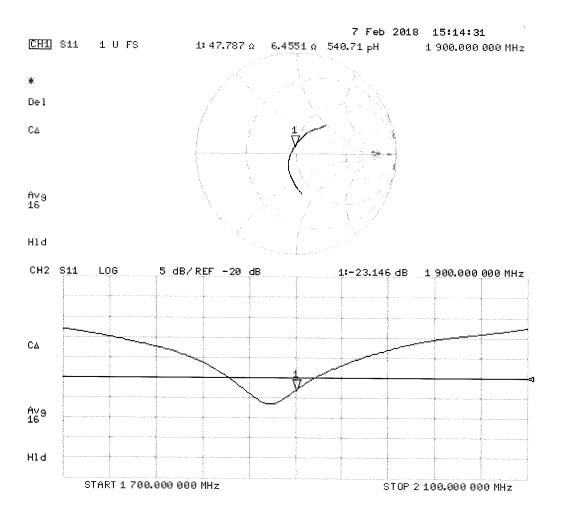
Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.0 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 9.68 W/kg; SAR(10 g) = 5.14 W/kg


Maximum value of SAR (measured) = 14.4 W/kg

0 dB = 14.4 W/kg = 11.58 dBW/kg

Certificate No: D1900V2-5d148_Feb18

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D835V2-4d133_Oct18

CALIBRATION CERTIFICATE

Object

D835V2 - SN:4d133

Calibration procedure(s)

QA CAL-05.v10

Calibration procedure for dipole validation kits above 700 MHz

BN V

Calibration date:

October 19, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Manu Seitz	Laboratory Technician	
		_	
Approved by:	Katja Pokovic	Technical Manager	MUL-

Issued: October 22, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d133_Oct18

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d133_Oct18 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.43 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.10 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	0.98 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		at as to to

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.46 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.75 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.40 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d133_Oct18

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.6 Ω - 2.4 jΩ
Return Loss	- 32.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.0 Ω - 6.7 jΩ
Return Loss	- 21.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.397 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 22, 2011

Certificate No: D835V2-4d133_Oct18 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 19.10.2018

Test Laboratory: The name of your organization

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d133

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.91$ S/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.9, 9.9, 9.9) @ 835 MHz; Calibrated: 30.12.2017

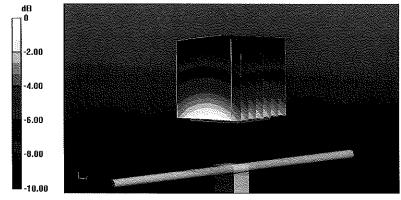
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.10.2018

• Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

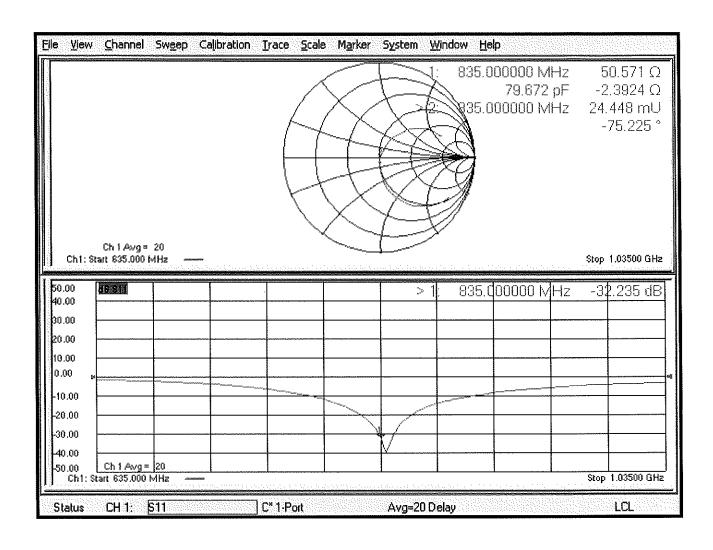
• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 63.02 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.68 W/kg


SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.54 W/kg

Maximum value of SAR (measured) = 3.24 W/kg

0 dB = 3.24 W/kg = 5.11 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 19.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d133

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.98 \text{ S/m}$; $\varepsilon_r = 54.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard; DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.05, 10.05, 10.05) @ 835 MHz; Calibrated: 30.12.2017

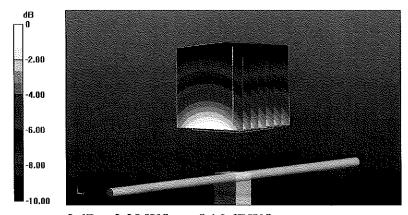
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.10.2018

Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

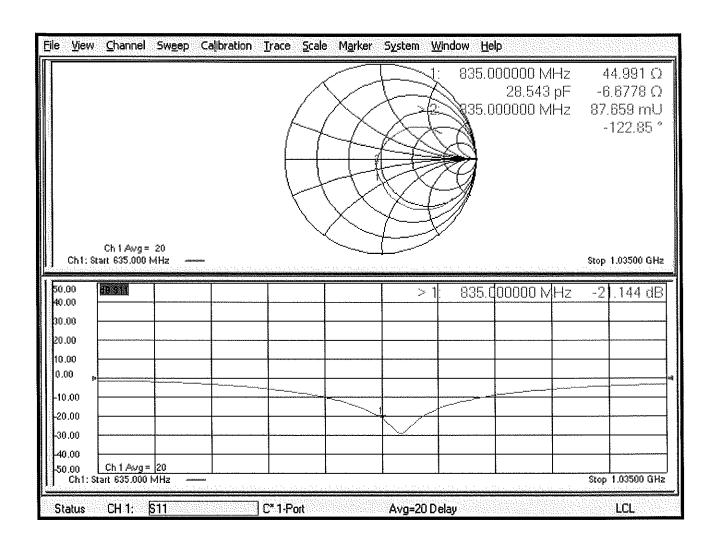
DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 61.61 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.69 W/kg


SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.61 W/kg

Maximum value of SAR (measured) = 3.28 W/kg

0 dB = 3.28 W/kg = 5.16 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: ES3-3213_Feb18

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3213

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Bn 3-02-2

Calibration date:

February 13, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02525)	Apr-18
Reference 20 dB Attenuator	SN: S5277 (20x)	07-Apr-17 (No. 217-02528)	Apr-18
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21-Dec-17 (No. DAE4-660_Dec17)	Dec-18
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18

Function

Calibrated by:

Michael Weber

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: February 13, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Name

Certificate No: ES3-3213_Feb18

Page 1 of 39

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage

Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3213_Feb18 Page 2 of 39

February 13, 2018

Probe ES3DV3

SN:3213

Manufactured: October 14, 2008

Calibrated:

February 13, 2018

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

February 13, 2018

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3213

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.43	1.32	1.29	± 10.1 %
DCP (mV) ^B	100.3	104.3	100.0	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc [₺]
			dB	dB√μV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	219.3	±2.7 %
		Y	0.0	0.0	1.0		219.1	···
		Z	0.0	0.0	1.0		213.7	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	T6
X	55.43	404.4	36.34	28.23	1.967	5.10	0.398	0.555	1.011
Υ	56.36	406.4	35.71	28.34	2.153	5.10	1.040	0.438	1.013
Z	52.80	385.3	36.34	28.19	1.829	5.10	0.000	0.541	1.011

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3213

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	6.75	6.75	6.75	0.64	1.30	± 12.0 %
835	41.5	0.90	6.42	6.42	6.42	0.48	1.50	± 12.0 %
1750	40.1	1.37	5.45	5.45	5.45	0.52	1.41	± 12.0 %
1900	40.0	1.40	5.30	5.30	5.30	0.79	1.17	± 12.0 %
2300	39.5	1.67	4.94	4.94	4.94	0.59	1.37	± 12.0 %
2450	39.2	1.80	4.72	4.72	4.72	0.80	1.21	± 12.0 %
2600	39.0	1.96	4.53	4.53	4.53	0.72	1.33	± 12.0 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConyF uncertainty for indicated target tissue parameters.

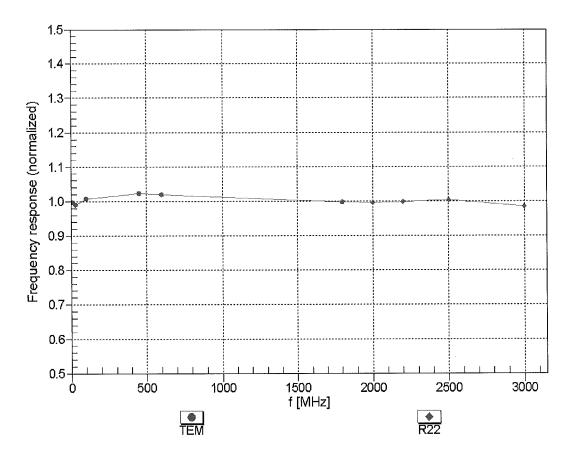
the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3213

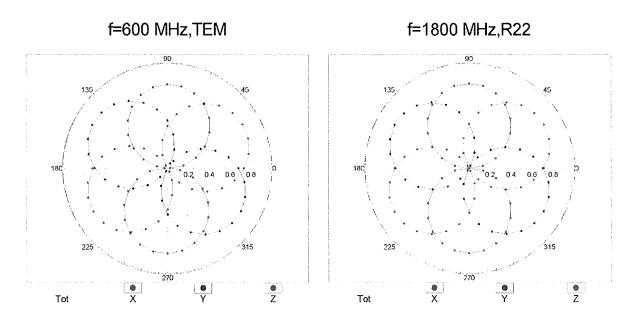
Calibration Parameter Determined in Body Tissue Simulating Media

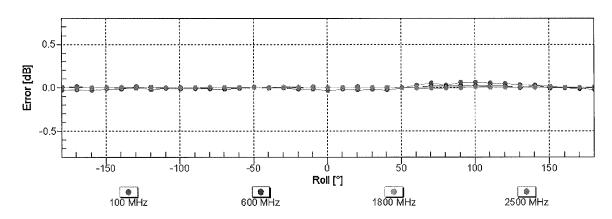
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	6.30	6.30	6.30	0.80	1.13	± 12.0 %
835	55.2	0.97	6.20	6.20	6.20	0.41	1.66	± 12.0 %
1750	53.4	1.49	5.10	5.10	5.10	0.37	1.82	± 12.0 %
1900	53.3	1.52	4.88	4.88	4.88	0.59	1.51	± 12.0 %
2300	52.9	1.81	4.62	4.62	4.62	0.80	1.30	± 12.0 %
2450	52.7	1.95	4.53	4.53	4.53	0.80	1.25	± 12.0 %
2600	52.5	2.16	4.33	4.33	4.33	0.80	1.25	± 12.0 %


^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: ES3-3213_Feb18

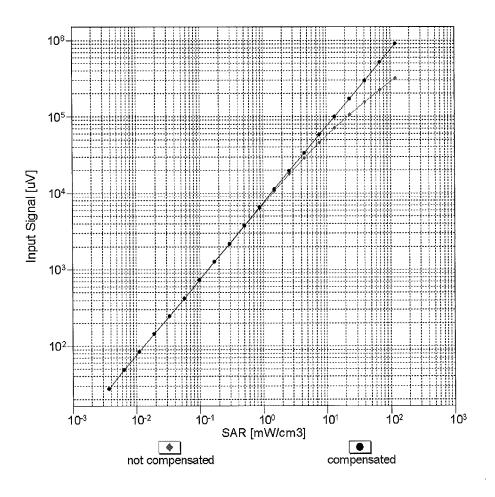
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

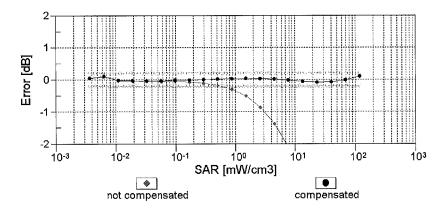

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

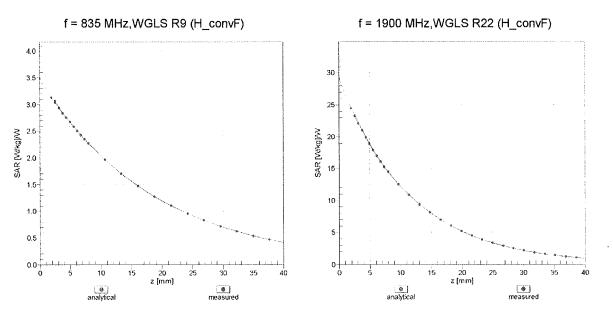
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

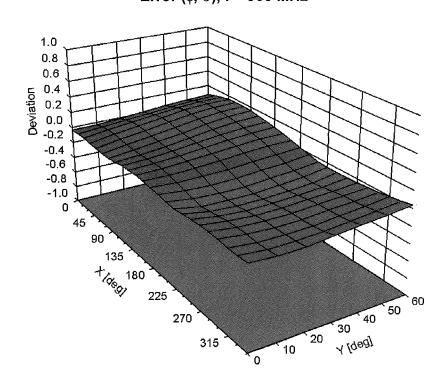


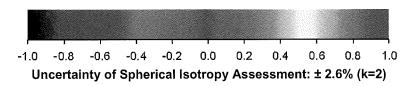


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

February 13, 2018


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3213

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	100.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Appendix: Modulation Calibration Parameters

UID	Communication System Name	:	A dB	B dBõV	С	D dB	VR mV	Max Unc ^E (k=2)
0	CW	Х	0.00	0.00	1.00	0.00	219.3	± 2.7 %
		Υ	0.00	0.00	1.00		219.1	
		Z	0.00	0.00	1.00		213.7	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	Х	7.64	78.36	17.77	10.00	25.0	± 9.6 %
		Υ	8.93	80.69	18.99		25.0	
		Z	7.43	77.97	17.46		25.0	
10011- CAB	UMTS-FDD (WCDMA)	Х	0.94	65.73	13.94	0.00	150.0	± 9.6 %
		Y	1.08	67.98	15.48		150.0	
10010		Z	0.93	65.52	13.77		150.0	
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	Х	1.23	64.18	15.06	0.41	150.0	± 9.6 %
		Y	1.29	65.11	15.84		150.0	
10013-	IEEE 000 44a WIE: 0 4 OU- (D000	Z	1.22	64.10	14.97	4.40	150.0	1000
CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	X	5.06	67.01	17.27	1.46	150.0	± 9.6 %
		Y	5.11	67.24	17.46		150.0	
10021- DAC	GSM-FDD (TDMA, GMSK)	X	5.03 58.23	67.01 111.57	17.25 29.90	9.39	150.0 50.0	± 9.6 %
<i>D/</i> (0		Υ	38.28	105.54	28.67		50.0	
		Z	83.35	116.76	31.01		50.0	
10023- DAC	GPRS-FDD (TDMA, GMSK, TN 0)	Х	42.41	106.55	28.63	9.57	50.0	± 9.6 %
		Υ	31.06	102.12	27.76		50.0	
		Ζ	55.17	110.35	29.43		50.0	
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	Х	100.00	116.42	29.15	6.56	60.0	± 9.6 %
		Υ	100.00	117.64	29.89		60.0	
		Ζ	100.00	115.95	28.84		60.0	
10025- DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	Х	22.66	114.16	43.61	12.57	50.0	± 9.6 %
		Y	32.36	125.54	47.77		50.0	
40000	EDOE EDD (TDMA ODCK TN 0.4)	Z	20.92	112.18	42.96	0.50	50.0	1000
10026- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	22.06	107.62	37.21	9.56	60.0	± 9.6 %
		Y	29.09	114.84	39.79		60.0	
10027-	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	22.32 100.00	108.24 114.90	37.43 27.59	4.80	60.0 80.0	± 9.6 %
DAC		Υ	100.00	116.49	28.47		80.0	
	1	Z	100.00	114.42	27.29		80.0	
10028- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	100.00	114.37	26.58	3.55	100.0	± 9.6 %
<u></u>		Y	100.00	116.53	27.70		100.0	
		Z	100.00	113.85	26.28		100.0	
10029- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	Х	13.21	95.56	31.98	7.80	80.0	± 9.6 %
		Υ	16.23	100.64	33.98		80.0	
10030-	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Z X	13.05 100.00	95.55 114.59	31.99 27.76	5.30	80.0 70.0	± 9.6 %
CAA	-	Y	100.00	116.05	28.60	 	70.0	
	+	Z	100.00	114.06	28.60		70.0	
10031- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	112.38	24.24	1.88	100.0	± 9.6 %
J/ V/		Υ	100.00	116.66	26.24		100.0	
		Z	100.00	111.54	23.82		100.0	

10032-	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Х	100.00	112.51	23.27	1.17	100.0	± 9.6 %
CAA		V	400.00	440.00	00.40		400.0	
		Y Z	100.00 100.00	119.82	26.49		100.0	
10033-	IEEE 802.15.1 Bluetooth (PI/4-DQPSK,	X	19.77	111.35 98.57	22.74	E 20	100.0	1.0.0.07
CAA	DH1)				26.87	5.30	70.0	± 9.6 %
		Y	22.51	101.06	27.89		70.0	
	The state of the s	Z	20.62	99.03	26.84		70.0	
10034- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Х	5.26	81.87	19.91	1.88	100.0	± 9.6 %
		Υ	7.30	87.04	22.01		100.0	
		Z	5.17	81.44	19.55		100.0	
10035- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Х	2.97	75.56	17.30	1.17	100.0	± 9.6 %
		Υ	4.02	80.17	19.40		100.0	
		Ζ	2.90	75.11	16.93		100.0	
10036- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Х	25.61	102.92	28.18	5.30	70.0	± 9.6 %
		Υ	28.89	105.33	29.15		70.0	
		Z	27.23	103.63	28.21		70.0	
10037- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Х	5.03	81.31	19.68	1.88	100.0	± 9.6 %
		Υ	7.01	86.52	21.80		100.0	
		Z	4.92	80.81	19.30		100.0	
10038- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Х	3.05	76.11	17.60	1.17	100.0	± 9.6 %
		Υ	4.14	80.86	19.74		100.0	
		Z	2.97	75.64	17.22		100.0	
10039- CAB	CDMA2000 (1xRTT, RC1)	Х	1.52	68.64	14.11	0.00	150.0	± 9.6 %
		Υ	1.86	71.69	15.85		150.0	
		Z	1.44	68.18	13.70		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	X	100.00	115.25	28.83	7.78	50.0	± 9.6 %
		Υ	100.00	116.43	29.57		50.0	
		Z	100.00	114.73	28.50		50.0	
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.00	111.44	0.10	0.00	150.0	± 9.6 %
		Υ	0.00	116.05	0.75		150.0	
		Z	0.00	113.36	0.21		150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	Х	15.69	90.02	25.55	13.80	25.0	± 9.6 %
		Υ	13.84	87.79	25.13		25.0	
		Ζ	17.52	91.95	25.99		25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	Х	19.88	94.41	25.54	10.79	40.0	± 9.6 %
		Υ	17.39	92.41	25.24		40.0	
		Ζ	22.32	96.16	25.89		40.0	
10056- CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	Х	15.96	91.92	25.75	9.03	50.0	± 9.6 %
		Υ	16.02	92.06	26.04		50.0	
		Z	16.84	92.83	25.91		50.0	
10058- DAC						6.55	100.0	± 9.6 %
10058- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	Х	9.21	88.16	28.55	0.00	100.0	20.070
	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	Y	10.78	88.16 91.87	30.15	0.00	100.0	2 0.0 70
	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)					0.00	100.0	2 0.0 70
	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	Y	10.78	91.87	30.15	0.61		± 9.6 %
DAC 10059-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2	Y	10.78 9.04	91.87 87.96	30.15 28.49 16.00		100.0 100.0 110.0	
DAC 10059-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2	Y Z X	10.78 9.04 1.36	91.87 87.96 66.07	30.15 28.49 16.00		100.0 100.0 110.0	
10059- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5	Y Z X	10.78 9.04 1.36	91.87 87.96 66.07	30.15 28.49 16.00		100.0 100.0 110.0	
10059- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	Y Z X Y Z	10.78 9.04 1.36 1.46 1.35	91.87 87.96 66.07 67.28 65.96	30.15 28.49 16.00 16.91 15.91	0.61	100.0 100.0 110.0 110.0 110.0	± 9.6 %

10061-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11	Х	7.64	91.52	25.20	2.04	110.0	± 9.6 %
CAB	Mbps)							
		Y	11.51	98.81	27.78		110.0	
40000	1555 000 44 # 2015 5 004 46 5	Z	7.56	91.41	25.11		110.0	
10062- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.79	66.76	16.54	0.49	100.0	± 9.6 %
		Υ	4.84	66.99	16.73		100.0	
10000		Z	4.76	66.76	16.52		100.0	
10063- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.82	66.91	16.68	0.72	100.0	± 9.6 %
		Y	4.87	67.15	16.87		100.0	
10064-	IEEE 902 44-75 MEE 5 OU - (OEDM 40	Z	4.79	66.91	16.65		100.0	
CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	5.14	67.25	16.96	0.86	100.0	± 9.6 %
		Y	5.20	67.49	17.14		100.0	
10065-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18	Z	5.10	67.24	16.93	4.04	100.0	
CAC	Mbps)	X	5.04	67.27	17.12	1.21	100.0	± 9.6 %
		Y	5.10	67.51	17.31		100.0	
10066-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24	Z	5.00	67.25	17.09	4.40	100.0	1000
CAC	Mbps)	X	5.09	67.39	17.35	1.46	100.0	± 9.6 %
		Y	5.15	67.65	17.54		100.0	
10067-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36	Z	5.06	67.37	17.32	0.04	100.0	
CAC	Mbps)	X	5.41	67.60	17.83	2.04	100.0	± 9.6 %
		Y	5.47	67.85	18.03		100.0	
10068-	IEEE 902 44c/b WiEi E CHE (OEDM 40	Z	5.38	67.60	17.82	0.55	100.0	
CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	Х	5.53	67.90	18.19	2.55	100.0	± 9.6 %
		Y	5.60	68.19	18.41		100.0	
40000	IEEE 000 44 / WIE E OU (OED) 4 E4	Z	5.49	67.88	18.16		100.0	
10069- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	5.62	67.88	18.39	2.67	100.0	± 9.6 %
		Y	5.69	68.17	18.62		100.0	
40074	IEEE 000 44 MEE 0 4 OU	Z	5.57	67.88	18.36		100.0	
10071- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	5.20	67.23	17.66	1.99	100.0	± 9.6 %
		Y	5.25	67.48	17.85		100.0	
		Z	5.17	67.24	17.64		100.0	
10072- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	Х	5.24	67.75	17.96	2.30	100.0	± 9.6 %
		Υ	5.31	68.03	18.18		100.0	
40070		Z	5.21	67.74	17.94		100.0	
10073- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	5.36	68.08	18.38	2.83	100.0	± 9.6 %
		Y	5.44	68.38	18.61		100.0	
40074		Z	5.33	68.07	18.36	6.5-	100.0	
10074- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	Х	5.39	68.13	18.62	3.30	100.0	± 9.6 %
		Y	5.47	68.45	18.87		100.0	
40075		Z	5.36	68.12	18.60		100.0	
10075- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	5.52	68.55	19.10	3.82	90.0	± 9.6 %
		Y	5.61	68.93	19.38		90.0	
10076- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	Z X	5.48 5.53	68.52 68.37	19.07 19.24	4.15	90.0	± 9.6 %
UND	(DOGO/OFDIVI, 40 IVIDPS)	Y	5.62	68.75	19.52		00.0	
		Z	5.50	68.36	19.52		90.0	
10077-	IEEE 802.11g WiFi 2.4 GHz	$\frac{2}{X}$	5.57	68.46		4 30	90.0	+06%
CAB	(DSSS/OFDM, 54 Mbps)				19.34	4.30	90.0	± 9.6 %
		Y	5.66	68.84	19.63		90.0	
		Z	5.54	68.44	19.32		90.0	l

10081- CAB	CDMA2000 (1xRTT, RC3)	X	0.76	64.13	11.38	0.00	150.0	± 9.6 %
		Y	0.90	66.35	12.99		150.0	
		Z	0.73	63.81	11.00		150.0	
10082- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	X	1.73	62.47	7.53	4.77	80.0	± 9.6 %
		Υ	1.91	63.29	8.22		80.0	
		Z	1.67	62.23	7.30		80.0	
10090- DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	Х	100.00	116.51	29.21	6.56	60.0	± 9.6 %
		Υ	100.00	117.72	29.95		60.0	
40000		Z	100.00	116.03	28.90		60.0	
10097- CAB	UMTS-FDD (HSDPA)	X	1.73	66.45	14.86	0.00	150.0	± 9.6 %
		Υ	1.84	67.58	15.67		150.0	
40000	LINETO EDD (USUE)	Z	1.71	66.38	14.75		150.0	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	Х	1.70	66.40	14.82	0.00	150.0	± 9.6 %
		Y	1.81	67.56	15.65		150.0	
40000	FDOE FDD (TDMA CDC) (This is	Z	1.68	66.33	14.71		150.0	
10099- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	X	22.00	107.50	37.17	9.56	60.0	± 9.6 %
		Y	28.88	114.61	39.71		60.0	
40400	LTE EDD (OO EDW) 1000 ED 65	Z	22.27	108.13	37.40		60.0	
10100- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	3.03	69.43	16.03	0.00	150.0	± 9.6 %
		<	3.22	70.56	16.70		150.0	
40404	LTE EDD (OO EDW) (OO) DD OO	Z	2.99	69.29	15.96		150.0	
10101- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	3.23	67.20	15.61	0.00	150.0	± 9.6 %
		Υ	3.33	67.78	16.01		150.0	
		Z	3.20	67.12	15.56		150.0	
10102- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	3.34	67.17	15.71	0.00	150.0	± 9.6 %
		Υ	3.42	67.69	16.08		150.0	
		Z	3.31	67.10	15.66		150.0	
10103- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Х	8.49	78.45	21.33	3.98	65.0	± 9.6 %
		Υ	8.79	79.00	21.62		65.0	
		Z	8.39	78.42	21.32		65.0	
10104- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	8.27	76.76	21.53	3.98	65.0	± 9.6 %
		Y	8.57	77.41	21.89		65.0	
		Z	8.21	76.79	21.53		65.0	
10105- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	8.13	76.44	21.71	3.98	65.0	± 9.6 %
		Υ	7.83	75.63	21.42		65.0	
40400	LTE EDD (OO EDM)	Z	7.93	76.10	21.55		65.0	
10108- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	2.67	68.71	15.86	0.00	150.0	± 9.6 %
		Y	2.83	69.80	16.55		150.0	
40400	LTE EDD (OO EDM) (OO)	Z	2.63	68.57	15.78		150.0	
10109- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	2.89	66.95	15.47	0.00	150.0	± 9.6 %
		Y	2.98	67.57	15.91		150.0	
10110-	LTE-FDD (SC-FDMA, 100% RB, 5 MHz,	Z	2.86 2.17	66.87 67.76	15.40 15.45	0.00	150.0 150.0	± 9.6 %
CAE	QPSK)		0.00	00.0:				
		Y	2.32	68.94	16.22		150.0	
10111	1 TE EDD (00 ED) 1000 ED	Z	2.13	67.62	15.34		150.0	
10111- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	2.56	67.34	15.57	0.00	150.0	± 9.6 %
		Y	2.66	68.04	16.08		150.0	
	1	Z	2.53	67.28	15.48		150.0	