

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

SAR EVALUATION REPORT

Applicant Name:

LG Electronics MobileComm U.S.A., Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States Date of Testing: 01/02/18 - 01/15/18 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 1M1712280340-01.ZNF

FCC ID:

ZNFX210ULM

APPLICANT:

LG ELECTRONICS MOBILECOMM U.S.A., INC.

DUT Type: Application Type: FCC Rule Part(s): Model: Additional Model(s): Portable Handset Certification CFR §2.1093 LM-X210ULM LMX210ULM, X210ULM

Equipment Class	Band & Mode	Tx Frequency	SAR			
		TXT requeries	1g Head (W/kg)	1g Body- Worn (W/kg)	1g Hotspot (W/kg)	
PCE	Cell. CDMA/EVDO	824.70 - 848.31 MHz	0.39	0.59	0.64	
PCE	PCS CDMA/EVDO	1851.25 - 1908.75 MHz	0.67	0.86	0.94	
PCE	LTE Band 12	699.7 - 715.3 MHz	0.35	0.55	0.55	
PCE	LTE Band 5 (Cell)	824.7 - 848.3 MHz	0.38	0.59	0.60	
PCE	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	0.61	0.84	0.93	
PCE	LTE Band 25 (PCS)	1850.7 - 1914.3 MHz	0.56	0.81	0.81	
PCE	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	N/A	N/A	N/A	
DTS	2.4 GHz WLAN	2412 - 2462 MHz	0.89	0.18	0.18	
DSS/DTS Bluetooth		2402 - 2480 MHz	0.39	N/A	N/A	
Simultaneous	s SAR per KDB 690783 D	01v01r03:	1.56	1.13	1.21	

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

Randy Ortanez President

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 1 of 54
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Fage 1 01 54
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M

REV 20.06 M 12/06/2017

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE INFO	DRMATION	7
3	INTRODU	JCTION	8
4	DOSIME	TRIC ASSESSMENT	9
5	DEFINITI	ON OF REFERENCE POINTS	0
6	TEST CC	NFIGURATION POSITIONS1	1
7	RF EXPC	DSURE LIMITS	4
8	FCC ME	ASUREMENT PROCEDURES	5
9	RF CON	DUCTED POWERS	0
10	SYSTEM	VERIFICATION	4
11	SAR DAT	A SUMMARY	6
12	FCC MUI	TI-TX AND ANTENNA SAR CONSIDERATIONS 4	5
13	SAR MEA	ASUREMENT VARIABILITY	9
14	EQUIPM	ENT LIST	0
15	MEASUR	EMENT UNCERTAINTIES	1
16	CONCLU	SION	2
17	REFERE	NCES	3
APPEN APPEN		SAR TEST PLOTS SAR DIPOLE VERIFICATION PLOTS	
APPEN		PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPEN	-	SAR TISSUE SPECIFICATIONS	
APPEN	DIX E:	SAR SYSTEM VALIDATION	

APPENDIX F: DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Page 2 of 54
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M

RE

1 DEVICE UNDER TEST

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
Cell. CDMA/EVDO	Voice/Data	824.70 - 848.31 MHz
PCS CDMA/EVDO	Voice/Data	1851.25 - 1908.75 MHz
LTE Band 12	Voice/Data	699.7 - 715.3 MHz
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 25 (PCS)	Voice/Data	1850.7 - 1914.3 MHz
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz
2.4 GHz WLAN	Data	2412 - 2462 MHz
Bluetooth	Data	2402 - 2480 MHz

1.2 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 3 of 54
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Fage 3 01 54
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M

Nominal and Maximum Output Power Specifications 1.3

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

Mode / Band		Modulated Average (dBm)
Cell. CDMA/EVDO	Maximum	24.7
	Nominal Maximum	24.2
PCS CDMA/EVDO	Nominal	24.2

Maximum Output Power 1.3.1

	-	
Mada / Dand		Modulated Average
Mode / Band		(dBm)
LTE Band 12	Maximum	24.7
	Nominal	24.2
LTE Band 5 (Cell)	Maximum	24.7
	Nominal	24.2
LTE Band 4 (AWS)	Maximum	24.2
LTE Ballu 4 (AVVS)	Nominal	23.7
ITE Dand 2E (DCC)	Maximum	24.7
LTE Band 25 (PCS)	Nominal	24.2
LTE Dand 2 (DCS)	Maximum	24.7
LTE Band 2 (PCS)	Nominal	24.2

Mode / Band		Modulated Average (dBm)			
		Ch 1	Ch 2-10	Ch 11	
	Maximum	15.0	15.0	15.0	
IEEE 802.11b (2.4 GHz)	Nominal	14.0	14.0	14.0	
IEEE 802.11g (2.4 GHz)	Maximum	8.5	12.0	7.5	
TEEE 802.11g (2.4 GHz)	Nominal	7.5	11.0	6.5	
	Maximum	7.0	11.0	6.5	
IEEE 802.11n (2.4 GHz)	Nominal	6.0	10.0	5.5	

Mode / Ban	Modulated Average (dBm)	
Plustooth (DHE)	Maximum	11.0
Bluetooth (DH5)	Nominal	10.0
Plustaath (2 DHE)	Maximum	9.0
Bluetooth (2-DH5)	Nominal	8.0
Plustaath (2 DHE)	Maximum	9.0
Bluetooth (3-DH5)	Nominal	8.0
Bluetooth LE	Maximum	2.0
Bluetooth LE	Nominal	1.0

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 4 of 54
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Fage 4 01 54
201	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M

© 2018 PCTEST Engineering Laboratory, Inc.

1.4 **DUT Antenna Locations**

The overall dimensions of this device are > 9 x 5 cm. The overall diagonal dimension of the device is ≤160 mm and the diagonal display is ≤150 mm. A diagram showing the location of the device antennas can be found in Appendix F.

Mode	Back	Front	Тор	Bottom	Right	Left
Cell. EVDO	Yes	Yes	No	Yes	Yes	Yes
PCS EVDO	Yes	Yes	No	Yes	No	Yes
LTE Band 12	Yes	Yes	No	Yes	Yes	Yes
LTE Band 5 (Cell)	Yes	Yes	No	Yes	Yes	Yes
LTE Band 4 (AWS)	Yes	Yes	No	Yes	No	Yes
LTE Band 25 (PCS)	Yes	Yes	No	Yes	No	Yes
2.4 GHz WLAN	Yes	Yes	Yes	No	Yes	No

Table 1-1 **Device Edges/Sides for SAR Testing**

Note: Particular DUT edges were not required to be evaluated for wireless router SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02r01 Section III. The distances between the transmit antennas and the edges of the device are included in the filing.

1.5 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

	Simultaneous Transmission Scenarios									
No.	Capable Transmit Configuration	Head	Body-Worn Accessory	Wireless Router	Notes					
1	1x CDMA voice + 2.4 GHz WI-FI	Yes	Yes	N/A						
2	1x CDMA voice + 2.4 GHz Bluetooth	Yes^	Yes	N/A	^Bluetooth Tethering is considered					
3	LTE + 2.4 GHz WI-FI	Yes	Yes	Yes						
4	LTE + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	^Bluetooth Tethering is considered					
5	CDMA/EVDO data + 2.4 GHz WI-FI	Yes*	Yes*	Yes	* Pre-installed VOIP applications are considered					
6	CDMA/EVDO data + 2.4 GHz Bluetooth	Yes*^	Yes*	Yes^	* Pre-installed VOIP applications are considered ^ Bluetooth Tethering is considered					

Table 1-2

- 1. 2.4 GHz WLAN, and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.
- 3. Per the manufacturer, WIFI Direct is expected to be used in conjunction with a held-to-ear or body-worn accessory voice call. Therefore, there are no simultaneous transmission scenarios involving WIFI direct beyond that listed in the above table.
- 4. This device supports VOLTE and BT Tethering.

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 5 of 54	
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Page 5 01 54	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

12/06/2017

© 2018 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or med including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM. boratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining

1.6 Miscellaneous SAR Test Considerations (A) WIFI/BT

Per FCC KDB 447498 D01v06, the 1g SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{Max Power of Channel (mW)}{Test Separation Dist (mm)} * \sqrt{Frequency(GHz)} \le 3.0$$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, body-worn and hotspot Bluetooth SAR was not required; $[(13/10)^* \sqrt{2.480}] = 2.0 < 3.0$. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

(B) Licensed Transmitter(s)

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

This device supports LTE capabilities with overlapping transmission frequency ranges. When the supported frequency range of an LTE Band falls completely within an LTE band with a larger transmission frequency range, both LTE bands have the same target power (or the band with the larger transmission frequency range has a higher target power), and both LTE bands share the same transmission path and signal characteristics, SAR was only assessed for the band with the larger transmission frequency range.

1.7 Guidance Applied

- IEEE 1528-2013
- FCC KDB Publication 941225 D01v03r01, D05v02r04, D06v02r01 (2G/3G/4G and Hotspot)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)

1.8 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 11.

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dage C of 54	
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Page 6 of 54	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

REV 20.06 M 12/06/2017

2 LTE INFORMATION

	LTE Information				
FCC ID		ZNFX210ULM			
Form Factor	Portable Handset				
Frequency Range of each LTE transmission band	LTE Band 12 (699.7 - 715.3 MHz)				
	LTE B	and 5 (Cell) (824.7 - 848	5.3 MHz)		
	LTE Ban	nd 4 (AWS) (1710.7 - 17	54.3 MHz)		
	LTE Ban	d 25 (PCS) (1850.7 - 19	14.3 MHz)		
	LTE Bar	nd 2 (PCS) (1850.7 - 190)9.3 MHz)		
Channel Bandwidths	LTE Band	12: 1.4 MHz, 3 MHz, 5 M	/Hz, 10 MHz		
	LTE Band 5	(Cell): 1.4 MHz, 3 MHz, 5	5 MHz, 10 MHz		
		4 MHz, 3 MHz, 5 MHz, 1			
			0 MHz, 15 MHz, 20 MHz		
	LTE Band 2 (PCS): 1.4	4 MHz, 3 MHz, 5 MHz, 1	0 MHz, 15 MHz, 20 MHz		
Channel Numbers and Frequencies (MHz)	Low	Mid	High		
LTE Band 12: 1.4 MHz	699.7 (23017)	707.5 (23095)	715.3 (23173)		
LTE Band 12: 3 MHz	700.5 (23025)	707.5 (23095)	714.5 (23165)		
LTE Band 12: 5 MHz	701.5 (23035)	707.5 (23095)	713.5 (23155)		
LTE Band 12: 10 MHz	704 (23060)	707.5 (23095)	711 (23130)		
LTE Band 5 (Cell): 1.4 MHz	824.7 (20407)	836.5 (20525)	848.3 (20643)		
LTE Band 5 (Cell): 3 MHz	825.5 (20415)	836.5 (20525)	847.5 (20635)		
LTE Band 5 (Cell): 5 MHz	826.5 (20425)	836.5 (20525)	846.5 (20625)		
LTE Band 5 (Cell): 10 MHz	829 (20450)	836.5 (20525)	844 (20600)		
LTE Band 4 (AWS): 1.4 MHz	1710.7 (19957)	1732.5 (20175)	1754.3 (20393)		
LTE Band 4 (AWS): 3 MHz	1711.5 (19965)	1732.5 (20175)	1753.5 (20385)		
LTE Band 4 (AWS): 5 MHz	1712.5 (19975)	1732.5 (20175)	1752.5 (20375)		
LTE Band 4 (AWS): 10 MHz	1715 (20000)	1732.5 (20175)	1750 (20350)		
LTE Band 4 (AWS): 15 MHz	1717.5 (20025)	1732.5 (20175)	1747.5 (20325)		
LTE Band 4 (AWS): 20 MHz	1720 (20050)	1732.5 (20175)	1745 (20300)		
LTE Band 25 (PCS): 1.4 MHz	1850.7 (26047)	1882.5 (26365)	1914.3 (26683)		
LTE Band 25 (PCS): 3 MHz	1851.5 (26055)	1882.5 (26365)	1913.5 (26675)		
LTE Band 25 (PCS): 5 MHz	1852.5 (26065)	1882.5 (26365)	1912.5 (26665)		
LTE Band 25 (PCS): 10 MHz	1855 (26090)	1882.5 (26365)	1910 (26640)		
LTE Band 25 (PCS): 15 MHz	1857.5 (26115)	1882.5 (26365)	1907.5 (26615)		
LTE Band 25 (PCS): 20 MHz	1860 (26140)	1882.5 (26365)	1905 (26590)		
LTE Band 2 (PCS): 1.4 MHz	1850.7 (18607)	1880 (18900)	1909.3 (19193)		
LTE Band 2 (PCS): 3 MHz	1851.5 (18615)	1880 (18900)	1908.5 (19185)		
LTE Band 2 (PCS): 5 MHz	1852.5 (18625)	1880 (18900)	1907.5 (19175)		
LTE Band 2 (PCS): 10 MHz	1855 (18650)	1880 (18900)	1905 (19150)		
LTE Band 2 (PCS): 15 MHz	1857.5 (18675)	1880 (18900)	1902.5 (19125)		
LTE Band 2 (PCS): 20 MHz	1860 (18700)	1880 (18900)	1900 (19100)		
UE Category		4			
Modulations Supported in UL		QPSK, 16QAM			
LTE MPR Permanently implemented per 3GPP TS					
36.101 section 6.2.3~6.2.5? (manufacturer attestation	n YES				
to be provided)					
A-MPR (Additional MPR) disabled for SAR Testing?		YES			
LTE Additional Information	This device does not support full CA features on 3GPP Release 10. All uplink communications are identical to the Release 8 Specifications. The following LTE Release 10 Features are not supported: Carrier Aggregation, Relay, HetNet, Enhanced MIMO, eICIC, WIFI Offloading, MDH, eMBMS, Cross-				
		Scheduling, Enhanced S	-		

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 7 of 54
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Fage 7 01 54
20'	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M

© 2018 PCTEST Engineering Laboratory, Inc.

3 INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation $SAR = \frac{d}{u} \left(\frac{dU}{u} \right) = \frac{d}{u} \left(\frac{dU}{u} \right)$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

- σ = conductivity of the tissue-simulating material (S/m)
- ρ = mass density of the tissue-simulating material (kg/m³)
- E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 8 of 54	
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Fage 6 01 54	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

REV 20.06 M 12/06/2017

4 DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

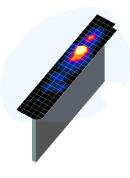


Figure 4-1 Sample SAR Area Scan

3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):

a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).

b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.

c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

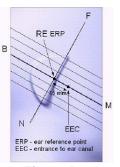
4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

-	Maximum Area Scan Resolution (mm)	Maximum Zoom Scan Resolution (mm)	Max	imum Zoom So Resolution (1		Minimum Zoom Scan
Frequency	(Δx _{area} , Δy _{area})	(Δx _{zoom} , Δy _{zoom})	Uniform Grid	Graded Grid		Volume (mm) (x,y,z)
			∆z _{zoom} (n)	$\Delta z_{zoom}(1)^*$	Δz _{zoom} (n>1)*	
≤2 GHz	≤ 15	≤8	≤5	≤4	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤ 12	≤ 5	≤5	≤4	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤ 12	≤5	≤ 4	≤3	≤ 1.5*∆z _{zoom} (n-1)	≥ 28
4-5 GHz	≤ 10	≤ 4	≤3	≤2.5	≤ 1.5*∆z _{zoom} (n-1)	≥ 25
5-6 GHz	≤ 10	≤ 4	≤2	≤2	≤ 1.5*∆z _{zoom} (n-1)	≥ 22

Table 4-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

*Also compliant to IEEE 1528-2013 Table 6

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dage 0 of 54	
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Page 9 of 54	
201	018 PCTEST Engineering Laboratory, Inc.					


© 2018 PCTEST Engineering Laboratory, Inc.

12/06/2017 © 2018 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or me including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry abou additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM. poratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining

5 **DEFINITION OF REFERENCE POINTS**

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

Figure 5-1 **Close-Up Side view** of ERP

HANDSET REFERENCE POINTS 5.2

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2 Front, back and side view of SAM Twin Phantom

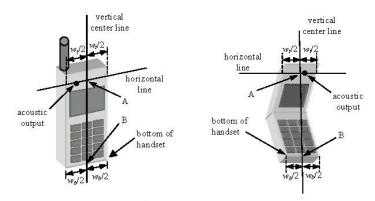


Figure 5-3 Handset Vertical Center & Horizontal Line Reference Points

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dama 40 of 54	
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Page 10 of 54	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

12/06/2017

6 TEST CONFIGURATION POSITIONS

6.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02.

6.2 Positioning for Cheek

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

6.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:			
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Page 11 of 54	
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M	

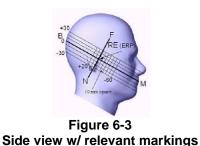
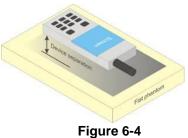


Figure 6-2 Front, Side and Top View of Ear/15^o Tilt Position


6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEEE 1528-2013, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

6.5 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation

Sample Body-Worn Diagram

distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		D 40 (54	
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Page 12 of 54	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

REV 20.06 M 12/06/2017

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.6 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1g body and 10g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

6.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		D (0)(D)	
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Page 13 of 54	
© 201	© 2018 PCTEST Engineering Laboratory, Inc.					

REV 20.06 M 12/06/2017

7 RF EXPOSURE LIMITS

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

 Table 7-1

 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS				
	UNCONTROLLED ENVIRONMENT General Population	CONTROLLED ENVIRONMENT Occupational		
Peak Spatial Average SAR Head	(W/kg) or (mW/g) 1.6	(W/kg) or (mW/g) 8.0		
Whole Body SAR	0.08	0.4		
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20		

Hands, Feet, Ankle, Wrists, etc.

1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

2. The Spatial Average value of the SAR averaged over the whole body.

3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dogo 14 of 54
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Page 14 of 54
© 20′	8 PCTEST Engineering Laboratory, Inc.	•	•		REV 20.06 M

REV 20.06 M 12/06/2017

8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as **reported** SAR. The highest **reported** SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is \leq 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is \leq 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

8.3 Procedures Used to Establish RF Signal for SAR

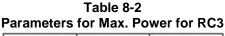
The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

8.4 SAR Measurement Conditions for CDMA2000

The following procedures were performed according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

8.4.1 Output Power Verification


See 3GPP2 C.S0011/TIA-98-E as recommended by FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures." Maximum output power is verified on the High, Middle and Low channels according to procedures in section 4.4.5.2 of 3GPP2 C.S0011/TIA-98-E. SO55 tests were measured with power control bits in the "<u>All Up</u>" condition.

FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🔁 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 15 of 54
1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Fage 15 01 54
2018 PCTEST Engineering Laboratory, Inc.				

- 1. If the mobile station (MS) supports Reverse TCH RC 1 and Forward TCH RC 1, set up a call using Fundamental Channel Test Mode 1 (RC=1/1) with 9600 bps data rate only.
- 2. Under RC1, C.S0011 Table 4.4.5.2-1, Table 8-1 parameters were applied.
- 3. If the MS supports the RC 3 Reverse FCH, RC3 Reverse SCH₀ and demodulation of RC 3,4, or 5, set up a call using Supplemental Channel Test Mode 3 (RC 3/3) with 9600 bps Fundamental Channel and 9600 bps SCH0 data rate.
- 4. Under RC3, C.S0011 Table 4.4.5.2-2, Table 8-2 was applied.

Table 8-1 Parameters for Max. Power for RC1

Parameter	Units	Value
Îor	dBm/1.23 MHz	-104
$\frac{\text{Pilot } E_c}{I_{or}}$	dB	-7
Traffic E _c	dB	-7.4

Parameter	Units	Value
Î _{or}	dBm/1.23 MHz	-86
$\frac{\text{Pilot } E_c}{I_{or}}$	dB	-7
Traffic E _c	dB	-7.4

5. FCHs were configured at full rate for maximum SAR with "All Up" power control bits.

8.4.2 Head SAR Measurements

SAR for next to the ear head exposure is measured in RC3 with the handset configured to transmit at fullrate in SO55. The 3G SAR test reduction procedure is applied to RC1 with RC3 as the primary mode; otherwise, SAR is required for the channel with maximum measured output in RC1 using the head exposure configuration that results in the highest reported SAR in RC3.

Head SAR is additionally evaluated using EVDO Rev. A to support compliance for VoIP operations. See Section 8.4.5 for EVDO Rev. A configuration parameters.

Body-worn SAR Measurements 8.4.3

SAR for body-worn exposure configurations is measured in RC3 with the DUT configured to transmit at full rate on FCH with all other code channels disabled using TDSO / SO32. The 3G SAR test reduction procedure is applied to the multiple code channel configuration (FCH+SCHn), with FCH only as the primary mode. Otherwise, SAR is required for multiple code channel configuration (FCH + SCHn), with FCH at full rate and SCH0 enabled at 9600 bps, using the highest reported SAR configuration for FCH only. When multiple code channels are enabled, the transmitter output can shift by more than 0.5 dB and may lead to higher SAR drifts and SCH dropouts.

The 3G SAR test reduction procedure is applied to body-worn accessory SAR in RC1 with RC3 as the primary mode. Otherwise, SAR is required for RC1, with SO55 and full rate, using the highest reported SAR configuration for body-worn accessory exposure in RC3.

Body-worn SAR Measurements for EVDO Devices 8.4.4

For handsets with EVDO capabilities, the 3G SAR test reduction procedure is applied to EVDO Rev. 0 with 1x RTT RC3 as the primary mode to determine body-worn accessory test requirements. Otherwise, body-worn accessory SAR is required for Rev. 0, at 153.6 kbps, using the highest reported SAR configuration for body-worn accessory exposure in RC3.

The 3G SAR test reduction procedure is applied to Rev. A, with Rev. 0 as the primary mode to determine body-worn accessory SAR test requirements. When SAR is not required for Rev. 0, the 3G SAR test reduction is applied with 1x RTT RC3 as the primary mode.

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 16 of 54
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		
© 20′	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M

© 2018 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or me including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM. poratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining When SAR is required for EVDO Rev. A, SAR is measured with a Reverse Data Channel payload size of 4096 bits and a Termination Target of 16 slots defined for Subtype 2 Physical Layer configurations, using the highest reported SAR configuration for body-worn accessory exposure in Rev. 0 or 1x RTT RC3, as appropriate.

8.4.5 Body SAR Measurements for EVDO Hotspot

Hotspot Body SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0. The 3G SAR test reduction procedure is applied to Rev. A, Subtype 2 Physical layer configuration, with Rev. 0 as the primary mode; otherwise, SAR is measured for Rev. A using the highest reported SAR configuration for body-worn accessory exposure in Rev. 0. The AT is tested with a Reverse Data Channel rate of 153.6 kbps in Subtype 0/1 Physical Layer configurations; and a Reverse Data Channel payload size of 4096 bits and Termination Target of 16 slots in Subtype 2 Physical Layer configurations.

For EVDO data devices that also support 1x RTT voice and/or data operations, the 3G SAR test reduction procedure is applied to 1x RTT RC3 and RC1 with EVDO Rev. 0 and Rev. A as the respective primary modes. Otherwise, the 'Body-Worn Accessory SAR' procedures in the '3GPP2 CDMA 2000 1x Handsets' section are applied.

8.5 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

8.5.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

8.5.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

8.5.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

8.5.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 17 of 54
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Fage 17 01 54
© 201	8 PCTEST Engineering Laboratory, Inc.	·			REV 20.06 M

REV 20.06 M 12/06/2017

required test channels using the RB offset configuration with highest output power for that channel.

- iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.

8.6 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

8.6.1 **General Device Setup**

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

Initial Test Position Procedure 8.6.2

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.

2.4 GHz SAR Test Requirements 8.6.3

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 18 of 54
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Fage 16 01 54
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M

REV 20.06 M

© 2018 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mee including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM. boratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining 2) When the reported SAR is > 0.8 W/ka. SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

8.6.4 **OFDM Transmission Mode and SAR Test Channel Selection**

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements. SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

8.6.5 Initial Test Configuration Procedure

For OFDM, an initial test configuration is determined for each frequency band and aggregated band. according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 8.6.4).

8.6.6 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required.

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Daga 10 of 54
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Page 19 of 54
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M

12/06/2017

© 2018 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or me ncluding photocopying and microfilm, without permission in writing from PCTEST Engineering Labo additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM. poratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining

CDMA Conducted Powers 9.1

	Maximum Conducted Power							
Band	Channel	Frequency	SO55 [dBm]	SO55 [dBm]	TDSO SO32 [dBm]	TDSO SO32 [dBm]	1x EvDO Rev. 0 [dBm]	1x EvDO Rev. A [dBm]
	F-RC	MHz	RC1	RC3	FCH+SCH	FCH	(RTAP)	(RETAP)
	1013	824.7	24.25	24.23	24.23	24.25	24.33	24.31
Cellular	384	836.52	24.24	24.34	24.35	24.40	24.36	24.37
	777	848.31	24.58	24.60	24.56	24.60	24.51	24.67
	25	1851.25	24.44	24.34	24.46	24.34	24.21	24.29
PCS	600	1880	24.40	24.31	24.31	24.42	24.22	24.23
	1175	1908.75	24.56	24.54	24.55	24.56	24.24	24.25

Table 9-1

Note: RC1 is only applicable for IS-95 compatibility.

Figure 9-1 **Power Measurement Setup**

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 20 of 54
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Page 20 of 54
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M

9.2 **LTE Conducted Powers**

9.2.1 LTE Band 12

			LTE Band 12 10 MHz Bandwidth		
Modulation	RB Size	RB Offset	Mid Channel 23095 (707.5 MHz) Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	24.20		0
	1	25	24.45	0	0
	1	49	24.20		0
QPSK	25	0	23.31		1
	25	12	23.36	0-1	1
	25	25	23.27	0-1	1
	50	0	23.27		1
	1	0	23.20		1
	1	25	23.62	0-1	1
	1	49	23.25		1
16QAM	25	0	22.43		2
	25	12	22.35	0-2	2
	25	25	22.27	0-2	2
	50	0	22.21		2

Table 9-2

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 9-3
LTE Band 12 Conducted Powers - 5 MHz Bandwidth

					e inite Banan	Idili				
				LTE Band 12 5 MHz Bandwidth						
					High Channel	·				
Modulation	RB Size	RB Offset	23035	23095	23155	MPR Allowed per	MPR [dB]			
			(701.5 MHz)	(701.5 MHz) (707.5 MHz)	(713.5 MHz)	3GPP [dB]				
				Conducted Power [dBm]					
	1	0	24.15	24.16	24.16		0			
	1	12	24.12	24.42	24.36	0	0			
	1	24	24.10	24.17	24.31		0			
QPSK	12	0	23.27	23.32	23.30		1			
	12	6	23.28	23.43	23.32	- 0-1	1			
	12	13	23.26	23.21	23.35		1			
	25	0	23.30	23.34	23.33		1			
	1	0	23.13	23.16	23.32		1			
	1	12	23.19	23.28	23.13	0-1	1			
	1	24	23.16	23.19	23.19		1			
16QAM	12	0	22.12	22.19	22.25		2			
	12	6	22.09	22.30	22.12	0-2	2			
	12	13	22.09	22.21	22.03	0-2	2			
	25	0	22.18	22.12	22.37		2			

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dama 04 -4 54	
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Page 21 of 54	
201	8 PCTEST Engineering Laboratory, Inc.		•		REV 20.06 M	

© 2018 PCTEST Engineering Laboratory, Inc.

	LTE Band 12 3 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Size	RB Size	RB Offset	23025 (700.5 MHz)	23095 (707.5 MHz)	23165 (714.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]	
			(Conducted Power [dBm]					
	1	0	24.10	24.28	24.28		0			
	1	7	24.29	24.68	24.62	0	0			
	1	14	24.32	24.26	24.29		0			
QPSK	8	0	23.28	23.35	23.34		1			
	8	4	23.23	23.41	23.46	0-1	1			
	8	7	23.30	23.36	23.27		1			
	15	0	23.24	23.25	23.23		1			
	1	0	23.12	23.31	23.22		1			
	1	7	23.19	23.46	23.50	0-1	1			
	1	14	23.10	23.27	23.26		1			
16QAM	8	0	22.27	22.01	22.23		2			
	8	4	22.43	22.18	22.49	0-2	2			
	8	7	22.49	22.13	22.23	0-2	2			
	15	0	22.21	22.24	22.18]	2			

Table 9-4 LTE Band 12 Conducted Powers - 3 MHz Bandwidth

Table 9-5 LTE Band 12 Conducted Powers -1.4 MHz Bandwidth

	LTE Band 12								
				1.4 MHz Bandwidth		-			
			Low Channel	Mid Channel	High Channel				
Modulation	RB Size	RB Offset	23017 (699.7 MHz)	23095 (707.5 MHz)	23173 (715.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
			(Conducted Power [dBm]				
	1	0	24.34	24.24	24.18		0		
	1	2	24.47	24.39	24.38		0		
	1	5	24.47	24.36	24.17	- 0	0		
QPSK	3	0	24.27	24.20	24.35		0		
	3	2	24.21	24.36	24.36		0		
	3	3	24.23	24.33	24.36	1	0		
	6	0	23.23	23.36	23.39	0-1	1		
	1	0	23.17	23.23	23.16		1		
	1	2	23.20	23.23	23.31] [1		
	1	5	23.25	23.19	23.14	0-1	1		
16QAM	3	0	23.54	23.31	23.49		1		
	3	2	23.60	23.37	23.51] [1		
	3	3	23.50	23.34	23.30		1		
	6	0	22.32	22.51	22.33	0-2	2		

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:			
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Page 22 of 54	
© 201	8 PCTEST Engineering Laboratory, Inc.	•			REV 20.06 M	

	LTI	E Band 5 (Cell) Conducted Powers -	10 MHz Bandwidth					
			LTE Band 5 (Cell)						
10 MHz Bandwidth Mid Channel									
Modulation	RB Size	RB Offset	20525 (836.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			Conducted Power [dBm]						
	1	0	24.49		0				
	1	25	24.60	0	0				
	1	49	24.45	- 0-1	0				
QPSK	25	0	23.42		1				
	25	12	23.41		1				
	25	25	23.39	0-1	1				
	50	0	23.32		1				
	1	0	23.07		1				
	1	25	23.29	0-1	1				
	1	49	23.04		1				
16QAM	25	0	22.38		2				
	25	12	22.52	0.0	2				
	25	25	22.55	0-2	2				
	50	0	22.38		2				

Table 9-6

Note: LTE Band 5 (Cell) at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

		LTE	Band 5 (Cell) C	onducted Powe	rs - 5 MHz Ban	dwidth	
				LTE Band 5 (Cell) 5 MHz Bandwidth			
				Low Channel Mid Channel High Channel			
Modulation	RB Size	RB Offset	20425 (826.5 MHz)	20525 (836.5 MHz)	20625 (846.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	24.42	24.48	24.62	0	0
	1	12	24.52	24.42	24.32		0
	1	24	24.23	24.14	24.25		0
QPSK	12	0	23.32	23.24	23.51		1
	12	6	23.48	23.39	23.50		1
	12	13	23.39	23.32	23.33		1
	25	0	23.33	23.35	23.42		1
	1	0	23.16	23.13	23.18		1
	1	12	23.05	23.23	23.22	0-1	1
	1	24	23.16	23.20	23.18		1
16QAM	12	0	22.06	22.01	22.33		2
	12	6	22.11	22.17	22.31	0-2	2
	12	13	22.14	22.11	22.24	0-2	2
	25	0	22.30	22.13	22.35		2

Table 9-7

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🔁 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dogo 22 of 54
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Page 23 of 54
20	8 PCTEST Engineering Laboratory, Inc.		•		REV 20.06 M

© 2018 PCTEST Engineering Laboratory, Inc.

			=	onduotod i ono					
				LTE Band 5 (Cell)					
	3 MHz Bandwidth								
			Low Channel	Mid Channel	High Channel	-			
Modulation	RB Size	RB Offset	20415	20525	20635	MPR Allowed per	MPR [dB]		
			(825.5 MHz)	(836.5 MHz)	(847.5 MHz)	3GPP [dB]			
			(Conducted Power [dBm]				
	1	0	24.37	24.32	24.36		0		
	1	7	24.45	24.37	24.59	0	0		
	1	14	24.35	24.28	24.22		0		
QPSK	8	0	23.29	23.32	23.40	- 0-1	1		
	8	4	23.41	23.35	23.33		1		
	8	7	23.42	23.33	23.29		1		
	15	0	23.44	23.35	23.42		1		
	1	0	23.67	23.52	23.38		1		
	1	7	23.62	23.55	23.44	0-1	1		
	1	14	23.64	23.46	23.57		1		
16QAM	8	0	22.16	22.39	22.42		2		
	8	4	22.40	22.23	22.35	0-2	2		
	8	7	22.40	22.39	22.26	0-2	2		
	15	0	22.41	22.22	22.57]	2		

Table 9-8 LTE Band 5 (Cell) Conducted Powers - 3 MHz Bandwidth

Table 9-9 LTE Band 5 (Cell) Conducted Powers -1.4 MHz Bandwidth

	1			1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20407 (824.7 MHz)	20525 (836.5 MHz)	20643 (848.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.19	24.39	24.39		0
	1	2	24.39	24.29	24.39	1	0
	1	5	24.28	24.24	24.38	- 0	0
QPSK	3	0	24.38	24.31	24.35		0
	3	2	24.55	24.29	24.56		0
	3	3	24.51	24.34	24.42		0
	6	0	23.37	23.30	23.33	0-1	1
	1	0	23.20	23.49	23.68		1
	1	2	23.26	23.42	23.68] [1
	1	5	23.11	23.42	23.62	0-1	1
16QAM	3	0	23.04	23.62	23.61	0-1	1
	3	2	23.36	23.50	23.62]	1
	3	3	23.29	23.08	23.68]	1
	6	0	22.26	22.33	22.60	0-2	2

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 24 of 54
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		r ugo 2 r or o r
© 201	8 PCTEST Engineering Laboratory, Inc.		•		REV 20.06 M

RE

LTE Band 4 (AWS) Conducted Powers - 20 MHz Bandwidth											
			LTE Band 4 (AWS)								
	20 MHz Bandwidth Mid Channel										
			20175								
Modulation	RB Size	RB Offset	(1732.5 MHz)	MPR Allowed per	MPR [dB]						
			Conducted Power [dBm]	3GPP [dB]							
	1	0	23.70		0						
	1	50	24.04	0	0						
	1	99	23.69		0						
QPSK	50	0	22.90		1						
	50	25	23.01	0.1	1						
	50	50	22.89	0-1	1						
	100	0	22.82		1						
	1	0	22.90		1						
	1	50	22.89	0-1	1						
	1	99	22.85		1						
16QAM	50	0	22.05		2						
	50	25	22.07	0-2	2						
	50	50	21.86	0-2	2						
	100	0	21.90		2						

Table 9-10

Note: LTE Band 4 (AWS) at 20 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 9-11							
LTE Band 4 (AWS) Conducted Powers - 15 MHz Bandwidth						

	LTE Band 4 (AWS) 15 MHz Bandwidth									
			Low Channel Mid Channel High Channel							
Modulation	RB Size	RB Offset	20025 (1717.5 MHz)	20175 (1732.5 MHz)	20325 (1747.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			(Conducted Power [dBm]]					
	1	0	23.68	23.84	23.99		0			
	1	36	23.78	23.85	24.18	0	0			
	1	74	23.92	23.71	23.92		0			
QPSK	36	0	22.92	22.86	22.77	0-1	1			
	36	18	22.92	22.96	22.98		1			
	36	37	22.84	22.89	22.85		1			
	75	0	22.82	22.82	22.85		1			
	1	0	23.12	23.15	23.17		1			
	1	36	23.02	23.18	23.19	0-1	1			
	1	74	23.14	23.19	23.13		1			
16QAM	36	0	22.13	21.99	21.94		2			
	36	18	22.07	22.01	22.08	0-2	2			
	36	37	21.94	21.93	21.94		2			
	75	0	21.84	21.89	21.85		2			

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 25 of 54
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Page 25 of 54
20'	8 PCTEST Engineering Laboratory, Inc.		·		REV 20.06 M

© 2018 PCTEST Engineering Laboratory, Inc.

			anu 4 (AWS) Co	onducted Powel		lawiath			
				LTE Band 4 (AWS)					
10 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel				
Modulation	RB Size	Size RB Offset	20000	20175	20350	MPR Allowed per	MPR [dB]		
			(1715.0 MHz)	(1732.5 MHz)	(1750.0 MHz)	3GPP [dB]			
			(Conducted Power [dBm]				
	1	0	23.88	23.89	24.02	0	0		
	1	25	24.06	23.98	24.11		0		
	1	49	23.70	23.85	24.15		0		
QPSK	25	0	22.83	22.88	22.94	- 0-1	1		
	25	12	23.03	22.95	22.97		1		
	25	25	22.89	22.89	22.82		1		
	50	0	22.93	22.85	22.90		1		
	1	0	23.20	22.81	23.11		1		
	1	25	22.84	22.62	23.12	0-1	1		
	1	49	22.76	23.02	23.07		1		
16QAM	25	0	22.03	22.13	22.02	0-2	2		
	25	12	22.20	22.18	21.87		2		
	25	25	22.09	22.14	21.75		2		
	50	0	22.00	21.97	21.82		2		

 Table 9-12

 LTE Band 4 (AWS) Conducted Powers - 10 MHz Bandwidth

 Table 9-13

 LTE Band 4 (AWS) Conducted Powers - 5 MHz Bandwidth

	r	1		5 MHz Bandwidth		11				
			Low Channel	Mid Channel	High Channel	_				
Modulation	RB Size	RB Offset	RB Offset	RB Offset	ize RB Offset	19975	20175	20375	MPR Allowed per	MPR [dB]
			(1712.5 MHz)	(1732.5 MHz)	(1752.5 MHz)	3GPP [dB]				
				Conducted Power [dBm	1					
	1	0	23.61	23.65	23.86	0	0			
	1	12	24.00	24.02	24.13		0			
	1	24	23.69	23.76	23.92		0			
QPSK	12	0	22.85	22.84	22.83	- 0-1	1			
	12	6	22.95	23.03	22.87		1			
	12	13	22.88	23.01	22.87		1			
	25	0	22.88	22.93	22.83		1			
	1	0	22.82	22.69	22.61		1			
	1	12	22.77	22.89	22.54	0-1	1			
	1	24	22.63	22.75	22.60		1			
16QAM	12	0	21.78	21.77	22.01		2			
	12	6	21.87	21.89	22.05	0-2	2			
	12	13	21.82	21.98	22.05		2			
	25	0	21.91	21.79	21.95	1	2			

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 26 of 54
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M

			ballu 4 (AWS) C	onducted Powe	IS - S WINZ Dall	uwiuiii	
				LTE Band 4 (AWS)			
				3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	19965 20175 20385	20385	MPR Allowed per	MPR [dB]	
			(1711.5 MHz)	(1732.5 MHz)	(1753.5 MHz)	3GPP [dB]	
			(Conducted Power [dBm]		
	1	0	23.87	23.87	23.64	0	0
	1	7	23.92	24.07	23.83		0
	1	14	23.92	23.81	23.91		0
QPSK	8	0	22.83	22.82	22.77	- 0-1	1
	8	4	22.89	22.87	22.83		1
	8	7	22.89	22.81	22.82		1
	15	0	22.86	22.92	22.82		1
	1	0	22.62	22.68	22.57		1
	1	7	22.71	22.62	22.97	0-1	1
	1	14	22.64	22.65	23.00		1
16QAM	8	0	21.97	21.65	22.06	0-2	2
	8	4	22.04	21.83	22.11		2
	8	7	22.19	21.77	22.03		2
	15	0	21.98	22.06	21.78		2

 Table 9-14

 LTE Band 4 (AWS) Conducted Powers - 3 MHz Bandwidth

 Table 9-15

 LTE Band 4 (AWS) Conducted Powers -1.4 MHz Bandwidth

				1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	19957 (1710.7 MHz)	20175 (1732.5 MHz)	20393 (1754.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	23.96	23.92	23.73		0
	1	2	24.01	23.96	23.95	0	0
	1	5	23.98	23.87	23.92		0
QPSK	3	0	23.86	23.94	23.92		0
	3	2	23.92	23.98	24.00		0
	3	3	23.89	23.95	23.99		0
	6	0	22.82	22.91	22.95	0-1	1
	1	0	22.83	23.20	23.05		1
	1	2	22.89	23.17	23.12		1
	1	5	22.91	23.11	23.20	0-1	1
16QAM	3	0	23.04	22.58	22.73	0-1	1
	3	2	23.15	22.63	22.81		1
	3	3	23.18	22.85	22.73		1
	6	0	21.95	22.14	21.75	0-2	2

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 27 of 54	
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		1 age 27 01 04	
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M	

9.2.4

LTE Band 25 (PCS)

				LTE Band 25 (PCS)			
	r			20 MHz Bandwidth	r		
Modulation	RB Size	RB Offset	Low Channel 26140 (1860.0 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26590 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.23	24.12	24.36	0	0
	1	50	24.64	24.43	24.62		0
	1	99	24.48	24.12	24.24		0
QPSK	50	0	23.47	23.39	23.52	- 0-1	1
	50	25	23.51	23.58	23.67		1
	50	50	23.45	23.27	23.46		1
	100	0	23.38	23.44	23.44		1
	1	0	23.17	23.16	23.28		1
	1	50	23.42	23.45	23.61	0-1	1
	1	99	23.52	23.13	23.08		1
16QAM	50	0	22.35	22.31	22.38		2
	50	25	22.49	22.56	22.63	0-2	2
	50	50	22.32	22.34	22.41		2
	100	0	22.32	22.33	22.50		2

Table 9-16 I TE Band 25 (PCS) Conducted Powers - 20 MHz Bandwidth

Table 9-17 LTE Band 25 (PCS) Conducted Powers - 15 MHz Bandwidth

	LTE Band 25 (PCS) 15 MHz Bandwidth									
Modulation	RB Size	RB Offset	Low Channel 26115 (1857.5 MHz)	Mid Channel 26365 (1882.5 MHz) Conducted Power [dBm	High Channel 26615 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
	1	0	24.29	24.62	24.36	0	0			
	1	36	24.19	24.62	24.69		0			
	1	74	24.20	24.41	24.28		0			
QPSK	36	0	23.43	23.31	23.61	0-1	1			
	36	18	23.46	23.38	23.60		1			
	36	37	23.43	23.20	23.49		1			
	75	0	23.33	23.40	23.47		1			
	1	0	23.62	23.47	23.68		1			
	1	36	23.65	23.68	23.68	0-1	1			
	1	74	23.62	23.39	23.63		1			
16QAM	36	0	22.34	22.28	22.68		2			
	36	18	22.40	22.42	22.59	0-2	2			
	36	37	22.36	22.33	22.37		2			
	75	0	22.31	22.25	22.45		2			

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 28 of 54
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Fage 20 01 54
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M

LTE Band 25 (PCS) Conducted Powers - 10 MHz Bandwidth									
	LTE Band 25 (PCS)								
	10 MHz Bandwidth								
			Low Channel	Mid Channel	High Channel				
Modulation	RB Size	RB Offset	26090	26365	26640	MPR Allowed per	MPR [dB]		
mounation			(1855.0 MHz)	(1882.5 MHz)	(1910.0 MHz)	3GPP [dB]	in it [ab]		
			(Conducted Power [dBm]				
	1	0	24.38	24.50	24.60		0		
	1	25	24.68	24.55	24.62	0	0		
	1	49	24.23	24.32	24.49		0		
QPSK	25	0	23.46	23.46	23.55	0-1	1		
	25	12	23.45	23.45	23.54		1		
	25	25	23.37	23.37	23.34		1		
	50	0	23.33	23.43	23.47		1		
	1	0	23.67	23.45	23.69		1		
	1	25	23.68	23.68	23.65	0-1	1		
	1	49	23.67	23.31	23.67		1		
16QAM	25	0	22.45	22.49	22.40		2		
	25	12	22.53	22.59	22.41	0-2	2		
	25	25	22.45	22.41	22.23	0-2	2		
	50	0	22.49	22.41	22.43		2		

Table 9-18 I TE Band 25 (PCS) Conducted Powers - 10 MHz Bandwidth

Table 9-19 LTE Band 25 (PCS) Conducted Powers - 5 MHz Bandwidth

				LTE Band 25 (PCS) 5 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26065 (1852.5 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26665 (1912.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	24.45	24.17	24.36	0	0
	1	12	24.69	24.43	24.49		0
	1	24	24.52	24.05	24.11		0
QPSK	12	0	23.52	23.33	23.54	- 0-1	1
	12	6	23.45	23.44	23.53		1
	12	13	23.33	23.44	23.38		1
	25	0	23.37	23.48	23.36		1
	1	0	23.19	23.28	23.02		1
	1	12	23.01	23.02	23.10	0-1	1
	1	24	23.11	23.19	23.14		1
16QAM	12	0	22.47	22.19	22.42		2
	12	6	22.60	22.21	22.24	0-2	2
	12	13	22.39	22.26	22.28	0-2	2
	25	0	22.47	22.40	22.27		2

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 29 of 54
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		•
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M

LIE Band 25 (PCS) Conducted Powers - 3 MHz Bandwidth									
	LTE Band 25 (PCS)								
	3 MHz Bandwidth								
			Low Channel	Mid Channel	High Channel				
Modulation	RB Size	RB Offset	26055	26365	26675	MPR Allowed per	MPR [dB]		
modulation			(1851.5 MHz)	(1882.5 MHz)	(1913.5 MHz)	3GPP [dB]	in it [ab]		
				Conducted Power [dBm]				
	1	0	24.59	24.38	24.40		0		
	1	7	24.62	24.48	24.56	0-1	0		
	1	14	24.58	24.41	24.53		0		
QPSK	8	0	23.62	23.37	23.29		1		
	8	4	23.52	23.40	23.40		1		
	8	7	23.42	23.33	23.42		1		
	15	0	23.46	23.36	23.38		1		
	1	0	23.57	23.19	23.69		1		
	1	7	23.53	23.26	23.23	0-1	1		
	1	14	23.42	23.09	23.06		1		
16QAM	8	0	22.35	22.04	22.42		2		
	8	4	22.38	22.06	22.36	0-2	2		
	8	7	22.11	22.01	22.44	0*2	2		
	15	0	22.34	22.26	22.41		2		

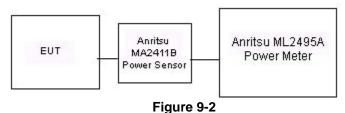
Table 9-20 I TE Band 25 (PCS) Conducted Powers - 3 MHz Bandwidth

Table 9-21 LTE Band 25 (PCS) Conducted Powers -1.4 MHz Bandwidth

	1.4 MHz Bandwidth									
Modulation	RB Size	RB Offset	Low Channel 26047 (1850.7 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26683 (1914.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
				Conducted Power [dBm]					
	1	0	24.37	24.39	24.04		0			
	1	2	24.48	24.43	24.31	0	0			
	1	5	24.37	24.43	24.34		0			
QPSK	3	0	24.56	24.31	24.24		0			
	3	2	24.70	24.35	24.23		0			
	3	3	24.51	24.40	24.41		0			
	6	0	23.42	23.36	23.16	0-1	1			
	1	0	23.41	23.08	23.23		1			
	1	2	23.55	23.49	23.14		1			
	1	5	23.34	23.19	23.18	0-1	1			
16QAM	3	0	23.55	23.02	23.10		1			
	3	2	23.69	23.19	23.09		1			
-	3	3	23.61	23.15	23.18		1			
	6	0	22.42	22.20	22.05	0-2	2			

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 30 of 54
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset	i ago co ci o i
© 201	8 PCTEST Engineering Laboratory, Inc.			REV 20.06 M

9.3 WLAN Conducted Powers


C

2.4GHz Conducted Power [dBm]						
IEEE Transmission Mode						
Freq [MHz]	Channel	802.11b	802.11g	802.11n		
		Average	Average	Average		
2412	1	14.65	7.80	6.16		
2437	6	14.81	11.58	10.47		
2462	11	14.91	6.95	5.98		

Table 9-222.4 GHz WLAN Maximum Average RF Power

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.

Power Measurement Setup

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dogo 24 of 54
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Page 31 of 54
201	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M

Bluetooth Conducted Powers 9.4

_	Erequency Data Channel		-	nducted wer
Frequency [MHz]	Rate [Mbps]	Channel No.	[dBm]	[mW]
2402	1.0	0	9.60	9.120
2441	1.0	39	10.85	12.162
2480	1.0	78	9.57	9.057
2402	2.0	0	7.11	5.137
2441	2.0	39	8.59	7.222
2480	2.0	78	6.81	4.793
2402	3.0	0	7.17	5.216
2441	3.0	39	8.66	7.341
2480	3.0	78	6.88	4.876

Table 9-23 Bluetooth Average RF Power

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 32 of 54
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Fage 32 01 34
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M

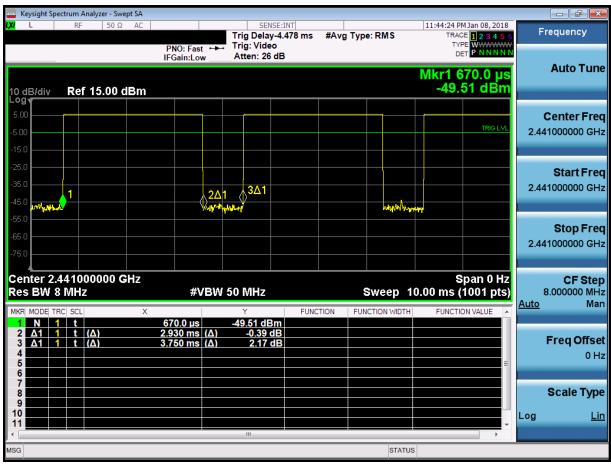


Figure 9-3 Bluetooth Transmission Plot

Equation 9-1 Bluetooth Duty Cycle Calculation

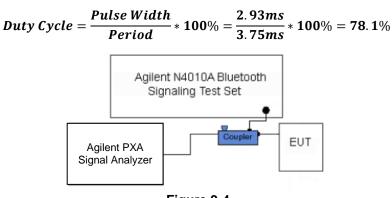


Figure 9-4 **Power Measurement Setup**

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:			
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Page 33 of 54	
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M	

RE 12/06/2017

10.1 Tissue Verification

Measured Tissue Properties													
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε				
			700	0.847	41.891	0.889	42.201	-4.72%	-0.73%				
1/3/2018	75011	21.0	710	0.857	41.758	0.890	42.149	-3.71%	-0.93%				
	750H	21.9	740	0.885	41.365	0.893	41.994	-0.90%	-1.50%				
			755	0.898	41.147	0.894	41.916	0.45%	-1.83%				
			820	0.889	40.853	0.899	41.578	-1.11%	-1.74%				
1/2/2018	835H	18.6	835	0.903	40.672	0.900	41.500	0.33%	-2.00%				
			850	0.918	40.485	0.916	41.500	0.22%	-2.45%				
			1710	1.353	39.204	1.348	40.142	0.37%	-2.34%				
1/3/2018	1750H	20.7	1750	1.393	38.992	1.371	40.079	1.60%	-2.71%				
			1790	1.433	38.811	1.394	40.016	2.80%	-3.01%				
			1850	1.399	41.734	1.400	40.000	-0.07%	4.34%				
1/2/2018	1900H	22.9	1880	1.433	41.609	1.400	40.000	2.36%	4.02%				
			1910	1.465	41.489	1.400	40.000	4.64%	3.72%				
	2450H			2400	1.830	38.549	1.756	39.289	4.21%	-1.88%			
1/2/2018		22.4	2450	1.884	38.366	1.800	39.200	4.67%	-2.13%				
			2500	1.941	38.170	1.855	39.136	4.64%	-2.47%				
	2450H		2400	1.824	38.442	1.756	39.289	3.87%	-2.16%				
1/9/2018		21.1	21.1	2450	1.877	38.258	1.800	39.200	4.28%	-2.40%			
			2500	1.934	38.058	1.855	39.136	4.26%	-2.75%				
	750B	20.4	700	0.923	55.909	0.959	55.726	-3.75%	0.33%				
1/3/2018			710	0.932	55.810	0.960	55.687	-2.92%	0.22%				
1/3/2016		20.4	740	0.960	55.497	0.963	55.570	-0.31%	-0.13%				
			755	0.975	55.348	0.964	55.512	1.14%	-0.30%				
	835B		820	0.961	54.192	0.969	55.258	-0.83%	-1.93%				
1/2/2018		21.2	835	0.975	54.054	0.970	55.200	0.52%	-2.08%				
			850	0.990	53.923	0.988	55.154	0.20%	-2.23%				
			1710	1.463	51.919	1.463	53.537	0.00%	-3.02%				
1/2/2018	1750B	21.8	1750	1.510	51.744	1.488	53.432	1.48%	-3.16%				
			1790	1.552	51.612	1.514	53.326	2.51%	-3.21%				
			1710	1.469	51.381	1.463	53.537	0.41%	-4.03%				
1/15/2018	1750B	20.7	1750	1.516	51.222	1.488	53.432	1.88%	-4.14%				
			1790	1.563	51.066	1.514	53.326	3.24%	-4.24%				
			1850	1.509	51.733	1.520	53.300	-0.72%	-2.94%				
1/2/2018	1900B	21.8	1880	1.543	51.648	1.520	53.300	1.51%	-3.10%				
			1910	1.578	51.554	1.520	53.300	3.82%	-3.28%				
			2400	1.899	51.718	1.902	52.767	-0.16%	-1.99%				
1/2/2018	2450B	23.8	2450	1.968	51.561	1.950	52.700	0.92%	-2.16%				
			2500	2.031	51.351	2.021	52.636	0.49%	-2.44%				

Table 10-1

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager			
	Document S/N:	Test Dates:	DUT Type:		Page 34 of 54			
	1M1712280340-01.ZNF	01/02/18 - 01/15/18 Portable Handset						
20'	18 PCTEST Engineering Laboratory, Inc.				REV 20.06 M			

© 2018 PCTEST Engineering Laboratory, Inc.

10.2 Test System Verification

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

r	System Verification Results														
	System Verification TARGET & MEASURED														
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN	Probe SN	Measured SAR1g (W/kg)	1 W Target SAR1g (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)			
G	750	HEAD	01/03/2018	22.4	21.9	0.200	1054	3332	1.590	8.370	7.950	-5.02%			
Н	835	HEAD	01/02/2018	19.8	18.6	0.200	4d132	7410	1.940	9.520	9.700	1.89%			
н	1750	HEAD	01/03/2018	21.3	20.7	0.100	1148	7410	3.490	36.400	34.900	-4.12%			
E	1900	HEAD	01/02/2018	23.3	22.9	0.100	5d149	3319	3.980	39.600	39.800	0.51%			
н	2450	HEAD	01/02/2018	24.4	21.2	0.100	797	7410	5.110	52.700	51.100	-3.04%			
D	2450	HEAD	01/09/2018	21.5	21.1	0.100	981	3318	5.450	52.800	54.500	3.22%			
J	750	BODY	01/03/2018	21.5	20.4	0.200	1054	3209	1.780	8.610	8.900	3.37%			
I	835	BODY	01/02/2018	23.5	20.9	0.200	4d133	3213	1.990	9.410	9.950	5.74%			
К	1750	BODY	01/02/2018	22.1	20.9	0.100	1008	7406	3.670	37.500	36.700	-2.13%			
G	1750	BODY	01/15/2018	22.1	20.7	0.100	1148	3332	3.690	37.000	36.900	-0.27%			
J	1900	BODY	01/02/2018	20.0	20.5	0.100	5d149	3209	4.020	40.100	40.200	0.25%			
I	2450	BODY	01/02/2018	20.3	21.9	0.100	797	3213	5.090	51.100	50.900	-0.39%			

Figure 10-1 System Verification Setup Diagram

Figure 10-2 System Verification Setup Photo

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 35 of 54	
	1M1712280340-01.ZNF		Fage 55 01 54			
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M	

REV 20.06 M

11 SAR DATA SUMMARY

11.1 **Standalone Head SAR Data**

Table 11-1
Cell. CDMA Head SAR

	MEASUREMENT RESULTS													
FREQUENCY		Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	
836.52	384	Cell. CDMA	RC3 / SO55	24.7	24.34	0.03	Right	Cheek	05172	1:1	0.344	1.087	0.374	
836.52	384	Cell. CDMA	RC3 / SO55	24.7	24.34	0.08	Right	Tilt	05172	1:1	0.180	1.087	0.196	
836.52	384	Cell. CDMA	RC3 / SO55	24.7	24.34	0.00	Left	Cheek	05172	1:1	0.302	1.087	0.328	
836.52	384	Cell. CDMA	RC3 / SO55	24.7	24.34	-0.01	Left	Tilt	05172	1:1	0.168	1.087	0.183	
836.52	384	Cell. CDMA	EVDO Rev. A	24.7	24.37	-0.02	Right	Cheek	05172	1:1	0.360	1.079	0.388	A1
836.52	384	Cell. CDMA	EVDO Rev. A	24.7	24.37	0.13	Right	Tilt	05172	1:1	0.211	1.079	0.228	
836.52	384	Cell. CDMA	EVDO Rev. A	24.7	24.37	0.15	Left	Cheek	05172	1:1	0.308	1.079	0.332	
836.52	384	Cell. CDMA	EVDO Rev. A	24.7	24.37	0.03	Left	Tilt	05172	1:1	0.207	1.079	0.223	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population										Head V/kg (mW/g) jed over 1 gra			

Table 11-2 PCS CDMA Head SAR

	MEASUREMENT RESULTS													
FREQUENCY		Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz		Mode/Band	Service	Power [dBm]	Power [dBm]	Drift [dB]	Side	Position	Number	Cycle	(W/kg)	Factor	(W/kg)	1101#
1880.00	600	PCS CDMA	RC3 / SO55	24.7	24.31	0.13	Right	Cheek	05172	1:1	0.348	1.094	0.381	
1880.00	600	PCS CDMA	RC3 / SO55	24.7	24.31	0.18	Right	Tilt	05172	1:1	0.205	1.094	0.224	
1851.25	25	PCS CDMA	RC3 / SO55	24.7	24.34	0.02	Left	Cheek	05172	1:1	0.502	1.085	0.545	
1880.00	600	PCS CDMA	RC3 / SO55	24.7	24.31	0.16	Left	Cheek	05172	1:1	0.595	1.094	0.651	
1908.75	1175	PCS CDMA	RC3 / SO55	24.7	24.54	0.11	Left	Cheek	05172	1:1	0.624	1.038	0.648	A2
1880.00	600	PCS CDMA	RC3 / SO55	24.7	24.31	-0.12	Left	Tilt	05172	1:1	0.247	1.094	0.270	
1880.00	600	PCS CDMA	EVDO Rev. A	24.7	24.23	-0.04	Right	Cheek	05172	1:1	0.348	1.114	0.388	
1880.00	600	PCS CDMA	EVDO Rev. A	24.7	24.23	-0.02	Right	Tilt	05172	1:1	0.197	1.114	0.219	
1851.25	25	PCS CDMA	EVDO Rev. A	24.7	24.29	0.09	Left	Cheek	05172	1:1	0.479	1.099	0.526	
1880.00	600	PCS CDMA	EVDO Rev. A	24.7	24.23	-0.06	Left	Cheek	05172	1:1	0.556	1.114	0.619	
1908.75	1175	PCS CDMA	EVDO Rev. A	24.7	24.25	0.08	Left	Cheek	05172	1:1	0.605	1.109	0.671	
1880.00	600	PCS CDMA	EVDO Rev. A	24.7	24.23	0.08	Left	Tilt	05172	1:1	0.263	1.114	0.293	
		ANSI / IEE	E C95.1 1992	- SAFETY LI	MIT		Head							
			Spatial Pe				1.6 W/kg (mW/g)							
		Uncontrolle	d Exposure/G	eneral Popul	ation					averaç	jed over 1 gra	am		

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N: 1M1712280340-01.ZNF	Test Dates: 01/02/18 - 01/15/18	DUT Type: Portable Handset		Page 36 of 54	
		01/02/18 - 01/15/18	Ponable Handsel			
201	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M	

© 2018 PCTEST Engineering Laboratory, Inc.

Table 11-3 LTE Band 12 Head SAR

								MEAS	SUREM	ENT RE	SULTS								
FR	EQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	CI	h.	inout	[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		0.00	Position	modulution	112 0120	no onact	Number	Cycle	(W/kg)	Factor	(W/kg)	
707.50	23095	Mid	LTE Band 12	10	24.7	24.45	0.05	0	Right	Cheek	QPSK	1	25	05164	1:1	0.334	1.060	0.354	A3
707.50	23095	Mid	LTE Band 12	10	23.7	23.36	0.01	1	Right	Cheek	QPSK	25	12	05164	1:1	0.251	1.081	0.271	
707.50	23095	Mid	LTE Band 12	10	24.7	24.45	-0.10	0	Right	Tilt	QPSK	1	25	05164	1:1	0.191	1.060	0.202	
707.50	23095	Mid	LTE Band 12	10	0.08	1	Right	Tilt	QPSK	25	12	05164	1:1	0.139	1.081	0.150			
707.50	23095	Mid	LTE Band 12	10	24.7	24.45	-0.03	0	Left	Cheek	QPSK	1	25	05164	1:1	0.288	1.060	0.305	
707.50	23095	Mid	LTE Band 12	10	23.7	23.36	0.02	1	Left	Cheek	QPSK	25	12	05164	1:1	0.218	1.081	0.236	
707.50	23095	Mid	LTE Band 12	10	24.7	24.45	0.08	0	Left	Tilt	QPSK	1	25	05164	1:1	0.175	1.060	0.186	
707.50	23095	Mid	LTE Band 12	10	23.7	23.36	-0.06	1	Left	Tilt	QPSK	25	12	05164	1:1	0.132	1.081	0.143	
			ANSI / IEEE (ИГ								Head					
			Uncontrolled E	Spatial Pea Exposure/Ge		ation					-			6 W/kg (m raged over		-	_		

Table 11-4 LTE Band 5 (Cell) Head SAR

								MEAS	SUREM	ENT RES	SULTS								
FR	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Cł	ı.		[MHZ]	Power [dBm]	Power [dBm]	υτιπ (αΒ)			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.60	0.11	0	Right	Cheek	QPSK	1	25	05172	1:1	0.370	1.023	0.379	A4
836.50	20525	Mid	LTE Band 5 (Cell)	-0.05	1	Right	Cheek	QPSK	25	0	05172	1:1	0.307	1.066	0.327				
836.50	20525	Mid	LTE Band 5 (Cell)	-0.08	0	Right	Tilt	QPSK	1	25	05172	1:1	0.186	1.023	0.190				
836.50	836.50 20525 Mid LTE Band 5 (Cell) 10 23.7 23.42 0.08								Right	Tilt	QPSK	25	0	05172	1:1	0.151	1.066	0.161	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.60	0.01	0	Left	Cheek	QPSK	1	25	05172	1:1	0.322	1.023	0.329	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.42	0.02	1	Left	Cheek	QPSK	25	0	05172	1:1	0.248	1.066	0.264	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.60	-0.17	0	Left	Tilt	QPSK	1	25	05172	1:1	0.230	1.023	0.235	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.42	0.05	1	Left	Tilt	QPSK	25	0	05172	1:1	0.179	1.066	0.191	
			ANSI / IEEE C	Spatial Pe	ak		•					•		Head .6 W/kg (n eraged over	•				

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 37 of 54
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Fage 37 01 54
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M

Table 11-5 LTE Band 4 (AWS) Head SAR

									(.		ncuu								
								MEAS	SUREM	ENT RE	SULTS								
FRI	EQUENCY	,	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Cł	h.		[WHZ]	Power [dBm]	Power [dBm]	υτιπ (αΒ)			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.04	0.02	0	Right	Cheek	QPSK	1	50	05180	1:1	0.384	1.038	0.399	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	23.01	-0.04	1	Right	Cheek	QPSK	50	25	05180	1:1	0.304	1.045	0.318	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.04	-0.06	0	Right	Tilt	QPSK	1	50	05180	1:1	0.270	1.038	0.280	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	23.01	-0.02	1	Right	Tilt	QPSK	50	25	05180	1:1	0.213	1.045	0.223	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.04	0.04	0	Left	Cheek	QPSK	1	50	05180	1:1	0.588	1.038	0.610	A5
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	23.01	-0.10	1	Left	Cheek	QPSK	50	25	05180	1:1	0.460	1.045	0.481	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.04	-0.01	0	Left	Tilt	QPSK	1	50	05180	1:1	0.342	1.038	0.355	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	23.01	-0.01	1	Left	Tilt	QPSK	50	25	05180	1:1	0.267	1.045	0.279	
			ANSI / IEEE C			MIT								Head					
				Spatial Pe									1	.6 W/kg (n	nW/g)				ļ
			Uncontrolled Ex	cposure/G	eneral Popul	ation	-		-				ave	eraged over	1 gram				

Table 11-6 LTE Band 25 (PCS) Head SAR

								MEAS	UREMI	ENT RE	SULTS								
FR	EQUENCY	r	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	C	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.64	-0.20	0	Right	Cheek	QPSK	1	50	05180	1:1	0.412	1.014	0.418	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.7	23.67	0.07	1	Right	Cheek	QPSK	50	25	05180	1:1	0.345	1.007	0.347	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.64	0.05	0	Right	Tilt	QPSK	1	50	05180	1:1	0.267	1.014	0.271	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.7	0.07	1	Right	Tilt	QPSK	50	25	05180	1:1	0.148	1.007	0.149		
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.64	-0.08	0	Left	Cheek	QPSK	1	50	05180	1:1	0.547	1.014	0.555	A6
1905.00	26590	High	LTE Band 25 (PCS)	20	23.7	23.67	0.01	1	Left	Cheek	QPSK	50	25	05180	1:1	0.488	1.007	0.491	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.64	-0.04	0	Left	Tilt	QPSK	1	50	05180	1:1	0.310	1.014	0.314	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.7	23.67	0.03	1	Left	Tilt	QPSK	50	25	05180	1:1	0.224	1.007	0.226	
			ANSI / IEEE C			MIT								Head					
				Spatial Pe										.6 W/kg (n	•				
			Uncontrolled E	xposure/G	eneral Popul	lation					-		ave	eraged over	1 gram				

Table 11-7 **DTS Head SAR**

							N	IEASUF	REMENT	RESUL	TS							
FREQU	INCY	Mode	Service	Bandwidth	Maximum Allowed	Conducted	Power	Side	Test Position	Device Serial		Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	(Mbps)	(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2462	11	802.11b	DSSS	22	15.0	14.91	-0.15	Right	Cheek	05248	1	99.8	0.573	-	1.021	1.002	-	
2462	11	802.11b	DSSS	22	15.0	14.91	0.14	Right	Tilt	05248	1	99.8	0.599	-	1.021	1.002	-	
2412	1	802.11b	DSSS	22	15.0	14.65	0.07	Left	Cheek	05248	1	99.8	1.162	0.763	1.084	1.002	0.829	
2437	6	802.11b	DSSS	22	15.0	14.81	0.20	Left	Cheek	05248	1	99.8	1.253	0.839	1.045	1.002	0.879	
2462	11	802.11b	DSSS	22	15.0	14.91	0.08	Left	Cheek	05248	1	99.8	1.312	0.869	1.021	1.002	0.889	A7
2462	11	802.11b	DSSS	22	15.0	14.91	0.14	Left	Tilt	05248	1	99.8	0.855	0.564	1.021	1.002	0.577	
2462	11	802.11b	DSSS	22	15.0	14.91	0.12	Left	Cheek	05248	1	99.8	1.102	0.865	1.021	1.002	0.885	
		ANSI /	IEEE C95.1	1992 - SAF	ETY LIMIT								Hea	d				
			•	ial Peak									1.6 W/kg	-				
		Uncontro	olled Expos	ure/Genera	I Population								averaged ov	er 1 gram				

Note: Blue entry represents variability data

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕑 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 28 of 54
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Page 38 of 54
20'	8 PCTEST Engineering Laboratory, Inc.	•	•		REV 20.06 M

© 2018 PCTEST Engineering Laboratory, Inc.

Table 11-8 **DSS Head SAR**

							200	i icau	0/ 11 1							
						м	EASURE	MENT R	ESULT	S						
FREQUE	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Data Rate	Duty	SAR (1g)	Scaling Factor (Cond	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.	wode	Service	Power [dBm]	Power [dBm]	Drift [dB]	Side	Position	Number	(Mbps)	Cycle %	(W/kg)	Power)	Cycle)	(W/kg)	FIOL#
2441.00	39	Bluetooth	FHSS	11.0	10.85	0.08	Right	Cheek	05248	1	78.1	0.129	1.035	1.280	0.171	
2441.00	39	Bluetooth	FHSS	11.0	10.85	0.11	Right	Tilt	05248	1	78.1	0.125	1.035	1.280	0.166	
2441.00	39	Bluetooth	FHSS	11.0	10.85	-0.01	Left	Cheek	05248	1	78.1	0.295	1.035	1.280	0.391	A8
2441.00	39	Bluetooth	FHSS	11.0	10.85	0.20	Left	Tilt	05248	1	78.1	0.183	1.035	1.280	0.242	
		ANSI / IEE	E C95.1 1992	- SAFETY LI	МІТ							Head				
			Spatial Pe	ak							1.6	W/kg (mW/	g)			
		Uncontrolled	Exposure/G	eneral Popul	ation						avera	aged over 1 g	Iram			

11.2 Standalone Body-Worn SAR Data

						<u> </u>	0111 0	at Dut	<u> </u>					
					MEAS	JREME	NT RES	ULTS						
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial	Duty Cycle	Side	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Fower [ubili]	ын (ав)		Number	Cycle		(W/kg)	Factor	(W/kg)	
836.52	384	Cell. CDMA	TDSO / SO32	24.7	24.40	-0.04	10 mm	00517	1:1	back	0.546	1.072	0.585	A9
1851.25	25	PCS CDMA	TDSO / SO32	24.7	24.34	-0.08	10 mm	05164	1:1	back	0.787	1.086	0.855	A11
1880.00	600	PCS CDMA	TDSO / SO32	24.7	24.42	0.04	10 mm	05164	1:1	back	0.768	1.067	0.819	
1908.75	1175	PCS CDMA	TDSO / SO32	24.7	24.56	-0.03	10 mm	05164	1:1	back	0.629	1.033	0.650	
		ANSI / IEEE	C95.1 1992 - S	AFETY LIMIT							Body			
			Spatial Peak							1.6	W/kg (mW/g)		
		Uncontrolled	Exposure/Gene	ral Populatio	on					avera	ged over 1 gr	am		

Table 11-9 **CDMA Body-Worn SAR Data**

Table 11-10 I TE Body-Worn SAR

FREQUEN																		
FREQUEN							MEASU	REMENT	RESULT	s								
	CY	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
	Ch.		[]	Power [dBm]	. one: [abiii]	Dint [ab]		Number						0,0.0	(W/kg)	1 40101	(W/kg)	
23095	5 Mid	LTE Band 12	10	24.7	24.45	-0.06	0	05164	QPSK	1	25	10 mm	back	1:1	0.517	1.060	0.548	A13
23095	5 Mid	LTE Band 12	10	23.7	23.36	0.03	1	05164	QPSK	25	12	10 mm	back	1:1	0.397	1.081	0.429	
20525	5 Mid	LTE Band 5 (Cell)	10	24.7	24.60	0.03	0	00517	QPSK	1	25	10 mm	back	1:1	0.573	1.023	0.586	A14
20525	5 Mid	LTE Band 5 (Cell)	10	23.7	23.42	-0.01	1	00517	QPSK	25	0	10 mm	back	1:1	0.472	1.066	0.503	
20175	5 Mid	LTE Band 4 (AWS)	20	24.2	24.04	0.04	0	00518	QPSK	1	50	10 mm	back	1:1	0.804	1.038	0.835	A16
20175	5 Mid	LTE Band 4 (AWS)	20	23.2	23.01	0.03	1	00518	QPSK	50	25	10 mm	back	1:1	0.636	1.045	0.665	
20175	5 Mid	LTE Band 4 (AWS)	20	23.2	22.82	-0.01	1	00518	QPSK	100	0	10 mm	back	1:1	0.638	1.092	0.697	
26140	Low	LTE Band 25 (PCS)	20	24.7	24.64	0.17	0	05164	QPSK	1	50	10 mm	back	1:1	0.794	1.014	0.805	A18
26365	5 Mid	LTE Band 25 (PCS)	20	24.7	24.43	-0.02	0	05164	QPSK	1	50	10 mm	back	1:1	0.725	1.064	0.771	
26590) High	LTE Band 25 (PCS)	20	24.7	24.62	0.16	0	05164	QPSK	1	50	10 mm	back	1:1	0.699	1.019	0.712	
26590) High	LTE Band 25 (PCS)	20	23.7	23.67	-0.04	1	05164	QPSK	50	25	10 mm	back	1:1	0.529	1.007	0.533	
26590) High	LTE Band 25 (PCS)	20	23.7	23.44	0.12	1	05164	QPSK	100	0	10 mm	back	1:1	0.538	1.062	0.571	
					МІТ									•				
			•								-		n					
FCC ID: ZNFX210ULM							:	SAR EV	ALUATIC	ON RE	PORT				_G		-	r
			8			set							Page	39 of 54				
	23099 23099 20522 <t< td=""><td>23095 Mid 23095 Mid 23095 Mid 20525 Mid 20525 Mid 20175 Mid 202050<</td><td>Ch. 23095 Mid LTE Band 12 23095 Mid LTE Band 12 20252 Mid LTE Band 5 (Cell) 20525 Mid LTE Band 5 (Cell) 20175 Mid LTE Band 4 (AWS) 20175 Mid LTE Band 25 (PCS) 2026365 Mid LTE Band 25 (PCS) 2026360 High LTE Band 25 (PCS) 2026390 High LTE Band 25 (PCS) 202550 High LTE Band 25 (PCS) 202550 High LTE Band 25 (PCS) 202550 High LTE Band 25 (PCS) 20305 High LTE Band 25 (PCS) 204500 High LTE Band 25 (PCS) 20550 High LTE Band 25 (PCS) 20550 High LTE Band 25 (PCS) 20550</td><td>Ch. [MH2] 23095 Mid LTE Band 12 10 23095 Mid LTE Band 12 10 20525 Mid LTE Band 5 (Cell) 10 20525 Mid LTE Band 5 (Cell) 10 20525 Mid LTE Band 5 (Cell) 10 20525 Mid LTE Band 4 20 20175 Mid LTE Band 25 20 202075 Mid LTE Band 25 20 2026365 Mid LTE Band 25 20 2026590 High LTE Band 25 20 2026590 Hig</td><td>Ch. IMP2 Power (dBm) 23095 Mid LTE Band 12 10 24.7 23095 Mid LTE Band 12 10 23.7 20525 Mid LTE Band 5 (Cell) 10 24.7 20525 Mid LTE Band 5 (Cell) 10 24.7 20525 Mid LTE Band 5 (Cell) 10 23.7 20525 Mid LTE Band 5 (Cell) 10 23.7 20525 Mid LTE Band 4 20 24.2 20175 Mid LTE Band 4 20 23.2 20175 Mid LTE Band 4 20 23.2 20175 Mid LTE Band 25 20 24.7 20175 Mid LTE Band 25 20 24.7 20175 Mid LTE Band 25 20 24.7 26590 High LTE Band 25 20 23.7 (PCS) 20 26590 High LTE Band 25 20 23.7</td><td>Ch. (MH2) Power (dBm) Power (dBm) 23095 Mid LTE Band 12 10 24.7 24.45 23095 Mid LTE Band 12 10 23.7 23.36 20525 Mid LTE Band 5 (Cell) 10 24.7 24.60 20525 Mid LTE Band 5 (Cell) 10 23.7 23.42 20525 Mid LTE Band 5 (Cell) 10 23.7 23.42 20525 Mid LTE Band 5 (Cell) 10 23.7 23.42 20175 Mid LTE Band 4 20 24.2 24.04 20175 Mid LTE Band 4 20 23.2 23.01 20175 Mid LTE Band 25 20 24.7 24.64 202075 Mid LTE Band 25 20 24.7 24.64 202636 High LTE Band 25 20 24.7 24.62 20226590 High LTE Band 25 20 23.7 23.67</td><td>Ch. IMP2 Power (dBm) Power (dBm) Power (dBm) Power (dBm) Power (dBm) Diff (dB) 23095 Mid LTE Band 12 10 24.7 24.45 -0.06 23095 Mid LTE Band 12 10 23.7 23.36 0.03 20525 Mid LTE Band 5 (Cell) 10 24.7 24.60 0.03 20525 Mid LTE Band 5 (Cell) 10 23.7 23.42 -0.01 20525 Mid LTE Band 4 20 24.2 24.04 0.04 20175 Mid LTE Band 4 20 23.2 23.01 0.03 20175 Mid LTE Band 4 20 23.2 23.01 0.03 20175 Mid LTE Band 4 20 23.2 23.01 0.03 20175 Mid LTE Band 25 20 24.7 24.64 0.17 26365 Mid LTE Band 25 20 23.7 23.67 -0.04</td><td>Ch. power (dBm) p</td><td>Ch. (MA2) Power (dBm) Portable Hands 20525 Md LTE Band 5 (Cell) 10 23.7 23.42 -0.01 1 00518 0 20175 Md LTE Band 4 20 23.2 22.82 -0.01 1 00518 0</td><td>Ch. Image Power (dBm) Power (dBm) Diff (das) Diff (das)</td><td>Ch. (mR) Power (dBm) Power (dBm) Diff (dash) Diff (dash) Diff (dash) Diff (dash) Number Constrained 23095 Md LTE Band 12 10 24.7 24.45 -0.06 0 05164 QPSK 1 23095 Md LTE Band 5 (Cell) 10 23.7 23.36 0.03 1 05164 QPSK 1 20525 Md LTE Band 5 (Cell) 10 24.7 24.60 0.03 0 00517 QPSK 1 20525 Md LTE Band 5 (Cell) 10 23.7 23.42 -0.01 1 00517 QPSK 25 0 20175 Md LTE Band 4 20 24.2 24.04 0.04 0 00518 QPSK 10 20175 Md LTE Band 4 20 23.2 22.82 -0.01 1 00518 QPSK 1 20175 Md LTE Band 25 20 24.7 24.64</td><td>Ch. (mR) Power (dBm) Power (dBm) Diff (ab) Diff (ab) Diff (ab) Diff (ab) Diff (ab) Number (mather (mather</td><td>ch. (urr.) Power (dBm) Power (dBm) Dift (dB) Dift (dB) Dift (dB) Other (dB) Number (d) (d</td><td>ch. (mA) Power (dBM) DMR (da) <thdr (da)<="" th=""> <thdmr (da)<="" th=""> DMR</thdmr></thdr></td><td>or. or. <thor.< th=""> <thor.< th=""> <thor.< th=""></thor.<></thor.<></thor.<></td><td>or. (min) (</td><td>(mm) Power (dam) Power (dam) (mm) (mm)</td><td>(mma) Power (dem) (mma) (mm</td></t<>	23095 Mid 23095 Mid 23095 Mid 20525 Mid 20525 Mid 20175 Mid 202050<	Ch. 23095 Mid LTE Band 12 23095 Mid LTE Band 12 20252 Mid LTE Band 5 (Cell) 20525 Mid LTE Band 5 (Cell) 20175 Mid LTE Band 4 (AWS) 20175 Mid LTE Band 25 (PCS) 2026365 Mid LTE Band 25 (PCS) 2026360 High LTE Band 25 (PCS) 2026390 High LTE Band 25 (PCS) 202550 High LTE Band 25 (PCS) 202550 High LTE Band 25 (PCS) 202550 High LTE Band 25 (PCS) 20305 High LTE Band 25 (PCS) 204500 High LTE Band 25 (PCS) 20550 High LTE Band 25 (PCS) 20550 High LTE Band 25 (PCS) 20550	Ch. [MH2] 23095 Mid LTE Band 12 10 23095 Mid LTE Band 12 10 20525 Mid LTE Band 5 (Cell) 10 20525 Mid LTE Band 5 (Cell) 10 20525 Mid LTE Band 5 (Cell) 10 20525 Mid LTE Band 4 20 20175 Mid LTE Band 25 20 202075 Mid LTE Band 25 20 2026365 Mid LTE Band 25 20 2026590 High LTE Band 25 20 2026590 Hig	Ch. IMP2 Power (dBm) 23095 Mid LTE Band 12 10 24.7 23095 Mid LTE Band 12 10 23.7 20525 Mid LTE Band 5 (Cell) 10 24.7 20525 Mid LTE Band 5 (Cell) 10 24.7 20525 Mid LTE Band 5 (Cell) 10 23.7 20525 Mid LTE Band 5 (Cell) 10 23.7 20525 Mid LTE Band 4 20 24.2 20175 Mid LTE Band 4 20 23.2 20175 Mid LTE Band 4 20 23.2 20175 Mid LTE Band 25 20 24.7 20175 Mid LTE Band 25 20 24.7 20175 Mid LTE Band 25 20 24.7 26590 High LTE Band 25 20 23.7 (PCS) 20 26590 High LTE Band 25 20 23.7	Ch. (MH2) Power (dBm) Power (dBm) 23095 Mid LTE Band 12 10 24.7 24.45 23095 Mid LTE Band 12 10 23.7 23.36 20525 Mid LTE Band 5 (Cell) 10 24.7 24.60 20525 Mid LTE Band 5 (Cell) 10 23.7 23.42 20525 Mid LTE Band 5 (Cell) 10 23.7 23.42 20525 Mid LTE Band 5 (Cell) 10 23.7 23.42 20175 Mid LTE Band 4 20 24.2 24.04 20175 Mid LTE Band 4 20 23.2 23.01 20175 Mid LTE Band 25 20 24.7 24.64 202075 Mid LTE Band 25 20 24.7 24.64 202636 High LTE Band 25 20 24.7 24.62 20226590 High LTE Band 25 20 23.7 23.67	Ch. IMP2 Power (dBm) Power (dBm) Power (dBm) Power (dBm) Power (dBm) Diff (dB) 23095 Mid LTE Band 12 10 24.7 24.45 -0.06 23095 Mid LTE Band 12 10 23.7 23.36 0.03 20525 Mid LTE Band 5 (Cell) 10 24.7 24.60 0.03 20525 Mid LTE Band 5 (Cell) 10 23.7 23.42 -0.01 20525 Mid LTE Band 4 20 24.2 24.04 0.04 20175 Mid LTE Band 4 20 23.2 23.01 0.03 20175 Mid LTE Band 4 20 23.2 23.01 0.03 20175 Mid LTE Band 4 20 23.2 23.01 0.03 20175 Mid LTE Band 25 20 24.7 24.64 0.17 26365 Mid LTE Band 25 20 23.7 23.67 -0.04	Ch. power (dBm) p	Ch. (MA2) Power (dBm) Portable Hands 20525 Md LTE Band 5 (Cell) 10 23.7 23.42 -0.01 1 00518 0 20175 Md LTE Band 4 20 23.2 22.82 -0.01 1 00518 0	Ch. Image Power (dBm) Power (dBm) Diff (das) Diff (das)	Ch. (mR) Power (dBm) Power (dBm) Diff (dash) Diff (dash) Diff (dash) Diff (dash) Number Constrained 23095 Md LTE Band 12 10 24.7 24.45 -0.06 0 05164 QPSK 1 23095 Md LTE Band 5 (Cell) 10 23.7 23.36 0.03 1 05164 QPSK 1 20525 Md LTE Band 5 (Cell) 10 24.7 24.60 0.03 0 00517 QPSK 1 20525 Md LTE Band 5 (Cell) 10 23.7 23.42 -0.01 1 00517 QPSK 25 0 20175 Md LTE Band 4 20 24.2 24.04 0.04 0 00518 QPSK 10 20175 Md LTE Band 4 20 23.2 22.82 -0.01 1 00518 QPSK 1 20175 Md LTE Band 25 20 24.7 24.64	Ch. (mR) Power (dBm) Power (dBm) Diff (ab) Diff (ab) Diff (ab) Diff (ab) Diff (ab) Number (mather (mather	ch. (urr.) Power (dBm) Power (dBm) Dift (dB) Dift (dB) Dift (dB) Other (dB) Number (d) (d	ch. (mA) Power (dBM) DMR (da) DMR (da) <thdr (da)<="" th=""> <thdmr (da)<="" th=""> DMR</thdmr></thdr>	or. or. <thor.< th=""> <thor.< th=""> <thor.< th=""></thor.<></thor.<></thor.<>	or. (min) ((mm) Power (dam) Power (dam) (mm) (mm)	(mma) Power (dem) (mma) (mm

1M1712280340-01.ZNF © 2018 PCTEST Engineering Laboratory, Inc.

© 2018 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

REV 20.06 M

Table 11-11 DTS Body-Worn SAR

								2043										
							MEAS	SUREME	ENT RE	SULTS	;							
FREG	UENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.			[WITZ]	[dBm]	[ubiii]	[UB]		Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2462	11	802.11b	DSSS	22	15.0	14.91	-0.03	10 mm	05248	1	back	99.8	0.225	0.180	1.021	1.002	0.184	A19
		AN	SI / IEEE	C95.1 1992	- SAFETY LIMIT								В	ody				
				Spatial Pe										g (mW/g)				
		Unco	ntrolled E	Exposure/G	eneral Population	on							averaged	over 1 gram				

11.3 Standalone Hotspot SAR Data

					MEAS	UREME								
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial	Duty Cycle	Side	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	r ower [abili]	Dint [uD]		Number	Oyolo		(W/kg)	1 40101	(W/kg)	
836.52	384	Cell. CDMA	EVDO Rev. 0	24.7	24.36	-0.04	10 mm	00517	1:1	back	0.536	1.081	0.579	
836.52	384	Cell. CDMA	EVDO Rev. 0	24.7	24.36	0.01	10 mm	00517	1:1	front	0.375	1.081	0.405	
836.52	384	Cell. CDMA	EVDO Rev. 0	24.7	24.36	-0.05	10 mm	00517	1:1	bottom	0.178	1.081	0.192	
824.70	1013	Cell. CDMA	EVDO Rev. 0	24.7	24.33	0.12	10 mm	00517	1:1	right	0.577	1.089	0.628	
836.52	384	Cell. CDMA	EVDO Rev. 0	24.7	24.36	-0.01	10 mm	00517	1:1	right	0.588	1.081	0.636	A10
848.31	777	Cell. CDMA	EVDO Rev. 0	24.7	24.51	0.08	10 mm	00517	1:1	right	0.483	1.045	0.505	
836.52	384	Cell. CDMA	EVDO Rev. 0	24.7	24.36	-0.04	10 mm	00517	1:1	left	0.285	1.081	0.308	
1851.25	25	PCS CDMA	EVDO Rev. 0	24.7	24.21	0.04	10 mm	05164	1:1	back	0.828	1.119	0.927	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.7	24.22	0.09	10 mm	05164	1:1	back	0.781	1.117	0.872	
1908.75	1175	PCS CDMA	EVDO Rev. 0	24.7	24.24	-0.01	10 mm	05164	1:1	back	0.653	1.112	0.726	
1851.25	25	PCS CDMA	EVDO Rev. 0	24.7	24.21	-0.04	10 mm	05164	1:1	front	0.761	1.119	0.852	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.7	24.22	-0.08	10 mm	05164	1:1	front	0.757	1.117	0.846	
1908.75	1175	PCS CDMA	EVDO Rev. 0	24.7	24.24	-0.05	10 mm	05164	1:1	front	0.694	1.112	0.772	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.7	24.22	0.00	10 mm	05164	1:1	bottom	0.415	1.117	0.464	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.7	24.22	-0.13	10 mm	05164	1:1	left	0.566	1.117	0.632	
1851.25	25	PCS CDMA	EVDO Rev. 0	24.7	24.21	0.09	10 mm	05164	1:1	back	0.839	1.119	0.939	A12
		ANSI / IEEE	C95.1 1992 - S	AFETY LIMIT	-						Body			
			Spatial Peak								W/kg (mW/g			
		Uncontrolled	Exposure/Gene		on Diug optr						ged over 1 gr	am		

Table 11-12 **CDMA Hotspot SAR Data**

Note: Blue entry represents variability data

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 40 of 54
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Fage 40 01 54
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M

REV 20.06 M

Table 11-13 LTE Band 12 Hotspot SAR

								MEASU	IREMENT	RESULT	s								
FRI	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Cł	1 .	Power (dBm) Power																
707.50	23095	Mid	LTE Band 12	10 24.7 24.45 -0.06 0 05164 QPSK 1 25 10 mm back 1:1 0.517 1.060 0.548 A											A13				
707.50	23095	Mid	LTE Band 12	10	23.7	23.36	0.03	1	05164	QPSK	25	12	10 mm	back	1:1	0.397	1.081	0.429	
707.50	23095	Mid	LTE Band 12	10	24.7	24.45	-0.20	0	05164	QPSK	1	25	10 mm	front	1:1	0.346	1.060	0.367	
707.50	23095	Mid	LTE Band 12	10	23.7	23.36	0.00	1	05164	QPSK	25	12	10 mm	front	1:1	0.256	1.081	0.277	
707.50	23095	Mid	LTE Band 12	10	24.7	24.7 24.45 0.08 0 05164 QPSK 1 25 10 mm bottom 1:1 0.115 1.060 0.122													
707.50	23095	Mid	LTE Band 12	10	23.7	23.36	0.01	1	05164	QPSK	25	12	10 mm	bottom	1:1	0.085	1.081	0.092	
707.50	23095	Mid	LTE Band 12	10	24.7	24.45	0.03	0	05164	QPSK	1	25	10 mm	right	1:1	0.304	1.060	0.322	
707.50	23095	Mid	LTE Band 12	10	23.7	23.36	0.02	1	05164	QPSK	25	12	10 mm	right	1:1	0.227	1.081	0.245	
707.50	23095	Mid	LTE Band 12	10	24.7	24.45	-0.07	0	05164	QPSK	1	25	10 mm	left	1:1	0.208	1.060	0.220	
707.50	707.50 23095 Mid LTE Band 12 10 23.7 23.36 0.4								05164	QPSK	25	12	10 mm	left	1:1	0.149	1.081	0.161	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Body											
	Spatial Peak							1.6 W/kg (mW/g)											
		Un	controlled Expo	sure/Gener							average	ed over 1	gram						

Table 11-14 LTE Band 5 (Cell) Hotspot SAR

	MEASUREMENT RESULTS																		
FRI	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	n.		[]	Power [dBm]	[]			Number							(W/kg)		(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.60	0.03	0	00517	QPSK	1	25	10 mm	back	1:1	0.573	1.023	0.586	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.42	-0.01	1	00517	QPSK	25	0	10 mm	back	1:1	0.472	1.066	0.503	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.60	0.16	0	00517	QPSK	1	25	10 mm	front	1:1	0.388	1.023	0.397	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.42	-0.01	1	00517	QPSK	25	0	10 mm	front	1:1	0.320	1.066	0.341	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.60	0.15	0 00517 QPSK 1 25 10 mm bottom 1:1 0.197 1.023 0.202											
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.42	0.04	1	00517	QPSK	25	0	10 mm	bottom	1:1	0.154	1.066	0.164	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.60	-0.03	0	00517	QPSK	1	25	10 mm	right	1:1	0.582	1.023	0.595	A15
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.42	-0.01	1	00517	QPSK	25	0	10 mm	right	1:1	0.490	1.066	0.522	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.7	24.60	-0.04	0	00517	QPSK	1	25	10 mm	left	1:1	0.295	1.023	0.302	
836.50	20525	Mid	LTE Band 5 (Cell)	10	23.7	23.42	-0.02	1	00517	QPSK	25	0	10 mm	left	1:1	0.247	1.066	0.263	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Body											
	Spatial Peak							1.6 W/kg (mW/g)											
	Uncontrolled Exposure/General Population							averaged over 1 gram											

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 41 of 54
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Page 41 of 54
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M

Table 11-15	
LTE Band 4 (AWS) Hotspot SAF	2

							-		•	RESULT		-					-		
FRE	QUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Cł	ı.		[minz]	Power [dBm]	r ower [abilij	Dinit [db]		Number							(W/kg)	Tactor	(W/kg)	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.04	0.04	0	00518	QPSK	1	50	10 mm	back	1:1	0.804	1.038	0.835	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	23.01	0.03	1	00518	QPSK	50	25	10 mm	back	1:1	0.636	1.045	0.665	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	22.82	-0.01	1	00518	QPSK	100	0	10 mm	back	1:1	0.638	1.092	0.697	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.04	-0.02	0	00518	QPSK	1	50	10 mm	front	1:1	0.894	1.038	0.928	A17
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	23.01	-0.02	1	00518	QPSK	50	25	10 mm	front	1:1	0.736	1.045	0.769	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	22.82	-0.07	1	00518	QPSK	100	0	10 mm	front	1:1	0.711	1.092	0.776	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.04	-0.09	0	00518	QPSK	1	50	10 mm	bottom	1:1	0.409	1.038	0.425	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	23.01	-0.05	1	00518	QPSK	50	25	10 mm	bottom	1:1	0.339	1.045	0.354	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	24.2	24.04	0.01	0	00518	QPSK	1	50	10 mm	left	1:1	0.397	1.038	0.412	
1732.50	20175	Mid	LTE Band 4 (AWS)	20	23.2	23.01	0.02	1	00518	QPSK	50	25	10 mm	left	1:1	0.332	1.045	0.347	
1732.50	(AWS)							0	00518	QPSK	1	50	10 mm	front	1:1	0.893	1.038	0.927	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Body											
	Spatial Peak							1.6 W/kg (mW/g)											
	Uncontrolled Exposure/General Population							averaged over 1 gram											
-																			

Note: Blue entry represents variability data

Table 11-16 LTE Band 25 (PCS) Hotspot SAR

MEASUREMENT RESULTS																			
FRE	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	n.		[]	Power [dBm]		Dinic [CD]		Number							(W/kg)	1 40101	(W/kg)	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.64	0.17	0	05164	QPSK	1	50	10 mm	back	1:1	0.794	1.014	0.805	A18
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.7	24.43	-0.02	0	05164	QPSK	1	50	10 mm	back	1:1	0.725	1.064	0.771	
1905.00	26590	High	LTE Band 25 (PCS)	20	24.7	24.62	0.16	0	05164	QPSK	1	50	10 mm	back	1:1	0.699	1.019	0.712	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.7	23.67	-0.04	1	05164	QPSK	50	25	10 mm	back	1:1	0.529	1.007	0.533	
1905.00	(PCS)																		
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.64	-0.07	0	05164	QPSK	1	50	10 mm	front	1:1	0.774	1.014	0.785	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.7	23.67	0.01	1	05164	QPSK	50	25	10 mm	front	1:1	0.539	1.007	0.543	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.64	0.03	0	05164	QPSK	1	50	10 mm	bottom	1:1	0.369	1.014	0.374	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.7	23.67	-0.02	1	05164	QPSK	50	25	10 mm	bottom	1:1	0.277	1.007	0.279	
1860.00 26140 Low LTE Band 25 (PCS) 20 24.7 24.64 0.04									05164	QPSK	1	50	10 mm	left	1:1	0.518	1.014	0.525	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.7	23.67	-0.05	1	05164	QPSK	50	25	10 mm	left	1:1	0.452	1.007	0.455	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Body											
	Spatial Peak						1.6 W/kg (mW/g)												
	Uncontrolled Exposure/General Population												average	d over 1	gram				

Table 11-17 WLAN Hotspot SAR

							MEAS	UREME	NT RES	BULTS								
FREQU	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAF (1g)	R Plot #
MHz	Ch.			[WITZ]	[dBm]	[dBm]	[ab]		Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	1
2462	11	802.11b	DSSS	22	15.0	14.91	-0.03	10 mm	05248	1	back	99.8	0.225	0.180	1.021	1.002	0.184	A19
2462	11	802.11b	DSSS	22	15.0	14.91	0.08	10 mm	05248	1	front	99.8	0.192	-	1.021	1.002	-	
2462	11	802.11b	DSSS	22	15.0	14.91	0.01	10 mm	05248	1	top	99.8	0.129	-	1.021	1.002	-	
2462 11 802.11b DSSS 22 15.0 14.91 -0.03 10 mm 05248 1 right 99.8 0.112 - 1.021							1.021	1.002	-									
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Body																		
		Unco	ontrolled	Spatial Pea Exposure/Ge	ak eneral Populatio	'n								g (mW/g) over 1 gram				
-	FCC ID: ZNFX210ULM							SAR E	VALU	ATION	REPO	ORT			G	Approv Quality	red by: Manager	
ſ	Document S/N: Test Dates: D						DUT	Туре:								Page 42	2 of 54	
1M1712280340-01.ZNF 01/02/18 - 01/15/18 Portable Handset								r aye 42	2 01 34									

© 2018 PCTEST Engineering Laboratory, Inc.

© 2018 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

REV 20.06 M

11.4 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported body-worn SAR was ≤ 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were required.
- 8. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 13 for variability analysis.
- 9. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.7 for more details).

CDMA Notes:

- 1. Head SAR for CDMA2000 mode was tested under RC3/SO55 per FCC KDB Publication 941225 D01v03r01.
- Body-Worn SAR was tested with 1x RTT with TDSO / SO32 FCH Only. EVDO Rev0 and RevA and TDSO / SO32 FCH+SCH SAR tests were not required per the 3G SAR Test Reduction Procedure in FCC KDB Publication 941225 D01v03r01.
- CDMA Wireless Router SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0 according to KDB 941225 D01v03r01 procedures for data devices. Wireless Router SAR tests for Subtype 2 of Rev.A and 1x RTT configurations were not required per the 3G SAR Test Reduction Policy in KDB Publication 941225 D01v03r01.
- 4. Head SAR was additionally evaluated using EVDO Rev. A to determine compliance for VoIP operations.
- 5. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

LTE Notes:

- LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 8.5.4.
- MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 43 of 54
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Fage 43 01 54
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M

WLAN Notes:

- For held-to-ear and hotspot operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg for 1g evaluations, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI
 operations, the highest measured maximum output power channel for DSSS was selected for SAR
 measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed
 powers and the highest reported DSSS SAR. See Section 8.6.3 for more information.
- 3. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured.
- 4. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.

Bluetooth Notes

- 1. Bluetooth SAR was measured with the device connected to a call box with hopping disabled with DH5 operation and Tx Tests test mode type. Per October 2016 TCB Workshop Notes, the reported SAR was scaled to the 100% transmission duty factor to determine compliance. See Section 9.4 for the time domain plot and calculation for the duty factor of the device.
- 2. Head Bluetooth SAR was evaluated for BT BR tethering applications.

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 44 of 54
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Fage 44 01 54
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M

12 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with builtin unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤ 1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g or 10g SAR.

When standalone SAR is not required to be measured, per FCC KDB 447498 D01v06 4.3.2 b), the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR= $\frac{\sqrt{f(GHz)}}{7.5} * \frac{(Max Power of channel, mW)}{Min. Separation Distance, mm}$

Table 12-1

	Estimated SAR										
Mode	Frequency	Maximum Allowed Power	Separation Distance (Body)	Estimated SAR (Body)							
	[MHz]	[dBm]	[mm]	[W/kg]							
Bluetooth	2480	11.00	10	0.273							

Note: Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 45 of 54
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Fage 45 01 54
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M

12.3 Head SAR Simultaneous Transmission Analysis

Exposure Condition	Mode	CDMA/LTE SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	Cell. CDMA/EVDO	0.388	0.889	1.277
	PCS CDMA/EVDO	0.671	0.889	1.560
Head SAR	LTE Band 12	0.354	0.889	1.243
HEAU SAR	LTE Band 5 (Cell)	0.379	0.889	1.268
	LTE Band 4 (AWS)	0.610	0.889	1.499
	LTE Band 25 (PCS)	0.555	0.889	1.444

Table 12-2 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

Table 12-3 Simultaneous Transmission Scenario with Bluetooth (Held to Ear)

Exposure Condition	Mode	CDMA/LTE SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	Cell. CDMA/EVDO	0.388	0.391	0.779
	PCS CDMA/EVDO	0.671	0.391	1.062
Head SAR	LTE Band 12	0.354	0.391	0.745
HEAU SAN	LTE Band 5 (Cell)	0.379	0.391	0.770
	LTE Band 4 (AWS)	0.610	0.391	1.001
	LTE Band 25 (PCS)	0.555	0.391	0.946

	FCC ID: ZNFX210ULM	SAR EVALUATION REPORT		🕒 LG	Approved by: Quality Manager
	Document S/N: 1M1712280340-01.ZNF	Test Dates: 01/02/18 - 01/15/18	DUT Type: Portable Handset		Page 46 of 54
© 201	8 PCTEST Engineering Laboratory, Inc.	01/02/10 01/10/10			REV 20.06 M

12.4 Body-Worn Simultaneous Transmission Analysis

i <u>ultaneous Ir</u>	ansmission Scenario w	ith 2.4 GHz V	VLAN (BODY	-Worn at 1.0
Exposure Condition	Mode	CDMA/LTE SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	Cell. CDMA	0.585	0.184	0.769
	PCS CDMA	0.855	0.184	1.039
Body-Worn	LTE Band 12	0.548	0.184	0.732
Body-worn	LTE Band 5 (Cell)	0.586	0.184	0.770
	LTE Band 4 (AWS)	0.835	0.184	1.019
	LTE Band 25 (PCS)	0.805	0.184	0.989

Table 12-4 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 1.0 cm)

 Table 12-5

 Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 1.0 cm)

Exposure Condition	Mode	CDMA/LTE SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	Cell. CDMA	0.585	0.273	0.858
	PCS CDMA	0.855	0.273	1.128
Body-Worn	LTE Band 12	0.548	0.273	0.821
BOUY-WOITI	LTE Band 5 (Cell)	0.586	0.273	0.859
	LTE Band 4 (AWS)	0.835	0.273	1.108
	LTE Band 25 (PCS)	0.805	0.273	1.078

Note: Bluetooth SAR was not required to be measured per FCC KDB Publication 447498 D01v06. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 47 of 54	
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		1 ago 17 01 04	
© 20′	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M	

12.5 Hotspot SAR Simultaneous Transmission Analysis

Exposure Condition	Mode	EVDO/LTE SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	Cell. EVDO	0.636	0.184	0.820
	PCS EVDO	0.939	0.184	1.123
Hotspot	LTE Band 12	0.548	0.184	0.732
SAR	LTE Band 5 (Cell)	0.595	0.184	0.779
	LTE Band 4 (AWS)	0.928	0.184	1.112
	LTE Band 25 (PCS)	0.805	0.184	0.989

Table 12-6 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Hotspot at 1.0 cm)

Table 12-7 Simultaneous Transmission Scenario with Bluetooth (Hotspot at 1.0 cm)

Exposure Condition	Mode	EVDO/LTE SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	Cell. EVDO	0.636	0.273	0.909
	PCS EVDO	0.939	0.273	1.212
Hotspot	LTE Band 12	0.548	0.273	0.821
SAR	LTE Band 5 (Cell)	0.595	0.273	0.868
	LTE Band 4 (AWS)	0.928	0.273	1.201
	LTE Band 25 (PCS)	0.805	0.273	1.078

Note: Bluetooth SAR was not required to be measured per FCC KDB Publication 447498 D01v06. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

12.6 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2.

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT			
	Document S/N:	Test Dates: DUT Type:			Page 48 of 54	
	1M1712280340-01.ZNF	712280340-01.ZNF 01/02/18 - 01/15/18 Portable Handset				
© 201	8 PCTEST Engineering Laboratory, Inc.	•			REV 20.06 M	

13 SAR MEASUREMENT VARIABILITY

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.
- A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1g SAR limit).
- A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

	Head SAR Measurement Variability Results													
HEAD VARIABILITY RESULTS														
Band	FREQUENCY		Mode/Band	Service Side	Side	Side Test D	Data Rate (Mbps)	Measured SAR (1g)		Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio
	MHz	Ch.					/	(W/kg)	(W/kg)		(W/kg)		(W/kg)	
2450	2462.00	11	802.11b, 22 MHz Bandwidth	DSSS	Left	Cheek	1	0.869	0.865	1.00	N/A	N/A	N/A	N/A
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Head 1.6 W/kg (mW/g) averaged over 1 gram														

 Table 13-1

 Head SAR Measurement Variability Results

Table 13-2

Body SAR Measurement Variability Results

	BODY VARIABILITY RESULTS												
Band	FREQUENCY		Mode		Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio		
	MHz	Ch.					(W/kg)	(W/kg)		(W/kg)		(W/kg)	
1900	1851.25	25	PCS CDMA	EVDO Rev. 0	back	10 mm	0.828	0.839	1.01	N/A	N/A	N/A	N/A
1750	1732.50	20175	LTE Band 4 (AWS), 20 MHz Bandwidth	QPSK, 1 RB, 50 RB Offset	front	10 mm	0.894	0.893	1.00	N/A	N/A	N⁄A	N/A
		ANSI	/ IEEE C95.1 1992 - SAFETY LIN	ЛГ					Во	dy			
	Spatial Peak					1.6 W/kg (mW/g)							
		Uncont	rolled Exposure/General Popula	ation				ave	eraged o	ver 1 gram			

13.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕑 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 49 of 54	
	1M1712280340-01.ZNF	712280340-01.ZNF 01/02/18 - 01/15/18 Portable Handset				
© 201	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M	

REV 20.06 M 12/06/2017

14 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E8257D	(250kHz-20GHz) Signal Generator	3/22/2017	Annual	3/22/2018	MY45470194
Agilent	8594A	(9kHz-2.9GHz) Spectrum Analyzer	N/A	N/A	N/A	3051A00187
Agilent	N5182A	MXG Vector Signal Generator	11/1/2017	Annual	11/1/2018	MY47420603
Agilent	N9030A	PXA Signal Analyzer (26.5GHz)	8/28/2017	Annual	8/28/2018	MY49432391
Agilent	8753ES	S-Parameter Network Analyzer	9/14/2017	Annual	9/14/2018	US39170118
Agilent	8753ES	S-Parameter Vector Network Analyzer	8/17/2017	Annual	8/17/2018	MY40003841
Agilent	N4010A	Wireless Connectivity Test Set	N/A	N/A	N/A	GB44450273
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433978
Anritsu	ML2496A	Power Meter	4/20/2017	Annual	4/20/2018	1306009
Anritsu	MA2411B	Pulse Power Sensor	10/22/2017	Annual	10/22/2018	846215
Anritsu	MT8821C	Radio Communication Analyzer	7/25/2017	Annual	7/25/2018	6201664756
Anritsu	MT8821C	Radio Communication Analyzer	11/17/2017	Annual	11/17/2018	6201381794
Anritsu	MA24106A	USB Power Sensor	11/14/2017	Annual	11/14/2018	1344545
Anritsu	MA24106A	USB Power Sensor	11/14/2017	Annual	11/14/2018	1344559
COMTech	AR85729-5	Solid State Amplifier	CBT	N/A	CBT	M1S5A00-009
Control Company	4040	Therm./ Clock/ Humidity Monitor	3/1/2017	Biennial	3/1/2019	170152009
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/1/2017	Annual	6/1/2018	MY53401181
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
MiniCircuits	SLP-2400+	Low Pass Filter	CBT	N/A	CBT	R8979500903
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Mitutoyo	CD-6"CSX	Digital Caliper	3/2/2016	Biennial	3/2/2018	13264165
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE5011-1	Torque Wrench	7/19/2017	Biennial	7/19/2019	N/A
Rohde & Schwarz	CMU200	Base Station Simulator	4/11/2017	Annual	4/11/2018	836371/0079
Rohde & Schwarz CMW500 Radio Communication Tester		3/29/2017	Annual	3/29/2018	128633	
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	2/10/2017	Annual	2/10/2018	162125
Seekonk	NC-100	Torque Wrench (8" lb)	8/30/2016	Biennial	8/30/2018	N/A
SPEAG	D1750V2	1750 MHz SAR Dipole	5/9/2017	Annual	5/9/2018	1148
SPEAG	D1765V2	1765 MHz SAR Dipole	5/9/2017	Annual	5/9/2018	1008
SPEAG	D1900V2	1900 MHz SAR Dipole	7/11/2017	Annual	7/11/2018	5d149
SPEAG	D2450V2	2450 MHz SAR Dipole	9/11/2017	Annual	9/11/2018	797
SPEAG	D2450V2	2450 MHz SAR Dipole	7/25/2016	Biennial	7/25/2018	981
SPEAG	D750V3	750 MHz Dipole	3/7/2017	Annual	3/7/2018	1054
SPEAG	D835V2	835 MHz SAR Dipole	1/11/2017	Annual	1/11/2018	4d132
SPEAG	D835V2	835 MHz SAR Dipole	7/11/2017	Annual	7/11/2018	4d133
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/9/2017	Annual	8/9/2018	1323
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/13/2017	Annual	7/13/2018	1322
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/8/2017	Annual	3/8/2018	1368
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/13/2017	Annual	3/13/2018	1415
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/9/2017	Annual	2/9/2018	1272
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/11/2017	Annual	4/11/2018	1407
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/14/2017	Annual	6/14/2018	1334
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/10/2017	Annual	5/10/2018	1070
SPEAG	ES3DV3	SAR Probe	8/14/2017	Annual	8/14/2018	3332
SPEAG	EX3DV4	SAR Probe	7/17/2017	Annual	7/17/2018	7410
SPEAG	ES3DV3	SAR Probe	3/14/2017	Annual	3/14/2018	3319
SPEAG	ES3DV3	SAR Probe	3/14/2017	Annual	3/14/2018	3209
SPEAG	ES3DV3	SAR Probe	2/10/2017	Annual	2/10/2018	3213
SPEAG	EX3DV4	SAR Probe	4/18/2017	Annual	4/18/2018	7406
SPEAG	ES3DV4 ES3DV3	SAR Probe	9/22/2017	Annual	9/22/2018	3318
Jr LAU	LJJUVJ	JAN FIUDE	5/22/2011	Annual	5/22/2010	2210

Each equipment item was used solely within its respective calibration period.

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager		
	Document S/N:	Test Dates:	ates: DUT Type:		Page 50 of 54		
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Fage 50 01 54		
© 201	© 2018 PCTEST Engineering Laboratory, Inc.						

REV 20.06 M

15 **MEASUREMENT UNCERTAINTIES**

				6				
a	С	d	e=	f	g	h =	i =	k
			f(d,k)			c x f/e	c x g/e	
	Tol.	Prob.		ci	сi	1gm	10gms	
Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	ui	ui	vi
						(± %)	(± %)	
Measurement System								
Probe Calibration	6.55	Ν	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	0.25	Ν	1	0.7	0.7	0.2	0.2	8
Hemishperical Isotropy	1.3	Ν	1	0.7	0.7	0.9	0.9	8
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	8
Linearity	0.3	Ν	1	1.0	1.0	0.3	0.3	×
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	×
Readout Electronics	0.3	Ν	1	1.0	1.0	0.3	0.3	∞
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	x
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	8
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	8
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	×
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	8
Test Sample Related								
Test Sample Positioning	2.7	Ν	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	Ν	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	x
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	∞
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	∞
Liquid Conductivity - measurement uncertainty	4.2	Ν	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	Ν	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	x
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	x
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	x
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	x
Combined Standard Uncertainty (k=1)		RSS	•	•		11.5	11.3	60
Expanded Uncertainty		k=2				23.0	22.6	
(95% CONFIDENCE LEVEL)								

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		Page 51 of 54		
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset				
© 201	© 2018 PCTEST Engineering Laboratory, Inc.						

REV 20.06 M

16 CONCLUSION

16.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		Page 52 of 54		
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		U		
© 201	© 2018 PCTEST Engineering Laboratory, Inc.						

12/06/2017

© 2018 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mu including photocopying and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM. poratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining

17 REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of [1] Radiofrequency Radiation, Aug. 1996.
- ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency [2] electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency [3] electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic [4] Fields - RF and Microwave, New York: IEEE, December 2002.
- IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE [5] Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for [6] RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on [7] Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at [8] mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the [9] ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕑 LG	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		Page 53 of 54		
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset				
© 201	© 2018 PCTEST Engineering Laboratory, Inc.						

REV 20.06 M 12/06/2017

© 2018 PCTEST Engineering Laboratory, Inc. All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or me including photocopying and microfilm, without permission in writing from PCTEST Engineering Labo additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM. poratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining

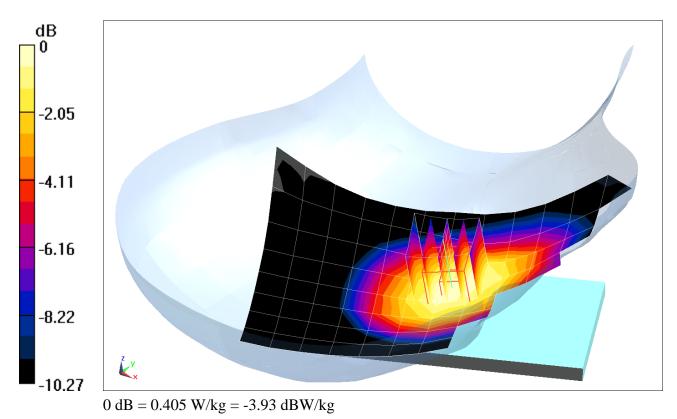
- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

	FCC ID: ZNFX210ULM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Daga 54 of 54	
	1M1712280340-01.ZNF	01/02/18 - 01/15/18	Portable Handset		Page 54 of 54	
201	8 PCTEST Engineering Laboratory, Inc.				REV 20.06 M	

REV 20.06 M 12/06/2017

APPENDIX A: SAR TEST DATA

DUT: ZNFX210ULM; Type: Portable Handset; Serial: 05172


 $\begin{array}{l} \mbox{Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Head Medium parameters used (interpolated):} \\ f = 836.52 \mbox{ MHz; } \sigma = 0.905 \mbox{ S/m; } \epsilon_r = 40.653; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Right Section} \end{array}$

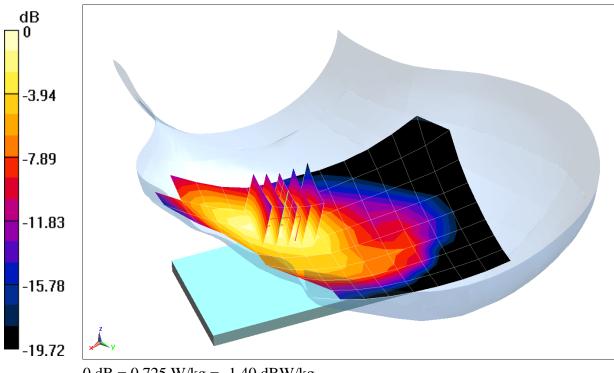
Test Date: 01-02-2018; Ambient Temp: 19.8°C; Tissue Temp: 18.6°C

Probe: EX3DV4 - SN7410; ConvF(10.08, 10.08, 10.08); Calibrated: 7/17/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/13/2017 Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: Cell. EVDO Rule Part 22H, Right Head, Cheek, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.61 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.435 W/kg SAR(1 g) = 0.360 W/kg

DUT: ZNFX210ULM; Type: Portable Handset; Serial: 05172


 $\begin{array}{l} \mbox{Communication System: UID 0, PCS CDMA; Frequency: 1908.75 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 1900 Head Medium parameters used (interpolated):} \\ \mbox{f = 1908.75 MHz; } \sigma = 1.464 \ \mbox{S/m; } \epsilon_r = 41.494; \ \mbox{\rho} = 1000 \ \mbox{kg/m}^3 \\ \mbox{Phantom section: Left Section} \end{array}$

Test Date: 01-02-2018; Ambient Temp: 23.3°C; Tissue Temp: 22.9°C

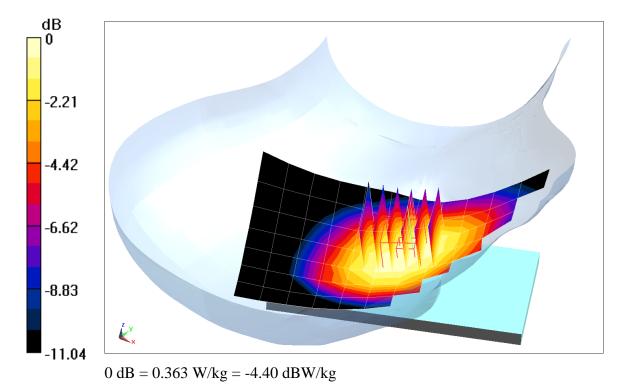
Probe: ES3DV3 - SN3319; ConvF(5.2, 5.2, 5.2); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/8/2017 Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: 1648 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: PCS CDMA, Left Head, Cheek, High.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.39 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 1.01 W/kg SAR(1 g) = 0.624 W/kg

0 dB = 0.725 W/kg = -1.40 dBW/kg

DUT: ZNFX210ULM; Type: Portable Handset; Serial: 05164


Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.855$ S/m; $\varepsilon_r = 41.791$; $\rho = 1000$ kg/m³ Phantom section: Right Section

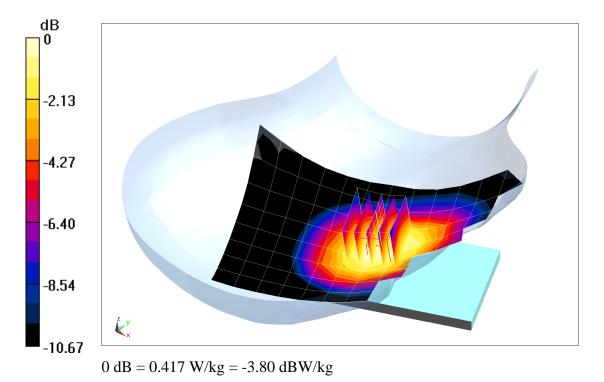
Test Date: 01-03-2018; Ambient Temp: 22.4°C; Tissue Temp: 21.9°C

Probe: ES3DV3 - SN3332; ConvF(6.81, 6.81, 6.81); Calibrated: 8/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 8/9/2017 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 12, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset

Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.28 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.408 W/kg SAR(1 g) = 0.334 W/kg

DUT: ZNFX210ULM; Type: Portable Handset; Serial: 05172


Communication System: UID 0, LTE Band 5 (Cell.); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.904$ S/m; $\varepsilon_r = 40.653$; $\rho = 1000$ kg/m³ Phantom section: Right Section

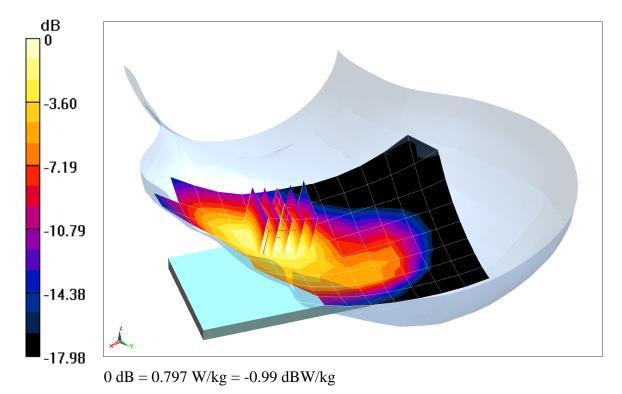
Test Date: 01-02-2018; Ambient Temp: 19.8°C; Tissue Temp: 18.6°C

Probe: EX3DV4 - SN7410; ConvF(10.08, 10.08, 10.08); Calibrated: 7/17/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/13/2017 Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 5 (Cell.), Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.73 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 0.447 W/kg SAR(1 g) = 0.370 W/kg

DUT: ZNFX210ULM; Type: Portable Handset; Serial: 05180


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1750 Head Medium parameters used (interpolated):} \\ f = 1732.5 \mbox{ MHz; } \sigma = 1.375 \mbox{ S/m; } \epsilon_r = 39.085; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Left Section} \end{array}$

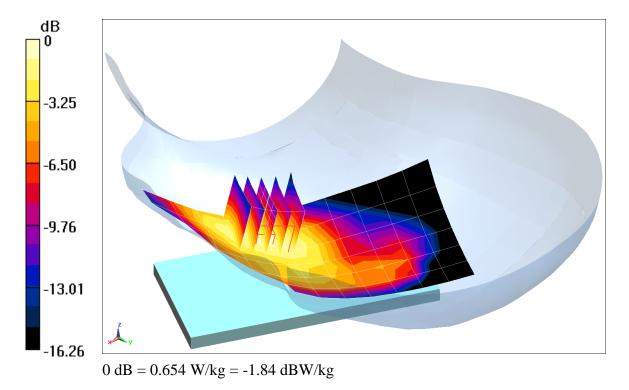
Test Date: 01-03-2018; Ambient Temp: 21.3°C; Tissue Temp: 20.7°C

Probe: EX3DV4 - SN7410; ConvF(8.66, 8.66, 8.66); Calibrated: 7/17/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/13/2017 Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 4 (AWS), Left Head, Cheek, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.86 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.900 W/kg SAR(1 g) = 0.588 W/kg

DUT: ZNFX210ULM; Type: Portable Handset; Serial: 05180


Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): f = 1860 MHz; $\sigma = 1.41$ S/m; $\epsilon_r = 41.692$; $\rho = 1000$ kg/m³ Phantom section: Left Section

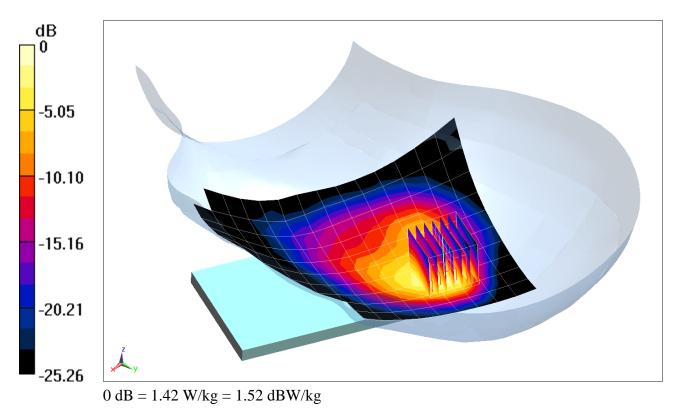
Test Date: 01-02-2018; Ambient Temp: 23.3°C; Tissue Temp: 22.9°C

Probe: ES3DV3 - SN3319; ConvF(5.2, 5.2, 5.2); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/8/2017 Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: 1648 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 25 (PCS), Left Head, Cheek, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.16 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.871 W/kg SAR(1 g) = 0.547 W/kg

DUT: ZNFX210ULM; Type: Portable Handset; Serial: 05248


 $\begin{array}{l} \mbox{Communication System: UID 0, _IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 2450 Head Medium parameters used (interpolated):} \\ \mbox{f} = 2462 \mbox{ MHz; } \sigma = 1.898 \mbox{ S/m; } \epsilon_r = 38.319; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Left Section} \end{array}$

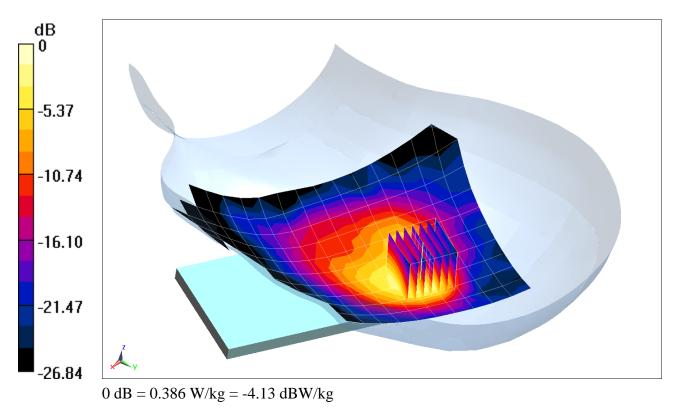
Test Date: 01-02-2018; Ambient Temp: 24.4°C; Tissue Temp: 21.2°C

Probe: EX3DV4 - SN7410; ConvF(7.68, 7.68, 7.68); Calibrated: 7/17/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/13/2017 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Left Head, Cheek, Ch 11, 1 Mbps

Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.76 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 1.89 W/kg SAR(1 g) = 0.869 W/kg

DUT: ZNFX210ULM; Type: Portable Handset; Serial: 05248


Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1.28 Medium: 2450 Head Medium parameters used (interpolated): f = 2441 MHz; $\sigma = 1.867$ S/m; $\epsilon_r = 38.291$; $\rho = 1000$ kg/m³ Phantom section: Left Section

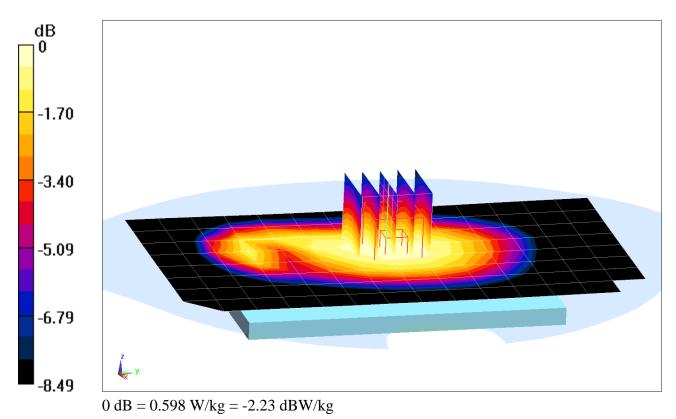
Test Date: 01-09-2018; Ambient Temp: 21.5°C; Tissue Temp: 21.1°C

Probe: ES3DV3 - SN3318; ConvF(4.71, 4.71, 4.71); Calibrated: 9/22/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/14/2017 Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: Bluetooth, Left Head, Cheek, Ch 39, 1 Mbps

Area Scan (11x19x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.43 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.647 W/kg SAR(1 g) = 0.295 W/kg

DUT: ZNFX210ULM; Type: Portable Handset; Serial: 00517


 $\begin{array}{l} \mbox{Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Body Medium parameters used (interpolated):} \\ f = 836.52 \mbox{ MHz; } \sigma = 0.977 \mbox{ S/m; } \epsilon_r = 54.041; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

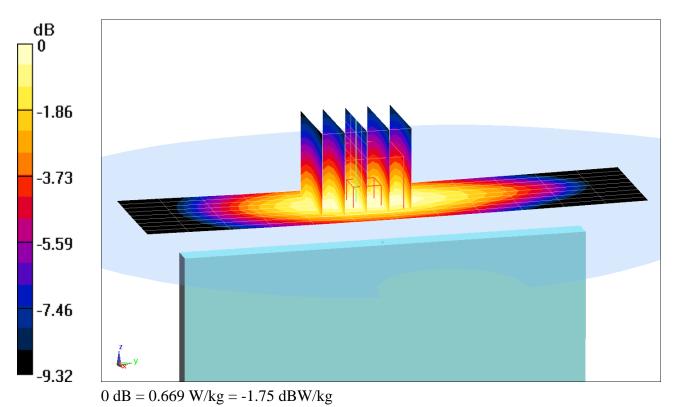
Test Date: 01-02-2018; Ambient Temp: 23.5°C; Tissue Temp: 20.9°C

Probe: ES3DV3 - SN3213; ConvF(6.28, 6.28, 6.28); Calibrated: 2/10/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2017 Phantom: SAM Right; Type: SAM; Serial: 1757 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: Cell. CDMA, Body SAR, Back side, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.49 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.687 W/kg SAR(1 g) = 0.546 W/kg

DUT: ZNFX210ULM; Type: Portable Handset; Serial: 00517


 $\begin{array}{l} \mbox{Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Body Medium parameters used (interpolated):} \\ f = 836.52 \mbox{ MHz; } \sigma = 0.977 \mbox{ S/m; } \epsilon_r = 54.041; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

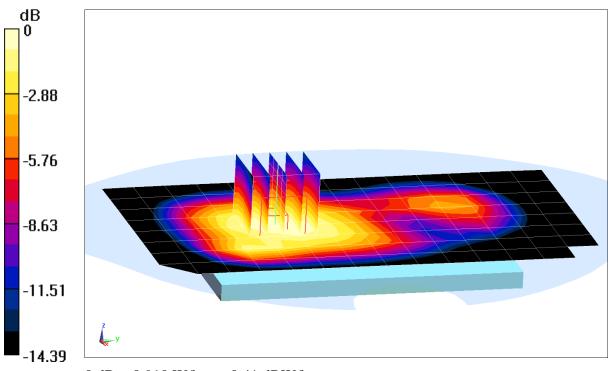
Test Date: 01-02-2018; Ambient Temp: 23.5°C; Tissue Temp: 20.9°C

Probe: ES3DV3 - SN3213; ConvF(6.28, 6.28, 6.28); Calibrated: 2/10/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2017 Phantom: SAM Right; Type: SAM; Serial: 1757 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: Cell. EVDO, Body SAR, Right Edge, Mid.ch

Area Scan (10x13x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 25.65 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.815 W/kg SAR(1 g) = 0.588 W/kg

DUT: ZNFX210ULM; Type: Portable Handset; Serial: 05164


Communication System: UID 0, CDMA; Frequency: 1851.25 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1851.25 MHz; $\sigma = 1.51$ S/m; $\varepsilon_r = 51.729$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-02-2018; Ambient Temp: 20.0°C; Tissue Temp: 20.5°C

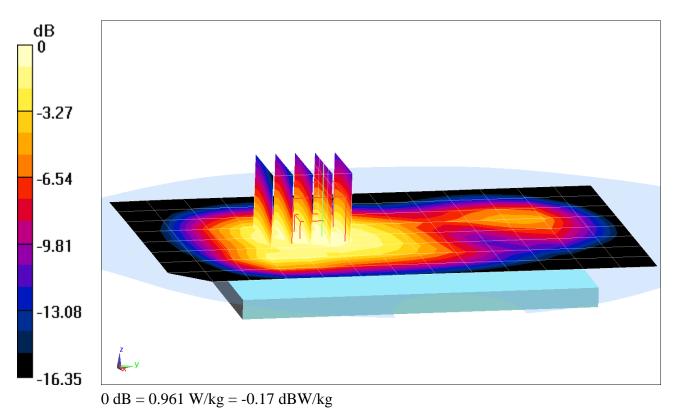
Probe: ES3DV3 - SN3209; ConvF(4.93, 4.93, 4.93); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 3/13/2017 Phantom: SAM Right; Type: QD000P40CD; Serial: 1800 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: PCS CDMA, Body SAR, Back side, Low.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.42 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 1.17 W/kg SAR(1 g) = 0.787 W/kg

0 dB = 0.910 W/kg = -0.41 dBW/kg

DUT: ZNFX210ULM; Type: Portable Handset; Serial: 05164


Communication System: UID 0, CDMA; Frequency: 1851.25 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1851.25 MHz; $\sigma = 1.51$ S/m; $\varepsilon_r = 51.729$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

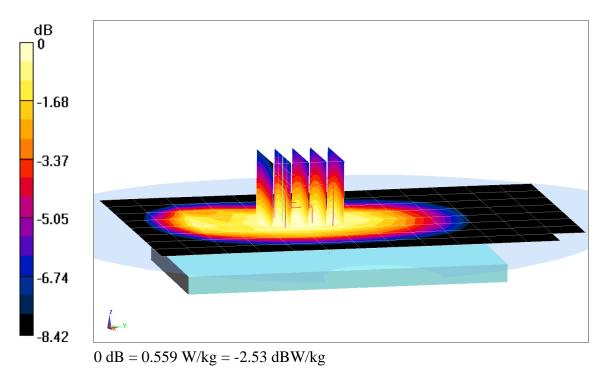
Test Date: 01-02-2018; Ambient Temp: 20.0°C; Tissue Temp: 20.5°C

Probe: ES3DV3 - SN3209; ConvF(4.93, 4.93, 4.93); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 3/13/2017 Phantom: SAM Right; Type: QD000P40CD; Serial: 1800 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: PCS EVDO, Body SAR, Back side, Low.ch

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.65 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 1.27 W/kg SAR(1 g) = 0.839 W/kg

DUT: ZNFX210ULM; Type: Portable Handset; Serial: 05164


Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.93$ S/m; $\varepsilon_r = 55.835$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

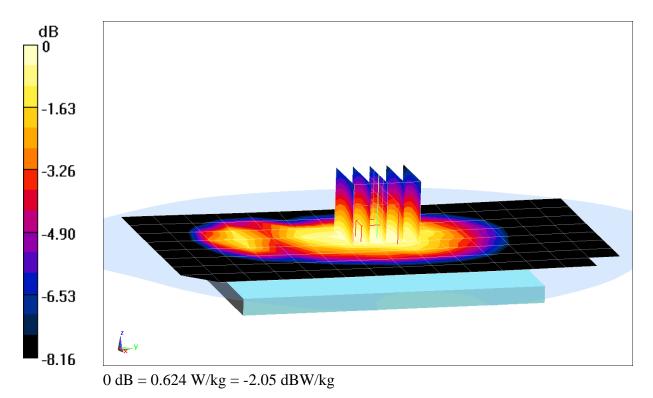
Test Date: 01-03-2018; Ambient Temp: 21.5°C; Tissue Temp: 20.4°C

Probe: ES3DV3 - SN3209; ConvF(6.44, 6.44, 6.44); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 3/13/2017 Phantom: SAM Right; Type: QD000P40CD; Serial: 1800 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 12, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset

Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.59 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.623 W/kg SAR(1 g) = 0.517 W/kg

DUT: ZNFX210ULM; Type: Portable Handset; Serial: 00517


Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.976$ S/m; $\varepsilon_r = 54.041$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-02-2018; Ambient Temp: 23.5°C; Tissue Temp: 20.9°C

Probe: ES3DV3 - SN3213; ConvF(6.28, 6.28, 6.28); Calibrated: 2/10/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2017 Phantom: SAM Right; Type: SAM; Serial: 1757 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 5 (Cell.), Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.95 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.715 W/kg SAR(1 g) = 0.573 W/kg

DUT: ZNFX210ULM; Type: Portable Handset; Serial: 00517

 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 5 (Cell.); Frequency: 836.5 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Body Medium parameters used (interpolated):} \\ f = 836.5 \mbox{ MHz; } \sigma = 0.976 \mbox{ S/m; } \epsilon_r = 54.041; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 01-02-2018; Ambient Temp: 23.5°C; Tissue Temp: 20.9°C

Probe: ES3DV3 - SN3213; ConvF(6.28, 6.28, 6.28); Calibrated: 2/10/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2017 Phantom: SAM Right; Type: SAM; Serial: 1757 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 5 (Cell.), Body SAR, Right Edge, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset

Area Scan (11x13x1): Measurement grid: dx=5mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 25.83 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.799 W/kg SAR(1 g) = 0.582 W/kg

DUT: ZNFX210ULM; Type: Portable Handset; Serial: 00518

 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1750 Body Medium parameters used (interpolated):} \\ f = 1732.5 \mbox{ MHz; } \sigma = 1.489 \mbox{ S/m; } \epsilon_r = 51.821; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

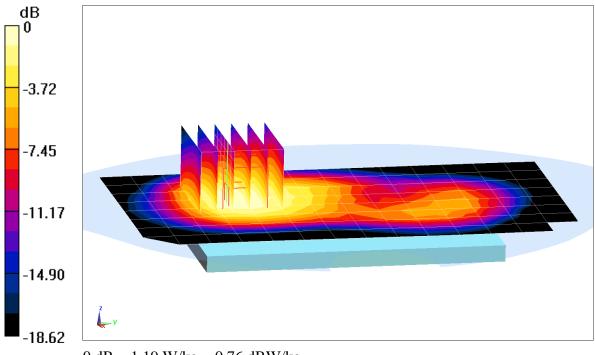
Test Date: 01-02-2018; Ambient Temp: 22.1°C; Tissue Temp: 20.9°C

Probe: EX3DV4 - SN7406; ConvF(8.08, 8.08, 8.08); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2017 Phantom: SAM with CRP v5.0, Right; Type: QD000P40CD; Serial: TP:7535 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 4 (AWS), Body SAR, Back side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.68 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 1.24 W/kg SAR(1 g) = 0.804 W/kg

DUT: ZNFX210ULM; Type: Portable Handset; Serial: 00518


 $\begin{array}{l} \mbox{Communication System: UID 0, LTE Band 4 (AWS); Frequency: 1732.5 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1750 Body Medium parameters used (interpolated):} \\ f = 1732.5 \mbox{ MHz; } \sigma = 1.489 \mbox{ S/m; } \epsilon_r = 51.821; \mbox{$\rho = 1000 kg/m^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 01-02-2018; Ambient Temp: 22.1°C; Tissue Temp: 20.9°C

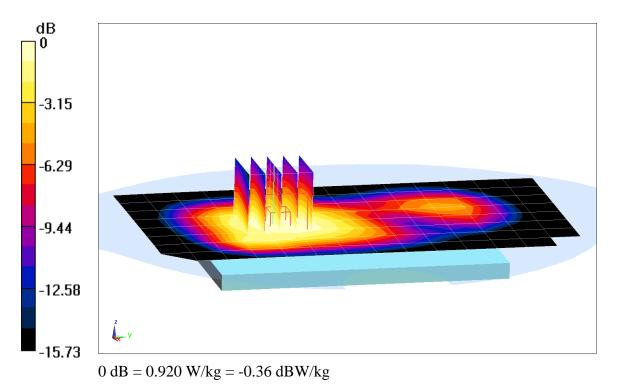
Probe: EX3DV4 - SN7406; ConvF(8.08, 8.08, 8.08); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2017 Phantom: SAM with CRP v5.0, Right; Type: QD000P40CD; Serial: TP:7535 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 4 (AWS), Body SAR, Front side, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (7x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.34 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.40 W/kg SAR(1 g) = 0.894 W/kg

0 dB = 1.19 W/kg = 0.76 dBW/kg

DUT: ZNFX210ULM; Type: Portable Handset; Serial: 05164


Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1860 MHz; $\sigma = 1.52$ S/m; $\epsilon_r = 51.705$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-02-2018; Ambient Temp: 20.0°C; Tissue Temp: 20.5°C

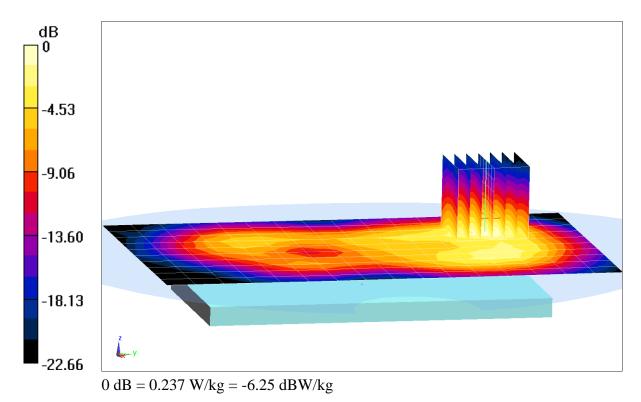
Probe: ES3DV3 - SN3209; ConvF(4.93, 4.93, 4.93); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 3/13/2017 Phantom: SAM Right; Type: QD000P40CD; Serial: 1800 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 25 (PCS), Body SAR, Back side, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.96 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 1.19 W/kg SAR(1 g) = 0.794 W/kg

A18

DUT: ZNFX210ULM; Type: Portable Handset; Serial: 05248


 $\begin{array}{l} \mbox{Communication System: UID 0, 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 } \\ \mbox{Medium: 2450 Body Medium parameters used (interpolated):} \\ \mbox{f} = 2462 \mbox{ MHz; } \sigma = 1.983 \mbox{ S/m; } \epsilon_r = 51.511; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

Test Date: 01-02-2018; Ambient Temp: 20.3°C; Tissue Temp: 21.9°C

Probe: ES3DV3 - SN3213; ConvF(4.53, 4.53, 4.53); Calibrated: 2/10/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2017 Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

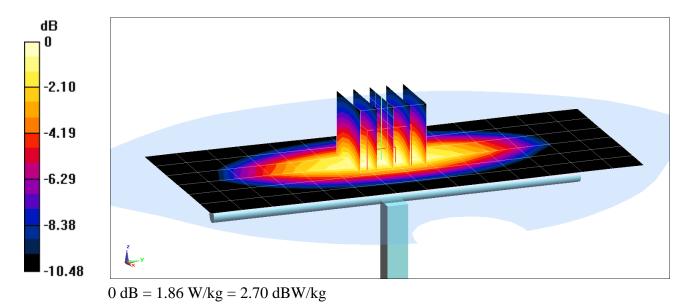
Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Ch 11, 1 Mbps, Back Side

Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.34 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.404 W/kg SAR(1 g) = 0.180 W/kg

A19

APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 750 Head; Medium parameters used (interpolated):} \\ f = 750 \mbox{ MHz; } \sigma = 0.894 \mbox{ S/m; } \epsilon_r = 41.22; \mbox{ } \rho = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

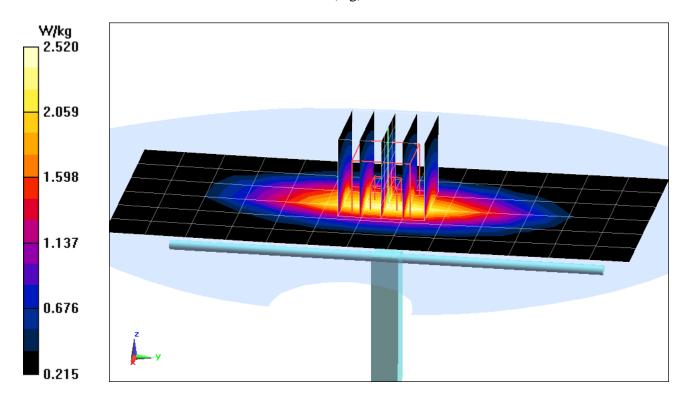
Test Date: 01-03-2018; Ambient Temp: 22.4°C; Tissue Temp: 21.9°C

Probe: ES3DV3 - SN3332; ConvF(6.81, 6.81, 6.81); Calibrated: 8/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 8/9/2017 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.33 W/kg SAR(1 g) = 1.59 W/kg Deviation(1 g) = -5.02%

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Head Medium parameters used:} \\ \mbox{f} = 835 \mbox{ MHz; } \sigma = 0.903 \mbox{ S/m; } \epsilon_r = 40.672; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

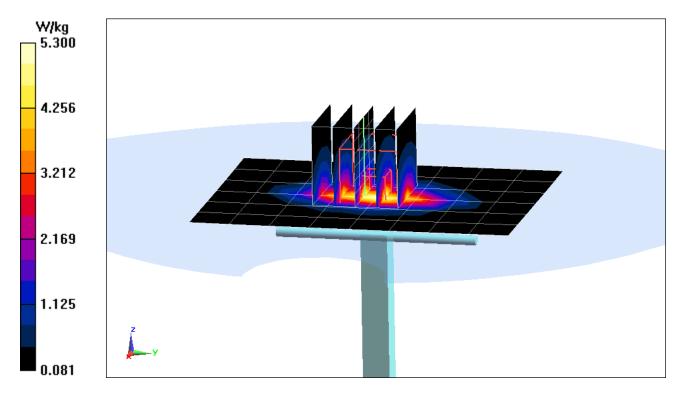
Test Date: 01-02-2018; Ambient Temp: 19.8°C; Tissue Temp: 18.6°C

Probe: EX3DV4 - SN7410; ConvF(10.08, 10.08, 10.08); Calibrated: 7/17/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/13/2017 Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.80 W/kg SAR(1 g) = 1.94 W/kg Deviation(1 g) = 1.89%

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 1750 Head Medium parameters used:} \\ f = 1750 \mbox{ MHz; } \sigma = 1.393 \mbox{ S/m; } \epsilon_r = 38.992; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.0 cm} \end{array}$

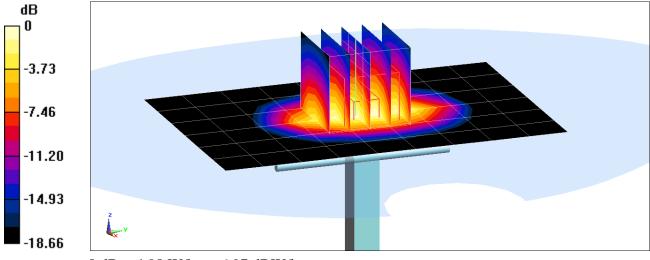
Test Date: 01-03-2018; Ambient Temp: 21.3°C; Tissue Temp: 20.7°C

Probe: EX3DV4 - SN7410; ConvF(8.66, 8.66, 8.66); Calibrated: 7/17/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/13/2017 Phantom: SAM with CRP v5.0 (Right); Type: QD000P40CD; Serial: TP:1759 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.34 W/kg SAR(1 g) = 3.49 W/kg Deviation(1 g) = -4.12%

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.454$ S/m; $\epsilon_r = 41.529$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-02-2018; Ambient Temp: 23.3°C; Tissue Temp: 22.9°C

Probe: ES3DV3 - SN3319; ConvF(5.2, 5.2, 5.2); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/8/2017 Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: 1648 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.40 W/kg SAR(1 g) = 3.98 W/kg Deviation(1 g) = 0.51%

0 dB = 4.98 W/kg = 6.97 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2450 MHz; $\sigma = 1.884$ S/m; $\epsilon_r = 38.366$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

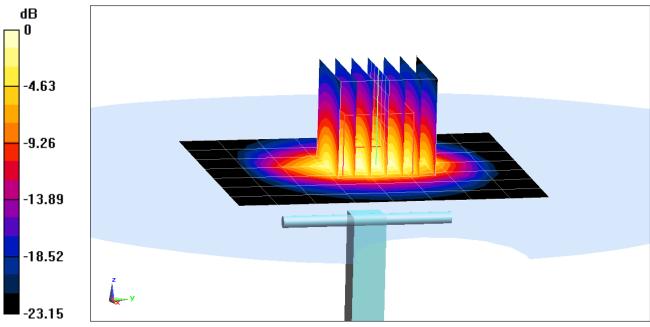
Test Date: 01-02-2018; Ambient Temp: 24.4°C; Tissue Temp: 21.2°C

Probe: EX3DV4 - SN7410; ConvF(7.68, 7.68, 7.68); Calibrated: 7/17/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/13/2017 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.8 W/kg SAR(1 g) = 5.11 W/kg Deviation(1 g) = -3.04%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2450 MHz; $\sigma = 1.877$ S/m; $\epsilon_r = 38.258$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-09-2018; Ambient Temp: 21.5°C; Tissue Temp: 21.1°C

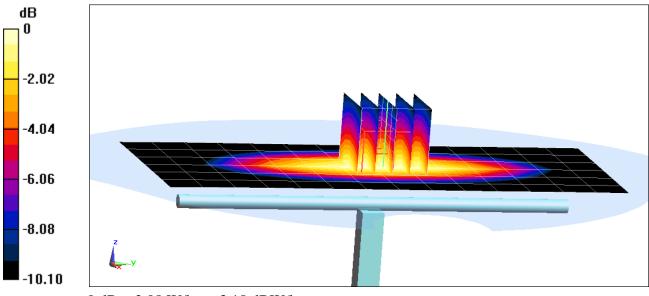
Probe: ES3DV3 - SN3318; ConvF(4.71, 4.71, 4.71); Calibrated: 9/22/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/14/2017 Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.6 W/kg SAR(1 g) = 5.45 W/kg Deviation(1 g) = 3.22%

0 dB = 7.16 W/kg = 8.55 dBW/kg

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 750 Body Medium parameters used (interpolated):} \\ f = 750 \mbox{ MHz; } \sigma = 0.97 \mbox{ S/m; } \epsilon_r = 55.398; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 01-03-2018; Ambient Temp: 21.5°C; Tissue Temp: 20.4°C

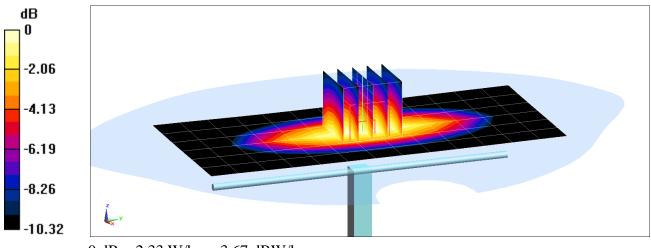
Probe: ES3DV3 - SN3209; ConvF(6.44, 6.44, 6.44); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 3/13/2017 Phantom: SAM Right; Type: QD000P40CD; Serial: 1800 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.60 W/kg SAR(1 g) = 1.78 W/kg Deviation(1 g) = 3.37%

0 dB = 2.08 W/kg = 3.18 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d133


Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used: f = 835 MHz; $\sigma = 0.975$ S/m; $\epsilon_r = 54.054$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 01-02-2018; Ambient Temp: 23.5°C; Tissue Temp: 20.9°C

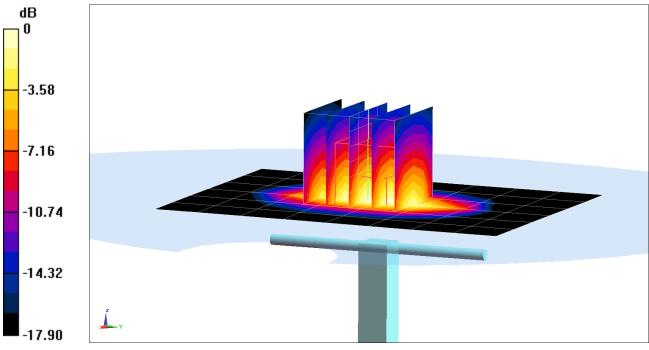
Probe: ES3DV3 - SN3213; ConvF(6.28, 6.28, 6.28); Calibrated: 2/10/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2017 Phantom: SAM Right; Type: SAM; Serial: 1757 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.92 W/kg SAR(1 g) = 1.99 W/kg Deviation(1 g) = 5.74%

0 dB = 2.33 W/kg = 3.67 dBW/kg

DUT: Dipole 1750 MHz; Type: D1765V2; Serial: 1008


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1750 MHz; $\sigma = 1.51$ S/m; $\varepsilon_r = 51.744$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-02-2018; Ambient Temp: 22.1°C; Tissue Temp: 20.9°C

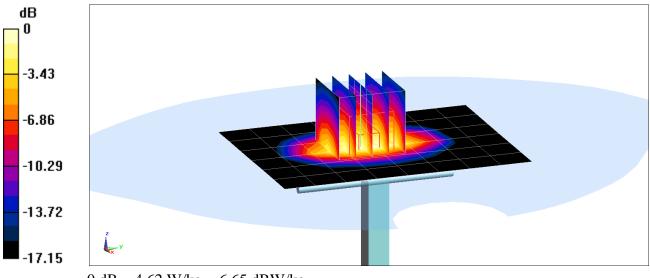
Probe: EX3DV4 - SN7406; ConvF(8.08, 8.08, 8.08); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/11/2017 Phantom: SAM with CRP v5.0, Right; Type: QD000P40CD; Serial: TP:7535 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.74 W/kg SAR(1 g) = 3.67 W/kg Deviation(1 g) = -2.13%

0 dB = 5.61 W/kg = 7.49 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: f = 1750 MHz; $\sigma = 1.516$ S/m; $\varepsilon_r = 51.222$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-15-2018; Ambient Temp: 22.1°C; Tissue Temp: 20.7°C

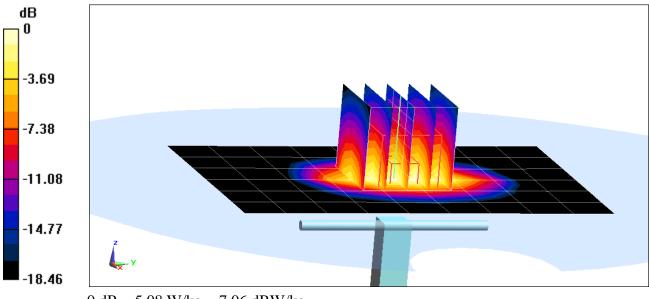
Probe: ES3DV3 - SN3332; ConvF(5.16, 5.16, 5.16); Calibrated: 8/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 8/9/2017 Phantom: SAM Front; Type: SAM; Serial: 1686 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.50 W/kg SAR(1 g) = 3.69 W/kg Deviation(1 g) = -0.27%

0 dB = 4.62 W/kg = 6.65 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.566$ S/m; $\varepsilon_r = 51.585$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-02-2018; Ambient Temp: 20.0°C; Tissue Temp: 20.5°C

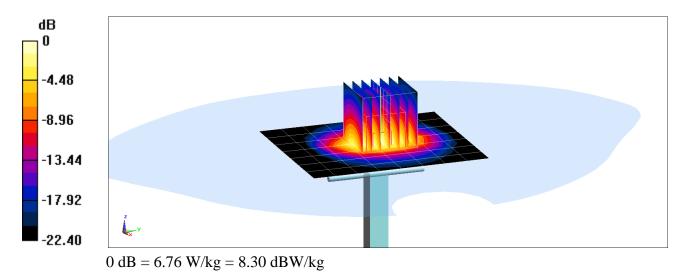
Probe: ES3DV3 - SN3209; ConvF(4.93, 4.93, 4.93); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 3/13/2017 Phantom: SAM Right; Type: QD000P40CD; Serial: 1800 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.27 W/kg SAR(1 g) = 4.02 W/kg Deviation(1 g) = 0.25%

0 dB = 5.08 W/kg = 7.06 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2450 MHz; $\sigma = 1.968$ S/m; $\epsilon_r = 51.561$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01-02-2018; Ambient Temp: 20.3°C; Tissue Temp: 21.9°C

Probe: ES3DV3 - SN3213; ConvF(4.53, 4.53, 4.53); Calibrated: 2/10/2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2017 Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.8 W/kg SAR(1 g) = 5.09 W/kg Deviation(1 g) = -0.39%

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client	PC Test
--------	---------

Certificate	No: ES	3-3332	2 Aug	17	

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3332

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:

August 14, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02525)	Apr-18
Reference 20 dB Attenuator	SN: S5277 (20x)	07-Apr-17 (No. 217-02528)	Apr-18
Reference Probe ES3DV2	SN: 3013	31-Dec-16 (No. ES3-3013_Dec16)	Dec-17
DAE4	SN: 660	7-Dec-16 (No. DAE4-660_Dec16)	Dec-17
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	GAILA
Approved by:	Kalja Pokovic	Technical Manager	
	이 같은 것 같은 것 같은 것 같은 것은 것 같은 것 같은 것 같은 것		Acto 45
		1. Allow Conditions and an end of the data	Issued: August 16, 2017
This calibration certificat	e shall not be reproduced except in fu	ill without written approval of the lat	boratory.

S С S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

8/27/17

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- S Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DACV evotors to align probe concervation the test of and in the evotors

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR:* PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe ES3DV3

SN:3332

Manufactured: Calibrated:

January 24, 2012 August 14, 2017

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.00	0.93	0.88	± 10.1 %
DCP (mV) ^B	104.0	103.0	103.0	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc ^E
			dB	dBõV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	192.0	±3.5 %
1		Y	0.0	0.0	1.0		194.3	
		Z	0.0	0.0	1.0		179.9	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1	C2	α	T1	T2	T3	T4	T5	Т6
	fF	fF	V ⁻¹	ms.V ²	ms.V ⁻¹	ms	V⁻²	V⁻¹	
X	76.72	548.9	35.46	56.44	4.600	5.1	0.000	0.903	1.011
Y	44.78	323.3	35.85	29.01	2.529	5.1	0.000	0.546	1.009
Z	38.01	268.3	34.56	26.38	1.777	5.1	0.096	0.424	1.004

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

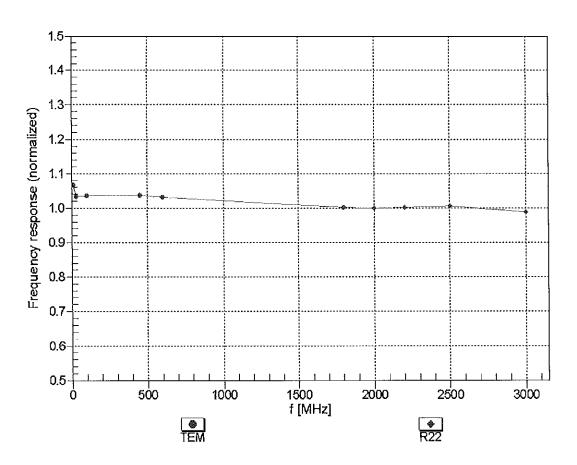
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	6.81	6.81	6.81	0.72	1.31	± 12.0 %
835	41.5	0.90	6.64	6.64	6.64	0.80	1.21	± 12.0 %
1750	40.1	1.37	5.56	5.56	5.56	0.80	1.20	± 12.0 %
1900	40.0	1.40	5.33	5.33	5.33	0.76	1.26	± 12.0 %
2300	39.5	1.67	4.99	4.99	4.99	0.70	1.36	± 12.0 %
2450	39.2	1.80	4.68	4.68	4.68	0.63	1.48	± 12.0 %
2600	39.0	1.96	4.56	4.56	4.56	0.80	1.23	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

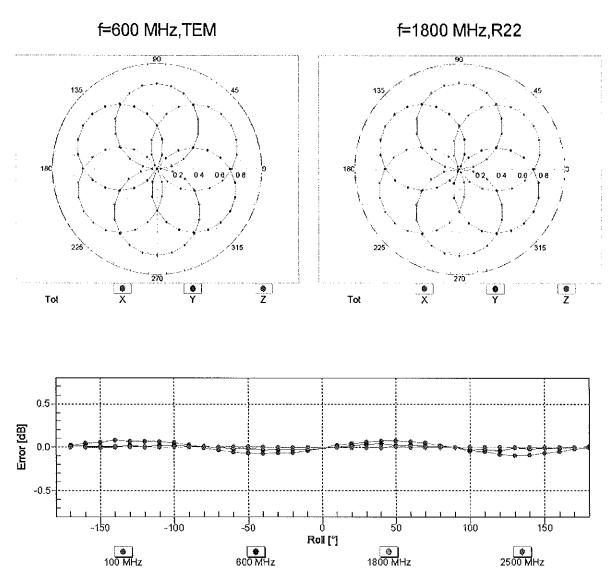
validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

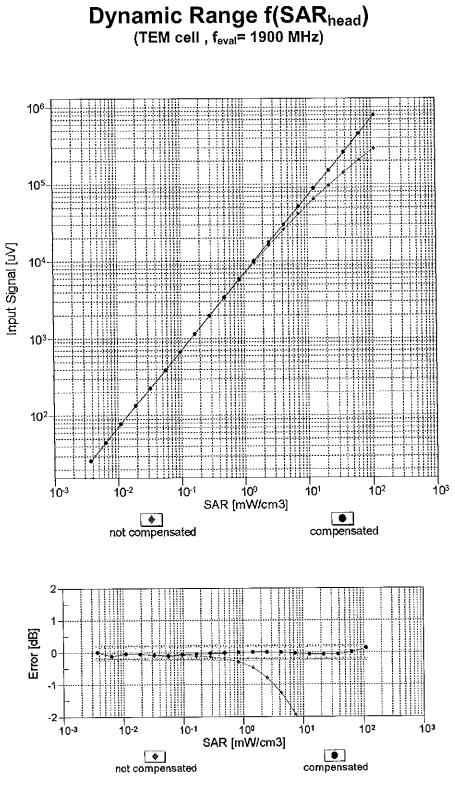

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	6.54	6.54	6.54	0.55	1.43	± 12.0 %
835	55.2	0.97	6.47	6.47	6.47	0.71	1.27	± 12.0 %
1750	53.4	1.49	5.16	5.16	5.16	0.80	1.22	± 12.0 %
1900	53.3	1.52	4.95	4.95	4.95	0.54	1.56	± 12.0 %
2300	52.9	1.81	4.74	4.74	4.74	0.80	1.30	± 12.0 %
2450	52.7	1.95	4.55	4.55	4.55	0.80	1.17	± 12.0 %
2600	52.5	2.16	4.43	4.43	4.43	0.80	1.12	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

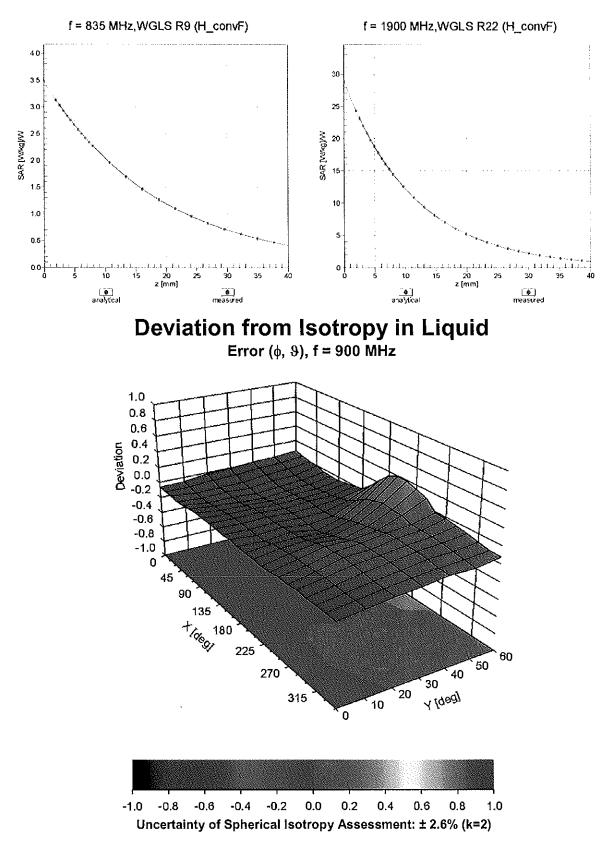
^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.


validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)



Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	50
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max Unc ^E (k≂2)
0	CW	X	0.00	0.00	1.00	0.00	192.0	± 3.5 %
		Y	0.00	0.00	1.00		194.3	
10010-	SAR Validation (Square, 100ms, 10ms)	ZX	0.00	0.00	1.00		179.9	
CAA	SALVandation (Square, 100ms, 10ms)		9.02	77.08	18.94	10.00	25.0	± 9.6 %
		Y	12.19	85.73	21.41		25.0	
10011-	UMTS-FDD (WCDMA)	Z	23.02	95.31	23.86	·	25.0	
CAB		X	1.60	76.05	19.77	0.00	150.0	± 9.6 %
		Y	1.08	68.15	15.73		150.0	
10012-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1	Z X	1.25	71.36	17.60		150.0	
CAB	Mbps)		1.52	68.53	17.98	0.41	150.0	± 9.6 %
		1 <	1.33	65.39	16.06		150.0	
10013-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	Z	1.37	66.35	16.79		150.0	
CAB	OFDM, 6 Mbps)	X	5.37	67.71	17.82	1.46	150.0	± 9.6 %
	1	Y	5.07	67.50	17.57		150.0	
10021-	GSM-FDD (TDMA, GMSK)	Z	4.99	67.81	17.71	0.00	150.0	
DAC		X	11.16	81.48	22.11	9.39	50.0	± 9.6 %
		Y	61.59	115.23	32.13		50.0	
10023-	GPRS-FDD (TDMA, GMSK, TN 0)	ZX	100.00 11.07	122.78	33.35	0.57	50.0	
DAC				81.20	22.06	9.57	50.0	± 9.6 %
		Y	43.11	109.07	30.52		50.0	
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	Z X	100.00 12.88	122.63 85.34	33.33 22.06	6.56	50.0 60.0	± 9.6 %
DAU		Y	100.00	120.15	31.36		60.0	
		Z	100.00	120.15	30.99	<u> </u>	60.0	l
10025- DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	X	19.49	99.22	36.41	12.57	50.0	± 9.6 %
		Y	15.67	100.74	38.44		50.0	
		Z	29.43	124.69	47.97		50.0	
10026- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	18.92	96.32	32.19	9.56	60.0	± 9.6 %
		Y	17.33	101.02	35.08		60.0	· · · · · · · · · · · · · · · · · · ·
		Z	24.89	113.23	39.81		60.0	
10027- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	24.19	95.70	24.33	4.80	80.0	± 9.6 %
		Y	100.00	119.30	30.03		80.0	····
146		Z	100.00	120.36			80.0	
10028- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	100.00	115.36	28.49	3.55	100.0	± 9.6 %
		Y	100.00	119.83	29.45		100.0	
10000		Z	100.00	122.10	30.18		100.0	
10029- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	16.27	93.78	30.32	7.80	80.0	± 9.6 %
		Y	11.67	92.24	30.90		80.0	
10030-	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Z X	13.37 15.68	97.80 88.86	33.46 22.54	5.30	80.0 70.0	± 9.6 %
CAA		Y	100.00	118.49	29.99	1	70.0	1
		Z	100.00	118.49	29.99		70.0	
10031- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	116.01	27.12	1.88	100.0	± 9.6 %
		Y	100.00	121.13	28.42		100.0	
		z	100.00	126.03	30.32	1	100.0	

Certificate No: ES3-3332_Aug17

10032-	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	100.00	119.38	27.36	1.17	100.0	± 9.6 %
CAA						1.17	100.0	1 3.0 70
		Y	100.00	126.54	29.58		100.0	
		Z	100.00	136.16	33.43		100.0	
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	X	13.27	88.21	24.10	5.30	70.0	± 9.6 %
		Y	20.91	99.02	27.13		70.0	
		Z	58.05	115.59	31.27		70.0	
10034- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	X	16.18	96.67	25.44	1.88	100.0	± 9.6 %
		Y	10.83	91.57	22.94		100.0	
10005		Z	52.78	113.06	28.24		100.0	
10035- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	X	12.45	95.04	24.79	1.17	100.0	± 9.6 %
		<u>Y</u>	5.49	83.70	20.10		100.0	
10036-	JEEE 900 45 4 Plusteath (0 DDDK DUK)	Z	18.62	100.06	24.56		100.0	
CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	14.34	89.63	24.62	5.30	70.0	± 9.6 %
		Y	26.79	103.24	28.41		70.0	ļ
10037-	IEEE 902 15 1 Plusteath (0 DDDI/ D1/0)	Z	95.10	123.67	33.30	4	70.0	
CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	15.98	96.45	25.32	1.88	100.0	± 9.6 %
		Y	9.62	89.98	22.43	ļ	100.0	
10038-	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Z	37.04	108.35	27.08		100.0	
CAA		X	13.91	96.94	25.41	1.17	100.0	± 9.6 %
		Y	5.69	84.50	20.47		100.0	
10039-		Z	19.52	101.18	25.01		100.0	
CAB	CDMA2000 (1xRTT, RC1)	X	3.28	80.46	20.53	0.00	150.0	± 9.6 %
· · · · · · · · · ·		Y	1.92	73.09	15.89		150.0	
10010		Z	3.08	80.13	18.22		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	X	11.60	82.51	21.10	7.78	50.0	± 9.6 %
		Y	100.00	118.83	31.00		50.0	
40044		Z	100.00	118.47	30.39		50.0	
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.02	128.88	9.05	0.00	150.0	± 9.6 %
		Y	0.00	96.92	0.26		150.0	
		Z	0.02	60.00	140.78		150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	10.75	78.30	22.86	13.80	25.0	± 9.6 %
		Y	15.61	90.30	26.65		25.0	
10040		Z	32.75	104.57	30.45		25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	X	10.92	80.23	22.15	10.79	40.0	± 9.6 %
<u></u>		Y	20.87	96.36	27.22		40.0	
10056-	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	Z	64.62	115.72	32.06		40.0	
CAA	UMTS-TUD (TD-SCUMA, 1.28 Mcps)	X	11.51	81.76	22.84	9.03	50.0	± 9.6 %
		Y	15.28	90.93	25.77		50.0	
10058-	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	Z X	25.94	101.11	28.65		50.0	
DAC	EDGE-FDD (TDIWA, OPSK, TN 0-1-2-3)		14.19	91.88	29.00	6.55	100.0	± 9.6 %
		Y	8.68	86.53	28.09	<u> </u>	100.0	
10059- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	Z X	9.12 2.01	89.51 72.72	29.70 19.70	0.61	<u>100.0</u> 110.0	± 9.6 %
		Y	1.51	67.62	17.16	ļ	440.0	
		Z	1.56	68.78	17.16	l	110.0 110.0	
10060- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	100.00	126.29	32.07	1.30	110.0	± 9.6 %
		Y	100.00	132.71	34.39		110.0	
		Z	100.00				110.0	
		<u>ــــــــــــــــــــــــــــــــــــ</u>	00.00	137.07	36.21		110.0	

10061- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	36.66	112.50	30.92	2.04	110.0	± 9.6 %
		Y	11.07	98.15	27.76	1	110.0	
		Z	22.12	112.16	32.18		110.0	1
10062- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	5.03	67.33	17.05	0.49	100.0	± 9.6 %
·		Ϋ́	4.77	67.19	16.82		100.0	
			4.70	67.51	16.97	· · · -	100.0	· · · · · · · · · · · · · · · · · · ·
10063- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	Х	5.09	67.56	17.23	0.72	100.0	± 9.6 %
·		Y	4.81	67.36	16.96		100.0	
		Z	4.74	67.68	17.11		100.0	
10064- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	Х	5.47	67.93	17.49	0.86	100.0	± 9.6 %
		Y	5.10	67.63	17.20		100.0	1
		Z	5.00	67.90	17.32		100.0	
10065- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	X	5.40	68.08	17.70	1.21	100.0	± 9.6 %
		Y	5.02	67.68	17.39		100.0	
		Z	4.92	67.92	17.50		100.0	
10066- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	5.49	68.31	17.98	1.46	100.0	± 9.6 %
		Y	5.08	67.82	17.62		100.0	
		Z	4.97	68.04	17.73		100.0	
10067- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	5.84	68.47	18.45	2.04	100.0	± 9.6 %
		Y	5.42	68.13	18.14		100.0	
		Z	5.31	68.42	18.28	·	100.0	
10068- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	Х	6.07	69.08	18.91	2.55	100.0	± 9.6 %
		Y	5.53	68.32	18.44		100.0	
		Z	5.39	68.51	18.54		100.0	
10069- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	6.13	68.90	19.06	2.67	100.0	± 9.6 %
		Y	5.61	68.37	18.66		100.0	
		Z	5.48	68.58	18.76	<u>.</u>	100.0	
10071- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	5.56	68.08	18.26	1.99	100.0	± 9.6 %
		Y	5.22	67.75	17.96		100.0	
		Z	5.14	68.03	18.10		100.0	
10072- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	5.71	68.87	18.66	2.30	100.0	± 9.6 %
		Y	5.28	68.28	18.29		100.0	·
		Z	5.18	68.53	18.42		100.0	
10073- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	5.93	69.43	19.17	2.83	100.0	±9.6 %
		Y	5.43	68.68	18.74		100.0	
		Z	5.32	68.95	18.89		100.0	
10074- CAB	IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	6.04	69.75	19.56	3.30	100.0	± 9.6 %
		Y	5.49	68.80	18.99		100.0	
		Z	5.38	69.07	19.15		100.0	
10075- CAB	IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	6.35	70.65	20.23	3.82	90.0	± 9.6 %
		Y	5.63	69.18	19.44		90.0	
		Z	5.49	69.37	19.56		90.0	
10076- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	6.37	70.50	20.38	4.15	90.0	±9.6 %
		Y	5.68	69.10	19.63		90.0	
		Z	5.56	69.34	19.78		90.0	
10077- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	6.43	70.65	20.50	4.30	90.0	± 9.6 %
		Y	5.73	69.22	19.75		90.0	
		Z	5.61	69.48	19.91		90.0	

10081-				1 00	1			
CAB	CDMA2000 (1xRTT, RC3)	X	1.62	75.66	18.40	0.00	150.0	±9.6 %
		Υ Υ	0.87	66.71	12.69	·	150.0	
10082-		Z	1.13	71.02	14.45		150.0	
CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Fullrate)	X	3.53	66.20	10.93	4.77	80.0	± 9.6 %
		Y	2.19	64.40	9.18		80.0	
		Z	1.96	64.15	8.74		80.0	
10090- DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	12.79	85.25	22.06	6.56	60.0	± 9.6 %
		Y	100.00	120.23	31.42		60.0	
		Z	100.00	120.31	31.04		60.0	
10097- CAB	UMTS-FDD (HSDPA)	X	2.06	70.06	17.46	0.00	150.0	± 9.6 %
		Y	1.88	68.31	15.96		150.0	
		Z	2.04	70.38	16.98		150.0	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	X	2.02	70.12	17.47	0.00	150.0	± 9.6 %
		Y	1.84	68.27	15.94		150.0	·
		Z	2.00	70.37	16.98	1	150.0	
10099- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	X	18.80	96.14	32.13	9.56	60.0	± 9.6 %
		Y	17.28	100.91	35.04	†	60.0	
		Z	24.81	113.10	39.77		60.0	
10100- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	3.84	73.61	18.19	0.00	150.0	± 9.6 %
		Y	3.15	70.58	16.91		150.0	
		Z	3.25	71.69	17.61		150.0	
10101- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	3.58	69.11	16.83	0.00	150.0	± 9.6 %
		Y	3.26	67.74	16.10		150.0	···
		Z	3.26	68.29	16.47	· · · · · ·	150.0	
10102- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	3.66	68.88	16.84	0.00	150.0	±9.6 %
		Y	3.36	67.71	16.19		150.0	
		Z	3.36	68.23	16.52		150.0	
10103- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	9.75	77.78	20.81	3.98	65.0	± 9.6 %
		Y	8.78	79.16	21.83		65.0	
		Z	9.34	81.38	22.82		65.0	
10104- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	9.87	77.22	21.49	3.98	65.0	± 9.6 %
		Y	8.42	77.09	21.77	·	65.0	
<u> </u>		Ż	8.44	78.16	22.31		65.0	
10105- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	9.19	75.82	21.15	3.98	65.0	±9.6 %
		Y	8.07	76.20	21.66		65.0	
		Z	8.27	77.70	21.00	<u> </u>	65.0	
10108- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	3.37	72.69	18.02	0.00	150.0	± 9.6 %
		Y	2.75	69.90	16.77		150.0	
		Ż	2.82	71.09	17.51	<u> </u>	150.0	
10109- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	3.26	68.97	16.85	0.00	150.0	± 9.6 %
		Y	2.91	67.66	16.01		150.0	
40442		Z	2.92	68.36	16.42		150.0	
10110- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	2.79	71.81	17.85	0.00	150.0	±9.6 %
		Y	2.23	69.12	16.39		150.0	
		Z	2.31	70.62	17.23	· · ·	150.0	
10111- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	2.96	69.58	17.27	0.00	150.0	± 9.6 %
		Y	2.63	68.64	16.31		150.0	
		Z	2.69	69.84	16.85		150.0	

10112- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	3.36	68.71	16.80	0.00	150.0	± 9.6 %
		Y	3.03	67.66	16.06		150.0	
		Z	3.04	68.35	16.45		150.0	
10113- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	3.10	69.46	17.27	0.00	150.0	± 9.6 %
		Y	2.78	68.78	16.44	İ	150.0	
		Z	2.83	69.92	16.93		150.0	
10114- CAB	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	Х	5.34	67.65	16.76	0.00	150.0	± 9.6 %
		Y	5.17	67.50	16.64		150.0	
		Z	5.08	67.64	16.74		150.0	
10115- CAB	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	5.80	68.17	17.01	0.00	150.0	± 9.6 %
		Y	5.44	67.60	16.69		150.0	
		Z	5.33	67.71	16.77		150.0	
10116- CAB	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	X	5.47	67.90	16.79	0.00	150.0	± 9.6 %
		Y	5.25	67.68	16.65		150.0	
		Z	5.17	67.85	16.77		150.0	
10117- CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	5.34	67.65	16.78	0.00	150.0	± 9.6 %
		Y	5.12	67.32	16.56		150.0	
		Z	5.07	67.59	16.73		150.0	
10118- CAB	IEEE 802.11n (HT Mixed, 81 Mbps, 16- QAM)	X	5.79	68.04	16.95	0.00	150.0	± 9.6 %
		Y	5.52	67.82	16.81		150.0	
		Z	5.42	67.93	16.89		150.0	
10119- CAB	IEEE 802.11n (HT Mixed, 135 Mbps, 64- QAM)	X	5.44	67.84	16.78	0.00	150.0	± 9.6 %
		Y	5.24	67.66	16.65		150.0	
		Z	5.17	67.84	16.77		150.0	
10140- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	3.72	68.86	16.76	0.00	150.0	± 9.6 %
		Y	3.39	67.72	16.10		150.0	
		Z	3.39	68.26	16.45		150.0	
10141- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	3.82	68.79	16.84	0.00	150.0	± 9.6 %
		Y	3.51	67.83	16.27		150.0	
		Z	3.51	68.36	16.60		150.0	
10142- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	2.57	71.96	17.88	0.00	150.0	±9.6 %
		Y	2.01	69.21	16.02		150.0	
		Z	2.13	71.18	16.95		150.0	
10143- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	2.89	70.53	17.42	0.00	150.0	± 9.6 %
		Y	2.49	69.45	15.95		150.0	
		Z	2.62	71.11	16.52		150.0	
10144- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	2.69	68.52	16.05	0.00	150.0	± 9.6 %
		Y	2.23	66.92	14.20		150.0	
		Z	2.23	67.85	14.42		150.0	
10145- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	2.07	72.06	16.97	0.00	150.0	±9.6 %
		Y	1.17	64.90	11.31		150.0	
		Z	1.08	64.84	10.72		150.0	
10146- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	4.64	77.66	18.95	0.00	150.0	± 9.6 %
		Y	1.89	66.33	11.57		150.0	
		Z	1.28	62.78	8.70		150.0	
10147- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	5.86	81.36	20.54	0.00	150.0	± 9.6 %
CAE	····	1	0.00	00.50	40 70	1	450.0	
		Y	2.26	68.50	12.73		150.0	

Certificate No: ES3-3332_Aug17

10149- CAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	3.27	69.03	16.89	0.00	150.0	± 9.6 %
		Y	2.92	67.72	16.06		150.0	╆────
		Ż	2.93	68.43	16.47		150.0	
10150- CAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	3.37	68.76	16.84	0.00	150.0	± 9.6 %
		Y	3.04	67.71	16.11	· · · · · · · · · · · · · · · · · · ·	150.0	
		Z	3.05	68.41	16.50		150.0	
10151- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	9.88	78.98	21.39	3.98	65.0	± 9.6 %
		Y	9.54	82.00	22.98		65.0	
		Z	10.52	85.01	24.21		65.0	
10152- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	9.59	77.49	21.44	3.98	65.0	± 9.6 %
		Y	8.05	77.33	21.53		65.0	
		Z	8.15	78.63	22.11		65.0	
10153- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	9.88	78.01	21.96	3.98	65.0	± 9.6 %
		Y	8.51	78.32	22.28		65.0	
		Z	8.64	79.68	22.87		65.0	
10154- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	2.88	72.43	18.21	0.00	150.0	± 9.6 %
		Y	2.28	69.53	16.65		150.0	
		Z	2.36	71.01	17.47		150.0	
10155- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	2.96	69.57	17.27	0.00	150.0	± 9.6 %
		Y	2.63	68.66	16.33		150.0	
		Z	2.70	69.87	16.88		150.0	1
10156- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	2.50	72.75	18.17	0.00	150.0	± 9.6 %
		Y	1.86	69.32	15.77		150.0	
		Z	2.00	71.53	16.72		150.0	·
10157- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	2.58	69.56	16.46	0.00	150.0	± 9.6 %
		Y	2.07	67.52	14.21		150.0	
		Z	2.11	68.66	14.46		150.0	
10158- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	3.11	69.51	17.31	0.00	150.0	± 9.6 %
		Y	2.79	68.85	16.49		150.0	
		Z	2.84	70.00	16.99		150.0	·
10159- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	2.70	69.94	16.71	0.00	150.0	± 9.6 %
		Y	2.17	67.94	14.47	· · · ·	150.0	· · ·
		Z	2.21	69.05	14.68		150.0	
10160- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	3.17	70.70	17.47	0.00	150.0	± 9.6 %
. <u> </u>		Y	2.80	69.22	16.63		150.0	
101-1		Z	2.84	70.27	17.24		150.0	
10161- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	3.25	68.62	16.80	0.00	150.0	±9.6%
		Y	2.93	67.68	16.03		150.0	
		Z	2.94	68.43	16.42		150.0	
10162- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	3.34	68.54	16.80	0.00	150.0	± 9.6 %
		Y	3.04	67.85	16.15		150.0	
10100		Z	3.05	68.62	16.54		150.0	
10166- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	4.29	71.19	20.11	3.01	150.0	±9.6 %
		Y	3.58	69.86	19.45		150.0	
1010-		Z	3.34	69.55	19.26		150.0	
10167- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	Х	5.65	74.34	20.64	3.01	150.0	±9.6 %
		Y	4.34	72.64	19.86		150.0	
		Z	3.97	72.28	19.65		150.0	

10168- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	6.08	75.90	21.58	3.01	150.0	± 9.6 %
		Y	4.83	75.01	21.26		150.0	
		Ż	4.38	74.50	20.98		150.0	
10169- CAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	4.41	74.54	21.42	3.01	150.0	± 9.6 %
		Y	2.96	68.83	19.02		150.0	
		Z	2.72	67.99	18.57		150.0	
10170- CAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	6.70	80.82	23.44	3.01	150.0	± 9.6 %
		Y	3.91	74.17	21.18		150.0	
40474		Z	3.42	72.70	20.49		150.0	
10171- AAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	5.50	76.54	20.93	3.01	150.0	±9.6 %
		Y	3.29	70.45	18.57		150.0	
10172-	LTC TOD (SC FDMA 4 DD CO MILE	Z	2.94	69.58	18.14		150.0	
CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	25.76	101.07	30.32	6.02	65.0	± 9.6 %
		1	18.45	102.75	32.10		65.0	
10170		Z	20.86	107.70	33.85		65.0	
10173- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	19.21	92.24	26.33	6.02	65.0	± 9.6 %
		Y	26.29	105.14	31.12		65.0	
40474		Z	28.49	108.55	32.12		65.0	
10174- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	17.46	89.68	25.13	6.02	65.0	± 9.6 %
		Y	21.35	100.13	29.12		65.0	
40475		Z	22.92	103.28	30.05		65.0	
10175- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	4.34	74.12	21.15	3.01	150.0	±9.6 %
		Y	2.93	68.55	18.79		150.0	
		Z	2.70	67.77	18.36		150.0	
10176- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	6.71	80.84	23.45	3.01	150.0	±9.6%
		Y	3.92	74.20	21.19		150.0	
		Z	3.42	72.72	20.50		150.0	
10177- CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	4.38	74.32	21.26	3.01	150.0	± 9.6 %
		Y	2.95	68.69	18.87		150.0	
		Z	2.71	67.87	18.43		150.0	
10178- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	6.59	80.50	23.29	3.01	150.0	± 9.6 %
		Y	3.89	74.02	21.09		150.0	
		Z	3.41	72.61	20.43		150.0	
10179- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	6.03	78.45	22.01	3.01	150.0	± 9.6 %
		Y	3.58	72.24	19.76		150.0	
		Z	3.16	71.11	19.23		150.0	
10180- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	5.47	76.42	20.86	3.01	150.0	± 9.6 %
		Y	3.28	70.40	18.53		150.0	
		Z	2.94	69.55	18.12		150.0	
10181- CAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	4.38	74.30	21.25	3.01	150.0	± 9.6 %
		Y	2.95	68.67	18.87		150.0	
		Z	2.71	67.86	18.43		150.0	
10182- CAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	6.58	80.48	23.29	3.01	150.0	± 9.6 %
		Y	3.88	74.00	21.08		150.0	
		Z	3.40	72.59	20.42		150.0	
10183- AAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	5.46	76.40	20.85	3.01	150.0	± 9.6 %
		Y	3.28	70.38	18.52		150.0	
		Z	2.93	69.53	18.11	I.	150.0	

10184-	LTE-FDD (SC-FDMA, 1 RB, 3 MHz,	X	4.39	74.34	21.27	3.01	150.0	± 9.6 %
CAD	QPSK)	ļ						
		Y	2.96	68.71	18.89		150.0	
40405		Z	2.72	67.89	18.44		150.0	
10185- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	6.61	80.55	23.32	3.01	150.0	± 9.6 %
<u>,</u>		Y	3.90	74.06	21.11		150.0	
		Z	3.42	72.64	20.45		150.0	
10186- AAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	5.49	76.46	20.88	3.01	150.0	± 9.6 %
		Y	3.29	70.44	18.55		150.0	
40407		Z	2.95	69.59	18.14	L	150.0	
10187- CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	4.40	74.38	21.31	3.01	150.0	± 9.6 %
		Y	2.97	68.77	18.95		150.0	
10188-		Z	2.73	67.95	18.51		150.0	
CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	6.86	81.30	23.70	3.01	150.0	± 9.6 %
		Y	4.01	74.64	21.46		150.0	
40405		Z	3.49	73.09	20.74		150.0	
10189- AAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	5.63	76.95	21.16	3.01	150.0	± 9.6 %
		Y	3.36	70.82	18.81		150.0	
10.105		Z	3.00	69.90	18.37		150.0	
10193- CAB	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	X	4.76	66.98	16.56	0.00	150.0	±9.6 %
		Y	4.53	66.89	16.29		150.0	· · · · · ·
		Z	4.48	67.27	16.46	· · · · ·	150.0	
10194- CAB	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	X	4.98	67.40	16.66	0.00	150.0	± 9.6 %
		Y	4.70	67.19	16.42		150.0	
		Z	4.63	67.53	16.59	·	150.0	· · · · · · · · · · · · · · · · · · ·
10195- CAB	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	X	5.02	67.38	16.65	0.00	150.0	± 9.6 %
		Y	4.74	67.22	16.44		150.0	
		Z	4.67	67.55	16.61		150.0	···
10196- CAB	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	Х	4.79	67.12	16.61	0.00	150.0	± 9.6 %
		Y	4.53	66.94	16.30		150.0	·
		Z	4.47	67.29	16.46	· .	150.0	
10197- CAB	IEEE 802.11n (HT Mixed, 39 Mbps, 16- QAM)	X	5.00	67.41	16.67	0.00	150.0	± 9.6 %
		Y	4.71	67.21	16.43		150.0	
		Z	4.64	67.54	16.60		150.0	
10198- CAB	IEEE 802.11n (HT Mixed, 65 Mbps, 64- QAM)	X	5.02	67.39	16.66	0.00	150.0	±9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	4.74	67.23	16.45	·	150.0	
		Z	4.67	67.55	16.61		150.0	
10219- CAB	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	4.75	67.15	16.58	0.00	150.0	± 9.6 %
		Y	4.48	66.96	16.27		150.0	· · · · · · · · · · · · · · · · · · ·
		Ζ	4.43	67.33	16.43	· .	150.0	
10220- CAB	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16- QAM)	X	5.00	67.42	16.67	0.00	150.0	± 9.6 %
		Y	4.70	67.17	16.42		150.0	
		Ż	4.63	67.50	16.58		150.0	
10221- CAB	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64- QAM)	X	5.03	67.33	16.65	0.00	150.0	± 9.6 %
		Y	4.75	67.16	16.44		150.0	
		Z	4.68	67.49	16.60		150.0	
				67.70	16.79	0.00		10.0.0/
10222- CAB	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	Х	5.32	01.10	10.79	0.00	150.0	± 9.6 %
	BPSK)	A Y	5.32	67.32	16.56	0.00	150.0	± 9.6 %

10223- CAB	IEEE 802.11n (HT Mixed, 90 Mbps, 16- QAM)	X	5.69	67.90	16.90	0.00	150.0	± 9.6 %
		Y	5.41	67.62	16.73		150.0	·
		Z	5.32	67.79	16.83		150.0	
10224- CAB	IEEE 802.11n (HT Mixed, 150 Mbps, 64- QAM)	X	5.40	67.86	16.79	0.00	150.0	± 9.6 %
		Y	5.14	67.44	16.54		150.0	
		Z	5.08	67.68	16.69		150.0	
10225- CAB	UMTS-FDD (HSPA+)	X	3.04	66.91	16.27	0.00	150.0	± 9.6 %
		Y	2.80	66.45	15.40		150.0	
		Z	2.79	67.13	15.62		150.0	
10226- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	19.62	92.68	26.54	6.02	65.0	± 9.6 %
		Y	28.14	106.53	31.60		65.0	
		Z	30.74	110.09	32.63		65.0	
10227- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	17.31	89.65	25.20	6.02	65.0	± 9.6 %
		Y	25.62	103.45	30.17	·	65.0	
		Z	27.71	106.63	31.05		65.0	
10228- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	25.12	101.14	30.46	6.02	65.0	± 9.6 %
		Y	22.85	107.40	33.58		65.0	
		Z	23.56	110.42	34.69		65.0	
10229- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	19.21	92.22	26.33	6.02	65.0	± 9.6 %
		Y	26.37	105.18	31.14		65.0	
		Z	28.56	108.58	32.13		65.0	
10230- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	16.99	89.27	25.02	6.02	65.0	± 9.6 %
		Y	24.08	102.25	29.76		65.0	
		Z	25.76	105.25	30.60		65.0	
10231- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	24.47	100.57	30.23	6.02	65.0	± 9.6 %
		Y	21.54	106.10	33.13		65.0	
		Z	22.10	109.02	34.22		65.0	
10232- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	19.21	92.23	26.33	6.02	65.0	± 9.6 %
		Y	26.35	105.17	31.13		65.0	
		Z	28.56	108.59	32.14		65.0	
10233- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	16.99	89.29	25.03	6.02	65.0	± 9.6 %
		Y	24.05	102.24	29.76		65.0	
		Z	25.73	105.25	30.60		65.0	
10234- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	23.75	99.87	29.94	6.02	65.0	± 9.6 %
		Y	20.44	104.88	32.66		65.0	
		Z	20.94	107.73	33.73		65.0	
10235- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	19.23	92.26	26.34	6.02	65.0	± 9.6 %
		Y	26.43	105.24	31.16		65.0	
		Z	28.68	108.68	32.16		65.0	
10236- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	17.05	89.34	25.04	6.02	65.0	± 9.6 %
		Y	24.28	102.38	29.79		65.0	
		Z	26.05	105.43	30.64		65.0	
10237- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	24.65	100.72	30.28	6.02	65.0	± 9.6 %
		Y	21.67	106.26	33.17		65.0	
		Z	22.28	109.22	34.28		65.0	
10238- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	19.21	92.24	26.33	6.02	65.0	± 9.6 %
		Y	26.34	105.18	31.13		65.0	
		Z	28.55	108.60	32.14		65.0	

10239- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	17.00	89.31	25.04	6.02	65.0	± 9.6 %
		Y	24.00	102.22	29.75		65.0	
		Z	25.68	105.23	30.60		65.0	
10240- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	24.60	100.69	30.26	6.02	65.0	± 9.6 %
		Y	21.61	106.21	33.16		65.0	
		Z	22.24	109.18	34.27		65.0	
10241- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	14.83	87.15	27.43	6.98	65.0	± 9.6 %
		Y	11.87	87.25	27.69		65.0	
		Z	12.27	89.81	28.71		65.0	
10242- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	14.03	85.86	26.85	6.98	65.0	± 9.6 %
		Y	11.07	85.73	27.03		65.0	
		Z	11.88	89.15	28.39		65.0	
10243- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	12.50	85.61	27.61	6.98	65.0	± 9.6 %
		Y	8.91	82.53	26.67		65.0	
100.000		Z	9.40	85.62	28.06		65.0	
10244- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	10.84	80.28	21.46	3.98	65.0	± 9.6 %
		Y	8.60	79.06	19.82		65.0	
		Z	7.30	76.79	18.14		65.0	
10245- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	10.80	80.00	21.33	3.98	65.0	± 9.6 %
		Y	8.32	78.30	19.47		65.0	
		Z	7.01	75.95	17.75		65.0	
10246- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	10.19	81.67	21.72	3.98	65.0	± 9.6 %
		Y	9.19	82.92	21.40		65.0	
		Z	10.28	85.26	21.82		65.0	
10247- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	9.24	78.33	20.99	3.98	65.0	± 9.6 %
		Y	7.42	77.41	19.87		65.0	
		Z	7.44	78.18	19.81		65.0	
10248- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	9.29	78.02	20.88	3.98	65.0	± 9.6 %
		Y	7.28	76.69	19.57		65.0	
		Ζ	7.17	77.21	19.40		65.0	
10249- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	10.52	82.18	22.29	3.98	65.0	± 9.6 %
		Y	10.94	86.37	23.51		65.0	
		Z	13.59	90.89	24.82		65.0	
10250- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	9.84	79.38	22.27	3.98	65.0	± 9.6 %
		Y	8.59	80.24	22.59		65.0	
4005 /		Z	8.91	81.95	23.17		65.0	
10251- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	9.48	77.77	21.45	3.98	65.0	± 9.6 %
		Y	7.96	77.76	21.28		65.0	
40070		Z	8.06	79.03	21.69		65.0	
10252- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	10.35	81.23	22.32	3.98	65.0	± 9.6 %
		Y	10.67	85.75	24.25		65.0	
10253-	LTE-TDD (SC-FDMA, 50% RB, 15 MHz,	Z X	12.80 9.41	90.26 77.10	25.85 21.37	3.98	65.0 65.0	± 9.6 %
CAD	16-QAM)							ļ
		Y	7.89	76.83	21.30		65.0	ļ
10054		Z	7.98	78.11	21.82		65.0	
10254- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	9.73	77.64	21.86	3.98	65.0	± 9.6 %
		Y	8.31	77.74	21.96		65.0	
		Z	8.42	79.03	22.48		65.0	

E\$3DV3- \$N:3332

August 14, 2017

10255- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	9.76	78.98	21.63	3.98	65.0	± 9.6 %
		Y	9.21	81.58	22.99		65.0	ł
		Z	10.10	84.50	24.17		65.0	<u> -</u>
10256- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	10.36	79.33	20.55	3.98	65.0	± 9.6 %
		Y	6.89	75.10	17.29		65.0	1
· · · · · · · · · · · · · · · · · · ·		Z	5.38	71.84	15.02		65.0	·
10257- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	10.33	78.98	20.36	3.98	65.0	±9.6 %
		Y	6.60	74.15	16.79		65.0	· · · · ·
		Z	5.14	70.90	14.50		65.0	1
10258- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	9.84	80.89	21.06	3.98	65.0	± 9.6 %
		Y	6.93	77.80	18.67		65.0	
10050		Z	6.67	77.68	18.06		65.0	
10259- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	9.48	78.65	21.42	3.98	65.0	± 9.6 %
		Υ	7.89	78.48	20.85		65.0	1
		Z	8.05	79.67	21.05		65.0	1
10260- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	9.52	78.48	21.39	3.98	65.0	± 9.6 %
		Y	7.84	78.08	20.70		65.0	
		Z	7.93	79.11	20.83		65.0	
10261- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	10.28	81.56	22.27	3.98	65.0	± 9.6 %
		Y	10.28	85.25	23.51		65.0	
		Z	12.40	89.51	24.85		65.0	
10262- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	9.83	79.35	22.25	3.98	65.0	± 9.6 %
<u> </u>		Y	8.56	80.18	22.55		65.0	
		Z	8.88	81.87	23.12		65.0	
10263- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	9.48	77.78	21.46	3.98	65.0	± 9.6 %
		Y	7.94	77.74	21.28		65.0	1
		Z	8.05	79.01	21.68	•	65.0	İ
10264- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	10.32	81.15	22.28	3.98	65.0	± 9.6 %
		Y	10.57	85.55	24.15		65.0	
		Z	12.63	90.00	25.74		65.0	
10265- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	9.59	77.50	21.45	3.98	65.0	± 9.6 %
		Y	8.04	77.33	21.54		65.0	
		Z	8.14	78.63	22.11		65.0	
10266- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	9.89	78.01	21.96	3.98	65.0	± 9.6 %
		Y	8.50	78.31	22.27		65.0	
		Z	8.64	79.67	22.86		65.0	
10267- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	9.88	78.96	21.38	3.98	65.0	±9.6 %
		Y	9.52	81.96	22.96		65.0	
		Z	10.50	84.95	24.19		65.0	
10268- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	9.95	76.96	21.54	3.98	65.0	± 9.6 %
		Y	8.52	76.88	21.79		65.0	
10269-	LTE-TDD (SC-FDMA, 100% RB, 15	Z X	8.53 9.89	77.92 76.68	22.30 21.52	3.98	65.0 65.0	± 9.6 %
CAD	MHz, 64-QAM)	+	A + 2				L	
		Y	8.46	76.46	21.67		65.0	
40070		Z	8.45	77.44	22.15		65.0	
10270- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	9.66	77.24	20.86	3.98	65.0	±9.6 %
		Y	8.81	78.78	21.90		65.0	
		Z	9.16	80.58	22.73		65.0	

Certificate No: ES3-3332_Aug17

10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.74	67.26	16.17	0.00	150.0	± 9.6 %
		Y	2.61	66.92	15.38		150.0	
		Z	2.66	67.94	15.80		150.0	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	2.05	72.21	18.03	0.00	150.0	± 9.6 %
		Y	1.65	68.50	15.87		150.0	1
		Z	1.80	70.74	17.08		150.0	
10277- CAA	PHS (QPSK)	X	8.03	72.61	16.76	9.03	50.0	± 9.6 %
		Υ	5.31	69.07	13.45		50.0	
		Z	4.52	67.70	12.08		50.0	
10278- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	10.53	79.27	21.29	9.03	50.0	± 9.6 %
		Y	8.21	77.64	19.35		50.0	
40070		Z	7.62	76.93	18.36		50.0	
10279- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	10.71	79.48	21.37	9.03	50.0	± 9.6 %
		Y	8.29	77.74	19.41		50.0	
40000		Z	7.68	77.01	18.42	<u> </u>	50.0	
10290- AAB	CDMA2000, RC1, SO55, Full Rate	X	2.46	75.92	18.53	0.00	150.0	± 9.6 %
		Y	1.45	69.17	13.90		150.0	
10004		Z	1.74	72.52	15.01		150.0	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	X	1.54	75.02	18.13	0.00	150.0	±9.6 %
		Y	0.85	66.46	12.55		150.0	
40000		Z	1.09	70.54	14.22		150.0	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	X	2.85	86.00	22.76	0.00	150.0	± 9.6 %
		Y	1.20	72.00	15.52		150.0	
		Z	3.37	86.48	20.58	<u> </u>	150.0	
10293- AAB	CDMA2000, RC3, SO3, Full Rate	X	6.08	98.98	27.50	0.00	150.0	± 9.6 %
		Y	2.38	81.80	19.81		150.0	
10005		Z	91.77	132.75	32.89		150.0	
10295- AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	11.42	82.00	23.75	9.03	50.0	± 9.6 %
		Y	13.54	88.04	25.23		50.0	
	·····	Ζ	20.14	95.71	27.34		50.0	
10297- AAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	3.39	72.81	18.09	0.00	150.0	± 9.6 %
		Y	2.76	70.00	16.84		150.0	
		Z	2.84	71.20	17.58		150.0	
10298- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	Х	2.33	72.89	17.78	0.00	150.0	± 9.6 %
		Y	1.54	67.89	13.96		150.0	
40000		Z	1.61	69.51	14.40		150.0	
10299- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	4.61	76.96	19.19	0.00	150.0	±9.6 %
		Y	2.70	70.48	14.61		150.0	
40200		Z	1.96	66.96	12.10		150.0	
10300- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	3.49	71.59	16.26	0.00	150.0	± 9.6 %
		Y	1.91	65.24	11.36		150.0	
40004		Z	1.47	63.13	9.40		150.0	
10301- AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	X	6.59	70.34	20.04	4.17	80.0	± 9.6 %
		Y	5.68	68.74	18.85		80.0	
10000		Z	5.70	69.67	19.26		80.0	
10302- AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	X	7.28	71.73	21.22	4.96	80.0	± 9.6 %
		Y	6.10	69.04	19.43		80.0	
		Z	6.04	69.77	19.77		80.0	

10303- AAA	IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	X	7.35	72.51	21.62	4.96	80.0	± 9.6 %
	1014112, 040(A1V), FUSU)	Y	E 0.4	00.00		<u> </u>	l	
· · · · · ·			5.94	69.06	19.41		80.0	ļ
10304-	IEEE 802.16e WiMAX (29:18, 5ms,	Z X	5.89	69.82	19.76		80.0	
AAA	10MHz, 64QAM, PUSC)		6.69	70.97	20.39	4.17	80.0	± 9.6 %
		Y	5.59	68.42	18.66		80.0	
10205		Z	5.56	69.20	19.00		80.0	
10305- AAA	IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	X	14.75	90.64	29.58	6.02	50.0	± 9.6 %
		Y	10.18	84.38	26.41		50.0	
10000		Z	10.30	85.54	26.72		50.0	
10306- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	X	9.44	79.58	25.56	6.02	50.0	± 9.6 %
·		Y	7.33	75.98	23.40		50.0	
		Z	6.44	73.04	21.64		50.0	
10307- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	X	10.22	81.50	26.08	6.02	50.0	± 9.6 %
		Y	7.67	77.32	23.80		50.0	
		Z	7.49	77.77	23.93		50.0	
10308- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	X	10.67	82.66	26.55	6.02	50.0	± 9.6 %
		Y	7.93	78.29	24.23		50.0	
		Z	7.77	78.85	24.42	·	50.0	· · · · · · · · · · · · · · · · · · ·
10309- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)	X	9.59	79.83	25.67	6.02	50.0	±9.6 %
		Y	7.43	76.26	23.57		50.0	···· ··· ···
		Z	6.50	73.23	21.79	·	50.0	
10310- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	X	9.69	80.24	25.70	6.02	50.0	± 9.6 %
		Y	7.48	76.59	23.59		50.0	
		Z	7.35	77.19	23.79		50.0	
10311- AAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	3.76	71.88	17.62	0.00	150.0	± 9.6 %
		Y	3.12	69.22	16.46		150.0	
		Z	3.20	70.27	17.11		150.0	
10313- AAA	iDEN 1:3	X	8.04	75.55	17.71	6.99	70.0	± 9.6 %
		Y	8.89	81.65	20.17		70.0	
		Z	12.54	87.83	22.26		70.0	
10314- AAA	IDEN 1:6	X	10.06	79.94	21.38	10.00	30.0	± 9.6 %
		Y	12.66	89.89	25.48	·	30.0	
		Z	20.06	99.62	28.65		30.0	
10315- AAB	IEEE 802.11b WIFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	1.30	67.68	17.69	0.17	150.0	± 9.6 %
		Y	1.18	64.90	15.80		150.0	· · · · ·
		Ż	1.23	65.94	16.59		150.0	
10316- AAB	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle)	x	4.90	67.26	16.78	0.17	150.0	± 9.6 %
		Y	4.64	67.10	16.54	· · ·	150.0	
		Z	4.58	67.43	16.69		150.0	h -
10317- AAB	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	4.90	67.26	16.78	0.17	150.0	±9.6 %
		Y	4.64	67.10	16.54		150.0	
		Ż	4.58	67.43	16.69		150.0	
10400- AAC	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	5.01	67.47	16.66	0.00	150.0	±9.6%
		Y	4.68	67.24	16.42		150.0	· · · · · · · · · · · · · · · · · · ·
	1	Z	4.61	67.58	16.60		150.0	
					1 10.00		100.0	
10401- AAC	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	X	5.58	67.43	16.66	0.00	150.0	± 9.6 %
10401- AAC	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)					0.00	150.0 150.0	± 9.6 %

10402- AAC	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	X	5.90	68.07	16.80	0.00	150.0	± 9.6 %
		Y	5.66	67.67	16.59		150.0	
		Z	5.60	67.87	16.71		150.0	
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	X	2.46	75.92	18.53	0.00	115.0	± 9.6 %
		Y	1.45	69.17	13.90		115.0	<u> </u>
		Z	1.74	72.52	15.01		115.0	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	X	2.46	75.92	18.53	0.00	115.0	±9.6 %
		Y	1.45	69.17	13.90		115.0	
		Z	1.74	72.52	15.01		115.0	
10406- AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	X	38.96	111.40	30.01	0.00	100.0	± 9.6 %
		Y	96.63	125.46	32.24		100.0	
10110		Z	100.00	123.89	30.87		100.0	
10410- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	79.33	113.95	29.40	3.23	80.0	± 9.6 %
		Y	100.00	123.80	32.02		80.0	
40445		Z	100.00	124.20	31.74		80.0	
10415- AAA	IEEE 802.11b WiFl 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	1.01	64.64	16.23	0.00	150.0	± 9.6 %
		Y	1.03	63.36	14.90		150.0	
10110		Z	1.08	64.37	15.69		150.0	
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	X	4.76	67.00	16.58	0.00	150.0	± 9.6 %
		Y	4.53	66.92	16.37		150.0	
40447		Z	4.48	67.28	16.53		150.0	
10417- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	X	4.76	67.00	16.58	0.00	150.0	± 9.6 %
<u> </u>		Y	4.53	66.92	16.37		150.0	
10110		Z	4.48	67.28	16.53		150.0	
10418- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	X	4.74	67.14	16.57	0.00	150.0	± 9.6 %
		Y	4.53	67.10	16.40		150.0	
		Z	4.48	67.49	16. <u>5</u> 9	-	150.0	
10419- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	X	4.77	67.10	16.59	0.00	150.0	± 9.6 %
		Y	4.55	67.04	16.39		150.0	
		Z	4.49	67.42	16.58		150.0	
10422- AAA	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	X	4.90	67.10	16.59	0.00	150.0	± 9.6 %
		Υ	4.66	67.03	16.41		150.0	1
		Z	4.60	67.38	16.58		150.0	
10423- AAA	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	X	5.14	67.54	16.75	0.00	150.0	± 9.6 %
		Y	4.81	67.33	16.51		150.0	
101		Z	4.74	67.65	16.67		150.0	
10424- AAA	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	×	5.04	67.47	16.71	0.00	150.0	± 9.6 %
		Y	4.74	67.28	16.49		150.0	
10105		Z	4.66	67.61	16.65		150.0	
10425- AAA	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	X	5.61	67.86	16.86	0.00	150.0	±9.6 %
		Y	5.36	67.59	16.69		150.0	
10.0-		Z	5.29	67.80	16.81		150.0	
10426- AAA	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	X	5.62	67.87	16.86	0.00	150.0	±9.6 %
		Y	5.40	67.74	16.76	· · · · · ·	150.0	·
		Z	5.31	67.91	10.10		100.0	

V 5.39 67.63 167.60 150.0 10430. LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) X 4.60 70.33 18.46 0.00 150.0 ± 8.6 % AB Y 4.28 71.46 18.38 150.0 ± 8.6 % IO431. LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) X 4.56 67.66 16.75 0.00 150.0 ± 9.6 % IO432. LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) X 4.56 67.65 16.72 0.00 150.0 ± 9.6 % IO432. LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) X 4.83 67.55 16.72 0.00 150.0 ± 9.6 % AB Z 4.43 67.74 16.61 150.0 ± 9.6 % AB Z 4.43 67.74 16.61 150.0 ± 9.6 % AB Z 4.43 67.74 16.43 150.0 ± 9.6 % AB Z 4.68 67.64 16.75 0.00 150.0 ± 9.6 % <t< th=""><th>10427- AAA</th><th>IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)</th><th>X</th><th>5.65</th><th>67.92</th><th>16.88</th><th>0.00</th><th>150.0</th><th>± 9.6 %</th></t<>	10427- AAA	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	X	5.65	67.92	16.88	0.00	150.0	± 9.6 %
10430- AAB LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) X 4,50 77.03 18,46 0.00 150.0 ± 9.6 % 10431- AAB LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) X 4,26 77.32 18,66 150.0 ± 9.6 % 10431- AAB LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) X 4,56 67.66 16.75 0.00 150.0 ± 9.6 % 10432- AAB LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) X 4.63 67.55 16.72 0.00 150.0 ± 9.6 % 10432- AAB LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) X 4.63 67.54 16.61 150.0 ± 9.6 % 10433- LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) X 5.06 67.54 16.67 150.0 ± 9.6 % 10434- MAA W-CDMA (BS Test Model 1, 64 DPCH) X 4.58 70.97 18.48 160.0 ± 9.6 % 10435- LTE-TDD (SC-FDMA, 1 RB, 20 MHz, CIPSK, UL Subframez, 3.4,7,8,9) Y 70.07 112.66 29.06 3.23 80.0 ± 9.6 % 10447- LTE-TDD (SC-FDMA, 1 RB, 20 MHz, CIPSK, UL Subframez, 3.4,7,8,9)				5 30	67.62	46.70	·	450.0	
10430- AB LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) X 4.50 70.33 18.46 0.00 150.0 ± 9.6 % 10431- AB LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) X 4.56 67.60 16.75 0.00 150.0 10431- AB LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) X 4.56 67.50 16.75 0.00 150.0 ± 9.6 % 10432- AB LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) X 4.83 67.55 16.72 0.00 150.0 ± 9.6 % 10432- AB LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) X 5.06 67.54 16.75 0.00 150.0 ± 9.6 % 10433- AB LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) X 5.06 67.54 16.75 0.00 150.0 ± 9.6 % 10434- AAB V-CDMA (BS Test Model 1, 64 DPCH) X 4.56 70.97 18.48 0.00 150.0 ± 9.6 % 10444- AAA W-CDMA (BS Test Model 1, 64 DPCH) X 4.56 70.87 18.48 0.60 160.0 ± 9.6 % 10445- CHE-TDD (SC-FDMA, 1 RB, 20 MHz, AC 73.07 112.66 29.06 3.23 60.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
AAB Find Find <thf< td=""><td>10430-</td><td></td><td></td><td>* ··· ··· ···</td><td></td><td></td><td></td><td></td><td></td></thf<>	10430-			* ··· ··· ···					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							0.00		± 9.6 %
10431. LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) X 4.56 67.66 16.75 0.00 150.0 ± 9.6 % AAB Y 4.19 67.71 16.63 160.0 150.0 ± 9.6 % I0432. LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) X 4.83 67.55 16.72 0.00 150.0 ± 9.6 % AAB Y 4.50 67.35 16.43 160.0 ± 9.6 % I0433. LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) X 5.06 67.74 16.75 0.00 150.0 ± 9.6 % AAB Y 4.56 67.32 16.61 150.0 ± 9.6 % AAB Y 4.58 70.37 18.48 0.00 150.0 ± 9.6 % AAA Y 4.39 72.38 18.32 150.0 ± 9.6 % AAA Y 4.39 72.38 18.48 150.0 ± 9.6 % AAA Y 100.00 123.60 31.93 80.0 ± 9.6 % AAA CIPPSK, UL Subframe=2,3.4.7,8.9 Y 100.00 123.60 31.64 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>150.0</td><td></td></t<>								150.0	
10431. LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) X 4.56 67.66 16.75 0.00 150.0 ± 9.6 % AB Z 4.12 67.51 16.33 160.0 10432. LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) X 4.83 67.55 16.72 0.00 150.0 ± 9.6 % AAB Y 4.50 67.35 16.61 160.0 ± 9.6 % 10433. LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) X 5.06 67.74 16.61 150.0 ± 9.6 % AAB Y 4.75 67.32 16.51 150.0 ± 9.6 % I0434. W-CDMA (BS Test Model 1, 64 DPCH) X 4.58 70.79 18.48 0.00 150.0 ± 9.6 % AAA Y 4.39 72.38 18.32 160.0 ± 9.6 % A.64 150.0 ± 9.6 % A.64 150.0 ± 9.6 % A.64 16.67 150.0 ± 9.6 % A.64 150.0 ± 9.6 % A.64 16.67 150.0 ± 9.6 % A.64 150.0 ± 9.6 % A.64 16.00 150.0 ± 9.6 %			Z	4.28	72.32	18.56		150.0	
Z 4.12 67.97 16.50 150.0 AAB LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) X 4.83 67.55 16.72 0.00 150.0 ± 9.6 % AAB Z 4.43 67.36 16.43 150.0 ± 9.6 % AAB LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) X 5.06 67.54 16.75 0.00 150.0 ± 9.6 % AAB Y 4.75 67.22 16.51 150.0 ± 9.6 % AAA Y 4.75 67.22 16.51 150.0 ± 9.6 % AAA Y 4.39 72.38 18.48 0.00 150.0 ± 9.6 % AAA Y 4.39 72.38 18.48 150.0 ± 9.6 % AAC QPSK, UL Subframe=2.34,7.8,9) Y 100.00 123.89 31.64 80.0 10447- LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, X 3.91 67.87 16.49 0.00 150.0 ± 9.6 % AAB LTE-FDD (OFDMA, 16 MHz, E-TM 3.		LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	X	4.56			0.00		± 9.6 %
Class- AAB LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) X 4.82 4.83 67.55 16.72 16.73 0.00 150.0 ± 9.6 % AAB Y 4.60 67.35 16.73 16.83 150.0 ± 9.6 % AAB LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) X 5.06 67.54 16.71 150.0 ± 9.6 % AAB LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) X 5.06 67.54 16.71 150.0 ± 9.6 % AAA Y 4.76 67.32 16.61 150.0 ± 9.6 % AAA Y 4.39 72.38 18.48 0.00 150.0 ± 9.6 % AAA Y 4.39 72.38 18.48 150.0 ± 9.6 % AAA Z 4.42 73.07 112.66 29.06 3.23 80.0 ± 9.6 % AAS QPSK ULSubframe=2,34,78,9) Y 100.00 123.86 31.64 80.0 10447- LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, X 3.91 67.87 16.49<			Y	4.19	67.51	16.33		150.0	
10432. AAB LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) X 4.83 67.55 16.72 0.00 156.0 10433. AAB LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) X 5.06 67.54 16.61 160.0 ±9.6 % 10433. AAB LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) X 5.06 67.54 16.75 0.00 150.0 ±9.6 % 10434- MAA W-CDMA (BS Test Model 1, 64 DPCH) X 4.58 70.97 18.48 0.00 150.0 ±9.6 % AAA W-CDMA (BS Test Model 1, 64 DPCH) X 4.58 70.97 18.48 0.00 150.0 ±9.6 % AAA UTE-FDD (SC-FDMA, 1 R8, 20 MHz, AAC QPSK, UL Subframe=2,3.4.7,8,9) Y 73.07 112.66 29.06 3.23 80.0 ± 9.6 % AAB Clippin 44%) Y 3.41 66.80 156.2 150.0 10444- LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, AB X 4.36 67.43 16.81 0.00 150.0 ± 9.6 % 10444- LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, AB			Z	4.12	67.97	16.50			
Intersection Z 4.43 67.74 16.61 150.0 AAB LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) X 5.06 67.54 16.75 0.00 150.0 ± 9.6 % 10434- AAB W-CDMA (BS Test Model 1, 64 DPCH) X 4.58 70.97 18.48 0.00 150.0 ± 9.6 % 10434- MAA W-CDMA (BS Test Model 1, 64 DPCH) X 4.58 70.97 18.48 0.00 150.0 ± 9.6 % AAA Y 4.33 72.38 18.32 150.0 ± 9.6 % AAC GPSK, UL Subframe=2,3.4,7,8,9) Y 100.00 123.60 31.93 80.0 ± 9.6 % AAC GPSK, UL Subframe=2,3.4,7,8,9) Y 100.00 123.60 31.93 80.0 ± 9.6 % AAB Clipping 44%) Y 3.47 67.50 16.53 150.0 ± 9.6 % AAB Clipping 44%) Y 3.47 67.63 16.61 0.00 150.0 ± 9.6 % AAB Clipping 44%)		LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	X				0.00		± 9.6 %
Z 4.43 67.74 16.61 150.0 AAB LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) X 5.06 67.54 16.75 0.00 150.0 ± 9.6 % AAB Y 4.75 67.32 16.51 150.0 ± 9.6 % 10434- W-CDMA (BS Test Model 1, 64 DPCH) X 4.58 70.97 18.48 0.00 150.0 ± 9.6 % AAA			Y	4.50	67.35	16.43		150.0	
10433- AAB LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) X 5.06 67.54 16.75 0.00 150.0 ± 9.6 % 10434- AAA W-CDMA (BS Test Model 1, 64 DPCH) X 4.88 67.64 16.67 150.0 ± 9.6 % 10434- AAA W-CDMA (BS Test Model 1, 64 DPCH) X 4.88 67.64 16.67 150.0 ± 9.6 % 10435- AAC LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) Y 73.07 112.66 29.06 3.23 80.0 ± 9.6 % 10447- AAC LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, AB Y 100.00 123.86 31.64 80.0 ± 9.6 % 10447- CHping 44%) Y 3.31 67.87 16.49 0.00 150.0 ± 9.6 % 10448- CHping 44%) Y 3.47 67.50 15.53 150.0 ± 9.6 % 10448- CHping 44%) Y 4.34 68.08 15.62 150.0 ± 9.6 % 10448- CHping 44%) Y 4.32 67.77 16.33 150.0 ± 9.6 % <t< td=""><td></td><td></td><td>Z</td><td>4.43</td><td></td><td></td><td></td><td></td><td></td></t<>			Z	4.43					
Z 4.68 67.64 16.67 150.0 AAA W-CDMA (BS Test Model 1, 64 DPCH) X 4.58 70.97 18.48 0.00 150.0 ± 9.6 % AAA Y 4.39 72.38 18.42 150.0 ± 9.6 % 10435- AAC QPSK, UL Subfram=2,3,4,7,8,9) Y 100.00 123.60 31.93 60.0 10447- AAB CIIpping 44%) Y 3.91 67.67 16.49 0.00 150.0 ± 9.6 % 10447- AAB CIIpping 44%) Y 3.47 67.50 15.53 150.0 ± 9.6 % 10447- AAB CIIpping 44%) Y 3.44 68.08 15.62 150.0 ± 9.6 % AAB CIIppin 44%) Y 4.36 67.43 16.61 0.00 150.0 ± 9.6 % AAB CIIppin 44%) Y 4.427 67.58 16.63 0.00 150.0 ± 9.6 % 10449- AAB LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, CIIppin 44%) Y 4.27 67.58		LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)					0.00		± 9.6 %
Z 4.68 67.64 16.67 150.0 AAA W-CDMA (BS Test Model 1, 64 DPCH) X 4.58 70.97 18.48 0.00 150.0 ± 9.6 % AAA Y 4.39 72.38 18.42 150.0 ± 9.6 % 10435- AAC LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subfram=2,3,4,7,8,9) Y 100.00 123.60 31.93 60.0 10447- AAC QPSK, UL Subfram=2,3,4,7,8,9) Y 100.00 123.98 31.64 80.0 150.0 ± 9.6 % 10447- AAB CIlpping 44%) X 3.91 67.67 15.53 150.0 ± 9.6 % AAB CIlpping 44%) Y 3.47 67.60 15.62 150.0 ± 9.6 % AB Cilppin 44%) Y 4.04 67.29 16.20 150.0 ± 9.6 % AB Cilppin 44%) Y 4.36 67.73 16.63 0.00 150.0 ± 9.6 % AB Cilppin 44%) Y 4.32 67.58 16.51			Y	4.75	67.32	16.51		150.0	
10434- AAA W-CDMA (BS Test Model 1, 64 DPCH) X 4.58 70.97 18.48 0.00 150.0 ± 9.6 % Idvada X 4.39 72.38 18.32 150.0 10435- Idvada LTE-TDD (SC-FDMA, 1 RB, 20 MHz, GPSK, UL Subframe=2,3,4,7,8,9) X 73.07 112.66 29.06 3.23 80.0 ± 9.6 % AAC GPSK, UL Subframe=2,3,4,7,8,9) Y 100.00 123.60 31.93 80.0 ± 9.6 % AAB Clipping 44%) Y 100.00 123.60 31.93 80.0 ± 9.6 % 10447- LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, X 3.91 67.87 16.49 0.00 150.0 ± 9.6 % 10448- LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, X 4.36 67.43 16.61 0.00 150.0 ± 9.6 % AAB Clippin 44%) Y 4.04 87.29 16.20 150.0 ± 9.6 % AAB Clippin 44%) Y 4.32 67.77 16.38 150.0 150.0									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		W-CDMA (BS Test Model 1, 64 DPCH)					0.00		± 9.6 %
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	MMA		+			<u> </u>			
10435- AAC LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) Y 100.00 123.60 31.93 80.0 ± 9.6 % 10447- AAB LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, AB X 3.91 67.87 16.49 0.00 150.0 ± 9.6 % 10444- AAB LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, AB X 3.91 67.87 16.49 0.00 150.0 ± 9.6 % 10448- AAB LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, AB X 4.36 67.43 16.61 0.00 150.0 ± 9.6 % 10448- AAB LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, AB X 4.36 67.43 16.61 0.00 150.0 ± 9.6 % 10449- AAB LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, AB X 4.59 67.77 16.33 150.0 ± 9.6 % 10449- Clipping 44%) Y 4.62 67.08 16.51 150.0 ± 9.6 % AAB Clipping 44%) Y 4.52 67.08 16.54 150.0 ± 9.6 % AAB Clipping 44%) Y 4.52 67.08 16.54 150.0 ± 9.6 % AAB Clipping 44%									
AAC QPSK, UL Subframe=2,3,4,7,8,9 Y 100.00 123.60 31.93 80.0 10447- LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, AAB Z 100.00 123.80 31.64 80.0 10447- LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, AAB X 3.91 67.87 16.49 0.00 150.0 ± 9.6 % 10448- LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, AAB X 4.36 67.43 16.61 0.00 150.0 ± 9.6 % 10449- LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, AAB X 4.36 67.43 16.61 0.00 150.0 ± 9.6 % 10449- LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, AAB X 4.59 67.37 16.63 0.00 150.0 ± 9.6 % 10450- LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, AAB X 4.59 67.37 16.63 0.00 150.0 ± 9.6 % AAB Clipping 44%) Y 4.32 67.18 16.36 150.0 ± 9.6 % AAB Clipping 44%) Y 4.52 67.08 16.36								150.0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)					3.23	80.0	± 9.6 %
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				100.00	123.60	31.93		80.0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Z	100.00	123.98	31.64			
Industa Z 3.41 68.08 15.62 150.0 10448- AAB LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) X 4.36 67.43 16.61 0.00 150.0 ± 9.6 % 10449- AAB LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%) Y 4.04 67.29 16.20 150.0 ± 9.6 % AAB Cliping 44%) Y 4.02 67.37 16.63 0.00 150.0 ± 9.6 % AAB Cliping 44%) Y 4.32 67.18 16.53 150.0 ± 9.6 % 10450- AAB LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) X 4.75 67.28 16.61 150.0 ± 9.6 % 10450- AAB LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) X 4.75 67.28 16.54 150.0 ± 9.6 % AAB Clipping 44%) Y 4.52 67.08 16.35 0.00 150.0 ± 9.6 % AAA W-CDMA (BS Test Model 1, 64 DPCH, AAA X 3.88 68.25 16.35 0.00 150.0			X	3.91	67.87	16.49	0.00		± 9.6 %
Industa Z 3.41 68.08 15.62 150.0 10448- AAB LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) X 4.36 67.43 16.61 0.00 150.0 ± 9.6 % 10449- AAB LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%) Y 4.04 67.29 16.20 150.0 ± 9.6 % AAB Cliping 44%) Y 4.02 67.37 16.63 0.00 150.0 ± 9.6 % AAB Cliping 44%) Y 4.32 67.18 16.53 150.0 ± 9.6 % 10450- AAB LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) X 4.75 67.28 16.61 150.0 ± 9.6 % 10450- AAB LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) X 4.75 67.28 16.54 150.0 ± 9.6 % AAB Clipping 44%) Y 4.52 67.08 16.35 0.00 150.0 ± 9.6 % AAA W-CDMA (BS Test Model 1, 64 DPCH, AAA X 3.88 68.25 16.35 0.00 150.0			Y	3.47	67.50	15.53		150.0	
10448- AAB LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) X 4.36 67.43 16.61 0.00 150.0 ± 9.6 % I0449- AAB LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) Y 4.04 67.29 16.20 150.0 ± 9.6 % I0449- AAB LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) X 4.59 67.37 16.63 0.00 150.0 ± 9.6 % I0450- AAB LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) X 4.59 67.37 16.62 0.00 150.0 ± 9.6 % I0450- AAB LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) X 4.75 67.29 16.62 0.00 150.0 ± 9.6 % I0451- AAB V-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) X 3.88 68.25 16.35 0.00 150.0 ± 9.6 % I0456- AAA V-CDMA (BS Test Model 1, 64 -QAM, AAA Y 3.34 67.60 15.06 150.0 ± 9.6 % I0456- AAA IEEE 802.11ac WiFi (160MHz, 64-QAM, AAA X 6.45 68.48 17.01 0.00 1									
Y 4.04 67.29 16.20 150.0 I0449- AAB LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%) X 4.59 67.37 16.63 0.00 150.0 ± 9.6 % I0450- AAB Y 4.32 67.18 16.33 150.0 ± 9.6 % I0450- AAB LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) X 4.75 67.29 16.62 0.00 150.0 ± 9.6 % I0450- AAB LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) X 4.75 67.29 16.62 0.00 150.0 ± 9.6 % I0451- AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) X 3.88 68.25 16.35 0.00 150.0 ± 9.6 % I0451- AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) X 3.88 68.25 16.35 0.00 150.0 ± 9.6 % I0455- AAA IEEE 802.11ac WiFi (160MHz, 64-QAM, AAA X 6.45 68.48 17.01 0.00 150.0 ± 9.6 % I0455- AAA IEEE 802.11ac WiFi (160MHz, 64-QAM, AAA X 6.4							0.00		± 9.6 %
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Y	4 04	67.29	16.20		150.0	
10449- AAB LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%) X 4.59 67.37 16.63 0.00 150.0 ± 9.6 % AAB Y 4.32 67.18 16.33 150.0 10450- 10450- AAB LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, AAB X 4.75 67.29 16.62 0.00 150.0 ± 9.6 % 10450- AAB LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, AAB X 4.75 67.29 16.62 0.00 150.0 ± 9.6 % AAB Clipping 44%) Y 4.52 67.08 16.36 150.0 ± 9.6 % I0451- AAA W-CDMA (BS Test Model 1, 64 DPCH, AAA X 3.88 68.25 16.35 0.00 150.0 ± 9.6 % I0456- AAA V-CDMA (BS Test Model 1, 64 -QAM, AAA X 6.45 68.48 17.01 0.00 150.0 ± 9.6 % I0456- AAA IEEE 802.11ac WiFi (160MHz, 64-QAM, AAA X 6.45 68.48 17.01 0.00 150.0 ± 9.6 % I0457- AAA UMTS-FDD (DC-HSDPA) X									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							0.00		±9.6 %
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			İΥ	4.32	67.18	16.33		150.0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							0.00		± 9.6 %
Z 4.47 67.43 16.54 150.0 10451- AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) X 3.88 68.25 16.35 0.00 150.0 ± 9.6 % AAA Y 3.34 67.60 15.06 150.0 ± 9.6 % AAA Y 3.34 67.60 15.06 150.0 ± 9.6 % IMAS Y 3.34 67.60 15.06 150.0 ± 9.6 % 10456- AAA IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle) X 6.45 68.48 17.01 0.00 150.0 ± 9.6 % AAA 99pc duty cycle) Y 6.28 68.20 16.88 150.0 ± 9.6 % AAA Y 3.87 65.68 16.38 0.00 150.0 ± 9.6 % 10457- AAA UMTS-FDD (DC-HSDPA) X 3.87 65.68 16.38 0.00 150.0 ± 9.6 % AAA Z 3.81 65.57 16.07 150.0 ± 9.6 % AAA			Y	4.52	67.08	16.36		150.0	
10451- AAA W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) X 3.88 68.25 16.35 0.00 150.0 ± 9.6 % AAA Y 3.34 67.60 15.06 150.0 150.0 ± 9.6 % Image: Clipping 44%) Z 3.25 68.08 15.03 150.0 ± 9.6 % 10456- AAA IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle) Y 6.45 68.48 17.01 0.00 150.0 ± 9.6 % AAA 99pc duty cycle) Y 6.28 68.20 16.88 150.0 ± 9.6 % Image: Clipping 44%) Y 6.28 68.20 16.88 150.0 ± 9.6 % AAA 99pc duty cycle) Y 6.28 68.20 16.88 150.0 ± 9.6 % 10457- AAA UMTS-FDD (DC-HSDPA) X 3.87 65.68 16.37 0.00 150.0 ± 9.6 % AAA CDMA2000 (1xEV-DO, Rev. B, 2 X 3.63 67.17 15.82 0.00 150.0 ± 9.6 % AAA Clipping 44% Y 3.13 66.82 14.32 150.0					1				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			X		+		0.00		± 9.6 %
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Y	3.34	67.60	15.06		150.0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							0.00		± 9.6 %
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Y	6.28	68.20	16.88		150.0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		UMTS-FDD (DC-HSDPA)	X	3.87			0.00		±9.6 %
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Y	3.81	65.57	16.07		150.0	
10458- AAA CDMA2000 (1xEV-DO, Rev. B, 2 carriers) X 3.63 67.17 15.82 0.00 150.0 ± 9.6 % Y 3.13 66.82 14.32 150.0 150.0 100 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
Z 2.97 66.93 13.99 150.0 10459- AAA CDMA2000 (1xEV-DO, Rev. B, 3 carriers) X 4.79 65.36 16.37 0.00 150.0 ± 9.6 % Y 4.24 65.27 15.46 150.0 150.0							0.00		±9.6 %
Z 2.97 66.93 13.99 150.0 10459- AAA CDMA2000 (1xEV-DO, Rev. B, 3 carriers) X 4.79 65.36 16.37 0.00 150.0 ± 9.6 % Y 4.24 65.27 15.46 150.0 150.0			Y	3.13	66.82	14.32		150.0	
10459- AAA CDMA2000 (1xEV-DO, Rev. B, 3 carriers) X 4.79 65.36 16.37 0.00 150.0 ± 9.6 % Y 4.24 65.27 15.46 150.0 ±									
Y 4.24 65.27 15.46 150.0							0.00		± 9.6 %
			l v	4 24	65.27	15.46		150.0	
			Z	4.13	65.72	15.38		150.0	

10460-	UMTS-FDD (WCDMA, AMR)	X	1.54	79.74	21.99	0.00	150.0	± 9.6 %
AAA			0.05		10.01			
		Y Z	0.95	69.06 73.20	16.64		150.0	
10461- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	118.00	19.00 30.59	3.29	150.0 80.0	± 9.6 %
		Y	100.00	127.27	33.69		80.0	
		Z	100.00	128.13	33.61		80.0	
10462- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	108.76	26.18	3.23	80.0	± 9.6 %
		Y	100.00	111.69	26.26		80.0	
40400		Z	100.00	109.78	24.92		80.0	
10463- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	61.06	101.21	23.94	3.23	80.0	± 9.6 %
		Y	100.00	108.45	24.70		80.0	
10464-	LTE-TDD (SC-FDMA, 1 RB, 3 MHz,	Z X	9.38 100.00	82.48 116.66	17.38 29.84	3.23	80.0 80.0	± 9.6 %
AAA	QPSK, UL Subframe=2,3,4,7,8,9)							
		Y	100.00	125.35	32.64		80.0	
10465-	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-	Z X	100.00	125.94	32.43		80.0	
AAA	QAM, UL Subframe=2,3,4,7,8,9)	Y		108.47	26.02	3.23	80.0	± 9.6 %
			100.00 44.16	<u>111.17</u> 100.58	26.01 22.73	<u> </u>	80.0	
10466-	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-	X	44.10	96.75	22.73	3.23	80.0	100%
AAA	QAM, UL Subframe=2,3,4,7,8,9)	Y	42.99	98.93		3.23	80.0	± 9.6 %
		Z	42.99 5.89	77.61	22.41 15.84		80.0	
10467- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	116.79	29.90	3.23	80.0 80.0	± 9.6 %
		Y	100.00	125.60	32.75		80.0	
		Z	100.00	126.22	32.56		80.0	
10468- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	108.56	26.07	3.23	80.0	± 9.6 %
		Y	100.00	111.35	26.09		80.0	
		Z	61.74	104.33	23.64		80.0	
10469- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	43.83	97.08	22.83	3.23	80.0	± 9.6 %
		Y	46.06	99.70	22.59		80.0	
10170		Z	6.04	77.89	15.93		80.0	
10470- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	116.81	29.90	3.23	80.0	±9.6 %
111		Y	100.00	125.63	32.76	<u> </u>	80.0	
10471-		Z	100.00	126.25	32.56		80.0	
AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	108.53	26.05	3.23	80.0	±9.6 %
		Y Z	100.00	111.31	26.07		80.0	
10472- AAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	61.64 44.10	104.26 97.14	23.61 22.84	3.23	80.0 80.0	± 9.6 %
		Y	46.39	99.73	22.59	<u> </u>	80.0	— —
		z	6.02	77.83	15.90	<u> </u>	80.0	
10473- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	116.79	29.89	3.23	80.0	±9.6 %
		Y	100.00	125.60	32.74		80.0	
		Z	100.00	126.23	32.55		80.0	
10474- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	108.54	26.05	3.23	80.0	±9.6 %
		Y	100.00	111.32	26.07		80.0	
40475		Z	60.20	104.02	23.55		80.0	
10475- AAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	43.66	97.03	22.81	3.23	80.0	±9.6 %
		Y	44.87	99.39	22.51		80.0	
		Z	5.94	77.72	15.87		80.0	

10477- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	108.43	26.00	3.23	80.0	±9.6 %
		Y	100.00	111.14	25.99		80.0	
		Z	48.11	101.47	22.92		80.0	
10478- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	43.04	96.84	22.76	3.23	80.0	± 9.6 %
		Y	43.24	98.94	22.39		80.0	
		Z	5.86	77.55	15.80		80.0	
10479- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	18.43	95.26	26.62	3.23	80.0	± 9.6 %
		Y	47.63	113.17	30.89		80.0	
10480-		Z	79.42	120.84	32.18		80.0	
AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	×	15.38	87.90	23.16	3.23	80.0	± 9.6 %
•		Y	35.80	101.51	25.84		80.0	
10481-	ITE TOD (00 EDMA SON DD 4 411)	Z	33.10	99.76	24.57		80.0	
AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	14.20	86.14	22.35	3.23	80.0	± 9.6 %
		Y	23.64	94.76	23.60		80.0	
10482-		Z	17.83	90.68	21.64		80.0	
AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	11.00	86.13	22.59	2.23	80.0	± 9.6 %
		Y	6.54	80.66	19.81		80.0	
10400		Z	10.00	86.91	21.46	0.00	80.0	
10483- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	11.81	84.53	22.26	2.23	80.0	± 9.6 %
		 I 	9.59	82.56	20.08		80.0	
10404		Z	5.79	75.74	16.81	0.00	80.0	
10484- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	11.16	83.50	21.93	2.23	80.0	± 9.6 %
		Y	8.15	80.18	19.27		80.0	
10105		Z	5.05	73.86	16.10		80.0	
10485- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	11.03	86.44	23.15	2.23	80.0	± 9.6 %
		Y	6.87	82.16	21.41		80.0	
10100		Z	9.87	88.59	23.41		80.0	
10486- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	6.95	77.02	19.85	2.23	80.0	± 9.6 %
		Y	4.98	74.27	17.96		80.0	
		Z	5.53	76.50	18.48		80.0	
10487- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	×	6.82	76.43	19.65	2.23	80.0	±9.6 %
		Y	4.85	73.54	17.65		80.0	
10488-	LTE-TDD (SC-FDMA, 50% RB, 10 MHz,	Z X	5.25 9.46	75.41 82.96	18.04 22.30	2.23	80.0 80.0	± 9.6 %
AAC	QPSK, UL Subframe=2,3,4,7,8,9)	Y	5.99	78.96	21.12		80.0	l ·
		Z	6.82	82.33	21.12	1	80.0	
10489- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	6.62	75.52	19.96	2.23	80.0	± 9.6 %
		Y	4.91	73.20	18.90		80.0	
	· · · · · · · · · · · · · · · · · · ·	Z	5.11	74.84	19.54		80.0	1
10490- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	6.56	74.88	19.76	2.23	80.0	± 9.6 %
		Y	4.94	72.82	18.76		80.0	
		Z	5.10	74.33	19.33		80.0	
10491- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.98	78.75	20.93	2.23	80.0	± 9.6 %
		Y	5.56	75.73	20.09		80.0	ļ
		Z	5.84	77.68	21.00	L	80.0	l
10492- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	6.52	73.74	19.47	2.23	80.0	± 9.6 %
		Y	5.01	71.66	18.63		80.0	
		Z	5.04	72.68	19.10		80.0	

10493- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	6.52	73.38	19.36	2.23	80.0	± 9.6 %
		Y	5.05	71.42	18.55	<u> </u>	80.0	
		Ż	5.05	72.38	18.97	<u> </u>	80.0	
10494- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	9.30	81.16	21.56	2.23	80.0	± 9.6 %
		Y	6.19	77.55	20.65		80.0	1
		Z	6.63	79.81	21.68		80.0	· · · ·
10495- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	6.75	74.54	19.74	2.23	80.0	± 9.6 %
		Y	5.09	72.10	18.86		80.0	
		Z	5.10	73.07	19.34		80.0	
10496- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	6.67	73.87	19.53	2.23	80.0	±9.6 %
		Y	5.11	71.66	18.72		80.0	
10.107		Z	5.11	72.57	19.16		80.0	
10497- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	9.58	84.00	21.43	2.23	80.0	± 9.6 %
		Y	4.27	74.12	16.39		80.0	
40400		Z	5.12	76.54	16.66		80.0	
10498- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	6.19	75.19	17.72	2.23	80.0	± 9.6 %
		Ý	2.33	64.39	11.23		80.0	· · · · · ·
1010-		Z	1.83	62.54	9.68		80.0	
10499- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	6.08	74.60	17.40	2.23	80.0	± 9.6 %
		Y	2.20	63.55	10.68		80.0	<u> </u>
		Z	1.70	61.64	9.07		80.0	
10500- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	9.69	83.97	22.50	2.23	80.0	± 9.6 %
		Y	6.26	80.30	21.12		80.0	
10501		Z	7.99	85.23	22.80		80.0	
10501- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	6.73	76.14	19.79	2.23	80.0	± 9.6 %
		Y	4.97	73.89	18.33		80.0	
40,000		Z	5.41	76.03	18.94		80.0	
10502- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	6.66	75.65	19.59	2.23	80.0	± 9.6 %
		Y	4.97	73.54	18.13		80.0	
40500		Z	5.36	75.51	18.67		80.0	
10503- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	9.33	82.74	22.21	2.23	80.0	± 9.6 %
		Y	5.90	78.70	21.01		80.0	
10504-		Z	6.71	82.03	22.35		80.0	
AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	6.59	75.44	19.92	2.23	80.0	± 9.6 %
			4.88	73.08	18.84		80.0	
10505-	LTE-TDD (SC-FDMA, 100% RB, 5 MHz,	Z X	5.07	74.71	19.47		80.0	
AAC	64-QAM, UL Subframe=2,3,4,7,8,9)		6.52	74.79	19.72	2.23	80.0	±9.6 %
	<u> </u>	Y	4.91	72.71	18.70		80.0	
10506-	LTE-TDD (SC-FDMA, 100% RB, 10	Z X	5.07	74.21	19.27		80.0	
AAC	MHz, QPSK, UL Subframe=2,3,4,7,8,9)		9.21	81.00	21.50	2.23	80.0	± 9.6 %
		Y	6.13	77.37	20.57		80.0	
10507-	LTE-TDD (SC-FDMA, 100% RB, 10	Z	6.56	79.62	21.60		80.0	L
10507- AAC	MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	6.72	74.48	19.71	2.23	80.0	± 9.6 %
		Y	5.07	72.03	18.82		80.0	

10509- LTE-T AAC MHz, 0 10510- LTE-T AAC MHz, 0 10511- LTE-T AAC MHz, 0 10511- LTE-T AAC MHz, 0 10511- LTE-T AAC MHz, 0 10512- LTE-T AAC MHz, 0 10513- LTE-T AAC MHz, 0 10513- LTE-T AAC MHz, 6 Subfra Subfra 10513- LTE-T AAC MHz, 6 Subfra Subfra 10514- LTE-T AAC MHz, 6 Subfra Subfra 10514- LTE-T AAA Mbps, 10515- IEEE & AAA Mbps, 10517- IEEE & AAA Mbps, 10518- IEEE & AAA Mbps, 10519- IEEE &	ame=2,3,4,7,8,9) TDD (SC-FDMA, 100% RB, 15 QPSK, UL Subframe=2,3,4,7,8,9) TDD (SC-FDMA, 100% RB, 15 16-QAM, UL ame=2,3,4,7,8,9) TDD (SC-FDMA, 100% RB, 15 64-QAM, UL ame=2,3,4,7,8,9) TDD (SC-FDMA, 100% RB, 20 QPSK, UL Subframe=2,3,4,7,8,9)	Y Z X Y Z X Y Z X Y Y	5.09 5.09 8.15 5.99 6.17 6.94 5.42 5.37 6.87	71.58 72.48 77.43 74.82 76.24 73.36 71.16 71.81	18.67 19.12 20.26 19.62 20.35 19.32 18.60	2.23	80.0 80.0 80.0 80.0 80.0 80.0 80.0	± 9.6 %
AAC MHz, 0 10510- LTE-T AAC MHz, 0 Subfra - 10511- LTE-T AAC MHz, 0 10511- LTE-T AAC MHz, 0 10512- LTE-T AAC MHz, 0 10512- LTE-T AAC MHz, 0 10513- LTE-T AAC MHz, 0 Subfra - 10514- LTE-T AAC Mbps, 10515- IEEE 8 AAA Mbps, 10517- IEEE 8 AAA Mbps, 10518- IEEE 8 AAA Mbps, 10519- IEEE 8	QPSK, UL Subframe=2,3,4,7,8,9) TDD (SC-FDMA, 100% RB, 15 16-QAM, UL ame=2,3,4,7,8,9) TDD (SC-FDMA, 100% RB, 15 64-QAM, UL ame=2,3,4,7,8,9) TDD (SC-FDMA, 100% RB, 20	X Y Z X Y Z X Y	8.15 5.99 6.17 6.94 5.42 5.37	72.48 77.43 74.82 76.24 73.36 71.16	19.12 20.26 19.62 20.35 19.32		80.0 80.0 80.0 80.0	
AAC MHz, 0 10510- LTE-T AAC MHz, 0 10511- LTE-T AAC MHz, 0 10511- LTE-T AAC MHz, 0 10511- LTE-T AAC MHz, 0 10512- LTE-T AAC MHz, 0 10513- LTE-T AAC MHz, 0 10513- LTE-T AAC MHz, 0 10513- LTE-T AAC MHz, 6 Subfra Subfra 10514- LTE-T AAC MHz, 6 Subfra Subfra 10515- IEEE & AAA Mbps, 10516- IEEE & AAA Mbps, 10518- IEEE & AAA Mbps, 10519- IEEE &	QPSK, UL Subframe=2,3,4,7,8,9) TDD (SC-FDMA, 100% RB, 15 16-QAM, UL ame=2,3,4,7,8,9) TDD (SC-FDMA, 100% RB, 15 64-QAM, UL ame=2,3,4,7,8,9) TDD (SC-FDMA, 100% RB, 20	Y Z X Y Z X Y	5.99 6.17 6.94 5.42 5.37	74.82 76.24 73.36 71.16	19.62 20.35 19.32		80.0 80.0 80.0	
AAC MHz, f Subfra 10511- AAC LTE-T MHz, 6 Subfra 10512- AAC LTE-T MHz, 6 10513- AAC LTE-T MHz, 6 10513- AAC LTE-T MHz, 6 10513- AAC LTE-T MHz, 6 10514- AAC LTE-T MHz, 6 10515- AAA IEEE 8 Mbps, 10516- AAA IEEE 8 Mbps, 10517- AAA IEEE 8 Mbps, 10518- AAA IEEE 8 Mbps, 10518- AAA IEEE 8 Mbps, 10518- AAA IEEE 8 Mbps, 10519- IEEE 8 IEEE 8	16-QAM, UL ame=2,3,4,7,8,9) TDD (SC-FDMA, 100% RB, 15 64-QAM, UL ame=2,3,4,7,8,9) TDD (SC-FDMA, 100% RB, 20	Z X Y Z X Y	6.17 6.94 5.42 5.37	76.24 73.36 71.16	20.35 19.32	2.23	80.0	± 9.6 %
AAC MHz, f Subfra 10511- AAC LTE-T MHz, 6 Subfra 10512- AAC LTE-T MHz, 6 10513- AAC LTE-T MHz, 6 10513- AAC LTE-T MHz, 6 10514- AAC LTE-T MHz, 6 10515- AAC LTE-T MHz, 6 10515- AAA Mbps, 10516- AAA IEEE 8 Mbps, 10517- AAA IEEE 8 Mbps, 10518- AAA IEEE 8 Mbps, 10518- AAA IEEE 8 Mbps, 10519- IEEE 8 IEEE 8	16-QAM, UL ame=2,3,4,7,8,9) TDD (SC-FDMA, 100% RB, 15 64-QAM, UL ame=2,3,4,7,8,9) TDD (SC-FDMA, 100% RB, 20	X Y Z X Y	6.94 5.42 5.37	73.36 71.16	19.32	2.23		±9.6 %
AAC MHz, f Subfra 10511- AAC LTE-T MHz, 6 Subfra 10512- AAC LTE-T MHz, 6 10513- AAC LTE-T MHz, 6 10513- AAC LTE-T MHz, 6 10513- AAC LTE-T MHz, 6 10514- AAC LTE-T MHz, 6 10515- AAA IEEE 8 Mbps, 10516- AAA IEEE 8 Mbps, 10517- AAA IEEE 8 Mbps, 10518- AAA IEEE 8 Mbps, 10518- AAA IEEE 8 Mbps, 10518- AAA IEEE 8 Mbps, 10519- IEEE 8 IEEE 8	16-QAM, UL ame=2,3,4,7,8,9) TDD (SC-FDMA, 100% RB, 15 64-QAM, UL ame=2,3,4,7,8,9) TDD (SC-FDMA, 100% RB, 20	Y Z X Y	5.42 5.37	71.16		2.23	80.0	± 9.6 %
AAC MHz, 6 Subfra - 10512- LTE-T AAC MHz, 0 10513- LTE-T AAC MHz, 0 10513- LTE-T AAC MHz, 0 10513- LTE-T AAC MHz, 6 Subfra - 10514- LTE-T AAC MHz, 6 Subfra - 10515- IEEE 8 AAA Mbps, 10516- IEEE 8 AAA Mbps, 10517- IEEE 8 AAA Mbps, 10518- IEEE 8 AAA Mbps, 10518- IEEE 8 AAA Mbps, 10519- IEEE 8	64-QAM, UL ame=2,3,4,7,8,9) TDD (SC-FDMA, 100% RB, 20	Z X Y	5.37		18.60		1 1	//
AAC MHz, 6 Subfra - 10512- LTE-T AAC MHz, 0 10513- LTE-T AAC MHz, 0 10513- LTE-T AAC MHz, 0 10513- LTE-T AAC MHz, 6 Subfra - 10514- LTE-T AAC MHz, 6 Subfra - 10515- IEEE 8 AAA Mbps, 10516- IEEE 8 AAA Mbps, 10517- IEEE 8 AAA Mbps, 10518- IEEE 8 AAA Mbps, 10518- IEEE 8 AAA Mbps, 10519- IEEE 8	64-QAM, UL ame=2,3,4,7,8,9) TDD (SC-FDMA, 100% RB, 20	X Y		71.81			80.0	Í
AAC MHz, 6 Subfra - 10512- LTE-T AAC MHz, 0 10513- LTE-T AAC MHz, 0 10513- LTE-T AAC MHz, 0 10513- LTE-T AAC MHz, 6 Subfra - 10514- LTE-T AAC MHz, 6 Subfra - 10515- IEEE 8 AAA Mbps, 10516- IEEE 8 AAA Mbps, 10517- IEEE 8 AAA Mbps, 10518- IEEE 8 AAA Mbps, 10518- IEEE 8 AAA Mbps, 10519- IEEE 8	64-QAM, UL ame=2,3,4,7,8,9) TDD (SC-FDMA, 100% RB, 20	Y	6.87		18.97		80.0	
AAC MHz, 0 10513- LTE-TI AAC MHz, 0 10513- LTE-TI AAC MHz, 0 10514- LTE-TI AAC MHz, 0 10515- IEEE & AAA Mbps, 10516- IEEE & AAA Mbps, 10517- IEEE & AAA Mbps, 10518- IEEE & AAA Mbps, 10518- IEEE & AAA Mbps, 10519- IEEE &				72.87	19.19	2.23	80.0	± 9.6 %
AAC MHz, 0 10513- LTE-TI AAC MHz, 0 10513- LTE-TI AAC MHz, 0 Subfra Subfra 10514- LTE-T AAC MHz, 6 Subfra Subfra 10515- IEEE & AAA Mbps, 10516- IEEE & AAA Mbps, 10517- IEEE & AAA Mbps, 10518- IEEE & AAA Mbps, 10518- IEEE & AAA Mbps, 10519- IEEE &			5.44	70.83	18.50		80.0	
AAC MHz, 0 10513- LTE-TI AAC MHz, 0 10513- LTE-TI AAC MHz, 0 Subfra Subfra 10514- LTE-T AAC MHz, 6 Subfra Subfra 10515- IEEE & AAA Mbps, 10516- IEEE & AAA Mbps, 10517- IEEE & AAA Mbps, 10518- IEEE & AAA Mbps, 10518- IEEE & AAA Mbps, 10519- IEEE &		Ζ	5.39	71.45	18.85		80.0	
AAC MHz, f 10514- LTE-T AAC MHz, f Subfra Subfra 10515- IEEE & 10516- IEEE & AAA Mbps, 10517- IEEE & 10518- IEEE & 10518- IEEE & 10518- IEEE & AAA Mbps, 10518- IEEE & AAA Mbps, 10518- IEEE & AAA Mbps, I0519- IEEE &		X	9.41	80.22	21.09	2.23	80.0	±9.6 %
AAC MHz, f 10514- LTE-T AAC MHz, f Subfra Subfra 10515- IEEE & 10516- IEEE & AAA Mbps, 10517- IEEE & 10518- IEEE & 10518- IEEE & 10518- IEEE & AAA Mbps, 10518- IEEE & AAA Mbps, 10518- IEEE & AAA Mbps, I0519- IEEE &		Y	6.52	76.83	20.24		80.0	
AAC MHz, f 10514- LTE-T AAC MHz, f Subfra Subfra 10515- IEEE & 10516- IEEE & AAA Mbps, 10517- IEEE & 10518- IEEE & 10518- IEEE & 10518- IEEE & AAA Mbps, 10518- IEEE & AAA Mbps, 10518- IEEE & AAA Mbps, I0519- IEEE &		Z	6.84	78.58	21.10		80.0	
AAC MHz, 6 Subfra 10515- AAA Mbps, 10516- AAA Mbps, 10517- 10517- IEEE 6 AAA Mbps, 10518- IEEE 6 AAA Mbps, 10518- IEEE 6 AAA Mbps,	TDD (SC-FDMA, 100% RB, 20 16-QAM, UL ame=2,3,4,7,8,9)	X	7.03	74.19	19.61	2.23	80.0	± 9.6 %
AAC MHz, 6 Subfra 10515- AAA Mbps, 10516- IEEE 6 AAA Mbps, 10517- IEEE 6 AAA Mbps, 10518- IEEE 6 AAA Mbps, 10518- IEEE 6 AAA Mbps,		Y	5.36	71.56	18.76		80.0	
AAC MHz, 6 Subfra 10515- AAA Mbps, 10516- IEEE 6 AAA Mbps, 10517- IEEE 6 AAA Mbps, 10518- IEEE 6 AAA Mbps, 10518- IEEE 6 AAA Mbps,		Z	5.31	72.21	19.14		80.0	
AAA Mbps, 10516- AAA Mbps, 10517- 10517- 10518- 10518- AAA Mbps, 10518- 10518- 10518- 10519- 10519- 10518- 10518- 10519- 10518	TDD (SC-FDMA, 100% RB, 20 64-QAM, UL ame=2,3,4,7,8,9)	X	6.85	73.42	19.39	2.23	80.0	± 9.6 %
AAA Mbps, 10516- AAA Mbps, 10517- 10517- 10518- 10518- AAA Mbps, 10518- 10518- 10518- 10519- 10519- 10518- 10519- 10518		Υ	5.32	71.03	18.59		80.0	Î
AAA Mbps, 10516- AAA Mbps, 10517- 10517- 10518- 10518- AAA Mbps, 10518- 10518- 10518- 10519- 10519- 10518- 10518- 10519- 10518		Z	5.27	71.61	18.94		80.0	
AAA Mbps, 10517- IEEE & AAA Mbps, 10518- IEEE & AAA Mbps, 10519- IEEE &	802.11b WiFi 2.4 GHz (DSSS, 2 , 99pc duty cycle)	X	0.98	65.05	16.44	0.00	150.0	± 9.6 %
AAA Mbps, 10517- IEEE & AAA Mbps, 10518- IEEE & AAA Mbps, 10519- IEEE &		Y	1.00	63.56	14.97		150.0	
AAA Mbps, 10517- IEEE & AAA Mbps, 10518- IEEE & AAA Mbps, 10519- IEEE &		Z	1.05	64.66	15.82		150.0	L
AAA Mbps, 10518- AAA Mbps, 10519- IEEE (802.11b WiFi 2.4 GHz (DSSS, 5.5 , 99pc duty cycle)	X Y	100.00 0.67	168.11	45.87	0.00	150.0	± 9.6 %
AAA Mbps, 10518- AAA Mbps, 10519- IEEE (Z	1.04	71.83 80.65	18.15 22.82		150.0	
AAA Mbps, 10518- AAA Mbps, 10519- IEEE 8	802.11b WiFi 2.4 GHz (DSSS, 11	X	0.96	70.11	18.69	0.00	150.0	
AAA Mbps, 10519- IEEE 8	, 99pc duty cycle)	Ŷ	0.85	65.61	15.70	0.00	150.0 150.0	± 9.6 %
AAA Mbps, 10519- IEEE 8	• · · · · · · · · · · · · · · · · · · ·	z	0.93	67.57	17.12		150.0	
	802.11a/h WiFi 5 GHz (OFDM, 9 , 99pc duty cycle)	X	4.76	67.10	16.57	0.00	150.0	±9.6 %
		Y	4.53	67.01	16.35		150.0	
		Z	4.47	67.38	16.53		150.0	
	802.11a/h WiFi 5 GHz (OFDM, 12 , 99pc duty cycle)	X	5.02	67.44	16.72	0.00	150.0	±9.6 %
		Y	4.70	67.22	16.46		150.0	
		Z	4.63	67.55	16.62		150.0	
	802.11a/h WiFi 5 GHz (OFDM, 18 , 99pc duty cycle)	X	4.86	67.45	16.66	0.00	150.0	±9.6 %
		Y	4.55	67.17	16.38		150.0	
		Z	4.48	67.50	16.54	0.00	150.0	100%
	802.11a/h WiFi 5 GHz (OFDM, 24 , 99pc duty cycle)	X	4.79	67.47	16.66	0.00	150.0	± 9.6 %
		Z	4.48	67.16	16.36		150.0	
10522- IEEE 8	, applied uty cycle)	X	4.42	67.48	16.53	0.00	150.0	+069/
		Y Y	4.82	67.32 67.29	16.63 16.46	0.00	150.0	± 9.6 %
·····	, 99pc duty cycle) 802.11a/h WiFi 5 GHz (OFDM, 36 , 99pc duty cycle)	Z	4.55	67.62	16.46		150.0 150.0	

10523- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	X	4.69	67.31	16.53	0.00	150.0	± 9.6 %
		Y	4.44	67.17	16.32		150.0	
		Z	4.39	67.59	16.54	<u> </u>	150.0	
10524- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	Х	4.78	67.32	16.64	0.00	150.0	± 9.6 %
		Y	4.49	67.20	16.43		150.0	
		Z	4.42	67.57	16.62		150.0	
10525- AAA	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	X	4.72	66.35	16.23	0.00	150.0	± 9.6 %
		Y	4.49	66.26	16.02		150.0	
		Z	4.45	66.66	16.22		150.0	
10526- AAA	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	X	4.95	66.78	16.37	0.00	150.0	± 9.6 %
		Y	4.64	66.60	16.16		150.0	
40507		Z	4.58	66.96	16.34		150.0	
10527- AAA	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	X	4.86	66.80	16.35	0.00	150.0	± 9.6 %
		Y	4.57	66.56	16.10		150.0	
40500		Z	4.51	66.93	16.29		150.0	
10528- AAA	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	X	4.89	66.82	16.38	0.00	150.0	±9.6 %
		Y	4.58	66.57	16.13		150.0	
10500		Z	4.52	66.94	16.32		150.0	
10529- AAA	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	X	4.89	66.82	16.38	0.00	150.0	± 9.6 %
		Y	4.58	66.57	16.13		150.0	
40504		Z	4.52	66.94	16.32		150.0	
10531- AAA	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	X	4.92	67.00	16.42	0.00	150.0	± 9.6 %
· · · · ·		Y	4.57	66.66	16.14		150.0	
		Z	4.49	66.99	16.31		150.0	
10532- AAA	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	X	4.76	66.93	16.40	0.00	150.0	± 9.6 %
		Y	4.43	66.51	16.07		150.0	
		Z	4.37	66.85	16.25		150.0	
10533- AAA	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	X	4.90	66.82	16.35	0.00	150.0	± 9.6 %
		Y	4.59	66.64	16.13		150.0	
		Z	4.53	67.03	16.33		150.0	· · · · · ·
10534- 	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	X	5.38	66.99	16.41	0.00	150.0	± 9.6 %
		Y	5.14	66.65	16.20		150.0	
		Z	5.08	66.89	16.34		150.0	
10535- AAA	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	5.47	67.13	16.46	0.00	150.0	± 9.6 %
		Y	5.21	66.87	16.30		150.0	
40500		Z	5.13	67.05	16.42		150.0	
10536- AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	5.32	67.12	16.45	0.00	150.0	± 9.6 %
		Y	5.08	66.81	16.25		150.0	
		Z	5.02	67.06	16.40		150.0	
10537- AAA	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	X	5.39	67.07	16.42	0.00	150.0	± 9.6 %
		Y	5.13	66.76	16.23		150.0	
10500		Z	5.08	67.03	16.39		150.0	
10538- AAA	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	X	5.52	67.19	16.52	0.00	150.0	± 9.6 %
		Y	5.21	66.77	16.27		150.0	
		Z	5.14	66.99	16.41	<u> </u>	150.0	·
10540- AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	5.40	67.10	16.49	0.00	150.0	± 9.6 %
		Y	5.15	66.79	16.30		150.0	
		Z	5.07	66.96	16.41		150.0	

August 14, 2017

10541- AAA	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	X	5.41	67.10	16.49	0.00	150.0	± 9.6 %
		Y	5.12	66.64	16.21		150.0	l
		Z	5.05	66.85	16.21		150.0	
10542- AAA	IEEE 802.11ac WiFi (40MHz, MCS8,	X	5.53	67.02	16.46	0.00	150.0	± 9.6 %
AAA	99pc duty cycle)	Y	5.28	66.73	16.27		150.0	
		Z	5.21	66.95	16.40		150.0	
10543- AAA	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.65	67.09	16.50	0.00	150.0	± 9.6 %
		Y	5.35	66.75	16.31		150.0	
		Z	5.28	67.01	16.46		150.0	
10544- AAA	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	X	5.63	67.05	16.36	0.00	150.0	± 9.6 %
		Y	5.46	66.75	16.19		150.0	
		Z	5.42	66.95	16.31		150.0	
10545- AAA	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	X	5.85	67.43	16.48	0.00	150.0	±9.6 %
		Y	5.67	67.24	16.39		150.0	
		Z	5.61	67.44	16.52		150.0	1
10546- AAA	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	X	5.76	67.40	16.49	0.00	150.0	±9.6 %
		Y	5.52	66.93	16.25		150.0	
- 0.0		Z	5.45	67.09	16.35		150.0	
10547- AAA	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	X	5.86	67.50	16.53	0.00	150.0	± 9.6 %
		Y	5.59	67.00	16.28		150.0	
		Z	5.54	67.20	16.40		150.0	
10548- AAA	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	X	6.21	68.68	17.08	0.00	150.0	± 9.6 %
		Y	5.87	68.02	16.76		150.0	
		Z	5.72	67.95	16.76		150.0	
10550- AAA	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	X	5.77	67.31	16.45	0.00	150.0	± 9.6 %
		Y	5.57	67.05	16.32		150.0	
		Z	5.52	67.30	16.47		150.0	
10551- AAA	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	X	5.80	67.45	16.48	0.00	150.0	± 9.6 %
		Y	5.55	67.00	16.26		150.0	
		Z	5.45	67.07	16.32	•••••	150.0	
10552- AAA	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	X	5.69	67.19	16.37	0.00	150.0	± 9.6 %
		Y	5.47	66.81	16.17		150.0	
		Z	5.43	67.06	16.31		150.0	
10553- AAA	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	X	5.78	67.21	16.40	0.00	150.0	± 9.6 %
		Y	5.54	66.82	16.20		150.0	
		Z	5.48	67.01	16.32		150.0	
10554- AAB	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	X	6.03	67.43	16.45	0.00	150.0	± 9.6 %
		Y	5.89	67.12	16.28		150.0	
		Z	5.84	67.28	16.38		150.0	
10555- AAB	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	X	6.22	67.88	16.64	0.00	150.0	± 9.6 %
		<u>Y</u>	6.02	67.44	16.43		150.0	
40000		Z	5.95	67.54	16.50		150.0	
10556- AAB	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	X	6.20	67.79	16.59	0.00	150.0	±9.6 %
		Y	6.04	67.49	16.44	L	150.0	
		Z	5.99	67.66	16.55		150.0	
10557- AAB	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	X	6.21	67.81	16.62	0.00	150.0	± 9.6 %
		Y	5.99	67.35	16.39		150.0	
		Z	5.93	67.50	16.49		150.0	

Certificate No: ES3-3332_Aug17

10558- AAB	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	X	6.28	68.03	16.75	0.00	150.0	± 9.6 %
		Y	6.04	67.52	16.49		150.0	· [· · · · · · · · · · · · · · · · · ·
		Ż	5.95	67.59	16.55		150.0	<u> </u>
10560- AAB	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	X	6.28	67.87	16.71	0.00	150.0	± 9.6 %
		Y	6.03	67.35	16.44		150.0	
		Z	5.96	67.49	16.53		150.0	
10561- AAB	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	X	6.18	67.80	16.71	0.00	150.0	± 9.6 %
		Y	5.96	67.36	16.48		150.0	
		Z	5.90	67.49	16.57		150.0	
10562- AAB	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	X	6.37	68.38	17.01	0.00	150.0	± 9.6 %
		Y	6.06	67.66	16.63		150.0	
		Z	5.96	67.67	16.66		150.0	
10563- AAB	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	X	6.58	68.54	17.02	0.00	150.0	± 9.6 %
		Y	6.18	67.65	16.59		150.0	}
		Z	6.05	67.62	16.60		150.0	
10564- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)	X	5.11	67.26	16.76	0.46	150.0	± 9.6 %
		Y	4.86	67.10	16.52		150.0	
		Z	4.80	67.44	16.68		150.0	1
10565- AAA	IEEE 802.11g WiFI 2.4 GHz (DSSS- OFDM, 12 Mbps, 99pc duty cycle)	X	5.41	67.77	17.08	0.46	150.0	± 9.6 %
		Y	5.08	67.53	16.83		150.0	
		Z	5.00	67.82	16.97		150.0	
10566- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 99pc duty cycle)	X	5.23	67.67	16.93	0.46	150.0	± 9.6 %
		Y	4.92	67.38	16.66		150.0	
		Z	4.84	67.67	16.80		150.0	
10567- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 99pc duty cycle)	X	5.26	68.03	17.24	0.46	150.0	± 9.6 %
		Y	4.95	67.77	17.01		150.0	
		_ Z _	4.87	68.04	17.15		150.0	
10568- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 99pc duty cycle)	X	5.14	67.36	16.67	0.46	150.0	± 9.6 %
		Y	4.84	67.19	16.45		150.0	
		Z	4.75	67.49	16.60		150.0	
10569- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)	X	5.19	68.02	17.24	0.46	150.0	± 9.6 %
		Y	4.92	67.92	17.11		150.0	
		Z	4.86	68.27	17.29		150.0	
10570- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)	X	5.23	67.81	17.17	0.46	150.0	±9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	4.94	67.74	17.02		150.0	
10571		Z	4.86	68.06	17.18		150.0	
10571- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	1.68	70.36	18.73	0.46	130.0	± 9.6 %
		Y	1.37	66.32	16.49		130.0	
40570		Z	1.41	67.39	17.29		130.0	
10572- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	1.75	71.47	19.28	0.46	130.0	±9.6 %
		Y	1.40	67.01	16.89		130.0	
40070		Z	1.45	68.17	17.74		130.0	
10573- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	100.00	142.31	37.38	0.46	130.0	± 9.6 %
		Y	5.69	99.12	27.30		130.0	
40574		Z	66.26	143.73	39.41		130.0	
10574- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	X	3.57	87.71	25.60	0.46	130.0	±9.6 %
		Y	1.70	74.22	20.29		130.0	
		Z	1.88	76.94	21.86		130.0	

10575-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	X	4.95	67.19	16.89	0.46	130.0	± 9.6 %
AAA	OFDM, 6 Mbps, 90pc duty cycle)							
		Y	4.69	67.03	16.64		130.0	
10576-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	Z	4.63	67.35	16.80		130.0	
AAA	OFDM, 9 Mbps, 90pc duty cycle)	X	4.98	67.35	16.96	0.46	130.0	±9.6 %
		Y	4.72	67.20	16.72		130.0	
40577		Z	4.66	67.55	16.88		130.0	
10577- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 90pc duty cycle)	X	5.24	67.69	17.13	0.46	130.0	± 9.6 %
		Y	4.90	67.46	16.87		130.0	
40570		Z	4.82	67.76	17.01		130.0	
10578- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 90pc duty cycle)	X	5.14	67.89	17.23	0.46	130.0	± 9.6 %
		Y	4.81	67.63	16.98		130.0	
10579-		Z	4.73	67.92	17.12		130.0	
AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 90pc duty cycle)	X	4.94	67.39	16.68	0.46	130.0	± 9.6 %
		Y	4.58	66.91	16.29		130.0	
10590		Z	4.50	67.21	16.45		130.0	
10580- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 90pc duty cycle)	X	4.98	67.29	16.65	0.46	130.0	± 9.6 %
		Y	4.62	66.97	16.32		130.0	
10504		Z	4.54	67.27	16.48		130.0	
10581- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 90pc duty cycle)	X	5.07	68.07	17.23	0.46	130.0	±9.6 %
		Y	4.72	67.70	16.95		130.0	
40500		Z	4.65	68.04	17.12		130.0	
10582- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 90pc duty cycle)	X	4.90	67.13	16.49	0.46	130.0	±9.6 %
		Y	4.51	66.68	16.07		130.0	
		Z	4.43	67.00	16.24		130.0	
10583- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.95	67.19	16.89	0.46	130.0	±9.6 %
··		Y	4.69	67.03	16.64		130.0	
		Z	4.63	67.35	16.80		130.0	
10584- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	4.98	67.35	16.96	0.46	130.0	± 9.6 %
		Y	4.72	67.20	16.72		130.0	
		Z	4.66	67.55	16.88		130.0	
10585- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	5.24	67.69	17.13	0.46	130.0	± 9.6 %
		Y	4.90	67.46	16.87		130.0	
		Z	4.82	67.76	17.01		130.0	
10586- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	5.14	67.89	17.23	0.46	130.0	± 9.6 %
		Y	4.81	67.63	16.98		130.0	
		Z	4.73	67.92	17.12		130.0	
10587- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	4.94	67.39	16.68	0.46	130.0	±9.6 %
		Y	4.58	66.91	16.29	·	130.0	
10501		Z	4.50	67.21	16.45		130.0	
10588- AAA	IEEE 802.11a/h WiFl 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.98	67.29	16.65	0.46	130.0	± 9.6 %
		Y	4.62	66.97	16.32		130.0	· · · · · · · · · · · · · · · · · · ·
40500		Z	4.54	67.27	16.48	L	130.0	
10589- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	5.07	68.07	17.23	0.46	130.0	±9.6 %
		Y	4.72	67.70	16.95		130.0	
10505		Z	4.65	68.04	17.12		130.0	
10590- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	4.90	67.13	16.49	0.46	130.0	± 9.6 %
		Y	4.51	66.68	16.07		130.0	
	1	Z	4.43	67.00	16.24		130.0	1

10591- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	X	5.10	67.21	16.96	0.46	130.0	± 9.6 %
		Y	4.84	67.07	16.74		130.0	
		z	4.77	67.39	16.89		130.0	
10592- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	X	5.29	67.56	17.07	0.46	130.0	± 9.6 %
		Y	4.98	67.40	16.87	···· ·	130.0	
		Z	4.90	67.69	17.01		130.0	
10593- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	X	5.23	67.57	17.01	0.46	130.0	±9.6 %
		Ý	4.90	67.30	16.75		130.0	
		Z	4.82	67.59	16.88		130.0	
10594- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	X	5.28	67.68	17.13	0.46	130.0	± 9.6 %
		Ϋ́	4.96	67.47	16.91		130.0	
		Z	4.88	67.75	17.04		130.0	
10595- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	5.27	67.71	17.06	0.46	130.0	± 9.6 %
		Y	4.93	67.44	16.81		130.0	
10565		Z	4.85	67.75	16.96		130.0	
10596- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	X	5.21	67.70	17.06	0.46	130.0	± 9.6 %
		Y	4.86	67.44	16.81		130.0	
10505		Z	4.78	67.74	16.97		130.0	
10597- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	X	5.16	67.68	17.00	0.46	130.0	± 9.6 %
		Y	4.81	67.32	16.68		130.0	
		Z	4.73	67.61	16.83		130.0	
10598- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	5.15	67.96	17.27	0.46	130.0	± 9.6 %
		Y	4.80	67.55	16.95		130.0	
		Z	4.72	67.82	17.08		130.0	
10599- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	X	5.77	67.84	17.13	0.46	130.0	± 9.6 %
		Y	5.52	67.58	16.96		130.0	
		Z	5.45	67.81	17.10		130.0	
10600- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	6.05	68.67	17.52	0.46	130.0	± 9.6 %
		Y	5.68	68.13	17.21		130.0	
		Z	5.58	68.26	17.30		130.0	
10601- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	X	5.85	68.16	17.28	0.46	130.0	± 9.6 %
		Y	5.55	67.80	17.06		130.0	
		Z	5.46	67.98	17.17		130.0	
10602- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	X	5.99	68.30	17.27	0.46	130.0	± 9.6 %
		Y	5.68	67.95	17.06		130.0	
1005-		Z X	5.60	68.17	17.19		130.0	
10603- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)		6.09	68.64	17.55	0.46	130.0	± 9.6 %
		Y	5.74	68.19	17.31		130.0	
		Z	5.66	68.42	17.44		130.0	
10604- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	X	5.79	67.86	17.16	0.46	130.0	± 9.6 %
		Y	5.59	67.76	17.08		130.0	
100-5		Z	5.54	68.06	17.25		130.0	
10605- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	X	5.90	68.15	17.31	0.46	130.0	± 9.6 %
		Y	5.67	68.01	17.21		130.0	
		Z	5.56	68.12	17.28		130.0	
10606- AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	X	5.65	67.59	16.91	0.46	130.0	±9.6 %
		Y	5.37	67.19	16.65		130.0	
		Z	5.33	67.51	16.83		130.0	

10607- AAA	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	X	4.92	66.49	16.57	0.46	130.0	± 9.6 %
<u>////</u>				<u> </u>		·		
		Y	4.68	66.39	16.37	ļ	130.0	
10608-		Z	4.62	66.76	16.54		130.0	
AAA	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	5.16	66.93	16.72	0.46	130.0	± 9.6 %
		Y	4.85	66.77	16.53		130.0	
		Z	4.77	67.10	16.69		130.0	
10609- AAA	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	X	5.06	66.87	16.62	0.46	130.0	± 9.6 %
		Y	4.74	66.62	16.36		130.0	
		Z	4.67	66.96	16.53		130.0	· ·······
10610- AAA	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	x	5.11	67.01	16.76	0.46	130.0	± 9.6 %
		Y	4.79	66.78	16.53		130.0	
		Z	4.72	67.11	16.69		130.0	
10611- AAA	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	X	5.05	66.92	16.66	0.46	130.0	± 9.6 %
		Y	4.71	66.59	16.38	·	130.0	
*		Z	4.64	66.93	16.55		130.0	
10612- AAA	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	X	5.07	67.04	16.68	0.46	130.0	± 9.6 %
		- Y	4.72	66.76	16.43		130.0	
		Z	4.64	67.09	16.61		130.0	·
10613- AAA	IEEE 802.11ac WiFI (20MHz, MCS6, 90pc duty cycle)	X	5.09	66.98	16.60	0.46	130.0	± 9.6 %
		Y	4.71	66.61	16.29		130.0	
		Z	4.63	66.91	16.45		130.0	
10614- AAA	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	X	5.02	67.21	16.84	0.46	130.0	± 9.6 %
		Y	4.67	66.81	16.53		130.0	
		Z	4.59	67.11	16.69		130.0	
10615- AAA	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	X	5.05	66.70	16.43	0.46	130.0	± 9.6 %
		Y	4.71	66.43	16.16		130.0	
		Z	4.64	66.79	16.34		130.0	
10616- AAA	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	X	5.58	67.10	16.74	0.46	130.0	± 9.6 %
		Y	5.33	66.79	16.55		130.0	
		Z	5.25	67.00	16.67		130.0	
10617- AAA	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	X	5.66	67.25	16.77	0.46	130.0	± 9.6 %
		Y	5.41	67.04	16.65		130.0	
		Z	5.31	67.19	16.74		130.0	
10618- AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	X	5.54	67.29	16.82	0.46	130.0	± 9.6 %
		Y	5.29	67.03	16.66		130.0	
		Z	5.22	67.24	16.78		130.0	
10619- AAA	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	X	5.56	67.09	16.66	0.46	130.0	± 9.6 %
		Y	5.30	66.81	16.48		130.0	
		Z	5.23	67.05	16.63		130.0	
10620- AAA	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	X	5.71	67.30	16.81	0.46	130.0	± 9.6 %
<u> </u>		Y	5.38	66.84	16.54		130.0	
		Z	5.30	67.04	16.67		130.0	
10621- AAA	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	X	5.66	67.28	16.90	0.46	130.0	±9.6 %
		Y	5.39	66.98	16.73		130.0	
		Z	5.30	67.12	16.82		130.0	
10622- AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	X	5.65	67.37	16.94	0.46	130.0	± 9.6 %
		ΤΥ T	5.40	67.13	16.80		130.0	
		Ż	5.30	67.22	16.87		130.0	

10623-	IEEE 802.11ac WiFi (40MHz, MCS7,		E E0	07.44	10 70	0.40	1 100.0	
AAA	90pc duty cycle)	X	5.58	67.14	16.73	0.46	130.0	± 9.6 %
		Y	5.28	66.65	16.43		130.0	
		Z	5.18	66.78	16.52	· · · ·	130.0	
10624-	IEEE 802.11ac WiFi (40MHz, MCS8,	X	5.72	67.10	16.77	0.46	130.0	± 9.6 %
AAA	90pc duty cycle)				-			
		Y	5.47	66.85	16.60		130.0	
40005		Z	5.38	67.03	16.70		130.0	
10625- AAA	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	X	6.05	67.87	17.19	0.46	130.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	5.77	67.66	17.06		130.0	
40000		Z	5.49	67.24	16.87		130.0	
10626- AAA	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	X	5.80	67.08	16.64	0.46	130.0	± 9.6 %
		Y	5.63	66.82	16.50		130.0	
10007		Z	5.57	66.99	16.60		130.0	
10627- AAA	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	X	6.05	67.56	16.82	0.46	130.0	± 9.6 %
		Y	5.90	67.51	16.81		130.0	
		Z	5.83	67.67	16.91		130.0	
10628- AAA	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	X	5.89	67.33	16.66	0.46	130.0	± 9.6 %
		Y	5.66	66.90	16.43		130.0	
		Z	5.58	67.01	16.51		130.0	
10629- AAA	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	X	6.01	67.46	16.71	0.46	130.0	± 9.6 %
		Y	5.74	67.00	16.48		130.0	
		Z	5.68	67.19	16.60		130.0	
10630- AAA	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	X	6.66	69.52	17.74	0.46	130.0	± 9.6 %
		Y	6.23	68.64	17.29		130.0	
		Z	5.99	68.32	17.17		130.0	
10631- AAA	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	X	6.51	69.16	17.72	0.46	130.0	± 9.6 %
		Y	6.05	68.21	17.27		130.0	
		Z	5.91	68.16	17.27		130.0	·
10632- AAA	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	X	6.07	67.76	17.04	0.46	130.0	± 9.6 %
		Y	5.87	67.57	16.97		130.0	
		Z	5.81	67.79	17.10	·	130.0	
10633- AAA	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	X	6.04	67.71	16.86	0.46	130.0	± 9.6 %
		Y	5.71	67.04	16.54		130.0	
		Z	5.62	67.14	16.61		130.0	
10634- AAA	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	X	6.01	67.64	16.89	0.46	130.0	± 9.6 %
		Y	5.69	67.06	16.60		130.0	
		Z	5.63	67.23	16.71		130.0	
10635- AAA	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	X	5.88	66.99	16.33	0.46	130.0	± 9.6 %
		Y	5.57	66.39	16.00		130.0	
		Z	5.49	66.55	16.11	· · · ·	130.0	
10636- AAB	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	X	6.20	67.47	16.73	0.46	130.0	± 9.6 %
		Y	6.06	67.19	16.58	·	130.0	·
		Z	6.01	67.33	16.67		130.0	
10637- AAB	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	X	6.43	68.00	16.96	0.46	130.0	± 9.6 %
		Y	6,23	67.63	16.79		130.0	·······
		Z	6.14	67.69	16.84		130.0	
10638- AAB	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	X	6.38	67.82	16.85	0.46	130.0	± 9.6 %
		Y	6.23	67.59	16.75		130.0	

August 14, 2017

10639- AAB	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc duty cycle)	X	6.40	67.91	16.95	0.46	130.0	± 9.6 %
		Y	6.18	67.47	16.73	<u>† </u>	130.0	<u> </u>
		Z	6.11	67.58	16.80	<u> </u>	130.0	·
10640- AAB	IEEE 802.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	X	6.45	68.06	16.97	0.46	130.0	±9.6 %
		Y	6.19	67.49	16.68	········	130.0	
		Z	6.09	67.54	16.73		130.0	
10641- AAB	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	X	6.42	67.72	16.82	0.46	130.0	± 9.6 %
		Y	6.26	67.48	16.70		130.0	
		Z	6.18	67.60	16.78		130.0	· · · ·
10642- AAB	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	X	6.51	68.09	17.16	0.46	130.0	± 9.6 %
		Υ	6.27	67.64	16.94	· · · · · ·	130.0	
		Z	6.19	67.74	17.01	-	130.0	
10643- AAB	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	X	6.33	67.78	16.92	0.46	130.0	± 9.6 %
		Y	6.13	67.39	16.71		130.0	
		Z	6.05	67.49	16.79	t	130.0	
10644- AAB	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	X	6.62	68.66	17.38	0.46	130.0	± 9.6 %
····-		Y	6.24	67.74	16.91		130.0	
10015		Z	6.11	67.69	16.91		130.0	
10645- AAB	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	X	6.82	68.76	17.37	0.46	130.0	± 9.6 %
		Y	6.42	67.94	16.97		130.0	
10010		Z	6.29	67.89	16.97		130.0	
10646- AAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	X	22.37	99.45	32.18	9.30	60.0	± 9.6 %
		Y	34.93	118.52	39.50		60.0	
40047		Z	65.31	137.01	45.15		60.0	
10647- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	X	23.87	101.54	32.95	9.30	60.0	± 9.6 %
		Y	35.03	119.53	39.96		60.0	
40040		Z	61.92	136.93	45.35		60.0	
10648- AAA	CDMA2000 (1x Advanced)	X	1.11	70.04	15.37	0.00	150.0	± 9.6 %
		Y	0.68	63.85	10.64		150.0	
40050		Z	0.72	65.39	11.21		150.0	
10652- AAB	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	5.43	70.91	18.53	2.23	80.0	± 9.6 %
·		Y	4.44	69.41	17.59		80.0	
40050		Z	4.46	70.35	17.94		80.0	
10653- AAB	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	X	5.75	69.79	18.37	2.23	80.0	± 9.6 %
		Y	4.85	68.29	17.59		80.0	
1005		Z	4.80	68.81	17.83		80.0	
10654- AAB	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	X	5.63	69.47	18.36	2.23	80.0	± 9.6 %
		Y	4.81	67.88	17.59		80.0	
1005-		Z	4.76	68.31	17.81		80.0	
10655- AAB	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	5.69	69.55	18.41	2.23	80.0	± 9.6 %
		Y	4.87	67.81	17.62		80.0	
		Z	4.82	68.18	17.82		80.0	

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

2017

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test Client

Certificate No: EX3-7410_Jul17

<u>Calie</u>	BRATION	CERTIFIC	ATE

EX3DV4 - SN:7410

July 17, 2017

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02525)	Apr-18
Reference 20 dB Attenuator	SN: S5277 (20x)	07-Apr-17 (No. 217-02528)	Apr-18
Reference Probe ES3DV2	SN: 3013	31-Dec-16 (No. ES3-3013_Dec16)	Dec-17
DAE4	SN: 660	7-Dec-16 (No. DAE4-660_Dec16)	Dec-17
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17

	Name	. ,	Function	Signature
Calibrated by:	Jeton Kastrati		Laboratory Technician C	q=0-
Approved by:	Kalja Pokovic		Technical Manager	Relly
This calibration certificat	e shall not be reoroduced exc	cept in full without	it written approval of the labor:	Issued: July 17, 2017

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- S Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:TSLtissue simulating liquidNORMx,y,zsensitivity in free spaceConvFsensitivity in TSL / NORMx,y,zDCPdiode compression point

CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
•	i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:7410

Calibrated:

Manufactured: November 24, 2015 July 17, 2017

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
<u>Norm (μV/(V/m)²)^</u>	0.40	0.46	0.43	± 10.1 %
DCP (mV) ^B	95.4	94.7	91.2	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	с	D	VR	Unc ^E
			dB	dBõV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	130.7	±3.5 %
		Y	0.0	0.0	1.0		146.7	
		Z	0.0	0.0	1.0		132.5	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	T6
X	41.43	313.6	36.54	8.525	0.381	5.024	0.000	0.467	1.003
Y	<u>41.67</u>	315.5	36.57	10.32	0.000	5.055	0.334	0.426	1.004
Z	51.58	393.9	37.05	11.42	0.427	5.066	0.000	0.561	1.006

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the

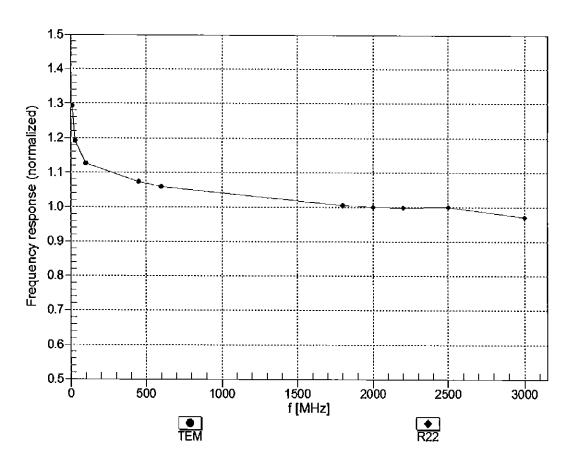
			```								
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)			
750	41.9	0.89	10.60	10.60	10.60	0.53	0.80	± 12.0 %			
835	41.5	0.90	10.08	10.08	10.08	0.41	0.98	± 12.0 %			
1750	40.1	1.37	8.66	8.66	8.66	0.41	0.82	± 12.0 %			
1900	40.0	1.40	8.37	8.37	8.37	0.28	1.19	± 12.0 %			
2300	39.5	1.67	8.02	8.02	8.02	0.35	0.80	± 12.0 %			
2450	39.2	1.80	7.68	7.68	7.68	0.33	0.89	± 12.0 %			
2600	39.0	1.96	7.42	7.42	7.42	0.40	0.80	± 12.0 %			

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

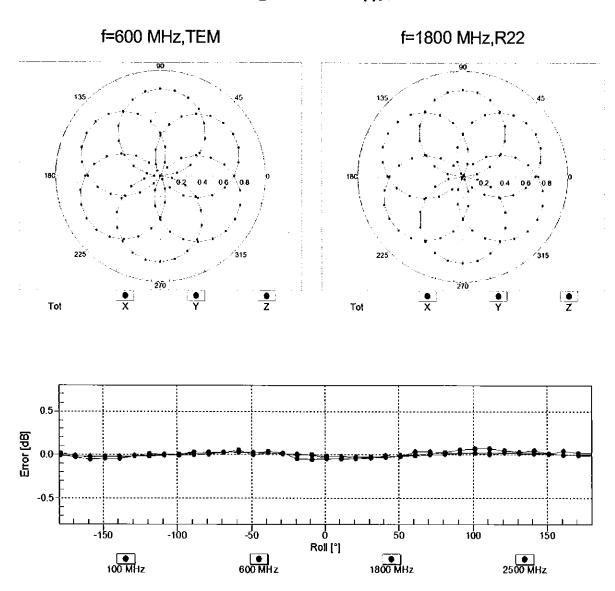
measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	10.19	10.19	10.19	0.33	1.02	± 12.0 %
835	55.2	0.97	9.95	9.95	9.95	0.50	0.80	± 12.0 %
1750	53.4	1.49	8.32	8.32	8.32	0.39	0.86	± 12.0 %
1900	53.3	1.52	7.98	7.98	7.98	0.44	0.86	± 12.0 %
2300	52.9	1.81	7.85	7.85	7.85	0.44	0.84	± 12.0 %
2450	52.7	1.95	7.69	7.69	7.69	0.37	0.89	± 12.0 %
2600	52.5	2.16	7.43	7.43	7.43	0.28	0.99	± 12.0 %

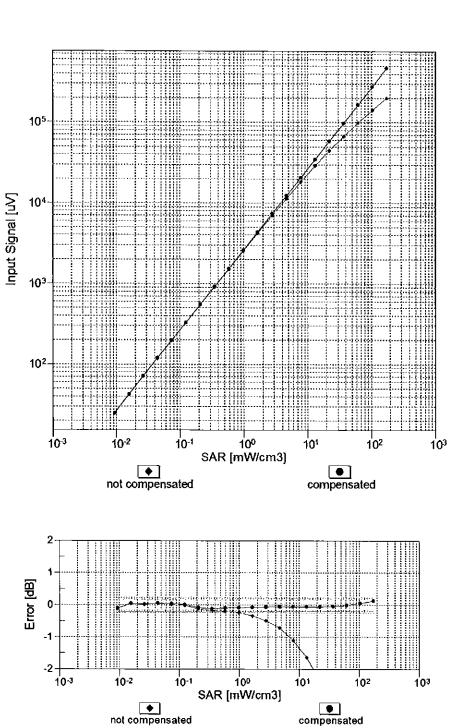
Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

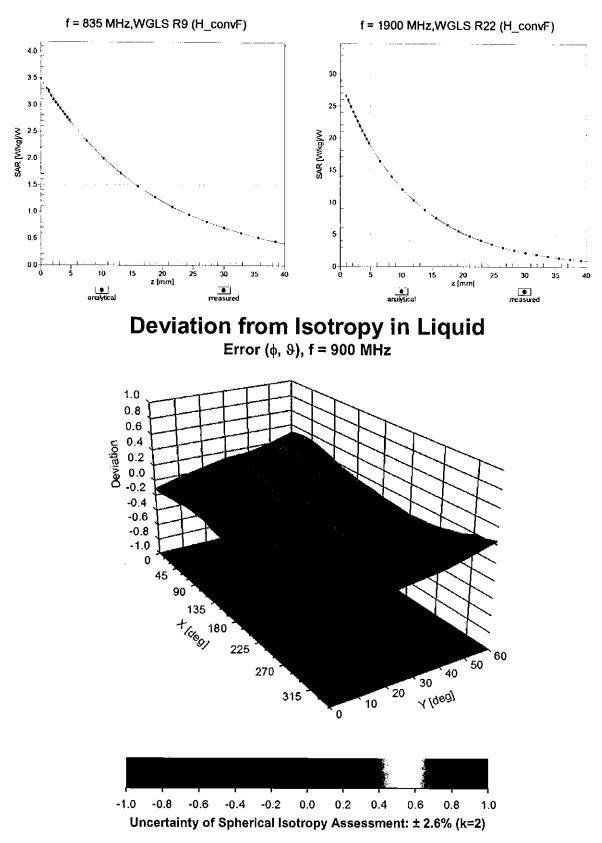

⁶ At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

July 17, 2017

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	1.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	130.7	± 3.5 %
		Y Z	0.00	0.00	1.00		146.7 132.5	
10010-	SAR Validation (Square, 100ms, 10ms)	<u> </u>	0.00 2.07	0.00 65.38	9.86	10.00	20.0	± 9.6 %
CAA	OAR Validation (Oquare, Tooms, Toms)		2.07	00.00	0.00	10.00	20.0	2010 /0
		Y	1.71	64.71	9.07	_	20.0	
		Ζ	3.44	71.14	12.92		20.0	
10011- CAB	UMTS-FDD (WCDMA)	X	1.05	67.82	15.62	0.00	150.0	± 9.6 %
		Y Z	<u>1.11</u> 1.02	68.91 66.59	16.28 14.94		150.0 150.0	
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	1.16	63.70	15.28	0.41	150.0	± 9.6 %
		Y	1.18	64.10	15.65		150.0	
		Ζ	1.17	63.41	15.09		150.0	
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	X	4.78	66.61	17.05	1.46	150.0	± 9.6 %
		Y Z	4.80	66.74	17.21		150.0 150.0	
10021- DAC	GSM-FDD (TDMA, GMSK)	X	4.93 100.00	66.52 111.37	<u>17.11</u> 25.72	9.39	50.0	± 9.6 %
		Y	100.00	111.58	25.35		50.0	
		Ζ	100.00	117.02	28.59		50.0	
10023- DAC	GPRS-FDD (TDMA, GMSK, TN 0)	X	100.00	110.83	25.53	9.57	50.0	±9.6 %
		Y Z	1707.76 100.00	<u>142.54</u> 116.46	31.32 28.39		50.0 50.0	
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	100.00	111.84	24.81	6.56	60.0	±9.6 %
0/10		Y	100.00	114.48	25.68		60.0	
		Z	100.00	118.35	28.09		60.0	
10025- DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	X	3.46	65.17	23.20	12.57	50.0	± 9.6 %
		Y Z	5.27	82.06 65.78	33.95 23.81		50.0 50.0	
10026- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	<u>3.61</u> 6.19	83.69	29.67	9.56	60.0	± 9.6 %
		Y	7.27	90.43	33.46		60.0	[
		Z	7.46	87.49	31.34		60.0	
10027- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	100.00	114.23	25.06	4.80	80.0 80.0	± 9.6 %
		Y Z	100.00	119.65 121.09	27.19 28.48	<u> </u>	80.0	
10028- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	100.00	118.39	26.12	3.55	100.0	±9.6 %
		Y	100.00	127.35	29.74		100.0	
		Z	100.00	125.00	29.42		100.0	
10029- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)		4.31	75.70	25.15	7.80	80.0	± 9.6 %
L		Y Z	4.62 5.10	78.76 78.80	26.60		80.0	
10030- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	X	100.00	110.42	23.70	5.30	70.0	± 9.6 %
		Y	100.00	113.76	24.95		70.0	
1000		Z	100.00	117.44	27.22	1 00	70.0	± 9.6 %
10031- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X Y	100.00	118.50	24.77 30.37	1.88	100.0	± 9.0 %
L			100.00	126.29	28.44	+	100.0	+

EX3DV4-SN:7410

10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	100.00	133.47	29.67	1.17	100.0	± 9.6 %
		Y	100.00	157.48				<u> </u>
		Z	100.00	136.04	<u>38.89</u> 31.29		100.0	<u> </u>
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	x	8.66	91.15	24.16	5.30	100.0 70.0	± 9.6 %
		Y	61.92	124.81	33.89		70.0	+
10001		Z	18.44	105.53	29.79		70.0	<u> </u>
10034- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	X	2.66	76.47	17.66	1.88	100.0	± 9.6 %
		Y	4.91	85.76	21.28		100.0	
10035-	IEEE 802.15.1 Bluetooth (PI/4-DQPSK,	Z	3.14	79.12	19.77		100.0	
	DH5)	X	1.87	72.76	15.96	1.17	100.0	± 9.6 %
		Z	2.71	78.22	18.36		100.0	I
10036-	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	$\frac{2}{x}$	2.01 12.89	73.50	17.25		100.0	
CAA		Y	12.09	97.56 133.04	26.18	5.30	70.0	± 9.6 %
		Z	33.52		35.90		70.0	<u> </u>
10037-	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	2.40	115.95	32.67	4.00	70.0	<u> </u>
CAA		^ 	4.17	75.20	17.16	1.88	100.0	± 9.6 %
		Z	<u>4.17</u> 2.91	83.65	20.57		100.0	L
10038-	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)		1.89	78.15 73.11	19.38	4 4	100.0	<u> </u>
CAA		Y	2.73	78.67	16.24 18.67	1.17	100.0	± 9.6 %
		Ż	2.03	73.85			100.0	
10039-	CDMA2000 (1xRTT, RC1)	X	1.93	73.30	17.51 15.79		100.0	
CAB		Y	2.16			0.00	150.0	± 9.6 %
		Z	1.82	74.82	16.50		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	X	100.00	71.39 108.18	15.74 23.51	7.78	150.0 50.0	± 9.6 %
		Y	100.00	108.75	23.44		50.0	
		Ż	100.00	113.77	26.32			
1004 4- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.00	97.63	1.20	0.00	50.0 150.0	±9.6 %
		Y	0.00	97.90	0.75		150.0	
		Z	0.00	95.09	2.63		150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	29.38	92.85	22.01	13.80	25.0	±9.6%
		Y	100.00	106.19	24.33	·	25.0	
40040		Z	100.00	113.54	28.60		25.0	
10049- CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)		92.32	108.50	25.07	10.79	40.0	± 9.6 %
	<u> </u>	Y	100.00	108.13	24.14		40.0	
10056-		Z	100.00	114.66	27.93		40.0	
CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	X	28.80	103.53	27.62	9.03	50.0	± 9.6 %
		Y	100.00	125.87	33.73		50.0	
10058-	EDCE EDD (TDMA CDOIL THE	Z	90.56	125.80	34.77		50.0	
DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	×	3.55	72.15	22.79	6.55	100.0	± 9.6 %
	t————	Y	3.72	74.09	24.21		100.0	
10059-	IEEE 802 11h WIEL2 4 OLI- (DDDDD - 2	Z	4.11	74.59	23.97		100.0	
CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	X	1.17	64.52	15.76	0.61	110.0	±9.6 %
	<u>+</u>	Y	1.20	65.09	16.25		110.0	
10060-	IEEE 802 11h W/EL 2 4 01 - (2000	Z	1.19	64.38	15.68		110.0	
CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	5.38	97.28	26.54	1.30	110.0	± 9.6 %
		YZ	<u>94.12</u> 7.25	145.74	39.06		110.0	
				100.99	27.69			

EX3DV4- SN:7410

10061- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	X	2.03	75.84	20.79	2.04	110.0	± 9.6 %
		Y	2.53	80.86	23.32		110.0	
		Z	2.46	78.49	22.05		110.0	
10062- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.60	66.68	16.54	0.49	100.0	±9.6 %
		Y	4.62	66.77	16.65		100.0	
		Z	4.74	66.54	16.54		100.0	
10063- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.61	66.74	16.62	0.72	100.0	±9.6 %
		Y	4.63	66.85	16.75		100.0	
		Z	4.75	66.63	16.64		100.0	
10064- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	4.88	66.97	16.83	0.86	100.0	±9.6 %
		Y	4.90	67.08	16.96		100.0	
		Z	5.06	66.93	16.89		100.0	
10065- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	X	4.74	66.82	16.90	1.21	100.0	± 9.6 %
		Y	4.76	66.95	17.05		10 <u>0.0</u>	
40000		Z	4.91	66.81	16.98		100.0	
10066- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	4.74	66.80	17.04	1.46	100.0	± 9.6 %
		Y	4.77	66.94	17.21		100.0	
		Z	4.93	66.83	17.15		100.0	
10067- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	5.03	66.98	17.46	2.04	100.0	± 9.6 %
		Y	5.05	67.14	17.66		100.0	
		Z	5.21	66.94	17.57		100.0	
10068- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	X	5.05	66.91	17.63	2.55	100.0	± 9.6 %
		Y	5.07	67.08	17.84		100.0	
		Z	5.27	67.04	17.82		100.0	
10069- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	X	5.12	66.93	17.81	2.67	100.0	± 9.6 %
		Υ	5.15	67.10	18.04		100.0	
		Z	5.34	66.99	17.99		100.0	
10071- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	4.86	66.65	17.32	1.99	100.0	± 9.6 %
		Y	4.89	66.79	17.50		100.0	
		Z	5.01	66.60	17.41		100.0	<u> </u>
10072- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	4.82	66.89	17.50	2.30	100.0	± 9.6 %
		ΤΥ.	4.84	67.05	17.70		100.0	
		Z	4.99	66.92	17.63		100.0	
10073- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	4.86	67.00	17.79	2.83	100.0	± 9.6 %
		Y	4.89	67.17	18.02		100.0	L
		Z	5.04	67.03	17.94	L	100.0	
10074- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	4.85	66.87	17.91	3.30	100.0	± 9.6 %
		Y	4.86	67.04	18.15	L	100.0	<u> </u>
		Z	5.01	66.88	18.08		100.0	
10075- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	4.86	66.89	18.16	3.82	90.0	± 9.6 %
		ŢΥ	4.87	67.06	18.42	_	90.0	ļ
		Z	5.04	67.00	18.40	<u> </u>	90.0	
10076- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	4.88	66.70	18.29	4.15	90.0	± 9.6 %
		Y	4.89	66.85	18.55		90.0	ļ
		Z	5.03	66.71	18.47	<u> </u>	90.0	<u> </u>
10077- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	4.91	66.76	18.38	4.30	90.0	± 9.6 %
<u> </u>		Y	4.91	66.91	18.65		90.0	
		Z	5.05	66.76	18.56		90.0	

EX3DV4- SN:7410

10081- CAB	CDMA2000 (1xRTT, RC3)	X	0.83	66.43	12.40	0.00	150.0	± 9.6 %
		Y	0.90	67.40	10.00	┣──-		<u> </u>
			0.90	67.46 65.72	13.02	<u> </u>	150.0	<u> </u>
10082-	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-	$\frac{1}{x}$	0.60	60.00	<u>12.74</u> 4.03	4 77	150.0	
CAB	DQPSK, Fullrate)		0.00	00.00	4.03	4.77	80.0	± 9.6 %
·		Y	1.74	63.67	4.99	<u> </u>	80.0	+
40000		Z	0.50	57.10	2.51	+	80.0	+
10090-	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	100.00	111.84	24.82	6.56	60.0	± 9.6 %
DAC	<u> </u>					0.00	00.0	1 2 3.0 %
	+	Y	100.00	114.47	25.69	<u> </u>	60.0	<u> </u>
10097-		Z	100.00	118.36	28.12		60.0	·
CAB	UMTS-FDD (HSDPA)	X	1.87	68.36	15.98	0.00	150.0	± 9.6 %
		Y	1.00					
		- <u> </u>	<u>1.92</u> 1.83	68.79	16.27		150.0	[
10098-	UMTS-FDD (HSUPA, Subtest 2)	- <u>-</u> -	1.83	67.16	15.53		150.0	L
CAB		^	1.03	68.30	15.96	0.00	150.0	± 9.6 %
		Y	1.88	68.76	16.25	ł	150.0	┼───
10099-		Z	1.79	67.10	15.49	<u> </u>	150.0	<u> </u>
10099- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	X	6.23	83.81	29.72	9.56	60.0	± 9.6 %
DAU		Y	7.34	90.66	22 54		+	<u> </u>
			7.51	90.66 87.64	<u>33.54</u> 31.39	┝───	60.0	I
10100-	LTE-FDD (SC-FDMA, 100% RB, 20	$\frac{1}{x}$	3.10	70.42	<u>31.39</u> 16.91	0.00	60.0	
CAC	MHz, QPSK)		0.10	10.42	10.91	0.00	150.0	± 9.6 %
		Y	3.17	70.79	17.14		150.0	<u> </u>
10101-		Z	3.14	69.95	16.56		150.0	<u> </u>
CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	X	3.21	67.53	16.05	0.00	150.0	± 9.6 %
		Y	3.24	67.71	40.40			
		z -	3.24	67,33	16.18 15.89		150.0	
10102-	LTE-FDD (SC-FDMA, 100% RB, 20	X	3.31	67.53	16.15	0.00	150.0 150.0	+0.0
CAC	MHz, 64-QAM)			01.00	10.10	0.00	150.0	± 9.6 %
	+	Y	3.34	67.67	16.26		150.0	
10103-		Z	3.39	67.31	16.00		150.0	
CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	5.23	73.47	19.72	3.98	65.0	± 9.6 %
		Τ _Υ	5.84	75.95	- 04 04			
		Ż	5.88	74.83	21.01		65.0	
10104-	LTE-TDD (SC-FDMA, 100% RB, 20	X	5.46	71.98	20.39 19.77		65.0	
CAC	MHz, 16-QAM)		0.40	71.50	19.77	3.98	65.0	± 9.6 %
		Y	5.63	73.01	20.49		65.0	
0105-		Z	6.00	73.07	20.39		65.0	
CAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	5.42	71.61	19.91	3.98	65.0	± 9.6 %
			 					_ +. • /0
		Y	5.43	72.06	20.36		65.0	
0108-	LTE-FDD (SC-FDMA, 100% RB, 10	Z X	<u>5.47</u> 2.70	71.05	19.77		65.0	
<u>CAD</u>	MHz, QPSK)		2.70	69.72	16.76	0.00	150.0	± 9.6 %
		† _₹ †	2.76	70.10	16.99		-150 0	
0.46-		Ż	2.75	69.19	16.39		150.0	
0109-	LTE-FDD (SC-FDMA, 100% RB, 10	TX	2.86	67.48	15.96	0.00	<u>150.0</u> 150.0	+0.04
AD	MHz, 16-QAM)				10.00	0.00	150.0	± 9.6 %
		ΓΥ	2.89	67.67	16.11		150.0	
0110-	TE-EDD (SC EDMA 4000/ DD ELT	Z	2.94	67.16	15.80		150.0	
AD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	2.18	68.93	16.34	0.00	150.0	± 9.6 %
		Y	2.24	69.40	16.63		450.0	
		z	2.24	68.24	15.99		150.0	
0111-	LTE-FDD (SC-FDMA, 100% RB, 5 MHz,		2.61	68.71	16.36	0.00	150.0	1000
AD	16-QAM)				10.00	0.00	150.0	± 9.6 %
		Y	2.63	68.84	16.47		150.0	
		Z	2.65	67.91				

EX3DV4-SN:7410

40440								
10112- CAD	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	2.99	67.52	16.03	0.00	150.0	± 9.6 %
		Y	3.01	67.67	16.15		150.0	
		Z	3.06	67.16	15.86		150.0	
10113- CAD	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	2.77	68.89	16.50	0.00	150.0	±9.6 %
		Y	2.78	68.97	16.58		150.0	
		Z	2.81	68.06	16.24		150.0	
10114- CAB	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	5.09	67.23	16.55	0.00	150.0	±9.6 %
		Y	5.10	67.28	16.60		150.0	
		Z	5.19	67.11	16.46		150.0	
10115- CAB	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	5.34	67.29	16.58	0.00	150.0	± 9.6 %
		Y	5.35	67.33	16.63		150.0	
		Z	5.51	67.33	16.58		150.0	
10116- CAB	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	X	5.18	67.42	16.57	0.00	150.0	± 9.6 %
		Y	5.19	67.47	16.62		150.0	
40447		Z	5.30	67.34	16.50		150.0	
10117- CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	5.06	67.11	16.50	0.00	150.0	± 9.6 %
		Y	5.07	67.16	16.56		150.0	
		Z	5.16	66.99	16.42		150.0	
10118- CAB	IEEE 802.11n (HT Mixed, 81 Mbps, 16- QAM)	X	5.42	67.49	16.69	0.00	150.0	± 9.6 %
		Y	5.44	67.54	16.74		150.0	
		Z	5.60	67.55	16.70		150.0	
10119- CAB	IEEE 802.11n (HT Mixed, 135 Mbps, 64- QAM)	X	5.16	67.38	16.56	0.00	150.0	± 9.6 %
		Y	5.17	67.43	16.62		150.0	
		Z	5.27	67.27	16.48		150.0	
10140- CAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	3.34	67.53	16.06	0.00	150.0	±9.6 %
		Y	3.37	67.68	16.18		150.0	
		Z	3.42	67.31	15.91		150.0	
10141- CAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	3.47	67.67	16.25	0.00	150.0	± 9.6 %
		Y	3.49	67.79	16.35		150.0	
		Z	3.55	67.42	16.09		150.0	
10142- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	1.97	69.09	15.95	0.00	150.0	± 9.6 %
		Y	2.03	69.63	16.28		150.0	
		Z	2.02	68.20	15.69		150.0	ļ
10143- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	2.49	69.65	15.98	0.00	150.0	±9.6 %
		Y	2.52	69.83	16.12	┣ ──	150.0	↓
		Z	2.51	68.62	15.86		150.0	
10144- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	×	2.16	66.67	13.99	0.00	150.0	± 9.6 %
		Y	2.21	66.99	14.22	l	150.0	<u> </u>
		Z	2.30	66.43	14.30		150.0	
10145- CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	1.07	64.11	10.67	0.00	150.0	± 9.6 %
		<u>Y</u>	1.11	64.57	11.01		150.0	<u> </u>
		Z	1.31	65.51	12.40	1	150.0	
10146- CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	1.34	62.65	9.02	0.00	150.0	± 9.6 %
		Y	1.43	63.27	9.42		150.0	ļ
		Z	2.01	66.35	12.18		150.0	
10147- CAD	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	1.45	63.47	9.57	0.00	150.0	± 9.6 %
		Y	1.57	64.27	10.06		150.0	
		Z	2.34	68.34	13.28		150.0	

EX3DV4- SN:7410

10149- CAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	2.87	67.55	16.01	0.00	150.0	± 9.6 %
		Ϋ́	2.90	67.73	16.15	<u> </u>	150.0	╆╴─────
		Z	2.95	67,22	15.84		150.0	╆╴───-
10150- CAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	3.00	67.58	16.08	0.00	150.0	± 9.6 %
		Y	3.02	67.73	16.20		150.0	1
		Z	3.07	67.21	15.90		150.0	
10151- CAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	×	5.65	76.57	21.08	3.98	65.0	± 9.6 %
		Y	<u>6.17</u>	78.83	22.29		65.0	
10152-		Z	6.35	77.82	21.74		65.0	
CAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	4.98	71.84	19.37	3.98	65.0	± 9.6 %
	·	Y	5.18	73.09	20.20		65.0	
10153-		Z	5.53	73.00	20.11		65.0	
CAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	5.35	72.93	20.23	3.98	65.0	± 9.6 %
		Y	5.53	74.06	20.99		65.0	
10154-		<u>Z</u>	5.88	73.94	20.90		65.0	
CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	2.24	69.40	16.63	0.00	150.0	± 9.6 %
		Y	2.29	69.81	16.88		150.0	
10155-		Z	2.29	68.69	16.27		150.0	<u> </u>
CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	×	2.62	68.74	16.38	0.00	150.0	± 9.6 %
	<u> </u>	Y	2.64	68.87	16.49		150.0	
10156-		Z	2.65	67.91	16.11		150.0	F
CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	Х	1.81	69.21	15.68	0.00	150.0	± 9.6 %
	<u> </u>	Y	1.88	69.80	16.04		150.0	i
10157-		Z	1.87	68.31	15.53		150.0	
CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	2.01	67.27	13.98	0.00	150.0	±9.6 %
		Y	2.06	67.66	14.24		150.0	
10158-		Z	2.13	67.00	14.37		150.0	
CAD	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	2.78	68.97	16.55	0.00	150.0	± 9.6 %
	<u> </u>	Y	2.79	69.05	16.63		150.0	
		Z	2.81	68.12	16.28		150.0	
10159- CAD	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	2.12	67.76	14.27	0.00	150.0	±9.6%
		Y	2.17	68.10	14.50		150.0	
10100		Z	2.25	67.49	14.68		150.0	
10160- CAC	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	2.73	68.96	16.55	0.00	150.0	± 9.6 %
	<u> </u>	Y	2.78	69.27	16.76		150.0	
10161-		Z	2.78	68.34	16.22		150.0	
CAC	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	X	2.89	67.56	16.00	0.00	150.0	± 9.6 %
<u> </u>	<u> </u>	Y	2.92	67.72	16.12		150.0	
10162-		Z	2.97	67.14	15.84		150.0	
CAC	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	3.00	67.76	16.13	0.00	150.0	± 9.6 %
	<u>+</u>	Y	3.03	67.89	16.24		150.0	
10166-		Ζ	3.08	67.27	15.94		150.0	
CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	Х	3.29	68.55	18.62	3.01	150.0	± 9.6 %
		Y	3.39	69.14	19.00		150.0	
10167-		Z	3.56	68.77	18.74		150.0	
CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	x	3.85	70.83	18.84	3.01	150.0	±9.6 %
		Y	4.06	71.87	19.39		150.0	
		Z						

EX3DV4-SN:7410

July 17, 2017

10168- CAD	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	x	4.31	73.34	20.36	3.01	150.0	± 9.6 %
		Y	4.51	74.19	20.77		150.0	
		Z	4.72	73.40	20.38		150.0	
10169- CAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	2.65	67.07	17.95	3.01	150.0	± 9.6 %
		Y	2.76	67.90	18.46		150.0	
		Z	2.95	68.18	18.47		150.0	
10170- CAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	3.35	71.83	19.98	3.01	150.0	± 9.6 %
		Y	3.58	73.08	20.56		150.0	
		Ζ	3.90	73.37	20.58		150.0	
10171- AAC	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	2.80	68.11	17.24	3.01	150.0	±9.6 %
		Y	3.01	69.49	17.99		150.0	
		Z	3.23	69.44	17.85		150.0	
10172- CAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	3.65	76.31	22.99	6.02	65.0	±9.6 %
		Y	5.48	85.89	27.40		65.0	
		Z	5.55	83.03	25.87	L	65.0	
10173- CAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	6.66	85.15	24.55	6.02	65.0	± 9.6 %
		Y	10.56	95.03	28.43		65.0	
		Z	12.26	94.72	28.10		65.0	
10174- CAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	4.93	79.32	21.92	6.02	65.0	±9.6 %
		Y	8.98	90.91	26.48		65.0	
		Z	8.81	87.78	25.30		65.0	
10175- CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	2.62	66.79	17.70	3.01	150.0	±9.6 %
		Y	2.73	67.64	18.24		150.0	
		Z	2.91	67.87	18.21		150.0	
10176- CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	3.35	71.86	19.99	3.01	150.0	±9.6 %
		Y	3.58	73.10	20.58		150.0	
		Z	3.90	73.39	20.59		150.0	
10177- CAF	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	2.64	66.92	17.79	3.01	150.0	± 9.6 %
		Y	2.75	67.76	18.31		150.0	
		Z	2.94	68.03	18.32		150.0	
10178- CAD	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	3.33	71.68	19.88	3.01	150.0	±9.6 %
		Y	3.56	72.95	20.49		150.0	
		Z	3.86	73.15	20.45		150.0	
10179- CAD	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	3.04	69.83	18.46	3.01	150.0	±9.6 %
		Y	3.27	71.21	19.16		150.0	
		Z	3.53	71.24	19.06		150.0	
10180- CAD	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	2.79	68.06	17.20	3.01	150.0	±9.6 %
		Y	3.00	69.44	17.95		150.0	
		Z	3.23	69.37	17.80		150.0	
10181- CAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	2.64	66.91	17.79	3.01	150.0	± 9.6 %
		Y	2.74	67.75	18.31		150.0	
		Z	2.93	68.01	18.31		150.0	
10182- CAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	3.32	71.66	19.87	3.01	150.0	± 9.6 %
		Y	3.55	72.93	20.48		150.0	
<u>}</u>		Z	3.85	73.13	20.44		150.0	
10183- AAB	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	2.79	68.04	17.19	3.01	150.0	± 9.6 %
		ŤΥ	3.00	69.42	17.94		150.0	1
⊢ <u>···</u>		Ż	3.22	69.35	17.79	1	150.0	I

Certificate No: EX3-7410_Jul17

10184- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	2.65	66.95	17.81	3.01	150.0	± 9.6 %
		Y	2.75	67.79	18.33	<u> </u>	150.0	+
		Z	2.95	68.05	18.33	<u> </u>	150.0	
10185- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	3.34	71.72	19.91	3.01	150.0	± 9.6 %
		Y	3.57	72.99	20.51	<u> </u>	150.0	
		Z	3.87	73.20	20.48		150.0	+
10186- AAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	2.80	68.09	17.22	3.01	150.0	± 9.6 %
	+	Y	3.01	69.48	17.97		150.0	
10187-		Z	3.23	69.41	17.82		150.0	<u> </u>
CAD	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	2.66	67.00	17.88	3.01	150.0	±9.6 %
		Y	2.76	67.84	18.40		150.0	
10188		Z	2.95	68.09	18.39		150.0	
10188- CAD	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	3.43	72.31	20.28	3.01	150.0	± 9.6 %
	<u> </u>	Y	3.66	73.53	20.84		150.0	
10189-		Z	4.00	73.86	20.87		150.0	
AAD	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	2.85	68.45	17.48	3.01	150.0	± 9.6 %
		Y	3.07	69.84	18.22		150.0	
10193-		<u>Z</u>	3.30	69.81	18.09		150.0	1
CAB	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	X	4.48	66.73	16.24	0.00	150.0	± 9.6 %
	<u> </u>	Y	4.49	66.78	16.30		150.0	
10194-		Z	4.58	66.49	16.16		150.0	
CAB	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	X	4.63	67.01	16.37	0.00	150.0	± 9.6 %
	<u> </u>	Y	4.65	67.06	16.43		150.0	
10195-		Z	4.76	66.82	16.28		150.0	<u> </u>
CAB	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	X	4.67	67.04	16.38	0.00	150.0	± 9.6 %
		Y	4.69	67.09	16.44		150.0	
10196-		Z	4.80	66.85	16.30		150.0	<u>† </u>
CAB	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	4.47	66.77	16.24	0.00	150.0	± 9.6 %
	<u> </u>	Y	4.48	66.82	16.30		150.0	<u> </u>
10107		Z	4.59	66.56	16.19		150.0	<u> </u>
10197- CAB	IEEE 802.11n (HT Mixed, 39 Mbps, 16- QAM)	X	4.64	67.02	16.38	0.00	150.0	± 9.6 %
		Y	4.66	67.08	16.44	· · · · ·	150.0	
10198-		Z	4.78	66.84	16.30		150.0	
CAB	IEEE 802.11n (HT Mixed, 65 Mbps, 64- QAM)	X	4.67	67.05	16.39	0.00	150.0	± 9.6 %
	<u> </u>	Y	4.68	67.10	16.45		150.0	
10219-		Z	4.81	66.86	16.31		150.0	
CAB	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	×	4.42	66.79	16.21	0.00	150.0	± 9.6 %
		Y	4.44	66.84	16.27		150.0	
10220-		Z	4.54	66.57	16.15		150.0	
CAB	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16- QAM)	X	4.64	66.99	16.36	0.00	150.0	± 9.6 %
		Y	4.65	67.04	16.42		150.0	
0221-		Z	4.77	66.82	16.29		150.0	
CAB	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64- QAM)	×	4.68	66.98	16.38	0.00	150.0	± 9.6 %
		Y	4.69	67.03	16.44		150.0	
0000		Z	4.81	66.80	16.30		150.0	
0222- CAB	IEEE 802.11n (HT Mixed, 15 Mbps,	X	5.03	67.11	16.49	0.00	150.0	± 9.6 %
	BPSK)			1	1	I		
CAB	<u>BPSK)</u>	Y	5.04	67.15	16.55		150.0	

10223-	IEEE 802.11n (HT Mixed, 90 Mbps, 16-	X	5.33	67.33	16.62	0.00	150.0	± 9.6 %
CAB	QAM)					0.00		10.0 /8
		Y	5.34	67.38	16.68	-	150.0	
10001		Z	5.45	67.21	16.54		150.0	
10224- CAB	IEEE 802.11n (HT Mixed, 150 Mbps, 64- QAM)	×	5.07	67.22	16.48	0.00	150.0	± 9.6 %
		Y	5.09	67.26	16.53	-	150.0	
		Z	5.18	67.11	16.40		150.0]
10225- CAB	UMTS-FDD (HSPA+)	Х	2.76	66.33	15.32	0.00	150.0	± 9.6 %
		Y	2.78	66.46	15.44		150.0	
		Z	2.85	65.93	15.34		150.0	
10226- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	7.05	86.26	25.03	6.02	65.0	± 9.6 %
<u> </u>		Y	11.33	96.43	28.97		65.0	
		Z	13.18	96.17	28.66		65.0	
10227- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	7.07	85.23	24.04	6.02	65.0	± 9.6 %
		Y	11.45	95.09	27.83		65.0	
		Z	12.76	94.16	27.40		65.0	
10228- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	4.84	82.15	25.37	6.02	65.0	± 9.6 %
		Y	6.17	88.64	28.46		65.0	
		Z	7.76	90.12	28.51		65.0	
10229- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	6.71	85.26	24.59	6.02	65.0	± 9.6 %
		Y	10.65	95.13	28.47		65.0	
		Z	12.36	94.84	28.14		65.0	
10230- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	6.68	84.20	23.61	6.02	65.0	± 9.6 %
		Y	10.65	93.73	27.33		65.0	
		Z	11.94	92.89	26.92		65.0	
10231- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	4.67	81.40	24.99	6.02	65.0	± 9.6 %
		Y	5.94	87.77	28.07		65.0	
		Z	7.43	89.17	28.10		65.0	
10232- CAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	6.69	85.24	24.58	6.02	65.0	± 9.6 %
		Y	10.63	95.12	28.47		65.0	ľ
		Z	12.34	94.82	28.14		65.0	
10233- CAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	6.66	84.17	23.60	6.02	65.0	± 9.6 %
		Y	10.62	93.69	27.32		65.0	
		Z	11.91	92.86	26.91	i	65.0	1
10234- CAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	4.54	80.75	24.63	6.02	65.0	± 9.6 %
		Y	5.76	87.05	27.69		65.0	
		Z	7.17	88.32	27.68		65.0	
10235- CAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	6.69	85.26	24.59	6.02	65.0	± 9.6 %
		Ý	10.64	95.16	28.48		65.0	
		Z	12.35	94.85	28.15		65.0	
10236- CAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	×	6.73	84.30	23.64	6.02	65.0	± 9.6 %
		Y	10.78	93.91	27.38		65.0	
		Z	12.05	93.03	26.96		65.0	
10237- CAC	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	4.67	81.42	25.00	6.02	65.0	± 9.6 %
		Y	5.94	87.83	28.10		65.0	
		Z	7.43	89.21	28.12		65.0	
10238- CAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	6.68	85.21	24.57	6.02	65.0	± 9.6 %
<i>Q,</i> (Q		Y	10.60	95.09	28.46	1	65.0	<u> </u>
	1	Ż	12.31	94.79	28.13	1	65.0	1

10239- CAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz,		6.64	84.13	23.58	6.02	65.0	± 9.6 %
	64-QAM)	Y						
			10.57 11.87	93.64 92.82	27.30	<u> </u>	65.0	
10240- CAC	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	4.66	81.38	26.90 24.99	6.02	65.0 65.0	± 9.6 %
		Y-	5.92	87.78	28.08		65 0	
		Ż	7.41	89.16	28.00		65.0	
10241- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	<u> </u>	6.49	77.69	23.88	6.98	65.0 65.0	± 9.6 %
		Y	7.06	80.22	25.34	<u> </u>	65.0	
		Z	7.33	78.75	24.61		65.0	+
10242- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	5.69	74.96	22.63	6.98	65.0	± 9.6 %
		Y	6.72	79.20	24.84		65.0	
40040		Ζ	6.48	76.10	23.39		65.0	<u> </u>
10243- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	5.22	73.93	23.04	6.98	65.0	± 9.6 %
		Y	5.37	75.23	24.06		65.0	
40044		Z	5.30	72.76	22.72		65.0	<u> </u>
10244- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	4.03	70.70	15.63	3.98	65.0	± 9.6 %
	+	Y	4.63	73.27	17.01		65.0	
10245-		Z	5.80	76.12	19.17		65.0	
CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	3.94	70.12	15.32	3.98	65.0	± 9.6 %
	+	Y	4.47	72.48	16.60		65.0	<u> </u>
10246-		Z	5.67	75.49	18.85		65.0	
CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	4.17	75.16	18.15	3.98	65.0	± 9.6 %
	<u>+</u>	Y	5.29	79.64	20.23		65.0	
10247-		Z	5.81	80.17	21.10		65.0	F
CAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	4.10	71.58	17.29	3.98	65.0	± 9.6 %
	+	Y	4.43	73.43	18.37		65.0	1
10248-		Z	4.92	74.07	19.21		65.0	
CAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	4.07	70.96	16.98	3.98	65.0	± 9.6 %
		<u>Y</u>	4.37	72.65	17.99		65.0	[
10249-		Z	4.90	73.42	18.88		65.0	
CAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	5.33	79.24	20.92	3.98	65.0	± 9.6 %
	+	Y	6.73	84.01	23.05		65.0	
10250-	LTE-TDD (SC-FDMA, 50% RB, 10 MHz,	Z	6.62	82.34	22.76		65.0	
	16-QAM)	X	4.99	74.32	20.40	3.98	65.0	± 9.6 %
	+	Y	5.24	75.79	21.30		65.0	
0251- CAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	Z X	5.59 4.75	75.60 72.14	21.35 19.02	3.98	65.0 65.0	± 9.6 %
							_	
<u> </u>	·	Y	4.99	73.56	19.92		65.0	
0252-	LTE-TDD (SC-FDMA, 50% RB, 10 MHz,	Z	5.35	73.44	20.02		65.0	
CAC	QPSK)	X	5.62	79.05	22.01	3.98	65.0	± 9.6 %
	<u> </u>	Y Z	6.48	82.42	23.65		65.0	
0253- CAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	<u>×</u>	<u>6.49</u> 4.91	<u>80.72</u> 71.43	22.96 19.12	3.98	65.0 65.0	±9.6 %
		Y	5.09	72.60	10.00			
		Z	5.40	72.60 72.41	19.93		65.0	
0254- CAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	5.23	72.40	19.86 19.88	3.98	<u>65.0</u> 65.0	± 9.6 %
<u>AC</u>								
CAC		Y	5.41	73.49	20.63		65.0	

10255- CAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	5.37	75.82	20.95	3.98	65.0	± 9.6 %
-		Y	5.81	77.90	22.11		65.0	
		Z	5.98	76.90	21.60		65.0	
10256- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	2.95	66.44	12.43	3.98	65.0	±9.6 %
		Y	3.25	68.14	13.47		65.0	
		Z	4.63	72.57	16.66		65.0	
10257- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	2.90	65.89	12.05	3.98	65.0	±9.6 %
		Y	3.14	67.36	12.98		65.0	
		Z	4.49	71.73	16.18		65.0	
10258- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	2.90	69.51	14.64	3.98	65.0	± 9.6 %
		Y	3.44	72.54	16.25		65.0	
-		Z	4.52	75.89	18.60		65.0	
10259- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	4.46	72.72	18.47	3.98	65.0	± 9.6 %
		Y	4.78	74.47	19.50		65.0	
		Z	5.19	74.62	19.97		65.0	
10260- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	4.49	72.43	18.33	3.98	65.0	± 9.6 %
		Y	4.79	74.08	19.32		65.0	
		Z	5.22	74.34	19.84		65.0	
10261- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	5.17	78.27	21.02	3.98	65.0	± 9.6 %
		Y	6.16	82.12	22.85		65.0	
		Z	6.14	80.53	22.44		65.0	
10262- CAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	4.98	74.25	20.35	3.98	65.0	± 9.6 %
		Υ	5.23	75.73	21.26		65.0	
		Z	5.58	75.55	21.31		65.0	
10263- CAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	4.74	72.12	19.01	3.98	65.0	± 9.6 %
		Y	4.98	73.53	19.91		65.0	
		Z	5.34	73.42	20.01		65.0	
10264- CAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	5.56	78.83	21.90	3.98	65.0	± 9.6 %
		Y	6.41	82.18	23.54		65.0	
		Z	6.42	80.51	22.86		65.0	
10265- CAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	4.98	71.84	19.37	3.98	65.0	± 9.6 %
		Y	5.18	73.09	20.20		65.0	
		Z	5.53	73.00	20.12		65.0	
10266- CAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	5.34	72.91	20.22	3.98	65.0	± 9.6 %
		Y	5.53	74.04	20.98		65.0	
		Z	5.88	73.92	20.89		65.0	
10267- CAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	5.64	76.53	21.06	3.98	65.0	± 9.6 %
		Y	6.16	78.78	22.27		65.0	
		Z	6.34	77.78	21.72		65.0	
10268- CAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	5.63	71.94	19.85	3.98	65.0	± 9.6 %
		Y	5.78	72.88	20.51		65.0	
		Z	6.14	72.88	20.41	L	65.0	
10269- CAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	5.64	71.57	19.72	3.98	65.0	± 9.6 %
		Y	5.77	72.45	20.36		65.0	
		Z	6.12	72.44	20.27		65.0	
10270- CAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	5.66	74.09	20.17	3.98	65.0	± 9.6 %
		ΤY	5.94	75.48	21.01	1	65.0	
		Z	6.22	75.05	20.69	1	65.0	

10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	x	2.58	66.84	15.32	0.00	150.0	±9.6 %
		Y	2.61	67.05	15.49	+	150.0	+
		Z	2.61	66.19	15.19	<u> </u>	150.0	╀────
10275- CAB	UMTS-FDD (HSUPA, Sublest 5, 3GPP Rel8.4)	X	1.62	68.33	15.81	0.00	150.0	± 9.6 %
		Y	1.68	69.01	16.23		150.0	<u> </u>
4007-		Z	1.61	67.33	15.34		150.0	+
10277- CAA	PHS (QPSK)	X	1.71	60.26	5.85	9.03	50.0	± 9.6 %
		Y	1.46	60.00	5.35		50.0	<u> </u>
40070		Z	2.08	61.87	7.57		50.0	<u>+</u>
10278- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	3.48	68.77	13.21	9.03	50.0	± 9.6 %
	<u> </u>	Y	3.86	71.42	14.38		50.0	
10279-		Z	7.61	81.06	19.61		50.0	<u> </u>
CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	3.59	69.09	13.42	9.03	50.0	± 9.6 %
		Y	4.03	71.88	14.65		50.0	<u> </u>
10000		Z	7.80	81.31	19.76		50.0	1
10290- AAB	CDMA2000, RC1, SO55, Full Rate	X	1.38	68.75	13.54	0.00	150.0	± 9.6 %
	+	Y_	1.49	69.81	14.11		150.0	1
10001		Z	1.48	68.40	14.11		150.0	┢───-
10291- AAB	CDMA2000, RC3, SO55, Full Rate	X	0.81	66.18	12.25	0.00	150.0	± 9.6 %
		Y	0.88	67.15	12.85		150.0	<u> </u>
40000		Z	0.85	65.51	12.62		150.0	<u> </u>
10292- AAB	CDMA2000, RC3, SO32, Full Rate	X	1.25	72.63	15.60	0.00	150.0	± 9.6 %
		Y	1.48	75.02	16.70		150.0	
		Z	1.05	69.24	14.85		150.0	<u> </u> -
10293- AAB	CDMA2000, RC3, SO3, Full Rate	X	3.55	87.18	21.36	0.00	150.0	± 9.6 %
		Y	4.57	90.90	22.67		150.0	<u> </u>
4000		Z	1.55	74.98	17.80		150.0	
10295- AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	10.90	87.79	24.10	9.03	50.0	± 9.6 %
		Y	17.38	97.96	27.91		50.0	
		Z	9.27	86.92	25.25		50.0	
10297- AAB	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	2.71	69.84	16.83	0.00	150.0	± 9.6 %
		LΥ	2.77	70.21	17.06		150.0	
		Z	2.77	69.29	16.46		150.0	
10298- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	1.47	67.49	13.62	0.00	150.0	±9.6 %
		Y	1.54	68.13	14.02		150.0	
0000		Z	1.61	67.49	14.26		150.0	
10299- \AC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	1.91	66.04	11.93	0.00	150.0	± 9.6 %
	<u> </u>	Y	2.08	67.06	12.49		150.0	
0300-		Z	2.55	68.88	14.29		150.0	
10300- \AC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	1.52	62.84	9.56	0.00	150.0	± 9.6 %
	<u> </u>	Y	1.60	63.32	9.89		150.0	
0304		Z	2.01	64.97	11.67		150.0	
0301- VAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	X	4.49	64.94	17.15	4.17	50.0	± 9.6 %
		Y	4.51	65.12	17.33		50.0	
		Z	4.77	65.09	17.35		50.0	
0000								
	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	x	4.98	65.58	17.87	4.96	50.0	± 9.6 %
10302- \AA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)					4.96		± 9.6 %

10303-	IEEE 802.16e WIMAX (31:15, 5ms,	X	4.72	65.17	17.66	4.96	50.0	± 9.6 %
ΑΑΑ	10MHz, 64QAM, PUSC)	Y	4.76	65.39	17.86		50.0	
		Z	4.76	65.24	17.83		50.0	
10304- AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	X	4.56	65.16	17.23	4.17	50.0	± 9.6 %
		Y	4.60	65.38	17.42		50.0	
		Z	4.79	65.14	17.34		50.0	
10305- AAA	IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	X	4.06	66.26	18.68	6.02	35.0	± 9.6 %
		Y	3.98	66.05	18.73		35.0	
10306- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	Z X	4.32 4.43	66.47 65.65	19.19 18.52	6.02	35.0 35.0	± 9.6 %
		Y	4.40	65.62	18.63		35.0	
		Ż	4.69	65.80	18.88		35.0	
10307- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	X	4.31	65.69	18.43	6.02	35.0	± 9.6 %
		Y	4.27	65.62	18.52		35.0	
		Z	4.59	65.95	18.85		35.0	
10308- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	X	4.28	65.86	18.56	6.02	35.0	±9.6 %
	1	Y	4.24	65.78	18.65		35.0	
10200		Z	4.55	66.08	18.95	6.00	35.0	1060/
10309- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)	X Y	4.47	65.79	18.63	6.02	35.0 35.0	±9.6 %
	· · · · · · · · · · · · · · · · · · ·	Z	4.44	65.78 66.03	18.76 19.03		35.0	
10310- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	X	4.38	65.69	18.49	6.02	35.0	± 9.6 %
////		Y	4.34	65.63	18.59		35.0	
		Z	4.64	65.84	18.85		35.0	
10311- AAB	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	3.08	69.08	16.47	0.00	150.0	±9.6 %
		Y	3.14	69.40	16.66		150.0	
		Z	3.12	68.62	16.13		150.0	
10313- AAA	iDEN 1:3	X	2.89	72.65	16.29	6.99	70.0	± 9.6 %
		Y Z	4.19 4.02	78.79 76.71	18.89 18.18		70.0	
10314- AAA	iDEN 1:6	X	5.30	83.78	23.47	10.00	30.0	± 9.6 %
		ΤΥ	6.55	89.94	26.15		30.0	
		Z	6.97	88.50	25.50		30.0	
10315- AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	1.08	63.77	15.30	0.17	150.0	± 9.6 %
		Y	1.10	64.11	15.62		150.0	
10316- AAB	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle)	Z X	1.08 4.51	63 <u>.32</u> 66.68	14.99 16.32	0.17	150.0 150.0	± 9.6 %
		Τ <u>γ</u>	4.53	66.78	16.42		150.0	<u> </u>
		Ż	4.64	66.54	16.30		150.0	
10317- AAB	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	4.51	66.68	16.32	0.17	150.0	± 9.6 %
		Y	4.53	66.78	16.42	ļ	150.0	
10105		Z	4.64	66.54	16.30	0.00	150.0	
10400- AAC	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	4.61	67.03	16.35	0.00	150.0	± 9.6 %
		Y	4.63	67.11	16.42	<u> </u>	150.0	
10401-	IEEE 802.11ac WiFi (40MHz, 64-QAM,	Z	4.76 5.34	66.86 67.18	16.27 16.51	0.00	150.0 150.0	± 9.6 %
AAC	99pc duty cycle)	Y	5.34	67.16	16.59		150.0	1 9.0 %
		Z	5.36	67.09	16.39	1	150.0	!

10402-	IEEE 802.11ac WiFi (80MHz, 64-QAM,	X	5.59	67.45	16.52	0.00	150.0	± 9.6 %
AAC	99pc duty cycle)	<u> </u>						
		Y_	5.60	67.49	16.57		150.0	
10403-	CDMA2000 (1xEV-DO, Rev. 0)	Z	5.71	67.42	16.48		150.0	
AAB		X	1.38	68.75	13.54	0.00	115.0	± 9.6 %
	<u> </u>	Y	1.49	69.81	14 11		115.0	
10404-		Z	1.48	68.40	14.11		115.0	
AAB	CDMA2000 (1xEV-DO, Rev. A)		1.38	68.75	13.54	0.00	115.0	± 9.6 %
		<u>Y</u>	1.49	<u>69.81</u>	14.11		115.0	
10406-	CDMA2000, RC3, SO32, SCH0, Full	Z	1.48	68.40	14.11		115.0	
AAB	Rate	X	17.35	99.43	24.90	0.00	100.0	± 9.6 %
		Y	63.25	115.82	28.80		100.0	
10410-		Z	11.61	93.88	24.12		100.0	
10410- AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	8.36	91.25	22.62	3.23	80.0	± 9.6 %
	·	Y	100.00	127.16	32.13		80.0	
10415-		Z	100.00	125.70	32.09		80.0	
AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	1.03	63.22	14.88	0.00	150.0	± 9.6 %
	<u> </u>	Y	1.04	63.49	15.13		150.0	
10416-		Z	1.02	62.64	14.46		150.0	
AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duly cycle)	X	4.48	66.75	16.31	0.00	150.0	±9.6 %
	<u>+</u>	Y	4.49	66.81	16.37		150.0	1
10417-		Z	4.59	66.53	16.22		150.0	
AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	X	4.48	66.75	16.31	0.00	150.0	± 9.6 %
	· <u> </u>	<u> </u>	4.49	66.81	16.37		150.0	
10418-		Z	4.59	66.53	16.22		150.0	
AAA 	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	X	4.47	66.94	16.35	0.00	150.0	±9.6 %
		L Υ]	4.48	67.00	16.41	·	150.0	
10419-		Z	4.58	66.68	16.24		150.0	
AAA 	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	X	4.49	66.88	16.34	0.00	150.0	± 9.6 %
·		Y	4.50	66.93	16.40		150.0	
40400		Z	4.60	66.63	16.24		150.0	L
10422- AAA	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	X	4.60	66.86	16.35	0.00	150.0	± 9.6 %
		Y	4.61	66.91	16.41	<u> </u>	150.0	<u> </u>
10.400		Z	4.72	66.64	16.26		150.0	
10423- AAA	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	X	4.74	67.14	16.45	0.00	150.0	± 9.6 %
		Y	4.76	67.20	16.51		150.0	
10404		Z	4.89	66.97	16.38		150.0	
10424- AAA	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	X	4.67	67.10	16.43	0.00	150.0	± 9.6 %
	<u>+</u>	Y	4.68	67.15	16.49		150.0	
10405		Z	4.81	66.91	16.35		150.0	
10425- AAA	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	X	5.29	67.34	16.60	0.00	150.0	± 9.6 %
		Y	5.30	67.39	16.66		150.0	
10426		Z	5.42	67.29	16.55		150.0	
10426- AAA	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	X	5.31	67.43	16.64	0.00	150.0	± 9.6 %
		Y Z	5.32	67.48	16.70	———————————————————————————————————————	150.0	

10427-	LEEE 902 11p (HT Groopfield, 150 Mbre		5.00		40.50	0.00	450 0	
AAA	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	X	5.30	67.32	16.58	0.00	150.0	± 9.6 %
		Y	5.31	67.37	16.64		150.0	
40400		Z	5.44	67.28	16.54		150.0	·
10430- AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	X	4.41	72.30	18.78	0.00	150.0	± 9.6 %
		Ý	4.28	71.61	18.44		150.0	
		Z	4.35	_ 70.84	18.35		150.0	
10431- AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	X	4.12	67.35	16.27	0.00	150.0	±9.6 %
		Y	4.14	67.43	16.34		150.0	
		Z	4.27	67.06	16.22		150.0	
10432- AAA	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	X	4.43	67.18	16.37	0.00	150.0	± 9.6 %
		<u>Y</u> .	4.45	67.24	16.44		150.0	
		Z	4.58	66.95	16.29		150.0	
10433- AAA	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	×	4.69	67.13	16.45	0.00	150.0	±9.6 %
		Y	4.70	67.18	16.51		150.0	
10/0/		Z	4.82	66.95	16.37		150.0	
10434- AAA	W-CDMA (BS Test Model 1, 64 DPCH)	X	4.58	73.43	18.77	0.00	150.0	± 9.6 %
		Y	4.41	72.61	18.39		150.0	
40407		Z	4.46	71.72	18.35	0.00	150.0	1004
10435- AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	7.84	90.24	22.26	3.23	80.0	±9.6 %
		Y	100.00	126.90	32.00		80.0	
		Z	100.00	125.48	31.98		80.0	
10447- AAA	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	3.40	67.35	15.41	0.00	150.0	±9.6 %
		Y	3.42	67.47	15.52		150.0	
		Z	3.56	67.03	15.56		150.0	
10448- AAA	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	X	3.98	67.14	16.14	0.00	150.0	±9.6 %
		Y	4.00	67.22	16.21		150.0	
· _		Z	4.11	66.83	16.08		150.0	
10449- AAA	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	×	4.26	67.02	16.27	0.00	150.0	± 9.6 %
		Y	4.28	67.08	16.34		150.0	
		Z	4.38	66.77	16.19		150.0	
10450- AAA	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	4.47	66.91	16.31	0.00	150.0	± 9.6 %
		<u>Y</u>	4.48	66.96	16.37		150.0	
		Z	4.58	66.71	16.22		150.0	
10451- AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	X	3.25	67.38	14.88	0.00	150.0	± 9.6 %
		Y	3.28	67.53	15.01		150.0	
		Z	3.46	67.22	15.21		150.0	
10456- AAA	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	X	6.22	67.99	16.81	0.00	150.0	± 9.6 %
		Y	6.22	68.02	16.86		150.0	
		Z	6.28	67.84	16.71		150.0	
10457- AAA	UMTS-FDD (DC-HSDPA)	X	3.78	65.43	16.02	0.00	150.0	± 9.6 %
		Y	3.79	65.48	16.08		150.0	
		Z	3.83	65.16	15.92	0.00	150.0	
10458- AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	X	3.02	66.44	14.01	0.00	150.0	± 9.6 %
		Y	3.06	66.64	14.18		150.0	<u> </u>
		Z	3.28	66.54	14.63	L	150.0	-
10459- AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	×	4.18	65.23	15.36	0.00	150.0	± 9.6 %
		Y	4.18	<u>65.21</u>	15.41	ļ	150.0	
		Z	4.47	65.25	15.75		150.0	

10460-	UMTS-FDD (WCDMA, AMR)	X	0.93	68.87	16.62	0.00	150.0	± 9.6 %
_AAA		_						
		Υ Υ	1.00	70.16	17.38		150.0	
10461-	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz,	<u>Z</u>	0.88	67.06	15.60	l	150.0	L
	QPSK, UL Subframe=2,3,4,7,8,9)	X Y	4.32	84.19	21.37	3.29	80.0	± 9.6 %
	<u> </u>		46.98	120.39	31.74	<u> </u>	80.0	
10462-	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz,	Z	70.92	123.84	32.55		80.0	
AAA	16-QAM, UL Subframe=2,3,4,7,8,9)	Ŷ	1.50	61.17 66.22	8.92	3.23	80.0	± 9.6 %
		$\frac{1}{Z}$	4.18	75.74	<u>11.48</u> 15.77	<u> </u>	80.0	╞╴───-
10463- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	x	0.83	60.00	7.74	3.23	80.0	± 9.6 %
		Y	0.90	60.95	8.47		80.0	<u> </u>
10101		Z	1.89	66.55	11.77		80.0	†
10464- AAA	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.27	79.79	19.27	3.23	80.0	± 9.6 %
		Y	44.63	117.13	30.10		80.0	
10465-	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-	Z	63.16	119.86	30.88		80.0	
<u>AAA</u>	QAM, UL Subframe=2,3,4,7,8,9)	X	0.88	60.65	8.58	3.23	80.0	± 9.6 %
		Υ Υ	1.28	64.64	10.73		80.0	
10466-	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-	Z	2.98	72.01	14.38		80.0	
AAA	QAM, UL Subframe=2,3,4,7,8,9)		0.83	60.00	7.69	3.23	80.0	± 9.6 %
		$\frac{1}{Z}$	1.66	60.44 65.17	8.16		80.0	┝───-
10467- AAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.54	80.96	<u>11.12</u> 19.70	3.23	80.0 80.0	±9.6 %
		Y	60.93	121.68	31.18		80.0	<u> </u>
		Z	84.88	124.19	31.89		80.0	
10468- AAB	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	0.89	60.80	8.68	3.23	80.0	± 9.6 %
	<u> </u>	Y	1.33	65.06	10.94		80.0	<u> </u>
10469-	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-	Z	3.21	72.86	14.71		80.0	
AAB	QAM, UL Subframe=2,3,4,7,8,9)	X	0.83	60.00	7.69	3.23	80.0	± 9.6 %
		Y	0.85	60.46	8.17		80.0	
10470-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz,	Z	1.66	65.20	11.14		80.0	
AAB	QPSK, UL Subframe=2,3,4,7,8,9)	X	3.54	80.99	19.71	3.23	80.0	± 9.6 %
	<u> </u>	Y 7	63.11	122.20	31.29		80.0	
10471-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-	Z X	86.48	124.48	31.95		80.0	
AAB	QAM, UL Subframe=2,3,4,7,8,9)	X Y	0.88	60.76	8.65	3.23	80.0	±9.6%
		Z	<u>1.32</u> 3.18	64.98	10.89		80.0	
10472- AAB	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	0.83	72.76 60.00	14.66 7.68	3.23	80.0 80.0	± 9.6 %
		Y	0.84	60.42	8.13		80.0	
		Ζ	1.65	65.15	11.10		80.0	
10473- AAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.52	80.93	19.68	3.23	80.0	± 9.6 %
		Y	62.71	122.07	31.26		80.0	
10474-	TE-TOD (SC EDMA (DD (CL))	Z	85.93	124.36	31.91		80.0	
AAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	0.88	60.74	8.64	3.23	80.0	± 9.6 %
		Y	1.31	64.94	10.87		80.0	
10475-	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-	Z	3.15	72.67	14.63		80.0	
AAB	QAM, UL Subframe=2,3,4,7,8,9)	X	0.83	60.00	7.68	3.23	80.0	± 9.6 %
		Y	0.84	60.40	8.12		80.0	
		Z	1.64	65.11	11.08		80.0	

10477-	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-	x	0.87	60.61	8.55	3.23	80.0	± 9.6 %
AAB	QAM, UL Subframe=2,3,4,7,8,9)	Y	1.27	64.59	10.69		80.0	
		Z	2.97	71.99	14.36		80.0	
10478- AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	0.83	60.00	7.67	3.23	80.0	± 9.6 %
10.0		Y	0.84	60.37	8.09		80.0	
	- ··	Z	1.63	65.04	11.04		80.0	
10479- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	x	4.53	79.52	20.39	3.23	80.0	± 9.6 %
		Y	7.80	88.47	23.78		80.0	
		Ζ	5.78	82.49	22.28		80.0	-
10480- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.53	72.09	15.68	3.23	80.0	± 9.6 %
		Y	6.36	79.96	18.76		80.0	
		Z	6.52	79.72	19.55		80.0	
10481- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	2.81	68.83	13.98	3.23	80.0	± 9.6 %
		Y	4.53	74.98	16.60		<u>8</u> 0.0	
		Z	5.48	76.73	18.13		80.0	
10482- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	2.20	68.90	15.09	2.23	80.0	± 9.6 %
		Y	2.93	73.22	17.16		80.0	
		Z	2.97	72.34	17.43		80.0	
10483- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	×	2.35	65.97	12.90	2.23	80.0	±9.6 %
		Y	3.02	69.40	14.64		80.0	
		Z	4.23	73.30	17.24		80.0	
-10484- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	2.28	65.32	12.60	2.23	80.0	± 9.6 %
		Y	2.83	68.32	14.18		80.0	
		Z	3.99	72.23	16.81		80.0	
10485- AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	2.68	71.36	17.35	2.23	80.0	± 9.6 %
		Y	3.27	74.89	19.08		80.0	
		Z	3.17	72.95	18.56	<u> </u>	80.0	
10486- AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	2.64	67.61	15.00	2.23	80.0	± 9.6 %
		Ι Y	2.99	69.69	16.14	<u> </u>	80.0	
		Z	3.15	69.34	16.51		80.0	
10487- AAB	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	2.64	67.21	14.79	2.23	80.0	±9.6 %
		Y	2.96	<u>69.13</u>	15.87		80.0	
10488-	LTE-TDD (SC-FDMA, 50% RB, 10 MHz,	<u>Z</u> X	3.15 3.00	68.96 70.76	16.33 18.02	2.23	80.0 80.0	± 9.6 %
AAB	QPSK, UL Subframe=2,3,4,7,8,9)	Υ	3.34	72.92	19.20	<u> </u>	80.0	
·		Z	3.34	72.92	19.20	1	80.0	<u> </u>
10489- AAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.42	67.95	16.69	2.23	80.0	± 9.6 %
		Y	3.24	69.09	17.42	1	80.0	
		Z	3.37	68.53	17.27		80.0	
10490- AAB	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.16	67.82	16.63	2.23	80.0	± 9.6 %
<u> </u>		Y	3.32	68.90	17.33		80.0	
		Z	3.47	68.38	17.21		80.0	
10491- AAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.29	69.57	17.67	2.23	80.0	± 9.6 %
<u> </u>		Y	3.53	71.04	18.54		80.0	
ł		Z	3.67	70.46	18.17		80.0	
10492- AAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.43	67.31	16.78	2.23	80.0	± 9.6 %
		Y	3.55	68.11	17.34		80.0	
·		Z	3.72	67.80	17.20		80.0	1

								July 17, 20
10493- AAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.50	67.21	16.74	2.23	80.0	± 9.6 %
		Y	3.62	67.97	17.27		80.0	
10494-		Z	3.79	67.69	17.16		80.0	+
AAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.52	70.87	18.10	2.23	80.0	± 9.6 %
	<u>+</u>	Y	3.84	72.64	19.08	1	80.0	+
10495-		Z	3.98	72.03	18.67		80.0	
AAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.45	67.59	16.97	2.23	80.0	± 9.6 %
		Y	3.58	68.42	17.54		80.0	
10496-	LTE-TDD (SC-FDMA, 50% RB, 20 MHz,	Z	3.75	68.20	17.40		80.0	
AAB	64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.54	67.39	16.91	2.23	80.0	± 9.6 %
		Υ <u></u>	3.65	68.15	17.44		80.0	
10497-	LTE-TDD (SC-FDMA, 100% RB, 1.4	Z	3.83	67.94	17.32		80.0	
AAA	MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	1.43	63.58	11.40	2.23	80.0	± 9.6 %
		Y	1.80	66.67	13.09		80.0	
10498-	LTE-TDD (SC-FDMA, 100% RB, 1.4	Z	2.27	68.74	14.99	<u> </u>	80.0	
AAA	MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	x	1.24	60.00	8.33	2.23	80.0	± 9.6 %
		Y	1.23	60.00	8.51		80.0	<u> </u>
10100		Ζ	1.81	63.14	11.27		80.0	╉─────
10499- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	1.26	60.00	8.18	2.23	80.0	± 9.6 %
		Y	1.24	60.00	8.34		80.0	├───
		Z	1.76	62.56	10.83		80.0	┟────
10500- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	2.78	70.93	17.56	2.23	80.0	±9.6%
		Y	3.23	73.75	19.01		80.0	— —
40504		Z	3.21	72.13	18.47		80.0	+
10501- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	2.86	67.97	15.75	2.23	80.0	± 9.6 %
		Y	3.13	69.65	16.71		80.0	
10502-		Z	3.25	69.01	16.80		80.0	
AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	×	2.90	67.83	15.61	2.23	80.0	± 9.6 %
		LY_	<u>3.1</u> 8	69.45	16.55		80.0	
10503-		<u>Z</u>	3. <u>31</u>	68.90	16.69		80.0	
AB	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	2.96	70.56	17.92	2.23	80.0	± 9.6 %
		Y	3.29	72.71	19.10		80.0	
0504-	LTE-TDD (SC-FDMA, 100% RB, 5 MHz,	Z	3.38	71.68	18.59		80.0	
<u>AB</u>	16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.05	67.84	16.62	2.23	80.0	± 9.6 %
	<u> </u>	Y	3.22	69.00	17.36		80.0	
0505-	LTE-TDD (SC-FDMA, 100% RB, 5 MHz,	Z	3.35	68.44	17.21		80.0	
AB	64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.14	67.73	16.57	2.23	80.0	± 9.6 %
		Y	3.31	68.81	17.27		80.0	
0506-	LTE-TDD (SC-FDMA, 100% RB, 10	Z	3.45	68.28	17.16		80.0	
	MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.49	70.73	18.03	2.23	80.0	± 9.6 %
		Y	3.81	72.49	19.00		80.0	
0507-	LTE-TDD (SC-FDMA, 100% RB, 10	Z	3.95	71.88	18.59		80.0	
АВ —————	MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.44	67.53	16.93	2.23	80.0	± 9.6 %
	I T	Y	2 50	00.00				
		z	<u>3.56</u> 3.73	68.36	17.50	1	80.0	

10508- AAB	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	Х	3.53	67.32	16.87	2.23	80.0	± 9.6 %
		Y	3.64	68.08	17.40		80.0	
		Z	3.82	67.87	17.27		80.0	
10509- AAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	Х	3.90	69.82	17.65	2.23	80.0	± 9.6 %
		Y	4.14	71.06	18.38		80.0	
		Z	4.30	70.72	18.09		80.0	
10510- AAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	×	3.92	67.34	16.97	2.23	80.0	± 9.6 %
		Y	4.03	67.99	17.44		80.0	
		Z	4.22	67.93	17.34		80.0	
10511- AAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.99	67.15	16.93	2.23	80.0	± 9.6 %
		Y	4.09	67.75	17.36		80.0	
		<u>Z</u>	4.28	67.68	17.27		80.0	
10512- AAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.00	71.09	18.05	2.23	80.0	± 9.6 %
		Y	4.33	72.71	18.93		80.0	
		Z	4.49	72.31	18.60		80.0	
10513- AAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	×	3.80	67.50	17.05	2.23	80.0	± 9.6 %
		Y	3.92	68.21	17.54		80.0	
10514- AAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL	Z X	4.11 3.85	68.20 67.16	17.45 16.95	2.23	80.0 80.0	± 9.6 %
	Subframe=2,3,4,7,8,9)	Y	3.95	67.80	17.41		80.0	
		Z	4.13	67.78	17.32		80.0	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	0.99	63.41	14.95	0.00	150.0	± 9.6 %
,		Y	1.00	63.71	15.22		150.0	
_		Z	0.98	62.80	14.50		150.0	
10516- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duly cycle)	X	0.63	71.18	17.99	0.00	150.0	± 9.6 %
		Y	0.75	74.25	19.60		150.0	
		Z	0.56	68.07	16.15		150.0	
10517- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	X	0.84	65.39	15.66	0.00	150.0	± 9.6 %
		Y	0.87	66.03	16.14		150.0	
10518- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	Z X	0.82 4.47	64.43 66.84	14.97 16.30	0.00	150.0 150.0	± 9.6 %
		Y	4.48	66.90	16.36		150.0	
		Z	4.58	66.60	16.20		150.0	
10519- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	X	4.63	67.03	16.39	0.00	150.0	± 9.6 %
		Y	4.64	67.09	16.46		150.0	
		Z	4.77	66.85	16.33		150.0	
10520- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.49	66.98	16.32	0.00	150.0	± 9.6 %
		Y Z	4.50	67.04 66.81	16.38 16.25		150.0 150.0	
10521- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	X	4.62 4.42	66.97	16.25	0.00	150.0	± 9.6 %
		Y	4.43	67.03	16.37		150.0	
		Z	4.55	66.80	16.23		150.0	
10522- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.48	67.10	16.40	0.00	150.0	± 9.6 %
		Y	4.49	67.16	16.47	L	150.0	
[Z	4.61	66.88	16.31_		150.0	

10523-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48	x	4.38	67.02	16.28	0.00	150.0	
AAA	Mbps, 99pc duty cycle)					0.00		± 9.6 %
		Y	4.40	67.08	16.35		150.0	
10524-		Z	4.49	66.74	16.15		150.0	
AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.42	67.02	16.37	0.00	150.0	± 9.6 %
	- <u> </u>	<u>Y</u>	4.44	67.08	16.44		150.0	
1000		Z	4.56	66.80	16.28		150.0	
10525- AAA	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	X	4.44	66.11	15.98	0.00	150.0	± 9.6 %
		Y	4.45	66.16	16.04		150.0	
40500		Z	4.54	65.84	15.87		150.0	
10526- AAA	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	X	4.58	66.42	16.11	0.00	150.0	± 9.6 %
	·	Y	<u>4.59</u>	66.48	16.17		150.0	
10527-		Z	<u>4.71</u>	66.22	16.01		150.0	
AAA	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duły cycle)	×	4.51	66.39	16.05	0.00	150.0	± 9.6 %
		Y	4.52	66.45	16.12		150.0	
10528-		Z	4.63	66.17	15.95		150.0	<u> </u>
10528- AAA	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	X	4.52	66.40	16.08	0.00	150.0	± 9.6 %
	<u> </u>	Y	4.54	66.46	16.15		150.0	<u> </u>
10529-		Z	4.65	66.19	15.99		150.0	F
AAA	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	X	4.52	66.40	16.08	0.00	150.0	± 9.6 %
		Y	4.54	66.46	16.15		150.0	· · · · ·
10501		Z	4.65	66.19	15.99		150.0	
10531- AAA	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	X	4.50	66.46	16.08	0.00	150.0	±9.6 %
		Y]	4.51	66.53	16.14		150.0	<u> </u>
		Z	4.64	66.30	16.00		150.0	<u> </u>
10532- AAA	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	X	4.37	66.32	16.01	0.00	150.0	±9.6%
		Y	4.39	66.39	16.08		150.0	
		Z	4.50	66.15	15.93		150.0	
10533- AAA	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	X	4.53	66.48	16.08	0.00	150.0	± 9.6 %
		L Y I	4.54	66.54	16.15		150.0	
		Z	4.66	66.23	15.97		150.0	
10534- AAA	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	X	5.07	66.45	16.14	0.00	150.0	± 9.6 %
		Y	5.09	66.50	16.19		150.0	
10505		Z	5.19	66.33	16.06		150.0	
10535- AAA	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	5.13	66.62	16.22	0.00	150.0	±9.6 %
		Y	5.14	66.67	16.27		150.0	
0500		Z	5.25	66.51	16.14		150.0	
10536- AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	5.01	66.59	16.19	0.00	150.0	± 9.6 %
		Y	5.03	66.64	16.24		150.0	
0527		Z	5.12	66.45	16.09		150.0	
10537- AAA	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	X	5.07	66.55	16.17	0.00	150.0	± 9.6 %
		Y	5.08	66.59	16.22		150.0	
0520		Z	5.18	66.42	16.08		150.0	
10538- \AA	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	X	5.14	66.54	16.20	0.00	150.0	± 9.6 %
	<u> </u>	Y	5.15	66.59	16.25		150.0	
0540		Z	5.27	66.46	16.14		150.0	
10540- \AA	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	5.07	66.52	16.21	0.00	150.0	± 9.6 %
		Y	5.08	66.57	16.26			
		Z	5.20	00.07 1	10.20 1		150.0	

10541-	IEEE 802.11ac WiFi (40MHz, MCS7,	x	5.05	66.41	16.14	0.00	150.0	±9.6 %
AAA	99pc duty cycle)	Y	5.06	66.46	16.20		150.0	
		Z	5.00	66.33	16.08		150.0	
10542- AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	X	5.21	66.51	16.21	0.00	150.0	±9.6 %
/		Y	5.22	66.55	16.26		150.0	
		Z	5.33	66.41	16.13		150.0	
10543- AAA	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.27	66.52	16.24	0.00	150.0	± 9.6 %
		Y	5.28	66.56	16.29		150.0	
		Z	5.41	66.45	16.18		150.0	
10544- AAA	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	х	5.40	66.53	16.13	0.00	150.0	± 9.6 %
		Y	5.42	66.58	16.18		15 <u>0.0</u>	
		Z	5.49	66.45	16.06		150.0	
10545- AAA	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	X	5.59	66.98	16.30	0.00	150.0	± 9.6 %
		Y	5.60	67.03	16.36		150.0	-
		Z	5.69	66.88	16.22		150.0	
10546- AAA	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	X	5.45	66.68	16.17	0.00	150.0	± 9.6 %
		Y	5.46	66.73	16.22		150.0	
		Z	5.56	66.67	16.13		150.0	
10547- AAA	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	X	5.52	66.76	16.20	0.00	150.0	± 9.6 %
		Y	5.53	66.80	16.25		150.0	<u> </u>
		Z	5.63	66.71	16.14		150.0	
10548- AAA	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	X	5.72	67.56	16.57	0.00	150.0	± 9.6 %
		Y	5.74	67.62	16.64		150.0	
		Z	5.92	67.73	16.62		150.0	
10550- AAA	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	×	5.50	66.81	16.24	0.00	150.0	±9.6 %
		Y	5.51	66.85	16. <u>30</u>		150.0	
		Z	5.59	66.68	16.14		150.0	
10551- AAA	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	X	5.47	66.72	16.16	0.00	150.0	± 9.6 %
		Y	5.48	66.77	16.22		150.0	Į
		Z	5.59	66.72	16.13		150.0	
10552- AAA	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	X	5.41	66.62	16.12	0.00	150.0	± 9.6 %
		Y	5.42	66.66	16.16		150.0	
10553-	IEEE 802.11ac WiFi (80MHz, MCS9,	Z X	<u>5.50</u> 5.48	<u>66.51</u> 66.60	<u>16.03</u> 16.14	0.00	<u>150.0</u> 150.0	± 9.6 %
AAA	99pc duty cycle)	Y	5.49	66.65	16.19		150.0	
		Ż	5.59	66.56	16.08		150.0	- ·
10554- AAA	IEEE 1602.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	X	5.82	66.88	16.21	0.00	150.0	± 9.6 %
		Y	5.83	66.92	16.26		150.0	
		Z	5.90	66.82	16.15	1	150.0	
10555- AAA	IEEE 1602.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	X	5.94	67.15	16.33	0.00	150.0	± 9.6 %
<u> </u>		Y	5.95	67.20	16.38		150.0	L
		Z	6.03	67.13	16.28		150.0	
10556- AAA	IEEE 1602.11ac WiFi (160MHz, MCS2, 99pc duly cycle)	X	5.96	67.23	16.36	0.00	150.0	± 9.6 %
		Y	5.98	67.27	16.41	<u> </u>	<u>150.0</u>	
<u> </u>		Z	6.05	67.17	16.30		150.0	
10557- AAA	IEEE 1602.11ac WiFI (160MHz, MCS3, 99pc duty cycle)	X	5.92	67.10	16.31	0.00	150.0	± 9.6 %
		Y	5.93	67.14	16.36		150.0	<u> </u>
		Z	6.02	67.08	16.27		150.0	

10558- AAA	IEEE 1602.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	X	5.96	67.24	16.39	0.00	150.0	± 9.6 %
		- Y -	5.97	67.29		+	+	<u> </u>
		- <u>'</u>	6.07		16.45		150.0	
10560- AAA	IEEE 1602.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	X	5.95	67.25 67.10	16.37 16.36	0.00	<u>150.0</u> 150.0	± 9.6 %
		Υ	5.97	67.14	16.41		150.0	
		Z	6.06	67.09	16.33	<u>+</u>	150.0	+
10561- AAA	IEEE 1602.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	X	5.89	67.09	16.39	0.00	150.0	± 9.6 %
	<u> </u>	<u> </u>	5.90	67.14	16.45		150.0	+
10562-		Z	5.99	67.06	16.35		150.0	+
<u>AAA</u>	IEEE 1602.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	X	5.97	67.34	16.52	0.00	150.0	± 9.6 %
		<u> </u>	5.98	67.39	16.57		150.0	
10563-	IEEE 1602.11ac WiFi (160MHz, MCS9,	Z	6.12	67.47	16.55		150.0	
AAA	99pc duty cycle)	X	6.05	67.24	16.43	0.00	150.0	± 9.6 %
	+	Y	6.06	67.29	16.49		150.0	
10564-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	Z	6.41	67.91	16.73	L	150.0	
AAA	OFDM, 9 Mbps, 99pc duty cycle)	X	4.78	66.85	16.41	0.46	150.0	± 9.6 %
· · · · ·	<u> </u>	<u>Y</u>	4.80	66.93	16.49		150.0	
10565-	IEEE 802.11g WiFi 2.4 GHz (DSSS-		4.91	66.67	16.35		150.0	
AAA	OFDM, 12 Mbps, 99pc duty cycle)	Y	4.99 5.01	67.29	16.74	0.46	150.0	± 9.6 %
		Z	5.14	67.35	16.80		150.0	
10566- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 99pc duty cycle)	X	4.83	67.15 67.11	16.69 16.54	0.46	150.0 150.0	± 9.6 %
_		TY-	4.84	67.40	40.00			
_		z	4.98	67.18 66.99	16.62		150.0	<u> </u>
10567- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 99pc duty cycle)	X	4.87	67.55	16.50 16.94	0.46	150.0 150.0	± 9.6 %
		Y	4.87	67.57	16.98		150.0	
		z	5.01	67.40	16.87		150.0	
10568- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 99pc duty cycle)	x	4.73	66.85	16.28	0.46	<u>150.0</u> 150.0	± 9.6 %
		Y	4.75	66.97	16.39		150.0	
		Z	4.88	66.73	16.25		150.0	
10569- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)	X	4.84	67.72	17.05	0.46	150.0	± 9.6 %
	<u>+</u>	Y	4.85	67.73	17.08		150.0	
0570-	IEEE 802 11/ WIE: 0 4 011 (0000	Z	4.96	67.48	16.93		150.0	
AA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)	X	4.86	67.53	16.95	0.46	150.0	± 9.6 %
	<u> </u>	Y	4.87	67.55	16.99		150.0	
0571-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1	ZX	<u>5.00</u> 1.13	67.32 63.98	<u>16.86</u> 15.42	0 40	150.0	
AA	Mbps, 90pc duty cycle)	Y I	1.15	64.46		0.46	130.0	± 9.6 %
		z	1.15	63.75	15.85		130.0	
0572-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2	† x †	1.14	64.53	15.28		130.0	
AA	Mbps, 90pc duty cycle)	Y T	1.14		15.78	0.46	130.0	± 9.6 %
		† ' †	1.16	65.03 64.27	16.22		130.0	
0573- AA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	1.37	80.51	<u>15.61</u> 21.92	0.46	<u>130.0</u> 130.0	±9.6 %
		Y	2.18	89.24	25.44			
		z	1.24	77.68	20.60		130.0	
10574- NAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duly cycle)	x	1.21	70.03	18.74	0.46	130.0 130.0	± 9.6 %
<u>AA</u>	mops, sope duty cycle)							
AA		Y	1.26	70.93	19.36		130.0	

10575-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	X	4.55	66.59	16.41	0.46	130.0	± 9.6 %
AAA	OFDM, 6 Mbps, 90pc duty cycle)		4.55	00.55	10,41	0.40	130.0	± 9.0 %
		Y	4.57	66.69	16.52		130.0	
		Z	4.69	66.45	16.40		_130.0	
10576- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 90pc duty cycle)	X	4.58	66.78	16.50	0.46	130.0	± 9.6 %
		Y	4.60	66.87	16.60		130.0	
40577		Z	4.71	66.62	16.47		130.0	
10577- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 90pc duty cycle)	X	4.76	67.04	16.65	0.46	130.0	±9.6 %
		Y	4.78	67.12	16.75		130.0	
10578- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 90pc duty cycle)	Z X	4.92 4.67	66.93 67.21	16.65 16.78	0.46	130.0 130.0	± 9.6 %
		Y	4.68	67.27	16.85		130.0	
		Z	4.82	67.09	16.76		130.0	
10579- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 90pc duty cycle)	X	4.41	66.37	16.00	0.46	130.0	± 9.6 %
		Y	4.44	66.52	16.15		130.0	
		Z	4.58	66.34	16.04		130.0	
10580- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 90pc duty cycle)	X	4.45	66.43	16.02	0.46	130.0	± 9.6 %
		Y	4.49	66.59	16.18		130.0	
		Z	4.62	66.36	16.05		130.0	
10581- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 90pc duty cycle)	X	4.57	67.26	16.72	0.46	130.0	±9.6 %
		Y	4.58	67.33	16.82		130.0	
10582- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 90pc duty cycle)	Z X	<u>4.71</u> 4.34	67.12 66.11	16.69 15.76	0.46	<u>130.0</u> 130.0	± 9.6 %
7001		Y	4.38	66.30	15.94		130.0	
		Ż	4.52	66.09	15.82		130.0	
10583- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.55	66.59	16.41	0.46	130.0	± 9.6 %
		Y	4.57	66.69	16.52		130.0	
	-	_ Z_	4.69	66.45	16.40		130.0	
10584- AAA	IEEE 802.11a/n WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	4.58	66.78	16.50	0.46	130.0	± 9.6 %
		Y	4.60	66.87	16.60		130.0	
10585-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12	Z X	4.71 4.76	66.62 67.04	16.47 16.65	0.46	130.0 130.0	± 9.6 %
AAA	Mbps, 90pc duty cycle)	Y	4.78	67.12	16.75		130.0	<u> </u>
			4.92	66.93	16.65	┝────	130.0	
10586- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	4.67	67.21	16.78	0.46	130.0	± 9.6 %
		Y	4.68	67.27	16.85		130.0	
		Z	4.82	67.09	16.76		130.0	
10587- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duly cycle)	X	4.41	66.37	16.00	0.46	130.0	± 9.6 %
		Y	4.44	66.52	16.15		130.0	
		Z	4.58	66.34	16.04		130.0	
10588- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	4.45	66.43	16.02	0.46	130.0	± 9.6 %
		Y	4.49	66.59	16.18	┥	130.0	<u> </u>
10589- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	Z X	4.62 4.57	66.36 67.26	16.05 16.72	0.46	130.0 130.0	± 9.6 %
	mopo, oope daty cycle)	Y	4.58	67.33	16.82		130.0	
		z	4.71	67.12	16.69		130.0	1
10590- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	4.34	66.11	15.76	0.46	130.0	± 9.6 %
,		Y	4.38	66.30	15.94	1	130.0	1
		Z	4.52	66.09	15.82		130.0	

10591- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	x	4.71	66.67	16.53	0.46	130.0	± 9.6 %
		- Y	4.73	66.75	16.62	+	120.0	 _
		Z	4.84	66.53	16.51	+	130.0	
10592- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duly cycle)	X	4.84	66.99	16.66	0.46	<u>130.0</u> 130.0	± 9.6 %
		Y	4.86	67.07	16.75	1	130.0	<u>+</u>
40500		Z	5.00	66.87	16.64	<u> </u>	130.0	+
10593- AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	X	4.76	66.86	16.52	0.46	130.0	± 9.6 %
		Y	4.78	66.96	16.62		130.0	T
10594-		Z	4.92	66.77	16.52		130.0	<u> </u>
AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	X	4.82	67.05	16.69	0.46	130.0	± 9.6 %
	- <u> </u>	<u> </u>	4.84	67.13	16.78		130.0	
10595-		Z	4.97	66.94	16.68		130.0	
AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	4.78	67.01	16.59	0.46	130.0	± 9.6 %
	+		4.80	67.10	16.69		130.0	
10596-		<u> </u>	4.94	66.89	16.57		130.0	
AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)		4.71	66.98	16.58	0.46	130.0	± 9.6 %
	+	_ <u> Y</u> _	4.73	67.08	16.69		130.0	
10597-	IEEE 802.11n (HT Mixed, 20MHz,	Z	4.87	66.88	16.57		130.0	T
	MCS6, 90pc duty cycle)	X	4.66	66.85	16.44	0.46	130.0	± 9.6 %
	<u> </u>	Y	4.69	66.96	16.56		130.0	T
10598-		Z	4.82	66.78	16.45		130.0	
AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	4.65	67.11	16.73	0.46	130.0	± 9.6 %
	+	- Y	4.67	67.18	<u>16.8</u> 1		130.0	— —
10599-		Z	4.81	67.03	16.73		130.0	F
AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	X	5.39	67.16	16.75	0.46	130.0	± 9.6 %
		<u>Y</u>	5.40	67.23	16.84		130.0	·
10600-		Z	5.52	67.11	16.73		130.0	1
AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	X	5.51	67.57	16.93	0.46	130.0	± 9.6 %
	<u> </u>	Y	5.53	67.67	17.03		130.0	· · · · · · · · · · · · · · · · · · ·
10601-		<u>Z</u>	5.67	67.58	16.94		130.0	
AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	X	5.40	67.32	16.82	0.46	130.0	± 9.6 %
	<u> </u>	Y	5.42	67.41	16.92		130.0	
10602-		<u>Z</u>	5.55	67.30	16.82		130.0	
AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duly cycle)	X	5.53	67.48	16.82	0.46	130.0	± 9.6 %
	<u> </u>	Y	5.55	67.58	16.92		130.0	
10603-		Z	5.64	67.31	16.73	·	130.0	
AA	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	X	5.60	67.77	17.10	0.46	130.0	± 9.6 %
		Y	5.62	67.84	17.19		130.0	
0604-	IEEE 802.11n (HT Mixed, 40MHz,	Z	5.72	67.63	17.03		130.0	
\AA	MCS5, 90pc duty cycle)	X	5.48	67.44	16.92	0.46	130.0	±9.6 %
	<u> </u>	<u> </u>	5.50	67.51	17.01		130.0	
0605-		Z	5.52	67.07	16.74		130.0	
VAA	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	X	5.51	67.48	16.93	0.46	130.0	± 9.6 %
		Y	5.53	67.59	17.04		130.0	
		Z	5.64	67.42	16.91		130.0	
10606- AAA	IEEE 802.11n (HT Mixed, 40MHz,	X	5.24	66.77	16.43	0.46	130.0	± 9.6 %
	MCS7, 90pc duty cycle)							20.0 %
	MCS7, 90pc duty cycle)	YZ	5.27	66.88	16.54		130.0	

10607-	IEEE 802.11ac WiFi (20MHz, MCS0,	X	4.56	66.02	16.17	0.46	130.0	± 9.6 %
AAA	90pc duty cycle)							
		Y	4.58	66.11	16.27		130.0	
40000		Z	4.68	65.84	16.13	0.10	130.0	
10608- AAA	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	4.71	66.38	16.33	0.46	130.0	±9.6 %
	·····	Y	4.74	66.48	16.43		130.0	
40000		Z	4.87	66.25	16.30	0.40	130.0	1000
10609- AAA	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	X	4.60	66.21 66.32	16.15	0.46	130.0	± 9.6 %
		Y Z	<u>4.63</u> 4.75	66.09	16.26 16.13		130.0 130.0	<u> </u>
10610- AAA	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	X	4.66	66.38	16.32	0.46	130.0	± 9.6 %
		Y	4.68	66.48	16.42	_	130.0	
		Z	4.81	66.25	16.30		130.0	
10611- AAA	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	X	4.57	66.17	16.16	0.46	130.0	± 9.6 %
		Y	4.59	66.28	16.27	-	130.0	
		Z	4.72	66.06	16.14		130.0	
10612- AAA	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	X	4.57	66.31	16.20	0.46	130.0	±9.6 %
		Y	4.59	66.44	16.32		130.0	
10010		Z	4.73	66.20	16.18	0.40	130.0	± 9.6 %
10613- AAA	IEEE 802.11ac WIFi (20MHz, MCS6, 90pc duty cycle)	X	4.56	66.14	16.05	0.46	130.0	± 9.6 %
	·	Y	4.59	66.27	16.18		130.0	
40044		Z	4.73	66.09 66.39	<u>16.06</u> 16.32	0.46	130.0 130.0	± 9.6 %
10614- AAA	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	X	4.53			0.46		19.0 %
		Y	4.55	66.47 66.29	<u>16.42</u> 16.31		130.0 130.0	
10615- AAA	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	Z X	4.68 4.56	65.98	15.91	0.46	130.0	± 9.6 %
<u> </u>		Y	4.59	66.13	16.05		130.0	
		Z	4.72	65.87	15.91	<u> </u>	130.0	
10616- AAA	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	×	5.20	66.41	16.36	0.46	130.0	± 9.6 %
		Y	5.22	66.48	16.45		130.0	
		Z	5.34	66.37	16.34		130.0	
10617- AAA	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	X	5.27	66.60	16.43	0.46	130.0	± 9.6 %
		<u>Y</u>	5.29	66.69	16.53		130.0	
		<u>Z</u>	5.41	66.54	16.40		130.0	
10618- AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	X	5.17	66.64	16.47	0.46	130.0	± 9.6 %
ļ		Y	5.19	66.72	16.55		130.0	
10619-	IEEE 802.11ac WiFi (40MHz, MCS3,	Z X	5.29 5.17	66.54 66.40	16.42 16.28	0.46	1 <u>30.0</u> 130.0	± 9.6 %
AAA	90pc duty cycle)	Y	5.19	66.49	16.38		130.0	<u> </u>
		Z	5.31	66.37	16.30		130.0	
10620- AAA	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duly cycle)	X	5.25	66.42	16.34	0.46	130.0	± 9.6 %
		Y	5.27	66.52	16.44		130.0	
		Z	5.40	66.41	16.34		130.0	
10621- AAA	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	X	5.27	66.59	16.55	0.46	130.0	± 9.6 %
		Y	5.28	66.65	16.62		130.0	
		<u>Z</u>	5.40	66.53	16.52	0.10	130.0	1000
10622- AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duly cycle)	X	5.27	66.70	16.60	0.46	130.0	± 9.6 %
		Y	5.28	66.78	16.68	<u> </u>	130.0	 _
		Z	5.41	66.70	16.60		130.0	

10624- AAA 10625- AAA 10626- AAA 10627- AAA 10628- AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle) IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle) IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle) IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	Y Z X Y Z X Y Z X Y Z X X	5.16 5.28 5.34 5.34 5.55 5.55 5.57 5.88 5.53 5.53 5.54 5.63 5.77	66.31 66.20 66.45 66.45 66.42 66.97 67.07 67.48 66.46 66.54 66.54	16.32 16.22 16.40 16.39 16.72 16.81 16.32	0.46	130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0	± 9.6 %
AAA 10625- AAA 10626- AAA 10627- AAA 10628-	90pc duty cycle) IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle) IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle) IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	Z X Y Z X Y Z X Y Z X	5.28 5.34 5.36 5.48 5.55 5.57 5.88 5.53 5.54 5.63	66.20 66.45 66.54 66.42 66.97 67.07 67.48 66.46 66.54	16.22 16.40 16.39 16.72 16.81 16.97 16.32	0.46	130.0 130.0 130.0 130.0 130.0 130.0 130.0	± 9.6 %
AAA 10625- AAA 10626- AAA 10627- AAA 10628-	90pc duty cycle) IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle) IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle) IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	X Y Z X Y Z X Y Z X	5.34 5.36 5.48 5.55 5.57 5.88 5.53 5.54 5.63	66.45 66.54 66.42 66.97 67.07 67.48 66.46 66.54	16.40 16.49 16.39 16.72 16.81 16.97 16.32	0.46	130.0 130.0 130.0 130.0 130.0 130.0	± 9.6 %
AAA 10626- AAA 10627- AAA 10628-	90pc duty cycle) IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle) IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	Z X Y Z X Y Z X	5.48 5.55 5.57 5.88 5.53 5.54 5.63	66.42 66.97 67.07 67.48 66.46 66.54	16.39 16.72 16.81 16.97 16.32		130.0 130.0 130.0 130.0	
AAA 10626- AAA 10627- AAA 10628-	90pc duty cycle) IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle) IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	X Y Z X Y Z X	5.55 5.57 5.88 5.53 5.54 5.63	66.97 67.07 67.48 66.46 66.54	16.72 16.81 16.97 16.32		130.0 130.0 130.0 130.0	
AAA 10626- AAA 10627- AAA 10628-	90pc duty cycle) IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle) IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	Y Z X Y Z X	5.57 5.88 5.53 5.54 5.63	66.97 67.07 67.48 66.46 66.54	16.72 16.81 16.97 16.32		130.0 130.0 130.0	
AAA 10627- AAA 10628-	90pc duty cycle) IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	Z X Y Z X	5.88 5.53 5.54 5.63	67.48 66.46 66.54	16.97 16.32	0.46	130.0	
AAA 10627- AAA 10628-	90pc duty cycle) IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	X Y Z X	5.53 5.54 5.63	66.46 66.54	16.32	0.46	130.0	+ 0.0 %
AAA 10627- AAA 10628-	90pc duty cycle) IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	Y Z X	<u>5.54</u> 5.63	66.54	16.32	0.46		1 1000
AAA	90pc duty cycle)	Z X	5.63			1		± 9.6 %
AAA	90pc duty cycle)	X		66.43	16.40		130.0	<u> </u>
AAA	90pc duty cycle)		5.77		16.30		130.0	†———
			<u> </u>	67.07	16.59	0.46	130.0	± 9.6 %
		<u>Y</u>	<u>5.7</u> 9	67.16	16.68		130.0	
		Z	5.88	67.02	16.56		130.0	T
<u>,</u>	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	X	5.53	66.46	16.22	0.46	130.0	± 9.6 %
	<u> </u>	<u> </u>	5.55	66.56	16.32		130.0	F
10629-		Z	5.67	66.54	16.25		130.0	<u> </u>
AAA	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	X	5.62	66.57	16.27	0.46	130.0	± 9.6 %
	<u> </u>	Y_	5.64	66.67	16.37		130.0	<u> </u>
10630-		Z	5.76	66.64	16.29		130.0	<u> </u>
AAA	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	×	5.96	67.80	16.88	0.46	130.0	± 9.6 %
	<u> </u>	Y	<u>5.9</u> 8	67.92	17.00		130.0	- <u></u> -
10631-		Z	6.25	68.26	17.09		130.0	
AA	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	X	5.89	67.74	17.06	0.46	130.0	± 9.6 %
		Y	5.91	67.78	17.11		130.0	
10632-		Z	6.11	67.97	17.16		130.0	
4AA	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	X	5.75	67.20	16.81	0.46	130.0	± 9.6 %
— — –		Y	5.76	67.24	16.86		130.0	
		Z	5.85	67.08	16.73		130.0	
0633- \AA	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	X	5.60	66.69	16.37	0.46	130.0	± 9.6 %
		Y	5.62	66.77	16.45		130.0	
0634-		Z	5.73	66.69	16.36		130.0	<u> </u>
0634- AA	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	X	5.58	66.71	16.44	0.46	130.0	± 9.6 %
		Y	5.60	66.78	16.51		130.0	
0625		Z	5.72	66.73	16.44		130.0	
0635- AA	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	X	5.44	65.95	15.77	0.46	130.0	±9.6 %
——∔		Y	5.47	66.09	15.91		130.0	
0636-		Z	5.60	66.05	15.82		130.0	
	IEEE 1602.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	X	5.96	66.83	16.41	0.46	130.0	± 9.6 %
		Y	5.97	66.90	16.49		130.0	
<u></u> +		Z	6.05	66.82	16.40		130.0	
0637- AA	IEEE 1602.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	X	6.10	67.19	16.58	0.46	130.0	±9.6 %
		Y	6.12	67.27	16.66	——+	130.0	
0620		Z	6.21	67.21	16.58		130.0	
0638- AA	IEEE 1602.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	X	6.10	67.17	16.54	0.46	130.0	± 9.6 %
		Y	6.12	67.25	16.63	—— 	120.0	
		Z	6.21	67.17	16.54		<u>130.0</u> 130.0	

July 17, 2017

10639- AAA	IEEE 1602.11ac WiFi (160MHz, MCS3, 90pc duty cycle)	X	6.07	67.09	16.55	0.46	130.0	± 9.6 %
		Y	6.09	67.17	16.63	•	130.0	
		Z	6.19	67.14	16.56		130.0	
10640- AAA	1EEE 1602.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	X	6.06	67.06	16.47	0.46	130.0	± 9.6 %
		Y	6.08	67.16	16.57		130.0	
		Z	6.19	67.15	16.51		130.0	
10641- AAA	IEEE 1602.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	X	6.13	67.06	16.49	0.46	130.0	±9.6 %
		Y	6.15	67.15	16.59		130.0	
		Z	6.23	67.02	16.46		130.0	
10642- AAA	IEEE 1602.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	X	6.16	67.29	16.78	0.46	130.0	±9.6 %
		Y	6.17	67.34	16.84		130.0	
		Z	6.28	67.31	16.78		130.0	
10643- AAA	IEEE 1602.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	X	6.00	66.97	16.51	0.46	130.0	± 9.6 %
		Y	6.02	67.06	16.61		130.0	
		Z	6.11	66.97	16.50		130.0	
10644- AAA	IEEE 1602.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	X	6.09	67.26	16.67	0.46	130.0	± 9.6 %
		Y	6.12	67.36	16.77		130.0	
		Z	6.29	67.52	16.80		130.0	
10645- AAA	IEEE 1602.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	X	6.23	67.33	16.67	0.46	130.0	±9.6 %
		Y	6.26	67.42	16.77		130.0	
		Z	6.72	68.38	17.18		130.0	
10646- AAC	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	X	7.97	91.85	31.39	9.30	60.0	± 9.6 %
		Y	11.74	104.28	36.86		60.0	
		Z	11.88	99.49	34.28		60.0	
10647- AAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subírame=2,7)	X	7.13	89.84	30.79	9.30	60.0	± 9.6 %
		Y	9.93	100.75	35.82		60.0	
		Z	10.62	97.47	33.72		60.0	
10648- AAA	CDMA2000 (1x Advanced)	X	0.64	63.39	10.24	0.00	150.0	± 9.6 %
		Y	0.67	63.88	10.62		150.0	
		Ż	0.72	63.48	11.02		150.0	1

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.