## PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



### SAR EVALUATION REPORT

**Applicant Name:** 

LG Electronics MobileComm U.S.A., Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 **United States** 

**Date of Testing:** 10/02/17 - 10/12/17 **Test Site/Location:** PCTEST Lab, Columbia, MD, USA **Document Serial No.:** 1M1710020259-01-R1.ZNF

FCC ID: ZNFX210MA

**APPLICANT:** LG ELECTRONICS MOBILECOMM U.S.A., INC.

**DUT Type:** Portable Handset

**Application Type:** Class II Permissive Change

FCC Rule Part(s): CFR §2.1093 Model: LM-X210MA

LMX210MA, X210MA, LM-X210TA, LMX210TA, X210TA, LM-Additional Model(s):

X210TAT, LMX210TAT, X210TAT

**Permissive Changes:** See FCC Change Document

**Original Grant Date:** 10/12/2017

| Equipment                                  | Band & Mode        | Tx Frequency          | SAR                 |                           |                        |  |
|--------------------------------------------|--------------------|-----------------------|---------------------|---------------------------|------------------------|--|
| Class                                      | Dana & Wode        | TXTTEQUENCY           | 1 gm Head<br>(W/kg) | 1 gm Body-<br>Worn (W/kg) | 1 gm Hotspot<br>(W/kg) |  |
| PCE                                        | GSM/GPRS/EDGE 850  | 824.20 - 848.80 MHz   | 0.54                | 0.74                      | 0.74                   |  |
| PCE                                        | GSM/GPRS/EDGE 1900 | 1850.20 - 1909.80 MHz | 0.47                | 0.52                      | 0.52                   |  |
| PCE                                        | UMTS 850           | 826.40 - 846.60 MHz   | 0.50                | 0.69                      | 0.69                   |  |
| PCE                                        | UMTS 1750          | 1712.4 - 1752.6 MHz   | 0.61                | 0.90                      | 1.00                   |  |
| PCE                                        | UMTS 1900          | 1852.4 - 1907.6 MHz   | 0.56                | 0.69                      | 0.69                   |  |
| PCE                                        | LTE Band 12        | 699.7 - 715.3 MHz     | 0.38                | 0.65                      | 0.65                   |  |
| PCE                                        | LTE Band 5 (Cell)  | 824.7 - 848.3 MHz     | 0.51                | 0.63                      | 0.63                   |  |
| PCE                                        | LTE Band 66 (AWS)  | 1710.7 - 1779.3 MHz   | 0.66                | 0.70                      | 0.96                   |  |
| PCE                                        | LTE Band 4 (AWS)   | 1710.7 - 1754.3 MHz   | N/A                 | N/A                       | N/A                    |  |
| PCE                                        | LTE Band 2 (PCS)   | 1850.7 - 1909.3 MHz   | 0.65                | 0.85                      | 0.85                   |  |
| DTS                                        | 2.4 GHz WLAN       | 2412 - 2462 MHz       | 1.11                | 0.74                      | 0.74                   |  |
| NII                                        | U-NII-1            | 5180 - 5240 MHz       | N/A                 | N/A                       | 1.07                   |  |
| NII                                        | U-NII-2A           | 5260 - 5320 MHz       | 1.01                | 0.89                      | N/A                    |  |
| NII                                        | U-NII-2C           | 5500 - 5720 MHz       | 0.85                | 0.82                      | N/A                    |  |
| NII                                        | U-NII-3            | 5745 - 5825 MHz       | 0.93                | 0.74                      | 0.77                   |  |
| DSS/DTS Bluetooth 2402 - 2480 MHz          |                    |                       |                     | N/A                       |                        |  |
| Simultaneous SAR per KDB 690783 D01v01r03: |                    |                       | 1.57                | 1.59                      | 1.59                   |  |

Note: This revised Test Report (S/N: 1M1710020259-01-R1.ZNF) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.









The SAR Tick is an initiative of the Mobile Manufacturers Forum (MMF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MMF. Further details can be obtained by emailing: sartick@mmfai.info.

| FCC ID: ZNFX210MA      | PCTEST*             | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dags 4 of 72                  |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | Page 1 of 73                  |

© 2017 PCTEST Engineering Laboratory, Inc.

## TABLE OF CONTENTS

| 1     | DEVICE  | UNDER TEST                                       | 3  |
|-------|---------|--------------------------------------------------|----|
| 2     | LTE INF | ORMATION                                         | 10 |
| 3     | INTROD  | UCTION                                           | 11 |
| 4     | DOSIME  | TRIC ASSESSMENT                                  | 12 |
| 5     | DEFINIT | ION OF REFERENCE POINTS                          | 13 |
| 6     | TEST CO | ONFIGURATION POSITIONS                           | 14 |
| 7     | RF EXP  | OSURE LIMITS                                     | 17 |
| 8     | FCC ME  | ASUREMENT PROCEDURES                             | 18 |
| 9     | RF CON  | DUCTED POWERS                                    | 23 |
| 10    | SYSTEM  | 1 VERIFICATION                                   | 38 |
| 11    | SAR DA  | TA SUMMARY                                       | 41 |
| 12    | FCC MU  | LTI-TX AND ANTENNA SAR CONSIDERATIONS            | 54 |
| 13    | SAR ME  | ASUREMENT VARIABILITY                            | 68 |
| 14    | EQUIPM  | ENT LIST                                         | 69 |
| 15    | MEASUF  | REMENT UNCERTAINTIES                             | 70 |
| 16    | CONCLU  | JSION                                            | 71 |
| 17    | REFERE  | NCES                                             | 72 |
| APPEN | NDIX A: | SAR TEST PLOTS                                   |    |
| APPEN | NDIX B: | SAR DIPOLE VERIFICATION PLOTS                    |    |
| APPEN | NDIX C: | PROBE AND DIPOLE CALIBRATION CERTIFICATES        |    |
| APPEN | NDIX D: | SAR TISSUE SPECIFICATIONS                        |    |
| APPEN | NDIX E: | SAR SYSTEM VALIDATION                            |    |
| APPEN | NDIX F: | DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS |    |
| APPEN | NDIX G: | WIFI POWER REDUCTION VERIFICATION                |    |

| FCC ID: ZNFX210MA      | PCTEST SAINLINES LABORATORY, INC. | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-----------------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:                       | DUT Type:             | Dogg 2 of 72                 |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17               | Portable Handset      | Page 2 of 73                 |

## 1 DEVICE UNDER TEST

### 1.1 Device Overview

| Band & Mode        | Operating Modes | Tx Frequency          |
|--------------------|-----------------|-----------------------|
| GSM/GPRS/EDGE 850  | Voice/Data      | 824.20 - 848.80 MHz   |
| GSM/GPRS/EDGE 1900 | Voice/Data      | 1850.20 - 1909.80 MHz |
| UMTS 850           | Voice/Data      | 826.40 - 846.60 MHz   |
| UMTS 1750          | Voice/Data      | 1712.4 - 1752.6 MHz   |
| UMTS 1900          | Voice/Data      | 1852.4 - 1907.6 MHz   |
| LTE Band 12        | Voice/Data      | 699.7 - 715.3 MHz     |
| LTE Band 5 (Cell)  | Voice/Data      | 824.7 - 848.3 MHz     |
| LTE Band 66 (AWS)  | Voice/Data      | 1710.7 - 1779.3 MHz   |
| LTE Band 4 (AWS)   | Voice/Data      | 1710.7 - 1754.3 MHz   |
| LTE Band 2 (PCS)   | Voice/Data      | 1850.7 - 1909.3 MHz   |
| 2.4 GHz WLAN       | Voice/Data      | 2412 - 2462 MHz       |
| U-NII-1            | Voice/Data      | 5180 - 5240 MHz       |
| U-NII-2A           | Voice/Data      | 5260 - 5320 MHz       |
| U-NII-2C           | Voice/Data      | 5500 - 5720 MHz       |
| U-NII-3            | Voice/Data      | 5745 - 5825 MHz       |
| Bluetooth          | Data            | 2402 - 2480 MHz       |

### 1.2 Power Reduction for SAR

This device uses an independent fixed level power reduction mechanism for WLAN operations during voice or VoIP held to ear scenarios. Per FCC Guidance, the held-to-ear exposure conditions were evaluated at reduced power according to the head SAR positions described in IEEE 1528-2013. Detailed descriptions of the power reduction mechanism are included in the operational description.

| FCC ID: ZNFX210MA      | PCTEST*             | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dog 2 of 72                   |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | Page 3 of 73                  |

## 1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

1.3.1 Maximum Power

| Mode / Band          |         | Voice<br>(dBm) | Burst Average GMSK (dBm) |            | Burst Average 8-PSK (dBm) |            |            | m)         |            |            |
|----------------------|---------|----------------|--------------------------|------------|---------------------------|------------|------------|------------|------------|------------|
|                      |         | 1 TX Slot      | 1 TX Slots               | 2 TX Slots | 3 TX Slots                | 4 TX Slots | 1 TX Slots | 2 TX Slots | 3 TX Slots | 4 TX Slots |
| CCNA/CDDC/EDCE 0E0   | Maximum | 33.7           | 33.7                     | 31.7       | 29.7                      | 27.7       | 26.7       | 25.7       | 23.7       | 22.7       |
| GSM/GPRS/EDGE 850    | Nominal | 33.2           | 33.2                     | 31.2       | 29.2                      | 27.2       | 26.2       | 25.2       | 23.2       | 22.2       |
| GSM/GPRS/EDGE 1900   | Maximum | 30.7           | 30.7                     | 28.7       | 26.7                      | 24.7       | 25.7       | 24.2       | 22.7       | 21.7       |
| GSIVI/GPRS/EDGE 1900 | Nominal | 30.2           | 30.2                     | 28.2       | 26.2                      | 24.2       | 25.2       | 23.7       | 22.2       | 21.2       |

|                              | Modula  | ted Average | e (dBm) |       |
|------------------------------|---------|-------------|---------|-------|
| Mode / Band                  | 3GPP    | 3GPP        | 3GPP    |       |
|                              |         | WCDMA       | HSDPA   | HSUPA |
| UMTS Band 5 (850 MHz)        | Maximum | 24.7        | 24.7    | 24.7  |
| OIVITS Ballu 5 (850 IVIH2)   | Nominal | 24.2        | 24.2    | 24.2  |
| LIMITS Dand 4 (1750 MILE)    | Maximum | 24.7        | 24.7    | 24.7  |
| UMTS Band 4 (1750 MHz)       | Nominal | 24.2        | 24.2    | 24.2  |
| UMTS Band 2 (1900 MHz)       | Maximum | 24.7        | 24.7    | 24.7  |
| OIVITS BATTU 2 (1900 IVITIZ) | Nominal | 24.2        | 24.2    | 24.2  |

| Mode / Band         | Modulated Average<br>(dBm) |      |
|---------------------|----------------------------|------|
| LTE Band 12         | Maximum                    | 24.7 |
| LIE Ballu 12        | Nominal                    | 24.2 |
| LTE Band E (Call)   | Maximum                    | 24.7 |
| LTE Band 5 (Cell)   | Nominal                    | 24.2 |
| LTE Band GG (A)A(S) | Maximum                    | 24.7 |
| LTE Band 66 (AWS)   | Nominal                    | 24.2 |
| LTE Dand 4 (ANAIC)  | Maximum                    | 24.7 |
| LTE Band 4 (AWS)    | Nominal                    | 24.2 |
| LTE Dond 2 (DCC)    | Maximum                    | 24.7 |
| LTE Band 2 (PCS)    | Nominal                    | 24.2 |

| FCC ID: ZNFX210MA      | PCTEST INDICATE LABORATORY, INC. | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|----------------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:                      | DUT Type:                | Dogo 4 of 72                 |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17              | Portable Handset         | Page 4 of 73                 |

| Mode / Band             | Modulated Average<br>(dBm) |      |         |       |  |
|-------------------------|----------------------------|------|---------|-------|--|
|                         |                            | Ch 1 | Ch 2-10 | Ch 11 |  |
| IEEE 802.11b (2.4 GHz)  | Maximum                    | 20.0 |         |       |  |
| TEEE 802.11b (2.4 GHZ)  | Nominal                    | 19.0 |         |       |  |
| IEEE 902 11a (2.4 CHz)  | Maximum                    | 17.5 |         | 15.5  |  |
| IEEE 802.11g (2.4 GHz)  | Nominal                    | 16.5 |         | 14.5  |  |
| IEEE 802 11 n /2 / CH-) | Maximum                    | 16.5 |         | 14.5  |  |
| IEEE 802.11n (2.4 GHz)  | Nominal                    | 15   | 5.5     | 13.5  |  |

| Mode / Band   | Modulated Average<br>(dBm) |      |
|---------------|----------------------------|------|
| Bluetooth     | Maximum                    | 10.0 |
| Bluetootii    | Nominal                    | 9.0  |
| Bluetooth LE  | Maximum                    | 1.0  |
| Biuetootti LE | Nominal                    | 0.0  |

|                       |                 | Modulated Average<br>(dBm) |                   |  |  |
|-----------------------|-----------------|----------------------------|-------------------|--|--|
| Mode / Band           |                 | 20 MHz Bandwidth           |                   |  |  |
|                       |                 | Ch 36, 64, 100, 161-165    | Ch 40-60, 104-157 |  |  |
| JEEE 202 11 a /E CU-) | Maximum         | 15.0                       | 18.0              |  |  |
| IEEE 802.11a (5 GHz)  | Nominal         | 14.0                       | 17.0              |  |  |
| IEEE 802.11n (5 GHz)  | Maximum Maximum |                            | 17.0              |  |  |
| 1EEE 802.1111 (5 GHZ) | Nominal         | 13.0                       | 16.0              |  |  |

| Mode / Band          |         | Modulated Average<br>(dBm) |                  |           |        |  |
|----------------------|---------|----------------------------|------------------|-----------|--------|--|
|                      |         |                            | 40 MHz Bandwidth |           |        |  |
|                      |         | Ch 38, 46                  | Ch 54, 100-151   | Ch 62-102 | Ch 159 |  |
| Maximum              |         | 11.5                       | 11.0             | 9.0       | 9.5    |  |
| IEEE 802.11n (5 GHz) | Nominal | 10.5                       | 10.0             | 8.0       | 8.5    |  |

| FCC ID: ZNFX210MA      | POTEST*             | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Dago E of 72                 |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset         | Page 5 of 73                 |

#### 1.3.2 **Reduced Power**

| Mode / Band             | Modulated Average<br>(dBm) |         |       |      |
|-------------------------|----------------------------|---------|-------|------|
|                         | Ch 1                       | Ch 2-10 | Ch 11 |      |
| IFFF 902 11b /2 4 CU-)  | Maximum                    | 16.5    |       |      |
| IEEE 802.11b (2.4 GHz)  | Nominal                    | 15.5    |       |      |
| IFFF 902 11 ~ (2.4 CHz) | Maximum                    | 15.0    | 16.0  | 13.5 |
| IEEE 802.11g (2.4 GHz)  | Nominal                    | 14.0    | 15.0  | 12.5 |
| IEEE 802.11n (2.4 GHz)  | Maximum                    | 15.0    | 16.0  | 13.5 |
| 1666 802.1111 (2.4 GHZ) | Nominal                    | 14.0    | 15.0  | 12.5 |

|                       |         | Modulated Average<br>(dBm) |                   |  |  |
|-----------------------|---------|----------------------------|-------------------|--|--|
| Mode / Band           |         | 20 MHz Bandwidth           |                   |  |  |
|                       |         | Ch 36, 64, 100, 161-165    | Ch 40-60, 104-157 |  |  |
| LEEE 902 112 /E CH2)  | Maximum | 10.5                       | 13.5              |  |  |
| IEEE 802.11a (5 GHz)  | Nominal | 9.5                        | 12.5              |  |  |
| IEEE 802.11n (5 GHz)  | Maximum | 10.5                       | 13.5              |  |  |
| ILLE 602.11II (5 GHZ) | Nominal | 9.5                        | 12.5              |  |  |

| FCC ID: ZNFX210MA      | PETEST:             | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Dogo 6 of 72                 |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset         | Page 6 of 73                 |

### 1.4 DUT Antenna Locations

The overall dimensions of this device are  $> 9 \times 5$  cm. The overall diagonal dimension of the device is  $\le 160$  mm and the diagonal display is  $\le 150$  mm. A diagram showing the location of the device antennas can be found in Appendix F.

Table 1-1
Device Edges/Sides for SAR Testing

|                   |      | <i>je 0, 0.0.00 .</i> |     | 9      |       |      |
|-------------------|------|-----------------------|-----|--------|-------|------|
| Mode              | Back | Front                 | Top | Bottom | Right | Left |
| GPRS 850          | Yes  | Yes                   | No  | Yes    | Yes   | Yes  |
| GPRS 1900         | Yes  | Yes                   | No  | Yes    | No    | Yes  |
| UMTS 850          | Yes  | Yes                   | No  | Yes    | Yes   | Yes  |
| UMTS 1750         | Yes  | Yes                   | No  | Yes    | No    | Yes  |
| UMTS 1900         | Yes  | Yes                   | No  | Yes    | No    | Yes  |
| LTE Band 12       | Yes  | Yes                   | No  | Yes    | Yes   | Yes  |
| LTE Band 5 (Cell) | Yes  | Yes                   | No  | Yes    | Yes   | Yes  |
| LTE Band 66 (AWS) | Yes  | Yes                   | No  | Yes    | No    | Yes  |
| LTE Band 2 (PCS)  | Yes  | Yes                   | No  | Yes    | No    | Yes  |
| 2.4 GHz WLAN      | Yes  | Yes                   | Yes | No     | Yes   | No   |
| 5 GHz WLAN        | Yes  | Yes                   | Yes | No     | Yes   | No   |

Note: Particular DUT edges were not required to be evaluated for wireless router SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02r01 Section III. The distances between the transmit antennas and the edges of the device are included in the filing. When wireless router mode is enabled, U-NII-2A and U-NII-2C operations are disabled. Therefore, U-NII-2A and U-NII-2C operations are not considered in this section.

### 1.5 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the DUT are shown in Figure 1-1 and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.



Figure 1-1
Simultaneous Transmission Paths

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

| FCC ID: ZNFX210MA      | PCTEST*             | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dog 7 of 72                   |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | Page 7 of 73                  |

© 2017 PCTEST Engineering Laboratory, Inc.

Table 1-2 **Simultaneous Transmission Scenarios** 

| No. | Capable Transmit Configuration | Head | Body-Worn<br>Accessory | Wireless<br>Router | Notes                                             |
|-----|--------------------------------|------|------------------------|--------------------|---------------------------------------------------|
| 1   | GSM voice + 2.4 GHz WI-FI      | Yes  | Yes                    | N/A                |                                                   |
| 2   | GSM voice + 5 GHz WI-FI        | Yes  | Yes                    | N/A                |                                                   |
| 3   | GSM voice + 2.4 GHz Bluetooth  | N/A  | Yes                    | N/A                |                                                   |
| 4   | UMTS + 2.4 GHz WI-FI           | Yes  | Yes                    | Yes                |                                                   |
| 5   | UMTS + 5 GHz WI-FI             | Yes  | Yes                    | Yes                |                                                   |
| 6   | UMTS + 2.4 GHz Bluetooth       | N/A  | Yes                    | N/A                |                                                   |
| 7   | LTE + 2.4 GHz WI-FI            | Yes  | Yes                    | Yes                |                                                   |
| 8   | LTE + 5 GHz WI-FI              | Yes  | Yes                    | Yes                |                                                   |
| 9   | LTE + 2.4 GHz Bluetooth        | N/A  | Yes                    | N/A                |                                                   |
| 10  | GPRS/EDGE + 2.4 GHz WI-FI      | Yes* | Yes*                   | Yes                | *-Pre-installed VOIP applications are considered. |
| 11  | GPRS/EDGE + 5 GHz WI-FI        | Yes* | Yes*                   | Yes                | *-Pre-installed VOIP applications are considered. |
| 12  | GPRS/EDGE + 2.4 GHz Bluetooth  | N/A  | Yes*                   | N/A                | *-Pre-installed VOIP applications are considered. |

- 1. 2.4 GHz WLAN, 5 GHz WLAN, and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- All licensed modes share the same antenna path and cannot transmit simultaneously.
- 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 4. Per the manufacturer, WIFI Direct is expected to be used in conjunction with a held-to-ear or body-worn accessory voice call. Therefore, the simultaneous transmission scenarios involving WIFI direct are listed in the above table.
- 5. 5 GHz Wireless Router is only supported for U-NII-1 and U-NII-3 by S/W, therefore U-NII2A and U-NII2C were not evaluated for wireless router conditions.
- 6. This device supports VoLTE and VoWIFI.

#### 1.6 Miscellaneous SAR Test Considerations

### (A) WIFI/BT

Since U-NII-1 and U-NII-2A bands have the same maximum output power and the highest reported SAR for U-NII-2A is less than 1.2 W/kg, head and body-worn SAR testing is not required for U-NII-1 band according to FCC KDB Publication 248227 D01v02r02.

Since Wireless Router operations are not allowed by the chipset firmware using U-NII-2A and U-NII-2C WIFI, only 2.4 GHz, U-NII-1, and U-NII-3 WIFI Hotspot SAR tests and combinations are considered for SAR with respect to Wireless Router configurations according to FCC KDB 941225 D06v02r01.

Per FCC KDB 447498 D01v06, the 1g SAR exclusion threshold for distances <50mm is defined by the following equation:

$$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, body-worn Bluetooth SAR was not required;  $[(10/10)^* \sqrt{2.480}] = 1.57 < 3.0$ . Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

| PCTEST              | SAR EVALUATION REPORT | .G                    | Approved by:  Quality Manager |
|---------------------|-----------------------|-----------------------|-------------------------------|
| Test Dates:         | DUT Type:             |                       | Dage 0 of 72                  |
| 10/02/17 - 10/12/17 | Portable Handset      |                       | Page 8 of 73                  |
|                     | Test Dates:           | Test Dates: DUT Type: | Test Dates: DUT Type:         |

### (B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

This device supports both LTE B66 (AWS) and LTE B4 (AWS). Since the supported frequency span for LTE B4 (AWS) falls completely within the supported frequency span for LTE B66 (AWS), both LTE bands have the same target power, and both LTE bands share the same transmission path, SAR was only assessed for LTE B66 (AWS).

#### 1.7 **Guidance Applied**

- IEEE 1528-2013
- FCC KDB Publication 941225 D01v03r01, D05v02r04, D06v02r01 (2G/3G/4G and Hotspot)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- October 2013 TCB Workshop Notes (GPRS Testing Considerations)

#### 1.8 **Device Serial Numbers**

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.

| FCC ID: ZNFX210MA      | PCTEST*             | SAR EVALUATION REPORT | (LG | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|-----|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             |     | Dog 0 of 72                   |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      |     | Page 9 of 73                  |

|                                                                                                                   | LTE Information                                                            |                                                                                                            |                                                                         |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| FCC ID                                                                                                            |                                                                            | ZNFX210MA                                                                                                  |                                                                         |
| Form Factor                                                                                                       |                                                                            | Portable Handset                                                                                           |                                                                         |
| Frequency Range of each LTE transmission band                                                                     | LTE                                                                        | Band 12 (699.7 - 715.3 N                                                                                   | ЛHz)                                                                    |
|                                                                                                                   | LTE B                                                                      | and 5 (Cell) (824.7 - 848.3                                                                                | 3 MHz)                                                                  |
|                                                                                                                   | LTE Ban                                                                    | d 66 (AWS) (1710.7 - 177                                                                                   | 9.3 MHz)                                                                |
|                                                                                                                   | LTE Ba                                                                     | nd 4 (AWS) (1710.7 - 1754                                                                                  | 4.3 MHz)                                                                |
|                                                                                                                   | LTE Ba                                                                     | nd 2 (PCS) (1850.7 - 1909                                                                                  | 9.3 MHz)                                                                |
| Channel Bandwidths                                                                                                | LTE Band                                                                   | 12: 1.4 MHz, 3 MHz, 5 MI                                                                                   | Hz, 10 MHz                                                              |
|                                                                                                                   | LTE Band 5 (                                                               | (Cell): 1.4 MHz, 3 MHz, 5                                                                                  | MHz, 10 MHz                                                             |
|                                                                                                                   |                                                                            | 4 MHz, 3 MHz, 5 MHz, 10                                                                                    |                                                                         |
|                                                                                                                   |                                                                            | 4 MHz, 3 MHz, 5 MHz, 10                                                                                    |                                                                         |
|                                                                                                                   | · / /                                                                      | MHz, 3 MHz, 5 MHz, 10                                                                                      |                                                                         |
| Channel Numbers and Frequencies (MHz)                                                                             | Low                                                                        | Mid                                                                                                        | High                                                                    |
| LTE Band 12: 1.4 MHz                                                                                              | 699.7 (23017)                                                              | 707.5 (23095)                                                                                              | 715.3 (23173)                                                           |
| LTE Band 12: 3 MHz                                                                                                | 700.5 (23025)                                                              | 707.5 (23095)                                                                                              | 714.5 (23165)                                                           |
| LTE Band 12: 5 MHz                                                                                                | 701.5 (23035)                                                              | 707.5 (23095)                                                                                              | 713.5 (23155)                                                           |
| LTE Band 12: 10 MHz                                                                                               | 704 (23060)                                                                | 707.5 (23095)                                                                                              | 711 (23130)                                                             |
| LTE Band 5 (Cell): 1.4 MHz                                                                                        | 824.7 (20407)                                                              | 836.5 (20525)                                                                                              | 848.3 (20643)                                                           |
| LTE Band 5 (Cell): 3 MHz                                                                                          | 825.5 (20415)                                                              | 836.5 (20525)                                                                                              | 847.5 (20635)                                                           |
| LTE Band 5 (Cell): 5 MHz                                                                                          | 826.5 (20425)                                                              | 836.5 (20525)                                                                                              | 846.5 (20625)                                                           |
| LTE Band 5 (Cell): 10 MHz                                                                                         | 829 (20450)                                                                | 836.5 (20525)                                                                                              | 844 (20600)                                                             |
| LTE Band 66 (AWS): 1.4 MHz                                                                                        | 1710.7 (131979)                                                            | 1745 (132322)                                                                                              | 1779.3 (132665)                                                         |
| LTE Band 66 (AWS): 3 MHz                                                                                          | 1711.5 (131987)                                                            | 1745 (132322)                                                                                              | 1778.5 (132657)                                                         |
| LTE Band 66 (AWS): 5 MHz                                                                                          | 1712.5 (131997)                                                            | 1745 (132322)                                                                                              | 1777.5 (132647)                                                         |
| LTE Band 66 (AWS): 10 MHz                                                                                         | 1715 (132022)                                                              | 1745 (132322)                                                                                              | 1775 (132622)                                                           |
| LTE Band 66 (AWS): 15 MHz                                                                                         | 1717.5 (132047)                                                            | 1745 (132322)                                                                                              | 1772.5 (132597)                                                         |
| LTE Band 66 (AWS): 20 MHz                                                                                         | 1720 (132072)                                                              | 1745 (132322)                                                                                              | 1770 (132572)                                                           |
| LTE Band 4 (AWS): 1.4 MHz                                                                                         | 1710.7 (19957)                                                             | 1732.5 (20175)                                                                                             | 1754.3 (20393)                                                          |
| LTE Band 4 (AWS): 3 MHz                                                                                           | 1711.5 (19965)                                                             | 1732.5 (20175)                                                                                             | 1753.5 (20385)                                                          |
| LTE Band 4 (AWS): 5 MHz                                                                                           | 1712.5 (19975)                                                             | 1732.5 (20175)                                                                                             | 1752.5 (20375)                                                          |
| LTE Band 4 (AWS): 10 MHz                                                                                          | 1715 (20000)                                                               | 1732.5 (20175)                                                                                             | 1750 (20350)                                                            |
| LTE Band 4 (AWS): 15 MHz                                                                                          | 1717.5 (20025)                                                             | 1732.5 (20175)                                                                                             | 1747.5 (20325)                                                          |
| LTE Band 4 (AWS): 20 MHz                                                                                          | 1720 (20050)                                                               | 1732.5 (20175)                                                                                             | 1745 (20300)                                                            |
| LTE Band 2 (PCS): 1.4 MHz                                                                                         | 1850.7 (18607)                                                             | 1880 (18900)                                                                                               | 1909.3 (19193)                                                          |
| LTE Band 2 (PCS): 3 MHz                                                                                           | 1851.5 (18615)                                                             | 1880 (18900)                                                                                               | 1908.5 (19185)                                                          |
| LTE Band 2 (PCS): 5 MHz                                                                                           | 1852.5 (18625)                                                             | 1880 (18900)                                                                                               | 1907.5 (19175)                                                          |
| LTE Band 2 (PCS): 10 MHz                                                                                          | 1855 (18650)                                                               | 1880 (18900)                                                                                               | 1905 (19150)                                                            |
| LTE Band 2 (PCS): 15 MHz                                                                                          | 1857.5 (18675)                                                             | 1880 (18900)                                                                                               | 1902.5 (19125)                                                          |
| LTE Band 2 (PCS): 20 MHz                                                                                          | 1860 (18700)                                                               | 1880 (18900)                                                                                               | 1900 (19100)                                                            |
| UE Category                                                                                                       | 111 (1212)                                                                 | 6                                                                                                          |                                                                         |
| Modulations Supported in UL                                                                                       | QPSK, 16QAM                                                                |                                                                                                            |                                                                         |
| LTE MPR Permanently implemented per 3GPP TS 36.101 section 6.2.3~6.2.5? (manufacturer attestation to be provided) | YES                                                                        |                                                                                                            |                                                                         |
| A-MPR (Additional MPR) disabled for SAR Testing?                                                                  |                                                                            | YES                                                                                                        |                                                                         |
| LTE Release 10 Additional Information                                                                             | This device does not s                                                     | support full CA features on                                                                                | 3GPP Release 10. All                                                    |
|                                                                                                                   | uplink communications<br>following LTE Release 1<br>Relay, HetNet, Enhance | are identical to the Relea<br>0 Features are not supported MIMO, elCIC, WIFI Officier Scheduling, Enhanced | se 8 Specifications. The ted: Carrier Aggregation, loading, MDH, eMBMS, |

| FCC ID: ZNFX210MA      | PCTEST INDICATE LABORATORY, INC. | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|----------------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:                      | DUT Type:                | Dogo 10 of 72                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17              | Portable Handset         | Page 10 of 73                |

### 3 I

### INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

### 3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density ( $\rho$ ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

# Equation 3-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left( \frac{dU}{dm} \right) = \frac{d}{dt} \left( \frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 $\sigma$  = conductivity of the tissue-simulating material (S/m)  $\rho$  = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

| FCC ID: ZNFX210MA      | PCTEST:             | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|---------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Page 11 of 73                 |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset         | raye 110173                   |

© 2017 PCTEST Engineering Laboratory, Inc.

### 4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

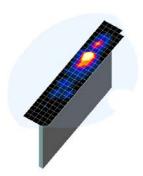



Figure 4-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
  - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
  - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
  - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04\*

| Maximum Area Scan Frequency Resolution (mm) |                                            |                                                            |                      | Maximum Zoom Scan Spatial<br>Resolution (mm) |                                 |                        |
|---------------------------------------------|--------------------------------------------|------------------------------------------------------------|----------------------|----------------------------------------------|---------------------------------|------------------------|
| Frequency                                   | (Δx <sub>area</sub> , Δy <sub>area</sub> ) | Resolution (mm) (Δx <sub>zoom</sub> , Δy <sub>zoom</sub> ) | Uniform Grid         | G                                            | raded Grid                      | Volume (mm)<br>(x,y,z) |
|                                             |                                            |                                                            | $\Delta z_{zoom}(n)$ | Δz <sub>zoom</sub> (1)*                      | Δz <sub>zoom</sub> (n>1)*       |                        |
| ≤ 2 GHz                                     | ≤15                                        | ≤8                                                         | ≤5                   | ≤4                                           | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥30                    |
| 2-3 GHz                                     | ≤12                                        | ≤5                                                         | ≤5                   | ≤4                                           | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 30                   |
| 3-4 GHz                                     | ≤12                                        | ≤5                                                         | ≤4                   | ≤3                                           | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 28                   |
| 4-5 GHz                                     | ≤10                                        | ≤4                                                         | ≤3                   | ≤ 2.5                                        | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 25                   |
| 5-6 GHz                                     | ≤10                                        | ≤4                                                         | ≤2                   | ≤2                                           | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥22                    |

<sup>\*</sup>Also compliant to IEEE 1528-2013 Table 6

| FCC ID: ZNFX210MA      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 12 of 73                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | Page 12 01 73                |

© 2017 PCTEST Engineering Laboratory, Inc.

### 5 DEFINITION OF REFERENCE POINTS

#### 5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

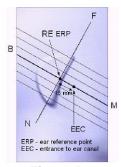



Figure 5-1 Close-Up Side view of ERP

### 5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.



Figure 5-2
Front, back and side view of SAM Twin Phantom

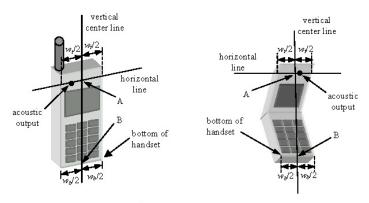



Figure 5-3
Handset Vertical Center & Horizontal Line Reference Points

| FCC ID: ZNFX210MA      | PCTEST*             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dogo 12 of 72                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | Page 13 of 73                |

© 2017 PCTEST Engineering Laboratory, Inc.

REV 18.4 M 09/05/2017

## 6 TEST CONFIGURATION POSITIONS

#### 6.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity  $\varepsilon = 3$  and loss tangent  $\delta = 0.02$ .

### 6.2 Positioning for Cheek

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.



Figure 6-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

## 6.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

| FCC ID: ZNFX210MA      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dogo 14 of 72                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | Page 14 of 73                |

© 2017 PCTEST Engineering Laboratory, Inc.



Figure 6-2 Front, Side and Top View of Ear/15° Tilt
Position

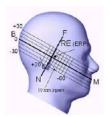



Figure 6-3
Side view w/ relevant markings

### 6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEEE 1528-2013, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

### 6.5 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation

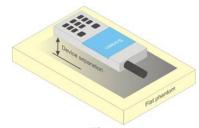



Figure 6-4
Sample Body-Worn Diagram

distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not

| FCC ID: ZNFX210MA      | PCTEST*             | SAR EVALUATION REPORT | <b>L</b> G | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             |            | Dogo 45 of 72                 |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      |            | Page 15 of 73                 |

© 2017 PCTEST Engineering Laboratory, Inc.

contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

### 6.6 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

## 6.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W  $\geq$  9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

| FCC ID: ZNFX210MA      | ENPETEST SAINLESS LADORATOR, INC. | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|-----------------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:                       | DUT Type:                | Page 16 of 73                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17               | Portable Handset         | Page 10 01 73                |

© 2017 PCTEST Engineering Laboratory, Inc.

### 7 RF EXPOSURE LIMITS

#### 7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

### 7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 7-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

| HUMAN EXPOSURE LIMITS                                        |                                                                       |                                                               |  |  |
|--------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|--|--|
|                                                              | UNCONTROLLED<br>ENVIRONMENT<br>General Population<br>(W/kg) or (mW/g) | CONTROLLED<br>ENVIRONMENT<br>Occupational<br>(W/kg) or (mW/g) |  |  |
| Peak Spatial Average SAR<br>Head                             | 1.6                                                                   | 8.0                                                           |  |  |
| Whole Body SAR                                               | 0.08                                                                  | 0.4                                                           |  |  |
| Peak Spatial Average SAR<br>Hands, Feet, Ankle, Wrists, etc. | 4.0                                                                   | 20                                                            |  |  |

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

| FCC ID: ZNFX210MA      | PCTEST INCIDENCE LADVATOR, INC. | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|---------------------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:                     | DUT Type:                | Page 17 of 73                 |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17             | Portable Handset         | Fage 17 01 73                 |

© 2017 PCTEST Engineering Laboratory, Inc.

## 8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

### 8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

#### 8.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is  $\leq$  0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is  $\leq$  1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

### 8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

#### 8.4 SAR Measurement Conditions for UMTS

### 8.4.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

| FCC ID: ZNFX210MA      | PCTEST*             | SAR EVALUATION REPORT | (LG | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|-----|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             |     | Dogg 40 of 72                 |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      |     | Page 18 of 73                 |

© 2017 PCTEST Engineering Laboratory, Inc.

### 8.4.2 Head SAR Measurements

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

### 8.4.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH<sub>n</sub> configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCH<sub>n</sub>, for the highest reported SAR configuration in 12.2 kbps RMC.

### 8.4.4 SAR Measurements with Rel 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

### 8.4.5 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

### 8.5 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

### 8.5.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

| FCC ID: ZNFX210MA      | PCTEST:             | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Page 19 of 73                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset         | Page 19 01 73                |

© 2017 PCTEST Engineering Laboratory, Inc.

### 8.5.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

#### 8.5.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

### 8.5.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
  - The required channel and offset combination with the highest maximum output power is required for SAR.
  - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
  - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.</p>
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.</p>

### 8.6 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

### 8.6.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

| FCC ID: ZNFX210MA      | PCTEST              | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dogg 20 of 72                 |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | Page 20 of 73                 |

© 2017 PCTEST Engineering Laboratory, Inc.

#### 8.6.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands, SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg.

### 8.6.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 – 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled, SAR must be considered for these channels. Each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

### 8.6.4 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is  $\leq 0.4$  W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is  $\leq 0.8$  W/kg or all test positions are measured.

### 8.6.5 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

### 8.6.6 OFDM Transmission Mode and SAR Test Channel Selection

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is

| FCC ID: ZNFX210MA      | PCTEST*             | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dage 24 of 72                 |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | Page 21 of 73                 |

© 2017 PCTEST Engineering Laboratory, Inc.

the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

### 8.6.7 Initial Test Configuration Procedure

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is  $\leq 0.8$  W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is  $\leq 1.2$  W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 8.6.6).

## 8.6.8 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is  $\leq 1.2 \text{ W/kg}$ , no additional SAR tests for the subsequent test configurations are required.

| FCC ID: ZNFX210MA      | PCTEST:             | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Page 22 of 73                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset         | Page 22 01 73                |

### 9 RF CONDUCTED POWERS

#### 9.1 GSM Conducted Powers

|          | Maximum Burst-Averaged Output Power |                                |                               |                               |                               |                               |                               |                               |                               |                               |
|----------|-------------------------------------|--------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
|          |                                     | Voice                          | GPRS/EDGE Data<br>(GMSK)      |                               |                               |                               | EDGE Data<br>(8-PSK)          |                               |                               |                               |
| Band     | Channel                             | GSM<br>[dBm]<br>CS<br>(1 Slot) | GPRS<br>[dBm]<br>1 Tx<br>Slot | GPRS<br>[dBm]<br>2 Tx<br>Slot | GPRS<br>[dBm]<br>3 Tx<br>Slot | GPRS<br>[dBm]<br>4 Tx<br>Slot | EDGE<br>[dBm]<br>1 Tx<br>Slot | EDGE<br>[dBm]<br>2 Tx<br>Slot | EDGE<br>[dBm]<br>3 Tx<br>Slot | EDGE<br>[dBm]<br>4 Tx<br>Slot |
|          | 128                                 | 33.68                          | 33.61                         | 31.50                         | 29.45                         | 27.55                         | 26.44                         | 25.23                         | 23.59                         | 22.55                         |
| GSM 850  | 190                                 | 33.63                          | 33.67                         | 31.40                         | 29.51                         | 27.50                         | 26.58                         | 25.13                         | 23.59                         | 22.53                         |
|          | 251                                 | 33.57                          | 33.64                         | 31.47                         | 29.53                         | 27.56                         | 26.59                         | 25.38                         | 23.70                         | 22.55                         |
|          | 512                                 | 30.64                          | 30.70                         | 28.61                         | 26.63                         | 24.65                         | 25.34                         | 23.71                         | 22.37                         | 21.61                         |
| GSM 1900 | 661                                 | 30.55                          | 30.70                         | 28.70                         | 26.68                         | 24.67                         | 25.40                         | 23.80                         | 22.38                         | 21.55                         |
|          | 810                                 | 30.64                          | 30.65                         | 28.60                         | 26.65                         | 24.56                         | 25.32                         | 23.84                         | 22.40                         | 21.69                         |

| Calculated Maximum Frame-Averaged Output Power |              |                                |                               |                               |                               |                               |                               |                               |                               |                               |
|------------------------------------------------|--------------|--------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
|                                                |              | Voice                          | GPRS/EDGE Data<br>(GMSK)      |                               |                               |                               | EDGE Data<br>(8-PSK)          |                               |                               |                               |
| Band                                           | Channel      | GSM<br>[dBm]<br>CS<br>(1 Slot) | GPRS<br>[dBm]<br>1 Tx<br>Slot | GPRS<br>[dBm]<br>2 Tx<br>Slot | GPRS<br>[dBm]<br>3 Tx<br>Slot | GPRS<br>[dBm]<br>4 Tx<br>Slot | EDGE<br>[dBm]<br>1 Tx<br>Slot | EDGE<br>[dBm]<br>2 Tx<br>Slot | EDGE<br>[dBm]<br>3 Tx<br>Slot | EDGE<br>[dBm]<br>4 Tx<br>Slot |
|                                                | 128          | 24.65                          | 24.58                         | 25.48                         | 25.19                         | 24.54                         | 17.41                         | 19.21                         | 19.33                         | 19.54                         |
| GSM 850                                        | 190          | 24.60                          | 24.64                         | 25.38                         | 25.25                         | 24.49                         | 17.55                         | 19.11                         | 19.33                         | 19.52                         |
|                                                | 251          | 24.54                          | 24.61                         | 25.45                         | 25.27                         | 24.55                         | 17.56                         | 19.36                         | 19.44                         | 19.54                         |
|                                                | 512          | 21.61                          | 21.67                         | 22.59                         | 22.37                         | 21.64                         | 16.31                         | 17.69                         | 18.11                         | 18.60                         |
| GSM 1900                                       | 661          | 21.52                          | 21.67                         | 22.68                         | 22.42                         | 21.66                         | 16.37                         | 17.78                         | 18.12                         | 18.54                         |
|                                                | 810          | 21.61                          | 21.62                         | 22.58                         | 22.39                         | 21.55                         | 16.29                         | 17.82                         | 18.14                         | 18.68                         |
|                                                |              |                                |                               |                               |                               |                               |                               |                               |                               |                               |
| GSM 850                                        | Frame        | 24.17                          | 24.17                         | 25.18                         | 24.94                         | 24.19                         | 17.17                         | 19.18                         | 18.94                         | 19.19                         |
| GSM 1900                                       | Avg.Targets: | 21.17                          | 21.17                         | 22.18                         | 21.94                         | 21.19                         | 16.17                         | 17.68                         | 17.94                         | 18.19                         |

#### Note:

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 - CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- 3. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8PSK modulation do not have an impact on output power.

GSM Class: B

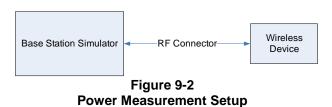
GPRS Multislot class: 12 (Max 4 Tx uplink slots) EDGE Multislot class: 12 (Max 4 Tx uplink slots)

**DTM Multislot Class: N/A** 



Figure 9-1
Power Measurement Setup

| FCC ID: ZNFX210MA      | PCTEST:             | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Page 23 of 73                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset         | Page 23 01 73                |


© 2017 PCTEST Engineering Laboratory, Inc.

### 9.2 UMTS Conducted Powers

| 3GPP 34.121<br>Release Mode 3GPP 34.121<br>Subtest |          | 3GPP 34.121   | Cellular Band [dBm] |       | AWS Band [dBm] |       |       | PCS Band [dBm] |       |       | 3GPP<br>MPR [dB] |             |
|----------------------------------------------------|----------|---------------|---------------------|-------|----------------|-------|-------|----------------|-------|-------|------------------|-------------|
| Version                                            |          | oublest       | 4132                | 4183  | 4233           | 1312  | 1412  | 1513           | 9262  | 9400  | 9538             | WII IX [GD] |
| 99                                                 | WCDMA    | 12.2 kbps RMC | 24.45               | 24.22 | 24.31          | 24.65 | 24.54 | 24.65          | 24.68 | 24.63 | 24.64            | -           |
| 99                                                 | VVCDIVIA | 12.2 kbps AMR | 24.36               | 24.23 | 24.35          | 24.66 | 24.56 | 24.62          | 24.51 | 24.67 | 24.62            | -           |
| 6                                                  |          | Subtest 1     | 24.55               | 24.50 | 24.56          | 24.55 | 24.66 | 24.57          | 24.67 | 24.64 | 24.68            | 0           |
| 6                                                  | HSDPA    | Subtest 2     | 24.45               | 24.50 | 24.31          | 24.54 | 24.70 | 24.63          | 24.62 | 24.69 | 24.64            | 0           |
| 6                                                  | ПЭДРА    | Subtest 3     | 24.06               | 24.08 | 24.14          | 24.03 | 24.07 | 24.17          | 24.08 | 24.13 | 24.01            | 0.5         |
| 6                                                  |          | Subtest 4     | 24.13               | 24.00 | 23.94          | 24.12 | 24.08 | 24.15          | 24.16 | 23.98 | 24.04            | 0.5         |
| 6                                                  |          | Subtest 1     | 24.52               | 24.39 | 24.24          | 24.59 | 24.63 | 24.60          | 24.67 | 24.62 | 24.60            | 0           |
| 6                                                  |          | Subtest 2     | 23.21               | 23.22 | 23.23          | 23.36 | 23.45 | 23.39          | 23.31 | 23.40 | 23.35            | 2           |
| 6                                                  | HSUPA    | Subtest 3     | 23.49               | 23.50 | 23.68          | 23.74 | 23.78 | 23.73          | 23.80 | 23.72 | 23.76            | 1           |
| 6                                                  |          | Subtest 4     | 23.07               | 23.26 | 23.08          | 23.33 | 23.38 | 23.32          | 23.32 | 23.44 | 23.42            | 2           |
| 6                                                  |          | Subtest 5     | 24.46               | 24.29 | 24.53          | 24.62 | 24.68 | 24.56          | 24.49 | 24.57 | 24.65            | 0           |

This device does not support DC-HSDPA.

It is expected by the manufacturer that MPR for some HSPA subtests may be up to 1 dB more than specified by 3GPP, but also as low as 0 dB according to the chipset implementation in this model.



| FCC ID: ZNFX210MA      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 24 of 73                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | Fage 24 01 73                |

### 9.3 LTE Conducted Powers

9.3.1 LTE Band 12

Table 9-1
LTE Band 12 Conducted Powers - 10 MHz Bandwidth

|            |         | <u> </u>  | 10 Mile Ballawiath              |                              |          |  |
|------------|---------|-----------|---------------------------------|------------------------------|----------|--|
|            |         |           | LTE Band 12<br>10 MHz Bandwidth |                              |          |  |
|            |         |           | Mid Channel                     |                              |          |  |
| Modulation | RB Size | RB Offset | 23095<br>(707.5 MHz)            | MPR Allowed per<br>3GPP [dB] | MPR [dB] |  |
|            |         |           | Conducted Power [dBm]           |                              |          |  |
|            | 1       | 0         | 24.22                           |                              | 0        |  |
|            | 1       | 25        | 24.58                           | 0                            | 0        |  |
|            | 1       | 49        | 24.28                           |                              | 0        |  |
| QPSK       | 25      | 0         | 23.51                           |                              | 1        |  |
|            | 25      | 12        | 23.41                           | 0-1                          | 1        |  |
|            | 25      | 25        | 23.44                           | 0-1                          | 1        |  |
|            | 50      | 0         | 23.41                           |                              | 1        |  |
|            | 1       | 0         | 23.25                           |                              | 1        |  |
|            | 1       | 25        | 23.36                           | 0-1                          | 1        |  |
|            | 1       | 49        | 23.40                           |                              | 1        |  |
| 16QAM      | 25      | 0         | 22.60                           | ·                            | 2        |  |
|            | 25      | 12        | 22.53                           | 0-2                          | 2        |  |
|            | 25      | 25        | 22.59                           |                              | 2        |  |
|            | 50      | 0         | 22.39                           |                              | 2        |  |

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 9-2
LTE Band 12 Conducted Powers - 5 MHz Bandwidth

|            |                    |            |             | addiod i oliolo      | O MITTE Barratt |           |           |       |                 |          |
|------------|--------------------|------------|-------------|----------------------|-----------------|-----------|-----------|-------|-----------------|----------|
|            |                    |            |             | LTE Band 12          |                 |           |           |       |                 |          |
|            |                    |            |             | 5 MHz Bandwidth      |                 |           |           |       |                 |          |
|            |                    |            | Low Channel | Mid Channel          | High Channel    |           |           |       |                 |          |
| Modulation | Modulation RB Size | DR Offeet  | PR Offcot   | RB Offset            | PR Offcot       | 23035     | 23095     | 23155 | MPR Allowed per | MPR [dB] |
| Wodulation |                    | IND Offset | (701.5 MHz) | (707.5 MHz)          | (713.5 MHz)     | 3GPP [dB] | WIFK [UD] |       |                 |          |
|            |                    |            | (           | Conducted Power [dBm | ]               |           |           |       |                 |          |
|            | 1                  | 0          | 24.54       | 24.30                | 24.28           |           | 0         |       |                 |          |
|            | 1                  | 12         | 24.29       | 24.41                | 24.24           | 0         | 0         |       |                 |          |
|            | 1                  | 24         | 24.51       | 24.36                | 24.29           |           | 0         |       |                 |          |
| QPSK       | 12                 | 0          | 23.36       | 23.42                | 23.34           | -         | 1         |       |                 |          |
|            | 12                 | 6          | 23.41       | 23.47                | 23.55           |           | 1         |       |                 |          |
|            | 12                 | 13         | 23.48       | 23.41                | 23.40           | 0-1       | 1         |       |                 |          |
|            | 25                 | 0          | 23.35       | 23.24                | 23.32           |           | 1         |       |                 |          |
|            | 1                  | 0          | 23.18       | 23.66                | 23.18           |           | 1         |       |                 |          |
|            | 1                  | 12         | 23.40       | 23.59                | 23.53           | 0-1       | 1         |       |                 |          |
|            | 1                  | 24         | 23.33       | 23.62                | 23.36           |           | 1         |       |                 |          |
| 16QAM      | 12                 | 0          | 22.31       | 22.64                | 22.39           |           | 2         |       |                 |          |
|            | 12                 | 6          | 22.56       | 22.63                | 22.24           | 0-2       | 2         |       |                 |          |
|            | 12                 | 13         | 22.54       | 22.58                | 22.29           |           | 2         |       |                 |          |
|            | 25                 | 0          | 22.54       | 22.48                | 22.42           |           | 2         |       |                 |          |

| FCC ID: ZNFX210MA      | PCTEST:             | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Page 25 of 73                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset         | Fage 25 01 75                |

© 2017 PCTEST Engineering Laboratory, Inc.

Table 9-3 LTF Band 12 Conducted Powers - 3 MHz Bandwidth

|            |         |           | IL Dalla 12 COI      | ducted Powers                  | - 3 WITTE Dallaw     | riditi                       |          |
|------------|---------|-----------|----------------------|--------------------------------|----------------------|------------------------------|----------|
|            |         |           |                      | LTE Band 12<br>3 MHz Bandwidth |                      |                              |          |
|            |         |           | Low Channel          | Mid Channel                    | High Channel         |                              |          |
| Modulation | RB Size | RB Offset | 23025<br>(700.5 MHz) | 23095<br>(707.5 MHz)           | 23165<br>(714.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           | (                    | Conducted Power [dBm           | 1]                   |                              |          |
|            | 1       | 0         | 24.37                | 24.44                          | 24.38                |                              | 0        |
|            | 1       | 7         | 24.42                | 24.53                          | 24.37                | 0                            | 0        |
|            | 1       | 14        | 24.44                | 24.37                          | 24.31                |                              | 0        |
| QPSK       | 8       | 0         | 23.42                | 23.38                          | 23.31                |                              | 1        |
|            | 8       | 4         | 23.61                | 23.22                          | 23.52                | 0.4                          | 1        |
|            | 8       | 7         | 23.39                | 23.38                          | 23.45                | 0-1                          | 1        |
|            | 15      | 0         | 23.42                | 23.43                          | 23.35                |                              | 1        |
|            | 1       | 0         | 23.61                | 23.62                          | 23.64                |                              | 1        |
|            | 1       | 7         | 23.57                | 23.41                          | 23.68                | 0-1                          | 1        |
|            | 1       | 14        | 23.60                | 23.68                          | 23.69                |                              | 1        |
| 16QAM      | 8       | 0         | 22.45                | 22.50                          | 22.53                |                              | 2        |
|            | 8       | 4         | 22.68                | 22.62                          | 22.39                | 0-2                          | 2        |
|            | 8       | 7         | 22.46                | 22.55                          | 22.45                |                              | 2        |
|            | 15      | 0         | 22.66                | 22.66                          | 22.38                |                              | 2        |

Table 9-4 LTE Band 12 Conducted Powers -1.4 MHz Bandwidth

|            |         |           |                      | LTE Band 12<br>1.4 MHz Bandwidth |                      |                              |          |
|------------|---------|-----------|----------------------|----------------------------------|----------------------|------------------------------|----------|
|            |         |           | Low Channel          | Mid Channel                      | High Channel         |                              |          |
| Modulation | RB Size | RB Offset | 23017<br>(699.7 MHz) | 23095<br>(707.5 MHz)             | 23173<br>(715.3 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           | (                    | Conducted Power [dBm             | 1                    |                              |          |
|            | 1       | 0         | 24.41                | 24.33                            | 24.22                |                              | 0        |
|            | 1       | 2         | 24.55                | 24.24                            | 24.30                |                              | 0        |
|            | 1       | 5         | 24.23                | 24.32                            | 24.18                |                              | 0        |
| QPSK       | 3       | 0         | 24.46                | 24.34                            | 24.21                | 0                            | 0        |
|            | 3       | 2         | 24.16                | 24.33                            | 24.31                |                              | 0        |
|            | 3       | 3         | 24.63                | 24.44                            | 24.41                |                              | 0        |
|            | 6       | 0         | 23.41                | 23.43                            | 23.24                | 0-1                          | 1        |
|            | 1       | 0         | 23.70                | 23.39                            | 23.40                |                              | 1        |
|            | 1       | 2         | 23.60                | 23.53                            | 23.50                |                              | 1        |
|            | 1       | 5         | 23.67                | 23.34                            | 23.24                | 0.4                          | 1        |
| 16QAM      | 3       | 0         | 23.70                | 23.61                            | 23.68                | 0-1                          | 1        |
|            | 3       | 2         | 23.60                | 23.45                            | 23.47                | ]                            | 1        |
|            | 3       | 3         | 23.48                | 23.55                            | 23.70                |                              | 1        |
|            | 6       | 0         | 22.32                | 22.47                            | 22.23                | 0-2                          | 2        |

| FCC ID: ZNFX210MA      | POTEST*             | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Dago 26 of 72                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset         | Page 26 of 73                |

## 9.3.2 LTE Band 5 (Cell)

Table 9-5
LTE Band 5 (Cell) Conducted Powers - 10 MHz Bandwidth

|            | LTE Band 5 (Cell) |           |                       |                              |          |  |  |  |  |  |
|------------|-------------------|-----------|-----------------------|------------------------------|----------|--|--|--|--|--|
|            |                   |           | 10 MHz Bandwidth      |                              |          |  |  |  |  |  |
|            |                   |           | Mid Channel           |                              |          |  |  |  |  |  |
| Modulation | RB Size           | RB Offset | 20525<br>(836.5 MHz)  | MPR Allowed per<br>3GPP [dB] | MPR [dB] |  |  |  |  |  |
|            |                   |           | Conducted Power [dBm] | 2017 [4.5]                   |          |  |  |  |  |  |
|            | 1                 | 0         | 24.27                 |                              | 0        |  |  |  |  |  |
|            | 1                 | 25        | 24.25                 | 0                            | 0        |  |  |  |  |  |
|            | 1                 | 49        | 24.48                 |                              | 0        |  |  |  |  |  |
| QPSK       | 25                | 0         | 23.56                 |                              | 1        |  |  |  |  |  |
|            | 25                | 12        | 23.52                 | 0-1                          | 1        |  |  |  |  |  |
|            | 25                | 25        | 23.52                 | 0-1                          | 1        |  |  |  |  |  |
|            | 50                | 0         | 23.44                 |                              | 1        |  |  |  |  |  |
|            | 1                 | 0         | 23.60                 |                              | 1        |  |  |  |  |  |
|            | 1                 | 25        | 23.60                 | 0-1                          | 1        |  |  |  |  |  |
|            | 1                 | 49        | 23.68                 |                              | 1        |  |  |  |  |  |
| 16QAM      | 25                | 0         | 22.57                 |                              | 2        |  |  |  |  |  |
|            | 25                | 12        | 22.62                 | 0-2                          | 2        |  |  |  |  |  |
|            | 25                | 25        | 22.69                 | 0-2                          | 2        |  |  |  |  |  |
|            | 50                | 0         | 22.50                 |                              | 2        |  |  |  |  |  |

Note: LTE Band 5 (Cell) at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 9-6
LTE Band 5 (Cell) Conducted Powers - 5 MHz Bandwidth

|            |         |           |                      | LTE Band 5 (Cell)<br>5 MHz Bandwidth |                      |                              |          |
|------------|---------|-----------|----------------------|--------------------------------------|----------------------|------------------------------|----------|
|            |         |           | Low Channel          | Mid Channel                          | High Channel         |                              |          |
| Modulation | RB Size | RB Offset | 20425<br>(826.5 MHz) | 20525<br>(836.5 MHz)                 | 20625<br>(846.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           | (                    | Conducted Power [dBm                 | 1]                   |                              |          |
|            | 1       | 0         | 24.52                | 24.30                                | 24.37                |                              | 0        |
|            | 1       | 12        | 24.50                | 24.18                                | 24.35                | 0                            | 0        |
|            | 1       | 24        | 24.46                | 24.32                                | 24.53                |                              | 0        |
| QPSK       | 12      | 0         | 23.51                | 23.62                                | 23.70                |                              | 1        |
|            | 12      | 6         | 23.42                | 23.55                                | 23.62                | 0-1                          | 1        |
|            | 12      | 13        | 23.50                | 23.52                                | 23.62                | 0-1                          | 1        |
|            | 25      | 0         | 23.47                | 23.58                                | 23.52                |                              | 1        |
|            | 1       | 0         | 23.45                | 23.50                                | 23.46                |                              | 1        |
|            | 1       | 12        | 23.55                | 23.31                                | 23.63                | 0-1                          | 1        |
|            | 1       | 24        | 23.48                | 23.29                                | 23.68                |                              | 1        |
| 16QAM      | 12      | 0         | 22.66                | 22.66                                | 22.29                |                              | 2        |
|            | 12      | 6         | 22.63                | 22.62                                | 22.48                | 0-2                          | 2        |
|            | 12      | 13        | 22.64                | 22.49                                | 22.28                |                              | 2        |
|            | 25      | 0         | 22.41                | 22.56                                | 22.42                |                              | 2        |

| FCC ID: ZNFX210MA      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 27 of 73                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | Fage 27 01 73                |

Table 9-7 LTE Band 5 (Cell) Conducted Powers - 3 MHz Bandwidth

|            |         |           | Dana 3 (Och) O | LTE Band 5 (Call)                 | 13 - 3 WILL Dall | awiatii         |          |
|------------|---------|-----------|----------------|-----------------------------------|------------------|-----------------|----------|
|            |         |           |                | LTE Band 5 (Cell) 3 MHz Bandwidth |                  |                 |          |
|            |         |           | Low Channel    | Mid Channel                       | High Channel     |                 |          |
|            |         |           |                |                                   |                  |                 |          |
| Modulation | RB Size | RB Offset | 20415          | 20525                             | 20635            | MPR Allowed per | MPR [dB] |
|            |         |           | (825.5 MHz)    | (836.5 MHz)                       | (847.5 MHz)      | 3GPP [dB]       | • •      |
|            |         |           | (              | Conducted Power [dBm              | 1]               |                 |          |
|            | 1       | 0         | 24.44          | 24.52                             | 24.55            |                 | 0        |
|            | 1       | 7         | 24.40          | 24.56                             | 24.47            | 0-1             | 0        |
|            | 1       | 14        | 24.38          | 24.41                             | 24.59            |                 | 0        |
| QPSK       | 8       | 0         | 23.41          | 23.67                             | 23.32            |                 | 1        |
|            | 8       | 4         | 23.47          | 23.52                             | 23.48            |                 | 1        |
|            | 8       | 7         | 23.34          | 23.36                             | 23.47            |                 | 1        |
|            | 15      | 0         | 23.29          | 23.50                             | 23.35            |                 | 1        |
|            | 1       | 0         | 23.60          | 23.21                             | 23.68            |                 | 1        |
|            | 1       | 7         | 23.65          | 23.32                             | 23.54            | 0-1             | 1        |
|            | 1       | 14        | 23.53          | 23.31                             | 23.59            |                 | 1        |
| 16QAM      | 8       | 0         | 22.50          | 22.59                             | 22.52            |                 | 2        |
|            | 8       | 4         | 22.63          | 22.64                             | 22.66            | 0.2             | 2        |
|            | 8       | 7         | 22.67          | 22.64                             | 22.65            | 0-2             | 2        |
|            | 15      | 0         | 22.55          | 22.44                             | 22.70            |                 | 2        |

Table 9-8 LTE Band 5 (Cell) Conducted Powers -1.4 MHz Bandwidth

|            |         |           |                                     | LTE Band 5 (Cell) 1.4 MHz Bandwidth |                                      |                              |          |
|------------|---------|-----------|-------------------------------------|-------------------------------------|--------------------------------------|------------------------------|----------|
| Modulation | RB Size | RB Offset | Low Channel<br>20407<br>(824.7 MHz) | Mid Channel<br>20525<br>(836.5 MHz) | High Channel<br>20643<br>(848.3 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           | ,                                   | Conducted Power [dBm                |                                      |                              |          |
|            | 1       | 0         | 24.54                               | 24.34                               | 24.47                                |                              | 0        |
|            | 1       | 2         | 24.39                               | 24.40                               | 24.37                                | 1                            | 0        |
|            | 1       | 5         | 24.52                               | 24.33                               | 24.46                                | ] , [                        | 0        |
| QPSK       | 3       | 0         | 24.28                               | 24.59                               | 24.59                                | 0                            | 0        |
|            | 3       | 2         | 24.43                               | 24.60                               | 24.53                                | ] [                          | 0        |
|            | 3       | 3         | 24.44                               | 24.45                               | 24.60                                | 1                            | 0        |
|            | 6       | 0         | 23.50                               | 23.59                               | 23.42                                | 0-1                          | 1        |
|            | 1       | 0         | 23.40                               | 23.34                               | 23.42                                |                              | 1        |
|            | 1       | 2         | 23.67                               | 23.33                               | 23.66                                |                              | 1        |
|            | 1       | 5         | 23.70                               | 23.36                               | 23.58                                | 0-1                          | 1        |
| 16QAM      | 3       | 0         | 23.60                               | 23.50                               | 23.67                                | 0-1                          | 1        |
|            | 3       | 2         | 23.51                               | 23.66                               | 23.67                                |                              | 1        |
|            | 3       | 3         | 23.65                               | 23.62                               | 23.42                                |                              | 1        |
|            | 6       | 0         | 22.55                               | 22.42                               | 22.52                                | 0-2                          | 2        |

| FCC ID: ZNFX210MA                     | PCTEST*             | SAR EVALUATION REPORT | (LG | Approved by:  Quality Manager |
|---------------------------------------|---------------------|-----------------------|-----|-------------------------------|
| Document S/N:                         | Test Dates:         | DUT Type:             |     | Dogg 20 of 72                 |
| 1M1710020259-01-R1.ZNF                | 10/02/17 - 10/12/17 | Portable Handset      |     | Page 28 of 73                 |
| 17 DCTEST Engineering Laboratory Inc. |                     |                       |     | DE\/ 10 / M                   |

#### LTE Band 66 (AWS) 9.3.3

Table 9-9 LTE Band 66 (AWS) Conducted Powers - 20 MHz Bandwidth

|            |         |           |             | LTE Band 66 (AWS)<br>20 MHz Bandwidth |              |       |   |
|------------|---------|-----------|-------------|---------------------------------------|--------------|-------|---|
|            |         |           | Low Channel | Mid Channel                           | High Channel |       |   |
| Modulation | RB Size | RB Offset |             | MPR Allowed per<br>3GPP [dB]          | MPR [dB]     |       |   |
|            |         |           | (           | Conducted Power [dBm                  | ]            |       |   |
|            | 1       | 0         | 24.56       | 24.62                                 | 24.70        |       | 0 |
|            | 1       | 50        | 24.29       | 24.44                                 | 24.35        | 0-1   | 0 |
|            | 1       | 99        | 24.46       | 24.35                                 | 24.44        |       | 0 |
| QPSK       | 50      | 0         | 23.31       | 23.20                                 | 23.40        |       | 1 |
|            | 50      | 25        | 23.46       | 23.44                                 | 23.45        |       | 1 |
|            | 50      | 50        | 23.43       | 23.54                                 | 23.65        |       | 1 |
|            | 100     | 0         | 23.49       | 23.63                                 | 23.36        |       | 1 |
|            | 1       | 0         | 23.60       | 23.58                                 | 23.46        |       | 1 |
|            | 1       | 50        | 23.49       | 23.54                                 | 23.57        | 0-1   | 1 |
|            | 1       | 99        | 23.54       | 23.48                                 | 23.64        |       | 1 |
| 16QAM      | 50      | 0         | 22.55       | 22.70                                 | 22.70        |       | 2 |
|            | 50      | 25        | 22.57       | 22.50                                 | 22.52        | 0-2   | 2 |
|            | 50      | 50        | 22.58       | 22.54                                 | 22.51        | ] "-2 | 2 |
|            | 100     | 0         | 22.57       | 22.50                                 | 22.49        |       | 2 |

**Table 9-10** LTE Band 66 (AWS) Conducted Powers - 15 MHz Bandwidth

|            |         |           |                        | LTE Band 66 (AWS)<br>15 MHz Bandwidth |                        |                              |          |
|------------|---------|-----------|------------------------|---------------------------------------|------------------------|------------------------------|----------|
|            |         |           | Low Channel            | Mid Channel                           | High Channel           |                              |          |
| Modulation | RB Size | RB Offset | 132047<br>(1717.5 MHz) | 132322<br>(1745.0 MHz)                | 132597<br>(1772.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           | (                      | Conducted Power [dBm                  | 1                      |                              |          |
|            | 1       | 0         | 24.40                  | 24.48                                 | 24.52                  |                              | 0        |
|            | 1       | 36        | 24.49                  | 24.52                                 | 24.61                  | 0-1                          | 0        |
|            | 1       | 74        | 24.30                  | 24.61                                 | 24.35                  |                              | 0        |
| QPSK       | 36      | 0         | 23.45                  | 23.59                                 | 23.48                  |                              | 1        |
|            | 36      | 18        | 23.46                  | 23.51                                 | 23.58                  |                              | 1        |
|            | 36      | 37        | 23.48                  | 23.24                                 | 23.45                  |                              | 1        |
|            | 75      | 0         | 23.58                  | 23.57                                 | 23.50                  | ]                            | 1        |
|            | 1       | 0         | 23.53                  | 23.50                                 | 23.56                  |                              | 1        |
|            | 1       | 36        | 23.66                  | 23.62                                 | 23.55                  | 0-1                          | 1        |
|            | 1       | 74        | 23.61                  | 23.35                                 | 23.52                  | ]                            | 1        |
| 16QAM      | 36      | 0         | 22.59                  | 22.49                                 | 22.60                  |                              | 2        |
|            | 36      | 18        | 22.50                  | 22.60                                 | 22.49                  | 0-2                          | 2        |
|            | 36      | 37        | 22.34                  | 22.53                                 | 22.49                  |                              | 2        |
|            | 75      | 0         | 22.51                  | 22.61                                 | 22.60                  | ] [                          | 2        |

| FCC ID: ZNFX210MA      | PCTEST:             | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 29 of 73                 |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | Fage 29 01 73                 |

© 2017 PCTEST Engineering Laboratory, Inc.

**Table 9-11** LTE Band 66 (AWS) Conducted Powers - 10 MHz Bandwidth

|            |         |           |                        | LTE Band 66 (AWS)<br>10 MHz Bandwidth |                        |                              |          |
|------------|---------|-----------|------------------------|---------------------------------------|------------------------|------------------------------|----------|
|            |         |           | Low Channel            | Mid Channel                           | High Channel           |                              |          |
| Modulation | RB Size | RB Offset | 132022<br>(1715.0 MHz) | 132322<br>(1745.0 MHz)                | 132622<br>(1775.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           | (                      | Conducted Power [dBm                  | ]                      |                              |          |
|            | 1       | 0         | 24.50                  | 24.51                                 | 24.58                  |                              | 0        |
|            | 1       | 25        | 24.57                  | 24.60                                 | 24.47                  | 0-1                          | 0        |
|            | 1       | 49        | 24.70                  | 24.55                                 | 24.57                  |                              | 0        |
| QPSK       | 25      | 0         | 23.57                  | 23.44                                 | 23.57                  |                              | 1        |
|            | 25      | 12        | 23.60                  | 23.53                                 | 23.50                  |                              | 1        |
|            | 25      | 25        | 23.57                  | 23.50                                 | 23.56                  |                              | 1        |
|            | 50      | 0         | 23.60                  | 23.57                                 | 23.52                  |                              | 1        |
|            | 1       | 0         | 23.55                  | 23.39                                 | 23.56                  |                              | 1        |
|            | 1       | 25        | 23.37                  | 23.44                                 | 23.54                  | 0-1                          | 1        |
|            | 1       | 49        | 23.34                  | 23.45                                 | 23.48                  |                              | 1        |
| 16QAM      | 25      | 0         | 22.62                  | 22.33                                 | 22.56                  |                              | 2        |
|            | 25      | 12        | 22.69                  | 22.62                                 | 22.67                  | 0-2                          | 2        |
|            | 25      | 25        | 22.65                  | 22.57                                 | 22.65                  | 0-2                          | 2        |
|            | 50      | 0         | 22.56                  | 22.60                                 | 22.65                  |                              | 2        |

**Table 9-12** LTE Band 66 (AWS) Conducted Powers - 5 MHz Bandwidth

| LTE Build Of (ATTO) Office of ATTO OF MILE Build Wilder |                 |           |              |                      |              |                 |           |  |  |
|---------------------------------------------------------|-----------------|-----------|--------------|----------------------|--------------|-----------------|-----------|--|--|
|                                                         |                 |           |              | LTE Band 66 (AWS)    |              |                 |           |  |  |
|                                                         | 5 MHz Bandwidth |           |              |                      |              |                 |           |  |  |
|                                                         |                 |           | Low Channel  | Mid Channel          | High Channel |                 |           |  |  |
| Modulation                                              | RB Size         | RB Offset | 131997       | 132322               | 132647       | MPR Allowed per | MPR [dB]  |  |  |
| Wiodulation                                             | ND 3126         | KB Oliset | (1712.5 MHz) | (1745.0 MHz)         | (1777.5 MHz) | 3GPP [dB]       | WIFK [UD] |  |  |
|                                                         |                 |           | (            | Conducted Power [dBm | n]           |                 |           |  |  |
|                                                         | 1               | 0         | 24.32        | 24.37                | 24.35        | 0               | 0         |  |  |
|                                                         | 1               | 12        | 24.40        | 24.50                | 24.39        |                 | 0         |  |  |
|                                                         | 1               | 24        | 24.40        | 24.63                | 24.48        |                 | 0         |  |  |
| QPSK                                                    | 12              | 0         | 23.60        | 23.50                | 23.50        | 0-1             | 1         |  |  |
|                                                         | 12              | 6         | 23.62        | 23.70                | 23.51        |                 | 1         |  |  |
|                                                         | 12              | 13        | 23.62        | 23.41                | 23.45        |                 | 1         |  |  |
|                                                         | 25              | 0         | 23.60        | 23.63                | 23.64        |                 | 1         |  |  |
|                                                         | 1               | 0         | 23.59        | 23.41                | 23.58        |                 | 1         |  |  |
|                                                         | 1               | 12        | 23.53        | 23.63                | 23.60        | 0-1             | 1         |  |  |
|                                                         | 1               | 24        | 23.38        | 23.62                | 23.41        |                 | 1         |  |  |
| 16QAM                                                   | 12              | 0         | 22.70        | 22.58                | 22.65        |                 | 2         |  |  |
|                                                         | 12              | 6         | 22.61        | 22.42                | 22.69        | 0-2             | 2         |  |  |
|                                                         | 12              | 13        | 22.47        | 22.68                | 22.68        |                 | 2         |  |  |
| 1                                                       | 25              | 0         | 22.67        | 22.70                | 22.36        |                 | 2         |  |  |

| FCC ID: ZNFX210MA                     | PCTEST:             | SAR EVALUATION REPORT | (LG | Approved by:  Quality Manager |
|---------------------------------------|---------------------|-----------------------|-----|-------------------------------|
| Document S/N:                         | Test Dates:         | Dags 20 of 72         |     |                               |
| 1M1710020259-01-R1.ZNF                | 10/02/17 - 10/12/17 | Portable Handset      |     | Page 30 of 73                 |
| 17 PCTEST Engineering Laboratory Inc. |                     |                       |     | REV 18 4 M                    |

**Table 9-13** LTE Band 66 (AWS) Conducted Powers - 3 MHz Bandwidth

|            | LTE Band 66 (AWS)  LTE Band 66 (AWS)  3 MHz Bandwidth |           |                        |                        |                        |                              |          |  |  |
|------------|-------------------------------------------------------|-----------|------------------------|------------------------|------------------------|------------------------------|----------|--|--|
|            |                                                       |           | Low Channel            | Mid Channel            | High Channel           |                              |          |  |  |
| Modulation | RB Size                                               | RB Offset | 131987<br>(1711.5 MHz) | 132322<br>(1745.0 MHz) | 132657<br>(1778.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |  |  |
|            |                                                       |           | (                      | Conducted Power [dBm   | n]                     |                              |          |  |  |
|            | 1                                                     | 0         | 24.43                  | 24.53                  | 24.39                  | 0                            | 0        |  |  |
|            | 1                                                     | 7         | 24.67                  | 24.41                  | 24.65                  |                              | 0        |  |  |
|            | 1                                                     | 14        | 24.41                  | 24.62                  | 24.50                  |                              | 0        |  |  |
| QPSK       | 8                                                     | 0         | 23.57                  | 23.68                  | 23.45                  |                              | 1        |  |  |
|            | 8                                                     | 4         | 23.49                  | 23.48                  | 23.52                  | 0-1                          | 1        |  |  |
|            | 8                                                     | 7         | 23.63                  | 23.54                  | 23.56                  |                              | 1        |  |  |
|            | 15                                                    | 0         | 23.70                  | 23.61                  | 23.64                  | 1                            | 1        |  |  |
|            | 1                                                     | 0         | 23.68                  | 23.60                  | 23.63                  |                              | 1        |  |  |
|            | 1                                                     | 7         | 23.61                  | 23.50                  | 23.57                  | 0-1                          | 1        |  |  |
|            | 1                                                     | 14        | 23.66                  | 23.65                  | 23.59                  | 1                            | 1        |  |  |
| 16QAM      | 8                                                     | 0         | 22.46                  | 22.49                  | 22.62                  |                              | 2        |  |  |
|            | 8                                                     | 4         | 22.61                  | 22.58                  | 22.58                  | ] ,,                         | 2        |  |  |
|            | 8                                                     | 7         | 22.44                  | 22.50                  | 22.50                  | 0-2                          | 2        |  |  |
|            | 15                                                    | 0         | 22.56                  | 22.54                  | 22.64                  |                              | 2        |  |  |

**Table 9-14** LTE Band 66 (AWS) Conducted Powers -1.4 MHz Bandwidth

| ETE Band 00 (AVVO) Conducted Towers 114 MITE Bandwidth |                   |           |              |                      |              |                              |           |  |  |  |
|--------------------------------------------------------|-------------------|-----------|--------------|----------------------|--------------|------------------------------|-----------|--|--|--|
|                                                        |                   |           |              | LTE Band 66 (AWS)    |              |                              |           |  |  |  |
|                                                        | 1.4 MHz Bandwidth |           |              |                      |              |                              |           |  |  |  |
|                                                        |                   |           | Low Channel  | Low-Mid Channel      | Mid-High     |                              |           |  |  |  |
| Modulation                                             | RB Size           | RB Offset | 131979       | 132322               | 132665       | MPR Allowed per<br>3GPP [dB] | MPR [dB]  |  |  |  |
| Wiodulation                                            | ND SIZE           | KD Ollset | (1710.7 MHz) | (1745.0 MHz)         | (1779.3 MHz) |                              | WIFK [UD] |  |  |  |
|                                                        |                   |           | (            | Conducted Power [dBm | ]            |                              |           |  |  |  |
|                                                        | 1                 | 0         | 24.56        | 24.51                | 24.49        |                              | 0         |  |  |  |
|                                                        | 1                 | 2         | 24.45        | 24.57                | 24.70        | 0                            | 0         |  |  |  |
|                                                        | 1                 | 5         | 24.52        | 24.58                | 24.45        |                              | 0         |  |  |  |
| QPSK                                                   | 3                 | 0         | 24.69        | 24.58                | 24.54        |                              | 0         |  |  |  |
|                                                        | 3                 | 2         | 24.52        | 24.66                | 24.55        |                              | 0         |  |  |  |
|                                                        | 3                 | 3         | 24.49        | 24.60                | 24.42        |                              | 0         |  |  |  |
|                                                        | 6                 | 0         | 23.70        | 23.60                | 23.69        | 0-1                          | 1         |  |  |  |
|                                                        | 1                 | 0         | 23.66        | 23.41                | 23.44        |                              | 1         |  |  |  |
|                                                        | 1                 | 2         | 23.51        | 23.60                | 23.20        |                              | 1         |  |  |  |
|                                                        | 1                 | 5         | 23.32        | 23.32                | 23.32        | 0-1                          | 1         |  |  |  |
| 16QAM                                                  | 3                 | 0         | 23.50        | 23.70                | 23.59        | ] 0-1                        | 1         |  |  |  |
|                                                        | 3                 | 2         | 23.48        | 23.57                | 23.50        | ]                            | 1         |  |  |  |
|                                                        | 3                 | 3         | 23.66        | 23.65                | 23.67        |                              | 1         |  |  |  |
|                                                        | 6                 | 0         | 22.57        | 22.61                | 22.68        | 0-2                          | 2         |  |  |  |

| FCC ID: ZNFX210MA                     | ENPERENT MADE AND | SAR EVALUATION REPORT | <b>(</b> LG | Approved by: Quality Manager |  |
|---------------------------------------|-------------------------------------------------------|-----------------------|-------------|------------------------------|--|
| Document S/N:                         | Test Dates:                                           | Dogo 24 of 72         |             |                              |  |
| 1M1710020259-01-R1.ZNF                | 10/02/17 - 10/12/17                                   | Portable Handset      |             | Page 31 of 73                |  |
| 17 DCTEST Engineering Laboratory Inc. |                                                       |                       |             | DE\/ 10 / M                  |  |

#### LTE Band 2 (PCS) 9.3.4

**Table 9-15** LTE Band 2 (PCS) Conducted Powers -20 MHz Bandwidth

|            |                  |           | and 2 (1 00) 00       | mauciea Power         | 3 - 20 WITTE Daily    | awiatii                      |          |  |  |
|------------|------------------|-----------|-----------------------|-----------------------|-----------------------|------------------------------|----------|--|--|
|            |                  |           |                       | LTE Band 2 (PCS)      |                       |                              |          |  |  |
|            | 20 MHz Bandwidth |           |                       |                       |                       |                              |          |  |  |
|            |                  |           | Low Channel           | Mid Channel           | High Channel          |                              |          |  |  |
| Modulation | RB Size          | RB Offset | 18700<br>(1860.0 MHz) | 18900<br>(1880.0 MHz) | 19100<br>(1900.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |  |  |
|            |                  |           | (                     | Conducted Power [dBm  | n]                    |                              |          |  |  |
|            | 1                | 0         | 24.42                 | 24.51                 | 24.24                 | 0                            | 0        |  |  |
|            | 1                | 50        | 24.61                 | 24.42                 | 24.60                 |                              | 0        |  |  |
|            | 1                | 99        | 24.61                 | 24.28                 | 24.47                 |                              | 0        |  |  |
| QPSK       | 50               | 0         | 23.42                 | 23.51                 | 23.50                 | 0-1                          | 1        |  |  |
|            | 50               | 25        | 23.64                 | 23.52                 | 23.42                 |                              | 1        |  |  |
|            | 50               | 50        | 23.34                 | 23.57                 | 23.41                 |                              | 1        |  |  |
|            | 100              | 0         | 23.54                 | 23.42                 | 23.52                 |                              | 1        |  |  |
|            | 1                | 0         | 23.20                 | 23.52                 | 23.51                 |                              | 1        |  |  |
|            | 1                | 50        | 23.28                 | 23.65                 | 23.43                 | 0-1                          | 1        |  |  |
|            | 1                | 99        | 23.32                 | 23.59                 | 23.58                 |                              | 1        |  |  |
| 16QAM      | 50               | 0         | 22.67                 | 22.49                 | 22.59                 |                              | 2        |  |  |
|            | 50               | 25        | 22.60                 | 22.34                 | 22.44                 | 0-2                          | 2        |  |  |
|            | 50               | 50        | 22.55                 | 22.44                 | 22.58                 |                              | 2        |  |  |
|            | 100              | 0         | 22.52                 | 22.53                 | 22.50                 |                              | 2        |  |  |

**Table 9-16** LTE Band 2 (PCS) Conducted Powers -15 MHz Bandwidth

|            | LTE Band 2 (PCS) 15 MHz Bandwidth |           |                       |                       |                       |                              |          |  |  |
|------------|-----------------------------------|-----------|-----------------------|-----------------------|-----------------------|------------------------------|----------|--|--|
|            |                                   |           | Low Channel           | Mid Channel           |                       |                              |          |  |  |
| Modulation | RB Size                           | RB Offset | 18675<br>(1857.5 MHz) | 18900<br>(1880.0 MHz) | 19125<br>(1902.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |  |  |
|            |                                   |           | (                     | Conducted Power [dBm  | ]                     |                              |          |  |  |
|            | 1                                 | 0         | 24.26                 | 24.28                 | 24.34                 | 0                            | 0        |  |  |
|            | 1                                 | 36        | 24.48                 | 24.59                 | 24.41                 |                              | 0        |  |  |
|            | 1                                 | 74        | 24.21                 | 24.51                 | 24.52                 |                              | 0        |  |  |
| QPSK       | 36                                | 0         | 23.58                 | 23.54                 | 23.30                 | 0-1                          | 1        |  |  |
|            | 36                                | 18        | 23.60                 | 23.50                 | 23.57                 |                              | 1        |  |  |
|            | 36                                | 37        | 23.60                 | 23.37                 | 23.53                 |                              | 1        |  |  |
|            | 75                                | 0         | 23.45                 | 23.53                 | 23.60                 |                              | 1        |  |  |
|            | 1                                 | 0         | 23.30                 | 23.55                 | 23.50                 |                              | 1        |  |  |
|            | 1                                 | 36        | 23.57                 | 23.50                 | 23.57                 | 0-1                          | 1        |  |  |
|            | 1                                 | 74        | 23.61                 | 23.50                 | 23.56                 |                              | 1        |  |  |
| 16QAM      | 36                                | 0         | 22.63                 | 22.44                 | 22.57                 |                              | 2        |  |  |
|            | 36                                | 18        | 22.63                 | 22.64                 | 22.51                 | 0-2                          | 2        |  |  |
|            | 36                                | 37        | 22.55                 | 22.51                 | 22.47                 |                              | 2        |  |  |
|            | 75                                | 0         | 22.45                 | 22.47                 | 22.57                 |                              | 2        |  |  |

| FCC ID: ZNFX210MA      | PCTEST:             | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Page 32 of 73                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset         | Fage 32 01 73                |

© 2017 PCTEST Engineering Laboratory, Inc.

**Table 9-17** LTE Band 2 (PCS) Conducted Powers -10 MHz Bandwidth

|            |         | LILB      | and 2 (PGS) GC        | nauctea Power                     | 5 - 10 WITZ Dall      | awiatii                      |          |  |  |
|------------|---------|-----------|-----------------------|-----------------------------------|-----------------------|------------------------------|----------|--|--|
|            |         |           |                       | LTE Band 2 (PCS) 10 MHz Bandwidth |                       |                              |          |  |  |
|            |         |           |                       |                                   |                       |                              |          |  |  |
|            |         |           | Low Channel           |                                   | High Channel          | 4                            |          |  |  |
| Modulation | RB Size | RB Offset | 18650<br>(1855.0 MHz) | 18900<br>(1880.0 MHz)             | 19150<br>(1905.0 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |  |  |
|            |         |           | (                     | Conducted Power [dBm              | ]                     | 1                            |          |  |  |
|            | 1       | 0         | 24.56                 | 24.29                             | 24.28                 | 0                            | 0        |  |  |
|            | 1       | 25        | 24.47                 | 24.27                             | 24.49                 |                              | 0        |  |  |
|            | 1       | 49        | 24.34                 | 24.41                             | 24.64                 | ] [                          | 0        |  |  |
| QPSK       | 25      | 0         | 23.69                 | 23.51                             | 23.58                 |                              | 1        |  |  |
|            | 25      | 12        | 23.43                 | 23.64                             | 23.35                 | 0-1                          | 1        |  |  |
| [          | 25      | 25        | 23.61                 | 23.44                             | 23.26                 |                              | 1        |  |  |
|            | 50      | 0         | 23.55                 | 23.49                             | 23.60                 |                              | 1        |  |  |
|            | 1       | 0         | 23.66                 | 23.65                             | 23.45                 |                              | 1        |  |  |
| [          | 1       | 25        | 23.60                 | 23.40                             | 23.30                 | 0-1                          | 1        |  |  |
|            | 1       | 49        | 23.46                 | 23.56                             | 23.33                 |                              | 1        |  |  |
| 16QAM      | 25      | 0         | 22.57                 | 22.66                             | 22.60                 |                              | 2        |  |  |
|            | 25      | 12        | 22.64                 | 22.61                             | 22.68                 | ] ,,                         | 2        |  |  |
|            | 25      | 25        | 22.50                 | 22.46                             | 22.55                 | 0-2                          | 2        |  |  |
| •          | 50      | 0         | 22.53                 | 22.43                             | 22.64                 | ] [                          | 2        |  |  |

**Table 9-18** LTE Band 2 (PCS) Conducted Powers -5 MHz Bandwidth

|                 |         |           | - (1 00) 0            | LTE Band 2 (PCS)      |                       |                              |          |  |
|-----------------|---------|-----------|-----------------------|-----------------------|-----------------------|------------------------------|----------|--|
| 5 MHz Bandwidth |         |           |                       |                       |                       |                              |          |  |
|                 |         |           | Low Channel           | Mid Channel           | High Channel          |                              |          |  |
| Modulation      | RB Size | RB Offset | 18625<br>(1852.5 MHz) | 18900<br>(1880.0 MHz) | 19175<br>(1907.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |  |
|                 |         |           | (                     | Conducted Power [dBm  | ]                     |                              |          |  |
|                 | 1       | 0         | 24.30                 | 24.37                 | 24.38                 | 0                            | 0        |  |
|                 | 1       | 12        | 24.35                 | 24.20                 | 24.50                 |                              | 0        |  |
|                 | 1       | 24        | 24.20                 | 24.33                 | 24.54                 |                              | 0        |  |
| QPSK            | 12      | 0         | 23.31                 | 23.64                 | 23.58                 | 0-1                          | 1        |  |
|                 | 12      | 6         | 23.50                 | 23.50                 | 23.52                 |                              | 1        |  |
|                 | 12      | 13        | 23.38                 | 23.57                 | 23.49                 |                              | 1        |  |
|                 | 25      | 0         | 23.37                 | 23.52                 | 23.60                 |                              | 1        |  |
|                 | 1       | 0         | 23.11                 | 23.45                 | 23.40                 |                              | 1        |  |
|                 | 1       | 12        | 23.30                 | 23.32                 | 23.29                 | 0-1                          | 1        |  |
|                 | 1       | 24        | 23.40                 | 23.40                 | 23.35                 |                              | 1        |  |
| 16QAM           | 12      | 0         | 22.55                 | 22.67                 | 22.63                 |                              | 2        |  |
|                 | 12      | 6         | 22.42                 | 22.53                 | 22.54                 | 0-2                          | 2        |  |
|                 | 12      | 13        | 22.45                 | 22.46                 | 22.42                 |                              | 2        |  |
|                 | 25      | 0         | 22.44                 | 22.54                 | 22.70                 | ]                            | 2        |  |

| F   | FCC ID: ZNFX210MA                  | PCTEST.             | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |  |  |
|-----|------------------------------------|---------------------|--------------------------|-------------------------------|--|--|
| C   | Oocument S/N:                      | Test Dates:         | st Dates: DUT Type:      |                               |  |  |
| 1   | M1710020259-01-R1.ZNF              | 10/02/17 - 10/12/17 | Portable Handset         | Page 33 of 73                 |  |  |
| 117 | DCTEST Engineering Laboratory Inc. |                     |                          | DE\/ 10 / M                   |  |  |

**Table 9-19** LTE Band 2 (PCS) Conducted Powers -3 MHz Bandwidth

|            | LIE Balld 2 (PCS) Collucted Fowers -3 Min2 Balldwidth |           |                       |                       |                       |                              |          |  |  |  |
|------------|-------------------------------------------------------|-----------|-----------------------|-----------------------|-----------------------|------------------------------|----------|--|--|--|
|            |                                                       |           |                       | LTE Band 2 (PCS)      |                       |                              |          |  |  |  |
|            |                                                       |           |                       | 3 MHz Bandwidth       |                       |                              |          |  |  |  |
|            |                                                       |           | Low Channel           | Mid Channel           | High Channel          |                              |          |  |  |  |
| Modulation | RB Size                                               | RB Offset | 18615<br>(1851.5 MHz) | 18900<br>(1880.0 MHz) | 19185<br>(1908.5 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |  |  |  |
|            |                                                       |           | (                     | Conducted Power [dBm  | ]                     |                              |          |  |  |  |
|            | 1                                                     | 0         | 24.37                 | 24.42                 | 24.32                 | 0                            | 0        |  |  |  |
|            | 1                                                     | 7         | 24.36                 | 24.44                 | 24.28                 |                              | 0        |  |  |  |
|            | 1                                                     | 14        | 24.34                 | 24.51                 | 24.48                 |                              | 0        |  |  |  |
| QPSK       | 8                                                     | 0         | 23.47                 | 23.37                 | 23.41                 |                              | 1        |  |  |  |
|            | 8                                                     | 4         | 23.44                 | 23.35                 | 23.43                 | 0-1                          | 1        |  |  |  |
|            | 8                                                     | 7         | 23.46                 | 23.32                 | 23.38                 |                              | 1        |  |  |  |
|            | 15                                                    | 0         | 23.50                 | 23.48                 | 23.48                 |                              | 1        |  |  |  |
|            | 1                                                     | 0         | 23.60                 | 23.60                 | 23.69                 |                              | 1        |  |  |  |
|            | 1                                                     | 7         | 23.70                 | 23.62                 | 23.61                 | 0-1                          | 1        |  |  |  |
|            | 1                                                     | 14        | 23.62                 | 23.65                 | 23.42                 | ] [                          | 1        |  |  |  |
| 16QAM      | 8                                                     | 0         | 22.41                 | 22.62                 | 22.66                 |                              | 2        |  |  |  |
|            | 8                                                     | 4         | 22.42                 | 22.67                 | 22.54                 | 1 ,,                         | 2        |  |  |  |
|            | 8                                                     | 7         | 22.50                 | 22.55                 | 22.70                 | 0-2                          | 2        |  |  |  |
|            | 15                                                    | 0         | 22.52                 | 22.48                 | 22.61                 | 1                            | 2        |  |  |  |

**Table 9-20** LTE Band 2 (PCS) Conducted Powers -1.4 MHz Bandwidth

|            |         |           |                       | LTE Band 2 (PCS) 1.4 MHz Bandwidth |                       |                              |          |
|------------|---------|-----------|-----------------------|------------------------------------|-----------------------|------------------------------|----------|
|            |         |           | Low Channel           | Mid Channel                        | High Channel          |                              |          |
| Modulation | RB Size | RB Offset | 18607<br>(1850.7 MHz) | 18900<br>(1880.0 MHz)              | 19193<br>(1909.3 MHz) | MPR Allowed per<br>3GPP [dB] | MPR [dB] |
|            |         |           |                       |                                    |                       |                              |          |
|            | 1       | 0         | 24.44                 | 24.37                              | 24.37                 |                              | 0        |
|            | 1       | 2         | 24.63                 | 24.34                              | 24.39                 | 0                            | 0        |
|            | 1       | 5         | 24.52                 | 24.24                              | 24.54                 |                              | 0        |
| QPSK       | 3       | 0         | 24.36                 | 24.42                              | 24.48                 |                              | 0        |
|            | 3       | 2         | 24.61                 | 24.31                              | 24.45                 |                              | 0        |
|            | 3       | 3         | 24.45                 | 24.44                              | 24.65                 |                              | 0        |
|            | 6       | 0         | 23.44                 | 23.55                              | 23.53                 | 0-1                          | 1        |
| 16QAM      | 1       | 0         | 23.40                 | 23.58                              | 23.25                 | 0-1                          | 1        |
|            | 1       | 2         | 23.39                 | 23.66                              | 23.39                 |                              | 1        |
|            | 1       | 5         | 23.44                 | 23.51                              | 23.58                 |                              | 1        |
|            | 3       | 0         | 23.49                 | 23.68                              | 23.56                 |                              | 1        |
|            | 3       | 2         | 23.39                 | 23.50                              | 23.45                 |                              | 1        |
|            | 3       | 3         | 23.27                 | 23.47                              | 23.65                 |                              | 1        |
|            | 6       | 0         | 22.45                 | 22.65                              | 22.62                 | 0-2                          | 2        |



Figure 9-3 **Power Measurement Setup** 

| FCC ID: ZNFX210MA      | PCTEST              | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Page 34 of 73                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset         | Fage 34 01 73                |

#### **WLAN Conducted Powers** 9.4

#### 9.4.1 **WLAN Maximum Conducted Powers**

**Table 9-21** 2.4 GHz WLAN Maximum Average RF Power

| 2.4GHz Conducted Power [dBm] |         |                        |         |         |  |  |
|------------------------------|---------|------------------------|---------|---------|--|--|
| Eroa [MUz]                   | Channel | IEEE Transmission Mode |         |         |  |  |
| Freq [MHz]                   |         | 802.11b                | 802.11g | 802.11n |  |  |
| 2412                         | 1       | 19.00                  | 16.70   | 15.84   |  |  |
| 2437                         | 6       | 19.15                  | 16.87   | 15.65   |  |  |
| 2462                         | 11      | 19.07                  | 15.00   | 13.78   |  |  |

**Table 9-22** 5 GHz WLAN Maximum Average RF Power

| 5GHz (20MHz) Conducted Power [dBm] |         |                                 |  |  |  |
|------------------------------------|---------|---------------------------------|--|--|--|
| Freq [MHz]                         | Channel | Transmission<br>Mode<br>802.11a |  |  |  |
|                                    |         | Average                         |  |  |  |
| 5180                               | 36      | 14.23                           |  |  |  |
| 5200                               | 40      | 17.88                           |  |  |  |
| 5220                               | 44      | 17.50                           |  |  |  |
| 5240                               | 48      | 17.53                           |  |  |  |
| 5260                               | 52      | 17.73                           |  |  |  |
| 5280                               | 56      | 17.50                           |  |  |  |
| 5300                               | 60      | 17.31                           |  |  |  |
| 5320                               | 64      | 14.40                           |  |  |  |
| 5500                               | 100     | 14.99                           |  |  |  |
| 5580                               | 116     | 17.68                           |  |  |  |
| 5660                               | 132     | 17.35                           |  |  |  |
| 5700                               | 140     | 17.50                           |  |  |  |
| 5745                               | 149     | 17.35                           |  |  |  |
| 5785                               | 157     | 17.62                           |  |  |  |
| 5825                               | 165     | 14.99                           |  |  |  |

| FCC ID: ZNFX210MA      | PCTEST*             | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|------------------------|---------------------|--------------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Dags 25 of 72                 |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset         | Page 35 of 73                 |

© 2017 PCTEST Engineering Laboratory, Inc.

#### 9.4.2 **WLAN Reduced Conducted Powers**

**Table 9-23** 2.4 GHz WLAN Reduced Average RF Power

| 2.4GHz Conducted Power [dBm] |         |                        |         |         |  |  |
|------------------------------|---------|------------------------|---------|---------|--|--|
| Freq [MHz]                   | Channel | IEEE Transmission Mode |         |         |  |  |
|                              |         | 802.11b                | 802.11g | 802.11n |  |  |
| 2412                         | 1       | 16.33                  | 14.95   | 14.94   |  |  |
| 2437                         | 6       | 15.73                  | 15.06   | 15.07   |  |  |
| 2462                         | 11      | 16.11                  | 13.14   | 13.06   |  |  |

**Table 9-24** 5 GHz WLAN Reduced Average RF Power

| 5GHz (20MHz) Conducted Power [dBm] |         |                        |         |  |  |
|------------------------------------|---------|------------------------|---------|--|--|
| Freq<br>[MHz]                      | Channel | IEEE Transmission Mode |         |  |  |
|                                    |         | 802.11a                | 802.11n |  |  |
| 5180                               | 36      | 9.56                   | 9.61    |  |  |
| 5200                               | 40      | 13.25                  | 13.15   |  |  |
| 5220                               | 44      | 12.60                  | 12.60   |  |  |
| 5240                               | 48      | 13.00                  | 13.38   |  |  |
| 5260                               | 52      | 13.13                  | 13.10   |  |  |
| 5280                               | 56      | 12.90                  | 12.95   |  |  |
| 5300                               | 60      | 12.72                  | 12.69   |  |  |
| 5320                               | 64      | 9.58                   | 9.64    |  |  |
| 5500                               | 100     | 9.85                   | 9.78    |  |  |
| 5580                               | 116     | 13.04                  | 12.97   |  |  |
| 5660                               | 132     | 12.75                  | 12.66   |  |  |
| 5700                               | 140     | 12.85                  | 12.80   |  |  |
| 5745                               | 149     | 12.55                  | 12.65   |  |  |
| 5785                               | 157     | 12.87                  | 12.80   |  |  |
| 5825                               | 165     | 9.81                   | 9.74    |  |  |

| FCC ID: ZNFX210MA      | PCTEST*             | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dags 26 of 72                 |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | Page 36 of 73                 |

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.
- The bolded data rate and channel above were tested for SAR.

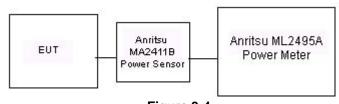



Figure 9-4 Power Measurement Setup

|   | FCC ID: ZNFX210MA                    | PCTEST SERVICE LABORATOT, INC. | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|---|--------------------------------------|--------------------------------|--------------------------|------------------------------|
|   | Document S/N:                        | Test Dates:                    | DUT Type:                | Daga 27 of 72                |
|   | 1M1710020259-01-R1.ZNF               | 10/02/17 - 10/12/17            | Portable Handset         | Page 37 of 73                |
| 1 | 7 DCTEST Engineering Laboratory Inc. |                                |                          | DE\/ 10 / M                  |

# 10.1 Tissue Verification

**Table 10-1 Measured Head Tissue Properties** 

| Calibrated for                           |                |                                        |                                | Maggired                             |                                       |                                    | TARCET                              |         |         |  |
|------------------------------------------|----------------|----------------------------------------|--------------------------------|--------------------------------------|---------------------------------------|------------------------------------|-------------------------------------|---------|---------|--|
| Calibrated for<br>Tests Performed<br>on: | Tissue<br>Type | Tissue Temp During<br>Calibration (°C) | Measured<br>Frequency<br>(MHz) | Measured<br>Conductivity,<br>σ (S/m) | Measured<br>Dielectric<br>Constant, ε | TARGET<br>Conductivity,<br>σ (S/m) | TARGET<br>Dielectric<br>Constant, ε | % dev σ | % dev ε |  |
|                                          |                |                                        | 700                            | 0.846                                | 41.909                                | 0.889                              | 42.201                              | -4.84%  | -0.69%  |  |
|                                          |                |                                        | 710                            | 0.855                                | 41.772                                | 0.890                              | 42.149                              | -3.93%  | -0.89%  |  |
| 10/9/2017                                | 750H           | 22.0                                   | 720                            | 0.864                                | 41.624                                | 0.891                              | 42.097                              | -3.03%  | -1.12%  |  |
|                                          |                |                                        | 740                            | 0.883                                | 41.345                                | 0.893                              | 41.994                              | -1.12%  | -1.55%  |  |
|                                          |                |                                        | 755                            | 0.896                                | 41.129                                | 0.894                              | 41.916                              | 0.22%   | -1.88%  |  |
|                                          |                |                                        | 820                            | 0.895                                | 41.928                                | 0.899                              | 41.578                              | -0.44%  | 0.84%   |  |
| 10/9/2017                                | 835H           | 21.0                                   | 835                            | 0.910                                | 41.742                                | 0.900                              | 41.500                              | 1.11%   | 0.58%   |  |
|                                          |                |                                        | 850                            | 0.925                                | 41.540                                | 0.916                              | 41.500                              | 0.98%   | 0.10%   |  |
|                                          |                |                                        | 1710                           | 1.344                                | 38.517                                | 1.348                              | 40.142                              | -0.30%  | -4.05%  |  |
| 10/3/2017                                | 1750H          | 20.7                                   | 1750                           | 1.384                                | 38.331                                | 1.371                              | 40.079                              | 0.95%   | -4.36%  |  |
|                                          |                |                                        | 1790                           | 1.425                                | 38.131                                | 1.394                              | 40.016                              | 2.22%   | -4.71%  |  |
|                                          |                |                                        | 1710                           | 1.356                                | 39.827                                | 1.348                              | 40.142                              | 0.59%   | -0.78%  |  |
| 10/9/2017                                | 1750H          | 21.3                                   | 1750                           | 1.397                                | 39.646                                | 1.371                              | 40.079                              | 1.90%   | -1.08%  |  |
|                                          |                |                                        | 1790                           | 1.438                                | 39.442                                | 1.394                              | 40.016                              | 3.16%   | -1.43%  |  |
|                                          | 1900H          |                                        | 1850                           | 1.402                                | 39.683                                | 1.400                              | 40.000                              | 0.14%   | -0.79%  |  |
| 10/4/2017                                |                | 21.1                                   | 1880                           | 1.433                                | 39.553                                | 1.400                              | 40.000                              | 2.36%   | -1.12%  |  |
|                                          |                |                                        | 1910                           | 1.467                                | 39.435                                | 1.400                              | 40.000                              | 4.79%   | -1.41%  |  |
|                                          |                |                                        | 2400                           | 1.829                                | 38.487                                | 1.756                              | 39.289                              | 4.16%   | -2.04%  |  |
| 10/4/2017                                | 2450H          | 21.4                                   | 2450                           | 1.884                                | 38.303                                | 1.800                              | 39.200                              | 4.67%   | -2.29%  |  |
|                                          |                |                                        | 2500                           | 1.941                                | 38.104                                | 1.855                              | 39.136                              | 4.64%   | -2.64%  |  |
|                                          |                |                                        | 5240                           | 4.509                                | 36.263                                | 4.696                              | 35.940                              | -3.98%  | 0.90%   |  |
|                                          |                |                                        | 5260                           | 4.520                                | 36.262                                | 4.717                              | 35.917                              | -4.18%  | 0.96%   |  |
|                                          |                |                                        | 5280                           | 4.534                                | 36.241                                | 4.737                              | 35.894                              | -4.29%  | 0.97%   |  |
|                                          |                |                                        | 5300                           | 4.560                                | 36.212                                | 4.758                              | 35.871                              | -4.16%  | 0.95%   |  |
|                                          |                |                                        | 5320                           | 4.575                                | 36.175                                | 4.778                              | 35.849                              | -4.25%  | 0.91%   |  |
|                                          |                |                                        | 5560                           | 4.820                                | 35.851                                | 5.024                              | 35.574                              | -4.06%  | 0.78%   |  |
| 10/03/2017                               | 5200H-         | 20.8                                   | 5580                           | 4.844                                | 35.793                                | 5.045                              | 35.551                              | -3.98%  | 0.68%   |  |
| 10/03/2017                               | 5800H          | 20.0                                   | 5600                           | 4.864                                | 35.775                                | 5.065                              | 35.529                              | -3.97%  | 0.69%   |  |
|                                          |                |                                        | 5680                           | 4.950                                | 35.702                                | 5.147                              | 35.437                              | -3.83%  | 0.75%   |  |
|                                          |                |                                        | 5700                           | 4.964                                | 35.656                                | 5.168                              | 35.414                              | -3.95%  | 0.68%   |  |
|                                          |                |                                        | 5745                           | 5.029                                | 35.591                                | 5.214                              | 35.363                              | -3.55%  | 0.64%   |  |
|                                          |                |                                        | 5765                           | 5.047                                | 35.586                                | 5.234                              | 35.340                              | -3.57%  | 0.70%   |  |
|                                          |                |                                        | 5785                           | 5.065                                | 35.580                                | 5.255                              | 35.317                              | -3.62%  | 0.74%   |  |
|                                          |                |                                        | 5800                           | 5.077                                | 35.545                                | 5.270                              | 35.300                              | -3.66%  | 0.69%   |  |

| FCC ID: ZNFX210MA      | PCTEST SERVICES AND APPLY, INC. | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:                     | DUT Type:                | Dogo 29 of 72                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17             | Portable Handset         | Page 38 of 73                |

© 2017 PCTEST Engineering Laboratory, Inc.

Table 10-2
Measured Body Tissue Properties

|                                          |                |                                        | modean                         | eu bouy 11s                          | oud i idpoi                           | 100                                |                                     |                |                  |
|------------------------------------------|----------------|----------------------------------------|--------------------------------|--------------------------------------|---------------------------------------|------------------------------------|-------------------------------------|----------------|------------------|
| Calibrated for<br>Tests Performed<br>on: | Tissue<br>Type | Tissue Temp During<br>Calibration (°C) | Measured<br>Frequency<br>(MHz) | Measured<br>Conductivity,<br>σ (S/m) | Measured<br>Dielectric<br>Constant, ε | TARGET<br>Conductivity,<br>σ (S/m) | TARGET<br>Dielectric<br>Constant, ε | % dev σ        | %devε            |
|                                          |                |                                        | 700                            | 0.929                                | 55.662                                | 0.959                              | 55.726                              | -3.13%         | -0.11%           |
|                                          |                |                                        | 710                            | 0.933                                | 55.637                                | 0.960                              | 55.687                              | -2.81%         | -0.09%           |
| 10/9/2017                                | 750B           | 20.9                                   | 720                            | 0.937                                | 55.602                                | 0.961                              | 55.648                              | -2.50%         | -0.08%           |
|                                          |                |                                        | 740                            | 0.945                                | 55.559                                | 0.963                              | 55.570                              | -1.87%         | -0.02%           |
|                                          |                |                                        | 755                            | 0.950                                | 55.516                                | 0.964                              | 55.512                              | -1.45%         | 0.01%            |
|                                          |                |                                        | 820                            | 0.970                                | 54.106                                | 0.969                              | 55.258                              | 0.10%          | -2.08%           |
| 10/2/2017                                | 835B           | 20.7                                   | 835                            | 0.986                                | 53.975                                | 0.970                              | 55.200                              | 1.65%          | -2.22%           |
| 10/2/2011                                | 000B           | 20.7                                   | 850                            | 1.001                                | 53.831                                | 0.988                              | 55.154                              | 1.32%          | -2.40%           |
|                                          |                |                                        | 1710                           | 1.477                                | 51.503                                | 1.463                              | 53.537                              | 0.96%          | -3.80%           |
| 10/4/2017                                | 1750B          | 21.0                                   | 1710                           | 1.521                                | 51.308                                | 1.488                              | 53.432                              | 2.22%          | -3.98%           |
| 10/4/2017                                | 17508          | 21.0                                   |                                |                                      |                                       |                                    |                                     |                |                  |
|                                          |                |                                        | 1790                           | 1.565                                | 51.125                                | 1.514                              | 53.326                              | 3.37%          | -4.13%           |
|                                          |                |                                        | 1710                           | 1.446                                | 52.531                                | 1.463                              | 53.537                              | -1.16%         | -1.88%           |
| 10/12/2017                               | 1750B          | 21.5                                   | 1750                           | 1.473                                | 52.454                                | 1.488                              | 53.432                              | -1.01%         | -1.83%           |
|                                          |                |                                        | 1790                           | 1.497                                | 52.370                                | 1.514                              | 53.326                              | -1.12%         | -1.79%           |
|                                          |                |                                        | 1850                           | 1.521                                | 51.662                                | 1.520                              | 53.300                              | 0.07%          | -3.07%           |
| 10/3/2017                                | 1900B          | 22.6                                   | 1880                           | 1.559                                | 51.563                                | 1.520                              | 53.300                              | 2.57%          | -3.26%           |
|                                          |                |                                        | 1910                           | 1.590                                | 51.431                                | 1.520                              | 53.300                              | 4.61%          | -3.51%           |
|                                          |                |                                        | 1850                           | 1.525                                | 52.146                                | 1.520                              | 53.300                              | 0.33%          | -2.17%           |
| 10/6/2017                                | 1900B          | 21.3                                   | 1880                           | 1.558                                | 52.066                                | 1.520                              | 53.300                              | 2.50%          | -2.32%           |
|                                          |                |                                        | 1910                           | 1.594                                | 51.975                                | 1.520                              | 53.300                              | 4.87%          | -2.49%           |
|                                          |                |                                        | 2400                           | 1.958                                | 52.142                                | 1.902                              | 52.767                              | 2.94%          | -1.18%           |
| 10/3/2017                                | 2450B          | 22.5                                   | 2450                           | 2.026                                | 51.979                                | 1.950                              | 52.700                              | 3.90%          | -1.37%           |
|                                          |                |                                        | 2500                           | 2.094                                | 51.773                                | 2.021                              | 52.636                              | 3.61%          | -1.64%           |
|                                          |                |                                        | 5180                           | 5.225                                | 47.595                                | 5.276                              | 49.041                              | -0.97%         | -2.95%           |
|                                          |                |                                        | 5200                           | 5.251                                | 47.549                                | 5.299                              | 49.014                              | -0.91%         | -2.99%           |
|                                          |                |                                        | 5220                           | 5.274                                | 47.501                                | 5.323                              | 48.987                              | -0.92%         | -3.03%           |
|                                          |                |                                        | 5240                           | 5.309                                | 47.447                                | 5.346                              | 48.960                              | -0.69%         | -3.09%           |
|                                          |                |                                        | 5260                           | 5.334                                | 47.423                                | 5.369                              | 48.933                              | -0.65%         | -3.09%           |
|                                          |                |                                        | 5280                           | 5.368                                | 47.352                                | 5.393                              | 48.906                              | -0.46%         | -3.18%           |
|                                          |                |                                        | 5300                           | 5.386                                | 47.327                                | 5.416                              | 48.879                              | -0.55%         | -3.18%           |
|                                          |                |                                        | 5560                           | 5.753                                | 46.846                                | 5.720                              | 48.526                              | 0.58%          | -3.46%           |
|                                          | 5200B-         |                                        | 5580                           | 5.783                                | 46.822                                | 5.743                              | 48.499                              | 0.70%          | -3.46%           |
| 10/03/2017                               | 5800B          | 21.6                                   | 5600                           | 5.812                                | 46.773                                | 5.766                              | 48.471                              | 0.80%          | -3.50%           |
|                                          |                |                                        | 5620                           | 5.854                                | 46.716                                | 5.790                              | 48.444                              | 1.11%          | -3.57%           |
|                                          |                |                                        | 5640                           | 5.882                                | 46.656                                | 5.813                              | 48.417                              | 1.19%          | -3.64%           |
|                                          |                |                                        | 5660                           | 5.893                                | 46.649                                | 5.837                              | 48.390                              | 0.96%          | -3.60%           |
|                                          |                |                                        | 5680                           | 5.929                                | 46.640                                | 5.860                              | 48.363                              | 1.18%          | -3.56%           |
|                                          |                |                                        | 5700                           | 5.953                                | 46.590                                | 5.883                              | 48.336                              | 1.19%          | -3.61%           |
|                                          |                |                                        | 5745                           | 6.018                                | 46.505                                | 5.936                              | 48.275                              | 1.38%          | -3.67%           |
|                                          |                |                                        | 5765<br>5705                   | 6.050                                | 46.437                                | 5.959                              | 48.248                              | 1.53%          | -3.75%           |
|                                          |                |                                        | 5785<br>5800                   | 6.073<br>6.104                       | 46.412<br>46.362                      | 5.982<br>6.000                     | 48.220<br>48.200                    | 1.52%<br>1.73% | -3.75%<br>-3.81% |
|                                          |                | ļ                                      | 2000                           | o. 1U4                               | 40.362                                | 0.000                              | 46.200                              | 1.73%          | -3.61%           |

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

| FCC ID: ZNFX210MA      | PCTEST SEGMENT OF THE PROPERTY | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DUT Type:                | Page 39 of 73                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Portable Handset         | Page 39 01 73                |

© 2017 PCTEST Engineering Laboratory, Inc.

09/05/2017

# 10.2 Test System Verification

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

> **Table 10-3 System Verification Results**

|                 | System verification Results  |                |            |                   |                     |                       |              |      |       |                                           |                                            |                                |  |  |
|-----------------|------------------------------|----------------|------------|-------------------|---------------------|-----------------------|--------------|------|-------|-------------------------------------------|--------------------------------------------|--------------------------------|--|--|
|                 |                              |                |            |                   |                     | ystem Ve              |              |      |       |                                           |                                            |                                |  |  |
|                 |                              |                |            |                   | TA                  | RGET & N              | IEASUREI     | D    |       |                                           |                                            |                                |  |  |
| SAR<br>System # | Tissue<br>Frequency<br>(MHz) | Tissue<br>Type | Date:      | Amb.<br>Temp (°C) | Liquid<br>Temp (°C) | Input<br>Power<br>(W) | Source<br>SN |      |       | 1 W Target<br>SAR <sub>1g</sub><br>(W/kg) | 1 W Normalized<br>SAR <sub>1g</sub> (W/kg) | Deviation <sub>1g</sub><br>(%) |  |  |
| G               | 750                          | HEAD           | 10/09/2017 | 21.5              | 22.0                | 0.200                 | 1161         | 3332 | 1.700 | 8.170                                     | 8.500                                      | 4.04%                          |  |  |
| I               | 835                          | HEAD           | 10/09/2017 | 21.5              | 21.2                | 0.200                 | 4d047        | 3213 | 1.870 | 9.130                                     | 9.350                                      | 2.41%                          |  |  |
| G               | 1750                         | HEAD           | 10/03/2017 | 21.9              | 20.6                | 0.100                 | 1148         | 3332 | 3.420 | 36.400                                    | 34.200                                     | -6.04%                         |  |  |
| Е               | 1750                         | HEAD           | 10/09/2017 | 23.1              | 21.3                | 0.100                 | 1148         | 3319 | 3.900 | 36.400                                    | 39.000                                     | 7.14%                          |  |  |
| 1               | 1900                         | HEAD           | 10/04/2017 | 22.8              | 21.1                | 0.100                 | 5d148        | 3213 | 4.240 | 40.200                                    | 42.400                                     | 5.47%                          |  |  |
| К               | 2450                         | HEAD           | 10/04/2017 | 23.1              | 21.4                | 0.100                 | 981          | 7406 | 5.400 | 52.800                                    | 54.000                                     | 2.27%                          |  |  |
| Н               | 5250                         | HEAD           | 10/03/2017 | 21.7              | 20.8                | 0.050                 | 1237         | 3914 | 3.830 | 80.700                                    | 76.600                                     | -5.08%                         |  |  |
| Н               | 5600                         | HEAD           | 10/03/2017 | 21.7              | 20.8                | 0.050                 | 1237         | 3914 | 3.970 | 82.500                                    | 79.400                                     | -3.76%                         |  |  |
| Н               | 5750                         | HEAD           | 10/03/2017 | 21.7              | 20.8                | 0.050                 | 1237         | 3914 | 3.760 | 80.200                                    | 75.200                                     | -6.23%                         |  |  |
| D               | 750                          | BODY           | 10/09/2017 | 21.2              | 20.7                | 0.200                 | 1054         | 3288 | 1.760 | 8.610                                     | 8.800                                      | 2.21%                          |  |  |
| Е               | 835                          | BODY           | 10/02/2017 | 21.0              | 20.8                | 0.200                 | 4d132        | 3319 | 2.080 | 9.800                                     | 10.400                                     | 6.12%                          |  |  |
| G               | 1750                         | BODY           | 10/04/2017 | 22.6              | 20.9                | 0.100                 | 1148         | 3332 | 3.530 | 37.000                                    | 35.300                                     | -4.59%                         |  |  |
| D               | 1750                         | BODY           | 10/12/2017 | 21.8              | 21.5                | 0.100                 | 1150         | 3288 | 3.680 | 36.500                                    | 36.800                                     | 0.82%                          |  |  |
| J               | 1900                         | BODY           | 10/03/2017 | 21.0              | 21.7                | 0.100                 | 5d148        | 3209 | 4.010 | 40.900                                    | 40.100                                     | -1.96%                         |  |  |
| J               | 1900                         | BODY           | 10/06/2017 | 20.4              | 21.3                | 0.100                 | 5d148        | 3209 | 4.000 | 40.900                                    | 40.000                                     | -2.20%                         |  |  |
| Е               | 2450                         | BODY           | 10/03/2017 | 23.5              | 22.5                | 0.100                 | 981          | 3319 | 4.920 | 50.800                                    | 49.200                                     | -3.15%                         |  |  |
| D               | 5250                         | BODY           | 10/03/2017 | 22.5              | 21.4                | 0.050                 | 1057         | 3589 | 3.650 | 74.600                                    | 73.000                                     | -2.14%                         |  |  |
| D               | 5600                         | BODY           | 10/03/2017 | 22.5              | 21.4                | 0.050                 | 1057         | 3589 | 4.020 | 78.900                                    | 80.400                                     | 1.90%                          |  |  |
| D               | 5750                         | BODY           | 10/03/2017 | 22.5              | 21.4                | 0.050                 | 1057         | 3589 | 3.500 | 75.500                                    | 70.000                                     | -7.28%                         |  |  |

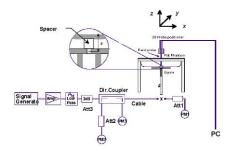



Figure 10-1 **System Verification Setup Diagram** 



Figure 10-2 **System Verification Setup Photo** 

| FCC ID: ZNFX210MA      | ENPETEST SAINLESS LADORATOR, INC. | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|-----------------------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:                       | DUT Type:             | Dogo 40 of 72                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17               | Portable Handset      | Page 40 of 73                |

© 2017 PCTEST Engineering Laboratory, Inc.

09/05/2017

#### 11 SAR DATA SUMMARY

#### 11.1 **Standalone Head SAR Data**

# **Table 11-1 GSM 850 Head SAR**

|        |                                                                                                   |           |         |                     |             | MEAS       | UREMENT RESULTS                                 |          |                  |           |            |          |                |                      |        |
|--------|---------------------------------------------------------------------------------------------------|-----------|---------|---------------------|-------------|------------|-------------------------------------------------|----------|------------------|-----------|------------|----------|----------------|----------------------|--------|
| FREQUI | ENCY                                                                                              | Mode/Band | Service | Maxim um<br>Allowed | Conducted   | Power      | Side                                            | Test     | Device<br>Serial | # of Time | Duty Cycle | SAR (1g) | Scaling Factor | Reported SAR<br>(1g) | Plot # |
| MHz    | Ch.                                                                                               |           |         | Power [dBm]         | Power [dBm] | Drift [dB] |                                                 | Position | Number           | Slots     | , ., .     | (W/kg)   | 3              | (W/kg)               |        |
| 836.60 | 190                                                                                               | GSM 850   | GSM     | 33.7                | 33.63       | 0.00       | Right                                           | Cheek    | 71363            | 1         | 1:8.3      | 0.475    | 1.016          | 0.483                |        |
| 836.60 | 190                                                                                               | GSM 850   | GSM     | 33.7                | 33.63       | 0.21       | Right                                           | Tilt     | 71363            | 1         | 1:8.3      | 0.282    | 1.016          | 0.287                |        |
| 836.60 | 190                                                                                               | GSM 850   | GSM     | 33.7                | 33.63       | 0.07       | Left                                            | Cheek    | 71363            | 1         | 1:8.3      | 0.384    | 1.016          | 0.390                |        |
| 836.60 | 190                                                                                               | GSM 850   | GSM     | 33.7                | 33.63       | 0.01       | Left                                            | Tilt     | 71363            | 1         | 1:8.3      | 0.256    | 1.016          | 0.260                |        |
| 836.60 | 190                                                                                               | GSM 850   | GPRS    | 29.7                | 29.51       | -0.07      | Right                                           | Cheek    | 71363            | 3         | 1:2.76     | 0.520    | 1.045          | 0.543                | A1     |
| 836.60 | 190                                                                                               | GSM 850   | GPRS    | 29.7                | 29.51       | -0.07      | Right                                           | Tilt     | 71363            | 3         | 1:2.76     | 0.313    | 1.045          | 0.327                |        |
| 836.60 | 190                                                                                               | GSM 850   | GPRS    | 29.7                | 29.51       | 0.09       | Left                                            | Cheek    | 71363            | 3         | 1:2.76     | 0.438    | 1.045          | 0.458                |        |
| 836.60 | 0 190 GSM850 GPRS 29.7 29.51 0.19                                                                 |           |         |                     |             |            |                                                 | Tilt     | 71363            | 3         | 1:2.76     | 0.324    | 1.045          | 0.339                |        |
|        | ANSI / IEEE C95.1 1992 - SAFETY LIMIT<br>Spatial Peak<br>Uncontrolled Exposure/General Population |           |         |                     |             |            | Head<br>1.6 W/kg (mW/g)<br>averaged over 1 gram |          |                  |           |            |          |                |                      |        |

# **Table 11-2** GSM 1900 Head SAR

|         |                                                                                                   |           |         |                    |             | MEAS       | JREMEN | T RESUL                                         | TS                |           |            |          |                |                      |        |
|---------|---------------------------------------------------------------------------------------------------|-----------|---------|--------------------|-------------|------------|--------|-------------------------------------------------|-------------------|-----------|------------|----------|----------------|----------------------|--------|
| FREQUE  | ENCY                                                                                              | Mode/Band | Service | Maximum<br>Allowed | Conducted   | Power      | Side   | Test                                            | De vice<br>Serial | # of Time | Duty Cycle | SAR (1g) | Scaling Factor | Reported SAR<br>(1g) | Plot # |
| MHz     | Ch.                                                                                               |           |         | Power [dBm]        | Power [dBm] | Drift [dB] |        | Position                                        | Number            | Slots     |            | (W/kg)   | J              | (W/kg)               |        |
| 1880.00 | 661                                                                                               | GSM 1900  | GSM     | 30.7               | 30.55       | -0.08      | Right  | Cheek                                           | 71363             | 1         | 1:8.3      | 0.185    | 1.035          | 0.191                |        |
| 1880.00 | 661                                                                                               | GSM 1900  | GSM     | 30.7               | 30.55       | 0.01       | Right  | Tilt                                            | 71363             | 1         | 1:8.3      | 0.119    | 1.035          | 0.123                |        |
| 1880.00 | 661                                                                                               | GSM 1900  | GSM     | 30.7               | 30.55       | 0.17       | Left   | Cheek                                           | 71363             | 1         | 1:8.3      | 0.289    | 1.035          | 0.299                |        |
| 1880.00 | 661                                                                                               | GSM 1900  | GSM     | 30.7               | 30.55       | 0.04       | Left   | Tilt                                            | 71363             | 1         | 1:8.3      | 0.144    | 1.035          | 0.149                |        |
| 1880.00 | 661                                                                                               | GSM 1900  | GPRS    | 26.7               | 26.68       | 0.21       | Right  | Cheek                                           | 71363             | 3         | 1:2.76     | 0.192    | 1.005          | 0.193                |        |
| 1880.00 | 661                                                                                               | GSM 1900  | GPRS    | 26.7               | 26.68       | 0.10       | Right  | Tilt                                            | 71363             | 3         | 1:2.76     | 0.129    | 1.005          | 0.130                |        |
| 1880.00 | 661                                                                                               | GSM 1900  | GPRS    | 26.7               | 26.68       | 0.20       | Left   | Cheek                                           | 71363             | 3         | 1:2.76     | 0.463    | 1.005          | 0.465                | A2     |
| 1880.00 | 661                                                                                               | GSM 1900  | GPRS    | 26.7               | -0.14       | Left       | Tilt   | 71363                                           | 3                 | 1:2.76    | 0.132      | 1.005    | 0.133          |                      |        |
|         | ANSI / IEEE C95.1 1992 - SAFETY LIMIT<br>Spatial Peak<br>Uncontrolled Exposure/General Population |           |         |                    |             |            |        | Head<br>1.6 W/kg (mW/g)<br>averaged over 1 gram |                   |           |            |          |                |                      |        |

| FCC ID: ZNFX210MA      | PCTEST:             | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Dogo 41 of 72                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset         | Page 41 of 73                |

© 2017 PCTEST Engineering Laboratory, Inc.

REV 18.4 M

### **Table 11-3 UMTS 850 Head SAR**

|        | CINTO COO TICAA OAK                                   |           |         |                    |             |            |       |                                      |                  |            |          |                |                      |        |  |
|--------|-------------------------------------------------------|-----------|---------|--------------------|-------------|------------|-------|--------------------------------------|------------------|------------|----------|----------------|----------------------|--------|--|
|        | MEASUREMENT RESULTS                                   |           |         |                    |             |            |       |                                      |                  |            |          |                |                      |        |  |
| FREQUE | ENCY                                                  | Mode/Band | Service | Maximum<br>Allowed | Conducted   | Power      | Side  | Test                                 | Device<br>Serial | Duty Cycle | SAR (1g) | Scaling Factor | Reported SAR<br>(1g) | Plot # |  |
| MHz    | Ch.                                                   |           |         | Power [dBm]        | Power [dBm] | Drift [dB] |       | Position                             | Number           |            | (W/kg)   |                | (W/kg)               |        |  |
| 836.60 | 4183                                                  | UMTS 850  | RMC     | 24.7               | 24.22       | -0.01      | Right | Cheek                                | 71363            | 1:1        | 0.447    | 1.117          | 0.499                | А3     |  |
| 836.60 | 4183                                                  | UMTS 850  | RMC     | 24.7               | 24.22       | 0.11       | Right | Tilt                                 | 71363            | 1:1        | 0.295    | 1.117          | 0.330                |        |  |
| 836.60 | 4183                                                  | UMTS 850  | RMC     | 24.7               | 24.22       | 0.03       | Left  | Cheek                                | 71363            | 1:1        | 0.381    | 1.117          | 0.426                |        |  |
| 836.60 | 336.60 4183 UMTS 850 RMC 24.7 24.22 0.04              |           |         |                    |             |            | Left  | Tilt                                 | 71363            | 1:1        | 0.262    | 1.117          | 0.293                |        |  |
|        | ANSI / IEEE C95.1 1992 - SAFETY LIMIT                 |           |         |                    |             |            |       | Head                                 |                  |            |          |                |                      |        |  |
|        | Spatial Peak Uncontrolled Exposure/General Population |           |         |                    |             |            |       | 1.6 W/kg (mW/g) averaged over 1 gram |                  |            |          |                |                      |        |  |

### **Table 11-4 UMTS 1750 Head SAR**

|         |                                          |           |         |                    |             |            | ECHI TO        |                 |                  |            |                 |                |                      |        |  |
|---------|------------------------------------------|-----------|---------|--------------------|-------------|------------|----------------|-----------------|------------------|------------|-----------------|----------------|----------------------|--------|--|
|         |                                          |           |         |                    | IVI         | EASURE     | REMENT RESULTS |                 |                  |            |                 |                |                      |        |  |
| FREQUE  | ENCY                                     | Mode/Band | Service | Maximum<br>Allowed | Conducted   | Power      | Side           | Test            | Device<br>Serial | Duty Cycle | SAR (1g)        | Scaling Factor | Reported SAR<br>(1g) | Plot # |  |
| MHz     | Ch.                                      |           |         | Power [dBm]        | Power [dBm] | Drift [dB] |                | Position        | Number           |            | (W/kg)          | _              | (W/kg)               |        |  |
| 1732.40 | 1412                                     | UMTS 1750 | RMC     | 24.7               | 24.54       | 0.02       | Right          | Cheek           | 71363            | 1:1        | 0.366           | 1.038          | 0.380                |        |  |
| 1732.40 | 1412                                     | UMTS 1750 | RMC     | 24.7               | 24.54       | 0.11       | Right          | Tilt            | 71363            | 1:1        | 0.218           | 1.038          | 0.226                |        |  |
| 1712.40 | 1312                                     | UMTS 1750 | RMC     | 24.7               | 24.65       | 0.06       | Left           | Cheek           | 71363            | 1:1        | 0.577           | 1.012          | 0.584                |        |  |
| 1732.40 | 1412                                     | UMTS 1750 | RMC     | 24.7               | 24.54       | 0.02       | Left           | Cheek           | 71363            | 1:1        | 0.586           | 1.038          | 0.608                |        |  |
| 1752.60 | 1513                                     | UMTS 1750 | RMC     | 24.7               | 24.65       | -0.01      | Left           | Cheek           | 71363            | 1:1        | 0.591           | 1.012          | 0.598                | A4     |  |
| 1732.40 | 1412                                     | UMTS 1750 | RMC     | 0.03               | Left        | Tilt       | 71363          | 1:1             | 0.245            | 1.038      | 0.254           |                |                      |        |  |
|         | ANSI / IEEE C95.1 1992 - SAFETY LIMIT    |           |         |                    |             |            |                | Head            |                  |            |                 |                |                      |        |  |
|         | Spatial Peak                             |           |         |                    |             |            |                | 1.6 W/kg (mW/g) |                  |            |                 |                |                      |        |  |
|         | Uncontrolled Exposure/General Population |           |         |                    |             |            |                |                 |                  | averaç     | ged over 1 gran | 1              |                      |        |  |

# **Table 11-5 UMTS 1900 Head SAR**

|         |      |             |                 |                    |             | <u> </u>   | ******  | ia oni   |                   |            |                 |                |                      |        |
|---------|------|-------------|-----------------|--------------------|-------------|------------|---------|----------|-------------------|------------|-----------------|----------------|----------------------|--------|
|         |      |             |                 |                    | М           | EASURE     | MENT RI | ESULTS   |                   |            |                 |                |                      |        |
| FREQUE  | ENCY | Mode/Band   | Service         | Maximum<br>Allowed | Conducted   | Power      | Side    | Test     | De vice<br>Serial | Duty Cycle | SAR (1g)        | Scaling Factor | Reported SAR<br>(1g) | Plot # |
| MHz     | Ch.  |             |                 | Power [dBm]        | Power [dBm] | Drift [dB] |         | Position | Number            | , ,        | (W/kg)          |                | (W/kg)               |        |
| 1880.00 | 9400 | UMTS 1900   | RMC             | 24.7               | 24.63       | -0.05      | Right   | Cheek    | 71363             | 1:1        | 0.336           | 1.016          | 0.341                |        |
| 1880.00 | 9400 | UMTS 1900   | RMC             | 24.7               | 24.63       | -0.01      | Right   | Tilt     | 71363             | 1:1        | 0.204           | 1.016          | 0.207                |        |
| 1880.00 | 9400 | UMTS 1900   | 0.05            | Left               | Cheek       | 71363      | 1:1     | 0.555    | 1.016             | 0.564      | A5              |                |                      |        |
| 1880.00 | 9400 | UMTS 1900   | RMC             | 24.7               | 24.63       | 0.03       | Left    | Tilt     | 71363             | 1:1        | 0.225           | 1.016          | 0.229                |        |
|         |      | ANSI / IEI  | EE C95.1 1992 - | SAFETY LIMI        | Т           |            |         |          |                   |            | Head            | <u>-</u>       |                      |        |
|         |      |             | Spatial Pea     | ak                 |             |            |         |          |                   | 1.6        | W/kg (mW/g)     |                |                      |        |
|         |      | Uncontrolle | d Exposure/Ge   | neral Populat      | tion        |            |         |          |                   | averaç     | jed over 1 gran | n              |                      |        |

| FCC ID: ZNFX210MA      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 42 of 73                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | Page 42 01 73                |

### **Table 11-6** LTE Band 12 Head SAR

|        |                                                 |     |             |            |                    |             |            | MEA      | SUREM | ENT RES  | ULTS       |         |           |                                     |       |          |                |                      |        |
|--------|-------------------------------------------------|-----|-------------|------------|--------------------|-------------|------------|----------|-------|----------|------------|---------|-----------|-------------------------------------|-------|----------|----------------|----------------------|--------|
| FF     | REQUENCY                                        |     | Mode        | Bandwidth  | Maximum<br>Allowed | Conducted   | Power      | MPR [dB] | Side  | Test     | Modulation | RB Size | RB Offset | Device<br>Serial                    | Duty  | SAR (1g) | Scaling Factor | Reported SAR<br>(1g) | Plot # |
| MHz    | CI                                              | h.  |             | [MHz]      | Power [dBm]        | Power [dBm] | Drift [dB] |          |       | Position |            |         |           | Number                              | Cycle | (W/kg)   |                | (W/kg)               |        |
| 707.50 | 23095                                           | Mid | LTE Band 12 | 10         | 24.7               | 24.58       | -0.02      | 0        | Right | Cheek    | QPSK       | 1       | 25        | 70920                               | 1:1   | 0.365    | 1.028          | 0.375                | A6     |
| 707.50 |                                                 |     |             |            |                    |             |            |          | Right | Cheek    | QPSK       | 25      | 0         | 70920                               | 1:1   | 0.267    | 1.045          | 0.279                |        |
| 707.50 | 23095                                           | Mid | LTE Band 12 | 10         | 24.7               | 24.58       | -0.03      | 0        | Right | Tilt     | QPSK       | 1       | 25        | 70920                               | 1:1   | 0.224    | 1.028          | 0.230                |        |
| 707.50 | 23095                                           | Mid | LTE Band 12 | 10         | 23.7               | 23.51       | 0.00       | 1        | Right | Tilt     | QPSK       | 25      | 0         | 70920                               | 1:1   | 0.159    | 1.045          | 0.166                |        |
| 707.50 |                                                 |     |             |            |                    |             |            |          | Left  | Cheek    | QPSK       | 1       | 25        | 70920                               | 1:1   | 0.329    | 1.028          | 0.338                |        |
| 707.50 | 23095                                           | Mid | LTE Band 12 | 10         | 23.7               | 23.51       | -0.06      | 1        | Left  | Cheek    | QPSK       | 25      | 0         | 70920                               | 1:1   | 0.246    | 1.045          | 0.257                |        |
| 707.50 | 23095                                           | Mid | LTE Band 12 | 10         | 24.7               | 24.58       | 0.17       | 0        | Left  | Tilt     | QPSK       | 1       | 25        | 70920                               | 1:1   | 0.215    | 1.028          | 0.221                |        |
| 707.50 | 707.50 23095 Mid LTE Band 12 10 23.7 23.51 0.04 |     |             |            |                    |             |            |          | Left  | Tilt     | QPSK       | 25      | 0         | 70920                               | 1:1   | 0.157    | 1.045          | 0.164                |        |
|        |                                                 |     |             | Spatial Pe |                    |             |            |          |       |          |            |         |           | Head<br>1.6 W/kg (m<br>veraged over | ıW/g) |          |                |                      |        |

**Table 11-7** LTE Band 5 (Cell) Head SAR

| ,                                                     |          |     |                   |                                    |                    |             |                     |          | <del>. • (</del> •                                                                                                                                                      | <del> </del>     | iouu                               | <u> </u> |           |                  |               |          |                |                      |        |
|-------------------------------------------------------|----------|-----|-------------------|------------------------------------|--------------------|-------------|---------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------|----------|-----------|------------------|---------------|----------|----------------|----------------------|--------|
|                                                       |          |     |                   |                                    |                    |             |                     | MEA      | SUREM                                                                                                                                                                   | ENT RES          | ULTS                               |          |           |                  |               |          |                |                      |        |
| FF                                                    | REQUENCY |     | Mode              | Bandwidth                          | Maximum<br>Allowed | Conducted   | Power<br>Drift [dB] | MPR [dB] | Side                                                                                                                                                                    | Test<br>Position | Modulation                         | RB Size  | RB Offset | Device<br>Serial | Duty<br>Cycle | SAR (1g) | Scaling Factor | Reported SAR<br>(1g) | Plot # |
| MHz                                                   | CI       | ۱.  |                   | [MHz]                              | Power [dBm]        | Power [dBm] | Drift [dB]          |          |                                                                                                                                                                         | Position         |                                    |          |           | Number           | Cycle         | (W/kg)   |                | (W/kg)               |        |
| 836.50                                                | 20525    | Mid | LTE Band 5 (Cell) | 10                                 | 24.7               | 24.48       | 0.10                | 0        | Right                                                                                                                                                                   | Cheek            | QPSK                               | 1        | 49        | 71363            | 1:1           | 0.488    | 1.052          | 0.513                | A7     |
| 836.50                                                | 20525    | Mid | LTE Band 5 (Cell) | 10                                 | 23.7               | 23.56       | -0.04               | 1        | Right                                                                                                                                                                   | Cheek            | QPSK                               | 25       | 0         | 71363            | 1:1           | 0.380    | 1.033          | 0.393                |        |
| 836.50                                                | 20525    | Mid | LTE Band 5 (Cell) | 10                                 | 24.7               | 24.48       | 0.00                |          |                                                                                                                                                                         |                  |                                    |          |           |                  |               |          |                | 0.286                |        |
| 836.50                                                | 20525    | Mid | LTE Band 5 (Cell) | 10                                 | 23.7               | 23.56       | -0.04               | 1        | Right Tilt QPSK 25 0 71363 1:1 0.217 1.03                                                                                                                               |                  |                                    |          |           |                  |               |          | 1.033          | 0.224                |        |
| 836.50                                                | 20525    | Mid | LTE Band 5 (Cell) | 10                                 | 24.7               | 24.48       | -0.11               | 0        | Right         Tilt         QPSK         25         0         71363         1:1           Left         Cheek         QPSK         1         49         71363         1:1 |                  |                                    |          |           |                  |               |          | 1.052          | 0.423                |        |
| 836.50                                                | 20525    | Mid | LTE Band 5 (Cell) | 10                                 | 23.7               | 23.56       | 0.19                | 1        | Left                                                                                                                                                                    | Cheek            | QPSK                               | 25       | 0         | 71363            | 1:1           | 0.302    | 1.033          | 0.312                |        |
| 836.50 20525 Mid LTE Band 5 (Cell) 10 24.7 24.48 0.02 |          |     |                   |                                    |                    |             |                     |          | Left                                                                                                                                                                    | Tilt             | QPSK                               | 1        | 49        | 71363            | 1:1           | 0.262    | 1.052          | 0.276                |        |
| 836.50                                                | 20525    | Mid | LTE Band 5 (Cell) | 1                                  | Left               | Tilt        | QPSK                | 25       | 0                                                                                                                                                                       | 71363            | 1:1                                | 0.214    | 1.033     | 0.221            |               |          |                |                      |        |
|                                                       |          |     |                   | SAFETY LIMI<br>ak<br>eneral Popula |                    |             |                     |          |                                                                                                                                                                         |                  | Head<br>1.6 W/kg (m<br>eraged over | ıW/g)    |           |                  | ,             |          |                |                      |        |

**Table 11-8** LTE Band 66 (AWS) Head SAR

|         |                                                        |      |                   |                    |                    |                          |            |          | <b>J V</b> .                            |                  | 11040      |         |           |                  |               |          |                |                      |        |
|---------|--------------------------------------------------------|------|-------------------|--------------------|--------------------|--------------------------|------------|----------|-----------------------------------------|------------------|------------|---------|-----------|------------------|---------------|----------|----------------|----------------------|--------|
|         |                                                        |      |                   |                    |                    |                          |            | MEA      | SUREM                                   | ENT RES          | ULTS       |         |           |                  |               |          |                |                      |        |
| FR      | REQUENCY                                               |      | Mode              | Bandwidth<br>[MHz] | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power      | MPR [dB] | Side                                    | Test<br>Position | Modulation | RB Size | RB Offset | Device<br>Serial | Duty<br>Cycle | SAR (1g) | Scaling Factor | Reported SAR<br>(1g) | Plot # |
| MHz     | CI                                                     | h.   |                   | [WHZ]              | Power [dBm]        | rower [ubin]             | Driit [ub] |          |                                         | Position         |            |         |           | Number           | Cycle         | (W/kg)   |                | (W/kg)               |        |
| 1770.00 | 132572                                                 | High | LTE Band 66 (AWS) | 20                 | 24.7               | 24.70                    | 0.21       | 0        | Right                                   | Cheek            | QPSK       | 1       | 0         | 71371            | 1:1           | 0.419    | 1.000          | 0.419                |        |
| 1770.00 | 132572                                                 | High | LTE Band 66 (AWS) | 20                 | 23.7               | 23.65                    | 0.02       | 1        | Right                                   | Cheek            | QPSK       | 50      | 50        | 71371            | 1:1           | 0.313    | 1.012          | 0.317                |        |
| 1770.00 | 132572                                                 | High | LTE Band 66 (AWS) | 20                 | 24.7               | 24.70                    | -0.12      | 0        | Right                                   | Tilt             | QPSK       | 1       | 0         | 71371            | 1:1           | 0.215    | 1.000          | 0.215                |        |
| 1770.00 | 132572                                                 | High | LTE Band 66 (AWS) | 20                 | 23.7               | 23.65                    | 0.07       | 1        | Right                                   | Tilt             | QPSK       | 0.179   | 1.012     | 0.181            |               |          |                |                      |        |
| 1720.00 | 132072                                                 | Low  | LTE Band 66 (AWS) | 20                 | 24.7               | 24.56                    | -0.15      | 0        | Left Cheek QPSK 1 0 71371 1:1 0.628 1.0 |                  |            |         |           |                  |               |          | 1.033          | 0.649                |        |
| 1745.00 | 132322                                                 | Mid  | LTE Band 66 (AWS) | 20                 | 24.7               | 24.62                    | 0.16       | 0        | Left                                    | Cheek            | QPSK       | 1       | 0         | 71371            | 1:1           | 0.649    | 1.019          | 0.661                | A8     |
| 1770.00 | 132572                                                 | High | LTE Band 66 (AWS) | 20                 | 24.7               | 24.70                    | 0.17       | 0        | Left                                    | Cheek            | QPSK       | 1       | 0         | 71371            | 1:1           | 0.627    | 1.000          | 0.627                |        |
| 1770.00 | 132572                                                 | High | LTE Band 66 (AWS) | 20                 | 23.7               | 23.65                    | -0.12      | 1        | Left                                    | Cheek            | QPSK       | 50      | 50        | 71371            | 1:1           | 0.451    | 1.012          | 0.456                |        |
| 1770.00 | 132572                                                 | High | LTE Band 66 (AWS) | 20                 | 24.7               | 24.70                    | 0.01       | 0        | Left                                    | Tilt             | QPSK       | 1       | 0         | 71371            | 1:1           | 0.323    | 1.000          | 0.323                |        |
| 1770.00 | 70.00 132572 High LTE Band 66 (AWS) 20 23.7 23.65 0.14 |      |                   |                    |                    |                          |            |          |                                         | Tilt             | QPSK       | 50      | 50        | 71371            | 1:1           | 0.247    | 1.012          | 0.250                |        |
|         | ,                                                      |      | ANSI / IEEE (     | C95.1 1992 -       | SAFETY LIMI        | Ť                        |            |          |                                         |                  |            |         |           | Head             |               | •        |                |                      |        |
|         |                                                        |      |                   | Spatial Per        | ak                 |                          |            |          |                                         |                  |            |         |           | 1.6 W/kg (m      | ıW/g)         |          |                |                      |        |
|         |                                                        |      | Uncontrolled E    | x posure/Ge        | neral Popular      | tion                     |            |          |                                         |                  |            |         | av        | eraged over      | 1 gram        |          |                |                      |        |

| FCC ID: ZNFX210MA      | PCTEST              | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 43 of 73                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | Page 43 01 73                |

# **Table 11-9** LTE Band 2 (PCS) Head SAR

|         |         |      |                  |             |                    |             |            |          |                                      | ENT RES  | ULTS       | <u> </u> |           |                                    |       |          |                |                      |        |
|---------|---------|------|------------------|-------------|--------------------|-------------|------------|----------|--------------------------------------|----------|------------|----------|-----------|------------------------------------|-------|----------|----------------|----------------------|--------|
| FR      | EQUENCY |      | Mode             | Bandwidth   | Maximum<br>Allowed | Conducted   | Power      | MPR (dB) | Side                                 | Test     | Modulation | RB Size  | RB Offset | Device<br>Serial                   | Duty  | SAR (1g) | Scaling Factor | Reported SAR<br>(1g) | Plot # |
| M Hz    | CI      | h.   |                  | [MHz]       | Power [dBm]        | Power [dBm] | Drift [dB] |          |                                      | Position |            |          |           | Number                             | Cycle | (W/kg)   |                | (W/kg)               |        |
| 1860.00 | 18700   | Low  | LTE Band 2 (PCS) | 20          | 24.7               | 24.61       | 0.20       | 0        | Right                                | Cheek    | QPSK       | 1        | 50        | 71363                              | 1:1   | 0.364    | 1.021          | 0.372                |        |
| 1860.00 | 18700   | Low  | LTE Band 2 (PCS) | 20          | 23.7               | 23.64       | 0.03       | 1        | Right                                | Cheek    | QPSK       | 50       | 25        | 71363                              | 1:1   | 0.284    | 1.014          | 0.288                |        |
| 1860.00 | 18700   | Low  | LTE Band 2 (PCS) | 20          | 24.7               | 24.61       | 0.18       | 0        | Right                                | Tilt     | QPSK       | 1        | 50        | 71363                              | 1:1   | 0.234    | 1.021          | 0.239                |        |
| 1860.00 | 18700   | Low  | LTE Band 2 (PCS) | 20          | 23.7               | 23.64       | 0.09       | 1        | Right                                | Tilt     | QPSK       | 50       | 25        | 71363                              | 1:1   | 0.170    | 1.014          | 0.172                |        |
| 1860.00 | 18700   | Low  | LTE Band 2 (PCS) | 20          | 24.7               | 24.61       | 0.03       | 0        | Left Cheek QPSK 1 50 71363 1:1 0.620 |          |            |          |           |                                    |       |          | 1.021          | 0.633                |        |
| 1880.00 | 18900   | Mid  | LTE Band 2 (PCS) | 20          | 24.7               | 24.51       | 0.16       | 0        | Left                                 | Cheek    | QPSK       | 1        | 0         | 71363                              | 1:1   | 0.551    | 1.045          | 0.576                |        |
| 1900.00 | 19100   | High | LTE Band 2 (PCS) | 20          | 24.7               | 24.60       | -0.13      | 0        | Left                                 | Cheek    | QPSK       | 1        | 50        | 71363                              | 1:1   | 0.637    | 1.023          | 0.652                | A9     |
| 1860.00 | 18700   | Low  | LTE Band 2 (PCS) | 20          | 23.7               | 23.64       | 0.03       | 1        | Left                                 | Cheek    | QPSK       | 50       | 25        | 71363                              | 1:1   | 0.463    | 1.014          | 0.469                |        |
| 1860.00 | 18700   | Low  | LTE Band 2 (PCS) | 20          | 24.7               | 24.61       | -0.01      | 0        | Left                                 | Tilt     | QPSK       | 1        | 50        | 71363                              | 1:1   | 0.282    | 1.021          | 0.288                |        |
| 1860.00 | 18700   | Low  | LTE Band 2 (PCS) | 23.7        | 1                  | Left        | Tilt       | QPSK     | 50                                   | 25       | 71363      | 1:1      | 0.208     | 1.014                              | 0.211 |          |                |                      |        |
|         |         |      |                  | Spatial Pea |                    |             |            |          |                                      |          |            |          |           | Head<br>1.6 W/kg (m<br>eraged over | -     |          | •              |                      |        |

### **Table 11-10 DTS Head SAR**

|        |     |              |                          |             |                     |             |            |       | 11040    |                  |                 |            |                          |           |         |                |                      |        |
|--------|-----|--------------|--------------------------|-------------|---------------------|-------------|------------|-------|----------|------------------|-----------------|------------|--------------------------|-----------|---------|----------------|----------------------|--------|
|        |     |              |                          |             |                     |             | ı          | MEASU | REMENT   | RESULT           | s               |            |                          |           |         |                |                      |        |
| FREQUE | NCY | Mode         | Service                  | Bandwidth   | Maxim um<br>Allowed | Conducted   | Power      | Side  | Test     | Device<br>Serial |                 | Duty Cycle | Peak SAR of<br>Area Scan | SAR (1g)  |         | Scaling Factor | Reported SAR<br>(1g) | Plot # |
| MHz    | Ch. | ,            |                          | [MHz]       | Power [dBm]         | Power [dBm] | Drift [dB] |       | Position | Number           | (Mbps)          | (%)        | W/kg                     | (W/kg)    | (Power) | (Duty Cycle)   | (W/kg)               |        |
| 2412   | 1   | 802.11b      | DSSS                     | 22          | 16.5                | 16.33       | -0.12      | Right | Cheek    | 71777            | 1               | 99.8       | 0.713                    | 0.482     | 1.040   | 1.002          | 0.502                |        |
| 2412   | 1   | 802.11b      | DSSS                     | 22          | 16.5                | 16.33       | 0.05       | Right | Tilt     | 71777            | 1               | 99.8       | 0.639                    |           | 1.040   | 1.002          | -                    |        |
| 2412   |     |              |                          |             |                     |             |            | Left  | Cheek    | 71777            | 1               | 99.8       | 1.516                    | 1.060     | 1.040   | 1.002          | 1.105                | A10    |
| 2437   |     |              |                          |             |                     |             |            | Left  | Cheek    | 71777            | 1               | 99.8       | 1.318                    | 0.892     | 1.194   | 1.002          | 1.067                |        |
| 2462   | 11  | 802.11b      | DSSS                     | 22          | 16.5                | 16.11       | -0.14      | Left  | Cheek    | 71777            | 1               | 99.8       | 1.528                    | 0.988     | 1.094   | 1.002          | 1.083                |        |
| 2412   | 1   | 802.11b      | DSSS                     | 22          | 16.5                | 16.33       | 0.03       | Left  | Tilt     | 71777            | 1               | 99.8       | 1.192                    | 0.706     | 1.040   | 1.002          | 0.736                |        |
| 2412   |     |              |                          |             |                     |             |            | Left  | Cheek    | 71777            | 1               | 99.8       | 1.526                    | 1.060     | 1.040   | 1.002          | 1.105                |        |
|        |     | ANSI / IEEE  | C95.1 1992<br>Spatial Pe |             |                     |             |            |       | •        | •                | Hea<br>1.6 W/kg |            | •                        | •         |         |                |                      |        |
|        |     | Uncontrolled | Exposure/Ge              | eneral Popu | ulation             |             |            |       |          |                  |                 |            | averaged ov              | er 1 gram |         |                |                      |        |

Note: Blue data represents variability measurement.

| FCC ID: ZNFX210MA      | PCTEST              | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Dog 44 of 72                 |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset         | Page 44 of 73                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset         | DEV/ 19.4 M                  |

### **Table 11-11 NII Head SAR**

|        |     |         |              |             |                        |             |            | 1411   | neau     | OAIN             |           |            |                          |           |                |                |                      |        |
|--------|-----|---------|--------------|-------------|------------------------|-------------|------------|--------|----------|------------------|-----------|------------|--------------------------|-----------|----------------|----------------|----------------------|--------|
|        |     |         |              |             |                        |             |            | MEASUF | REMENT   | RESULT           | s         |            |                          |           |                |                |                      |        |
| FREQUE | NCY | Mada    | Constant     | Bandwidth   | Maximum                | Conducted   | Power      | 014-   | Test     | Device           | Data Rate | Duty Cycle | Peak SAR of<br>Area Scan | SAR (1g)  | Scaling Factor | Scaling Factor | Reported SAR<br>(1g) |        |
| MHz    | Ch. | Mode    | Service      | [MHz]       | Allowed<br>Power [dBm] | Power [dBm] | Drift [dB] | Side   | Position | Serial<br>Number | (Mbps)    | (%)        | W/kg                     | (W/kg)    | (Power)        | (Duty Cycle)   | (W/kg)               | Plot # |
| 5260   | 52  | 802.11a | OFDM         | 20          | 13.5                   | 13.13       | 0.12       | Right  | Cheek    | 71777            | 6         | 99.1       | 1.350                    | -         | 1.089          | 1.009          | -                    |        |
| 5260   | 52  | 802.11a | OFDM         | 20          | 13.5                   | 13.13       | 0.11       | Right  | Tilt     | 71777            | 6         | 99.1       | 1.073                    | -         | 1.089          | 1.009          | -                    |        |
| 5260   | 52  | 802.11a | OFDM         | 20          | 13.5                   | 13.13       | 0.19       | Left   | Cheek    | 71777            | 6         | 99.1       | 1.610                    | 0.767     | 1.089          | 1.009          | 0.843                |        |
| 5280   | 56  | 802.11a | OFDM         | 20          | 13.5                   | 12.90       | 0.14       | Left   | Cheek    | 71777            | 6         | 99.1       | 2.210                    | 0.865     | 1.148          | 1.009          | 1.002                | A11    |
| 5300   | 60  | 802.11a | OFDM         | 20          | 13.5                   | 12.72       | 0.21       | Left   | Cheek    | 71777            | 6         | 99.1       | 1.792                    | 0.834     | 1.197          | 1.009          | 1.007                |        |
| 5260   | 52  | 802.11a | OFDM         | 20          | 13.5                   | 13.13       | 0.18       | Left   | Tilt     | 71777            | 6         | 99.1       | 1.470                    | 0.675     | 1.089          | 1.009          | 0.742                |        |
| 5580   | 116 | 802.11a | OFDM         | 20          | 13.5                   | 13.04       | 0.13       | Right  | Cheek    | 71777            | 6         | 99.1       | 1.656                    | 0.661     | 1.112          | 1.009          | 0.742                |        |
| 5580   | 116 | 802.11a | OFDM         | 20          | 13.5                   | 13.04       | 0.19       | Right  | Tilt     | 71777            | 6         | 99.1       | 1.456                    | -         | 1.112          | 1.009          | -                    |        |
| 5580   | 116 | 802.11a | OFDM         | 20          | 13.5                   | 13.04       | 0.15       | Left   | Cheek    | 71777            | 6         | 99.1       | 1.803                    | 0.758     | 1.112          | 1.009          | 0.850                |        |
| 5700   | 140 | 802.11a | OFDM         | 20          | 13.5                   | 12.85       | 0.19       | Left   | Cheek    | 71777            | 6         | 99.1       | 1.905                    | 0.716     | 1.161          | 1.009          | 0.839                |        |
| 5580   | 116 | 802.11a | OFDM         | 20          | 13.5                   | 13.04       | 0.18       | Left   | Tilt     | 71777            | 6         | 99.1       | 1.405                    | -         | 1.112          | 1.009          | -                    |        |
| 5745   | 149 | 802.11a | OFDM         | 20          | 13.5                   | 12.55       | -0.18      | Right  | Cheek    | 71777            | 6         | 99.1       | 1.549                    | 0.737     | 1.245          | 1.009          | 0.926                |        |
| 5785   | 157 | 802.11a | OFDM         | 20          | 13.5                   | 12.87       | 0.19       | Right  | Cheek    | 71777            | 6         | 99.1       | 1.800                    | 0.731     | 1.156          | 1.009          | 0.853                |        |
| 5785   | 157 | 802.11a | OFDM         | 20          | 13.5                   | 12.87       | 0.19       | Right  | Tilt     | 71777            | 6         | 99.1       | 1.494                    | 0.673     | 1.156          | 1.009          | 0.785                |        |
| 5745   | 149 | 802.11a | OFDM         | 20          | 13.5                   | 12.55       | 0.14       | Left   | Cheek    | 71777            | 6         | 99.1       | 1.779                    | 0.644     | 1.245          | 1.009          | 0.809                |        |
| 5785   | 157 | 802.11a | OFDM         | 20          | 13.5                   | 12.87       | 0.18       | Left   | Cheek    | 71777            | 6         | 99.1       | 1.742                    | 0.736     | 1.156          | 1.009          | 0.858                |        |
| 5785   | 157 | 802.11a | OFDM         | 0.19        | Left                   | Tilt        | 71777      | 6      | 99.1     | 1.268            | -         | 1.156      | 1.009                    | -         |                |                |                      |        |
|        |     | ANSI    | IEEE C95.1   | 1992 - SAFE | TY LIMIT               |             |            |        |          | •                |           |            | Hea                      | ıd        |                |                |                      |        |
|        |     |         |              | al Peak     |                        |             |            |        |          |                  |           |            | 1.6 W/kg                 | (mW/g)    |                |                |                      |        |
|        |     | Uncontr | olled Exposu | re/General  | Population             |             |            |        |          |                  |           |            | averaged ov              | er 1 gram |                |                |                      |        |

| FCC ID: ZNFX210MA      | PCTEST INCIDENCE LADSANTIZ, INC. | SAR EVALUATION REPORT | <b>L</b> G | Approved by:  Quality Manager |
|------------------------|----------------------------------|-----------------------|------------|-------------------------------|
| Document S/N:          | Test Dates:                      | DUT Type:             |            | Dog 45 of 72                  |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17              | Portable Handset      |            | Page 45 of 73                 |

# 11.2 Standalone Body-Worn SAR Data

**Table 11-12** GSM/UMTS Body-Worn SAR Data

|         |      |           |                                                       |                    | 2010/OIAI                | 13 50               | uy-vv   | UIII SA       | in Da     | ıa            |         |                                |                |                      |        |
|---------|------|-----------|-------------------------------------------------------|--------------------|--------------------------|---------------------|---------|---------------|-----------|---------------|---------|--------------------------------|----------------|----------------------|--------|
|         |      |           |                                                       |                    | MI                       | EASURE              | MENT F  | RESULTS       |           |               |         |                                |                |                      |        |
| FREQUE  | NCY  | Mode      | Service                                               | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power<br>Drift [dB] | Spacing | Device Serial | # of Time | Duty<br>Cycle | Side    | SAR (1g)                       | Scaling Factor | Reported SAR<br>(1g) | Plot # |
| MHz     | Ch.  |           |                                                       | Power [dBm]        | Power [dbiii]            | Driit [db]          |         | Number        | 31015     | Cycle         |         | (W/kg)                         |                | (W/kg)               |        |
| 836.60  | 190  | GSM 850   | GSM                                                   | 33.7               | 33.63                    | 0.00                | 10 mm   | 71447         | 1         | 1:8.3         | back    | 0.647                          | 1.016          | 0.657                |        |
| 824.20  | 128  | GSM 850   | GPRS                                                  | 29.7               | 29.45                    | 0.15                | 10 mm   | 71447         | 3         | 1:2.76        | back    | 0.703                          | 1.059          | 0.744                | A12    |
| 836.60  | 190  | GSM 850   | GPRS                                                  | 29.7               | 29.51                    | -0.13               | 10 mm   | 71447         | 3         | 1:2.76        | back    | 0.700                          | 1.045          | 0.732                |        |
| 848.80  | 251  | GSM 850   | GPRS                                                  | 29.7               | 29.53                    | -0.16               | 10 mm   | 71447         | 3         | 1:2.76        | back    | 0.663                          | 1.040          | 0.690                |        |
| 1880.00 | 661  | GSM 1900  | GSM                                                   | 30.7               | 30.55                    | -0.09               | 10 mm   | 71371         | 1         | 1:8.3         | back    | 0.334                          | 1.035          | 0.346                |        |
| 1880.00 | 661  | GSM 1900  | GPRS                                                  | 26.7               | 26.68                    | -0.01               | 10 mm   | 71371         | 3         | 1:2.76        | back    | 0.518                          | 1.005          | 0.521                | A13    |
| 826.40  | 4132 | UMTS 850  | RMC                                                   | 24.7               | 24.45                    | 0.01                | 10 mm   | 71447         | N/A       | 1:1           | back    | 0.648                          | 1.059          | 0.686                | A14    |
| 836.60  | 4183 | UMTS 850  | RMC                                                   | 24.7               | 24.22                    | 0.03                | 10 mm   | 71447         | N/A       | 1:1           | back    | 0.572                          | 1.117          | 0.639                |        |
| 846.60  | 4233 | UMTS 850  | RMC                                                   | 24.7               | 24.31                    | -0.07               | 10 mm   | 71447         | N/A       | 1:1           | back    | 0.566                          | 1.094          | 0.619                |        |
| 1712.40 | 1312 | UMTS 1750 | RMC                                                   | 24.7               | 24.65                    | -0.05               | 10 mm   | 71447         | N/A       | 1:1           | back    | 0.890                          | 1.012          | 0.901                | A15    |
| 1732.40 | 1412 | UMTS 1750 | RMC                                                   | 24.7               | 24.54                    | 0.03                | 10 mm   | 71447         | N/A       | 1:1           | back    | 0.869                          | 1.038          | 0.902                |        |
| 1752.60 | 1513 | UMTS 1750 | RMC                                                   | 24.7               | 24.65                    | -0.07               | 10 mm   | 71447         | N/A       | 1:1           | back    | 0.767                          | 1.012          | 0.776                |        |
| 1852.40 | 9262 | UMTS 1900 | RMC                                                   | 24.7               | 24.68                    | -0.10               | 10 mm   | 71371         | N/A       | 1:1           | back    | 0.578                          | 1.005          | 0.581                |        |
| 1880.00 | 9400 | UMTS 1900 | RMC                                                   | 24.7               | 24.63                    | -0.02               | 10 mm   | 71371         | N/A       | 1:1           | back    | 0.682                          | 1.016          | 0.693                | A17    |
| 1907.60 | 9538 | UMTS 1900 | RMC                                                   | 24.7               | 24.64                    | -0.04               | 10 mm   | 71371         | N/A       | 1:1           | back    | 0.682                          | 1.014          | 0.692                |        |
|         |      |           | E C95.1 1992 - SA<br>Spatial Peak<br>I Exposure/Gener |                    |                          |                     |         |               |           |               | 1.6 W/k | ody<br>g (mW/g)<br>over 1 gram |                |                      |        |

| FCC ID: ZNFX210MA                      | PCTEST              | SAR EVALUATION REPORT | (LG | Approved by: Quality Manager |
|----------------------------------------|---------------------|-----------------------|-----|------------------------------|
| Document S/N:                          | Test Dates:         | DUT Type:             |     | Dame 46 of 72                |
| 1M1710020259-01-R1.ZNF                 | 10/02/17 - 10/12/17 | Portable Handset      |     | Page 46 of 73                |
| 17 PCTEST Engineering Laboratory, Inc. |                     |                       |     | REV 18.4 M                   |

# **Table 11-13** LTE Body-Worn SAR

|         |         |      |                   |                    |                     |                          |                     |          | <i>,</i> , , , ,        |            |         |           |         |           |               |          |                |                      |        |
|---------|---------|------|-------------------|--------------------|---------------------|--------------------------|---------------------|----------|-------------------------|------------|---------|-----------|---------|-----------|---------------|----------|----------------|----------------------|--------|
|         |         |      |                   |                    |                     |                          |                     | MEASU    | IREMENT                 | RESULTS    | 3       |           |         |           |               |          |                |                      |        |
| FR      | EQUENCY |      | Mode              | Bandwidth<br>[MHz] | Maxim um<br>Allowed | Conducted<br>Power [dBm] | Power<br>Drift [dB] | MPR [dB] | Device Serial<br>Number | Modulation | RB Size | RB Offset | Spacing | Side      | Duty<br>Cycle | SAR (1g) | Scaling Factor | Reported SAR<br>(1g) | Plot # |
| MHz     | С       | h.   |                   | [MITZ]             | Power [dBm]         | rower [ubili]            | Driit [ubj          |          | Number                  |            |         |           |         |           | Cycle         | (W/kg)   |                | (W/kg)               |        |
| 707.50  | 23095   | Mid  | LTE Band 12       | 10                 | 24.7                | 24.58                    | 0.16                | 0        | 71371                   | QPSK       | 1       | 25        | 10 mm   | back      | 1:1           | 0.629    | 1.028          | 0.647                | A18    |
| 707.50  | 23095   | Mid  | LTE Band 12       | 10                 | 23.7                | 23.51                    | 0.02                | 1        | 71371                   | QPSK       | 25      | 0         | 10 mm   | back      | 1:1           | 0.455    | 1.045          | 0.475                |        |
| 836.50  | 20525   | Mid  | LTE Band 5 (Cell) | 10                 | 24.7                | 24.48                    | 0.07                | 0        | 71405                   | QPSK       | 1       | 49        | 10 mm   | back      | 1:1           | 0.596    | 1.052          | 0.627                | A19    |
| 836.50  | 20525   | Mid  | LTE Band 5 (Cell) | 10                 | 23.7                | 23.56                    | 0.02                | 1        | 71405                   | QPSK       | 25      | 0         | 10 mm   | back      | 1:1           | 0.507    | 1.033          | 0.524                |        |
| 1770.00 | 132572  | High | LTE Band 66 (AWS) | 20                 | 24.7                | 24.70                    | 0.08                | 0        | 71447                   | QPSK       | 1       | 0         | 10 mm   | back      | 1:1           | 0.700    | 1.000          | 0.700                | A20    |
| 1770.00 | 132572  | High | LTE Band 66 (AWS) | 20                 | 23.7                | 23.65                    | -0.03               | 1        | 71447                   | 1.012      | 0.527   |           |         |           |               |          |                |                      |        |
| 1860.00 | 18700   | Low  | LTE Band 2 (PCS)  | 20                 | 24.7                | 24.61                    | -0.19               | 0        | 71371                   | QPSK       | 1       | 50        | 10 mm   | back      | 1:1           | 0.628    | 1.021          | 0.641                |        |
| 1880.00 | 18900   | Mid  | LTE Band 2 (PCS)  | 20                 | 24.7                | 24.51                    | -0.19               | 0        | 71371                   | QPSK       | 1       | 0         | 10 mm   | back      | 1:1           | 0.700    | 1.045          | 0.732                |        |
| 1900.00 | 19100   | High | LTE Band 2 (PCS)  | 20                 | 24.7                | 24.60                    | -0.04               | 0        | 71371                   | QPSK       | 1       | 50        | 10 mm   | back      | 1:1           | 0.832    | 1.023          | 0.851                | A22    |
| 1860.00 | 18700   | Low  | LTE Band 2 (PCS)  | 20                 | 23.7                | 23.64                    | -0.08               | 1        | 71371                   | QPSK       | 50      | 25        | 10 mm   | back      | 1:1           | 0.487    | 1.014          | 0.494                |        |
| 1860.00 | 18700   | Low  | LTE Band 2 (PCS)  | 20                 | 23.7                | 23.54                    | 0.01                | 1        | 71371                   | QPSK       | 100     | 0         | 10 mm   | back      | 1:1           | 0.536    | 1.038          | 0.556                |        |
| 1900.00 | 19100   | High | LTE Band 2 (PCS)  | 20                 | 24.7                | 24.60                    | -0.01               | 0        | 71371                   | QPSK       | 1       | 50        | 10 mm   | back      | 1:1           | 0.734    | 1.023          | 0.751                |        |
|         |         |      | ANSI / IEEE       |                    | SAFETY LIMI         | Ť                        |                     |          |                         |            |         |           |         | Во        | -             |          | •              |                      |        |
|         |         |      |                   | Spatial Pea        |                     |                          |                     |          |                         |            |         |           |         | 1.6 W/kg  |               |          |                |                      |        |
|         |         |      | Uncontrolled E    | x posure/Ge        | neral Populat       | tion                     |                     |          |                         |            |         |           | a       | veraged o | ver 1 gram    | 1        |                |                      |        |

Note: Blue data represents variability measurement.

# **Table 11-14 DTS Body-Worn SAR**

|       |      |         |            |              |                    |             | М           | EASURE  | MENT             | RESULT    | гѕ   |               |                          |             |                |                |                      |        |
|-------|------|---------|------------|--------------|--------------------|-------------|-------------|---------|------------------|-----------|------|---------------|--------------------------|-------------|----------------|----------------|----------------------|--------|
| FREQU | ENCY | Mode    | Service    | Bandwidth    | Maximum<br>Allowed |             | Power Drift | Spacing | Device<br>Serial | Data Rate | Side | Duty<br>Cycle | Peak SAR of<br>Area Scan | SAR (1g)    | Scaling Factor | Scaling Factor | Reported SAR<br>(1g) | Plot # |
| MHz   | Ch.  |         |            | [MHz]        | Power [dBm]        | Power [dBm] | [dB]        |         | Number           | (Mbps)    |      | (%)           | W/kg                     | (W/kg)      | (Power)        | (Duty Cycle)   | (W/kg)               |        |
| 2412  | 1    | 802.11b | DSSS       | 22           | 20.0               | 19.00       | 0.07        | 10 mm   | 71363            | 1         | back | 99.8          | 0.605                    | 0.485       | 1.259          | 1.002          | 0.612                |        |
| 2437  | 6    | 802.11b | DSSS       | 22           | 20.0               | 19.15       | -0.03       | 10 mm   | 71363            | 1         | back | 99.8          | 0.679                    | 0.575       | 1.216          | 1.002          | 0.701                |        |
| 2462  | 11   | 802.11b | DSSS       | 22           | 20.0               | 19.07       | -0.07       | 10 mm   | 71363            | 1         | back | 99.8          | 0.644                    | 0.598       | 1.239          | 1.002          | 0.742                | A23    |
|       |      | ANSI    | / IEEE C95 | .1 1992 - SA | FETY LIMIT         |             |             |         |                  |           |      |               | В                        | lody        |                |                |                      |        |
|       |      |         | Sp         | atial Peak   |                    |             |             |         |                  |           |      |               | 1.6 W/k                  | g (mW/g)    |                |                |                      | j      |
|       |      | Uncontr | olled Expo | sure/Gener   | al Population      | 1           |             |         |                  |           |      |               | averaged                 | over 1 gram |                |                |                      | ĺ      |

# **Table 11-15 NII Body-Worn SAR**

|      |       |         |              |                            |                    |             |             |         | Jouy-i        |           | <i>,</i> , ,, , |                |                                 |          |                |              |                      |        |
|------|-------|---------|--------------|----------------------------|--------------------|-------------|-------------|---------|---------------|-----------|-----------------|----------------|---------------------------------|----------|----------------|--------------|----------------------|--------|
|      |       |         |              |                            |                    |             |             | M       | EASUREME      | NT RESULT | s               |                |                                 |          |                |              |                      |        |
| FREQ | JENCY | Mode    | Service      | Bandwidth                  | Maximum<br>Allowed | Conducted   | Power Drift | Spacing | Device Serial | Data Rate | Side            | Duty Cycle (%) | Peak SAR of<br>Area Scan        | SAR (1g) | Scaling Factor |              | Reported SAR<br>(1g) | Plot # |
| MHz  | Ch.   |         |              | [MHz]                      | Power [dBm]        | Power [dBm] | [dB]        |         | Number        | (Mbps)    |                 |                | W/kg                            | (W/kg)   | (Power)        | (Duty Cycle) | (W/kg)               |        |
| 5260 | 52    | 802.11a | OFDM         | 20                         | 18.0               | 17.73       | 0.04        | 10 mm   | 71777         | 6         | back            | 99.1           | 1.665                           | 0.753    | 1.064          | 1.009        | 0.808                |        |
| 5280 | 56    | 802.11a | OFDM         | 20                         | 18.0               | 17.50       | 0.09        | 10 mm   | 71777         | 6         | back            | 99.1           | 1.658                           | 0.782    | 1.122          | 1.009        | 0.885                | A24    |
| 5580 | 116   | 802.11a | OFDM         | 20                         | 18.0               | 17.68       | 0.10        | 10 mm   | 71777         | 6         | back            | 99.1           | 1.775                           | 0.756    | 1.076          | 1.009        | 0.821                |        |
| 5700 | 140   | 802.11a | OFDM         | 20                         | 18.0               | 17.50       | 0.19        | 10 mm   | 71777         | 6         | back            | 99.1           | 1.667                           | 0.704    | 1.122          | 1.009        | 0.797                |        |
| 5785 | 157   | 802.11a | OFDM         | 20                         | 18.0               | 17.62       | -0.07       | 10 mm   | 71777         | 6         | back            | 99.1           | 1.598                           | 0.671    | 1.091          | 1.009        | 0.739                |        |
|      |       | ANS     | SI / IEEE CS | 95.1 1992 - S              | AFETY LIMIT        |             |             |         |               |           |                 |                | Body                            |          |                |              |                      |        |
|      |       | Uncor   |              | patial Peak<br>posure/Gene | eral Populatio     | n           |             |         |               |           |                 |                | 6 W/kg (mW/g<br>aged over 1 gra |          |                |              |                      |        |

| FCC ID: ZNFX210MA      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 47 of 73                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | Page 47 01 73                |

© 2017 PCTEST Engineering Laboratory, Inc.

REV 18.4 M

# 11.3 Standalone Hotspot SAR Data

# **Table 11-16 GPRS/UMTS Hotspot SAR Data**

|         |      |              |                                   |                        | M           |            |         | RESULTS       | · Date     |        |        |                 |                |                |        |
|---------|------|--------------|-----------------------------------|------------------------|-------------|------------|---------|---------------|------------|--------|--------|-----------------|----------------|----------------|--------|
| FREQUE  | NCY  |              |                                   | Maxim um               | Conducted   | Power      |         | Device Serial | # - f ODDO | Duty   |        | SAR (1g)        | 1              | Reported SAR   |        |
| MHz     | Ch.  | Mode         | Service                           | Allowed<br>Power [dBm] | Power [dBm] | Drift [dB] | Spacing | Number        | Slots      | Cycle  | Side   | (W/kg)          | Scaling Factor | (1g)<br>(W/kg) | Plot # |
| 824.20  | 128  | GSM 850      | GPRS                              | 29.7                   | 29.45       | 0.15       | 10 mm   | 71447         | 3          | 1:2.76 | back   | 0.703           | 1.059          | 0.744          | A12    |
| 836.60  | 190  | GSM 850      | GPRS                              | 29.7                   | 29.51       | -0.13      | 10 mm   | 71447         | 3          | 1:2.76 | back   | 0.700           | 1.045          | 0.732          |        |
| 848.80  | 251  | GSM 850      | GPRS                              | 29.7                   | 29.53       | -0.16      | 10 mm   | 71447         | 3          | 1:2.76 | back   | 0.663           | 1.040          | 0.690          |        |
| 836.60  | 190  | GSM 850      | GPRS                              | 29.7                   | 29.51       | 0.18       | 10 mm   | 71447         | 3          | 1:2.76 | front  | 0.551           | 1.045          | 0.576          |        |
| 836.60  | 190  | GSM 850      | GPRS                              | 29.7                   | 29.51       | 0.11       | 10 mm   | 71447         | 3          | 1:2.76 | bottom | 0.159           | 1.045          | 0.166          |        |
| 836.60  | 190  | GSM 850      | GPRS                              | 29.7                   | 29.51       | 0.02       | 10 mm   | 71447         | 3          | 1:2.76 | right  | 0.582           | 1.045          | 0.608          |        |
| 836.60  | 190  | GSM 850      | GPRS                              | 29.7                   | 29.51       | -0.07      | 10 mm   | 71447         | 3          | 1:2.76 | left   | 0.254           | 1.045          | 0.265          |        |
| 1880.00 | 661  | GSM 1900     | GPRS                              | 26.7                   | 26.68       | -0.01      | 10 mm   | 71371         | 3          | 1:2.76 | back   | 0.518           | 1.005          | 0.521          | A13    |
| 1880.00 | 661  | GSM 1900     | GPRS                              | 26.7                   | 26.68       | 0.18       | 10 mm   | 71371         | 3          | 1:2.76 | front  | 0.493           | 1.005          | 0.495          |        |
| 1880.00 | 661  | GSM 1900     | GPRS                              | 26.7                   | 26.68       | -0.03      | 10 mm   | 71371         | 3          | 1:2.76 | bottom | 0.191           | 1.005          | 0.192          |        |
| 1880.00 | 661  | GSM 1900     | GPRS                              | 26.7                   | 26.68       | -0.19      | 10 mm   | 71371         | 3          | 1:2.76 | left   | 0.381           | 1.005          | 0.383          |        |
| 826.40  | 4132 | UMTS 850     | RMC                               | 24.7                   | 24.45       | 0.01       | 10 mm   | 71447         | N/A        | 1:1    | back   | 0.648           | 1.059          | 0.686          | A14    |
| 836.60  | 4183 | UMTS 850     | RMC                               | 24.7                   | 24.22       | 0.03       | 10 mm   | 71447         | N/A        | 1:1    | back   | 0.572           | 1.117          | 0.639          |        |
| 846.60  | 4233 | UMTS 850     | RMC                               | 24.7                   | 24.31       | -0.07      | 10 mm   | 71447         | N/A        | 1:1    | back   | 0.566           | 1.094          | 0.619          |        |
| 836.60  | 4183 | UMTS 850     | RMC                               | 24.7                   | 24.22       | -0.03      | 10 mm   | 71447         | N/A        | 1:1    | front  | 0.466           | 1.117          | 0.521          |        |
| 836.60  | 4183 | UMTS 850     | RMC                               | 24.7                   | 24.22       | -0.09      | 10 mm   | 71447         | N/A        | 1:1    | bottom | 0.180           | 1.117          | 0.201          |        |
| 836.60  | 4183 | UMTS 850     | RMC                               | 24.7                   | 24.22       | -0.01      | 10 mm   | 71447         | N/A        | 1:1    | right  | 0.412           | 1.117          | 0.460          |        |
| 836.60  | 4183 | UMTS 850     | RMC                               | 24.7                   | 24.22       | -0.08      | 10 mm   | 71447         | N/A        | 1:1    | left   | 0.290           | 1.117          | 0.324          |        |
| 1712.40 | 1312 | UMTS 1750    | RMC                               | 24.7                   | 24.65       | -0.05      | 10 mm   | 71447         | N/A        | 1:1    | back   | 0.890           | 1.012          | 0.901          |        |
| 1732.40 | 1412 | UMTS 1750    | RMC                               | 24.7                   | 24.54       | 0.03       | 10 mm   | 71447         | N/A        | 1:1    | back   | 0.869           | 1.038          | 0.902          |        |
| 1752.60 | 1513 | UMTS 1750    | RMC                               | 24.7                   | 24.65       | -0.07      | 10 mm   | 71447         | N/A        | 1:1    | back   | 0.767           | 1.012          | 0.776          |        |
| 1712.40 | 1312 | UMTS 1750    | RMC                               | 24.7                   | 24.65       | 0.12       | 10 mm   | 71447         | N/A        | 1:1    | front  | 0.987           | 1.012          | 0.999          | A16    |
| 1732.40 | 1412 | UMTS 1750    | RMC                               | 24.7                   | 24.54       | -0.02      | 10 mm   | 71447         | N/A        | 1:1    | front  | 0.925           | 1.038          | 0.960          |        |
| 1752.60 | 1513 | UMTS 1750    | RMC                               | 24.7                   | 24.65       | -0.17      | 10 mm   | 71447         | N/A        | 1:1    | front  | 0.856           | 1.012          | 0.866          |        |
| 1732.40 | 1412 | UMTS 1750    | RMC                               | 24.7                   | 24.54       | -0.05      | 10 mm   | 71447         | N/A        | 1:1    | bottom | 0.535           | 1.038          | 0.555          |        |
| 1732.40 | 1412 | UMTS 1750    | RMC                               | 24.7                   | 24.54       | 0.00       | 10 mm   | 71447         | N/A        | 1:1    | left   | 0.431           | 1.038          | 0.447          |        |
| 1712.40 | 1312 | UMTS 1750    | RMC                               | 24.7                   | 24.65       | 0.00       | 10 mm   | 71447         | N/A        | 1:1    | front  | 0.966           | 1.012          | 0.978          |        |
| 1852.40 | 9262 | UMTS 1900    | RMC                               | 24.7                   | 24.68       | -0.10      | 10 mm   | 71371         | N/A        | 1:1    | back   | 0.578           | 1.005          | 0.581          |        |
| 1880.00 | 9400 | UMTS 1900    | RMC                               | 24.7                   | 24.63       | -0.02      | 10 mm   | 71371         | N/A        | 1:1    | back   | 0.682           | 1.016          | 0.693          | A17    |
| 1907.60 | 9538 | UMTS 1900    | RMC                               | 24.7                   | 24.64       | -0.04      | 10 mm   | 71371         | N/A        | 1:1    | back   | 0.682           | 1.014          | 0.692          |        |
| 1880.00 | 9400 | UMTS 1900    | RMC                               | 24.7                   | 24.63       | 0.03       | 10 mm   | 71371         | N/A        | 1:1    | front  | 0.656           | 1.016          | 0.666          |        |
| 1880.00 | 9400 | UMTS 1900    | RMC                               | 24.7                   | 24.63       | -0.03      | 10 mm   | 71371         | N/A        | 1:1    | bottom | 0.255           | 1.016          | 0.259          |        |
| 1880.00 | 9400 | UMTS 1900    | RMC                               | 24.7                   | 24.63       | -0.01      | 10 mm   | 71371         | N/A        | 1:1    | left   | 0.470           | 1.016          | 0.478          |        |
|         |      | ANSI / IEEI  | E C95.1 1992 - SA<br>Spatial Peak | FETY LIMIT             |             |            |         |               |            |        |        | ody<br>g (mW/g) |                |                |        |
|         |      | Uncontrolled | Exposure/Gener                    | ral Population         |             |            |         |               |            |        |        | over 1 gram     |                |                |        |

Note: Blue data represents variability measurement.

|     | FCC ID: ZNFX210MA                      | PCTEST*             | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|-----|----------------------------------------|---------------------|--------------------------|-------------------------------|
|     | Document S/N:                          | Test Dates:         | DUT Type:                | Page 48 of 73                 |
|     | 1M1710020259-01-R1.ZNF                 | 10/02/17 - 10/12/17 | Portable Handset         | Page 46 01 73                 |
| 201 | 17 PCTEST Engineering Laboratory, Inc. |                     |                          | REV 18.4 M                    |

© 2017 PCTEST Engineering Laboratory, Inc.

# **Table 11-17** LTE Band 12 Hotspot SAR

|        |         |     |                   |                            |                    |             |            |                                                |               | RESULTS    |         |           |         |                  |            |          |                |                      |        |
|--------|---------|-----|-------------------|----------------------------|--------------------|-------------|------------|------------------------------------------------|---------------|------------|---------|-----------|---------|------------------|------------|----------|----------------|----------------------|--------|
| FRI    | EQUENCY |     | Mode              | Bandwidth                  | Maximum<br>Allowed | Conducted   | Power      | MPR [dB]                                       | Device Serial | Modulation | Ι       | RB Offset | Spacing | Side             | Duty Cycle | SAR (1g) | Scaling Factor | Reported SAR<br>(1g) | Plot # |
| MHz    | CI      | h.  | Mode              | [MHz]                      | Power [dBm]        | Power [dBm] | Drift [dB] | мгк [ив]                                       | Number        | Wodulation | NB SIZE | KP OII261 | opacing | olue             | Duty Cycle | (W/kg)   | Scaling Factor | (W/kg)               | FIOL#  |
| 707.50 | 23095   | Mid | LTE Band 12       | 10                         | 24.7               | 24.58       | 0.16       | 0                                              | 71371         | QPSK       | 1       | 25        | 10 mm   | back             | 1:1        | 0.629    | 1.028          | 0.647                | A18    |
| 707.50 | 23095   | Mid | LTE Band 12       | 10                         | 23.7               | 23.51       | 0.02       | 1                                              | 71371         | QPSK       | 25      | 0         | 10 mm   | back             | 1:1        | 0.455    | 1.045          | 0.475                |        |
| 707.50 | 23095   | Mid | LTE Band 12       | 10                         | 24.7               | 24.58       | 0.11       | 0                                              | 71371         | QPSK       | 1       | 25        | 10 mm   | front            | 1:1        | 0.410    | 1.028          | 0.421                |        |
| 707.50 | 23095   | Mid | LTE Band 12       | 10                         | 23.7               | 23.51       | -0.08      | 1                                              | 71371         | QPSK       | 25      | 0         | 10 mm   | front            | 1:1        | 0.296    | 1.045          | 0.309                |        |
| 707.50 | 23095   | Mid | LTE Band 12       | 10                         | 24.7               | 24.58       | 0.09       | 0 71371 QPSK 1 25 10 mm bottom 1:1 0.127 1.028 |               |            |         |           |         |                  |            |          |                | 0.131                |        |
| 707.50 | 23095   | Mid | LTE Band 12       | 10                         | 23.7               | 23.51       | -0.01      | 1                                              | 71371         | QPSK       | 25      | 0         | 10 mm   | bottom           | 1:1        | 0.089    | 1.045          | 0.093                |        |
| 707.50 | 23095   | Mid | LTE Band 12       | 10                         | 24.7               | 24.58       | 0.03       | 0                                              | 71371         | QPSK       | 1       | 25        | 10 mm   | right            | 1:1        | 0.475    | 1.028          | 0.488                |        |
| 707.50 | 23095   | Mid | LTE Band 12       | 10                         | 23.7               | 23.51       | -0.06      | 1                                              | 71371         | QPSK       | 25      | 0         | 10 mm   | right            | 1:1        | 0.351    | 1.045          | 0.367                |        |
| 707.50 | 23095   | Mid | LTE Band 12       | 10                         | 24.7               | 24.58       | 0.11       | 0                                              | 71371         | QPSK       | 1       | 25        | 10 mm   | left             | 1:1        | 0.361    | 1.028          | 0.371                |        |
| 707.50 | 23095   | Mid | LTE Band 12       | 10                         | 23.7               | 23.51       | -0.05      | 1                                              | 71371         | QPSK       | 25      | 0         | 10 mm   | left             | 1:1        | 0.253    | 1.045          | 0.264                |        |
| _      |         |     | ANSI / IEEE C95.  | 1 1992 - SAF<br>Itial Peak | ETY LIMIT          |             |            |                                                | •             |            |         |           | 1 6 V   | Body<br>//kg (mW | !/a)       |          | •              | •                    | _      |
|        |         | ι   | Jncontrolled Expo |                            | I Population       |             |            |                                                |               |            |         |           |         | ed over 1        |            |          |                |                      |        |

# **Table 11-18** LTE Band 5 (Cell) Hotspot SAR

|        |         |     |                   |                    |                    |                          |                     | MEAS                                           | UREMENT                 | RESULTS    | 3       |           |         |           |            |          |                |                      |        |
|--------|---------|-----|-------------------|--------------------|--------------------|--------------------------|---------------------|------------------------------------------------|-------------------------|------------|---------|-----------|---------|-----------|------------|----------|----------------|----------------------|--------|
| FR     | EQUENCY |     | Mode              | Bandwidth<br>[MHz] | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power<br>Drift [dB] | MPR [dB]                                       | Device Serial<br>Number | Modulation | RB Size | RB Offset | Spacing | Side      | Duty Cycle | SAR (1g) | Scaling Factor | Reported SAR<br>(1g) | Plot # |
| MHz    | CI      | h.  |                   | [INTE]             | Power [dBm]        | rower [dbiii]            | Drint [db]          |                                                | Number                  |            |         |           |         |           |            | (W/kg)   |                | (W/kg)               |        |
| 836.50 | 20525   | Mid | LTE Band 5 (Cell) | 10                 | 24.7               | 24.48                    | 0.07                | 0                                              | 71405                   | QPSK       | 1       | 49        | 10 mm   | back      | 1:1        | 0.596    | 1.052          | 0.627                | A19    |
| 836.50 | 20525   | Mid | LTE Band 5 (Cell) | 10                 | 23.7               | 23.56                    | 0.02                | 1                                              | 71405                   | QPSK       | 25      | 0         | 10 mm   | back      | 1:1        | 0.507    | 1.033          | 0.524                |        |
| 836.50 | 20525   | Mid | LTE Band 5 (Cell) | 10                 | 24.7               | 24.48                    | 0.01                | 0                                              | 71405                   | QPSK       | 1       | 49        | 10 mm   | front     | 1:1        | 0.464    | 1.052          | 0.488                |        |
| 836.50 | 20525   | Mid | LTE Band 5 (Cell) | 10                 | 23.7               | 23.56                    | 0.13                | 1 71405 QPSK 25 0 10 mm front 1:1 0.377 1.033  |                         |            |         |           |         |           |            |          |                | 0.389                |        |
| 836.50 | 20525   | Mid | LTE Band 5 (Cell) | 10                 | 24.7               | 24.48                    | -0.16               | 0 71405 QPSK 1 49 10 mm bottom 1:1 0.225 1.052 |                         |            |         |           |         |           |            |          | 0.237          |                      |        |
| 836.50 | 20525   | Mid | LTE Band 5 (Cell) | 10                 | 23.7               | 23.56                    | -0.11               | 1                                              | 71405                   | QPSK       | 25      | 0         | 10 mm   | bottom    | 1:1        | 0.167    | 1.033          | 0.173                |        |
| 836.50 | 20525   | Mid | LTE Band 5 (Cell) | 10                 | 24.7               | 24.48                    | -0.17               | 0                                              | 71405                   | QPSK       | 1       | 49        | 10 mm   | right     | 1:1        | 0.488    | 1.052          | 0.513                |        |
| 836.50 | 20525   | Mid | LTE Band 5 (Cell) | 10                 | 23.7               | 23.56                    | 0.04                | 1                                              | 71405                   | QPSK       | 25      | 0         | 10 mm   | right     | 1:1        | 0.350    | 1.033          | 0.362                |        |
| 836.50 | 20525   | Mid | LTE Band 5 (Cell) | 10                 | 24.7               | 24.48                    | 0.01                | 0                                              | 71405                   | QPSK       | 1       | 49        | 10 mm   | left      | 1:1        | 0.356    | 1.052          | 0.375                |        |
| 836.50 | 20525   | Mid | LTE Band 5 (Cell) | 10                 | 23.7               | 23.56                    | -0.01               | 1                                              | 71405                   | QPSK       | 25      | 0         | 10 mm   | left      | 1:1        | 0.253    | 1.033          | 0.261                |        |
|        |         |     | ANSI / IEEE C95.  | 1 1992 - SAF       | ETY LIMIT          |                          |                     |                                                |                         |            |         | ·         |         | Body      | <u> </u>   |          | ·              |                      |        |
|        |         |     | Spa               | tial Peak          |                    |                          |                     |                                                |                         |            |         |           | 1.6 V   | V/kg (mV  | //g)       |          |                |                      |        |
|        |         | ı   | Uncontrolled Expo | sure/Genera        | I Population       |                          |                     |                                                |                         |            |         |           | average | ed over 1 | gram       |          |                |                      |        |

| FCC ID: ZNFX210MA      | PCTEST INCIDENCE LANGUAGUE, INC. | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|----------------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:                      | DUT Type:                | Page 49 of 73                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17              | Portable Handset         | Fage 49 01 73                |

### **Table 11-19** LTE Band 66 (AWS) Hotspot SAR

|         |         |      |                                        |           |                    |             |            |                                                     |               | RESULTS    | _       |           |         |                               |            |          |                |                      |        |
|---------|---------|------|----------------------------------------|-----------|--------------------|-------------|------------|-----------------------------------------------------|---------------|------------|---------|-----------|---------|-------------------------------|------------|----------|----------------|----------------------|--------|
| FRE     | EQUENCY |      | Mode                                   | Bandwidth | Maximum<br>Allowed | Conducted   | Power      | MPR [dB]                                            | Device Serial | Modulation | RB Size | RB Offset | Spacing | Side                          | Duty Cycle | SAR (1g) | Scaling Factor | Reported SAR<br>(1g) | Plot # |
| MHz     | CI      | h.   |                                        | [MHz]     | Power [dBm]        | Power [dBm] | Drift [dB] |                                                     | Number        |            |         |           |         |                               |            | (W/kg)   |                | (W/kg)               | l      |
| 1770.00 | 132572  | High | LTE Band 66 (AWS)                      | 20        | 24.7               | 24.70       | 0.08       | 0                                                   | 71447         | QPSK       | 1       | 0         | 10 mm   | back                          | 1:1        | 0.700    | 1.000          | 0.700                |        |
| 1770.00 | 132572  | High | LTE Band 66 (AWS)                      | 20        | 23.7               | 23.65       | -0.03      | 1                                                   | 71447         | QPSK       | 50      | 50        | 10 mm   | back                          | 1:1        | 0.521    | 1.012          | 0.527                |        |
| 1720.00 | 132072  | Low  | LTE Band 66 (AWS)                      | 20        | 24.7               | 24.56       | -0.13      | 0                                                   | 71447         | QPSK       | 1       | 0         | 10 mm   | front                         | 1:1        | 0.927    | 1.033          | 0.958                | A21    |
| 1745.00 | 132322  | Mid  | LTE Band 66 (AWS)                      | 20        | 24.7               | 24.62       | -0.16      |                                                     |               |            |         |           |         |                               |            |          |                | 0.909                |        |
| 1770.00 | 132572  | High | LTE Band 66 (AWS)                      | 20        | 24.7               | 24.70       | 0.10       | 10 0 71447 QPSK 1 0 10 mm front 1:1 0.828 1.000 0.8 |               |            |         |           |         |                               |            |          |                | 0.828                |        |
| 1770.00 | 132572  | High | LTE Band 66 (AWS)                      | 20        | 23.7               | 23.65       | 0.04       | 1                                                   | 71447         | QPSK       | 50      | 50        | 10 mm   | front                         | 1:1        | 0.583    | 1.012          | 0.590                |        |
| 1745.00 | 132322  | Mid  | LTE Band 66 (AWS)                      | 20        | 23.7               | 23.63       | 0.15       | 1                                                   | 71447         | QPSK       | 100     | 0         | 10 mm   | front                         | 1:1        | 0.655    | 1.016          | 0.665                |        |
| 1770.00 | 132572  | High | LTE Band 66 (AWS)                      | 20        | 24.7               | 24.70       | -0.14      | 0                                                   | 71447         | QPSK       | 1       | 0         | 10 mm   | bottom                        | 1:1        | 0.597    | 1.000          | 0.597                |        |
| 1770.00 | 132572  | High | LTE Band 66 (AWS)                      | 20        | 23.7               | 23.65       | 0.03       | 1                                                   | 71447         | QPSK       | 50      | 50        | 10 mm   | bottom                        | 1:1        | 0.424    | 1.012          | 0.429                |        |
| 1770.00 | 132572  | High | LTE Band 66 (AWS)                      | 20        | 24.7               | 24.70       | -0.07      | 0                                                   | 71447         | QPSK       | 1       | 0         | 10 mm   | left                          | 1:1        | 0.436    | 1.000          | 0.436                |        |
| 1770.00 | 132572  | High | LTE Band 66 (AWS)                      | 20        | 23.7               | 23.65       | -0.02      | 1                                                   | 71447         | QPSK       | 50      | 50        | 10 mm   | left                          | 1:1        | 0.339    | 1.012          | 0.343                |        |
|         |         |      | ANSI / IEEE C95. Spa Uncontrolled Expo | tial Peak |                    |             |            |                                                     |               |            |         |           |         | Body<br>V/kg (mW<br>ed over 1 |            |          |                |                      |        |

# **Table 11-20** LTE Band 2 (PCS) Hotspot SAR

|         |        |      |                   |                            |                    |                          |                     | MEAS     | UREMENT       | RESULTS    |         |           |         |                  |            |          |                |                      |        |
|---------|--------|------|-------------------|----------------------------|--------------------|--------------------------|---------------------|----------|---------------|------------|---------|-----------|---------|------------------|------------|----------|----------------|----------------------|--------|
| FRE     | QUENCY |      | Mode              | Bandwidth<br>[MHz]         | Maximum<br>Allowed | Conducted<br>Power [dBm] | Power<br>Drift [dB] | MPR [dB] | Device Serial | Modulation | RB Size | RB Offset | Spacing | Side             | Duty Cycle | SAR (1g) | Scaling Factor | Reported SAR<br>(1g) | Plot # |
| MHz     | CI     | h.   |                   | [IMTIE]                    | Power [dBm]        | rower [dbin]             | Di iit [dD]         |          | realineer     |            |         |           |         |                  |            | (W/kg)   |                | (W/kg)               |        |
| 1860.00 | 18700  | Low  | LTE Band 2 (PCS)  | 20                         | 24.7               | 24.61                    | -0.19               | 0        | 71371         | QPSK       | 1       | 50        | 10 mm   | back             | 1:1        | 0.628    | 1.021          | 0.641                |        |
| 1880.00 | 18900  | Mid  | LTE Band 2 (PCS)  | 20                         | 24.7               | 24.51                    | -0.19               | 0        | 71371         | QPSK       | 1       | 0         | 10 mm   | back             | 1:1        | 0.700    | 1.045          | 0.732                |        |
| 1900.00 | 19100  | High | LTE Band 2 (PCS)  | 20                         | 24.7               | 24.60                    | -0.04               | 0        | 71371         | QPSK       | 1       | 50        | 10 mm   | back             | 1:1        | 0.832    | 1.023          | 0.851                | A22    |
| 1860.00 | 18700  | Low  | LTE Band 2 (PCS)  | 20                         | 23.7               | 23.64                    | -0.08               | 1        | 71371         | QPSK       | 50      | 25        | 10 mm   | back             | 1:1        | 0.487    | 1.014          | 0.494                |        |
| 1860.00 | 18700  | Low  | LTE Band 2 (PCS)  | 20                         | 23.7               | 23.54                    | 0.01                | 1        | 71371         | QPSK       | 100     | 0         | 10 mm   | back             | 1:1        | 0.536    | 1.038          | 0.556                |        |
| 1860.00 | 18700  | Low  | LTE Band 2 (PCS)  | 20                         | 24.7               | 24.61                    | -0.01               |          |               |            |         |           |         |                  |            |          |                |                      |        |
| 1860.00 | 18700  | Low  | LTE Band 2 (PCS)  | 20                         | 23.7               | 23.64                    | -0.19               | 1        | 71371         | QPSK       | 50      | 25        | 10 mm   | front            | 1:1        | 0.452    | 1.014          | 0.458                |        |
| 1860.00 | 18700  | Low  | LTE Band 2 (PCS)  | 20                         | 24.7               | 24.61                    | 0.04                | 0        | 71371         | QPSK       | 1       | 50        | 10 mm   | bottom           | 1:1        | 0.263    | 1.021          | 0.269                |        |
| 1860.00 | 18700  | Low  | LTE Band 2 (PCS)  | 20                         | 23.7               | 23.64                    | -0.10               | 1        | 71371         | QPSK       | 50      | 25        | 10 mm   | bottom           | 1:1        | 0.196    | 1.014          | 0.199                |        |
| 1860.00 | 18700  | Low  | LTE Band 2 (PCS)  | 20                         | 24.7               | 24.61                    | -0.01               | 0        | 71371         | QPSK       | 1       | 50        | 10 mm   | left             | 1:1        | 0.524    | 1.021          | 0.535                |        |
| 1860.00 | 18700  | Low  | LTE Band 2 (PCS)  | 20                         | 23.7               | 23.64                    | -0.03               | 1        | 71371         | QPSK       | 50      | 25        | 10 mm   | left             | 1:1        | 0.390    | 1.014          | 0.395                |        |
| 1900.00 | 19100  | High | LTE Band 2 (PCS)  | 20                         | 24.7               | 24.60                    | -0.01               | 0        | 71371         | QPSK       | 1       | 50        | 10 mm   | back             | 1:1        | 0.734    | 1.023          | 0.751                |        |
|         |        |      | ANSI / IEEE C95.  | 1 1992 - SAF<br>itial Peak | ETY LIMIT          |                          |                     |          | •             |            |         |           | 1.6 V   | Body<br>V/kg (mW | //g)       |          |                |                      |        |
|         |        | ı    | Incontrolled Expo | sure/Genera                | I Population       |                          |                     |          |               |            |         |           | average | ed over 1        | gram       |          |                |                      |        |

Note: Blue data represents variability measurement.

| FCC ID: ZNFX210MA      | PCTEST              | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 50 of 73                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | Page 50 01 75                |

# **Table 11-21 WLAN Hotspot SAR**

|                                                       |      |         |           |            |                                         |             |             |         | •                | 250111    |       |               |                          |          |                |                |                      |        |
|-------------------------------------------------------|------|---------|-----------|------------|-----------------------------------------|-------------|-------------|---------|------------------|-----------|-------|---------------|--------------------------|----------|----------------|----------------|----------------------|--------|
|                                                       |      |         |           |            |                                         |             | M           | IEASURI | EMENT            | RESUL     | TS    |               |                          |          |                |                |                      |        |
| FREQU                                                 | ENCY | Mode    | Service   | Bandw idth | Maximum<br>Allowed                      | Conducted   | Power Drift | Spacing | Device<br>Serial | Data Rate | Side  | Duty<br>Cycle | Peak SAR of<br>Area Scan | SAR (1g) | Scaling Factor | Scaling Factor | Reported SAR<br>(1g) | Plot # |
| MHz                                                   | Ch.  | modo    | 0011100   | [MHz]      | Power [dBm]                             | Power [dBm] | [dB]        | орасинд | Number           | (Mbps)    | oluc  | (%)           | W/kg                     | (W/kg)   | (Power)        | (Duty Cycle)   | (W/kg)               |        |
| 2412                                                  | 1    | 802.11b | DSSS      | 22         | 20.0                                    | 19.00       | 0.07        | 10 mm   | 71363            | 1         | back  | 99.8          | 0.605                    | 0.485    | 1.259          | 1.002          | 0.612                |        |
| 2437                                                  | 6    | 802.11b | DSSS      | 22         | 20.0                                    | 19.15       | -0.03       | 10 mm   | 71363            | 1         | back  | 99.8          | 0.679                    | 0.575    | 1.216          | 1.002          | 0.701                |        |
| 2462                                                  | 11   | 802.11b | DSSS      | 22         | 20.0                                    | 19.07       | -0.07       | 10 mm   | 71363            | 1         | back  | 99.8          | 0.644                    | 0.598    | 1.239          | 1.002          | 0.742                | A23    |
| 2437                                                  | 6    | 802.11b | DSSS      | 22         | 20.0                                    | 19.15       | 0.04        | 10 mm   | 71363            | 1         | front | 99.8          | 0.491                    | 0.401    | 1.216          | 1.002          | 0.489                |        |
| 2437                                                  | 6    | 802.11b | DSSS      | 22         | 20.0                                    | 19.15       | 0.11        | 10 mm   | 71363            | 1         | top   | 99.8          | 0.243                    | -        | 1.216          | 1.002          | -                    |        |
| 2437                                                  | 6    | 802.11b | DSSS      | 22         | 20.0                                    | 19.15       | 0.11        | 10 mm   | 71363            | 1         | right | 99.8          | 0.274                    | -        | 1.216          | 1.002          | -                    |        |
| 5200                                                  | 40   | 802.11a | OFDM      | 20         | 18.0                                    | 17.88       | -0.01       | 10 mm   | 71777            | 6         | back  | 99.1          | 1.715                    | 0.779    | 1.028          | 1.009          | 0.808                |        |
| 5240                                                  | 48   | 802.11a | OFDM      | 20         | 18.0                                    | 17.53       | 0.09        | 10 mm   | 71777            | 6         | back  | 99.1          | 1.756                    | 0.835    | 1.114          | 1.009          | 0.939                |        |
| 5200                                                  | 40   | 802.11a | OFDM      | 20         | 18.0                                    | 17.88       | -0.18       | 10 mm   | 71777            | 6         | front | 99.1          | 1.340                    | 0.654    | 1.028          | 1.009          | 0.678                |        |
| 5200                                                  | 40   | 802.11a | OFDM      | 20         | 18.0                                    | 17.88       | 0.16        | 10 mm   | 71777            | 6         | top   | 99.1          | 0.945                    | -        | 1.028          | 1.009          | -                    |        |
| 5200                                                  | 40   | 802.11a | OFDM      | 20         | 18.0                                    | 17.88       | -0.04       | 10 mm   | 71777            | 6         | right | 99.1          | 2.120                    | 1.010    | 1.028          | 1.009          | 1.048                | A25    |
| 5220                                                  | 44   | 802.11a | OFDM      | 20         | 18.0                                    | 17.50       | -0.04       | 10 mm   | 71777            | 6         | right | 99.1          | 1.917                    | 0.874    | 1.122          | 1.009          | 0.989                |        |
| 5240                                                  | 48   | 802.11a | OFDM      | 20         | 18.0                                    | 17.53       | 0.06        | 10 mm   | 71777            | 6         | right | 99.1          | 1.908                    | 0.954    | 1.114          | 1.009          | 1.072                |        |
| 5200                                                  | 40   | 802.11a | OFDM      | 20         | 18.0                                    | 17.88       | -0.07       | 10 mm   | 71777            | 6         | right | 99.1          | 1.951                    | 0.983    | 1.028          | 1.009          | 1.020                |        |
| 5785                                                  | 157  | 802.11a | OFDM      | 20         | 18.0                                    | 17.62       | -0.07       | 10 mm   | 71777            | 6         | back  | 99.1          | 1.598                    | 0.671    | 1.091          | 1.009          | 0.739                |        |
| 5785                                                  | 157  | 802.11a | OFDM      | 20         | 18.0                                    | 17.62       | 0.07        | 10 mm   | 71777            | 6         | front | 99.1          | 1.416                    | 0.597    | 1.091          | 1.009          | 0.657                |        |
| 5785                                                  | 157  | 802.11a | OFDM      | 20         | 18.0                                    | 17.62       | 0.19        | 10 mm   | 71777            | 6         | top   | 99.1          | 0.820                    | -        | 1.091          | 1.009          | -                    |        |
| 5785                                                  | 157  | 802.11a | OFDM      | 20         | 18.0                                    | 17.62       | 0.17        | 10 mm   | 71777            | 6         | right | 99.1          | 1.523                    | 0.700    | 1.091          | 1.009          | 0.771                |        |
|                                                       |      | ANSI /  | IEEE C95. | 1 1992 - S | AFETY LIMIT                             |             |             |         |                  |           |       |               | . В                      | ody      | 1              |                |                      |        |
| Spatial Peak Uncontrolled Exposure/General Population |      |         |           |            | 1.6 W/kg (mW/g)<br>averaged over 1 gram |             |             |         |                  |           |       |               |                          |          |                |                |                      |        |

Note: Blue data represents variability measurement.

| FCC ID: ZNFX210MA      | PCTEST INDICATE LABORATORY, INC. | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|----------------------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:                      | DUT Type:                | Dogo 51 of 72                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17              | Portable Handset         | Page 51 of 73                |

### 11.4 SAR Test Notes

#### General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported body-worn SAR was ≤ 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were required.
- 8. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 13 for variability analysis.
- 9. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.7 for more details).

#### **GSM Test Notes:**

- 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- 2. Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- 3. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.
- 4. GPRS was additionally evaluated for head and body-worn exposure conditions to address possible VoIP scenarios.

### **UMTS Notes:**

- UMTS mode in was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
- 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

| FCC ID: ZNFX210MA      | PCTEST:             | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 52 of 73                 |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | Page 52 01 73                 |

### LTE Notes:

- 1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 8.5.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

#### WLAN Notes:

- For held-to-ear and hotspot operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI
  single transmission chain operations, the highest measured maximum output power channel for DSSS
  was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to
  the maximum allowed powers and the highest reported DSSS SAR. See Section 8.6.5 for more
  information.
- 3. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI single transmission chain operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg. See Section 8.6.6 for more information.
- 4. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured.
- 5. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.

| FCC ID: ZNFX210MA      | PCTEST*             | SAR EVALUATION REPORT | LG | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|----|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             |    | Dogg 52 of 72                 |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      |    | Page 53 of 73                 |

# 12 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

#### 12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with built-in unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

### 12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1-g SAR.

When standalone SAR is not required to be measured, per FCC KDB 447498 D01v06 4.3.2 b), the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR=
$$\frac{\sqrt{f(GHz)}}{7.5} * \frac{\text{(Max Power of channel, mW)}}{\text{Min. Separation Distance, mm}}$$

Table 12-1 Estimated SAR

| Mode      | Frequency | Maximum<br>Allowed<br>Power | Separation<br>Distance<br>(Body) | Estimated<br>SAR (Body) |  |
|-----------|-----------|-----------------------------|----------------------------------|-------------------------|--|
|           | [MHz]     | [dBm]                       | [mm]                             | [W/kg]                  |  |
| Bluetooth | 2480      | 10.00                       | 10                               | 0.210                   |  |

Note: Held-to ear configurations are not applicable to Bluetooth operations and therefore were not considered for simultaneous transmission. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

| FCC ID: ZNFX210MA      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 54 of 73                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | Fage 54 01 75                |

# 12.3 Head SAR Simultaneous Transmission Analysis

(\*) For test positions that were not required to be evaluated for WLAN SAR per FCC KDB publication 248227, the worst case WLAN SAR result for applicable exposure conditions was used for simultaneous transmission analysis.

Table 12-2
Simultaneous Transmission Scenario with 2.4 GHz or 5 GHz WLAN (Held to Ear)

| Exposure<br>Condition | Mode              | 2G/3G/4G<br>SAR (W/kg) | 2.4 GHz<br>WLAN SAR<br>(W/kg) | 5 GHz WLAN<br>SAR (W/kg) | Σ SAR (W/kg)    |                 |  |
|-----------------------|-------------------|------------------------|-------------------------------|--------------------------|-----------------|-----------------|--|
|                       |                   | 1                      | 2                             | 3                        | 1+2             | 1+3             |  |
|                       | GSM/GPRS 850      | 0.543                  | 1.105                         | 1.007                    | See Table Below | 1.550           |  |
|                       | GSM/GPRS 1900     | 0.465                  | 1.105                         | 1.007                    | 1.570           | 1.472           |  |
|                       | UMTS 850          | 0.499                  | 1.105                         | 1.007                    | See Table Below | 1.506           |  |
|                       | UMTS 1750         | 0.608                  | 1.105                         | 1.007                    | See Table Below | See Table Below |  |
| Head SAR              | UMTS 1900         | 0.564                  | 1.105                         | 1.007                    | See Table Below | 1.571           |  |
|                       | LTE Band 12       | 0.375                  | 1.105                         | 1.007                    | 1.480           | 1.382           |  |
|                       | LTE Band 5 (Cell) | 0.513                  | 1.105                         | 1.007                    | See Table Below | 1.520           |  |
|                       | LTE Band 66 (AWS) | 0.661                  | 1.105                         | 1.007                    | See Table Below | See Table Below |  |
|                       | LTE Band 2 (PCS)  | 0.652                  | 1.105                         | 1.007                    | See Table Below | See Table Below |  |

| FCC ID: ZNFX210MA      | PCTEST*             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dogg 55 of 72                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | Page 55 of 73                |

| Simult | Тх             | Configu | uration        | GSM<br>SAR (    |                        | WLA                    | 4 GHz<br>AN SA<br>V/kg)   | R                         | ΣSA<br>(W/k |                        | Simult       | t Tx                         | Config                   | uration             |           | RS 850<br>! (W/kg) | WL           | 4 GHz<br>AN SAR<br>W/kg) | Σ SAR<br>(W/kg) |     |  |            |  |
|--------|----------------|---------|----------------|-----------------|------------------------|------------------------|---------------------------|---------------------------|-------------|------------------------|--------------|------------------------------|--------------------------|---------------------|-----------|--------------------|--------------|--------------------------|-----------------|-----|--|------------|--|
|        |                |         |                | 1               |                        |                        | 2                         |                           | 1+2         | 2                      |              |                              |                          |                     |           | 1                  |              | 2                        | 1+2             |     |  |            |  |
|        |                | Right ( | Cheek          | 0.4             | 83                     | 0                      | .502                      |                           | 0.98        | 35                     |              |                              | Right                    | Cheek (             |           | .543               |              | 0.502                    | 1.045           |     |  |            |  |
| Head S | AR -           | Righ    |                | 0.2             |                        |                        | .105*                     |                           | 1.39        |                        | Head S       | SAR                          |                          | t Tilt              |           | .327               |              | .105*                    | 1.432           |     |  |            |  |
|        | -              | Left C  |                | 0.3             |                        |                        | .105<br>).736             |                           | 0.99        | 15                     |              |                              |                          | Cheek<br>Tilt       |           | .458               |              | 1.105<br>0.736           | 1.563<br>1.075  |     |  |            |  |
|        | !              | Lon     |                |                 | Simult                 |                        |                           | Configuration             |             | UMTS<br>SAR (          |              | WLA                          | 4 GHz<br>AN SAR<br>V/kg) | ΣSA<br>(W/k         | ıR        |                    | •            | 5.760                    | 1.070           |     |  |            |  |
|        |                |         |                |                 |                        |                        | 5:                        | 1 . 0                     |             | 1                      |              |                              | 2                        | 1+2                 |           |                    |              |                          |                 |     |  |            |  |
|        |                |         |                |                 |                        |                        |                           | ght Che<br>Right Til      |             | 0.4                    |              |                              | .502<br>.105*            | 1.00<br>1.43        |           | ł                  |              |                          |                 |     |  |            |  |
|        |                |         |                | Head S          | SAR                    |                        | oft Chee                  |                           | 0.3         |                        |              | .105                         | 1.53                     |                     |           |                    |              |                          |                 |     |  |            |  |
|        |                |         |                |                 |                        |                        |                           | Left Tilt                 |             | 0.2                    |              |                              | .736                     | 1.02                |           |                    |              |                          |                 |     |  |            |  |
|        | Head SAR Right |         | uration        |                 | TS 175<br>! (W/k       | 1 \/\                  | 2.4 Gł<br>VLAN S<br>(W/ko | SAR                       | 5 GHz '     |                        |              | ΣSAR                         | (W/kg)                   |                     |           | SP                 | LSR          |                          |                 |     |  |            |  |
|        |                |         | Dight (        | Chook           | 0                      | .380                   |                           | 0.502                     | 2           | 0.9                    |              |                              | 1+2 1+3                  |                     |           | 1+:<br>N//         |              |                          |                 |     |  |            |  |
|        |                |         | Head SAR Righ  |                 | Right Cheel Right Tilt |                        | Diedet Tilt               |                           |             | .226                   | -            | 1.105                        |                          | 0.9                 |           |                    | .882<br>.331 | 1.30<br>1.01             |                 | N/A |  | N/A<br>N/A |  |
|        |                |         | Left Chee      |                 |                        | 0.608                  |                           | 1.105                     |             |                        | 1.007        |                              |                          |                     | ote 1 0.0 |                    |              | 0.02                     |                 |     |  |            |  |
|        |                |         | Left           | Tilt            | 0                      | .254                   |                           | 0.73                      | 6           | 0.7                    | 42           | 0                            | .990                     | 0.99                | 6         | N/A                | 4            | N/A                      |                 |     |  |            |  |
|        |                |         |                | Simu            | ilt Tx                 | Coi                    | nfigura                   | ation                     |             | TS 1900<br>R (W/kg)    | WL           | 4 GHz<br>AN SA<br>W/kg)<br>2 | AR (\                    | SAR<br>W/kg)<br>1+2 |           | LSR<br>+2          |              |                          |                 |     |  |            |  |
|        |                |         | Head           |                 |                        |                        |                           |                           | ght Ch      |                        |              | ).341                        |                          | 0.502               |           | ).843              | N/           |                          |                 |     |  |            |  |
|        |                |         |                |                 | SAR                    |                        | Right T<br>oft Che        |                           |             | 0.207                  |              | .105*<br>I.105               |                          | 1.312<br>Note 1     | N/        | /A<br>03           |              |                          |                 |     |  |            |  |
|        |                |         |                |                 |                        |                        | Left Ti                   |                           |             | ).229                  |              | 0.736                        |                          | 0.965               | N/        |                    |              |                          |                 |     |  |            |  |
|        |                |         |                |                 | Simult                 |                        |                           | nfigurat                  |             | LTE B<br>(Cell)<br>(W/ | and 5<br>SAR | 2.4<br>WLA                   | 4 GHz<br>AN SAR<br>V/kg) | ΣSA<br>(W/k         |           |                    |              |                          |                 |     |  |            |  |
|        |                |         |                |                 |                        |                        | Rio                       | ht Che                    | ok          | 0.5                    |              | 0                            | 2                        | 1+2<br>1.01         |           |                    |              |                          |                 |     |  |            |  |
|        |                |         |                |                 | المحم ر                |                        |                           | Right Til                 |             | 0.3                    |              | _                            | .105*                    | 1.39                |           |                    |              |                          |                 |     |  |            |  |
|        |                |         |                |                 | Head S                 | MK                     | Le                        | ft Chee                   | ek          | 0.4                    |              |                              | .105                     | 1.52                |           |                    |              |                          |                 |     |  |            |  |
|        |                |         |                | L               |                        |                        |                           | Left Tilt                 |             | 0.2                    | 76           | 0                            | .736                     | 1.01                | 2         |                    |              |                          | _               |     |  |            |  |
|        | Simul          | t Tx    | Config         | uration         | (AW                    | Band<br>S) SA<br>V/kg) |                           | 2.4 GI<br>VLAN S<br>(W/ko | SAR         | 5 GHz '                |              |                              | ΣSAR                     | (W/kg)              |           |                    | SP           | LSR                      |                 |     |  |            |  |
|        |                |         | Diah.          | Charle          |                        | 1                      |                           | 2                         | 2           | 3                      |              |                              | 1+2                      | 1+3                 |           | 1+:                |              | 1+3                      |                 |     |  |            |  |
|        |                | ,       | Right<br>Righ  |                 |                        | .419                   |                           | 0.502<br>1.105            |             | 0.9                    |              |                              | .921                     | 1.34<br>1.00        |           | N/A                |              | N/A<br>N/A               | $\dashv$        |     |  |            |  |
|        | Head S         | SAR     | Left C         | heek            |                        | .661                   |                           | 1.10                      |             | 1.0                    |              | See                          | Note 1                   | See No              |           | 0.0                |              | 0.02                     |                 |     |  |            |  |
|        |                |         | Left           | Tilt            | 0                      | .323                   |                           | 0.73                      | 6           | 0.7                    | 42           | 1                            | .059                     | 1.06                | 5         | N/A                | 4            | N/A                      |                 |     |  |            |  |
|        | Simult Tx C    |         | Config         | uration         | (PC                    | Band<br>S) SA<br>V/kg) |                           | 2.4 GI<br>VLAN S<br>(W/kç | SAR         | 5 GHz '                |              |                              | Σ SAR                    | (W/kg)              |           |                    | SP           | LSR                      |                 |     |  |            |  |
|        |                |         |                |                 |                        | 1                      |                           | 2                         |             | 3                      | 3            | '                            | 1+2                      | 1+3                 | 3         | 1+3                | 2            | 1+3                      | 1               |     |  |            |  |
|        |                |         | Right          |                 |                        | .372                   |                           | 0.502                     |             | 0.9                    |              |                              | .874                     | 1.29                |           | N/A                |              | N/A                      |                 |     |  |            |  |
|        | Head S         | SAR     | Righ<br>Left C | t Tilt<br>`hook |                        | .652                   |                           | 1.105                     |             | 0.7<br>1.0             |              |                              | .344<br>Note 1           | 1.02<br>See No      |           | N/A<br>0.0         |              | N/A<br>0.02              | $\dashv$        |     |  |            |  |
|        |                |         | Left           |                 |                        | .288                   |                           | 0.73                      |             | 0.7                    |              |                              | .024                     | 1.03                |           | N/A                |              | N/A                      |                 |     |  |            |  |
| ,      |                |         |                |                 |                        |                        |                           |                           |             |                        |              |                              |                          |                     |           |                    |              |                          |                 |     |  |            |  |

1. No evaluation was performed to determine the aggregate 1g SAR for these configurations as the SPLS ratio between the antenna pairs was not greater than 0.04 per FCC KDB 447498 D01v06. See Section 12.6 for detailed SPLS ratio analysis.

| FCC ID: ZNFX210MA      | PCTEST*             | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Dogo E6 of 72                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset         | Page 56 of 73                |

# 12.4 Body-Worn Simultaneous Transmission Analysis

Table 12-3
Simultaneous Transmission Scenario with 2.4 GHz or 5 GHz WLAN (Body-Worn at 1.0 cm)

| Exposure<br>Condition | Mode              | 2G/3G/4G<br>SAR (W/kg)  2.4 GHz<br>WLAN SAR<br>(W/kg) |       | 5 GHz WLAN<br>SAR (W/kg) | ΣSAR       | (W/kg)     | SPLSR |      |
|-----------------------|-------------------|-------------------------------------------------------|-------|--------------------------|------------|------------|-------|------|
|                       |                   | 1                                                     | 2     | 3                        | 1+2        | 1+3        | 1+2   | 1+3  |
|                       | GSM/GPRS 850      | 0.744                                                 | 0.742 | 0.885                    | 1.486      | See Note 1 | N/A   | 0.03 |
|                       | GSM/GPRS 1900     | 0.521                                                 | 0.742 | 0.885                    | 1.263      | 1.406      | N/A   | N/A  |
|                       | UMTS 850          | 0.686                                                 | 0.742 | 0.885                    | 1.428      | 1.571      | N/A   | N/A  |
|                       | UMTS 1750         | 0.902                                                 | 0.742 | 0.885                    | See Note 1 | See Note 1 | 0.02  | 0.02 |
| Body-Worn             | UMTS 1900         | 0.693                                                 | 0.742 | 0.885                    | 1.435      | 1.578      | N/A   | N/A  |
|                       | LTE Band 12       | 0.647                                                 | 0.742 | 0.885                    | 1.389      | 1.532      | N/A   | N/A  |
|                       | LTE Band 5 (Cell) | 0.627                                                 | 0.742 | 0.885                    | 1.369      | 1.512      | N/A   | N/A  |
|                       | LTE Band 66 (AWS) | 0.700                                                 | 0.742 | 0.885                    | 1.442      | 1.585      | N/A   | N/A  |
|                       | LTE Band 2 (PCS)  | 0.851                                                 | 0.742 | 0.885                    | 1.593      | See Note 1 | N/A   | 0.02 |

Table 12-4
Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 1.0 cm)

| Exposure<br>Condition | Mode              | 2G/3G/4G<br>SAR (W/kg) | Bluetooth<br>SAR (W/kg) | Σ SAR<br>(W/kg) |
|-----------------------|-------------------|------------------------|-------------------------|-----------------|
|                       |                   | 1                      | 2                       | 1+2             |
|                       | GSM/GPRS 850      | 0.744                  | 0.210                   | 0.954           |
|                       | GSM/GPRS 1900     | 0.521                  | 0.210                   | 0.731           |
|                       | UMTS 850          | 0.686                  | 0.210                   | 0.896           |
|                       | UMTS 1750         | 0.902                  | 0.210                   | 1.112           |
| Body-Worn             | UMTS 1900         | 0.693                  | 0.210                   | 0.903           |
|                       | LTE Band 12       | 0.647                  | 0.210                   | 0.857           |
|                       | LTE Band 5 (Cell) | 0.627                  | 0.210                   | 0.837           |
|                       | LTE Band 66 (AWS) | 0.700                  | 0.210                   | 0.910           |
|                       | LTE Band 2 (PCS)  | 0.851                  | 0.210                   | 1.061           |

Note: Bluetooth SAR was not required to be measured per FCC KDB 447498. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

### Note:

 No evaluation was performed to determine the aggregate 1g SAR for these configurations as the SPLS ratio between the antenna pairs was not greater than 0.04 per FCC KDB 447498 D01v06. See Section 12.6 for detailed SPLS ratio analysis.

| F  | CC ID: ZNFX210MA      | PCTEST*             | SAR EVALUATION REPORT LG | Approved by:  Quality Manager |
|----|-----------------------|---------------------|--------------------------|-------------------------------|
| D  | ocument S/N:          | Test Dates:         | DUT Type:                | Dags 57 of 72                 |
| 11 | M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset         | Page 57 01 73                 |
|    | M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset         | Page 57 of 73                 |

© 2017 PCTEST Engineering Laboratory, Inc.

09/05/2017

# 12.5 Hotspot SAR Simultaneous Transmission Analysis

Per FCC KDB Publication 941225 D06v02r01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

(\*) For test positions that were not required to be evaluated for WLAN SAR per FCC KDB publication 248227, the worst case WLAN SAR result for applicable exposure conditions was used for simultaneous transmission analysis.

Table 12-5
Simultaneous Transmission Scenario with 2.4 GHz or 5 GHz WLAN (Hotspot at 1.0 cm)

| Exposure<br>Condition | Mode              | 2G/3G/4G<br>SAR (W/kg) | 2.4 GHz<br>WLAN SAR<br>(W/kg) | 5 GHz WLAN<br>SAR (W/kg) | ΣSAR            | (W/kg)          |
|-----------------------|-------------------|------------------------|-------------------------------|--------------------------|-----------------|-----------------|
|                       |                   | 1                      | 2                             | 3                        | 1+2             | 1+3             |
|                       | GPRS 850          | 0.744                  | 0.742                         | 1.072                    | 1.486           | See Table Below |
|                       | GPRS 1900         | 0.521                  | 0.742                         | 1.072                    | 1.263           | 1.593           |
|                       | UMTS 850          | 0.686                  | 0.742                         | 1.072                    | 1.428           | See Table Below |
|                       | UMTS 1750         | 0.999                  | 0.742                         | 1.072                    | See Table Below | See Table Below |
| Hotspot SAR           | UMTS 1900         | 0.693                  | 0.742                         | 1.072                    | 1.435           | See Table Below |
|                       | LTE Band 12       | 0.647                  | 0.742                         | 1.072                    | 1.389           | See Table Below |
|                       | LTE Band 5 (Cell) | 0.627                  | 0.742                         | 1.072                    | 1.369           | See Table Below |
|                       | LTE Band 66 (AWS) | 0.958                  | 0.742                         | 1.072                    | See Table Below | See Table Below |
|                       | LTE Band 2 (PCS)  | 0.851                  | 0.742                         | 1.072                    | 1.593           | See Table Below |

| FCC ID: ZNFX210MA      | PCTEST*             | SAR EVALUATION REPORT | <b>L</b> G | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             |            | Dogg 50 of 72                 |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      |            | Page 58 of 73                 |

|             |    | Sir           | mult Tx | Co         | onfigurat                | ion           |                         | RS 850<br>R (W/kg)        |                 |                                 | /LAN<br>//kg)  |             | SAR<br>V/kg)         | SPLSF          | R          |             |
|-------------|----|---------------|---------|------------|--------------------------|---------------|-------------------------|---------------------------|-----------------|---------------------------------|----------------|-------------|----------------------|----------------|------------|-------------|
|             |    |               |         |            |                          |               |                         | 1                         |                 | 2                               |                | ,           | 1+2                  | 1+2            | -          |             |
|             |    |               |         | +          | Back                     |               | (                       | ).744                     | (               | 0.93                            | 9              |             | Note 1               | 0.03           | _          |             |
|             |    |               |         |            | Front                    |               |                         | ).576                     | (               | .67                             | 8              | 1           | .254                 | N/A            |            |             |
|             |    | Hots          | pot SAF | <b>-</b>   | Top<br>Bottom            |               |                         | .166                      | 1               | .072                            | 2*             |             | .072                 | N/A<br>N/A     | _          |             |
|             |    | į             |         |            | Right                    |               |                         | ).608                     | 1               | .07                             | 2              |             | Note 1               | 0.03           |            |             |
|             |    |               |         |            | Left                     |               | (                       | .265                      |                 |                                 |                | 0           | .265                 | N/A            |            |             |
|             |    | Sir           | mult Tx | Co         | onfigurat                | ion           |                         | TS 850<br>R (W/kg)        |                 |                                 | /LAN<br>//kg)  |             | SAR<br>V/kg)         | SPLSF          | 2          |             |
|             |    |               |         |            |                          |               |                         | 1                         |                 | 2                               |                |             | 1+2                  | 1+2            |            |             |
|             |    | ŀ             |         | -          | Back<br>Front            |               |                         | ).686<br>).521            |                 | ).93<br>).67                    |                |             | Note 1<br>.199       | 0.03<br>N/A    | -          |             |
|             |    | Hoto          | pot SAF | . 🗀        | Тор                      |               | Š                       | -                         |                 | .072                            |                |             | .072                 | N/A            |            |             |
|             |    | HULS          | pot SAF | `          | Bottom                   |               |                         | .201                      |                 | -                               |                |             | .201                 | N/A            |            |             |
|             | -  | ł             |         | -          | Right<br>Left            |               | -                       | 0.460                     | 1               | .07                             | 2              |             | .324                 | N/A<br>N/A     | -          |             |
|             |    |               |         | _          | Loit                     |               |                         |                           | _               | Ť                               |                |             | .024                 | IVA            |            |             |
| Simult Tx   | Co | nfigur        | ration  |            | 3 1750<br>(W/kg)         | WLA           | 4 GHz<br>NN SA<br>V/kg) | D 2 G                     | lz WL<br>R (W/k |                                 |                | ΣSA         | AR (W/k              | g)             | SF         | PLSR        |
|             |    | Bac           | k       |            | 902                      | 0             | .742                    |                           | 3               |                                 |                | 1+2<br>Note |                      | 1+3<br>Note 1  | 1+2        | 1+3         |
| 1           |    | Fron          | nt      |            | 999                      | 0             | .489                    | (                         | 0.678           |                                 | 1              | .488        | See                  | Note 1         | N/A        | 0.02        |
| Hotspot SAR |    | Top           | )       |            | -                        |               | 742*                    |                           | .072*           |                                 | 0              | .742        | 1                    | .072           | N/A        | N/A         |
|             |    | Botto<br>Righ |         | 0.5        | 555<br>-                 | 0             | -<br>742*               | -                         | .072            |                                 |                | .742        |                      | .555           | N/A<br>N/A | N/A<br>N/A  |
|             |    | Left          |         | 0.4        | 147                      | 0.            | -                       |                           | -               |                                 |                | .447        |                      | .447           | N/A        | N/A         |
|             |    | Sir           | mult Tx | Co         | onfigurat                | ion           |                         | TS 1900<br>R (W/kg)       |                 |                                 | /LAN<br>//kg)  |             | SAR<br>V/kg)         | SPLSF          | ₹          |             |
|             |    |               |         |            |                          |               |                         | 1                         | _               | 2                               |                |             | 1+2                  | 1+2            |            |             |
|             |    |               |         | -          | Back<br>Front            |               |                         | 0.693                     |                 | 0.939 See Note 1<br>0.678 1.344 |                |             | 0.02<br>N/A          | -              |            |             |
|             |    |               | Тор     |            | -                        |               | 1                       | .072                      | 2*              |                                 | .072           | N/A         |                      |                |            |             |
|             |    | 11013         | pot OAI | `—         | Bottom                   |               | 0.2                     |                           | 1.072           |                                 |                | 0.259 N/    |                      | _              |            |             |
|             |    |               |         | -          | Right<br>Left            |               | -                       | .478                      | 1               | .07                             | 2              |             | .072<br>.478         | N/A<br>N/A     | -          |             |
|             |    |               | Simu    | lt Tx      | Configuration            |               | ion                     | LTE Ba<br>SAR (V          |                 |                                 | SHz V<br>AR (W |             | ΣSA<br>(W/k          |                |            |             |
|             |    |               |         |            |                          | Pook          |                         | 1                         | 17              |                                 | 2              | 0           | 1+2                  |                |            |             |
|             |    |               | İ       |            |                          | Back<br>Front |                         | 0.64                      | 21              |                                 | 0.93           | 8           | 1.58<br>1.09         |                |            |             |
|             |    |               | Hotspo  | t SAR      |                          | Top           |                         | -                         |                 |                                 | 1.072          |             | 1.07                 | 2              |            |             |
|             |    |               |         |            |                          | ottom         |                         | 0.13                      |                 | H                               | 1.07           | 2           | 0.13<br>1.56         |                |            |             |
|             |    |               | ľ       |            |                          | Right<br>Left |                         | 0.40                      |                 | Н                               | 1.07           |             | 0.37                 |                |            |             |
|             |    |               | Simu    | ılt Tx     | Cont                     | igurati       | ion                     | LTE Ba<br>(Cell)          | and 5<br>SAR    |                                 | SHz V<br>AR (W |             | ΣSA<br>(W/k          | ·R             |            |             |
|             |    |               |         |            |                          |               |                         | 1                         |                 |                                 | 2              |             | 1+2                  | 2              |            |             |
|             |    |               |         |            |                          | Back          |                         | 0.62                      |                 |                                 | 0.93           |             | 1.56                 |                |            |             |
|             |    |               | 1       |            |                          | Front         |                         | 0.48                      | 38              | H                               | 0.67           |             | 1.16                 |                |            |             |
|             |    |               | Hotspo  | t SAR      | В                        | Top<br>ottom  | _                       | 0.23                      | 37              |                                 | 1.072          |             | 0.23                 |                |            |             |
|             |    |               |         |            |                          | Right         |                         | 0.5                       | 3               | Е                               | 1.07           | 2           | 1.58                 | 5              |            |             |
| Simult Tx   | Co | nfigur        | ration  | (AWS       | and 66<br>i) SAR<br>/kg) | WLA           | 4 GHz<br>NN SA<br>V/kg) | D 0 G                     | lz WL<br>R (W/k |                                 |                | ΣSA         | 0.37<br>AR (W/k      |                | SF         | PLSR        |
|             |    |               |         |            | 1                        |               | 2                       |                           | 3               | ٦                               |                | 1+2         | 1                    | 1+3            | 1+2        | 1+3         |
|             |    | Bac           | k       |            | 700                      |               | .742                    | (                         | 0.939           |                                 |                | .442        | See                  | Note 1         | N/A        | 0.02        |
|             |    | Fron          |         | 0.9        | 958                      |               | .489                    |                           | 0.678           |                                 |                | 742         |                      | Note 1<br>.072 | N/A<br>N/A | 0.02<br>N/A |
| Hotspot SAR | _  | Top<br>Botto  |         | 0.5        | 597                      |               |                         |                           | .072*           |                                 |                | .742        |                      | .597           | N/A<br>N/A | N/A<br>N/A  |
|             |    | Righ          | nt      |            | - 436                    | 0.            | 742*                    |                           | .072            |                                 | 0              | .742        | 1                    | .072           | N/A        | N/A         |
|             |    | Left          | mult Tx |            | onfigurat                | ion           | (PC                     | Band 2<br>S) SAR<br>N/kg) | 5 GH<br>SAF     | R (M                            | /LAN           | (V          | SAR<br>V/kg)         | SPLSF          | N/A        | N/A         |
|             |    | L             |         |            |                          |               |                         | 1                         |                 | 2                               |                |             | l+2                  | 1+2            | _          |             |
|             |    |               |         |            | Back                     |               |                         | 0.851                     |                 | 0.93                            |                |             | Note 1               | 0.02           | -1         |             |
|             |    | u             | not CAP | , <u> </u> | Front<br>Top             |               |                         | 0.630                     |                 | 0.67<br>.072                    |                |             | . <b>308</b><br>.072 | N/A<br>N/A     | Ⅎ          |             |
|             |    | Hots          | pot SAF | `          | Bottom                   |               | (                       | 0.269                     |                 | -                               |                | 0           | .269                 | N/A            | 7          |             |
|             |    | ŀ             |         |            | Right<br>Left            |               | -                       | 0.535                     | 1               | .07                             | 2              | 1           | .072<br>.535         | N/A<br>N/A     | $\dashv$   |             |
|             |    | _             |         | -1         | Len                      |               |                         |                           |                 |                                 |                |             | .000                 | IWA            | _          |             |

### Note:

No evaluation was performed to determine the aggregate 1g SAR for these configurations as the SPLS ratio between the antenna pairs was not greater than 0.04 per FCC KDB 447498 D01v06. See Section 12.6 for detailed SPLS ratio analysis.

| FCC ID: ZNFX210MA      | PCTEST*             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dogo 50 of 72                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | Page 59 of 73                |

# 12.6 SPLSR Evaluation and Analysis

Per FCC KDB Publication 447498 D01v06, when the sum of the standalone transmitters is more than 1.6 W/kg for 1g, the SAR sum to peak locations can be analyzed to determine SAR distribution overlaps. When the SAR peak to location ratio (shown below) for each pair of antennas is  $\leq$  0.04 for 1g, simultaneous SAR evaluation is not required. The distance between the transmitters was calculated using the following formulas.

Head: Distance<sub>Tx1-Tx2</sub> = R<sub>i</sub> = 
$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$
  
Body: Distance<sub>Tx1-Tx2</sub> = R<sub>i</sub> =  $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$   
SPLS Ratio =  $\frac{(SAR_1 + SAR_2)^{1.5}}{R_i}$ 

# 12.6.1 Head Left Cheek SPLSR Evaluation and Analysis

Table 12-6
Peak SAR Locations for Head Left Cheek

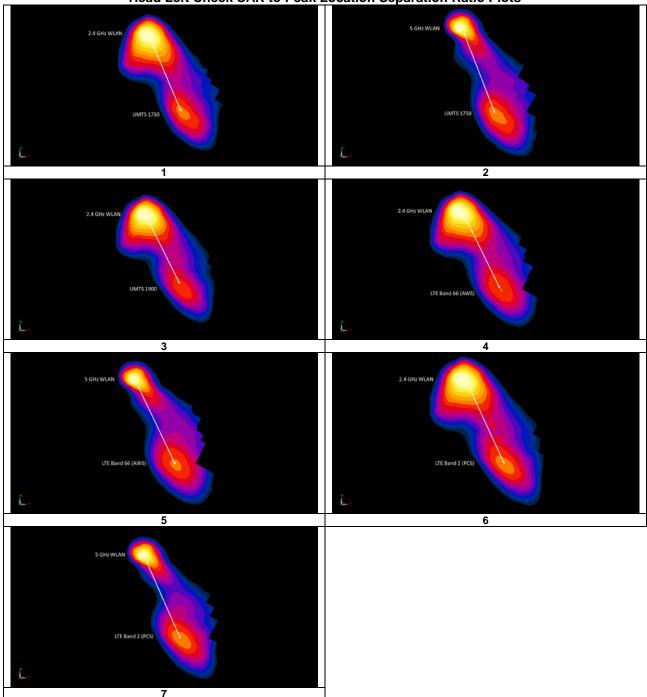

| Mode/Band         | x (mm) | y (mm) | z (mm)  | Reported<br>SAR (W/kg) |
|-------------------|--------|--------|---------|------------------------|
| 2.4 GHz WLAN      | 17.25  | 325.61 | -172.37 | 1.105                  |
| 5 GHz WLAN        | 10.87  | 338.26 | -172.42 | 1.007                  |
| UMTS 1750         | 43.96  | 252.60 | -169.34 | 0.608                  |
| UMTS 1900         | 52.77  | 249.24 | -168.92 | 0.564                  |
| LTE Band 66 (AWS) | 49.36  | 251.23 | -171.10 | 0.661                  |
| LTE Band 2 (PCS)  | 52.77  | 249.24 | -168.94 | 0.652                  |

Table 12-7
Head Left Cheek SAR to Peak Location Separation Ratio Calculations

| Anten        | Antenna Pair      |       | Antenna Pair  Standalone 1g SAR (W/kg) |       | Standalone<br>SAR Sum<br>(W/kg) | Peak SAR<br>Separation<br>Distance (mm) | SPLS Ratio | Plot<br>Number |
|--------------|-------------------|-------|----------------------------------------|-------|---------------------------------|-----------------------------------------|------------|----------------|
| Ant "a"      | Ant "b"           | а     | b                                      | a+b   | $D_{a-b}$                       | (a+b) <sup>1.5</sup> /D <sub>a-b</sub>  |            |                |
| 2.4 GHz WLAN | UMTS 1750         | 1.105 | 0.608                                  | 1.713 | 77.80                           | 0.03                                    | 1          |                |
| 5 GHz WLAN   | UMTS 1750         | 1.007 | 0.608                                  | 1.615 | 91.88                           | 0.02                                    | 2          |                |
| 2.4 GHz WLAN | UMTS 1900         | 1.105 | 0.564                                  | 1.669 | 84.30                           | 0.03                                    | 3          |                |
| 2.4 GHz WLAN | LTE Band 66 (AWS) | 1.105 | 0.661                                  | 1.766 | 81.02                           | 0.03                                    | 4          |                |
| 5 GHz WLAN   | LTE Band 66 (AWS) | 1.007 | 0.661                                  | 1.668 | 95.17                           | 0.02                                    | 5          |                |
| 2.4 GHz WLAN | LTE Band 2 (PCS)  | 1.105 | 0.652                                  | 1.757 | 84.30                           | 0.03                                    | 6          |                |
| 5 GHz WLAN   | LTE Band 2 (PCS)  | 1.007 | 0.652                                  | 1.659 | 98.45                           | 0.02                                    | 7          |                |

| FCC ID: ZNFX210MA      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dogo 60 of 72                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | Page 60 of 73                |

**Table 12-8** Head Left Cheek SAR to Peak Location Separation Ratio Plots

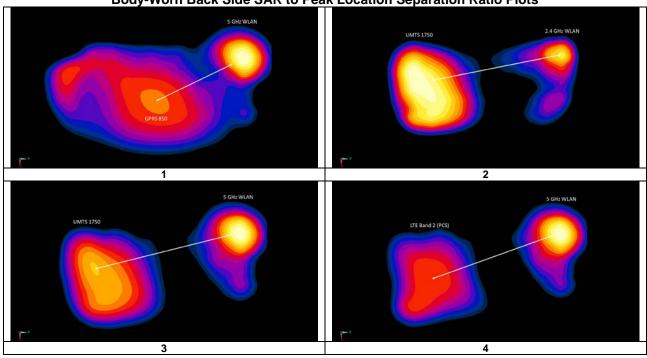


| FCC ID: ZNFX210MA                     | PCTEST*             | SAR EVALUATION REPORT | <b>(</b> LG | Approved by: Quality Manager |
|---------------------------------------|---------------------|-----------------------|-------------|------------------------------|
| Document S/N:                         | Test Dates:         | DUT Type:             |             | Dogo 64 of 72                |
| 1M1710020259-01-R1.ZNF                | 10/02/17 - 10/12/17 | Portable Handset      |             | Page 61 of 73                |
| 17 DCTEST Engineering Laboratory Inc. |                     |                       |             | DE\/ 10 / M                  |

# 12.6.2 Body-Worn Back Side SPLSR Evaluation and Analysis

Table 12-9
Peak SAR Locations for Body-Worn Back Side

| 1 0411 07 111 200411011 | <u> </u> |        | 711 01010              |
|-------------------------|----------|--------|------------------------|
| Mode/Band               | x (mm)   | y (mm) | Reported<br>SAR (W/kg) |
| 2.4 GHz WLAN            | -38.20   | 57.60  | 0.742                  |
| 5 GHz WLAN              | -46.00   | 69.00  | 0.885                  |
| GPRS 850                | -25.00   | -6.00  | 0.744                  |
| UMTS 1750               | -18.50   | -55.50 | 0.902                  |
| LTE Band 2 (PCS)        | -24.50   | -37.50 | 0.851                  |


Table 12-10

Body-Worn Back Side SAR to Peak Location Separation Ratio Calculations

| Antenna Pair |                  | Standalone 1g SAR<br>(W/kg) |       | Standalone<br>SAR Sum<br>(W/kg) | Peak SAR<br>Separation<br>Distance (mm) | SPLS Ratio                             | Plot<br>Number |
|--------------|------------------|-----------------------------|-------|---------------------------------|-----------------------------------------|----------------------------------------|----------------|
| Ant "a"      | Ant "b"          | a b                         |       | a+b                             | D <sub>a-b</sub>                        | (a+b) <sup>1.5</sup> /D <sub>a-b</sub> |                |
| 5 GHz WLAN   | GPRS 850         | 0.885                       | 0.744 | 1.629                           | 77.88                                   | 0.03                                   | 1              |
| 2.4 GHz WLAN | UMTS 1750        | 0.742                       | 0.902 | 1.644                           | 114.80                                  | 0.02                                   | 2              |
| 5 GHz WLAN   | UMTS 1750        | 0.885                       | 0.902 | 1.787                           | 127.50                                  | 0.02                                   | 3              |
| 5 GHz WLAN   | LTE Band 2 (PCS) | 0.885                       | 0.851 | 1.736                           | 108.65                                  | 0.02                                   | 4              |

| SINGINEERING LASOKATHEE, INC. | SAR EVALUATION REPORT | Quality Manager     |
|-------------------------------|-----------------------|---------------------|
| est Dates:                    | DUT Type:             | Daga 62 of 72       |
| )/02/17 - 10/12/17            | Portable Handset      | Page 62 of 73       |
|                               | st Dates:             | st Dates: DUT Type: |

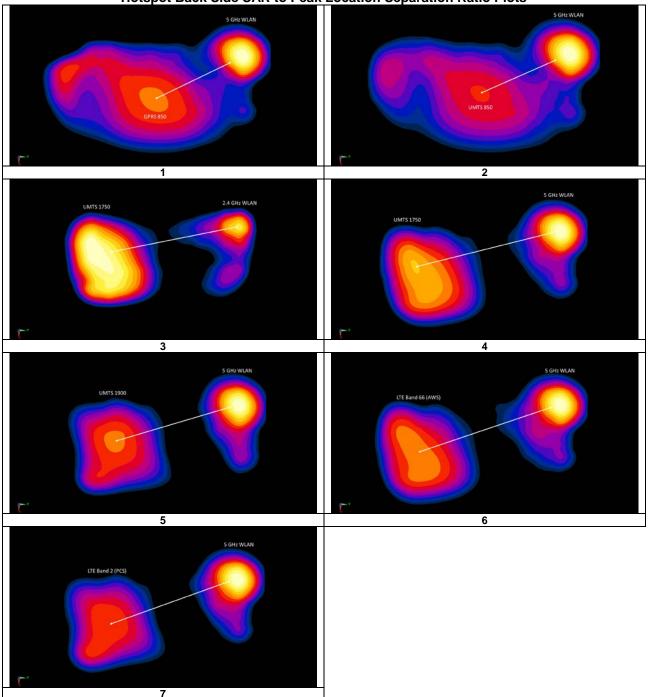
**Table 12-11 Body-Worn Back Side SAR to Peak Location Separation Ratio Plots** 



| FCC ID: ZNFX210MA      | PCTEST*             | SAR EVALUATION REPORT | Approved by:  Quality Manager |
|------------------------|---------------------|-----------------------|-------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Dogg 62 of 72                 |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | Page 63 of 73                 |

#### **Hotspot Back Side SPLSR Evaluation and Analysis** 12.6.3

**Table 12-12 Peak SAR Locations for Hotspot Back Side** 


| 1 cak OAK Locations for Hotspot Back oldc |        |        |                        |  |  |  |  |
|-------------------------------------------|--------|--------|------------------------|--|--|--|--|
| Mode/Band                                 | x (mm) | y (mm) | Reported<br>SAR (W/kg) |  |  |  |  |
| 2.4 GHz WLAN                              | -38.20 | 57.60  | 0.742                  |  |  |  |  |
| 5 GHz WLAN                                | -47.00 | 57.00  | 0.939                  |  |  |  |  |
| GPRS 850                                  | -25.00 | -6.00  | 0.744                  |  |  |  |  |
| UMTS 850                                  | -16.50 | 3.50   | 0.686                  |  |  |  |  |
| UMTS 1750                                 | -18.50 | -55.50 | 0.902                  |  |  |  |  |
| UMTS 1900                                 | -23.00 | -39.00 | 0.693                  |  |  |  |  |
| LTE Band 66 (AWS)                         | -3.50  | -46.50 | 0.7                    |  |  |  |  |
| LTE Band 2 (PCS)                          | -24.50 | -37.50 | 0.851                  |  |  |  |  |

**Table 12-13** Hotspot Back Side SAR to Peak Location Separation Ratio Calculations

| Antenn       | a Pair Standalone 1g SAR (W/kg) |       | Standalone<br>SAR Sum<br>(W/kg) | Peak SAR<br>Separation<br>Distance (mm) | SPLS Ratio | Plot<br>Number                         |   |
|--------------|---------------------------------|-------|---------------------------------|-----------------------------------------|------------|----------------------------------------|---|
| Ant "a"      | Ant "b"                         | а     | b                               | a+b                                     | $D_{a-b}$  | (a+b) <sup>1.5</sup> /D <sub>a-b</sub> |   |
| 5 GHz WLAN   | GPRS 850                        | 0.939 | 0.744                           | 1.683                                   | 66.73      | 0.03                                   | 1 |
| 5 GHz WLAN   | UMTS 850                        | 0.939 | 0.686                           | 1.625                                   | 61.58      | 0.03                                   | 2 |
| 2.4 GHz WLAN | UMTS 1750                       | 0.742 | 0.902                           | 1.644                                   | 114.80     | 0.02                                   | 3 |
| 5 GHz WLAN   | UMTS 1750                       | 0.939 | 0.902                           | 1.841                                   | 116.05     | 0.02                                   | 4 |
| 5 GHz WLAN   | UMTS 1900                       | 0.939 | 0.693                           | 1.632                                   | 98.95      | 0.02                                   | 5 |
| 5 GHz WLAN   | LTE Band 66 (AWS)               | 0.939 | 0.7                             | 1.639                                   | 112.27     | 0.02                                   | 6 |
| 5 GHz WLAN   | LTE Band 2 (PCS)                | 0.939 | 0.851                           | 1.790                                   | 97.14      | 0.02                                   | 7 |

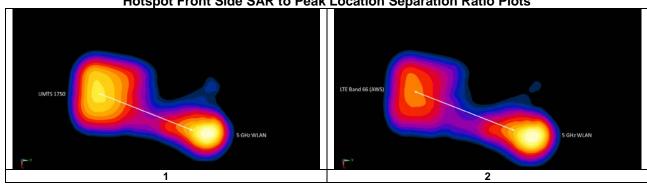
| FCC ID: ZNFX210MA      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 64 of 73                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | Fage 64 01 73                |

**Table 12-14** Hotspot Back Side SAR to Peak Location Separation Ratio Plots



| FCC ID: ZNFX210MA                      | PCTEST*             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|----------------------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:                          | Test Dates:         | DUT Type:             | Daga 65 of 72                |
| 1M1710020259-01-R1.ZNF                 | 10/02/17 - 10/12/17 | Portable Handset      | Page 65 of 73                |
| 117 DCTEST Engineering Laboratory Inc. |                     |                       | DE\/ 10 / M                  |

# 12.6.4 Hotspot Front Side SPLSR Evaluation and Analysis


Table 12-15
Peak SAR Locations for Hotspot Front Side

| 1 eak OAK Locations for Hotspot Front Side |        |        |                        |  |  |  |  |  |
|--------------------------------------------|--------|--------|------------------------|--|--|--|--|--|
| Mode/Band                                  | x (mm) | y (mm) | Reported<br>SAR (W/kg) |  |  |  |  |  |
| 5 GHz WLAN                                 | 17.00  | 56.00  | 0.678                  |  |  |  |  |  |
| UMTS 1750                                  | -21.50 | -57.00 | 0.999                  |  |  |  |  |  |
| LTE Band 66 (AWS)                          | -21.50 | -55.50 | 0.958                  |  |  |  |  |  |

Table 12-16
Hotspot Front Side SAR to Peak Location Separation Ratio Calculations

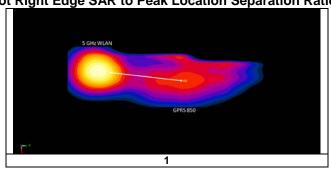
| Antenna Pair |                   | Standalone 1g SAR<br>(W/kg) |       | Standalone<br>SAR Sum<br>(W/kg) | Peak SAR<br>Separation<br>Distance (mm) | SPLS Ratio                             | Plot<br>Number |
|--------------|-------------------|-----------------------------|-------|---------------------------------|-----------------------------------------|----------------------------------------|----------------|
| Ant "a"      | Ant "b"           | а                           | b     | a+b                             | D <sub>a-b</sub>                        | (a+b) <sup>1.5</sup> /D <sub>a-b</sub> |                |
| 5 GHz WLAN   | UMTS 1750         | 0.678                       | 0.999 | 1.677                           | 119.38                                  | 0.02                                   | 1              |
| 5 GHz WLAN   | LTE Band 66 (AWS) | 0.678                       | 0.958 | 1.636                           | 117.96                                  | 0.02                                   | 2              |

Table 12-17
Hotspot Front Side SAR to Peak Location Separation Ratio Plots



| FCC ID: ZNFX210MA                     | PCTEST*             | SAR EVALUATION REPORT | (LG | Approved by:  Quality Manager |
|---------------------------------------|---------------------|-----------------------|-----|-------------------------------|
| Document S/N:                         | Test Dates:         | DUT Type:             |     | Dogg 66 of 72                 |
| 1M1710020259-01-R1.ZNF                | 10/02/17 - 10/12/17 | Portable Handset      |     | Page 66 of 73                 |
| 17 DCTEST Engineering Laboratory Inc. |                     |                       |     | DE\/ 10 / M                   |

# 12.6.5 Hotspot Right Edge SPLSR Evaluation and Analysis


Table 12-18
Peak SAR Locations for Hotspot Right Edge

| r can count because for motopot right bage |        |        |                        |  |  |  |  |  |
|--------------------------------------------|--------|--------|------------------------|--|--|--|--|--|
| Mode/Band                                  | x (mm) | y (mm) | Reported<br>SAR (W/kg) |  |  |  |  |  |
| 5 GHz WLAN                                 | -21.50 | -70.00 | 1.072                  |  |  |  |  |  |
| GPRS 850                                   | -16.50 | 2.00   | 0.608                  |  |  |  |  |  |

Table 12-19
Hotspot Right Edge SAR to Peak Location Separation Ratio Calculations

|   | Antenna Pair Sta |          | Standalone 1g SAR<br>(W/kg) |       | Standalone<br>SAR Sum<br>(W/kg) | Peak SAR<br>Separation<br>Distance (mm) | SPLS Ratio                             | Plot<br>Number |
|---|------------------|----------|-----------------------------|-------|---------------------------------|-----------------------------------------|----------------------------------------|----------------|
| Ī | Ant "a"          | Ant "b"  | а                           | b     | a+b                             | D <sub>a-b</sub>                        | (a+b) <sup>1.5</sup> /D <sub>a-b</sub> |                |
| I | 5 GHz WLAN       | GPRS 850 | 1.072                       | 0.608 | 1.680                           | 72.17                                   | 0.03                                   | 1              |

Table 12-20
Hotspot Right Edge SAR to Peak Location Separation Ratio Plots



### 12.7 Simultaneous Transmission Conclusion

The above numerical summed SAR results and SPLSR analysis are sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528- 2013 Section 6.3.4.1.

| FCC ID: ZNFX210MA      | PCTEST              | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 67 of 73                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | Page 67 01 73                |

# 13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Table 13-1
Head SAR Measurement Variability Results

|      | Tioda of it incuous circuit variability it could                                                  |      |                           |         |                                                 |                                |                      |                             |                                   |          |        |                             |        |     |
|------|---------------------------------------------------------------------------------------------------|------|---------------------------|---------|-------------------------------------------------|--------------------------------|----------------------|-----------------------------|-----------------------------------|----------|--------|-----------------------------|--------|-----|
|      | HEAD VARIABILITY RESULTS                                                                          |      |                           |         |                                                 |                                |                      |                             |                                   |          |        |                             |        |     |
| Band | FREQUENCY<br>Band                                                                                 | ENCY | Mode/Band                 | Service | Side                                            | Test Data Rate Position (Mbps) | Measured<br>SAR (1g) | 1st<br>Repeated<br>SAR (1g) | 2nd<br>Repeated<br>Ratio SAR (1g) | Repeated | Ratio  | 3rd<br>Repeated<br>SAR (1g) | Ratio  |     |
|      | MHz                                                                                               | Ch.  | ]                         |         |                                                 |                                | ( .,, .,             | (W/kg)                      | (W/kg)                            |          | (W/kg) |                             | (W/kg) |     |
| 2450 | 2412.00                                                                                           | 1    | 802.11b, 22 MHz Bandwidth | DSSS    | Left                                            | Cheek                          | 1                    | 1.060                       | 1.060                             | 1.00     | N/A    | N/A                         | N/A    | N/A |
|      | ANSI / IEEE C95.1 1992 - SAFETY LIMIT<br>Spatial Peak<br>Uncontrolled Exposure/General Population |      |                           |         | Head<br>1.6 W/kg (mW/g)<br>averaged over 1 gram |                                |                      |                             |                                   |          |        |                             |        |     |

Table 13-2
Body SAR Measurement Variability Results

|      | Body Of it incucation of variability it counte |       |                                    |                             |                     |       |                      |                      |                             |        |       |                             |        |                             |       |
|------|------------------------------------------------|-------|------------------------------------|-----------------------------|---------------------|-------|----------------------|----------------------|-----------------------------|--------|-------|-----------------------------|--------|-----------------------------|-------|
|      | BODY VARIABILITY RESULTS                       |       |                                    |                             |                     |       |                      |                      |                             |        |       |                             |        |                             |       |
| Band | FREQUENCY                                      |       | Mode                               | Service                     | Data Rate<br>(Mbps) | Side  | Spacing              | Measured<br>SAR (1g) | 1st<br>Repeated<br>SAR (1g) | Ratio  | Ratio | 2nd<br>Repeated<br>SAR (1g) | Ratio  | 3rd<br>Repeated<br>SAR (1g) | Ratio |
|      | MHz                                            | Ch.   |                                    |                             | ( ",")              |       |                      | (W/kg)               | (W/kg)                      | (W/kg) |       |                             | (W/kg) |                             |       |
| 1750 | 1712.40                                        | 1312  | UMTS 1750                          | RMC                         | N/A                 | front | 10 mm                | 0.987                | 0.966                       | 1.02   | N/A   | N/A                         | N/A    | N/A                         |       |
| 1900 | 1900.00                                        | 19100 | LTE Band 2 (PCS), 20 MHz Bandwidth | QPSK, 1 RB, 50<br>RB Offset | N/A                 | back  | 10 mm                | 0.832                | 0.734                       | 1.13   | N/A   | N/A                         | N/A    | N/A                         |       |
| 5250 | 5200.00                                        | 40    | 802.11a, 20 MHz Bandwidth          | OFDM                        | 6                   | right | 10 mm                | 1.010                | 0.983                       | 1.03   | N/A   | N/A                         | N/A    | N/A                         |       |
|      | ANSI / IEEE C95.1 1992 - SAFETY LIMIT          |       |                                    |                             |                     |       | Body                 |                      |                             |        |       |                             |        |                             |       |
|      | Spatial Peak                                   |       |                                    |                             |                     |       | 1.6 W/kg (mW/g)      |                      |                             |        |       |                             |        |                             |       |
|      |                                                | U     | ncontrolled Exposure/General Pop   | ulation                     |                     |       | averaged over 1 gram |                      |                             |        |       |                             |        |                             |       |

# 13.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

|    | FCC ID: ZNFX210MA      |                     | SAR EVALUATION REPORT | Approved by: Quality Manager |  |
|----|------------------------|---------------------|-----------------------|------------------------------|--|
|    | Document S/N:          | Test Dates:         | DUT Type:             | Daga C0 of 72                |  |
|    | 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | Page 68 of 73                |  |
| 21 | 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | DEV/19.4 M                   |  |

© 2017 PCTEST Engineering Laboratory, Inc.

09/05/2017

|                                                                                                                                                                                                                                                                                                       | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cal Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cal Interval                                                                                                                                                                                                                                                                                                                                                                                          | Cal Due                                                                                                                                                                                                                                                                                                                    | Serial Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Agilent                                                                                                                                                                                                                                                                                               | E8257D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (250kHz-20GHz) Signal Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3/22/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Annual                                                                                                                                                                                                                                                                                                                                                                                                | 3/22/2018                                                                                                                                                                                                                                                                                                                  | MY45470194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Agilent                                                                                                                                                                                                                                                                                               | 8594A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (9kHz-2.9GHz) Spectrum Analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                   | N/A                                                                                                                                                                                                                                                                                                                        | 3051A00187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Agilent                                                                                                                                                                                                                                                                                               | E4438C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ESG Vector Signal Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3/24/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Biennial                                                                                                                                                                                                                                                                                                                                                                                              | 3/24/2019                                                                                                                                                                                                                                                                                                                  | MY42082385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Agilent                                                                                                                                                                                                                                                                                               | E4438C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ESG Vector Signal Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3/23/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Annual                                                                                                                                                                                                                                                                                                                                                                                                | 3/23/2018                                                                                                                                                                                                                                                                                                                  | MY47270002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Agilent                                                                                                                                                                                                                                                                                               | E4432B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ESG-D Series Signal Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3/24/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Annual                                                                                                                                                                                                                                                                                                                                                                                                | 3/24/2018                                                                                                                                                                                                                                                                                                                  | US40053896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Agilent                                                                                                                                                                                                                                                                                               | N9020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MXA Signal Analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10/28/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Annual                                                                                                                                                                                                                                                                                                                                                                                                | 10/28/2017                                                                                                                                                                                                                                                                                                                 | US46470561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Agilent                                                                                                                                                                                                                                                                                               | N5182A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MXG Vector Signal Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2/28/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Annual                                                                                                                                                                                                                                                                                                                                                                                                | 2/28/2018                                                                                                                                                                                                                                                                                                                  | MY47420800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Agilent                                                                                                                                                                                                                                                                                               | N5182A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MXG Vector Signal Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/27/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Annual                                                                                                                                                                                                                                                                                                                                                                                                | 10/27/2017                                                                                                                                                                                                                                                                                                                 | MY47420603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Agilent                                                                                                                                                                                                                                                                                               | 8753ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S-Parameter Network Analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10/26/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Annual                                                                                                                                                                                                                                                                                                                                                                                                | 10/26/2017                                                                                                                                                                                                                                                                                                                 | US39170118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Agilent                                                                                                                                                                                                                                                                                               | E5515C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Wireless Communications Test Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/29/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Biennial                                                                                                                                                                                                                                                                                                                                                                                              | 1/29/2018                                                                                                                                                                                                                                                                                                                  | GB46310798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Amplifier Research                                                                                                                                                                                                                                                                                    | 15S1G6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Amplifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                   | CBT                                                                                                                                                                                                                                                                                                                        | 433971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Amplifier Research                                                                                                                                                                                                                                                                                    | 15S1G6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Amplifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                   | CBT                                                                                                                                                                                                                                                                                                                        | 433972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Anritsu                                                                                                                                                                                                                                                                                               | MI 2495A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Power Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/16/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Biennial                                                                                                                                                                                                                                                                                                                                                                                              | 10/16/2017                                                                                                                                                                                                                                                                                                                 | 941001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Anritsu                                                                                                                                                                                                                                                                                               | MI 2496A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Power Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3/28/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Annual                                                                                                                                                                                                                                                                                                                                                                                                | 3/28/2018                                                                                                                                                                                                                                                                                                                  | 1351001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Anritsu                                                                                                                                                                                                                                                                                               | ML2496A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Power Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4/20/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Annual                                                                                                                                                                                                                                                                                                                                                                                                | 4/20/2018                                                                                                                                                                                                                                                                                                                  | 1306009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Anritsu                                                                                                                                                                                                                                                                                               | MA2411B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pulse Power Sensor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2/10/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Annual                                                                                                                                                                                                                                                                                                                                                                                                | 2/10/2018                                                                                                                                                                                                                                                                                                                  | 1207364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Anritsu                                                                                                                                                                                                                                                                                               | MA2411B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pulse Power Sensor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2/10/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Annual                                                                                                                                                                                                                                                                                                                                                                                                | 2/10/2018                                                                                                                                                                                                                                                                                                                  | 1339018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Anritsu                                                                                                                                                                                                                                                                                               | MT8821C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Radio Communication Analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7/25/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Annual                                                                                                                                                                                                                                                                                                                                                                                                | 7/25/2018                                                                                                                                                                                                                                                                                                                  | 6201664756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Anritsu                                                                                                                                                                                                                                                                                               | MT8820C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Radio Communication Analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/23/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Annual                                                                                                                                                                                                                                                                                                                                                                                                | 5/23/2018                                                                                                                                                                                                                                                                                                                  | 6201240328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Anritsu                                                                                                                                                                                                                                                                                               | MA24106A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | USB Power Sensor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6/7/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Annual                                                                                                                                                                                                                                                                                                                                                                                                | 6/7/2018                                                                                                                                                                                                                                                                                                                   | 1231538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Anritsu                                                                                                                                                                                                                                                                                               | MA24106A<br>MA24106A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,1,202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Annual                                                                                                                                                                                                                                                                                                                                                                                                | 0,1,2020                                                                                                                                                                                                                                                                                                                   | 1231538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | USB Power Sensor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6/7/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                       | 6/7/2018                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| COMTECH                                                                                                                                                                                                                                                                                               | AR85729-5/5759B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Solid State Amplifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                   | CBT                                                                                                                                                                                                                                                                                                                        | M3W1A00-1002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| COMTech                                                                                                                                                                                                                                                                                               | AR85729-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Solid State Amplifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                   | CBT                                                                                                                                                                                                                                                                                                                        | M1S5A00-009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Control Company                                                                                                                                                                                                                                                                                       | 4040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Therm./Clock/Humidity Monitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3/31/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Biennial                                                                                                                                                                                                                                                                                                                                                                                              | 3/31/2019                                                                                                                                                                                                                                                                                                                  | 170232394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Control Company                                                                                                                                                                                                                                                                                       | 4352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ultra Long Stem Thermometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3/8/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Biennial                                                                                                                                                                                                                                                                                                                                                                                              | 3/8/2018                                                                                                                                                                                                                                                                                                                   | 160261729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Control Company                                                                                                                                                                                                                                                                                       | 4352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ultra Long Stem Thermometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3/8/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Biennial                                                                                                                                                                                                                                                                                                                                                                                              | 3/8/2018                                                                                                                                                                                                                                                                                                                   | 160261732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Keysight                                                                                                                                                                                                                                                                                              | 772D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dual Directional Coupler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                   | CBT                                                                                                                                                                                                                                                                                                                        | MY52180215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MCL                                                                                                                                                                                                                                                                                                   | BW-N6W5+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6dB Attenuator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                   | CBT                                                                                                                                                                                                                                                                                                                        | 1139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MiniCircuits                                                                                                                                                                                                                                                                                          | SLP-2400+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Low Pass Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                   | CBT                                                                                                                                                                                                                                                                                                                        | R8979500903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MiniCircuits                                                                                                                                                                                                                                                                                          | VLF-6000+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Low Pass Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                   | CBT                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MiniCircuits                                                                                                                                                                                                                                                                                          | VLF-6000+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Low Pass Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                   | CBT                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mini-Circuits                                                                                                                                                                                                                                                                                         | BW-N20W5+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DC to 18 GHz Precision Fixed 20 dB Attenuator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                   | CBT                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mini-Circuits                                                                                                                                                                                                                                                                                         | NLP-1200+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Low Pass Filter DC to 1000 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                   | CBT                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mini-Circuits                                                                                                                                                                                                                                                                                         | NLP-2950+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Low Pass Filter DC to 2700 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                   | CBT                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mini-Circuits                                                                                                                                                                                                                                                                                         | BW-N20W5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Power Attenuator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                   | CBT                                                                                                                                                                                                                                                                                                                        | 1226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mitutoyo                                                                                                                                                                                                                                                                                              | CD-6"CSX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Digital Caliper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3/2/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Biennial                                                                                                                                                                                                                                                                                                                                                                                              | 3/2/2018                                                                                                                                                                                                                                                                                                                   | 13264162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Mitutoyo                                                                                                                                                                                                                                                                                              | CD-6"CSX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Digital Caliper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3/2/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Biennial                                                                                                                                                                                                                                                                                                                                                                                              | 3/2/2018                                                                                                                                                                                                                                                                                                                   | 13264165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Narda                                                                                                                                                                                                                                                                                                 | 4014C-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 - 8 GHz SMA 6 dB Directional Coupler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                   | CBT                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Narda                                                                                                                                                                                                                                                                                                 | 4772-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Attenuator (3dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                   | CBT                                                                                                                                                                                                                                                                                                                        | 9406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Narda                                                                                                                                                                                                                                                                                                 | BW-S3W2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Attenuator (3dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                   | CBT                                                                                                                                                                                                                                                                                                                        | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Pasternack                                                                                                                                                                                                                                                                                            | PE2208-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bidirectional Coupler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                   | CBT                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Pasternack                                                                                                                                                                                                                                                                                            | PE2209-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bidirectional Coupler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                   | CBT                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Rohde & Schwarz                                                                                                                                                                                                                                                                                       | CMU200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Base Station Simulator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/11/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Annual                                                                                                                                                                                                                                                                                                                                                                                                | 4/11/2018                                                                                                                                                                                                                                                                                                                  | 836371/0079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Rohde & Schwarz                                                                                                                                                                                                                                                                                       | CMU200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Base Station Simulator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Annual                                                                                                                                                                                                                                                                                                                                                                                                | 12/12/2017                                                                                                                                                                                                                                                                                                                 | 833855/0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                       | CMW500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Rohde & Schwarz                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Radio Communication Tester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10/20/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Annual                                                                                                                                                                                                                                                                                                                                                                                                | 10/20/2017                                                                                                                                                                                                                                                                                                                 | 100976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Rohde & Schwarz                                                                                                                                                                                                                                                                                       | CMW500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Radio Communication Tester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5/4/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Annual                                                                                                                                                                                                                                                                                                                                                                                                | 5/4/2018                                                                                                                                                                                                                                                                                                                   | 112347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Rohde & Schwarz                                                                                                                                                                                                                                                                                       | CMW500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Wideband Radio Communication Tester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7/20/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Annual                                                                                                                                                                                                                                                                                                                                                                                                | 7/20/2018                                                                                                                                                                                                                                                                                                                  | 132885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Rohde & Schwarz                                                                                                                                                                                                                                                                                       | CMW500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Wideband Radio Communication Tester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2/10/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Annual                                                                                                                                                                                                                                                                                                                                                                                                | 2/10/2018                                                                                                                                                                                                                                                                                                                  | 162125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Seekonk                                                                                                                                                                                                                                                                                               | NC-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Torque Wrench                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11/6/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Biennial                                                                                                                                                                                                                                                                                                                                                                                              | 11/6/2017                                                                                                                                                                                                                                                                                                                  | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Seekonk                                                                                                                                                                                                                                                                                               | NC-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Torque Wrench                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11/6/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Biennial                                                                                                                                                                                                                                                                                                                                                                                              | 11/6/2017                                                                                                                                                                                                                                                                                                                  | 22313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Seekonk                                                                                                                                                                                                                                                                                               | NC-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Torque Wrench (8" lb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Seekonk                                                                                                                                                                                                                                                                                               | NC-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Torque Wrench (8" lb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9/1/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Biennial                                                                                                                                                                                                                                                                                                                                                                                              | 9/1/2018                                                                                                                                                                                                                                                                                                                   | 21053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Seekonk                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8/30/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Biennial                                                                                                                                                                                                                                                                                                                                                                                              | 8/30/2018                                                                                                                                                                                                                                                                                                                  | 21053<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                       | NC-100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Torque Wrench 5/16", 8" lbs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8/30/2016<br>3/2/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Biennial<br>Biennial                                                                                                                                                                                                                                                                                                                                                                                  | 8/30/2018<br>3/2/2018                                                                                                                                                                                                                                                                                                      | 21053<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SPEAG                                                                                                                                                                                                                                                                                                 | NC-100<br>D750V3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Torque Wrench 5/16", 8" lbs<br>750 MHz SAR Dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8/30/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Biennial                                                                                                                                                                                                                                                                                                                                                                                              | 8/30/2018                                                                                                                                                                                                                                                                                                                  | 21053<br>N/A<br>N/A<br>1161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SPEAG<br>SPEAG                                                                                                                                                                                                                                                                                        | D750V3<br>D835V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Torque Wrench 5/16", 8" lbs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8/30/2016<br>3/2/2016<br>7/13/2016<br>7/13/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Biennial<br>Biennial                                                                                                                                                                                                                                                                                                                                                                                  | 8/30/2018<br>3/2/2018<br>7/13/2018<br>7/13/2018                                                                                                                                                                                                                                                                            | 21053<br>N/A<br>N/A<br>1161<br>4d047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0                                                                                                                                                                                                                                                                                                     | D750V3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Torque Wrench 5/16", 8" lbs<br>750 MHz SAR Dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8/30/2016<br>3/2/2016<br>7/13/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Biennial<br>Biennial<br>Biennial                                                                                                                                                                                                                                                                                                                                                                      | 8/30/2018<br>3/2/2018<br>7/13/2018                                                                                                                                                                                                                                                                                         | 21053<br>N/A<br>N/A<br>1161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SPEAG                                                                                                                                                                                                                                                                                                 | D750V3<br>D835V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Torque Wrench 5/16", 8" lbs<br>750 MHz SAR Dipole<br>835 MHz SAR Dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8/30/2016<br>3/2/2016<br>7/13/2016<br>7/13/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Biennial<br>Biennial<br>Biennial<br>Biennial                                                                                                                                                                                                                                                                                                                                                          | 8/30/2018<br>3/2/2018<br>7/13/2018<br>7/13/2018                                                                                                                                                                                                                                                                            | 21053<br>N/A<br>N/A<br>1161<br>4d047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SPEAG<br>SPEAG                                                                                                                                                                                                                                                                                        | D750V3<br>D835V2<br>D1750V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Torque Wrench 5/16", 8" lbs<br>750 MHz SAR Dipole<br>835 MHz SAR Dipole<br>SAR Dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8/30/2016<br>3/2/2016<br>7/13/2016<br>7/13/2016<br>5/9/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Biennial<br>Biennial<br>Biennial<br>Biennial<br>Annual                                                                                                                                                                                                                                                                                                                                                | 8/30/2018<br>3/2/2018<br>7/13/2018<br>7/13/2018<br>5/9/2018                                                                                                                                                                                                                                                                | 21053<br>N/A<br>N/A<br>1161<br>4d047<br>1148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SPEAG<br>SPEAG<br>SPEAG                                                                                                                                                                                                                                                                               | D750V3 D835V2 D1750V2 D1900V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Torque Wrench 5/16", 8" lbs 750 MHz SAR Dipole 835 MHz SAR Dipole SAR Dipole SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8/30/2016<br>3/2/2016<br>7/13/2016<br>7/13/2016<br>5/9/2017<br>2/9/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Biennial<br>Biennial<br>Biennial<br>Biennial<br>Annual                                                                                                                                                                                                                                                                                                                                                | 8/30/2018<br>3/2/2018<br>7/13/2018<br>7/13/2018<br>5/9/2018<br>2/9/2018                                                                                                                                                                                                                                                    | 21053<br>N/A<br>N/A<br>1161<br>4d047<br>1148<br>5d148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SPEAG<br>SPEAG<br>SPEAG<br>SPEAG                                                                                                                                                                                                                                                                      | D750V3  D835V2  D1750V2  D1900V2  D2450V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Torque Wrench 5/16", 8" lbs 750 MHz SAR Dipole 835 MHz SAR Dipole SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8/30/2016<br>3/2/2016<br>7/13/2016<br>7/13/2016<br>5/9/2017<br>2/9/2017<br>7/25/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Biennial Biennial Biennial Biennial Annual Annual Biennial                                                                                                                                                                                                                                                                                                                                            | 8/30/2018<br>3/2/2018<br>7/13/2018<br>7/13/2018<br>5/9/2018<br>2/9/2018<br>7/25/2018                                                                                                                                                                                                                                       | 21053<br>N/A<br>N/A<br>1161<br>4d047<br>1148<br>5d148<br>981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG                                                                                                                                                                                                                                                             | D750V3 D835V2 D1750V2 D1900V2 D2450V2 D5GH2V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Torque Wrench 5/16", 8" lbs 750 MHz SAR Dipole 835 MHz SAR Dipole SAR Dipole SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 5 GHz SAR Dipole 5 GHz SAR Dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8/30/2016<br>3/2/2016<br>7/13/2016<br>7/13/2016<br>5/9/2017<br>2/9/2017<br>7/25/2016<br>8/15/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Biennial Biennial Biennial Biennial Annual Annual Biennial Annual                                                                                                                                                                                                                                                                                                                                     | 8/30/2018<br>3/2/2018<br>7/13/2018<br>7/13/2018<br>5/9/2018<br>2/9/2018<br>7/25/2018<br>8/15/2018                                                                                                                                                                                                                          | 21053<br>N/A<br>N/A<br>1161<br>4d047<br>1148<br>5d148<br>981<br>1237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG                                                                                                                                                                                                                                           | D750V3  D835V2  D1750V2  D1900V2  D2450V2  D5GHzV2  D750V3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Torque Wrench S/16", 8" lbs 750 MH: SAR Dipole 835 MH: SAR Dipole SAR Dipole 1900 MH: SAR Dipole 1900 MH: SAR Dipole 2450 MH: SAR Dipole 5 GHz SAR Dipole 750 MH: SAR Dipole 835 MH: SAR Dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8/30/2016<br>3/2/2016<br>7/13/2016<br>7/13/2016<br>5/9/2017<br>2/9/2017<br>7/25/2016<br>8/15/2017<br>3/7/2017                                                                                                                                                                                                                                                                                                                                                                                                                                          | Biennial Biennial Biennial Biennial Annual Annual Biennial Annual Annual Annual                                                                                                                                                                                                                                                                                                                       | 8/30/2018<br>3/2/2018<br>7/13/2018<br>7/13/2018<br>5/9/2018<br>2/9/2018<br>7/25/2018<br>8/15/2018<br>3/7/2018<br>1/11/2018                                                                                                                                                                                                 | 21053<br>N/A<br>N/A<br>1161<br>4d047<br>1148<br>5d148<br>981<br>1237<br>1054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG                                                                                                                                                                                                                                           | D750V3 D835V2 D1750V2 D1900V2 D2450V2 D5GHzV2 D750V3 D835V2 D1750V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Torque Werenth \$/16", 8" lbs 750 MHz SAR Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz SAR Dipole 5 GHz SAR Dipole 750 MHz Dipole 835 MHz SAR Dipole 1750 MHz Dipole 835 MHz SAR Dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8/30/2016<br>3/2/2016<br>7/13/2016<br>7/13/2016<br>5/9/2017<br>2/9/2017<br>7/25/2016<br>8/15/2017<br>3/7/2017<br>1/11/2017<br>7/14/2016                                                                                                                                                                                                                                                                                                                                                                                                                | Biennial Biennial Biennial Biennial Annual Annual Annual Annual Annual Annual Annual Annual Biennial                                                                                                                                                                                                                                                                                                  | 8/30/2018<br>3/2/2018<br>7/13/2018<br>7/13/2018<br>7/13/2018<br>5/9/2018<br>2/9/2018<br>7/25/2018<br>8/15/2018<br>3/7/2018<br>1/11/2018<br>7/14/2018                                                                                                                                                                       | 21053<br>N/A<br>N/A<br>1161<br>4d047<br>1148<br>5d148<br>981<br>1237<br>1054<br>4d132<br>1150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SPEAG                                                                                                                                                                                                                   | D750V3  D835V2  D1750V2  D1900V2  D2450V2  D5GHzV2  D750V3  D835V2  D1750V2  D5GHzV2  D5GHzV2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Torque Wrench S/16", 8" lbs 750 MH: SAR Dipole 835 MH: SAR Dipole SAR Dipole SAR Dipole 1900 MH: SAR Dipole 2450 MH: SAR Dipole 5 GH: SAR Dipole 5 GH: SAR Dipole 1750 MH: Dipole 835 MH: SAR Dipole 835 MH: SAR Dipole 1750 MH: SAR Dipole 5 GH: SAR Dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8/30/2016<br>3/2/2016<br>7/13/2016<br>7/13/2016<br>7/13/2016<br>5/9/2017<br>2/9/2017<br>7/25/2016<br>8/15/2017<br>3/7/2017<br>1/11/2017<br>7/14/2016<br>1/20/2017                                                                                                                                                                                                                                                                                                                                                                                      | Biennial Biennial Biennial Biennial Annual                                                                                                                                                                                                                                                                                      | 8/30/2018<br>3/2/2018<br>7/13/2018<br>7/13/2018<br>5/9/2018<br>2/9/2018<br>7/25/2018<br>8/15/2018<br>3/7/2018<br>1/11/2018<br>1/20/2018                                                                                                                                                                                    | 21053<br>N/A<br>N/A<br>1161<br>4d047<br>1148<br>5d148<br>981<br>1237<br>1054<br>4d132<br>1150<br>1057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG<br>SPEAG                                                                                                                                                                                                       | D750V3  D835V2  D1750V2  D1950V2  D1900V2  D2450V2  D56HzV2  D750V3  D835V2  D1750V2  D450HzV2  D56HzV2  DAK-3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Torque Wrench S/16", 8" lbs 750 MH: SAR Dipole 835 MH: SAR Dipole SAR Dipole 1900 MH: SAR Dipole 1900 MH: SAR Dipole 2450 MH: SAR Dipole 5 GH: SAR Dipole 5 GH: SAR Dipole 750 MH: Dipole 835 MH: SAR Dipole 1750 MH: SAR Dipole 1750 MH: SAR Dipole 5 GH: SAR Dipole Dipole 16 GH: SAR SAR Dipole Dipole TGH: SAR SAR Dipole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8/30/2016<br>3/2/2016<br>7/13/2016<br>7/13/2016<br>5/9/2017<br>2/9/2017<br>7/25/2016<br>8/15/2017<br>3/7/2017<br>1/11/2017<br>7/14/2016<br>1/20/2017<br>5/10/2017                                                                                                                                                                                                                                                                                                                                                                                      | Biennial Biennial Biennial Biennial Annual                                                                                                                                                                                                                                                          | 8/30/2018<br>3/2/2018<br>7/13/2018<br>7/13/2018<br>5/9/2018<br>2/9/2018<br>7/25/2018<br>3/7/2018<br>1/11/2018<br>7/4/2018<br>1/20/2018<br>5/10/2018                                                                                                                                                                        | 21053<br>N/A<br>N/A<br>1161<br>4d047<br>1148<br>5d148<br>981<br>1237<br>1054<br>4d132<br>1150<br>1057<br>1070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SPEAG                                                                                                                                                                                                 | D750V3 D835V2 D1750V2 D1900V2 D1900V2 D56HtV2 D750V3 D835V2 D1750V2 D56HtV2 DAK-3.5 DAE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Torque Wrench \$/16", 8" lbs 750 MH s SAR Dipole 883 MH s SAR Dipole SAR Dipole 1900 MH s SAR Dipole 1900 MH s SAR Dipole 2450 MH s SAR Dipole 2450 MH s SAR Dipole 35 MH s SAR Dipole 1750 MH s Dipole 835 MH s SAR Dipole 1750 MH s Dipole 1750 MH s SAR Dipole 5 GH s SAR Dipole Delectric Assessment Kit Daya Data Acquisition Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8/30/2016<br>3/2/2016<br>3/2/2016<br>7/13/2016<br>7/13/2016<br>5/9/2017<br>7/52/2016<br>8/15/2017<br>3/7/2017<br>1/11/2017<br>7/14/2016<br>1/20/2017<br>8/9/2017                                                                                                                                                                                                                                                                                                                                                                                       | Biennial Biennial Biennial Biennial Annual Annual Biennial Annual                                                                                                                                                                                                                                                        | 8/30/2018<br>3/2/2018<br>3/2/2018<br>7/13/2018<br>7/13/2018<br>5/9/2018<br>2/9/2018<br>3/7/2018<br>3/7/2018<br>3/7/2018<br>1/11/2018<br>1/20/2018<br>8/9/2018                                                                                                                                                              | 21053<br>N/A<br>N/A<br>1161<br>4d047<br>1148<br>55148<br>981<br>1237<br>1054<br>4d132<br>1150<br>1057<br>1070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SPEAG                                                                                                                                                                                           | D750V3 D835V2 D1750V2 D1950V2 D1950V2 D2450V2 D5GHtV2 D5GHtV2 D1750V3 D835V2 D1750V3 D845V2 DAK-3.5 DAE4 DAE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Torque Wrench 5/16", 8" lbs 750 MH: SAR Dipole 835 MH: SAR Dipole SAR Dipole 1900 MH: SAR Dipole 2450 MH: SAR Dipole 2450 MH: SAR Dipole 5 GH: SAR Dipole 5 GH: SAR Dipole 1750 MH: SAR Dipole 835 MH: SAR Dipole 835 MH: SAR Dipole 1750 MH: SAR Dipole 1750 MH: SAR Dipole 5 GH: SAR Dipole 5 GH: SAR SHIPOLE 5 GH: SAR SHIPOLE Dielectric Assessment Kit Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8/30/2016<br>3/2/2016<br>3/2/2016<br>3/13/2016<br>7/13/2016<br>5/9/2017<br>7/5/2017<br>3/7/2017<br>3/7/2017<br>1/11/2017<br>1/12/2016<br>1/20/2017<br>5/10/2017<br>8/9/2017<br>2/9/2017                                                                                                                                                                                                                                                                                                                                                                | Biennial Biennial Biennial Biennial Biennial Annual                                                                                                                                                                                                                                   | 8/30/2018<br>3/2/2018<br>3/2/2018<br>7/13/2018<br>7/13/2018<br>5/9/2018<br>2/9/2018<br>8/15/2018<br>3/7/2018<br>3/7/2018<br>1/20/2018<br>5/10/2018<br>5/10/2018<br>5/10/2018                                                                                                                                               | 21053<br>N/A<br>N/A<br>1161<br>4d047<br>1148<br>5d148<br>981<br>1237<br>1054<br>4d132<br>1057<br>1070<br>1070<br>1323<br>1272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SPEAG                                                                                                                                                       | D750/3 D835V2 D1750V2 D1950V2 D1900V2 D2450V2 D5GHtV2 D750V3 D835V2 D1750V2 D5GHtV2 DAK-3-5 DAE4 DAE4 DAE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Torque Wench \$/16", 8" lbs 750 MHz SAR Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz SAR Dipole 750 MHz Dipole 835 MHz SAR Dipole 1750 MHz Dipole 835 MHz SAR Dipole 1750 MHz Dipole 95 CHz SAR Dipole 1750 MHz SAR Dipole 1750 MHz SAR Dipole Dielectric Assessment Kit Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8/30/2016<br>3/2/2016<br>3/2/2016<br>7/13/2016<br>7/13/2016<br>5/9/2017<br>7/25/2016<br>8/15/2017<br>3/7/2017<br>1/11/2017<br>7/14/2016<br>1/20/2017<br>5/10/2017<br>8/9/2017<br>3/8/2017                                                                                                                                                                                                                                                                                                                                                              | Biennial Biennial Biennial Biennial Annual                                                                                                                                                                                                                                     | 8/30/2018<br>3/2/2018<br>3/2/2018<br>7/13/2018<br>7/13/2018<br>5/9/2018<br>7/25/2018<br>8/15/2018<br>8/15/2018<br>1/11/2018<br>1/12/2018<br>5/10/2018<br>8/9/2018<br>8/9/2018<br>3/8/2018                                                                                                                                  | 21053<br>N/A<br>N/A<br>1161<br>40407<br>1148<br>50148<br>981<br>1237<br>1054<br>40132<br>1150<br>1070<br>1323<br>1070<br>1323<br>1326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SPEAG                                                                                                                                                       | D750V3  D835V2  D1750V2  D1950V2  D1950V2  D2450V2  D556HV2  D750V3  D835V2  D1750V3  D635V2  D1750V4  DAK-3.5  DAE4  DAE4  DAE4  DAE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Torque Wrench \$/16", 8" lbs 750 MH s SAR Dipole 835 MH s SAR Dipole SAR Dipole SAR Dipole 1900 MH s SAR Dipole 2450 MH s SAR Dipole 2450 MH s SAR Dipole 5 GH s SAR Dipole 750 MH s Dipole 835 MH s SAR Dipole 1750 MH s Dipole 835 MH s SAR Dipole 1750 MH s Dipole 95 GH s SAR Dipole 1750 MH s SAR Dipole Dielectric Assessment Kit Dasy Data Acquisition Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8/30/2016<br>3/2/2016<br>3/2/2016<br>3/13/2016<br>7/13/2016<br>7/13/2017<br>7/5/2017<br>2/9/2017<br>3/7/2017<br>3/7/2017<br>1/11/2017<br>1/12/2016<br>1/20/2017<br>5/10/2017<br>8/9/2017<br>2/9/2017<br>4/11/2017                                                                                                                                                                                                                                                                                                                                      | Biennial Biennial Biennial Biennial Biennial Annual                                                                                                                                                                                  | 8/30/2018<br>3/2/2018<br>3/2/2018<br>7/13/2018<br>7/13/2018<br>2/9/2018<br>2/9/2018<br>3/7/2018<br>3/7/2018<br>3/7/2018<br>1/11/2018<br>1/120/2018<br>5/10/2018<br>5/10/2018<br>3/8/2018<br>4/11/2018                                                                                                                      | 21053<br>N/A<br>N/A<br>1161<br>4d047<br>1148<br>5d148<br>981<br>1237<br>1054<br>4d132<br>1150<br>1057<br>1070<br>1323<br>1272<br>1368<br>1467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SPEAG                                                                                                                               | D750V3 D835V2 D1750V2 D1950V2 D1950V2 D5GHzV2 D5GHzV2 D750V3 D835V2 D1750V3 D85HzV2 DAF-4.5 DAE4 DAE4 DAE4 DAE4 DAE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Torque Wrench 5/16", 8" lbs 750 MH: SAR Dipole 835 MH: SAR Dipole SAR Dipole 1900 MH: SAR Dipole 2450 MH: SAR Dipole 2450 MH: SAR Dipole 2450 MH: SAR Dipole 35 CH: SAR Dipole 35 MH: SAR Dipole 85 MH: SAR Dipole 1750 MH: SAR Dipole 1750 MH: SAR Dipole 5 CH: SAR Dipole Dielectric Assessment Kit Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8/30/2016<br>3/2/2016<br>7/13/2016<br>7/13/2016<br>7/13/2016<br>5/9/2017<br>2/9/2017<br>2/9/2017<br>3/7/2017<br>1/11/2016<br>1/20/2017<br>5/10/2017<br>8/9/2017<br>2/9/2017<br>3/8/2017<br>3/8/2017<br>2/9/2017<br>2/9/2017                                                                                                                                                                                                                                                                                                                            | Biennial Biennial Biennial Biennial Annual                                                                                                                                                                                    | 8/30/2018<br>3/2/2018<br>3/2/2018<br>7/13/2018<br>7/13/2018<br>5/9/2018<br>8/15/2018<br>8/15/2018<br>8/15/2018<br>1/11/2018<br>1/11/2018<br>1/12/2018<br>1/20/2018<br>8/9/2018<br>3/8/2018<br>3/8/2018<br>3/8/2018                                                                                                         | 21053<br>N/A<br>N/A<br>1161<br>4d047<br>1148<br>5d148<br>981<br>1237<br>1054<br>4d132<br>1150<br>1057<br>1070<br>1323<br>1272<br>1368<br>1407<br>665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SPEAG                                                                                                                               | D750V3  D835V2  D1750V2  D1750V2  D1950V2  D2450V2  D556HV2  D750V3  D835V2  D1750V2  DAK-3.5  DAK-4  DAE4  DAE4  DAE4  DAE4  DAE4  DAE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Torque Wrench \$/16", 8" lbs 750 MHz SAR Dipole 883 MHz SAR Dipole SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz SAR Dipole 35 GHz SAR Dipole 750 MHz Dipole 835 MHz SAR Dipole 1750 MHz Dipole 835 MHz SAR Dipole 1750 MHz Dipole 1750 MHz SAR Dipole 1750 MHz SAR Dipole 1750 MHz SAR Dipole 5 GHz SAR Dipole Dielectric Assessment Kit Dasy Data Acquisition Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8/30/2016<br>3/2/2016<br>3/2/2016<br>3/2/2016<br>7/13/2016<br>5/9/2017<br>7/25/2016<br>3/15/2017<br>3/7/2017<br>1/12/2017<br>1/12/2017<br>1/20/2017<br>8/9/2017<br>2/9/2017<br>3/8/2017<br>4/11/2017<br>4/11/2017<br>1/26/2017                                                                                                                                                                                                                                                                                                                         | Biennial Biennial Biennial Biennial Biennial Annual                                                                                                                                                                           | 8/30/2018<br>3/2/2018<br>3/2/2018<br>7/13/2018<br>7/13/2018<br>2/9/2018<br>2/9/2018<br>3/7/2018<br>3/7/2018<br>3/7/2018<br>1/11/2018<br>1/20/2018<br>8/9/2018<br>2/9/2018<br>3/8/2018<br>4/11/2018<br>4/11/2018                                                                                                            | 21053<br>N/A<br>N/A<br>1161<br>40047<br>1148<br>50148<br>981<br>1237<br>1054<br>40132<br>1057<br>1070<br>1070<br>1323<br>1272<br>1368<br>1407<br>665<br>1466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SPEAG                                                                                                 | D750V3 D835V2 D1750V2 D1950V2 D1950V2 D56HV2 D56HV2 D750V3 D835V2 D1750V2 D56HV2 DAK-3.5 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Torque Wrench S/16", 8" lbs 750 MH: SAR Dipole 835 MH: SAR Dipole SAR Dipole 1900 MH: SAR Dipole 2450 MH: SAR Dipole 2450 MH: SAR Dipole 250 MH: SAR Dipole 5 GH: SAR Dipole 750 MH: Dipole 835 MH: SAR Dipole 1750 MH: SAR Dipole Dielectric Assessment Kit Dasy Data Acquisition Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8/30/2016<br>3/2/2016<br>7/13/2016<br>7/13/2016<br>7/13/2016<br>5/9/2017<br>2/9/2017<br>1/12/2016<br>8/15/2017<br>3/7/2017<br>1/12/2017<br>5/10/2017<br>5/10/2017<br>8/9/2017<br>3/8/2017<br>3/8/2017<br>1/12/2017<br>1/12/2017<br>1/12/2017<br>1/12/2017<br>1/12/2017<br>1/12/2017<br>1/12/2017<br>1/12/2017<br>1/12/2017<br>1/12/2017<br>1/12/2017<br>1/12/2017                                                                                                                                                                                      | Biennial Biennial Biennial Biennial Biennial Biennial Annual                                                                                                                                                                         | 8/30/2018<br>3/2/2018<br>7/13/2018<br>7/13/2018<br>7/13/2018<br>7/13/2018<br>5/9/2018<br>2/9/2018<br>8/15/2018<br>3/7/2018<br>1/11/2018<br>1/10/2018<br>8/9/2018<br>8/9/2018<br>3/8/2018<br>3/8/2018<br>3/8/2018<br>3/8/2018<br>3/8/2018<br>3/8/2018<br>3/8/2018<br>3/8/2018<br>3/8/2018<br>3/8/2018                       | 21053<br>N/A<br>N/A<br>N/A<br>1161<br>4d047<br>1148<br>50148<br>981<br>1237<br>1054<br>4d132<br>1159<br>1070<br>1070<br>1373<br>1383<br>1494<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495<br>1495     |
| SPEAG                                                                               | D750V3 D835V2 D1750V2 D1950V2 D1950V2 D5GHzV2 D750V3 D835V2 D1750V2 D5GHzV2 D5GHzV2 DA64-3-5 DA64 DA64 DA64 DA64 DA64 DA64 DA64 DA64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Torque Wrench \$/16", 8" lbs 750 MHz SAR Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz SAR Dipole 750 MHz Dipole 835 MHz SAR Dipole 1750 MHz Dipole 835 MHz SAR Dipole 1750 MHz SAR Dipole 1750 MHz SAR Dipole 1750 MHz SAR Dipole 1750 MHz SAR Dipole 10 Scitz SAR Dipole 5 Citz SAR Dipole 5 Citz SAR Dipole Dielectric Assessment Kit Dasy Data Acquisition Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8/30/2016<br>3/2/2016<br>3/2/2016<br>3/2/2016<br>3/13/2015<br>3/13/2015<br>5/9/2017<br>2/9/2017<br>3/7/2017<br>3/7/2017<br>3/1/2016<br>1/20/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/3/2017<br>3/3/2017<br>3/3/2017<br>3/3/2017<br>3/3/2017                                                                                                                                                                                                                                                                               | Biennial Biennial Biennial Biennial Biennial Annual                                                                                              | 8/30/2018<br>3/2/2018<br>3/2/2018<br>3/1/3/2018<br>7/13/2018<br>7/13/2018<br>7/13/2018<br>2/9/2018<br>3/7/2018<br>3/7/2018<br>3/7/2018<br>3/7/2018<br>3/9/2018<br>3/9/2018<br>2/9/2018<br>3/8/2018<br>4/11/2018<br>3/13/2018<br>4/11/2018<br>3/13/2018<br>3/13/2018                                                        | 21053<br>N/A<br>N/A<br>1161<br>40047<br>1148<br>50148<br>1057<br>1057<br>1057<br>1077<br>1233<br>1272<br>1323<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407<br>1407    |
| SPEAG                                                                               | D750V3  D835V2  D1750V2  D1950V2  D1950V2  D2450V2  D554HV2  D750V3  D835V2  D1750V3  D835V2  D1750V3  DAK-3.5  DAE4  DAE5  DAE4  DAE5  DAE4  DAE5  DAE6  DAE7  DAE6  DAE7  DAE6  DAE6  DAE6  DAE7  DAE6  DA | Torque Wrench \$/16", 8" lbs 750 MH t SAR Dipole 835 MH t SAR Dipole SAR Dipole SAR Dipole 1900 MH t SAR Dipole 5 GHZ SAR Dipole 2450 MHz SAR Dipole 2450 MHz SAR Dipole 5 GHZ SAR Dipole 750 MHZ Dipole 835 MHz SAR Dipole 1750 MHZ Dipole 835 MHz SAR Dipole 1750 MHZ SAR Dipole 1750 MHZ SAR Dipole 5 GHZ SAR Dipole Dielectric Assessment Kit Dasy Data Acquisition Electronics SAR Probe SAR Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8/30/2016<br>3/2/2016<br>7/13/2016<br>7/13/2016<br>7/13/2016<br>5/9/2017<br>2/9/2017<br>1/25/2016<br>8/15/2017<br>3/7/2017<br>1/12/2016<br>8/15/2017<br>3/7/2017<br>1/20/2017<br>5/10/2017<br>8/9/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017 | Biennial Biennial Biennial Biennial Biennial Biennial Annual                                                                              | 8/30/2018 3/2/2018 3/2/2018 3/2/2018 3/13/2018 7/13/2018 7/13/2018 5/9/2018 8/15/2018 8/15/2018 8/15/2018 8/15/2018 1/11/2018 1/12/2018 8/9/2018 8/9/2018 8/9/2018 3/8/2018 3/8/2018 3/8/2018 3/8/2018 3/8/2018 3/8/2018 3/8/2018 3/8/2018 3/8/2018 3/8/2018 3/8/2018 3/8/2018 3/8/2018 3/8/2018                           | 21053<br>N/A<br>N/A<br>N/A<br>1161<br>4d047<br>1148<br>5d148<br>981<br>1237<br>1054<br>4d132<br>1150<br>1070<br>1070<br>1323<br>1272<br>1368<br>1407<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SPEAG                                                                               | D750V3 D835V2 D1750V2 D1950V2 D1950V2 D5GHzV2 D750V3 D835V2 D1750V2 D5GHzV2 D5GHzV2 DA64-3-5 DA64 DA64 DA64 DA64 DA64 DA64 DA64 DA64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Torque Wrench \$/16", 8" lbs 750 MHz SAR Dipole 835 MHz SAR Dipole 835 MHz SAR Dipole SAR Dipole 1900 MHz SAR Dipole 1900 MHz SAR Dipole 2450 MHz SAR Dipole 2450 MHz SAR Dipole 750 MHz Dipole 835 MHz SAR Dipole 1750 MHz Dipole 835 MHz SAR Dipole 1750 MHz SAR Dipole 1750 MHz SAR Dipole 1750 MHz SAR Dipole 1750 MHz SAR Dipole 10 Scitz SAR Dipole 5 Citz SAR Dipole 5 Citz SAR Dipole Dielectric Assessment Kit Dasy Data Acquisition Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8/30/2016<br>3/2/2016<br>3/2/2016<br>3/2/2016<br>3/13/2015<br>3/13/2015<br>5/9/2017<br>2/9/2017<br>3/7/2017<br>3/7/2017<br>3/1/2016<br>1/20/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/8/2017<br>3/3/2017<br>3/3/2017<br>3/3/2017<br>3/3/2017<br>3/3/2017                                                                                                                                                                                                                                                                               | Biennial Biennial Biennial Biennial Biennial Annual                                                                                                     | 8/30/2018<br>3/2/2018<br>3/2/2018<br>3/1/3/2018<br>7/13/2018<br>7/13/2018<br>7/13/2018<br>2/9/2018<br>3/7/2018<br>3/7/2018<br>3/7/2018<br>3/7/2018<br>3/9/2018<br>3/9/2018<br>2/9/2018<br>3/8/2018<br>4/11/2018<br>3/13/2018<br>4/11/2018<br>3/13/2018<br>3/13/2018                                                        | 21053<br>N/A<br>N/A<br>1161<br>40047<br>1148<br>50148<br>50148<br>1057<br>1057<br>1057<br>1077<br>1077<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472<br>1472   |
| SPEAG                                                                         | D750V3  D835V2  D1750V2  D1750V2  D1950V2  D350V2  D350V3  D835V2  D1750V3  D835V2  D1750V3  D848-3-5  DA64  | Torque Wrench \$/16", 8" lbs 750 MH s SAR Dipole 883 MH s SAR Dipole SAR Dipole SAR Dipole 1900 MH s SAR Dipole 1900 MH s SAR Dipole 2450 MH s SAR Dipole 2450 MH s SAR Dipole 35 MH s SAR Dipole 1750 MH s Dipole 835 MH s SAR Dipole 1750 MH s Dipole 1750 MH s SAR Dipole Dipole Committee SAR Dipole 1750 MH s SAR Dipole 1750 SAR Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8/30/2016<br>3/2/2016<br>3/2/2016<br>7/13/2016<br>7/13/2016<br>7/13/2016<br>5/9/2017<br>2/9/2017<br>3/7/2017<br>3/7/2017<br>1/12/2017<br>3/7/2017<br>3/7/2017<br>3/9/2017<br>3/9/2017<br>3/9/2017<br>3/9/2017<br>3/9/2017<br>3/13/2017<br>3/13/2017<br>3/13/2017<br>3/14/2017<br>3/14/2017<br>3/14/2017                                                                                                                                                                                                                                                | Biennial Biennial Biennial Biennial Biennial Biennial Annual                      | 8/30/2018<br>3/2/2018<br>7/13/2018<br>7/13/2018<br>7/13/2018<br>5/9/2018<br>5/9/2018<br>8/15/2018<br>8/15/2018<br>3/7/2018<br>3/7/2018<br>1/12/2018<br>3/14/2018<br>3/9/2018<br>3/9/2018<br>3/9/2018<br>3/9/2018<br>3/13/2018<br>3/13/2018<br>3/13/2018<br>3/13/2018<br>3/13/2018<br>3/13/2018<br>3/13/2018<br>3/13/2018   | 21053<br>N/A<br>N/A<br>N/A<br>1161<br>4d047<br>1148<br>50148<br>9181<br>1237<br>1054<br>4d132<br>1159<br>1057<br>1070<br>1077<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079<br>1079    |
| SPEAG                                                                         | D750V3 D835V2 D1750V2 D1950V2 D1950V2 D5GHzV2 D750V3 D835V2 D1750V3 D835V2 D1750V2 DAK-3.5 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Torque Weench \$\sqrt{16}\$; 8" lbs  750 MHz SAR Dipole  835 MHz SAR Dipole  835 MHz SAR Dipole  SAR Ripole  1900 MHz SAR Dipole  2450 MHz SAR Dipole  2450 MHz SAR Dipole  25 CHZ SAR Dipole  750 MHz Dipole  835 MHz SAR Dipole  1750 MHz Dipole  835 MHz SAR Dipole  1750 MHz SAR Dipole  5 CHZ SAR Dipole  Dielectric Assessment NI  Dasy Data Acquisition Electronics  SAR Probe  SAR Probe  SAR Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8/30/2016<br>3/2/2016<br>7/13/2016<br>7/13/2016<br>7/13/2016<br>5/9/2017<br>2/9/2017<br>7/25/2016<br>8/15/2017<br>3/7/2017<br>1/11/2016<br>1/20/2017<br>5/10/2017<br>4/11/2017<br>4/11/2017<br>1/16/2017<br>1/16/2017<br>1/16/2017<br>1/16/2017<br>1/16/2017<br>1/16/2017<br>1/16/2017<br>1/16/2017<br>1/16/2017<br>1/16/2017<br>1/16/2017<br>1/16/2017<br>1/16/2017<br>1/16/2017<br>1/16/2017<br>1/16/2017<br>1/16/2017<br>1/16/2017<br>1/16/2017<br>1/16/2017<br>1/16/2017<br>1/16/2017<br>1/16/2017<br>1/16/2017                                    | Biennial Biennial Biennial Biennial Biennial Biennial Annual                                                                                     | 8/30/2018 3/2/2018 3/2/2018 3/2/2018 3/13/2018 7/13/2018 7/13/2018 5/9/2018 2/9/2018 8/15/2018 8/15/2018 8/15/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2018 1/11/2018 | 21053<br>N/A<br>N/A<br>1161<br>4d047<br>1148<br>56148<br>981<br>1237<br>1050<br>1070<br>1373<br>1272<br>1388<br>1406<br>1466<br>1465<br>1466<br>1465<br>1466<br>1465<br>1466<br>1465<br>1466<br>1465<br>1466<br>1465<br>1466<br>1465<br>1466<br>1465<br>1466<br>1465<br>1466<br>1465<br>1466<br>1465<br>1466<br>1465<br>1466<br>1465<br>1466<br>1466<br>1465<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466<br>1466     |
| SPEAG | D750V3  D835V2  D1750V2  D1750V2  D1950V2  D350V2  D350V3  D835V2  D1750V3  D835V2  D1750V3  D848-3-5  DA64  | Torque Wrench \$/16", 8" lbs 750MHz SAR Dipole 835MHz SAR Dipole 835MHz SAR Dipole SAR Dipole 1900MHz SAR Dipole 1900MHz SAR Dipole 245DMHz SAR Dipole 245DMHz SAR Dipole 750 MHz Dipole 835MHz SAR Dipole 1750 MHz Dipole 835 MHz SAR Dipole 1750 MHz | 8/30/2016<br>3/2/2016<br>3/2/2016<br>7/13/2016<br>7/13/2016<br>7/13/2016<br>5/9/2017<br>2/9/2017<br>3/7/2017<br>3/7/2017<br>1/12/2017<br>3/7/2017<br>3/7/2017<br>3/9/2017<br>3/9/2017<br>3/9/2017<br>3/9/2017<br>3/9/2017<br>3/13/2017<br>3/13/2017<br>3/13/2017<br>3/14/2017<br>3/14/2017<br>3/14/2017                                                                                                                                                                                                                                                | Biennial Biennial Biennial Biennial Biennial Biennial Annual                      | 8/30/2018<br>3/2/2018<br>7/13/2018<br>7/13/2018<br>7/13/2018<br>5/9/2018<br>5/9/2018<br>8/15/2018<br>8/15/2018<br>3/7/2018<br>3/7/2018<br>1/12/2018<br>3/14/2018<br>3/9/2018<br>3/9/2018<br>3/9/2018<br>3/9/2018<br>3/13/2018<br>3/13/2018<br>3/13/2018<br>3/13/2018<br>3/13/2018<br>3/13/2018<br>3/13/2018<br>3/13/2018   | 21053<br>N/A<br>N/A<br>1161<br>40047<br>1148<br>50148<br>981<br>1237<br>1054<br>40132<br>1150<br>1070<br>1323<br>1272<br>1272<br>1272<br>1407<br>665<br>1407<br>665<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1415<br>1 |
| SPEAG | D750V3 D750V2 D1750V2 D1950V2 D1950V2 D2450V2 D5GHtV2 D5GHtV2 D750V3 D855V2 D1750V2 D85HV2 DAK-3.5 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Torque Wrench \$/16", 8" lbs 750 MH s SAR Dipole 835 MH s SAR Dipole SAR Dipole 1900 MH s SAR Dipole 2450 MH s SAR Dipole 2450 MH s SAR Dipole 2450 MH s SAR Dipole 250 MH s SAR Dipole 1750 MH s Dipole 835 MH s SAR Dipole 1750 MH s Dipole 835 MH s SAR Dipole 1750 MH s SAR Dipole 1750 MH s SAR Dipole 1750 MH s SAR Dipole Dielectric Assessment Kit Dasy Data Acquisition Electronics SAR Probe SAR Probe SAR Probe SAR Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8/30/2016 3/2/2016 7/13/2016 7/13/2016 7/13/2016 5/9/2017 2/9/2017 2/9/2017 3/7/2017 3/7/2017 5/10/2017 5/10/2017 5/10/2017 5/10/2017 4/11/2017 4/11/2017 4/11/2017 4/11/2017 4/11/2017 4/11/2017 4/11/2017 4/11/2017 4/11/2017                                                                                                                                                                                                                                                                                                                        | Biennial Biennial Biennial Biennial Biennial Biennial Annual | 8/30/2018 3/2/2018 3/2/2018 3/1/2018 3/1/2018 3/1/2018 3/1/2018 8/15/2018 8/15/2018 8/15/2018 8/15/2018 3/7/2018 1/11/2018 1/10/2018 8/9/2018 3/8/2018 2/9/2018 1/16/2018 3/8/2018 1/16/2018 8/1/2018 1/16/2018 8/14/2018 8/14/2018 8/14/2018 4/18/2018 4/18/2018                                                          | 21053<br>N/A<br>N/A<br>1161<br>40047<br>1148<br>50148<br>981<br>1237<br>1054<br>40132<br>1150<br>1070<br>1070<br>1070<br>1323<br>1272<br>1368<br>1407<br>665<br>1466<br>1465<br>1466<br>1415<br>3332<br>3319<br>3914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

#### Notes

- All equipment was only used within its calibration period.
- 2. CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

| FCC ID: ZNFX210MA      | PCTEST              | SAR EVALUATION REPORT LG | Approved by: Quality Manager |  |
|------------------------|---------------------|--------------------------|------------------------------|--|
| Document S/N:          | Test Dates:         | DUT Type:                | Dogo 60 of 72                |  |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset         | Page 69 of 73                |  |

© 2017 PCTEST Engineering Laboratory, Inc.

09/05/2017

| a                                                                             | С      | d     | e=     | f    | g      | h =            | i =            | k              |
|-------------------------------------------------------------------------------|--------|-------|--------|------|--------|----------------|----------------|----------------|
|                                                                               |        |       | f(d,k) |      |        | c x f/e        | c x g/e        |                |
|                                                                               | Tol.   | Prob. |        | Ci   | Ci     | 1gm            | 10gms          |                |
| Uncertainty Component                                                         | (± %)  | Dist. | Div.   | 1gm  | 10 gms | u <sub>i</sub> | u <sub>i</sub> | v <sub>i</sub> |
|                                                                               | (= /0/ | 2.50  |        |      |        | (± %)          | (± %)          | ''             |
| Measurement System                                                            |        | ļ     |        |      | !      |                |                |                |
| Probe Calibration                                                             | 6.55   | Ν     | 1      | 1.0  | 1.0    | 6.6            | 6.6            | $\infty$       |
| Axial Isotropy                                                                | 0.25   | Ν     | 1      | 0.7  | 0.7    | 0.2            | 0.2            | 8              |
| Hemishperical Isotropy                                                        | 1.3    | Ν     | 1      | 0.7  | 0.7    | 0.9            | 0.9            | × ×            |
| Boundary Effect                                                               | 2.0    | R     | 1.73   | 1.0  | 1.0    | 1.2            | 1.2            | × ×            |
| Linearity                                                                     | 0.3    | Ν     | 1      | 1.0  | 1.0    | 0.3            | 0.3            | × ×            |
| System Detection Limits                                                       | 0.25   | R     | 1.73   | 1.0  | 1.0    | 0.1            | 0.1            | × ×            |
| Readout Electronics                                                           | 0.3    | Ν     | 1      | 1.0  | 1.0    | 0.3            | 0.3            | œ              |
| Response Time                                                                 | 0.8    | R     | 1.73   | 1.0  | 1.0    | 0.5            | 0.5            | -xo            |
| Integration Time                                                              | 2.6    | R     | 1.73   | 1.0  | 1.0    | 1.5            | 1.5            | œ              |
| RF Ambient Conditions - Noise                                                 | 3.0    | R     | 1.73   | 1.0  | 1.0    | 1.7            | 1.7            | ×              |
| RF Ambient Conditions - Reflections                                           | 3.0    | R     | 1.73   | 1.0  | 1.0    | 1.7            | 1.7            | × ×            |
| Probe Positioner Mechanical Tolerance                                         | 0.4    | R     | 1.73   | 1.0  | 1.0    | 0.2            | 0.2            | × ×            |
| Probe Positioning w/ respect to Phantom                                       | 6.7    | R     | 1.73   | 1.0  | 1.0    | 3.9            | 3.9            | ∞              |
| Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation | 4.0    | R     | 1.73   | 1.0  | 1.0    | 2.3            | 2.3            | × ×            |
| Test Sample Related                                                           |        |       |        |      |        |                |                |                |
| Test Sample Positioning                                                       | 2.7    | N     | 1      | 1.0  | 1.0    | 2.7            | 2.7            | 35             |
| Device Holder Uncertainty                                                     | 1.67   | Ν     | 1      | 1.0  | 1.0    | 1.7            | 1.7            | 5              |
| Output Power Variation - SAR drift measurement                                | 5.0    | R     | 1.73   | 1.0  | 1.0    | 2.9            | 2.9            | × ×            |
| SAR Scaling                                                                   | 0.0    | R     | 1.73   | 1.0  | 1.0    | 0.0            | 0.0            | $\infty$       |
| Phantom & Tissue Parameters                                                   |        |       |        |      |        |                |                |                |
| Phantom Uncertainty (Shape & Thickness tolerances)                            | 7.6    | R     | 1.73   | 1.0  | 1.0    | 4.4            | 4.4            | × ×            |
| Liquid Conductivity - measurement uncertainty                                 | 4.2    | N     | 1      | 0.78 | 0.71   | 3.3            | 3.0            | 10             |
| Liquid Permittivity - measurement uncertainty                                 | 4.1    | Ν     | 1      | 0.23 | 0.26   | 1.0            | 1.1            | 10             |
| Liquid Conductivity - Temperature Uncertainty                                 | 3.4    | R     | 1.73   | 0.78 | 0.71   | 1.5            | 1.4            | × ×            |
| Liquid Permittivity - Temperature Unceritainty                                | 0.6    | R     | 1.73   | 0.23 | 0.26   | 0.1            | 0.1            | × ×            |
| Liquid Conductivity - deviation from target values                            | 5.0    | R     | 1.73   | 0.64 | 0.43   | 1.8            | 1.2            | × ×            |
| Liquid Permittivity - deviation from target values                            | 5.0    | R     | 1.73   | 0.60 | 0.49   | 1.7            | 1.4            | oc             |
| Combined Standard Uncertainty (k=1)                                           |        | RSS   |        |      |        | 11.5           | 11.3           | 60             |
| Expanded Uncertainty                                                          |        | k=2   |        |      |        | 23.0           | 22.6           |                |
| (95% CONFIDENCE LEVEL)                                                        |        |       |        |      |        |                |                |                |

| FCC ID: ZNFX210MA      | PCTEST:             | SAR EVALUATION REPORT | Approved by: Quality Manager |
|------------------------|---------------------|-----------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:             | Page 70 of 73                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      | Page 70 01 73                |

© 2017 PCTEST Engineering Laboratory, Inc.

REV 18.4 M

# 16 CONCLUSION

### 16.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

| FCC ID: ZNFX210MA      |                     | SAR EVALUATION REPORT | <b>(</b> LG | Approved by:  Quality Manager |  |
|------------------------|---------------------|-----------------------|-------------|-------------------------------|--|
| Document S/N:          | Test Dates:         | DUT Type:             |             | Dogg 74 of 72                 |  |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      |             | Page 71 of 73                 |  |

# 17 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

| FCC ID: ZNFX210MA      |                     | SAR EVALUATION REPORT LG | Approved by: Quality Manager |
|------------------------|---------------------|--------------------------|------------------------------|
| Document S/N:          | Test Dates:         | DUT Type:                | Daga 72 of 72                |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset         | Page 72 of 73                |

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz – 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

| FCC ID: ZNFX210MA      | PCTEST*             | SAR EVALUATION REPORT | G | Approved by:  Quality Manager |  |
|------------------------|---------------------|-----------------------|---|-------------------------------|--|
| Document S/N:          | Test Dates:         | DUT Type:             |   | Page 73 of 73                 |  |
| 1M1710020259-01-R1.ZNF | 10/02/17 - 10/12/17 | Portable Handset      |   |                               |  |

### APPENDIX A: SAR TEST DATA

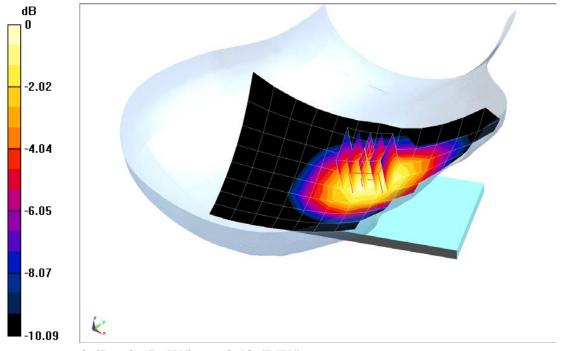
DUT: ZNFX210MA; Type: Portable Handset; Serial: 71363

Communication System: UID 0, GSM GPRS; 3 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.76 Medium: 835 Head Medium parameters used (interpolated):  $f = 836.6 \text{ MHz}; \ \sigma = 0.912 \text{ S/m}; \ \epsilon_r = 41.72; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Right Section

Test Date: 10-09-2017; Ambient Temp: 21.5°C; Tissue Temp: 21.2°C

Probe: ES3DV3 - SN3213; ConvF(6.49, 6.49, 6.49); Calibrated: 2/10/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/9/2017
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

#### Mode: GPRS 850, Right Head, Cheek, Mid.ch, 3 Tx slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.95 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.662 W/kg

SAR(1 g) = 0.520 W/kg



0 dB = 0.576 W/kg = -2.40 dBW/kg

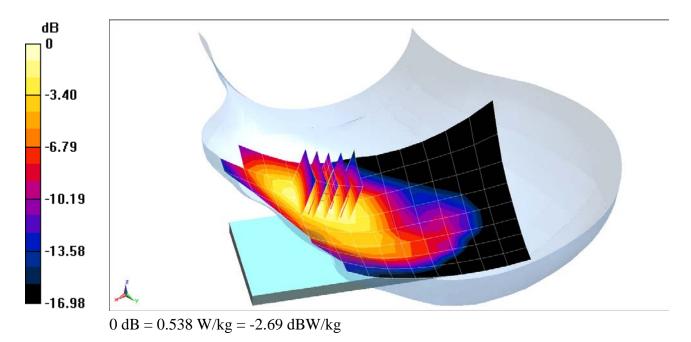
DUT: ZNFX210MA; Type: Portable Handset; Serial: 71363

Communication System: UID 0, GSM GPRS; 3 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.76 Medium: 1900 Head Medium parameters used:  $f = 1880 \text{ MHz}; \ \sigma = 1.433 \text{ S/m}; \ \epsilon_r = 39.553; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Left Section

Test Date: 10-04-2017; Ambient Temp: 22.8°C; Tissue Temp: 21.1°C

Probe: ES3DV3 - SN3213; ConvF(5.29, 5.29, 5.29); Calibrated: 2/10/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/9/2017
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

#### Mode: GPRS 1900, Left Head, Cheek, Mid.ch, 3 Tx slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.6950 V/m; Power Drift = 0.20 dB

Peak SAR (extrapolated) = 0.737 W/kg

SAR(1 g) = 0.463 W/kg



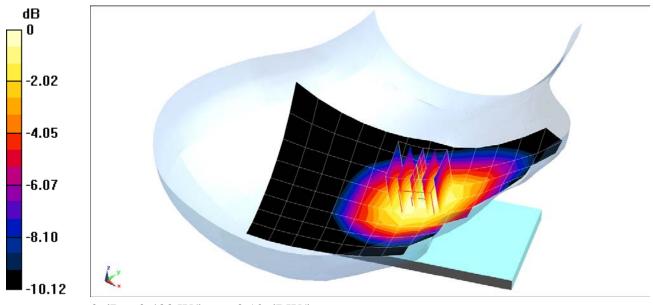
#### DUT: ZNFX210MA; Type: Portable Handset; Serial: 71363

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated):  $f = 836.6 \text{ MHz}; \ \sigma = 0.912 \text{ S/m}; \ \epsilon_r = 41.72; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Right Section

Test Date: 10-09-2017; Ambient Temp: 21.5°C; Tissue Temp: 21.2°C

Probe: ES3DV3 - SN3213; ConvF(6.49, 6.49, 6.49); Calibrated: 2/10/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/9/2017
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

#### Mode: UMTS 850, Right Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.03 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.568 W/kg

SAR(1 g) = 0.447 W/kg



0 dB = 0.488 W/kg = -3.12 dBW/kg

#### DUT: ZNFX210MA; Type: Portable Handset; Serial: 71363

Communication System: UID 0, UMTS; Frequency: 1752.6 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated):  $f = 1752.6 \text{ MHz}; \ \sigma = 1.387 \text{ S/m}; \ \epsilon_r = 38.318; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Left Section

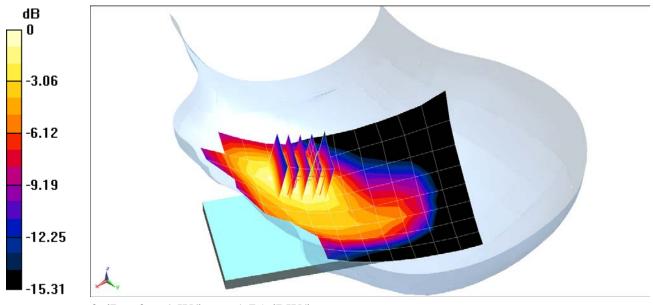
Test Date: 10-03-2017; Ambient Temp: 21.9°C; Tissue Temp: 20.6°C

Probe: ES3DV3 - SN3332; ConvF(5.56, 5.56, 5.56); Calibrated: 8/14/2017;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 8/9/2017 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

#### Mode: UMTS 1750, Left Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.40 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.919 W/kg

SAR(1 g) = 0.591 W/kg



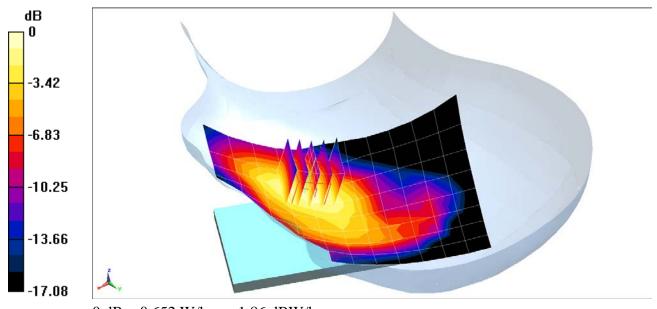
#### DUT: ZNFX210MA; Type: Portable Handset; Serial: 71363

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used:  $f = 1880 \text{ MHz}; \ \sigma = 1.433 \text{ S/m}; \ \epsilon_r = 39.553; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Left Section

Test Date: 10-04-2017; Ambient Temp: 22.8°C; Tissue Temp: 21.1°C

Probe: ES3DV3 - SN3213; ConvF(5.29, 5.29, 5.29); Calibrated: 2/10/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/9/2017
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

#### Mode: UMTS 1900, Left Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.84 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.883 W/kg

SAR(1 g) = 0.555 W/kg



DUT: ZNFX210MA; Type: Portable Handset; Serial: 70920

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated):  $f = 707.5 \text{ MHz}; \ \sigma = 0.853 \text{ S/m}; \ \epsilon_r = 41.806; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Right Section

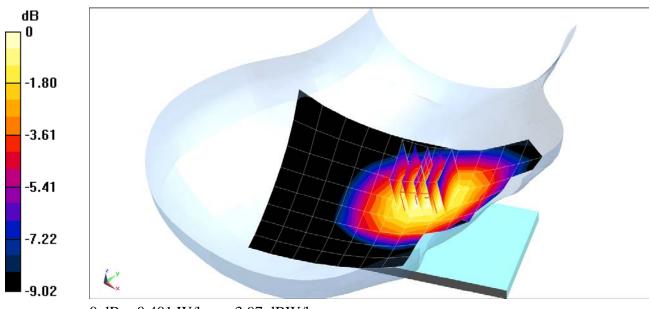
Test Date: 10-09-2017; Ambient Temp: 21.5°C; Tissue Temp: 22.0°C

Probe: ES3DV3 - SN3332; ConvF(6.81, 6.81, 6.81); Calibrated: 8/14/2017;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 8/9/2017 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

# Mode: LTE Band 12, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.27 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.446 W/kg

SAR(1 g) = 0.365 W/kg



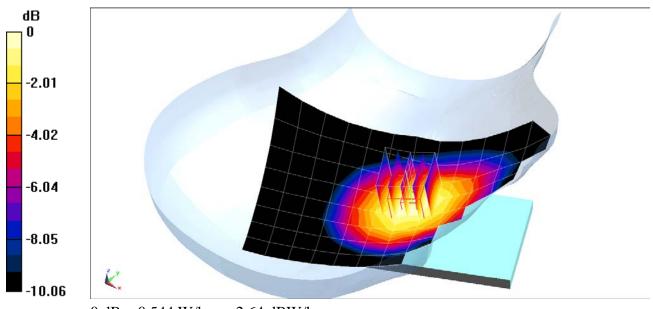
DUT: ZNFX210MA; Type: Portable Handset; Serial: 71363

Communication System: UID 0, LTE Band 5 (Cell.); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated):  $f = 836.5 \text{ MHz}; \ \sigma = 0.911 \text{ S/m}; \ \epsilon_r = 41.722; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Right Section

Test Date: 10-09-2017; Ambient Temp: 21.5°C; Tissue Temp: 21.2°C

Probe: ES3DV3 - SN3213; ConvF(6.49, 6.49, 6.49); Calibrated: 2/10/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/9/2017
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

# Mode: LTE Band 5 (Cell.), Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.24 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.623 W/kg

SAR(1 g) = 0.488 W/kg



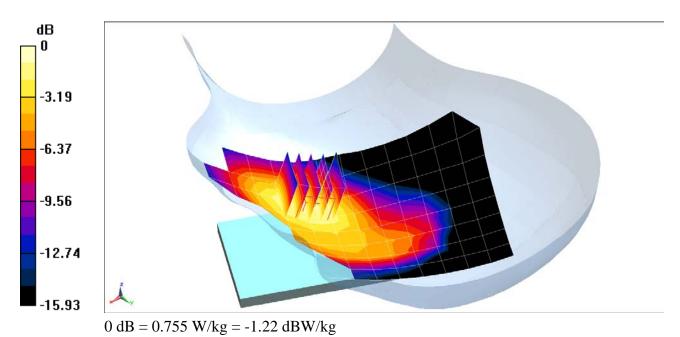
DUT: ZNFX210MA; Type: Portable Handset; Serial: 73171

Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated):  $f = 1745 \text{ MHz}; \ \sigma = 1.392 \text{ S/m}; \ \epsilon_r = 39.669; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Left Section

Test Date: 10-09-2017; Ambient Temp: 23.1°C; Tissue Temp: 21.3°C

Probe: ES3DV3 - SN3319; ConvF(5.38, 5.38, 5.38); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/8/2017
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

# Mode: LTE Band 66 (AWS), Left Head, Cheek, Mid.ch, 20 MHz Bandwidth, OPSK, 1 RB, 0 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.47 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.983 W/kg

SAR(1 g) = 0.649 W/kg



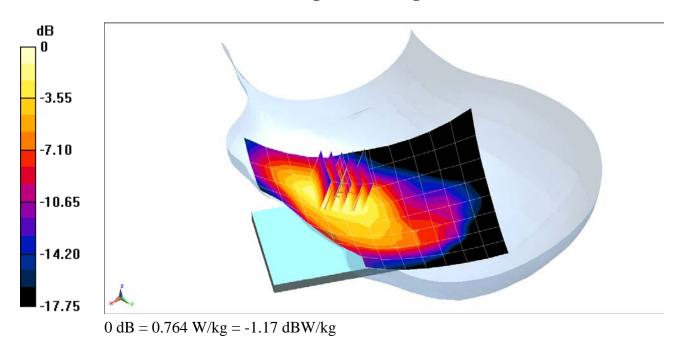
DUT: ZNFX210MA; Type: Portable Handset; Serial: 71363

Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated):  $f = 1900 \text{ MHz}; \ \sigma = 1.456 \text{ S/m}; \ \epsilon_r = 39.474; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Left Section

Test Date: 10-04-2017; Ambient Temp: 22.8°C; Tissue Temp: 21.1°C

Probe: ES3DV3 - SN3213; ConvF(5.29, 5.29, 5.29); Calibrated: 2/10/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/9/2017
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

# Mode: LTE Band 2 (PCS), Left Head, Cheek, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.28 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.637 W/kg



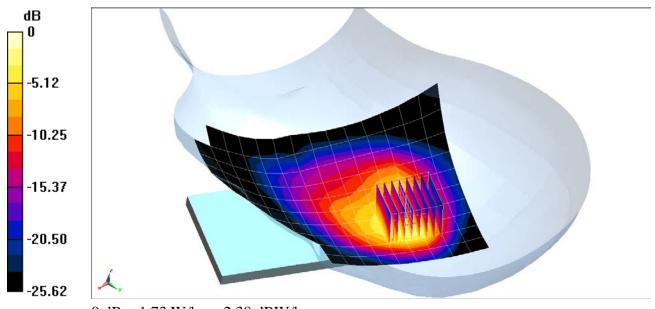
DUT: ZNFX210MA; Type: Portable Handset; Serial: 71777

Communication System: UID 0, IEEE 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used (interpolated):  $f = 2412 \text{ MHz}; \ \sigma = 1.842 \text{ S/m}; \ \epsilon_r = 38.443; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Left Section

Test Date: 10-4-2017; Ambient Temp: 23.1°C; Tissue Temp: 21.4°C

Probe: EX3DV4 - SN7406; ConvF(7.68, 7.68, 7.68); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/11/2017
Phantom: SAM Right; Type: QD000P40CD; Serial: TP:7535
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

#### Mode: IEEE 802.11b, 22 MHz Bandwidth, Left Head, Cheek, Ch 1, 1 Mbps


Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.21 V/m; Power Drift = 0.11

Peak SAR (extrapolated) = 2.29 W/kg

SAR(1 g) = 1.06 W/kg



0 dB = 1.73 W/kg = 2.38 dBW/kg

DUT: ZNFX210MA; Type: Portable Handset; Serial: 71777

Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5280 MHz; Duty Cycle: 1:1 Medium: 5GHz Head Medium parameters used:  $f = 5280 \text{ MHz}; \ \sigma = 4.534 \text{ S/m}; \ \epsilon_r = 36.241; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Left Section

Test Date: 10-3-2017; Ambient Temp: 21.7°C; Tissue Temp: 20.8°C

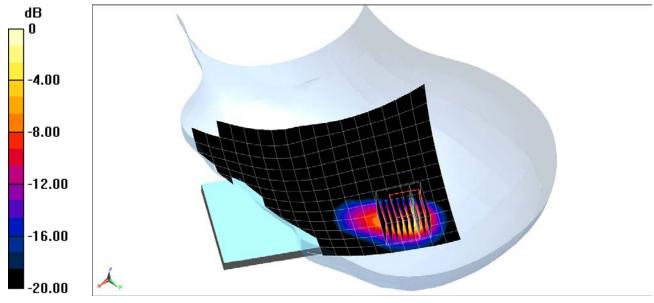
Probe: EX3DV4 - SN3914; ConvF(5.49, 5.49, 5.49); Calibrated: 2/13/2017;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/9/2017

Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

#### Mode: IEEE 802.11a, U-NII-2A, 20 MHz Bandwidth, Left Head, Cheek, Ch 56, 6 Mbps


Area Scan (13x19x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 1.524 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 3.87 W/kg

SAR(1 g) = 0.865 W/kg



0 dB = 2.20 W/kg = 3.42 dBW/kg

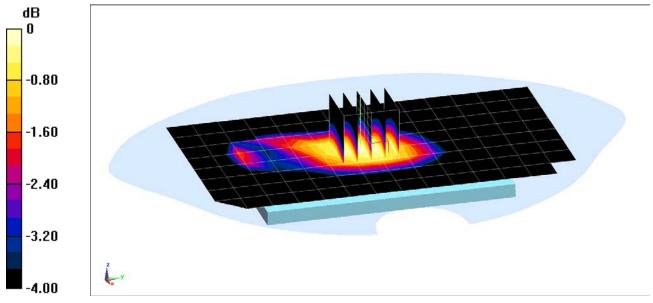
DUT: ZNFX210MA; Type: Portable Handset; Serial: 71447

Communication System: UID 0, GSM GPRS; 3 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.76 Medium: 835 Body Medium parameters used (interpolated):  $f = 836.6 \text{ MHz}; \ \sigma = 0.988 \text{ S/m}; \ \epsilon_r = 53.96; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-02-2017; Ambient Temp: 21.0°C; Tissue Temp: 20.8°C

Probe: ES3DV3 - SN3319; ConvF(6.29, 6.29, 6.29); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/8/2017
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

#### Mode: GPRS 850, Body SAR, Back side, Low.ch, 3 Tx Slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.65 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.897 W/kg

SAR(1 g) = 0.703 W/kg



0 dB = 0.757 W/kg = -1.21 dBW/kg

DUT: ZNFX210MA; Type: Portable Handset; Serial: 71371

Communication System: UID 0, GSM GPRS; 3 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.76 Medium: 1900 Body Medium parameters used:  $f = 1880 \text{ MHz}; \ \sigma = 1.558 \text{ S/m}; \ \epsilon_r = 52.066; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

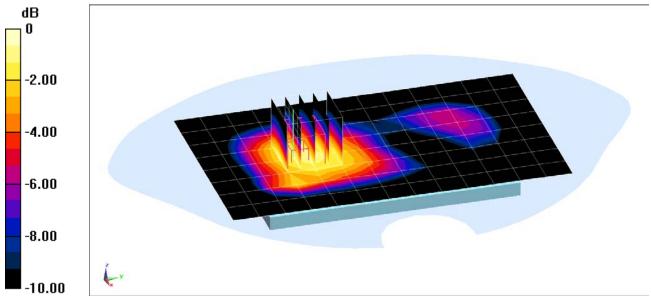
Test Date: 10-06-2017; Ambient Temp: 20.4°C; Tissue Temp: 21.3°C

Probe: ES3DV3 - SN3209; ConvF(4.93, 4.93, 4.93); Calibrated: 3/14/2017;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 3/13/2017

Phantom: SAM with CRP v4.0 Left; Type: QD000P40CD; Serial: TP:1692 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: GPRS 1900, Body SAR, Back side, Mid.ch, 3 Tx Slots


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.70 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.785 W/kg

SAR(1 g) = 0.518 W/kg



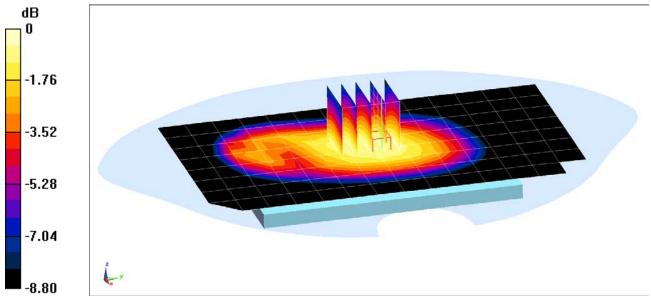
#### DUT: ZNFX210MA; Type: Portable Handset; Serial: 71447

Communication System: UID 0, UMTS; Frequency: 826.4 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated):  $f = 826.4 \text{ MHz}; \ \sigma = 0.977 \text{ S/m}; \ \epsilon_r = 54.05; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-02-2017; Ambient Temp: 21.0°C; Tissue Temp: 20.8°C

Probe: ES3DV3 - SN3319; ConvF(6.29, 6.29, 6.29); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/8/2017
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

#### Mode: UMTS 850, Body SAR, Back side, Low.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.07 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.813 W/kg

SAR(1 g) = 0.648 W/kg



0 dB = 0.705 W/kg = -1.52 dBW/kg

#### DUT: ZNFX210MA; Type: Portable Handset; Serial: 71447

Communication System: UID 0, UMTS; Frequency: 1712.4 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated):  $f = 1712.4 \text{ MHz}; \ \sigma = 1.48 \text{ S/m}; \ \epsilon_r = 51.491; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

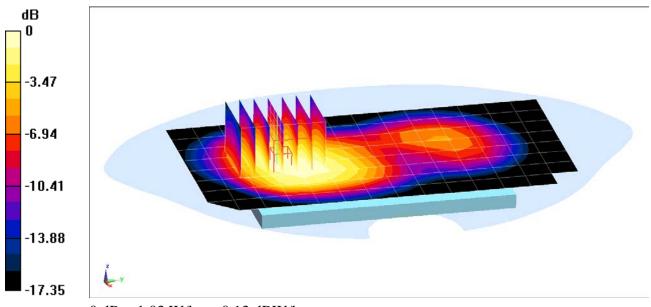
Test Date: 10-04-2017; Ambient Temp: 22.6°C; Tissue Temp: 20.9°C

Probe: ES3DV3 - SN3332; ConvF(5.16, 5.16, 5.16); Calibrated: 8/14/2017;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 8/9/2017 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

#### Mode: UMTS 1750, Body SAR, Back side, Low.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.78 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.33 W/kg

SAR(1 g) = 0.890 W/kg



0 dB = 1.03 W/kg = 0.13 dBW/kg

#### DUT: ZNFX210MA; Type: Portable Handset; Serial: 71447

Communication System: UID 0, UMTS; Frequency: 1712.4 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated):  $f = 1712.4 \text{ MHz}; \ \sigma = 1.48 \text{ S/m}; \ \epsilon_r = 51.491; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

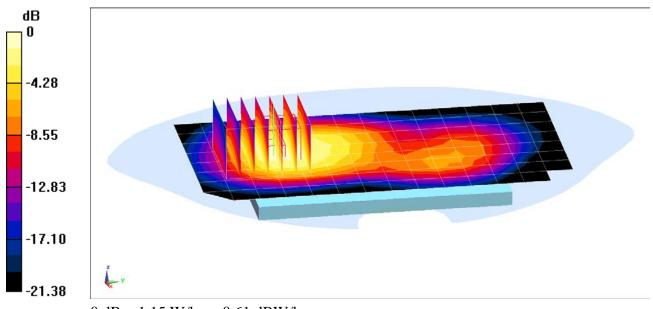
Test Date: 10-04-2017; Ambient Temp: 22.6°C; Tissue Temp: 20.9°C

Probe: ES3DV3 - SN3332; ConvF(5.16, 5.16, 5.16); Calibrated: 8/14/2017;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 8/9/2017 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

#### Mode: UMTS 1750, Body SAR, Front side, Low.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.81 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.48 W/kg

SAR(1 g) = 0.987 W/kg



#### DUT: ZNFX210MA; Type: Portable Handset; Serial: 71371

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used:  $f = 1880 \text{ MHz}; \ \sigma = 1.559 \text{ S/m}; \ \epsilon_r = 51.563; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

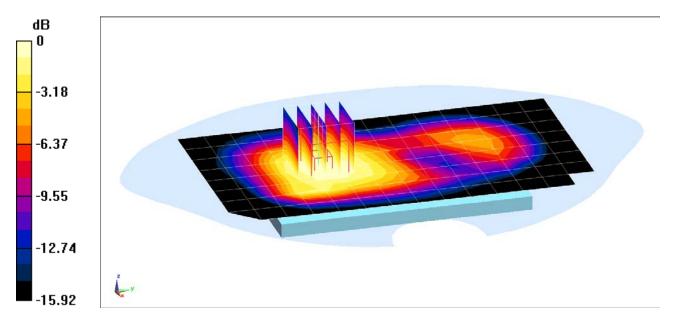
Test Date: 10-03-2017; Ambient Temp: 21.0°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3209; ConvF(4.93, 4.93, 4.93); Calibrated: 3/14/2017;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 3/13/2017

Phantom: SAM with CRP v4.0 Left; Type: QD000P40CD; Serial: TP:1692 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

#### Mode: UMTS 1900, Body SAR, Back side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.10 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.03 W/kg

SAR(1 g) = 0.682 W/kg



0 dB = 0.798 W/kg = -0.98 dBW/kg

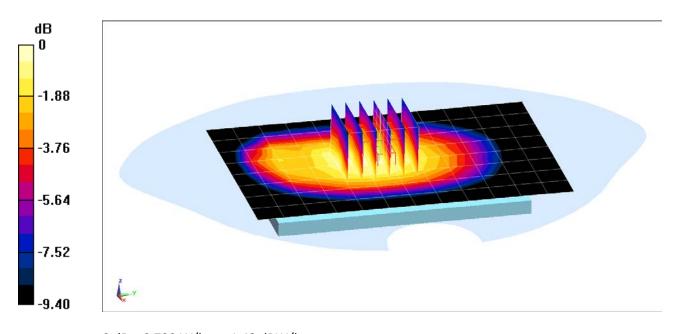
DUT: ZNFX210MA; Type: Portable Handset; Serial: 71371

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated):  $f = 707.5 \text{ MHz}; \ \sigma = 0.932 \text{ S/m}; \ \epsilon_r = 55.643; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-09-2017; Ambient Temp: 21.2°C; Tissue Temp: 20.7°C

Probe: ES3DV3 - SN3288; ConvF(6.32, 6.32, 6.32); Calibrated: 1/13/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1466; Calibrated: 1/16/2017
Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

# Mode: LTE Band 12, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.02 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.801 W/kg

SAR(1 g) = 0.629 W/kg



0 dB = 0.720 W/kg = -1.43 dBW/kg

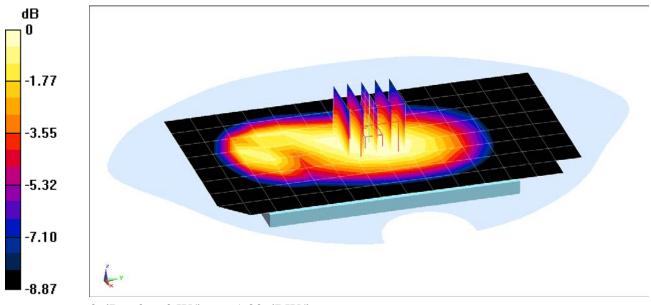
DUT: ZNFX210MA; Type: Portable Handset; Serial: 71405

Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated):  $f = 836.5 \text{ MHz}; \ \sigma = 0.988 \text{ S/m}; \ \epsilon_r = 53.961; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-02-2017; Ambient Temp: 21.0°C; Tissue Temp: 20.8°C

Probe: ES3DV3 - SN3319; ConvF(6.29, 6.29, 6.29); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/8/2017
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

# Mode: LTE Band 5 (Cell.), Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.80 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.761 W/kg

SAR(1 g) = 0.596 W/kg



0 dB = 0.660 W/kg = -1.80 dBW/kg

DUT: ZNFX210MA; Type: Portable Handset; Serial: 71447

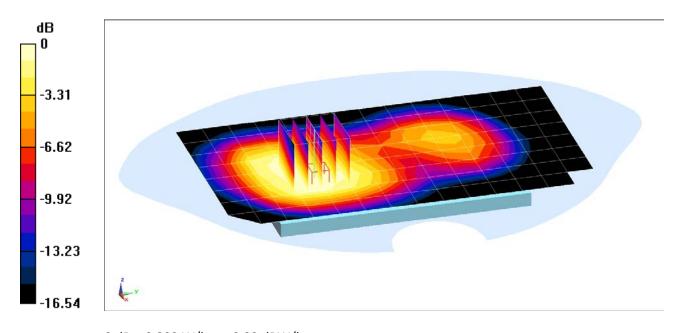
Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1770 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated):  $f = 1770 \text{ MHz}; \ \sigma = 1.543 \text{ S/m}; \ \epsilon_r = 51.216; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-04-2017; Ambient Temp: 22.6°C; Tissue Temp: 20.9°C

Probe: ES3DV3 - SN3332; ConvF(5.16, 5.16, 5.16); Calibrated: 8/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 8/9/2017
Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 66 (AWS), Body SAR, Back side, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.41 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.700 W/kg



0 dB = 0.809 W/kg = -0.92 dBW/kg

DUT: ZNFX210MA; Type: Portable Handset; Serial: 71447

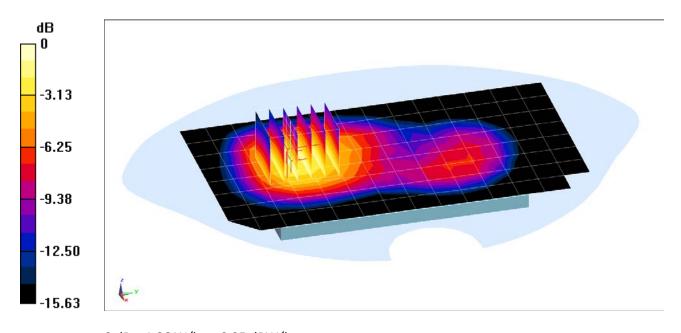
Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1720 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated):  $f = 1720 \text{ MHz}; \ \sigma = 1.488 \text{ S/m}; \ \epsilon_r = 51.454; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-04-2017; Ambient Temp: 22.6°C; Tissue Temp: 20.9°C

Probe: ES3DV3 - SN3332; ConvF(5.16, 5.16, 5.16); Calibrated: 8/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 8/9/2017
Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 66 (AWS), Body SAR, Front side, Low.ch, 20 MHz Bandwidth, OPSK, 1 RB, 0 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.09 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 1.39 W/kg

SAR(1 g) = 0.927 W/kg



0 dB = 1.06 W/kg = 0.25 dBW/kg

DUT: ZNFX210MA; Type: Portable Handset; Serial: 71371

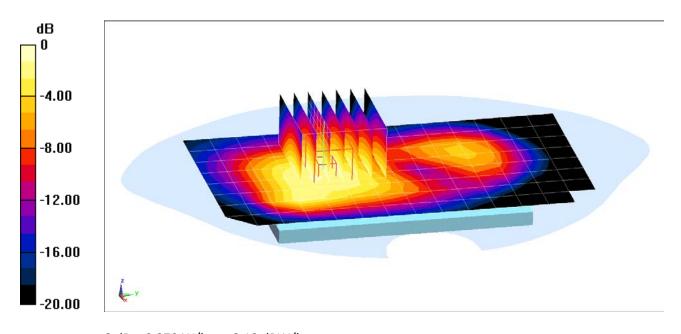
Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated):  $f = 1900 \text{ MHz}; \ \sigma = 1.58 \text{ S/m}; \ \epsilon_r = 51.475; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-03-2017; Ambient Temp: 21.0°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3209; ConvF(4.93, 4.93, 4.93); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1415; Calibrated: 3/13/2017
Phantom: SAM with CRP v4.0 Left; Type: QD000P40CD; Serial: TP:1692

Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 2 (PCS), Body SAR, Back side, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.13 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.27 W/kg

SAR(1 g) = 0.832 W/kg



0 dB = 0.970 W/kg = -0.13 dBW/kg

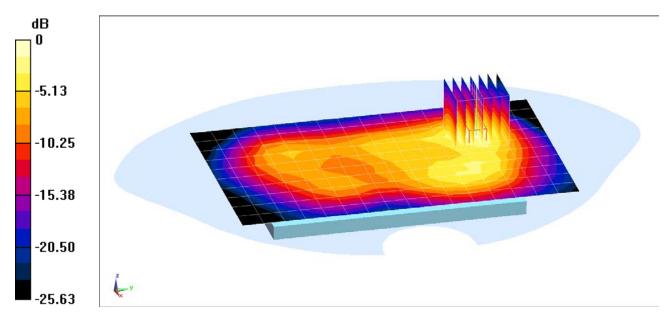
#### DUT: ZNFX210MA; Type: Portable Handset; Serial: 71363

Communication System: UID 0, IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated):  $f = 2462 \text{ MHz}; \ \sigma = 2.042 \text{ S/m}; \ \epsilon_r = 51.93; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-03-2017; Ambient Temp: 23.5°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3319; ConvF(4.42, 4.42, 4.42); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/8/2017
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

#### Mode: IEEE 802.11b, 22 MHz Bandwidth, Body SAR, Ch 11, 1 Mbps, Back Side


Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.48 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.31 W/kg

SAR(1 g) = 0.598 W/kg



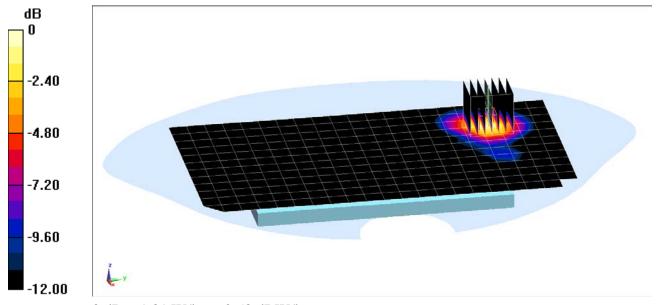
0 dB = 0.786 W/kg = -1.05 dBW/kg

DUT: ZNFX210MA; Type: Portable Handset; Serial: 71777

Communication System: UID 0, IEEE 802.11a; Frequency: 5280 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used:  $f = 5280 \text{ MHz}; \ \sigma = 5.368 \text{ S/m}; \ \epsilon_r = 47.352; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-03-2017; Ambient Temp: 22.5°C; Tissue Temp: 21.4°C

Probe: EX3DV4 - SN3589; ConvF(4.19, 4.19, 4.19); Calibrated: 1/13/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1466; Calibrated: 1/16/2017


Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646 Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

Mode: IEEE 802.11a, UNII-2A, 20 MHz Bandwidth, Body SAR, Ch 56, 6 Mbps, Back Side

Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 12.67 V/m; Power Drift = 0.09 dBPeak SAR (extrapolated) = 2.96 W/kgSAR(1 g) = 0.782 W/kg



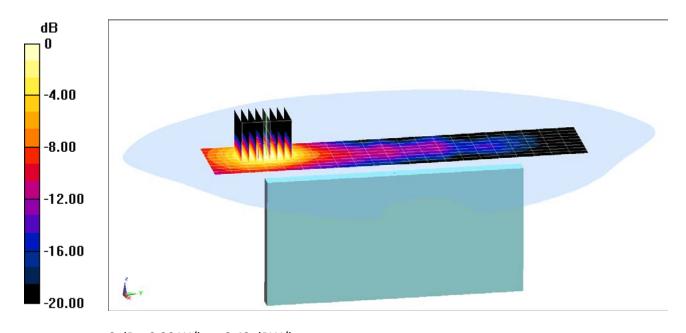
DUT: ZNFX210MA; Type: Portable Handset; Serial: 71777

Communication System: UID 0, IEEE 802.11a; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used:  $f = 5200 \text{ MHz}; \ \sigma = 5.251 \text{ S/m}; \ \epsilon_r = 47.549; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-03-2017; Ambient Temp: 22.5°C; Tissue Temp: 21.4°C

Probe: EX3DV4 - SN3589; ConvF(4.19, 4.19, 4.19); Calibrated: 1/13/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1466; Calibrated: 1/16/2017
Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: IEEE 802.11a, U-NII-1, 20 MHz Bandwidth, Body SAR, Ch 40, 6 Mbps, Right Edge


Area Scan (10x22x1): Measurement grid: dx=5mm, dy=10mm

Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 14.47 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 3.52 W/kg

SAR(1 g) = 1.01 W/kg



0 dB = 2.20 W/kg = 3.42 dBW/kg

### APPENDIX B: SYSTEM VERIFICATION

#### DUT: Dipole 750 MHz; Type: D750V3; Serial: 1161

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated):  $f = 750 \text{ MHz}; \ \sigma = 0.892 \text{ S/m}; \ \epsilon_r = 41.201; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.5 cm

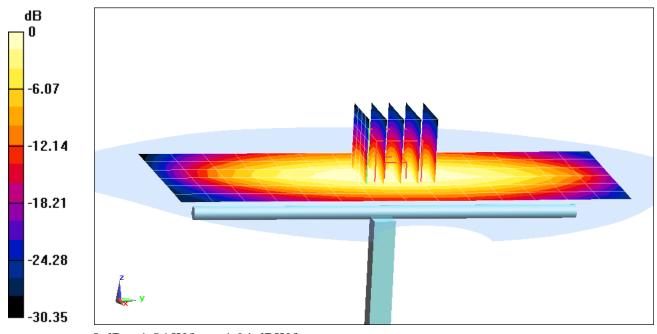
Test Date: 10-09-2017; Ambient Temp: 21.5°C; Tissue Temp: 22.0°C

Probe: ES3DV3 - SN3332; ConvF(6.81, 6.81, 6.81); Calibrated: 8/14/2017;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 8/9/2017 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

#### 750 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.48 W/kg

SAR(1 g) = 1.7 W/kg

Deviation(1 g) = 4.04%



0 dB = 1.56 W/kg = 1.94 dBW/kg

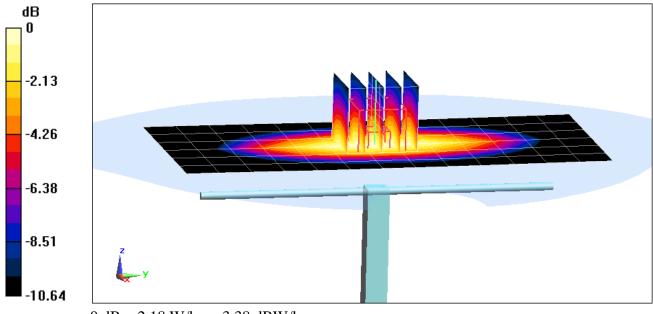
#### DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used:  $f = 835 \text{ MHz}; \ \sigma = 0.91 \text{ S/m}; \ \epsilon_r = 41.742; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.5 cm

Test Date: 10-09-2017; Ambient Temp: 21.5°C; Tissue Temp: 21.2°C

Probe: ES3DV3 - SN3213; ConvF(6.49, 6.49, 6.49); Calibrated: 2/10/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/9/2017
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

#### 835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.75 W/kg

SAR(1 g) = 1.87 W/kg

Deviation(1 g) = 2.41%

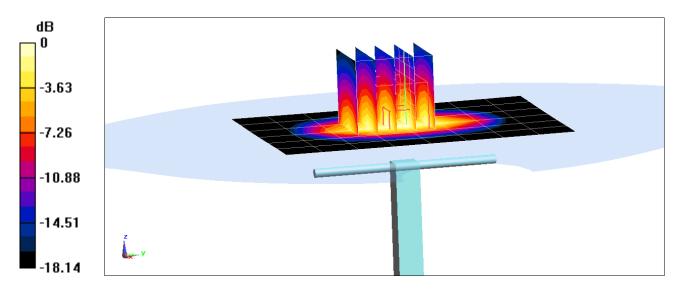


0 dB = 2.18 W/kg = 3.38 dBW/kg

#### **DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148**

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used:  $f = 1750 \text{ MHz}; \ \sigma = 1.384 \text{ S/m}; \ \epsilon_r = 38.331; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-03-2017; Ambient Temp: 21.9°C; Tissue Temp: 20.6°C


Probe: ES3DV3 - SN3332; ConvF (5.56, 5.56, 5.56); Calibrated: 8/14/2017;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 8/9/2017 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

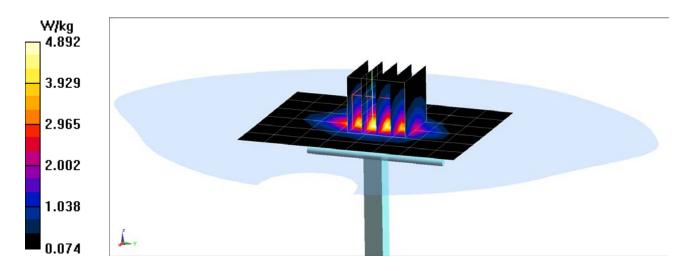
#### 1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.21 W/kg SAR(1 g) = 3.42 W/kg Deviation(1 g) = -6.04%



0 dB = 4.26 W/kg = 6.29 dBW/kg

#### **DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148**


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used:  $f = 1750 \text{ MHz}; \ \sigma = 1.397 \text{ S/m}; \ \epsilon_r = 39.646; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-09-2017; Ambient Temp: 23.1°C; Tissue Temp: 21.3°C

Probe: ES3DV3 - SN3319; ConvF(5.38, 5.38, 5.38); Calibrated: 03/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 03/08/2017
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

#### 1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.00 W/kg SAR(1 g) = 3.9 W/kg Deviation(1 g) = 7.14%



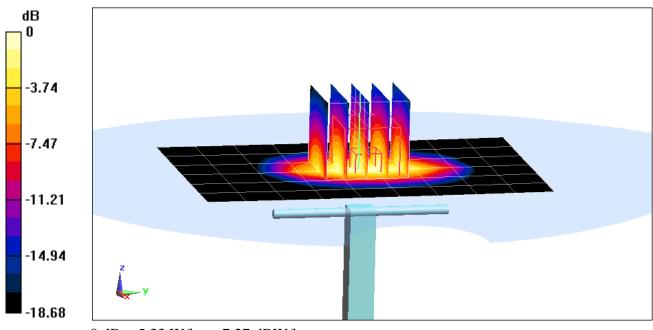
#### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated):  $f = 1900 \text{ MHz}; \ \sigma = 1.456 \text{ S/m}; \ \epsilon_r = 39.474; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-04-2017; Ambient Temp: 22.8°C; Tissue Temp: 21.1°C

Probe: ES3DV3 - SN3213; ConvF(5.29, 5.29, 5.29); Calibrated: 2/10/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/9/2017
Phantom: SAM Front; Type: QD000P40CD; Serial: TP:1758
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

#### 1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.86 W/kg

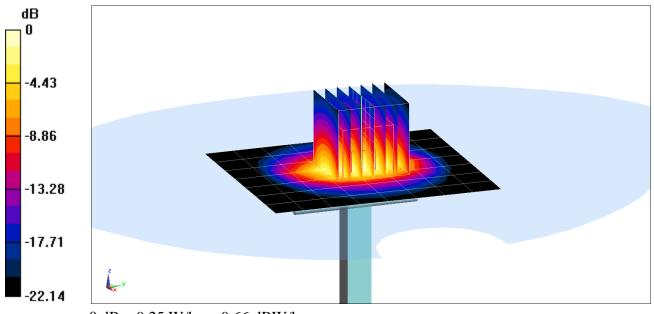
SAR(1 g) = 4.24 W/kg

Deviation(1 g) = 5.47%



0 dB = 5.33 W/kg = 7.27 dBW/kg

#### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used:  $f = 2450 \text{ MHz}; \ \sigma = 1.884 \text{ S/m}; \ \epsilon_r = 38.303; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-4-2017; Ambient Temp: 23.1°C; Tissue Temp: 21.4°C

Probe: EX3DV4 - SN7406; ConvF(7.68, 7.68, 7.68); Calibrated: 4/18/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/11/2017
Phantom: SAM Right; Type: QD000P40CD; Serial: TP:7535
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

#### 2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.6 W/kg SAR(1 g) = 5.4 W/kg Deviation(1 g) = 2.27%



DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237

Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5GHz Head Medium parameters used (interpolated):  $f = 5250 \text{ MHz}; \ \sigma = 4.514 \text{ S/m}; \ \epsilon_r = 36.263; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

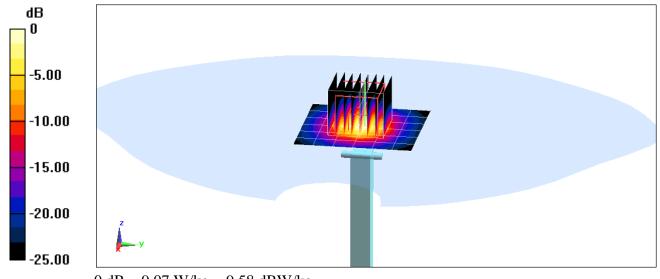
Test Date: 10-3-2017; Ambient Temp: 21.7°C; Tissue Temp: 20.8°C

Probe: EX3DV4 - SN3914; ConvF(5.49, 5.49, 5.49); Calibrated: 2/13/2017;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/9/2017

Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)


#### 5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 16.7 W/kg

**SAR**(1 g) = 3.83 W/kg Deviation(1 g) = -5.08%



DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237

Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5GHz Head Medium parameters used:  $f = 5600 \text{ MHz}; \ \sigma = 4.864 \text{ S/m}; \ \epsilon_r = 35.775; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

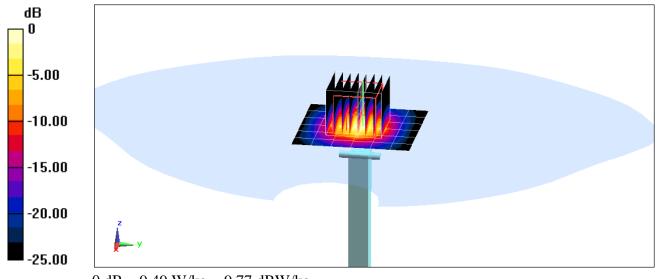
Test Date: 10-3-2017; Ambient Temp: 21.7°C; Tissue Temp: 20.8°C

Probe: EX3DV4 - SN3914; ConvF(4.94, 4.94, 4.94); Calibrated: 2/13/2017;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/9/2017

Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)


#### 5600 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 17.4 W/kg

**SAR(1 g) = 3.97 W/kg** Deviation(1 g) = -3.76%



0 dB = 9.49 W/kg = 9.77 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237

Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5GHz Head Medium parameters used (interpolated):  $f = 5750 \text{ MHz}; \ \sigma = 5.033 \text{ S/m}; \ \epsilon_r = 35.59; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-3-2017; Ambient Temp: 21.7°C; Tissue Temp: 20.8°C

Probe: EX3DV4 - SN3914; ConvF(4.91, 4.91, 4.91); Calibrated: 2/13/2017;

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/9/2017

Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.10;SEMCAD X Version 14.6.10 (7417)

5750 MHz System Verification at 17.0 dBm (50 mW)

**Area Scan (7x7x1):** Measurement grid: dx=10mm, dy=10mm

**Zoom Scan (8x8x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 17.0 W/kg

SAR(1 g) = 3.76 W/kg

Deviation(1 g) = -6.23%



0 dB = 9.15 W/kg = 9.61 dBW/kg

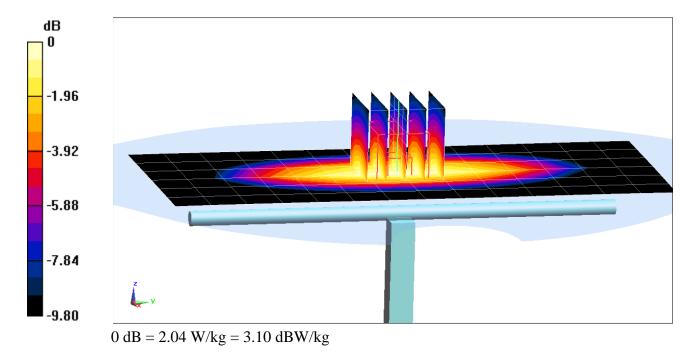
DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Body Medium parameters used (interpolated):  $f = 750 \text{ MHz}; \ \sigma = 0.948 \text{ S/m}; \ \epsilon_r = 55.53; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.5 cm

Test Date: 10-09-2017; Ambient Temp: 21.2°C; Tissue Temp: 20.7°C

Probe: ES3DV3 - SN3288; ConvF(6.32, 6.32, 6.32); Calibrated: 1/13/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1466; Calibrated: 1/16/2017
Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

#### 750 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.55 W/kg

SAR(1 g) = 1.76 W/kg

Deviation(1 g) = 2.21%



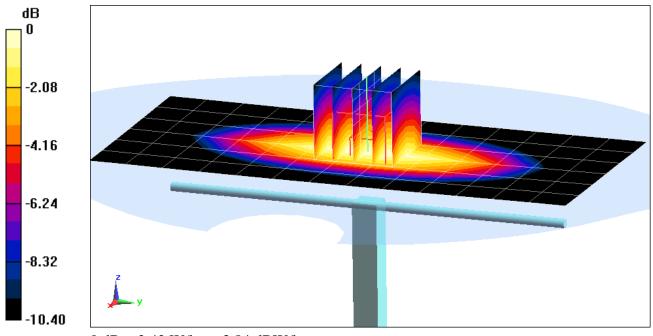
#### DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used:  $f = 835 \text{ MHz}; \ \sigma = 0.986 \text{ S/m}; \ \epsilon_r = 53.975; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.5 cm

Test Date: 10-02-2017; Ambient Temp: 21.0°C; Tissue Temp: 20.8°C

Probe: ES3DV3 - SN3319; ConvF(6.29, 6.29, 6.29); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/8/2017
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

#### 835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 3.07 W/kg

SAR(1 g) = 2.08 W/kg

Deviation(1 g) = 6.12%



0 dB = 2.42 W/kg = 3.84 dBW/kg

**DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148** 

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used:  $f = 1750 \text{ MHz}; \ \sigma = 1.521 \text{ S/m}; \ \epsilon_r = 51.308; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

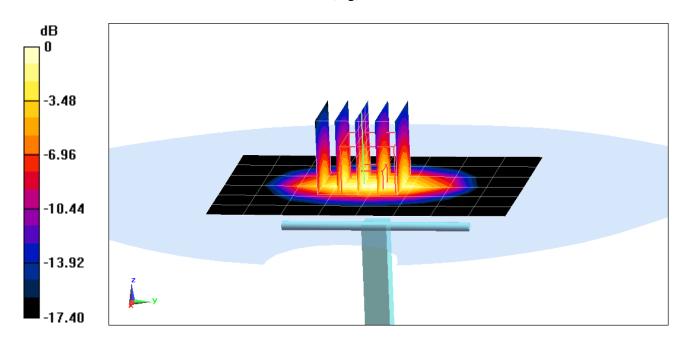
Test Date: 10-04-2017; Ambient Temp: 22.6°C; Tissue Temp: 20.9°C

Probe: ES3DV3 - SN3332; ConvF(5.16, 5.16, 5.16); Calibrated: 8/14/2017;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 8/9/2017 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

#### 1750 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 6.23 W/kg

SAR(1 g) = 3.53 W/kg

Deviation(1 g) = -4.59%



0 dB = 4.36 W/kg = 6.39 dBW/kg

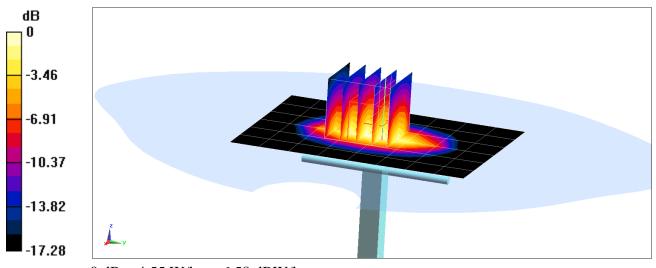
#### **DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1150**

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used:  $f = 1750 \text{ MHz}; \ \sigma = 1.473 \text{ S/m}; \ \epsilon_r = 52.454; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-12-2017; Ambient Temp: 21.8°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3288; ConvF(5.09, 5.09, 5.09); Calibrated: 1/13/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1466; Calibrated: 1/16/2017
Phantom: SAM with CRP v5.0 Left; Type: QD000P40CD; Serial: 1687
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

#### 1750 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 6.35 W/kg

SAR(1 g) = 3.68 W/kg

Deviation(1 g) = 0.82%



0 dB = 4.55 W/kg = 6.58 dBW/kg

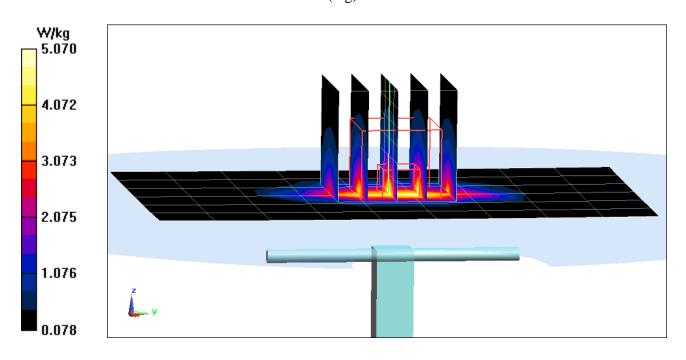
#### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated):  $f = 1900 \text{ MHz}; \ \sigma = 1.58 \text{ S/m}; \ \epsilon_r = 51.475; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-03-2017; Ambient Temp: 21.0°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3209; ConvF(4.93, 4.93, 4.93); Calibrated: 3/14/2017;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 3/13/2017


Phantom: SAM with CRP v4.0 Left; Type: QD000P40CD; Serial: TP:1692 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

#### 1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.20 W/kgSAR(1 g) = 4.01 W/kgDeviation(1 g) = -1.96%



#### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148

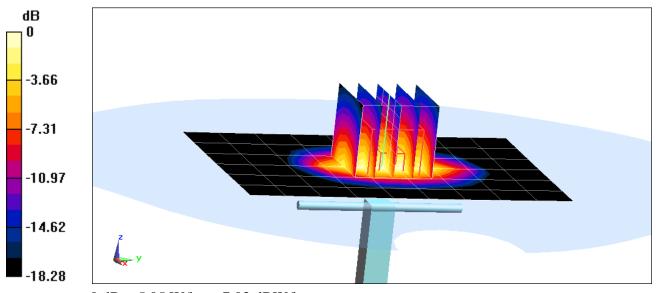
Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated):  $f = 1900 \text{ MHz}; \ \sigma = 1.582 \text{ S/m}; \ \epsilon_r = 52.005; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-06-2017; Ambient Temp: 20.4°C; Tissue Temp: 21.3°C

Probe: ES3DV3 - SN3209; ConvF(4.93, 4.93, 4.93); Calibrated: 3/14/2017;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1415; Calibrated: 3/13/2017

Phantom: SAM with CRP v4.0 Left; Type: QD000P40CD; Serial: TP:1692 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)


#### 1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

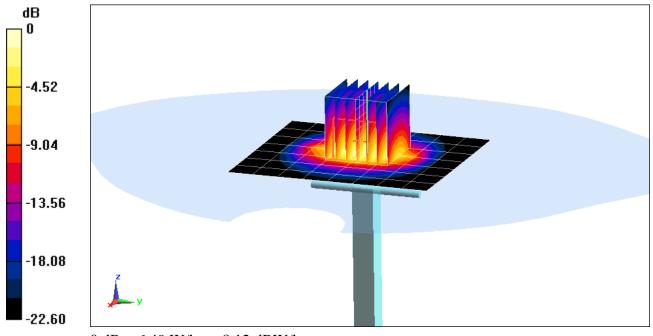
Peak SAR (extrapolated) = 7.17 W/kgSAR(1 g) = 4 W/kg

Deviation(1 g) = -2.20%



0 dB = 5.05 W/kg = 7.03 dBW/kg

#### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used:  $f = 2450 \text{ MHz}; \ \sigma = 2.026 \text{ S/m}; \ \epsilon_r = 51.979; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-03-2017; Ambient Temp: 23.5°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3319; ConvF(4.42, 4.42, 4.42); Calibrated: 3/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1368; Calibrated: 3/8/2017
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

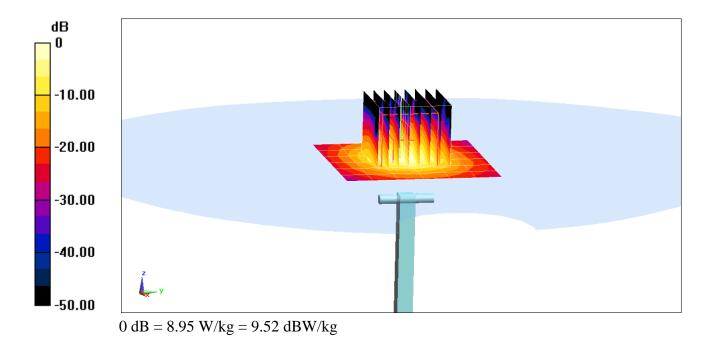
#### 2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.3 W/kg SAR(1 g) = 4.92 W/kg Deviation(1 g) = -3.15%



0 dB = 6.49 W/kg = 8.12 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057


Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated):  $f = 5250 \text{ MHz}; \ \sigma = 5.322 \text{ S/m}; \ \epsilon_r = 47.435; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-03-2017; Ambient Temp: 22.5°C; Tissue Temp: 21.4°C

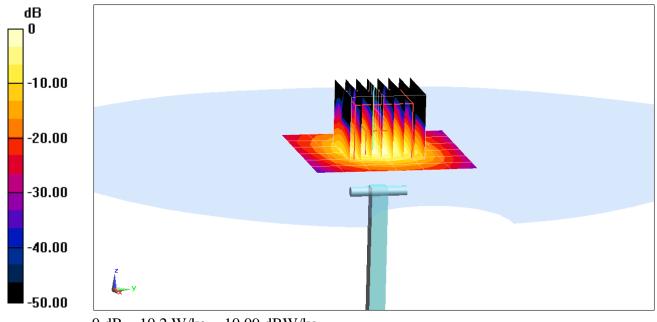
Probe: EX3DV4 - SN3589; ConvF(4.19, 4.19, 4.19); Calibrated: 1/13/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1466; Calibrated: 1/16/2017
Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

### 5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 15.7 W/kg SAR(1 g) = 3.65 W/kgDeviation(1 g) = -2.14%



#### DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057


Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used:  $f = 5600 \text{ MHz}; \ \sigma = 5.812 \text{ S/m}; \ \epsilon_r = 46.773; \ \rho = 1000 \text{ kg/m}^3$  Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-03-2017; Ambient Temp: 22.5°C; Tissue Temp: 21.4°C

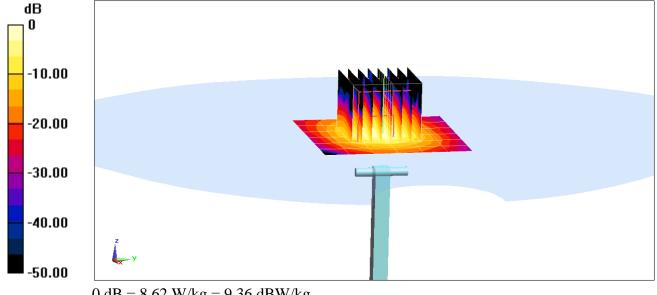
Probe: EX3DV4 - SN3589; ConvF(3.82, 3.82, 3.82); Calibrated: 1/13/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1466; Calibrated: 1/16/2017
Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

#### 5600 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 4.02 W/kgDeviation(1 g) = 1.90%



DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057


Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): f = 5750 MHz;  $\sigma = 6.026 \text{ S/m}$ ;  $\varepsilon_r = 46.488$ ;  $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-03-2017; Ambient Temp: 22.5°C; Tissue Temp: 21.4°C

Probe: EX3DV4 - SN3589; ConvF(3.83, 3.83, 3.83); Calibrated: 1/13/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1466; Calibrated: 1/16/2017 Phantom: SAM with CRP v5.0 Front; Type: QD000P40CD; Serial: 1646 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

### 5750 MHz System Verification at 17.0 dBm (50 mW)

**Area Scan (7x7x1):** Measurement grid: dx=10mm, dy=10mm **Zoom Scan (8x8x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 16.1 W/kg SAR(1 g) = 3.5 W/kgDeviation(1 g) = -7.28%



### APPENDIX C: PROBE CALIBRATION

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

**PC Test** 

Certificate No: D750V3-1161\_Jul16

### **CALIBRATION CERTIFICATE**

Object

D750V3 - SN:1161

riy

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

8/9/1

Calibration date:

July 13, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter NRP             | SN: 104778         | 06-Apr-16 (No. 217-02288/02289)   | Apr-17                 |
| Power sensor NRP-Z91        | SN: 103244         | 06-Apr-16 (No. 217-02288)         | Apr-17                 |
| Power sensor NRP-Z91        | SN: 103245         | 06-Apr-16 (No. 217-02289)         | Apr-17                 |
| Reference 20 dB Attenuator  | SN: 5058 (20k)     | 05-Apr-16 (No. 217-02292)         | Apr-17                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 05-Apr-16 (No. 217-02295)         | Apr-17                 |
| Reference Probe EX3DV4      | SN: 7349           | 15-Jun-16 (No. EX3-7349_Jun16)    | Jun-17                 |
| DAE4                        | SN: 601            | 30-Dec-15 (No. DAE4-601_Dec15)    | Dec-16                 |
| Secondary Standards         | ID #               | Check Date (in house)             | Scheduled Check        |
| Power meter EPM-442A        | SN: GB37480704     | 07-Oct-15 (No. 217-02222)         | In house check: Oct-16 |
| Power sensor HP 8481A       | SN: US37292783     | 07-Oct-15 (No. 217-02222)         | In house check: Oct-16 |
| Power sensor HP 8481A       | SN: MY41092317     | 07-Oct-15 (No. 217-02223)         | In house check: Oct-16 |
| RF generator R&S SMT-06     | SN: 100972         | 15-Jun-15 (in house check Jun-15) | In house check: Oct-16 |
| Network Analyzer HP 8753E   | SN: US37390585     | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 |
|                             | Name               | Function                          | Signalu/e /            |
| Calibrated by:              | Claudio Leubler    | Laboratory Technician             |                        |
| Approved by:                | Katja Pokovic      | Technical Manager                 | Delly                  |

Issued: July 13, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D750V3-1161\_Jul16

Page 1 of 8

#### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

Certificate No: D750V3-1161\_Jul16

e) DASY4/5 System Handbook

#### **Methods Applied and Interpretation of Parameters:**

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | <b>V</b> 52.8.8 |
|------------------------------|------------------------|-----------------|
| Extrapolation                | Advanced Extrapolation |                 |
| Phantom                      | Modular Flat Phantom   |                 |
| Distance Dipole Center - TSL | 15 mm                  | with Spacer     |
| Zoom Scan Resolution         | dx, $dy$ , $dz = 5 mm$ |                 |
| Frequency                    | 750 MHz ± 1 MHz        |                 |

Head TSL parameters
The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.9         | 0.89 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 40.9 ± 6 %   | 0.91 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.09 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 8.17 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.37 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 5.39 W/kg ± 16.5 % (k=2) |

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 55.5         | 0.96 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 55.1 ± 6 %   | 0.99 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.16 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 8.43 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.41 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 5.53 W/kg ± 16.5 % (k=2) |

Certificate No: D750V3-1161\_Jul16

### Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 55.6 Ω - 0.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 25.4 dB       |

#### **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 50.2 Ω - 4.0 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 28.0 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.033 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG             |
|-----------------|-------------------|
| Manufactured on | November 19, 2015 |

Certificate No: D750V3-1161\_Jul16

#### **DASY5 Validation Report for Head TSL**

Date: 13.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1161

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz;  $\sigma = 0.91 \text{ S/m}$ ;  $\varepsilon_r = 40.9$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### **DASY52 Configuration:**

Probe: EX3DV4 - SN7349; ConvF(10.07, 10.07, 10.07); Calibrated: 15.06.2016;

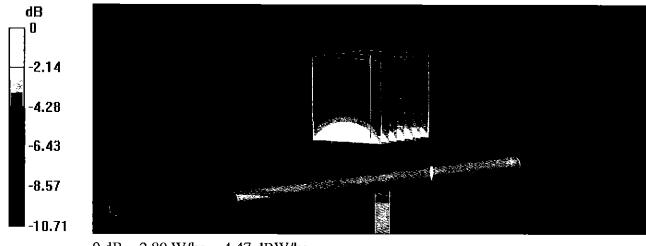
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

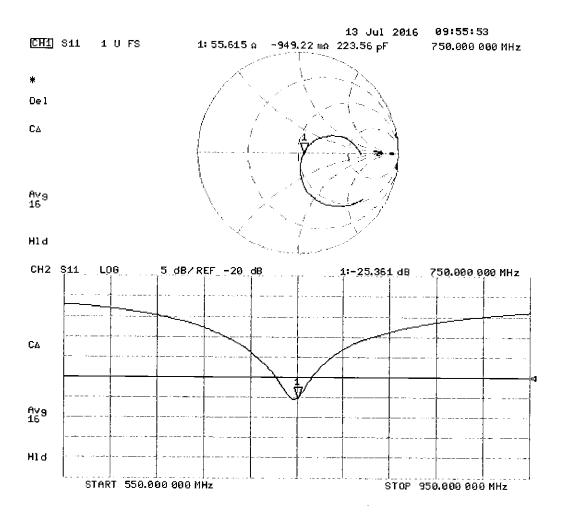
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.07 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 3.13 W/kg


SAR(1 g) = 2.09 W/kg; SAR(10 g) = 1.37 W/kg

Maximum value of SAR (measured) = 2.80 W/kg



0 dB = 2.80 W/kg = 4.47 dBW/kg

### Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date: 13.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1161

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz;  $\sigma = 0.99 \text{ S/m}$ ;  $\varepsilon_r = 55.1$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### **DASY52** Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.99, 9.99, 9.99); Calibrated: 15.06.2016;

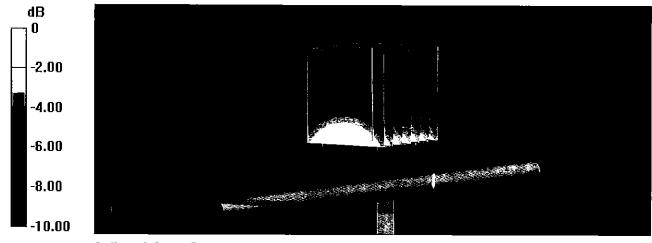
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

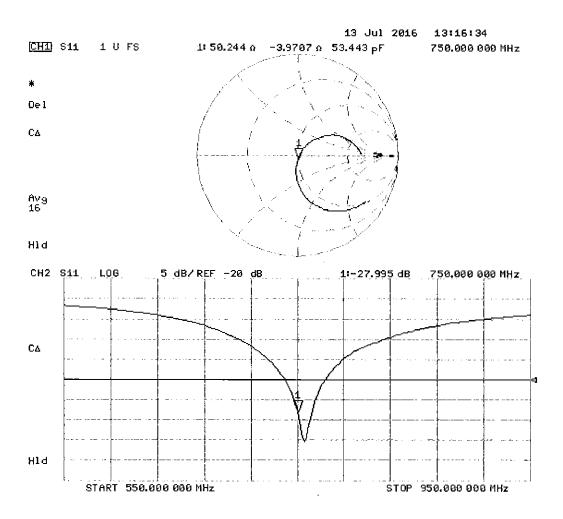
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.33 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 3.22 W/kg


SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.41 W/kg

Maximum value of SAR (measured) = 2.87 W/kg



0 dB = 2.87 W/kg = 4.58 dBW/kg

### Impedance Measurement Plot for Body TSL





7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



### **Certification of Calibration**

Object D750V3 – SN: 1161

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Calibration date: July 12, 2017

Description: SAR Validation Dipole at 750 MHz.

Calibration Equipment used:

| Manufacturer Model Description |           | Cal Date                                                | Cal Interval | Cal Due  | Serial Number |            |
|--------------------------------|-----------|---------------------------------------------------------|--------------|----------|---------------|------------|
| Control Company                | 4040      | Therm./Clock/Humidity Monitor                           | 3/31/2017    | Biennial | 3/31/2019     | 170232394  |
| Control Company                | 4352      | Ultra Long Stem Thermometer                             | 5/2/2017     | Biennial | 5/2/2019      | 170330156  |
| Amplifier Research             | 15S1G6    | Amplifier                                               | CBT          | N/A      | CBT           | 433971     |
| Narda                          | 4772-3    | Attenuator (3dB)                                        | CBT          | N/A      | CBT           | 9406       |
| Keysight Technologies          | 85033E    | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/1/2017     | Annual   | 6/1/2018      | MY53401181 |
| Agilent                        | 8753ES    | S-Parameter Network Analyzer                            | 10/26/2016   | Annual   | 10/26/2017    | US39170118 |
| Mini-Circuits                  | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator           | CBT          | N/A      | CBT           | N/A        |
| SPEAG                          | DAE4      | Dasy Data Acquisition Electronics                       | 3/8/2017     | Annual   | 3/8/2018      | 1368       |
| SPEAG                          | DAE4      | Dasy Data Acquisition Electronics                       | 6/14/2017    | Annual   | 6/14/2018     | 1334       |
| SPEAG                          | DAK-3.5   | Dielectric Assessment Kit                               | 5/10/2017    | Annual   | 5/10/2018     | 1070       |
| SPEAG                          | ES3DV3    | SAR Probe                                               | 11/15/2016   | Annual   | 11/15/2017    | 3334       |
| SPEAG                          | ES3DV3    | SAR Probe                                               | 3/14/2017    | Annual   | 3/14/2018     | 3319       |
| Anritsu                        | MA2411B   | Pulse Power Sensor                                      | 2/10/2017    | Annual   | 2/10/2018     | 1207364    |
| Anritsu                        | MA2411B   | Pulse Power Sensor                                      | 2/10/2017    | Annual   | 2/10/2018     | 1339018    |
| Anritsu                        | ML2495A   | Power Meter                                             | 10/16/2015   | Biennial | 10/16/2017    | 941001     |
| Agilent                        | N5182A    | MXG Vector Signal Generator                             | 2/28/2017    | Annual   | 2/28/2018     | MY47420800 |
| Seekonk                        | NC-100    | Torque Wrench                                           | 11/6/2015    | Biennial | 11/6/2017     | N/A        |
| Mini-Circuits                  | NLP-2950+ | Low Pass Filter DC to 2700 MHz                          | CBT          | N/A      | CBT           | N/A        |
| Pasternack                     | PE2208-6  | Bidirectional Coupler                                   | CBT          | N/A      | CBT           | N/A        |

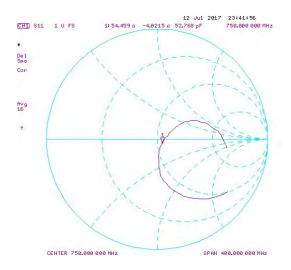
#### Measurement Uncertainty = $\pm 23\%$ (k=2)

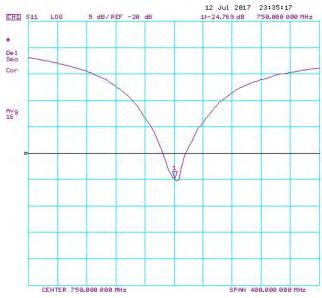
|                | Name              | Function                    | Signature         |
|----------------|-------------------|-----------------------------|-------------------|
| Calibrated By: | Brodie Halbfoster | Test Engineer               | BRODIE HALBFOSTER |
| Approved By:   | Kaitlin O'Keefe   | Senior Technical<br>Manager | 306               |

| Object:           | Date Issued: | Page 1 of 4 |
|-------------------|--------------|-------------|
| D750V3 – SN: 1161 | 07/12/2017   | Page 1 of 4 |

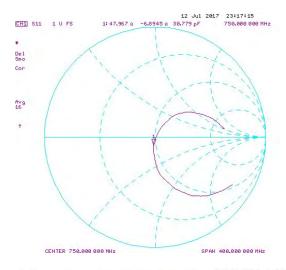
### **DIPOLE CALIBRATION EXTENSION**

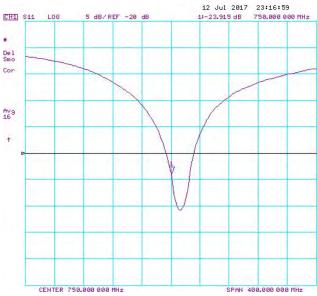
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.


The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) | Certificate<br>SAR Target<br>Head (1g)<br>W/kg @ 23.0<br>dBm | W/ka @ 22.0                                     | Deviation 1g<br>(%) |      | (10a) W//ka @    | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%) | PASS/FAIL |
|---------------------|-------------------|-----------------------------------------|--------------------------------------------------------------|-------------------------------------------------|---------------------|------|------------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 7/13/2016           | 7/12/2017         | 1.033                                   | 1.63                                                         | 1.65                                            | 0.98%               | 1.08 | 1.09             | 1.11%                | 55.6                                           | 54.5                                        | 1.1                      | -0.9                                                | -4.0                                             | 3.1                              | -25.4                                   | -24.8                                | 2.40%         | PASS      |
|                     |                   |                                         |                                                              |                                                 |                     |      |                  |                      |                                                |                                             |                          |                                                     |                                                  |                                  |                                         |                                      |               |           |
| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) |                                                              | Measured<br>Body SAR (1g)<br>W/kg @ 23.0<br>dBm | (0/)                |      | (40-) 14(4)- (0) | Deviation 10g<br>(%) |                                                | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
| 7/13/2016           | 7/12/2017         | 1.033                                   | 1.69                                                         | 1.75                                            | 3.80%               | 1.11 | 1.17             | 5.79%                | 50.2                                           | 48.0                                        | 2.2                      | -4.0                                                | -6.9                                             | 2.9                              | -28.0                                   | -23.9                                | 14.60%        | PASS      |


| Object:           | Date Issued: | Page 2 of 4 |
|-------------------|--------------|-------------|
| D750V3 – SN: 1161 | 07/12/2017   | Page 2 of 4 |


#### Impedance & Return-Loss Measurement Plot for Head TSL





#### Impedance & Return-Loss Measurement Plot for Body TSL





#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

**PC Test** 

Certificate No: D835V2-4d047\_Jul16

### **CALIBRATION CERTIFICATE**

Object

D835V2 - SN:4d047

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

BNV 7/16/2016

Calibration date:

July 13, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID #               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter NRP             | SN: 104778         | 06-Apr-16 (No. 217-02288/02289)   | Apr-17                 |
| Power sensor NRP-Z91        | SN: 103244         | 06-Apr-16 (No. 217-02288)         | Apr-17                 |
| Power sensor NRP-Z91        | SN: 103245         | 06-Apr-16 (No. 217-02289)         | Apr-17                 |
| Reference 20 dB Attenuator  | SN: 5058 (20k)     | 05-Apr-16 (No. 217-02292)         | Apr-17                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 05-Apr-16 (No. 217-02295)         | Apr-17                 |
| Reference Probe EX3DV4      | SN: 7349           | 15-Jun-16 (No. EX3-7349_Jun16)    | Jun-17                 |
| DAE4                        | SN: 601            | 30-Dec-15 (No. DAE4-601_Dec15)    | Dec-16                 |
| Secondary Standards         | ID#                | Check Date (in house)             | Scheduled Check        |
| Power meter EPM-442A        | SN: GB37480704     | 07-Oct-15 (No. 217-02222)         | In house check: Oct-16 |
| Power sensor HP 8481A       | SN: US37292783     | 07-Oct-15 (No. 217-02222)         | In house check: Oct-16 |
| Power sensor HP 8481A       | SN: MY41092317     | 07-Oct-15 (No. 217-02223)         | In house check: Oct-16 |
| RF generator R&S SMT-06     | SN: 100972         | 15-Jun-15 (in house check Jun-15) | In house check: Oct-16 |
| Network Analyzer HP 8753E   | SN: US37390585     | 18-Oct-01 (in house check Oct-15) | in house check: Oct-16 |
|                             | Name               | Function                          | Signature              |
| Calibrated by:              | Jeton Kastrati     | Laboratory Technician             | Je 16                  |
| Approved by:                | Katja Pokovic      | Technical Manager                 | La My                  |

Issued: July 13, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d047\_Jul16

Page 1 of 8

#### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S

Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d047\_Jul16

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.8.8     |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 15 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, $dy$ , $dz = 5 mm$ | ·           |
| Frequency                    | 835 MHz ± 1 MHz        |             |

Head TSL parameters
The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.5         | 0.90 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 40.6 ± 6 %   | 0.94 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.37 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 9.13 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.53 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 5.95 W/kg ± 16.5 % (k=2) |

#### **Body TSL parameters**

The following parameters and calculations were applied

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 55.2         | 0.97 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 54.9 ± 6 %   | 1.01 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.47 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 9.57 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          | -                        |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.60 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 6.24 W/kg ± 16.5 % (k=2) |

#### Appendix (Additional assessments outside the scope of SCS 0108)

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 49.8 Ω - 5.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.5 dB       |

#### **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 45.8 Ω - 8.2 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 20.3 dB       |

#### General Antenna Parameters and Design

| Electrical Delay (one direction)  None ns |
|-------------------------------------------|
|-------------------------------------------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG           |
|-----------------|-----------------|
| Manufactured on | August 16, 2006 |

#### **DASY5 Validation Report for Head TSL**

Date: 13.07.201

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d047

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz;  $\sigma = 0.94$  S/m;  $\varepsilon_r = 40.6$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### **DASY52 Configuration:**

Probe: EX3DV4 - SN7349; ConvF(9.72, 9.72, 9.72); Calibrated: 15.06.2016;

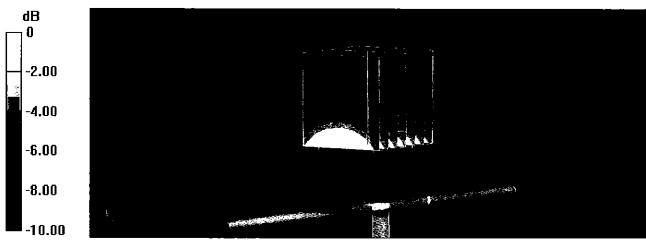
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

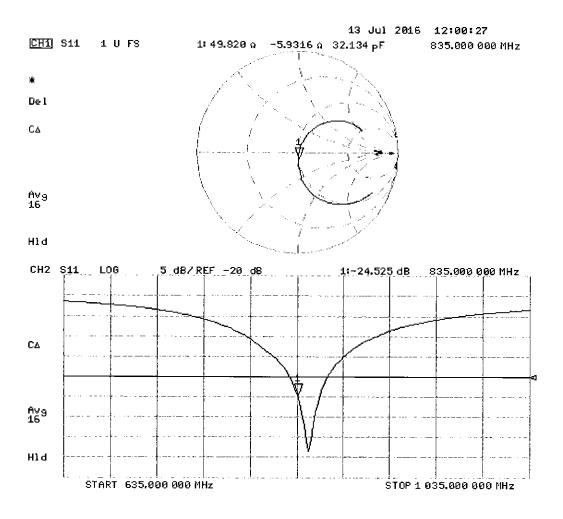
#### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.98 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.56 W/kg

SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.53 W/kg


Maximum value of SAR (measured) = 3.17 W/kg



0 dB = 3.17 W/kg = 5.01 dBW/kg

Certificate No: D835V2-4d047\_Jul16

### Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date: 13.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d047

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz;  $\sigma = 1.01$  S/m;  $\varepsilon_r = 54.9$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### **DASY52** Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.73, 9.73, 9.73); Calibrated: 15.06.2016;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

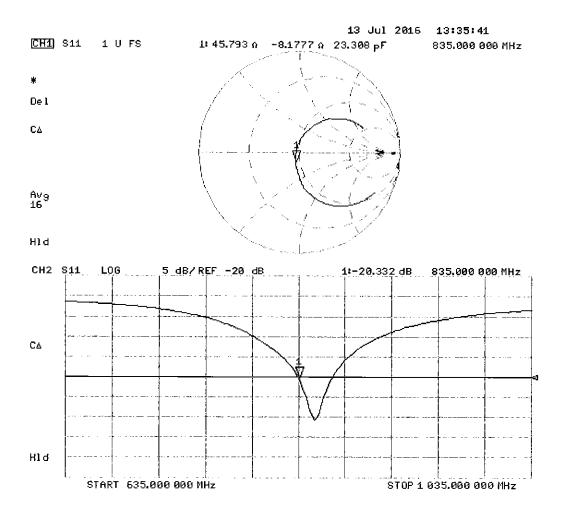
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

#### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.88 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.67 W/kg


SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.6 W/kg

Maximum value of SAR (measured) = 3.27 W/kg



0 dB = 3.27 W/kg = 5.15 dBW/kg

### Impedance Measurement Plot for Body TSL





7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



### **Certification of Calibration**

Object D835V2 – SN: 4d047

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Calibration date: July 13, 2017

Description: SAR Validation Dipole at 835 MHz.

Calibration Equipment used:

| Manufacturer          | Model     | Description                                             | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|-----------------------|-----------|---------------------------------------------------------|------------|--------------|------------|---------------|
| Control Company       | 4040      | Therm./Clock/Humidity Monitor                           | 3/31/2017  | Biennial     | 3/31/2019  | 170232394     |
| Control Company       | 4352      | Ultra Long Stem Thermometer                             | 5/2/2017   | Biennial     | 5/2/2019   | 170330156     |
| Amplifier Research    | 15S1G6    | Amplifier                                               | CBT        | N/A          | CBT        | 433971        |
| Narda                 | 4772-3    | Attenuator (3dB)                                        | CBT        | N/A          | CBT        | 9406          |
| Keysight Technologies | 85033E    | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/1/2017   | Annual       | 6/1/2018   | MY53401181    |
| Agilent               | 8753ES    | S-Parameter Network Analyzer                            | 10/26/2016 | Annual       | 10/26/2017 | US39170118    |
| Mini-Circuits         | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator           | CBT        | N/A          | CBT        | N/A           |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 3/8/2017   | Annual       | 3/8/2018   | 1368          |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 3/13/2017  | Annual       | 3/13/2018  | 1415          |
| SPEAG                 | DAK-3.5   | Dielectric Assessment Kit                               | 5/10/2017  | Annual       | 5/10/2018  | 1070          |
| SPEAG                 | ES3DV3    | SAR Probe                                               | 3/14/2017  | Annual       | 3/14/2018  | 3209          |
| SPEAG                 | ES3DV3    | SAR Probe                                               | 3/14/2017  | Annual       | 3/14/2018  | 3319          |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 2/10/2017  | Annual       | 2/10/2018  | 1207364       |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 2/10/2017  | Annual       | 2/10/2018  | 1339018       |
| Anritsu               | ML2495A   | Power Meter                                             | 10/16/2015 | Biennial     | 10/16/2017 | 941001        |
| Agilent               | N5182A    | MXG Vector Signal Generator                             | 2/28/2017  | Annual       | 2/28/2018  | MY47420800    |
| Seekonk               | NC-100    | Torque Wrench                                           | 11/6/2015  | Biennial     | 11/6/2017  | N/A           |
| Mini-Circuits         | NLP-2950+ | Low Pass Filter DC to 2700 MHz                          | CBT        | N/A          | CBT        | N/A           |
| Pasternack            | PE2208-6  | Bidirectional Coupler                                   | CBT        | N/A          | CBT        | N/A           |

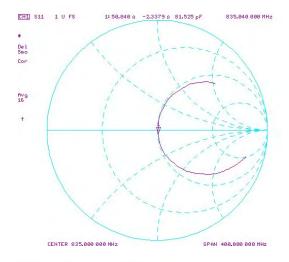
#### Measurement Uncertainty = $\pm 23\%$ (k=2)

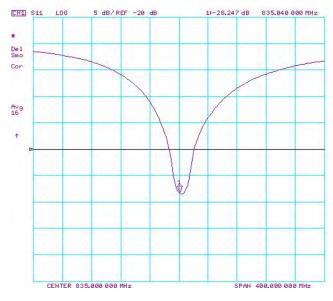
|                | Name              | Function                    | Signature         |
|----------------|-------------------|-----------------------------|-------------------|
| Calibrated By: | Brodie Halbfoster | Test Engineer               | BROPTE HALBFOSTER |
| Approved By:   | Kaitlin O'Keefe   | Senior Technical<br>Manager | 204               |

| -                  |              |             |
|--------------------|--------------|-------------|
| Object:            | Date Issued: | Page 1 of 4 |
| D835V2 - SN: 4d047 | 07/13/2017   | Page 1 of 4 |

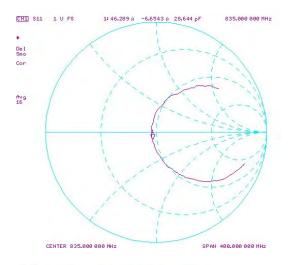
#### **DIPOLE CALIBRATION EXTENSION**

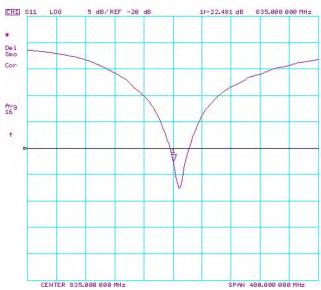
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.


The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) | Certificate<br>SAR Target<br>Head (1g)<br>W/kg @ 23.0<br>dBm | Measured<br>Head SAR (1g)<br>W/kg @ 23.0<br>dBm | 70/3  |                                                               | (10a) W//ka @ | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%) | PASS/FAIL |
|---------------------|-------------------|-----------------------------------------|--------------------------------------------------------------|-------------------------------------------------|-------|---------------------------------------------------------------|---------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 7/13/2016           | 7/13/2017         | 0                                       | 1.83                                                         | 1.95                                            | 6.79% | 1.19                                                          | 1.28          | 7.56%                | 49.8                                           | 50.8                                        | 1                        | -5.9                                                | -2.3                                             | 3.6                              | -24.5                                   | -28.2                                | -15.10%       | PASS      |
|                     |                   |                                         |                                                              |                                                 |       |                                                               |               |                      |                                                |                                             |                          |                                                     |                                                  |                                  |                                         |                                      |               |           |
| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) | Certificate<br>SAR Target<br>Body (1g)<br>W/kg @ 23.0<br>dBm | Measured<br>Body SAR (1g)<br>W/kg @ 23.0<br>dBm | 70/3  | Certificate<br>SAR Target<br>Body (10g)<br>W/kg @ 23.0<br>dBm | (10a) M/ka @  | Deviation 10g<br>(%) |                                                | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
| 7/13/2016           | 7/13/2017         | 0                                       | 1.91                                                         | 1.99                                            | 3.97% | 1.25                                                          | 1.31          | 4.97%                | 45.8                                           | 46.3                                        | 0.5                      | -8.2                                                | -6.7                                             | 1.5                              | -20.3                                   | -22.5                                | -10.80%       | PASS      |


| Object:            | Date Issued: | Page 2 of 4 |
|--------------------|--------------|-------------|
| D835V2 - SN: 4d047 | 07/13/2017   | Page 2 of 4 |


#### Impedance & Return-Loss Measurement Plot for Head TSL





#### Impedance & Return-Loss Measurement Plot for Body TSL





# Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Certificate No: D1750V2-1148\_May17

# **CALIBRATION CERTIFICATE**

Object D1750V2 - SN:1148

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

0(-23-2317

Calibration date:

May 09, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                     | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|-------------------------|-----------------------------------|------------------------|
| Power meter NRP             | SN: 104778              | 04-Apr-17 (No. 217-02521/02522)   | Apr-18                 |
| Power sensor NRP-Z91        | SN: 103244              | 04-Apr-17 (No. 217-02521)         | Apr-18                 |
| Power sensor NRP-Z91        | SN: 103245              | 04-Apr-17 (No. 217-02522)         | Apr-18                 |
| Reference 20 dB Attenuator  | SN: 5058 (20k)          | 07-Apr-17 (No. 217-02528)         | Apr-18                 |
| Type-N mismatch combination | SN: 5047.2 / 06327      | 07-Apr-17 (No. 217-02529)         | Apr-18                 |
| Reference Probe EX3DV4      | SN: 7349                | 31-Dec-16 (No. EX3-7349_Dec16)    | Dec-17                 |
| DAE4                        | SN: 601                 | 28-Mar-17 (No. DAE4-601_Mar17)    | Mar-18                 |
| Secondary Standards         | ID#                     | Check Date (in house)             | Scheduled Check        |
| Power meter EPM-442A        | SN: GB37480704          | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| Power sensor HP 8481A       | SN: US37292783          | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| Power sensor HP 8481A       | SN: MY41092317          | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| RF generator R&S SMT-06     | SN: 100972              | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 |
| Network Analyzer HP 8753E   | SN: US37390585          | 18-Oct-01 (in house check Oct-16) | in house check: Oct-17 |
| Calibrated by:              | Name<br>Claudio Leubter | Function<br>Laboratory Technician | Signature              |
| Approved by:                | Katja Pokovic           | Technical Manager                 | JAH.                   |

Issued: May 11, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1750V2-1148\_May17

Page 1 of 8

# **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

N/A not applicable or not measure

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.0    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, $dy$ , $dz = 5 mm$ |             |
| Frequency                    | 1750 MHz ± 1 MHz       |             |

# **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.1         | 1.37 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 39.0 ± 6 %   | 1.36 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 9.11 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 36.4 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 4.83 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 19.3 W/kg ± 16.5 % (k=2) |

## **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 53.4         | 1.49 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 53.7 ± 6 %   | 1.47 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 9.1 <b>7</b> W/kg        |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 37.0 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 4.93 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 19.8 W/kg ± 16.5 % (k=2) |

Certificate No: D1750V2-1148\_May17 Page 3 of 8

# Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 49.8 Ω - 0.7 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 42.9 dB       |

# **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 45.7 Ω - 0.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 26.9 dB       |

#### **General Antenna Parameters and Design**

|                                  | Y        |
|----------------------------------|----------|
| Electrical Delay (one direction) | 1.223 ns |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG              |
|-----------------|--------------------|
| Manufactured on | September 30, 2014 |

Certificate No: D1750V2-1148\_May17 Page 4 of 8

#### **DASY5 Validation Report for Head TSL**

Date: 09.05.2017

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz;  $\sigma = 1.36 \text{ S/m}$ ;  $\varepsilon_r = 39$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.46, 8.46, 8.46); Calibrated: 31.12.2016;

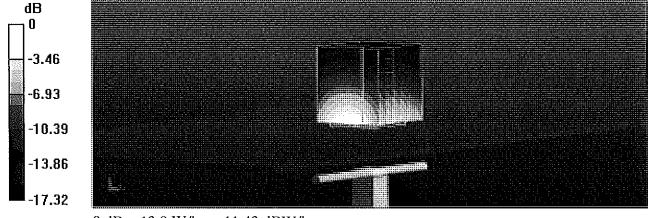
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

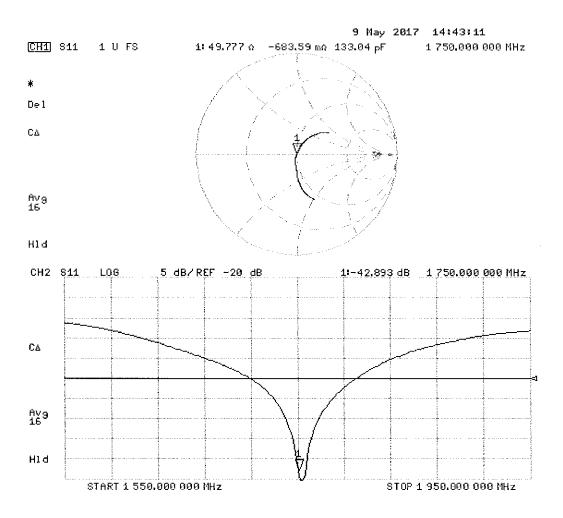
DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)

# Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 105.4 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 16.5 W/kg


SAR(1 g) = 9.11 W/kg; SAR(10 g) = 4.83 W/kg

Maximum value of SAR (measured) = 13.9 W/kg



0 dB = 13.9 W/kg = 11.43 dBW/kg

# Impedance Measurement Plot for Head TSL



## **DASY5 Validation Report for Body TSL**

Date: 09.05.2017

Test Laboratory: SPEAG, Zurich, Switzerland

# DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz;  $\sigma = 1.47 \text{ S/m}$ ;  $\varepsilon_r = 53.7$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### **DASY52 Configuration:**

Probe: EX3DV4 - SN7349; ConvF(8.25, 8.25, 8.25); Calibrated: 31.12.2016;

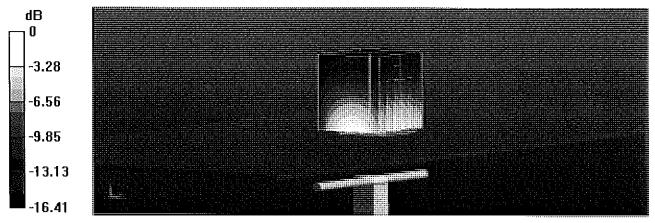
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

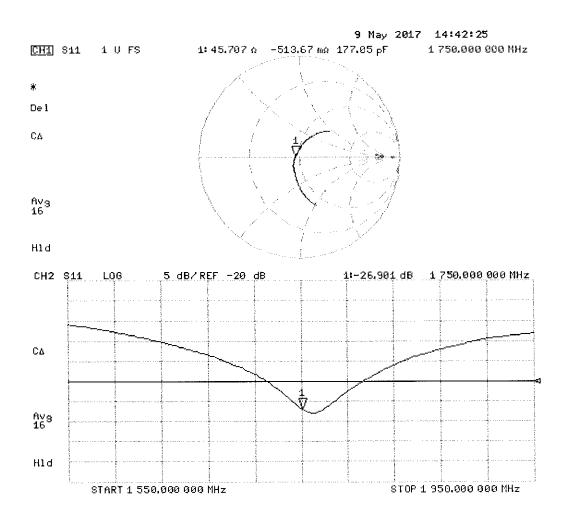
• DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)

# Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.49 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 15.9 W/kg


SAR(1 g) = 9.17 W/kg; SAR(10 g) = 4.93 W/kg

Maximum value of SAR (measured) = 13.1 W/kg



0 dB = 13.1 W/kg = 11.17 dBW/kg

# Impedance Measurement Plot for Body TSL



## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Certificate No: D1900V2-5d148\_Feb17

# CALIBRATION CERTIFICATE

Object

D1900V2 - SN:5d148

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

03/06/2017

Calibration date:

February 09, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                     | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|-------------------------|-----------------------------------|------------------------|
| Power meter NRP             | SN: 104778              | 06-Apr-16 (No. 217-02288/02289)   | Apr-17                 |
| Power sensor NRP-Z91        | SN: 103244              | 06-Apr-16 (No. 217-02288)         | Apr-17                 |
| Power sensor NRP-Z91        | SN: 103245              | 06-Apr-16 (No. 217-02289)         | Apr-17                 |
| Reference 20 dB Attenuator  | SN: 5058 (20k)          | 05-Apr-16 (No. 217-02292)         | Apr-17                 |
| Type-N mismatch combination | SN: 5047.2 / 06327      | 05-Apr-16 (No. 217-02295)         | Apr-17                 |
| Reference Probe EX3DV4      | SN: 7349                | 31-Dec-16 (No. EX3-7349_Dec16)    | Dec-17                 |
| DAE4                        | SN: 601                 | 04-Jan-17 (No. DAE4-601_Jan17)    | Jan-18                 |
| Secondary Standards         | l ID #                  | Check Date (in house)             | Scheduled Check        |
| Power meter EPM-442A        | SN: GB37480704          | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| Power sensor HP 8481A       | SN: US37292783          | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| Power sensor HP 8481A       | SN: MY41092317          | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| RF generator R&S SMT-06     | SN: 100972              | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 |
| Network Analyzer HP 8753E   | SN: US37390585          | 18-Oct-01 (in house check Oct-16) | In house check: Oct-17 |
| Calibrated by:              | Name<br>Claudio Leubler | Function<br>Laboratory Technician | Signatule              |
| Approved by:                | Katja Pokovic           | Technical Manager                 | Le ly                  |

Issued: February 10, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

# Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

# Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.8.8     |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, $dy$ , $dz = 5 mm$ |             |
| Frequency                    | 1900 MHz ± 1 MHz       |             |

#### **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.0         | 1.40 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 40.7 ± 6 %   | 1.38 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 9.93 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 40.2 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 5.18 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 20.9 W/kg ± 16.5 % (k=2) |

# **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity        |
|-----------------------------------------|-----------------|--------------|---------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 53.3         | 1.52 mh <b>o</b> /m |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 54.1 ± 6 %   | 1.50 mho/m ± 6 %    |
| Body TSL temperature change during test | < 0.5 °C        | ****         |                     |

# SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 10.1 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 40.9 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 5.33 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.5 W/kg ± 16.5 % (k=2) |

Certificate No: D1900V2-5d148\_Feb17

# Appendix (Additional assessments outside the scope of SCS 0108)

## **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 54.1 Ω + 5.8 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.3 dB       |

#### **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 48.3 Ω + 7.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 22.6 dB       |

# General Antenna Parameters and Design

| Electrical Delay (one direction) 1.199 ns |
|-------------------------------------------|
|-------------------------------------------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG          |
|-----------------|----------------|
| Manufactured on | March 11, 2011 |

## **DASY5 Validation Report for Head TSL**

Date: 09.02.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz;  $\sigma = 1.38 \text{ S/m}$ ;  $\varepsilon_r = 40.7$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

# DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.12, 8.12, 8.12); Calibrated: 31.12.2016;

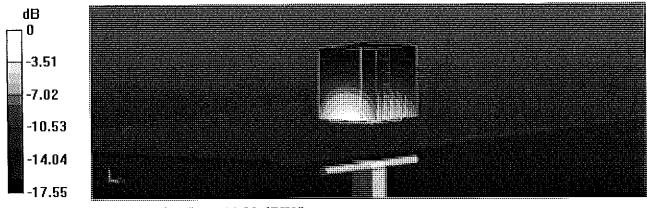
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.01.2017

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

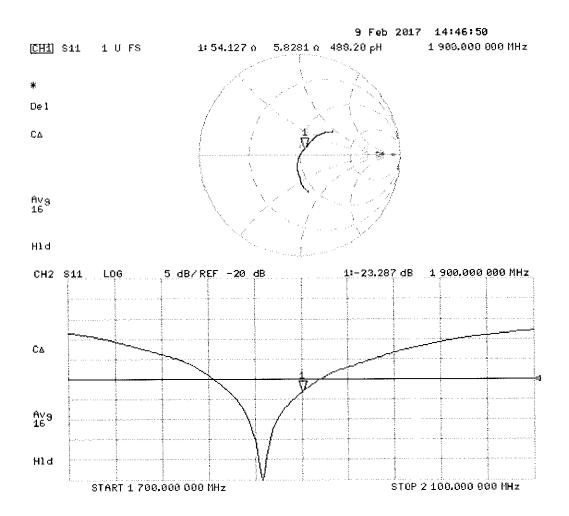
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

# Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.8 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 19.2 W/kg


SAR(1 g) = 9.93 W/kg; SAR(10 g) = 5.18 W/kg

Maximum value of SAR (measured) = 15.6 W/kg



0 dB = 15.6 W/kg = 11.93 dBW/kg

# Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date: 09.02.2017

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz;  $\sigma = 1.5 \text{ S/m}$ ;  $\varepsilon_r = 54.1$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.03, 8.03, 8.03); Calibrated: 31.12.2016;

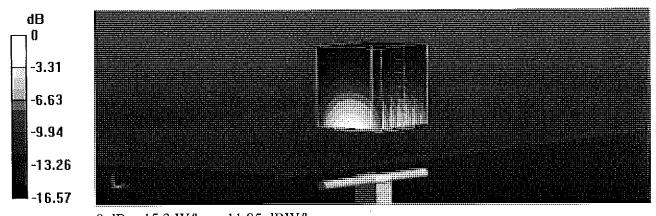
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.01.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

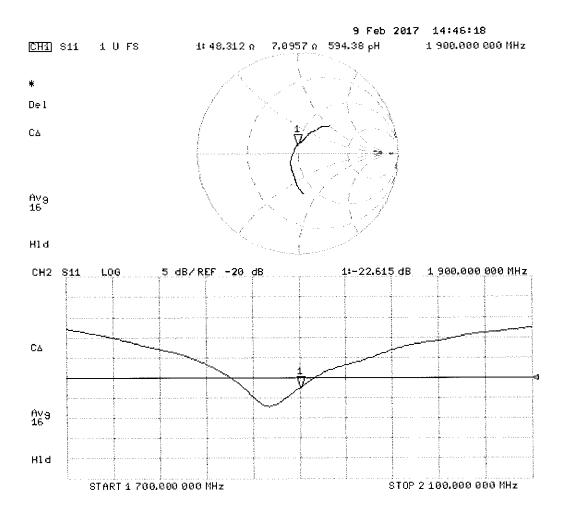
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

# Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 105.3 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 18.1 W/kg


SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.33 W/kg

Maximum value of SAR (measured) = 15.3 W/kg



0 dB = 15.3 W/kg = 11.85 dBW/kg

# Impedance Measurement Plot for Body TSL



## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service Is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

**PC Test** 

Certificate No: D2450V2-981\_Jul16

# **CALIBRATION CERTIFICATE**

Object

D2450V2 - SN:981

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

8/9/16

Calibration date:

July 25, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter NRP             | SN: 104778         | 06-Apr-16 (No. 217-02288/02289)   | Apr-17                 |
| Power sensor NRP-Z91        | SN: 103244         | 06-Apr-16 (No. 217-02288)         | Apr-17                 |
| Power sensor NRP-Z91        | SN: 103245         | 06-Apr-16 (No. 217-02289)         | Apr-17                 |
| Reference 20 dB Attenuator  | SN: 5058 (20k)     | 05-Apr-16 (No. 217-02292)         | Apr-17                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 05-Apr-16 (No. 217-02295)         | Apr-17                 |
| Reference Probe EX3DV4      | SN: 7349           | 15-Jun-16 (No. EX3-7349_Jun16)    | Jun-17                 |
| DAE4                        | SN: 601            | 30-Dec-15 (No. DAE4-601_Dec15)    | Dec-16                 |
| Secondary Standards         | ID#                | Check Dale (in house)             | Scheduled Check        |
| Power meter EPM-442A        | SN: GB37480704     | 07-Oct-15 (No. 217-02222)         | In house check: Oct-16 |
| Power sensor HP 8481A       | SN: US37292783     | 07-Ocl-15 (No. 217-02222)         | In house check: Oct-16 |
| Power sensor HP 8481A       | SN: MY41092317     | 07-Oct-15 (No. 217-02223)         | In house check: Oct-16 |
| RF generator R&S SMT-06     | SN: 100972         | 15-Jun-15 (in house check Jun-15) | In house check: Oct-16 |
| Network Analyzer HP 8753E   | SN: US37390585     | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 |
|                             | Name               | Function                          | Signalure              |
| Calibrated by:              | Michael Weber      | Laboratory Technician             | Miller                 |
| Approved by:                | Katja Pokovic      | Technical Manager                 | RUL                    |

Issued: July 27, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-981\_Jul16

Page 1 of 8

# **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-981\_Jul16 Page 2 of 8

# **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.8.8     |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, $dy$ , $dz = 5 mm$ |             |
| Frequency                    | 2450 MHz ± 1 MHz       |             |

# **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 38.0 ± 6 %   | 1.86 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 13.5 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 52.8 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.26 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 24.7 W/kg ± 16.5 % (k=2) |

Body TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity_ | Conductivity     |
|-----------------------------------------|-----------------|---------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.7          | 1.95 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 51.8 ± 6 %    | 2.03 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |               | ****             |

# SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 13.0 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 50.8 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.04 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 23.8 W/kg ± 16.5 % (k=2) |

Certificate No: D2450V2-981\_Jul16 Page 3 of 8

# Appendix (Additional assessments outside the scope of SCS 0108)

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | $53.2 \Omega + 3.4 j\Omega$ |  |
|--------------------------------------|-----------------------------|--|
| Return Loss                          | - 26.9 dB                   |  |

## **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 50.2 Ω + 4.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 27.0 dB       |

## **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.162 ns |
|----------------------------------|----------|
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG             |
|-----------------|-------------------|
| Manufactured on | December 30, 2014 |

Certificate No: D2450V2-981\_Jul16

## **DASY5 Validation Report for Head TSL**

Date: 13.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:981

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz;  $\sigma = 1.86 \text{ S/m}$ ;  $\varepsilon_r = 38$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### **DASY52** Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.72, 7.72, 7.72); Calibrated: 15.06.2016;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

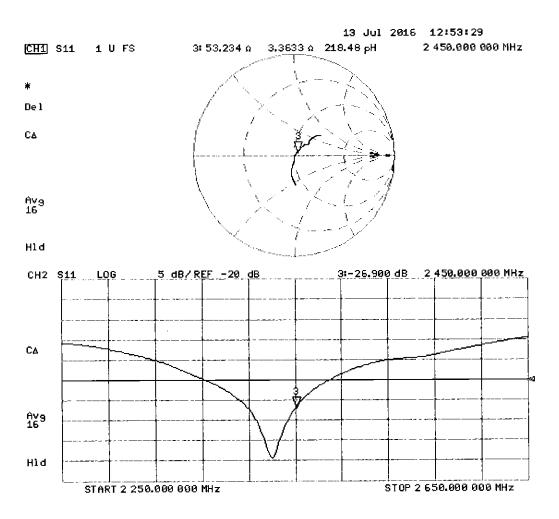
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

# Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 115.8 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 27.4 W/kg


SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.26 W/kg

Maximum value of SAR (measured) = 22.5 W/kg



0 dB = 22.5 W/kg = 13.52 dBW/kg

# Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date: 25.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

# DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:981

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz;  $\sigma = 2.03 \text{ S/m}$ ;  $\varepsilon_r = 51.8$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### **DASY52 Configuration:**

Probe: EX3DV4 - SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 15.06.2016;

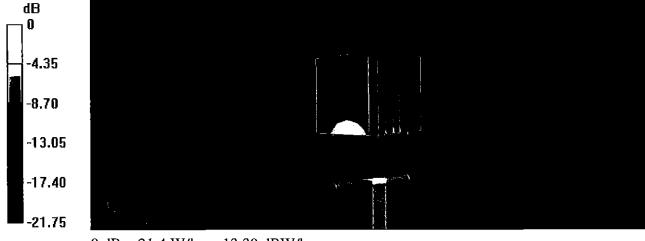
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

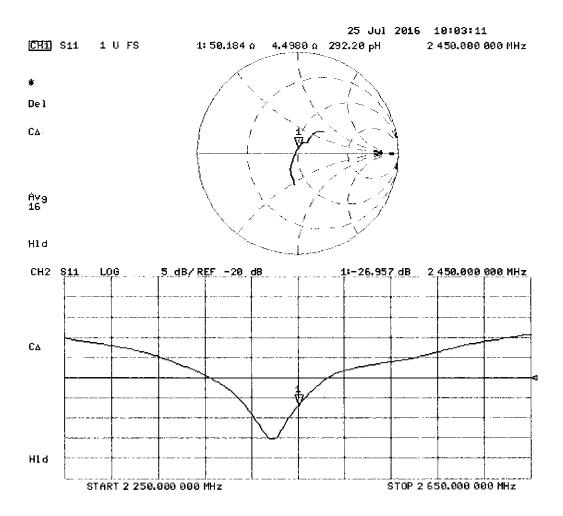
• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

# Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube θ:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.1 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 26.0 W/kg


SAR(1 g) = 13 W/kg; SAR(10 g) = 6.04 W/kg

Maximum value of SAR (measured) = 21.4 W/kg



0 dB = 21.4 W/kg = 13.30 dBW/kg

# Impedance Measurement Plot for Body TSL



# PCTEST ENGINEERING LABORATORY, INC.



7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



# **Certification of Calibration**

Object D2450V2 – SN: 981

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Calibration date: July 24, 2017

Description: SAR Validation Dipole at 2450 MHz.

Calibration Equipment used:

| Manufacturer          | Model     | Description                                             | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|-----------------------|-----------|---------------------------------------------------------|------------|--------------|------------|---------------|
| Control Company       | 4040      | Therm./Clock/Humidity Monitor                           | 3/31/2017  | Biennial     | 3/31/2019  | 170232394     |
| Control Company       | 4352      | Ultra Long Stem Thermometer                             | 5/2/2017   | Biennial     | 5/2/2019   | 170330156     |
| Amplifier Research    | 15S1G6    | Amplifier                                               | CBT        | N/A          | CBT        | 433971        |
| Narda                 | 4772-3    | Attenuator (3dB)                                        | CBT        | N/A          | CBT        | 9406          |
| Keysight              | 772D      | Dual Directional Coupler                                | CBT        | N/A          | CBT        | MY52180215    |
| Keysight Technologies | 85033E    | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/1/2017   | Annual       | 6/1/2018   | MY53401181    |
| Agilent               | 8753ES    | S-Parameter Network Analyzer                            | 10/26/2016 | Annual       | 10/26/2017 | US39170118    |
| Mini-Circuits         | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator           | CBT        | N/A          | CBT        | N/A           |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 9/14/2016  | Annual       | 9/14/2017  | 1408          |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 2/9/2017   | Annual       | 2/9/2018   | 1272          |
| SPEAG                 | DAK-3.5   | Dielectric Assessment Kit                               | 5/10/2017  | Annual       | 5/10/2018  | 1070          |
| SPEAG                 | ES3DV3    | SAR Probe                                               | 9/19/2016  | Annual       | 9/19/2017  | 3287          |
| SPEAG                 | ES3DV3    | SAR Probe                                               | 2/10/2017  | Annual       | 2/10/2018  | 3213          |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 2/10/2017  | Annual       | 2/10/2018  | 1207364       |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 2/10/2017  | Annual       | 2/10/2018  | 1339018       |
| Anritsu               | ML2495A   | Power Meter                                             | 10/16/2015 | Biennial     | 10/16/2017 | 941001        |
| Agilent               | N5182A    | MXG Vector Signal Generator                             | 2/28/2017  | Annual       | 2/28/2018  | MY47420800    |
| Seekonk               | NC-100    | Torque Wrench                                           | 11/6/2015  | Biennial     | 11/6/2017  | N/A           |
| Mini-Circuits         | NLP-2950+ | Low Pass Filter DC to 2700 MHz                          | CBT        | N/A          | CBT        | N/A           |
| Pasternack            | PE2209-10 | Bidirectional Coupler                                   | CBT        | N/A          | CBT        | N/A           |

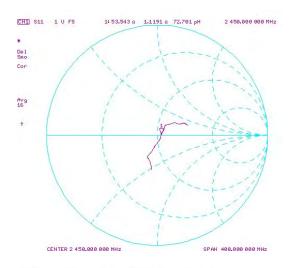
# Measurement Uncertainty = $\pm 23\%$ (k=2)

|                | Name              | Function                    | Signature         |
|----------------|-------------------|-----------------------------|-------------------|
| Calibrated By: | Brodie Halbfoster | Test Engineer               | BROPTE HALBFOSTER |
| Approved By:   | Kaitlin O'Keefe   | Senior Technical<br>Manager | 20K               |

| Object:           | Date Issued: | Page 1 of 4 |
|-------------------|--------------|-------------|
| D2450V2 – SN: 981 | 07/24/2017   | Page 1 of 4 |

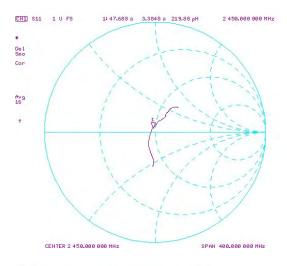
## **DIPOLE CALIBRATION EXTENSION**

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) | Certificate<br>SAR Target<br>Head (1g)<br>W/kg @ 20.0<br>dBm | Measured<br>Head SAR (1g)<br>W/kg @ 20.0<br>dBm | 70/ )               |                                                               | (10a) W/ka @ | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%) | PASS/FAIL |
|---------------------|-------------------|-----------------------------------------|--------------------------------------------------------------|-------------------------------------------------|---------------------|---------------------------------------------------------------|--------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 7/25/2016           | 7/24/2017         | 1.162                                   | 5.28                                                         | 5.57                                            | 5.49%               | 2.47                                                          | 2.56         | 3.64%                | 53.2                                           | 53.5                                        | 0.3                      | 3.4                                                 | 1.1                                              | 2.3                              | -26.9                                   | -27.6                                | -2.60%        | PASS      |
|                     |                   |                                         |                                                              |                                                 |                     |                                                               |              |                      |                                                |                                             |                          |                                                     |                                                  |                                  |                                         |                                      |               |           |
| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) | Certificate<br>SAR Target<br>Body (1g)<br>W/kg @ 20.0<br>dBm | Measured<br>Body SAR (1g)<br>W/kg @ 20.0<br>dBm | Deviation 1g<br>(%) | Certificate<br>SAR Target<br>Body (10g)<br>W/kg @ 20.0<br>dBm |              | Deviation 10g<br>(%) |                                                | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
| 7/25/2016           | 7/24/2017         | 1.162                                   | 5.08                                                         | 5.34                                            | 5.12%               | 2.38                                                          | 2.39         | 0.42%                | 50.2                                           | 47.7                                        | 2.5                      | 4.5                                                 | 3.4                                              | 1.1                              | -27.0                                   | -27.6                                | -2.20%        | PASS      |


| Object:           | Date Issued: | Page 2 of 4 |
|-------------------|--------------|-------------|
| D2450V2 - SN: 981 | 07/24/2017   | Page 2 of 4 |

# Impedance & Return-Loss Measurement Plot for Head TSL





# Impedance & Return-Loss Measurement Plot for Body TSL





## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client PC Test

Certificate No: D5GHzV2-1237\_Aug17

# **CALIBRATION CERTIFICATE**

Object

D5GHzV2 - SN:1237

Calibration procedure(s)

QA CAL-22.v2

Calibration procedure for dipole validation kits between 3-6 GHz

8/27/17

Calibration date:

August 15, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter NRP             | SN: 104778         | 04-Apr-17 (No. 217-02521/02522)   | Apr-18                 |
| Power sensor NRP-Z91        | SN: 103244         | 04-Apr-17 (No. 217-02521)         | Apr-18                 |
| Power sensor NRP-Z91        | SN: 103245         | 04-Apr-17 (No. 217-02522)         | Apr-18                 |
| Reference 20 dB Attenuator  | SN: 5058 (20k)     | 07-Apr-17 (No. 217-02528)         | Apr-18                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 07-Apr-17 (No. 217-02529)         | Apr-18                 |
| Reference Probe EX3DV4      | SN: 3503           | 31-Dec-16 (No. EX3-3503_Dec16)    | Dec-17                 |
| DAE4                        | SN: 601            | 28-Mar-17 (No. DAE4-601_Mar17)    | Mar-18                 |
| Secondary Standards         | ID#                | Check Date (in house)             | Scheduled Check        |
| Power meter EPM-442A        | SN: GB37480704     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| Power sensor HP 8481A       | SN: US37292783     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| Power sensor HP 8481A       | SN: MY41092317     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| RF generator R&S SMT-06     | SN: 100972         | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 |
| Network Analyzer HP 8753E   | SN: US37390585     | 18-Oct-01 (in house check Oct-16) | In house check: Oct-17 |
|                             | Name               | Function                          | Signature              |
| Calibrated by:              | Johannes Kurikka   | Laboratory Technician             | ger lu                 |
| Approved by:                | Katja Pokovic      | Technical Manager                 | DU US                  |

Issued: August 16, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1237\_Aug17

Page 1 of 13

# Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage

Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

e) DASY4/5 System Handbook

# Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                                                    | <b>V</b> 52.10.0                 |
|------------------------------|----------------------------------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation                                   |                                  |
| Phantom                      | Modular Flat Phantom <b>V</b> 5.0                        |                                  |
| Distance Dipole Center - TSL | 10 mm                                                    | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4.0  mm, dz = 1.4  mm                           | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 5250 MHz ± 1 MHz<br>5600 MHz ± 1 MHz<br>5750 MHz ± 1 MHz |                                  |

# Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.9         | 4.71 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.7 ± 6 %   | 4.49 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Head TSL at 5250 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.14 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 80.7 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.33 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.0 W/kg ± 19.5 % (k=2) |

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.5         | 5.07 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.2 ± 6 %   | 4.84 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Head TSL at 5600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 100 mW input power | 8.33 W/kg                  |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 82.5 W / kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Head TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.38 W/kg                |
| SAR for nominal Head TSL parameters         | normalized to 1W   | 23.5 W/kg ± 19.5 % (k=2) |

# Head TSL parameters at 5750 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.4         | 5.22 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.0 ± 6 %   | 4.99 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL at 5750 MHz

| SAR averaged over 1 cm³ (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 8.10 W/kg                |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 80.2 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Head TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.31 W/kg                |
| SAR for nominal Head TSL parameters         | normalized to 1W   | 22.8 W/kg ± 19.5 % (k=2) |

# Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.9         | 5.36 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.0 ± 6 %   | 5.46 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Body TSL at 5250 MHz

| SAR averaged over 1 cm³ (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 7.75 W/kg                |
| SAR for nominal Body TSL parameters       | normalized to 1W   | 76.9 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.17 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.5 W/kg ± 19.5 % (k=2) |

# Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.5         | 5.77 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.4 ± 6 %   | 5.93 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Body TSL at 5600 MHz

| SAR averaged over 1 cm³ (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 7.91 W/kg                |
| SAR for nominal Body TSL parameters       | normalized to 1W   | 78.5 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Body TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.23 W/kg                |
| SAR for nominal Body TSL parameters         | normalized to 1W   | 22.1 W/kg ± 19.5 % (k=2) |

# Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.3         | 5.94 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.2 ± 6 %   | 6.13 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Body TSL at 5750 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.77 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 77.1 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.16 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.4 W/kg ± 19.5 % (k=2) |

# Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL at 5250 MHz

| Impedance, transformed to feed point | 49.9 Ω - 5.3 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 25.5 dB       |

#### Antenna Parameters with Head TSL at 5600 MHz

| Impedance, transformed to feed point | $51.9 \Omega + 2.3 j\Omega$ |
|--------------------------------------|-----------------------------|
| Return Loss                          | - 30.7 dB                   |

#### Antenna Parameters with Head TSL at 5750 MHz

| Impedance, transformed to feed point | 55.6 Ω - 0.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 25.5 dB       |

# Antenna Parameters with Body TSL at 5250 MHz

| Impedance, transformed to feed point | 46.9 Ω - 4.2 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 25.4 dB       |

#### Antenna Parameters with Body TSL at 5600 MHz

| Impedance, transformed to feed point | 50.2 Ω + 3.0 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 30.4 dB       |

#### Antenna Parameters with Body TSL at 5750 MHz

| Impedance, transformed to feed point | $53.4 \Omega + 0.2 j\Omega$ |
|--------------------------------------|-----------------------------|
| Return Loss                          | - 29.7 dB                   |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.194 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG        |
|-----------------|--------------|
| Manufactured on | May 04, 2015 |

Certificate No: D5GHzV2-1237\_Aug17 Page 7 of 13

## **DASY5 Validation Report for Head TSL**

Date: 15.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

# DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1237

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz

Medium parameters used: f = 5250 MHz;  $\sigma = 4.49$  S/m;  $\varepsilon_r = 34.7$ ;  $\rho = 1000$  kg/m<sup>3</sup>, Medium parameters used: f = 5600 MHz;  $\sigma = 4.84$  S/m;  $\varepsilon_r = 34.2$ ;  $\rho = 1000$  kg/m<sup>3</sup>, Medium parameters used: f = 5750 MHz;  $\sigma = 4.99$  S/m;  $\varepsilon_r = 34$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.58, 5.58, 5.58); Calibrated: 31.12.2016, ConvF(5.09, 5.09, 5.09); Calibrated: 31.12.2016, ConvF(5.02, 5.02, 5.02); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

# Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.08 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 30.6 W/kg

SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.33 W/kg

Maximum value of SAR (measured) = 19.2 W/kg

#### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.04 V/m; Power Drift = -0.06 dB

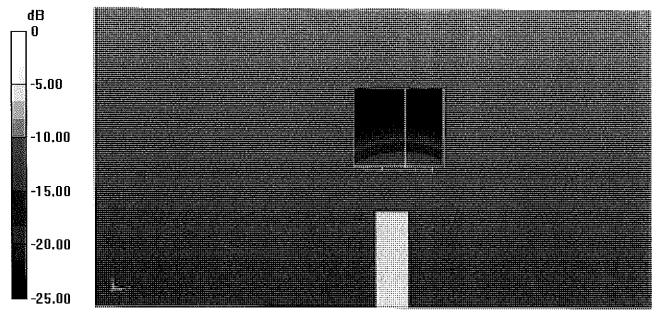
Peak SAR (extrapolated) = 32.7 W/kg

SAR(1 g) = 8.33 W/kg; SAR(10 g) = 2.38 W/kg

Maximum value of SAR (measured) = 19.8 W/kg

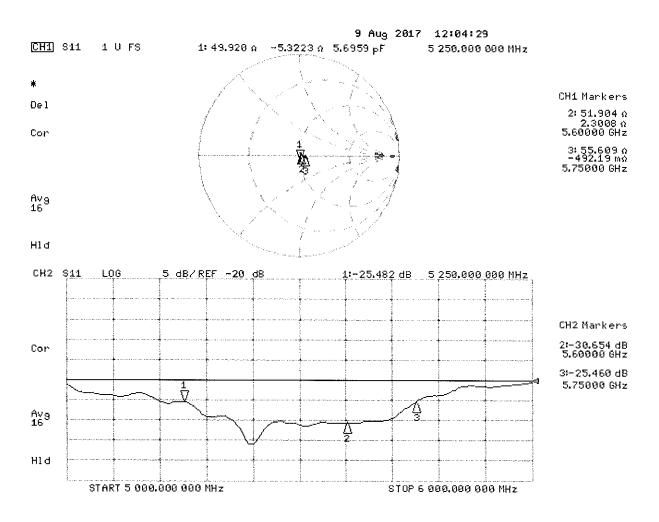
## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 69.11 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 32.4 W/kg

SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.31 W/kg


Maximum value of SAR (measured) = 19.6 W/kg

Certificate No: D5GHzV2-1237\_Aug17



0 dB = 19.2 W/kg = 12.83 dBW/kg

### Impedance Measurement Plot for Head TSL



### **DASY5 Validation Report for Body TSL**

Date: 08.08.2017

Test Laboratory: SPEAG, Zurich, Switzerland

### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1237

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz

Medium parameters used: f = 5250 MHz;  $\sigma = 5.46$  S/m;  $\varepsilon_r = 47$ ;  $\rho = 1000$  kg/m<sup>3</sup>, Medium parameters used: f = 5600 MHz;  $\sigma = 5.93$  S/m;  $\varepsilon_r = 46.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>, Medium parameters used: f = 5750 MHz;  $\sigma = 6.13$  S/m;  $\varepsilon_r = 46.2$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### **DASY52** Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.14, 5.14, 5.14); Calibrated: 31.12.2016, ConvF(4.57, 4.57, 4.57); Calibrated: 31.12.2016, ConvF(4.51, 4.51, 4.51); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.87 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 29.9 W/kg

SAR(1 g) = 7.75 W/kg; SAR(10 g) = 2.17 W/kg

Maximum value of SAR (measured) = 18.4 W/kg

### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

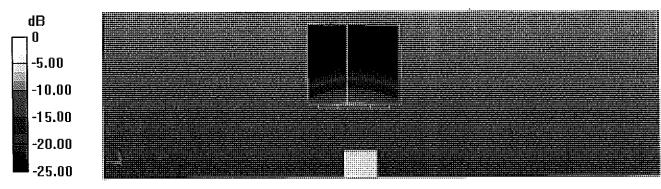
Reference Value = 65.11 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 33.0 W/kg

SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.23 W/kg

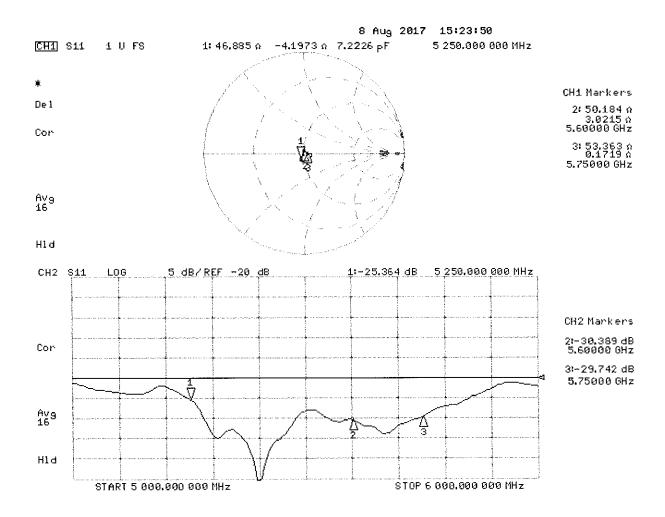
Maximum value of SAR (measured) = 19.3 W/kg

#### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.64 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 33.8 W/kg


SAR(1 g) = 7.77 W/kg; SAR(10 g) = 2.16 W/kg

Maximum value of SAR (measured) = 19.1 W/kg



0 dB = 18.4 W/kg = 12.65 dBW/kg

### Impedance Measurement Plot for Body TSL



### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

**PC Test** 

Certificate No: D750V3-1054\_Mar17

### **CALIBRATION CERTIFICATE**

Object

D750V3 - SN:1054

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

BUN

1)3-27-2017

Calibration date:

March 07, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22  $\pm$  3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter NRP             | SN: 104778         | 06-Apr-16 (No. 217-02288/02289)   | Apr-17                 |
| Power sensor NRP-Z91        | SN: 103244         | 06-Apr-16 (No. 217-02288)         | Apr-17                 |
| Power sensor NRP-Z91        | SN: 103245         | 06-Apr-16 (No. 217-02289)         | Apr-17                 |
| Reference 20 dB Attenuator  | SN: 5058 (20k)     | 05-Apr-16 (No. 217-02292)         | Apr-17                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 05-Apr-16 (No. 217-02295)         | Apr-17                 |
| Reference Probe EX3DV4      | SN: 7349           | 31-Dec-16 (No. EX3-7349_Dec16)    | Dec-17                 |
| DAE4                        | SN: 601            | 04-Jan-17 (No. DAE4-601_Jan17)    | Jan-18                 |
| Secondary Standards         | ID#                | Check Date (in house)             | Scheduled Check        |
| Power meter EPM-442A        | SN: GB37480704     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| Power sensor HP 8481A       | SN: US37292783     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| Power sensor HP 8481A       | SN: MY41092317     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| RF generator R&S SMT-06     | SN: 100972         | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 |
| Network Analyzer HP 8753E   | SN: US37390585     | 18-Oct-01 (in house check Oct-16) | In house check: Oct-17 |
|                             | Name               | Function                          | Signature              |
| Calibrated by:              | Johannes Kurikka   | Laboratory Technician             | you lear               |
| Approved by:                | Katja Pokovic      | Technical Manager                 |                        |

Issued: March 14, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D750V3-1054\_Mar17

Page 1 of 8

## Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

N/A

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.8.8     |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 15 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 750 MHz ± 1 MHz        |             |

### **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.9         | 0.89 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 40.9 ± 6 %   | 0.91 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm³ (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 250 mW input power | 2.14 W/kg                |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 8.37 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          | ·                        |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.40 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 5.50 W/kg ± 16.5 % (k=2) |

**Body TSL parameters**The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity        |
|-----------------------------------------|-----------------|--------------|---------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 55.5         | 0.96 mh <b>o</b> /m |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 54.6 ± 6 %   | 0.99 mho/m ± 6 %    |
| Body TSL temperature change during test | < 0.5 °C        |              |                     |

### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.21 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 8.61 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Body TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 250 mW input power | 1.45 W/kg                |
| SAR for nominal Body TSL parameters         | normalized to 1W   | 5.68 W/kg ± 16.5 % (k=2) |

# Appendix (Additional assessments outside the scope of SCS 0108)

### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 54.7 Ω - 0.7 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 26.8 dB       |

### **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 50.7 Ω - 3.6 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 28.7 dB       |

### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.033 ns  |
|----------------------------------|-----------|
|                                  | 1.000 110 |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG             |
|-----------------|-------------------|
| Manufactured on | November 08, 2011 |

### **DASY5 Validation Report for Head TSL**

Date: 07.03.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz;  $\sigma$  = 0.91 S/m;  $\epsilon_r$  = 40.9;  $\rho$  = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### **DASY52 Configuration:**

Probe: EX3DV4 - SN7349; ConvF(10.17, 10.17, 10.17); Calibrated: 31.12.2016;

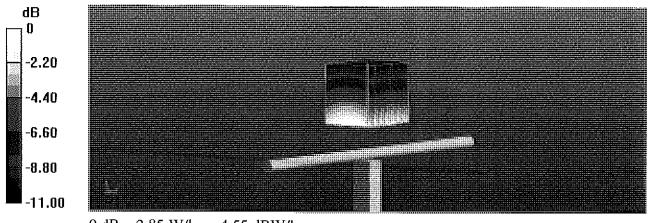
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.01.2017

• Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

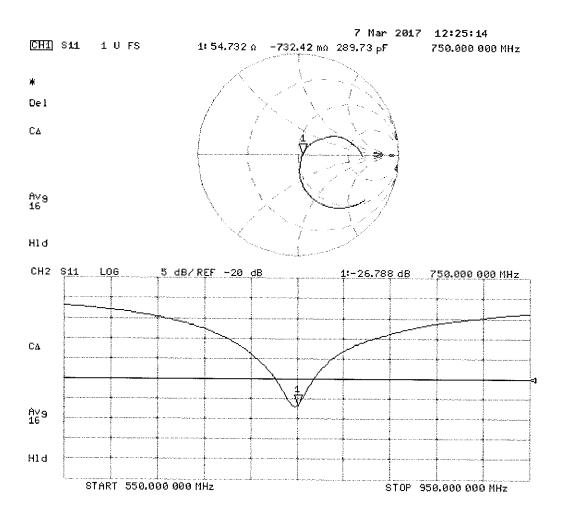
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

# Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.71 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.21 W/kg


SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.4 W/kg

Maximum value of SAR (measured) = 2.85 W/kg



0 dB = 2.85 W/kg = 4.55 dBW/kg

# Impedance Measurement Plot for Head TSL



### **DASY5 Validation Report for Body TSL**

Date: 07.03.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz;  $\sigma = 0.99 \text{ S/m}$ ;  $\varepsilon_r = 54.6$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

### **DASY52 Configuration:**

• Probe: EX3DV4 - SN7349; ConvF(9.99, 9.99, 9.99); Calibrated: 31.12.2016;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.01.2017

Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

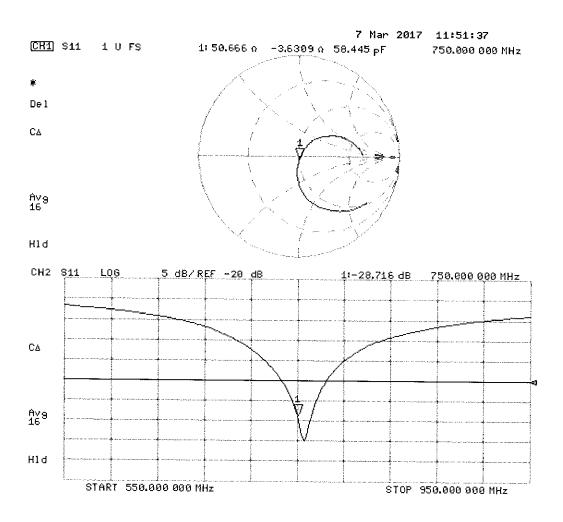
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

# Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.88 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.31 W/kg


SAR(1 g) = 2.21 W/kg; SAR(10 g) = 1.45 W/kg

Maximum value of SAR (measured) = 2.94 W/kg



0 dB = 2.94 W/kg = 4.68 dBW/kg

# Impedance Measurement Plot for Body TSL



### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura S **Swiss Calibration Service** 

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Certificate No: D835V2-4d132\_Jan17

### CALIBRATION CERTIFICATE

Object

D835V2 - SN:4d132

Calibration procedure(s)

**QA CAL-05.v9** 

Calibration procedure for dipole validation kits above 700 MHz

01/26/2017

Calibration date:

January 11, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID #               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter NRP             | SN: 104778         | 06-Apr-16 (No. 217-02288/02289)   | Apr-17                 |
| Power sensor NRP-Z91        | SN: 103244         | 06-Apr-16 (No. 217-02288)         | Apr-17                 |
| Power sensor NRP-Z91        | SN: 103245         | 06-Apr-16 (No. 217-02289)         | Apr-17                 |
| Reference 20 dB Attenuator  | SN: 5058 (20k)     | 05-Apr-16 (No. 217-02292)         | Apr-17                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 05-Apr-16 (No. 217-02295)         | Apr-17                 |
| Reference Probe EX3DV4      | SN: 7349           | 31-Dec-16 (No. EX3-7349_Dec16)    | Dec-17                 |
| DAE4                        | SN: 601            | 04-Jan-17 (No. DAE4-601_Jan17)    | Jan-18                 |
| Secondary Slandards         | ID#                | Check Date (in house)             | Scheduled Check        |
| Power meter EPM-442A        | SN: GB37480704     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| Power sensor HP 8481A       | SN: US37292783     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| Power sensor HP 8481A       | SN: MY41092317     | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 |
| RF generator R&S SMT-06     | SN: 100972         | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 |
| Network Analyzer HP 8753E   | SN: US37390585     | 18-Oct-01 (in house check Oct-16) | In house check: Oct-17 |
|                             | Name               | Function                          | Signature              |
| Calibrated by:              | Jeton Kastrati     | Laboratory Technician             | 1202                   |
| Approved by:                | Katja Pokovic      | Technical Manager                 | Lelly-                 |

Issued: January 12, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.8.8     |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   | -           |
| Distance Dipole Center - TSL | 15 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 835 MHz ± 1 MHz        |             |

Head TSL parameters
The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.5         | 0.90 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 41.4 ± 6 %   | 0.92 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.42 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 9.52 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.56 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 6.16 W/kg ± 16.5 % (k=2) |

#### **Body TSL parameters**

The following parameters and calculations were applied.

| те тольный рамонтовый при | Temperature     | Permittivity | Conductivity     |
|---------------------------------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters                                   | 22.0 °C         | 55.2         | 0.97 mho/m       |
| Measured Body TSL parameters                                  | (22.0 ± 0.2) °C | 54.0 ± 6 %   | 0.99 mho/m ± 6 % |
| Body TSL temperature change during test                       | < 0.5 °C        | ••           |                  |

### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.50 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 9.80 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.64 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 6.46 W/kg ± 16.5 % (k=2) |

Certificate No: D835V2-4d132\_Jan17 Page 3 of 8

### Appendix (Additional assessments outside the scope of SCS 0108)

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 52.1 Ω - 2.6 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 29.7 dB       |

### **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 47.3 Ω - 6.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.3 dB       |

### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.386 ns |
|----------------------------------|----------|
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG         |
|-----------------|---------------|
| Manufactured on | July 22, 2011 |

Page 4 of 8

### **DASY5 Validation Report for Head TSL**

Date: 11.01.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz;  $\sigma = 0.92$  S/m;  $\varepsilon_r = 41.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

### DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.72, 9.72, 9.72); Calibrated: 31.12.2016;

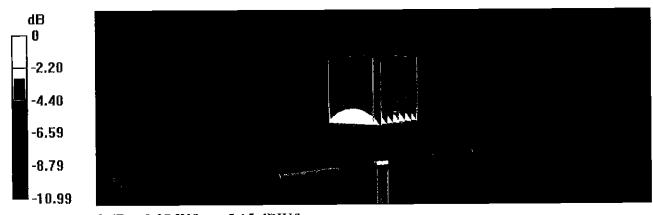
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.01.2017

Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

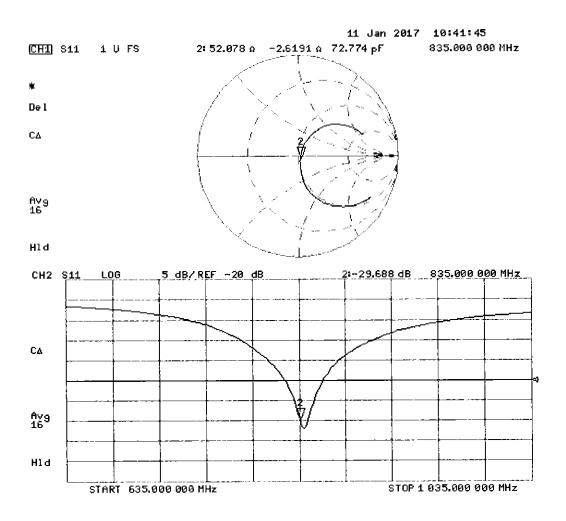
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

# Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 62.53 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.69 W/kg


SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.56 W/kg

Maximum value of SAR (measured) = 3.27 W/kg



0 dB = 3.27 W/kg = 5.15 dBW/kg

# Impedance Measurement Plot for Head TSL



### **DASY5 Validation Report for Body TSL**

Date: 10.01.2017

Test Laboratory: SPEAG, Zurich, Switzerland

### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz;  $\sigma = 0.99$  S/m;  $\varepsilon_r = 54$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.73, 9.73, 9.73); Calibrated: 31.12.2016;

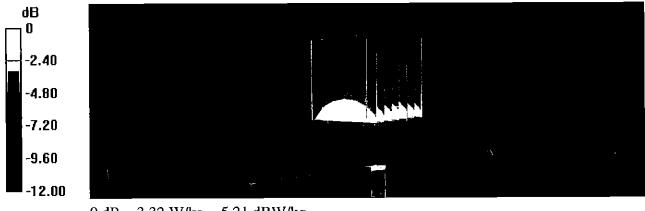
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.01.2017

• Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 61.28 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 3.75 W/kg

SAR(1 g) = 2.5 W/kg; SAR(10 g) = 1.64 W/kg

Maximum value of SAR (measured) = 3.32 W/kg



0 dB = 3.32 W/kg = 5.21 dBW/kg

## Impedance Measurement Plot for Body TSL



### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

**PC Test** 

Certificate No: D1750V2-1150\_Jul16

### CALIBRATION CERTIFICATE

Object

D1750V2 - SN:1150

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

/PM 3/9/16

Calibration date:

July 14, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter NRP             | SN: 104778         | 06-Apr-16 (No. 217-02288/02289)   | Apr-17                 |
| Power sensor NRP-Z91        | SN: 103244         | 06-Apr-16 (No. 217-02288)         | <b>A</b> pr-17         |
| Power sensor NRP-Z91        | SN: 103245         | 06-Apr-16 (No. 217-02289)         | Apr-17                 |
| Reference 20 dB Attenuator  | SN: 5058 (20k)     | 05-Apr-16 (No. 217-02292)         | Apr-17                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 05-Apr-16 (No. 217-02295)         | Apr-17                 |
| Reference Probe EX3DV4      | SN: 7349           | 15-Jun-16 (No. EX3-7349_Jun16)    | Jun-17                 |
| DAE4                        | SN: 601            | 30-Dec-15 (No. DAE4-601_Dec15)    | Dec-16                 |
| Secondary Standards         | ID#                | Check Date (in house)             | Scheduled Check        |
| Power meter EPM-442A        | SN: GB37480704     | 07-Oct-15 (No. 217-02222)         | In house check: Oct-16 |
| Power sensor HP 8481A       | SN: US37292783     | 07-Oct-15 (No. 217-02222)         | In house check: Oct-16 |
| Power sensor HP 8481A       | SN: MY41092317     | 07-Oct-15 (No. 217-02223)         | In house check: Oct-16 |
| RF generator R&S SMT-06     | SN: 100972         | 15-Jun-15 (in house check Jun-15) | In house check: Oct-16 |
| Network Analyzer HP 8753E   | SN: US37390585     | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 |
|                             | Name               | Function                          | Signature              |
| Calibrated by:              | Jeton Kastrati     | Laboratory Technician             | 400                    |
| Approved by:                | Katja Pokovic      | Technical Manager                 | SUL                    |

Issued: July 14, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1750V2-1150\_Jul16

### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1750V2-1150\_Jul16 Page 2 of 8

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.8.8     |
|------------------------------|------------------------|-------------|
|                              | DAG15                  | V32.6.6     |
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 1750 MHz ± 1 MHz       |             |

Head TSL parameters
The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.1         | 1.37 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 38.8 ± 6 %   | 1.36 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 9.06 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 36.1 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 4.80 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 19.2 W/kg ± 16.5 % (k=2) |

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 53.4         | 1.49 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 53.4 ± 6 %   | 1.48 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 9.09 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 36.5 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 4.85 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 19.5 W/kg ± 16.5 % (k=2) |

Certificate No: D1750V2-1150\_Jul16 Page 3 of 8

# Appendix (Additional assessments outside the scope of SCS 0108)

### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | $50.9 \Omega + 0.4 j\Omega$ |
|--------------------------------------|-----------------------------|
| Return Loss                          | - 40.2 dB                   |

### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 46.4 Ω - 0.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 28.5 dB       |

### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.218 ns |
|----------------------------------|----------|
|                                  | 1.210115 |
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG          |
|-----------------|----------------|
| Manufactured on | April 10, 2015 |

### **DASY5 Validation Report for Head TSL**

Date: 14.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

# DUT: Dipole 1750 MHz D1750V2; Type: D1750V2; Serial: D1750V2 - SN:1150

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz;  $\sigma = 1.36 \text{ S/m}$ ;  $\varepsilon_r = 38.8$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

### **DASY52 Configuration:**

Probe: EX3DV4 - SN7349; ConvF(8.46, 8.46, 8.46); Calibrated: 15.06.2016;

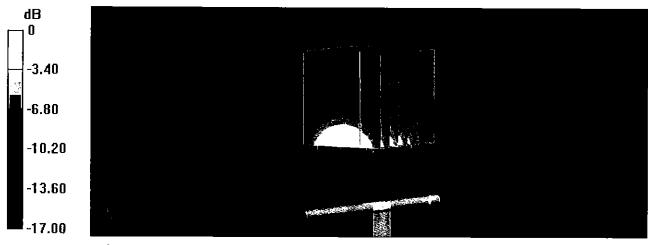
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

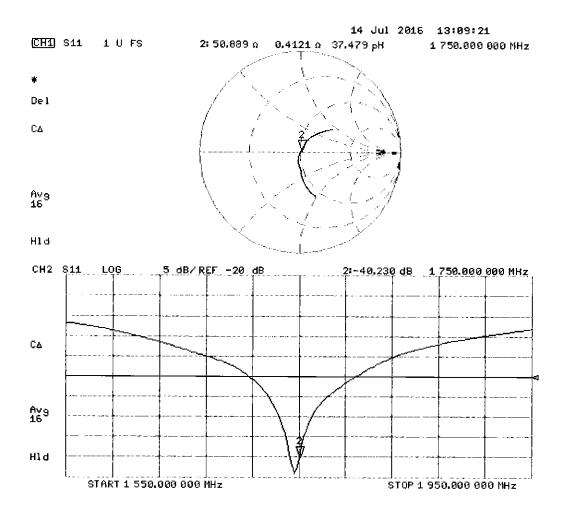
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

# Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 104.4 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 16.6 W/kg


SAR(1 g) = 9.06 W/kg; SAR(10 g) = 4.8 W/kg

Maximum value of SAR (measured) = 13.9 W/kg



0 dB = 13.9 W/kg = 11.43 dBW/kg

## Impedance Measurement Plot for Head TSL



### **DASY5 Validation Report for Body TSL**

Date: 14.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

# DUT: Dipole 1750 MHz D1750V2; Type: D1750V2; Serial: D1750V2 - SN:1150

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz;  $\sigma = 1.48$  S/m;  $\varepsilon_r = 53.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

### DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.25, 8.25, 8.25); Calibrated: 15.06.2016;

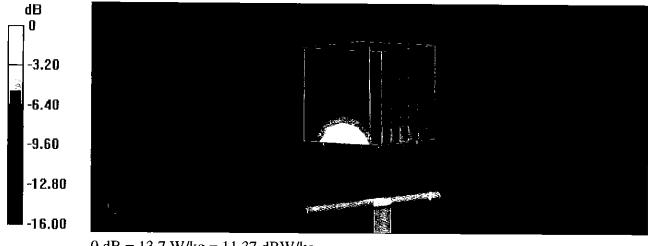
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

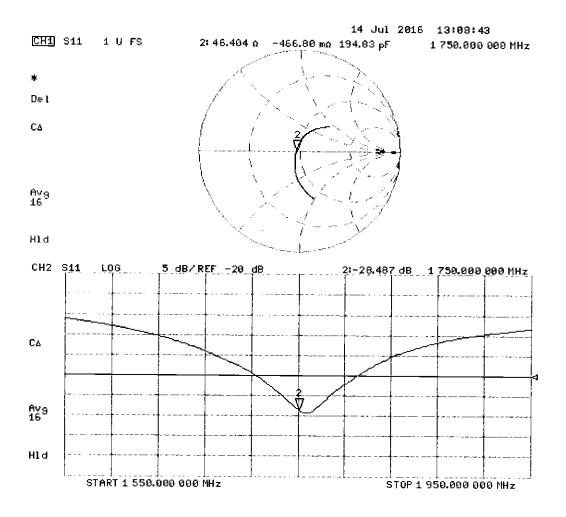
DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

# Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.4 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 16.0 W/kg


SAR(1 g) = 9.09 W/kg; SAR(10 g) = 4.85 W/kg

Maximum value of SAR (measured) = 13.7 W/kg



0 dB = 13.7 W/kg = 11.37 dBW/kg

# Impedance Measurement Plot for Body TSL



### PCTEST ENGINEERING LABORATORY, INC.



7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com



# **Certification of Calibration**

Object D1750V2 – SN: 1150

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Calibration date: July 07, 2017

Description: SAR Validation Dipole at 1750 MHz.

Calibration Equipment used:

| Manufacturer          | Model     | Description                                             | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|-----------------------|-----------|---------------------------------------------------------|------------|--------------|------------|---------------|
| Control Company       | 4040      | Therm./Clock/Humidity Monitor                           |            | Biennial     | 3/31/2019  | 170232394     |
| Control Company       | 4352      | Ultra Long Stem Thermometer                             | 5/2/2017   | Biennial     | 5/2/2019   | 170330156     |
| Amplifier Research    | 15S1G6    | Amplifier                                               | CBT        | N/A          | CBT        | 433971        |
| Narda                 | 4772-3    | Attenuator (3dB)                                        | CBT        | N/A          | CBT        | 9406          |
| Keysight Technologies | 85033E    | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/1/2017   | Annual       | 6/1/2018   | MY53401181    |
| Agilent               | 8753ES    | S-Parameter Network Analyzer                            | 10/26/2016 | Annual       | 10/26/2017 | US39170118    |
| Mini-Circuits         | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator           | CBT        | N/A          | CBT        | N/A           |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 3/8/2017   | Annual       | 3/8/2018   | 1368          |
| SPEAG                 | DAE4      | Dasy Data Acquisition Electronics                       | 3/13/2017  | Annual       | 3/13/2018  | 1415          |
| SPEAG                 | DAK-3.5   | Dielectric Assessment Kit                               | 5/10/2017  | Annual       | 5/10/2018  | 1070          |
| SPEAG                 | ES3DV3    | SAR Probe                                               | 3/14/2017  | Annual       | 3/14/2018  | 3209          |
| SPEAG                 | ES3DV3    | SAR Probe                                               | 3/14/2017  | Annual       | 3/14/2018  | 3319          |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 2/10/2017  | Annual       | 2/10/2018  | 1207364       |
| Anritsu               | MA2411B   | Pulse Power Sensor                                      | 2/10/2017  | Annual       | 2/10/2018  | 1339018       |
| Anritsu               | ML2495A   | Power Meter                                             | 10/16/2015 | Biennial     | 10/16/2017 | 941001        |
| Agilent               | N5182A    | MXG Vector Signal Generator                             | 2/28/2017  | Annual       | 2/28/2018  | MY47420800    |
| Seekonk               | NC-100    | Torque Wrench                                           | 11/6/2015  | Biennial     | 11/6/2017  | N/A           |
| Mini-Circuits         | NLP-2950+ | Low Pass Filter DC to 2700 MHz                          | CBT        | N/A          | CBT        | N/A           |
| Pasternack            | PE2209-10 | Bidirectional Coupler                                   | CBT        | N/A          | CBT        | N/A           |

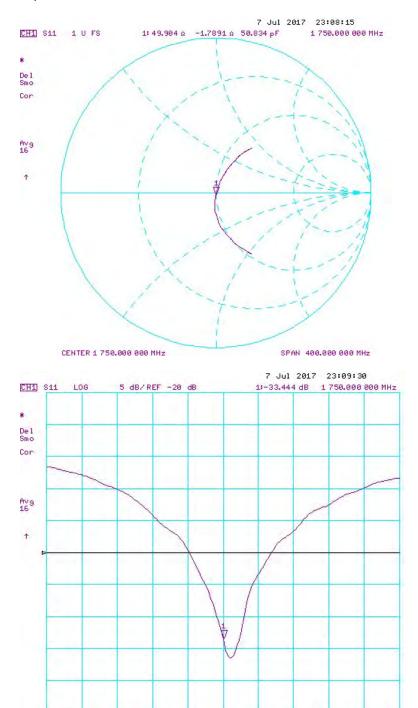
### Measurement Uncertainty = $\pm 23\%$ (k=2)

|                | Name              | Function                    | Signature         |
|----------------|-------------------|-----------------------------|-------------------|
| Calibrated By: | Brodie Halbfoster | Test Engineer               | BROPTE HALBFOSTER |
| Approved By:   | Kaitlin O'Keefe   | Senior Technical<br>Manager | 306               |

| Object:            | Date Issued: | Page 1 of 4 |
|--------------------|--------------|-------------|
| D1750V2 – SN: 1150 | 07/07/2017   | Page 1 of 4 |

### **DIPOLE CALIBRATION EXTENSION**

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

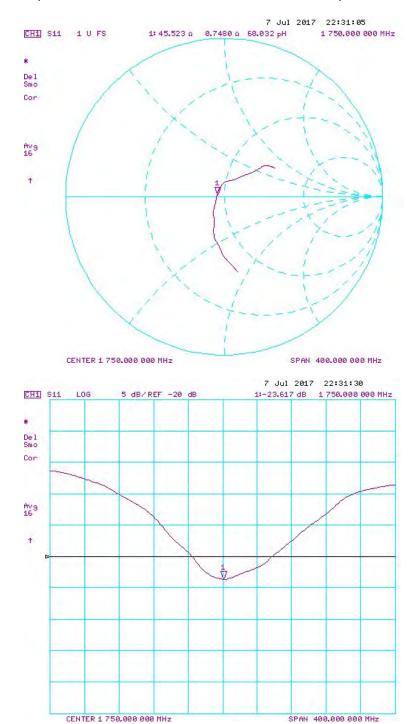

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than  $5\Omega$  from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) | Certificate<br>SAR Target<br>Head (1g)<br>W/kg @ 20.0<br>dBm | Measured<br>Head SAR (1g)<br>W/kg @ 20.0<br>dBm | 70/ )               | Certificate<br>SAR Target<br>Head (10g)<br>W/kg @ 20.0<br>dBm | Measured<br>Head SAR<br>(10g) W/kg @<br>20.0 dBm | Deviation 10g<br>(%) | Certificate<br>Impedance<br>Head (Ohm)<br>Real | Measured<br>Impedance<br>Head (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Head (Ohm)<br>Imaginary | Measured<br>Impedance<br>Head (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Head (dB) | Measured<br>Return Loss<br>Head (dB) | Deviation (%) | PASS/FAIL |
|---------------------|-------------------|-----------------------------------------|--------------------------------------------------------------|-------------------------------------------------|---------------------|---------------------------------------------------------------|--------------------------------------------------|----------------------|------------------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|---------------|-----------|
| 7/14/2016           | 7/7/2017          | 1.218                                   | 3.61                                                         | 3.57                                            | -1.11%              | 1.92                                                          | 1.88                                             | -2.08%               | 50.9                                           | 49.9                                        | 1                        | 0.4                                                 | -1.8                                             | 2.1                              | -40.2                                   | -33.4                                | 16.90%        | PASS      |
|                     |                   |                                         |                                                              |                                                 |                     |                                                               |                                                  |                      |                                                |                                             |                          |                                                     |                                                  |                                  |                                         |                                      |               |           |
| Calibration<br>Date | Extension<br>Date | Certificate<br>Electrical<br>Delay (ns) | Certificate<br>SAR Target<br>Body (1g)<br>W/kg @ 20.0<br>dBm | Measured<br>Body SAR (1g)<br>W/kg @ 20.0<br>dBm | Deviation 1g<br>(%) | Certificate<br>SAR Target<br>Body (10g)<br>W/kg @ 20.0<br>dBm |                                                  | Deviation 10g<br>(%) |                                                | Measured<br>Impedance<br>Body (Ohm)<br>Real | Difference<br>(Ohm) Real | Certificate<br>Impedance<br>Body (Ohm)<br>Imaginary | Measured<br>Impedance<br>Body (Ohm)<br>Imaginary | Difference<br>(Ohm)<br>Imaginary | Certificate<br>Return Loss<br>Body (dB) | Measured<br>Return Loss<br>Body (dB) | Deviation (%) | PASS/FAIL |
| 7/14/2016           | 7/7/2017          | 1.218                                   | 3.65                                                         | 3.68                                            | 0.82%               | 1.95                                                          | 1.97                                             | 1.03%                | 46.4                                           | 45.5                                        | 0.9                      | -0.5                                                | 0.7                                              | 1.2                              | -28.5                                   | -23.6                                | 17.20%        | PASS      |

| Object:            | Date Issued: | Page 2 of 4 |
|--------------------|--------------|-------------|
| D1750V2 – SN: 1150 | 07/07/2017   | rage 2 01 4 |

### Impedance & Return-Loss Measurement Plot for Head TSL




CENTER 1 750.000 000 MHz

| Object:            | Date Issued: | Page 3 of 4 |
|--------------------|--------------|-------------|
| D1750V2 – SN: 1150 | 07/07/2017   | rage 3 01 4 |

SPAN 400.000 000 MHz

### Impedance & Return-Loss Measurement Plot for Body TSL



| Object:            | Date Issued: | Page 4 of 4 |
|--------------------|--------------|-------------|
| D1750V2 – SN: 1150 | 07/07/2017   | Page 4 of 4 |

### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst Service sulsse d'étalonnage

Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

**PC Test** 

Certificate No: D5GHzV2-1057\_Jan17

## **CALIBRATION CERTIFICATE**

Object D5GHzV2 - SN:1057

Calibration procedure(s) QA CAL-22.v2

Calibration procedure for dipole validation kits between 3-6 GHz

BNV 2017

Calibration date:

January 20, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22  $\pm$  3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter NRP             | SN: 104778         | 06-Apr-16 (No. 217-02288/02289)   | Apr-17                 |
| Power sensor NRP-Z91        | SN: 103244         | 06-Apr-16 (No. 217-02288)         | Apr-17                 |
| Power sensor NRP-Z91        | SN: 103245         | 06-Apr-16 (No. 217-02289)         | Apr-17                 |
| Reference 20 dB Altenuator  | SN: 5058 (20k)     | 05-Apr-16 (No. 217-02292)         | Apr-17                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 05-Apr-16 (No. 217-02295)         | Apr-17                 |
| Reference Probe EX3DV4      | SN: 3503           | 31-Dec-16 (No. EX3-3503_Dec16)    | Dec-17                 |
| DAE4                        | SN: 601            | 04-Jan-17 (No. DAE4-601_Jan17)    | Jan-18                 |
| Secondary Standards         | ID#                | Check Date (in house)             | Scheduled Check        |
| Power meter EPM-442A        | SN: GB37480704     | 07-Oct-16 (No. 217-02222)         | In house check: Oct-18 |
| Power sensor HP 8481A       | SN: US37292783     | 07-Oct-16 (No. 217-02222)         | In house check: Oct-18 |
| Power sensor HP 8481A       | SN: MY41092317     | 07-Oct-16 (No. 217-02223)         | In house check: Oct-18 |
| RF generator R&S SMT-06     | SN: 100972         | 15-Jun-15 (in house check Oct-16) | In house check; Oct-18 |
| Network Analyzer HP 8753E   | SN: US37390585     | 18-Oct-01 (in house check Oct-16) | In house check: Oct-17 |
| ·                           | Name               | Function                          | Signature              |
| Calibrated by:              | Jeton Kastrati     | Laboratory Technician             | 900                    |
| Approved by:                | Katja Pokovic      | Technical Manager                 | Alls                   |

Issued: January 23, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1057\_Jan17

Page 1 of 13

### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurlch, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

d) DASY4/5 System Handbook

### Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1057\_Jan17 Page 2 of 13

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                                                    | V52.8.8                          |
|------------------------------|----------------------------------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation                                   |                                  |
| Phantom                      | Modular Flat Phantom V5.0                                |                                  |
| Distance Dipole Center - TSL | 10 mm                                                    | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4.0  mm, dz = 1.4  mm                           | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 5250 MHz ± 1 MHz<br>5600 MHz ± 1 MHz<br>5750 MHz ± 1 MHz |                                  |

### Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

| parameter and careameter mere appro-    | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.9         | 4.71 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 35.3 ± 6 %   | 4.50 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Head TSL at 5250 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.20 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 81.6 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.36 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.4 W/kg ± 19.5 % (k=2) |

## Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.5         | 5.07 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.7 ± 6 %   | 4.85 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              | =                |

### SAR result with Head TSL at 5600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.43 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 83.7 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.40 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.8 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1057\_Jan17

# Head TSL parameters at 5750 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.4         | 5.22 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.5 ± 6 %   | 4.99 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL at 5750 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.06 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 80.0 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                                  |
|---------------------------------------------------------|--------------------|----------------------------------|
| SAR measured                                            | 100 mW input power | 2.28 W/kg                        |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.6 <b>W</b> /kg ± 19.5 % (k=2) |

# Body TSL parameters at 5250 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.9         | 5.36 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.4 ± 6 %   | 5.43 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Body TSL at 5250 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.50 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 74.6 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.09 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.7 W/kg ± 19.5 % (k=2) |

# Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.5         | 5.77 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.6 ± 6 %   | 5.90 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Body TSL at 5600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.95 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 78.9 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          | -                        |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.22 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 22.0 W/kg ± 19.5 % (k=2) |

# Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.3         | 5.94 mho/m       |
| Measured Body TSŁ parameters            | (22.0 ± 0.2) °C | 46.4 ± 6 %   | 6.10 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Body TSL at 5750 MHz

| SAR averaged over 1 cm³ (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 7.60 W/kg                |
| SAR for nominal Body TSL parameters       | normalized to 1W   | 75.5 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.11 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.9 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1057\_Jan17 Page 6 of 13

## Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL at 5250 MHz

| Impedance, transformed to feed point | 50.1 Ω - 5.1 jΩ |  |  |  |  |
|--------------------------------------|-----------------|--|--|--|--|
| Return Loss                          | - 25.8 dB       |  |  |  |  |

#### Antenna Parameters with Head TSL at 5600 MHz

| Impedance, transformed to feed point | 54.9 Ω - 0.7 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 26.6 dB       |

#### Antenna Parameters with Head TSL at 5750 MHz

| Impedance, transformed to feed point | 52.4 Ω + 0.7 jΩ |  |  |  |  |
|--------------------------------------|-----------------|--|--|--|--|
| Return Loss                          | - 32.4 dB       |  |  |  |  |

### Antenna Parameters with Body TSL at 5250 MHz

| Impedance, transformed to feed point | 48.9 Ω - 2.9 jΩ |  |  |  |  |
|--------------------------------------|-----------------|--|--|--|--|
| Return Loss                          | - 30.0 dB       |  |  |  |  |

### Antenna Parameters with Body TSL at 5600 MHz

| Impedance, transformed to feed point | 56.4 Ω + 0.1 jΩ |  |  |  |  |
|--------------------------------------|-----------------|--|--|--|--|
| Return Loss                          | - 24.5 dB       |  |  |  |  |

## Antenna Parameters with Body TSL at 5750 MHz

| Impedance, transformed to feed point | 52.9 Ω + 2.1 jΩ |  |  |  |  |
|--------------------------------------|-----------------|--|--|--|--|
| Return Loss                          | - 29.2 dB       |  |  |  |  |

### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.204 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG             |  |  |  |  |
|-----------------|-------------------|--|--|--|--|
| Manufactured on | November 27, 2006 |  |  |  |  |

## **DASY5 Validation Report for Head TSL**

Date: 20.01.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1057

Communication System: UID 0 - CW;

Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz

Medium parameters used: f = 5250 MHz;  $\sigma = 4.5$  S/m;  $\epsilon_r = 35.3$ ;  $\rho = 1000$  kg/m<sup>3</sup>, Medium parameters used: f = 5600 MHz;  $\sigma = 4.85$  S/m;  $\epsilon_r = 34.7$ ;  $\rho = 1000$  kg/m<sup>3</sup> Medium parameters used: f = 5750 MHz;  $\sigma = 4.99$  S/m;  $\epsilon_r = 34.5$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.58, 5.58, 5.58); Calibrated: 31.12.2016, ConvF(5.09, 5.09, 5.09); Calibrated: 31.12.2016, ConvF(5.02, 5.02, 5.02); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.01.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

# Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.84 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 31.2 W/kg

SAR(1 g) = 8.2 W/kg; SAR(10 g) = 2.36 W/kg

Maximum value of SAR (measured) = 18.8 W/kg

# Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

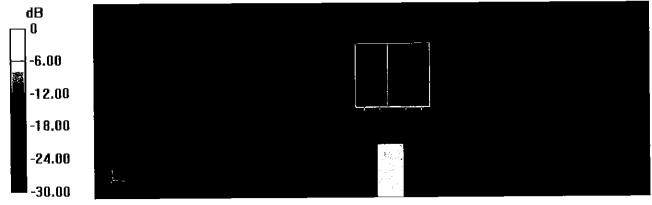
Reference Value = 73.41 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 34.0 W/kg

SAR(1 g) = 8.43 W/kg; SAR(10 g) = 2.4 W/kg

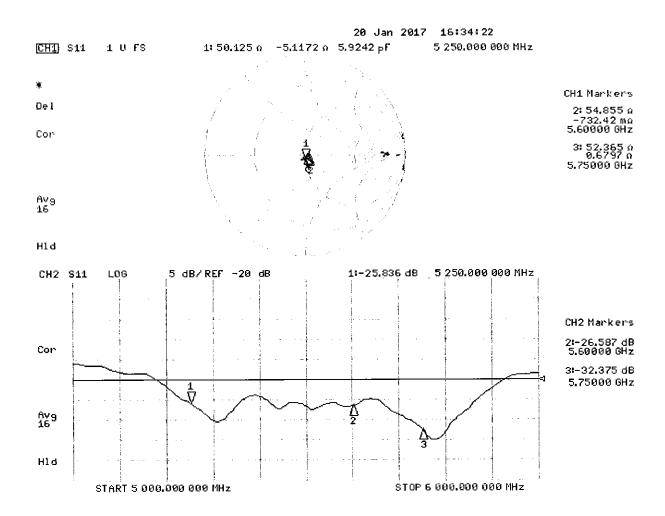
Maximum value of SAR (measured) = 19.9 W/kg

# Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 71.30 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 33.8 W/kg


SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.28 W/kg

Maximum value of SAR (measured) = 19.3 W/kg



0 dB = 18.8 W/kg = 12.74 dBW/kg

# Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date: 20.01.2017

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1057

Communication System: UID 0 - CW;

Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz

Medium parameters used: f = 5250 MHz;  $\sigma = 5.43$  S/m;  $\epsilon_r = 47.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>, Medium parameters used: f = 5600 MHz;  $\sigma = 5.9$  S/m;  $\epsilon_r = 46.6$ ;  $\rho = 1000$  kg/m<sup>3</sup>, Medium parameters used: f = 5750 MHz;  $\sigma = 6.1$  S/m;  $\epsilon_r = 46.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.14, 5.14, 5.14); Calibrated: 31.12.2016, ConvF(4.57, 4.57, 4.57); Calibrated: 31.12.2016, ConvF(4.52, 4.52, 4.52); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.01.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

# Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.83 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 29.1 W/kg

SAR(1 g) = 7.5 W/kg; SAR(10 g) = 2.09 W/kg

Maximum value of SAR (measured) = 17.1 W/kg

## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

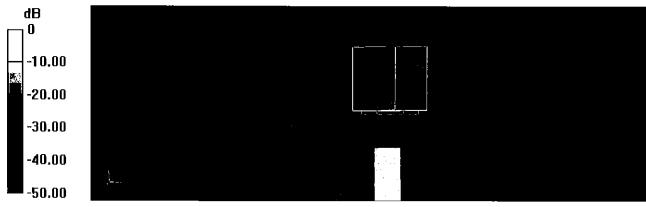
Reference Value = 67.06 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 33.5 W/kg

SAR(1 g) = 7.95 W/kg; SAR(10 g) = 2.22 W/kg

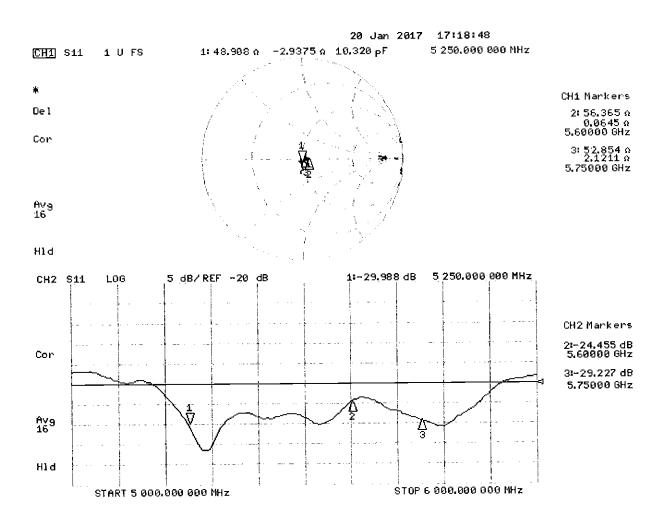
Maximum value of SAR (measured) = 18.7 W/kg

## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.46 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 33.4 W/kg


SAR(1 g) = 7.6 W/kg; SAR(10 g) = 2.11 W/kg

Maximum value of SAR (measured) = 18.2 W/kg



0 dB = 17.1 W/kg = 12.33 dBW/kg

# Impedance Measurement Plot for Body TSL



### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

**PC Test** 

Certificate No: ES3-3332\_Aug17

## **CALIBRATION CERTIFICATE**

Object

ES3DV3 - SN:3332

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

7/27/117

Calibration date:

August 14, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Certificate No: ES3-3332\_Aug17

| Primary Standards                      | ID              | Cal Date (Certificate No.)        | Scheduled Calibration  |  |  |
|----------------------------------------|-----------------|-----------------------------------|------------------------|--|--|
| Power meter NRP                        | SN: 104778      | 04-Apr-17 (No. 217-02521/02522)   | Apr-18                 |  |  |
| Power sensor NRP-Z91                   | SN: 103244      | 04-Apr-17 (No. 217-02521)         | Apr-18                 |  |  |
| Power sensor NRP-Z91                   | SN: 103245      | 04-Apr-17 (No. 217-02525)         | Apr-18                 |  |  |
| Reference 20 dB Attenuator             | SN: S5277 (20x) |                                   |                        |  |  |
| Reference Probe ES3DV2 SN: 3013        |                 | 31-Dec-16 (No. ES3-3013_Dec16)    | Dec-17                 |  |  |
| DAE4                                   | SN: 660         | 7-Dec-16 (No. DAE4-660_Dec16)     | Dec-17                 |  |  |
| Secondary Standards                    | ID              | Check Date (in house)             | Scheduled Check        |  |  |
| Power meter E4419B                     | SN: GB41293874  | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 |  |  |
| Power sensor E4412A SN: MY41498087     |                 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 |  |  |
| Power sensor E4412A SN: 000110210      |                 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 |  |  |
| RF generator HP 8648C SN: US3642U01700 |                 | 04-Aug-99 (in house check Jun-16) | In house check: Jun-18 |  |  |
| Network Analyzer HP 8753E              | SN: US37390585  | 18-Oct-01 (in house check Oct-16) | In house check: Oct-17 |  |  |

Calibrated by:

Name
Function
Signature
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: August 16, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

# Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

**Swiss Calibration Service** 

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF

sensitivity in TSL / NORMx,y,z

DCP

diode compression point

CF A, B, C, D crest factor (1/duty\_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e.,  $\theta = 0$  is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3332\_Aug17 Page 2 of 38

# Probe ES3DV3

SN:3332

Manufactured:

January 24, 2012

Calibrated:

August 14, 2017

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

ES3DV3-SN:3332

# DASY/EASY - Parameters of Probe: ES3DV3 - SN:3332

#### **Basic Calibration Parameters**

|                                            | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------------------------|----------|----------|----------|-----------|
| Norm (μV/(V/m) <sup>2</sup> ) <sup>A</sup> | 1.00     | 0.93     | 0.88     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>                      | 104.0    | 103.0    | 103.0    |           |

#### **Modulation Calibration Parameters**

| UID | Communication System Name |   | A<br>dB | B<br>dB√μV | O   | D<br>dB | VR<br>mV | Unc <sup>E</sup><br>(k=2) |
|-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------|
| 0   | CW                        | Х | 0.0     | 0.0        | 1.0 | 0.00    | 192.0    | ±3.5 %                    |
|     |                           | Υ | 0.0     | 0.0        | 1.0 |         | 194.3    |                           |
|     |                           | Z | 0.0     | 0.0        | 1.0 |         | 179.9    |                           |

Note: For details on UID parameters see Appendix.

#### **Sensor Model Parameters**

|   | C1    | C2    | α               | T1                 | T2     | Т3  | T4    | T5    | Т6    |
|---|-------|-------|-----------------|--------------------|--------|-----|-------|-------|-------|
|   | fF ,  | fF    | V <sup>-1</sup> | ms.V <sup>-2</sup> | ms.V⁻¹ | ms  | V-2   | V-1   | ]     |
| X | 76.72 | 548.9 | 35.46           | 56.44              | 4.600  | 5.1 | 0.000 | 0.903 | 1.011 |
| Y | 44.78 | 323.3 | 35.85           | 29.01              | 2.529  | 5.1 | 0.000 | 0.546 | 1.009 |
| Z | 38.01 | 268.3 | 34.56           | 26.38              | 1.777  | 5.1 | 0.096 | 0.424 | 1.004 |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

<sup>&</sup>lt;sup>A</sup> The uncertainties of Norm X,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

# DASY/EASY - Parameters of Probe: ES3DV3 - SN:3332

#### Calibration Parameter Determined in Head Tissue Simulating Media

|                      |                                       |                      |         |         | -       |                    |                            |              |
|----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
| 750                  | 41.9                                  | 0.89                 | 6.81    | 6.81    | 6.81    | 0.72               | 1.31                       | ± 12.0 %     |
| 835                  | 41.5                                  | 0.90                 | 6.64    | 6.64    | 6.64    | 0.80               | 1.21                       | ± 12.0 %     |
| 1750                 | 40.1                                  | 1.37                 | 5.56    | 5.56    | 5.56    | 0.80               | 1.20                       | ± 12.0 %     |
| 1900                 | 40.0                                  | 1.40                 | 5.33    | 5.33    | 5.33    | 0.76               | 1.26                       | ± 12.0 %     |
| 2300                 | 39.5                                  | 1.67                 | 4.99    | 4.99    | 4.99    | 0.70               | 1.36                       | ± 12.0 %     |
| 2450                 | 39.2                                  | 1.80                 | 4.68    | 4.68    | 4.68    | 0.63               | 1.48                       | ± 12.0 %     |
| 2600                 | 39.0                                  | 1.96                 | 4.56    | 4.56    | 4.56    | 0.80               | 1.23                       | ± 12.0 %     |

<sup>&</sup>lt;sup>c</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConyF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

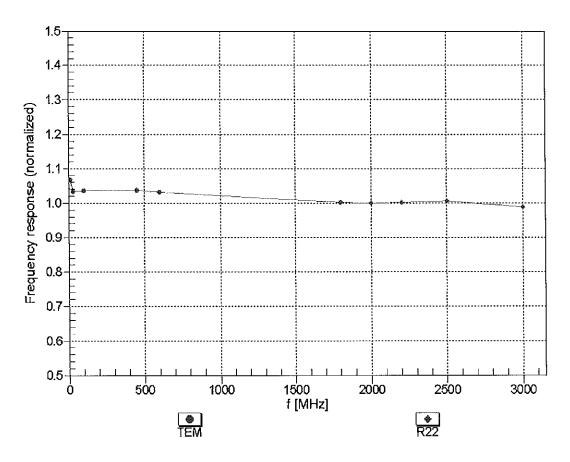
Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

## DASY/EASY - Parameters of Probe: ES3DV3 - SN:3332

#### Calibration Parameter Determined in Body Tissue Simulating Media

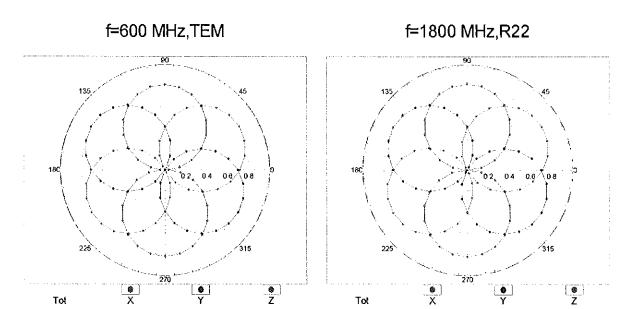
|                      |                                       |                                    | -       |         | _       |                    |                            |              |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
| 750                  | 55.5                                  | 0.96                               | 6.54    | 6.54    | 6.54    | 0.55               | 1.43                       | ± 12.0 %     |
| 835                  | 55.2                                  | 0.97                               | 6.47    | 6.47    | 6.47    | 0.71               | 1.27                       | ± 12.0 %     |
| 1750                 | 53.4                                  | 1.49                               | 5.16    | 5.16    | 5.16    | 0.80               | 1.22                       | ± 12.0 %     |
| 1900                 | 53.3                                  | 1.52                               | 4.95    | 4.95    | 4.95    | 0.54               | 1.56                       | ± 12.0 %     |
| 2300                 | 52.9                                  | 1.81                               | 4.74    | 4.74    | 4.74    | 0.80               | 1.30                       | ± 12.0 %     |
| 2450                 | 52.7                                  | 1.95                               | 4.55    | 4.55    | 4.55    | 0.80               | 1.17                       | ± 12.0 %     |
| 2600                 | 52.5                                  | 2.16                               | 4.43    | 4.43    | 4.43    | 0.80               | 1.12                       | ± 12.0 %     |

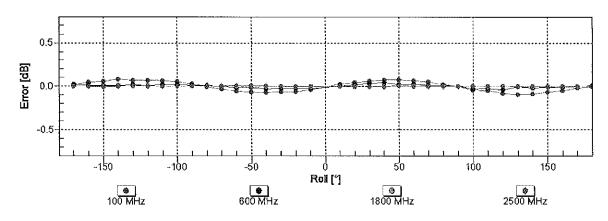
<sup>&</sup>lt;sup>c</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.


validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

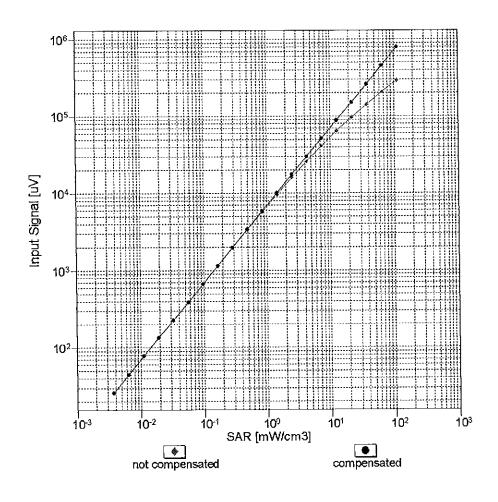
Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

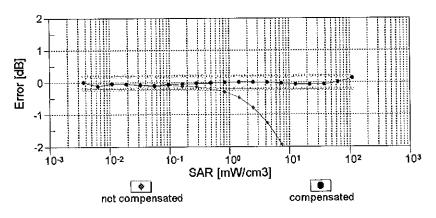

<sup>&</sup>lt;sup>6</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


# Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



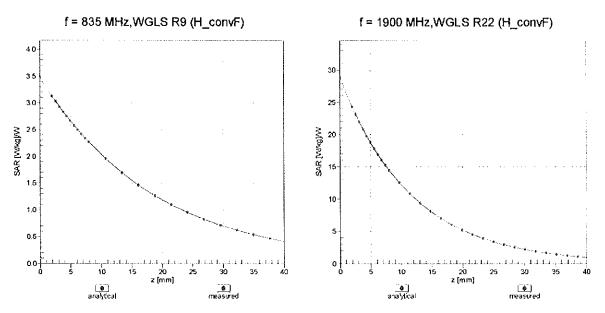
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$



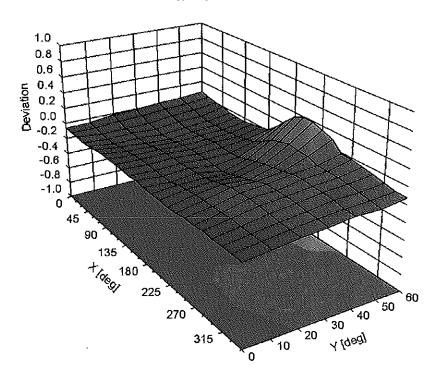


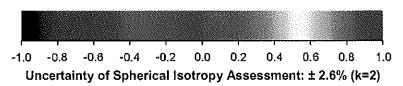

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


# Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f<sub>eval</sub>= 1900 MHz)






Uncertainty of Linearity Assessment: ± 0.6% (k=2)


# **Conversion Factor Assessment**



# **Deviation from Isotropy in Liquid**

Error  $(\phi, \vartheta)$ , f = 900 MHz





# DASY/EASY - Parameters of Probe: ES3DV3 - SN:3332

#### **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | 50         |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 10 mm      |
| Tip Diameter                                  | 4 mm       |
| Probe Tip to Sensor X Calibration Point       | 2 mm       |
| Probe Tip to Sensor Y Calibration Point       | 2 mm       |
| Probe Tip to Sensor Z Calibration Point       | 2 mm       |
| Recommended Measurement Distance from Surface | 3 mm       |

**Appendix: Modulation Calibration Parameters** 

| UID           | Communication System Name            |          | A<br>dB         | B<br>dBõV        | С              | D<br>dB | VR<br>mV     | Max<br>Unc <sup>E</sup><br>(k=2) |
|---------------|--------------------------------------|----------|-----------------|------------------|----------------|---------|--------------|----------------------------------|
| 0             | CW                                   | Х        | 0.00            | 0.00             | 1.00           | 0.00    | 192.0        | ± 3.5 %                          |
|               |                                      | Υ        | 0.00            | 0.00             | 1.00           |         | 194.3        |                                  |
| 10010-        | CADV-EL-C (C 100                     | Z        | 0.00            | 0.00             | 1.00           |         | 179.9        |                                  |
| CAA           | SAR Validation (Square, 100ms, 10ms) | X        | 9.02            | 77.08            | 18.94          | 10.00   | 25.0         | ± 9.6 %                          |
|               |                                      | Y        | 12.19           | 85.73            | 21.41          |         | 25.0         |                                  |
| 10011-        | LUATO EDD MAODAAN                    | Z        | 23.02           | 95.31            | 23.86          |         | 25.0         |                                  |
| CAB           | UMTS-FDD (WCDMA)                     | X        | 1.60            | 76.05            | 19.77          | 0.00    | 150.0        | ± 9.6 %                          |
| <del></del>   |                                      | Y        | 1.08            | 68.15            | 15.73          |         | 150.0        |                                  |
| 10012-        | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1   | Z<br>X   | 1.25<br>1.52    | 71.36            | 17.60          | 0.44    | 150.0        |                                  |
| CAB           | Mbps)                                |          |                 | 68.53            | 17.98          | 0.41    | 150.0        | ± 9.6 %                          |
|               |                                      | Y        | 1.33            | 65.39            | 16.06          |         | 150.0        |                                  |
| 10013-        | IEEE 802.11g WiFi 2.4 GHz (DSSS-     | Z        | 1.37            | 66.35            | 16.79          | 4.40    | 150.0        |                                  |
| CAB           | OFDM, 6 Mbps)                        | ļ. :     | 5.37            | 67.71            | 17.82          | 1.46    | 150.0        | ± 9.6 %                          |
|               |                                      | Y        | 5.07            | 67.50            | 17.57          |         | 150.0        |                                  |
| 10021-        | GSM-FDD (TDMA, GMSK)                 | Z        | 4.99<br>11.16   | 67.81<br>81.48   | 17.71<br>22.11 | 0.00    | 150.0        | 1000                             |
| DAC           | GOWH DD (TDWA, GWAK)                 | <u></u>  |                 |                  |                | 9.39    | 50.0         | ± 9.6 %                          |
|               |                                      | Z        | 61.59<br>100.00 | 115.23<br>122.78 | 32.13          |         | 50.0         |                                  |
| 10023-<br>DAC | GPRS-FDD (TDMA, GMSK, TN 0)          | X        | 11.07           | 81.20            | 33.35<br>22.06 | 9.57    | 50.0<br>50.0 | ± 9.6 %                          |
| <u>Dr to</u>  |                                      | Y        | 43.11           | 109.07           | 30.52          |         | 50.0         |                                  |
|               |                                      | z        | 100.00          | 122.63           | 33.33          |         | 50.0         |                                  |
| 10024-<br>DAC | GPRS-FDD (TDMA, GMSK, TN 0-1)        | X        | 12.88           | 85.34            | 22.06          | 6.56    | 60.0         | ± 9.6 %                          |
|               |                                      | Υ        | 100.00          | 120.15           | 31.36          |         | 60.0         |                                  |
|               |                                      | Z        | 100.00          | 120.25           | 30.99          |         | 60.0         |                                  |
| 10025-<br>DAC | EDGE-FDD (TDMA, 8PSK, TN 0)          | X        | 19.49           | 99.22            | 36.41          | 12.57   | 50.0         | ± 9.6 %                          |
|               |                                      | <u> </u> | 15.67           | 100.74           | 38.44          |         | 50.0         |                                  |
| 10026-        | EDGE-FDD (TDMA, 8PSK, TN 0-1)        | Z        | 29.43<br>18.92  | 124.69           | 47.97          | 0.50    | 50.0         | . 0.00/                          |
| DAC           | EDGE-FDD (TDMA, 8PSK, TN U-1)        | X        |                 | 96.32            | 32.19          | 9.56    | 60.0         | ± 9.6 %                          |
|               |                                      | Y        | 17.33           | 101.02           | 35.08          |         | 60.0         |                                  |
| 10027-        | GPRS-FDD (TDMA, GMSK, TN 0-1-2)      | Z<br>X   | 24.89<br>24.19  | 113.23<br>95.70  | 39.81<br>24.33 | 4.80    | 60.0<br>80.0 | ± 9.6 %                          |
| DAC           |                                      | Y        | 100.00          | 119.30           | 30.03          |         | 00.0         |                                  |
|               |                                      | Z        | 100.00          | 120.36           | 30.03          |         | 80.0<br>80.0 |                                  |
| 10028-<br>DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)    | X        | 100.00          | 115.36           | 28.49          | 3.55    | 100.0        | ± 9.6 %                          |
|               |                                      | Υ        | 100.00          | 119.83           | 29.45          |         | 100.0        |                                  |
|               |                                      | Z        | 100.00          | 122.10           | 30.18          |         | 100.0        |                                  |
| 10029-<br>DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2)      | X        | 16.27           | 93.78            | 30.32          | 7.80    | 80.0         | ± 9.6 %                          |
|               |                                      | Y        | 11.67           | 92.24            | 30.90          |         | 80.0         |                                  |
| 10030-<br>CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1)  | Z<br>X   | 13.37<br>15.68  | 97.80<br>88.86   | 33.46<br>22.54 | 5.30    | 80.0<br>70.0 | ± 9.6 %                          |
| JAA           |                                      | Y        | 100.00          | 118.49           | 29.99          |         | 70.0         | <u>'</u>                         |
|               |                                      | Z        | 100.00          | 118.88           | 29.80          |         | 70.0         |                                  |
| 10031-<br>CAA | IEEE 802.15.1 Bluetooth (GFSK, DH3)  | X        | 100.00          | 116.01           | 27.12          | 1.88    | 100.0        | ± 9.6 %                          |
|               |                                      | Y        | 100.00          | 121.13           | 28.42          |         | 100.0        |                                  |
|               |                                      | Z        | 100.00          | 126.03           | 30.32          |         | 100.0        |                                  |

| 10032-<br>CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5)                     | Х | 100.00         | 119.38          | 27.36          | 1.17     | 100.0         | ± 9.6 %                                          |
|---------------|---------------------------------------------------------|---|----------------|-----------------|----------------|----------|---------------|--------------------------------------------------|
| UAA           |                                                         | Y | 100.00         | 126.54          | 29.58          | 1        | 400.0         |                                                  |
| ****          |                                                         | Z | 100.00         |                 |                |          | 100.0         |                                                  |
| 10033-<br>CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK,                    | X | 13.27          | 136.16<br>88.21 | 33.43<br>24.10 | 5.30     | 100.0<br>70.0 | ± 9.6 %                                          |
| CAA           | DH1)                                                    | Υ | 00.04          | 00.00           | 07.40          |          | 70.0          |                                                  |
| <del></del>   |                                                         | Z | 20.91<br>58.05 | 99.02<br>115.59 | 27.13          |          | 70.0          |                                                  |
| 10034-        | IEEE 802.15.1 Bluetooth (PI/4-DQPSK,                    | X | 16.18          | 96.67           | 31.27<br>25.44 | 4.00     | 70.0          | 1000                                             |
| CAA           | DH3)                                                    |   |                |                 |                | 1.88     | 100.0         | ± 9.6 %                                          |
|               |                                                         | Y | 10.83          | 91.57           | 22.94          |          | 100.0         |                                                  |
| 10035-        | IEEE 802.15.1 Bluetooth (PI/4-DQPSK,                    | Z | 52.78<br>12.45 | 113.06          | 28.24          | 4.45     | 100.0         |                                                  |
| CAA           | DH5)                                                    |   |                | 95.04           | 24.79          | 1.17     | 100.0         | ± 9.6 %                                          |
|               |                                                         | Y | 5.49           | 83.70           | 20.10          |          | 100.0         |                                                  |
| 10036-        | IEEE 900 45 4 Divisto att (0 DDCK DUA)                  | Z | 18.62          | 100.06          | 24.56          |          | 100.0         |                                                  |
| CAA           | IEEE 802.15.1 Bluetooth (8-DPSK, DH1)                   | X | 14.34          | 89.63           | 24.62          | 5.30     | 70.0          | ±9.6 %                                           |
|               |                                                         | Y | 26.79          | 103.24          | 28.41          |          | 70.0          |                                                  |
| 40007         | LEEE 000 45 4 DL                                        | Z | 95.10          | 123.67          | 33.30          |          | 70.0          |                                                  |
| 10037-<br>CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3)                   | Х | 15.98          | 96.45           | 25.32          | 1.88     | 100.0         | ± 9.6 %                                          |
|               |                                                         | Υ | 9.62           | 89.98           | 22.43          |          | 100.0         |                                                  |
| 10000         |                                                         | Z | 37.04          | 108.35          | 27.08          |          | 100.0         |                                                  |
| 10038-<br>CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5)                   | X | 13.91          | 96.94           | 25.41          | 1.17     | 100.0         | ± 9.6 %                                          |
|               |                                                         | Υ | 5.69           | 84.50           | 20.47          |          | 100.0         |                                                  |
|               |                                                         | Z | 19.52          | 101.18          | 25.01          |          | 100.0         |                                                  |
| 10039-<br>CAB | CDMA2000 (1xRTT, RC1)                                   | X | 3.28           | 80.46           | 20.53          | 0.00     | 150.0         | ± 9.6 %                                          |
|               |                                                         | Υ | 1.92           | 73.09           | 15.89          |          | 150.0         | -                                                |
|               |                                                         | Z | 3.08           | 80.13           | 18.22          |          | 150.0         |                                                  |
| 10042-<br>CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-<br>DQPSK, Halfrate) | Х | 11.60          | 82.51           | 21.10          | 7.78     | 50.0          | ± 9.6 %                                          |
|               |                                                         | Y | 100.00         | 118.83          | 31.00          |          | 50.0          |                                                  |
|               |                                                         | Ż | 100.00         | 118.47          | 30.39          |          | 50.0          |                                                  |
| 10044-<br>CAA | IS-91/EIA/TIA-553 FDD (FDMA, FM)                        | X | 0.02           | 128.88          | 9.05           | 0.00     | 150.0         | ± 9.6 %                                          |
|               |                                                         | Υ | 0.00           | 96.92           | 0.26           |          | 150.0         |                                                  |
|               |                                                         | Z | 0.02           | 60.00           | 140.78         |          | 150.0         |                                                  |
| 10048-<br>CAA | DECT (TDD, TDMA/FDM, GFSK, Full<br>Slot, 24)            | Х | 10.75          | 78.30           | 22.86          | 13.80    | 25.0          | ± 9.6 %                                          |
|               |                                                         | Y | 15.61          | 90.30           | 26.65          |          | 25.0          | -                                                |
|               |                                                         | Z | 32.75          | 104.57          | 30.45          |          | 25.0          |                                                  |
| 10049-<br>CAA | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)             | Х | 10.92          | 80.23           | 22.15          | 10.79    | 40.0          | ± 9.6 %                                          |
|               |                                                         | Υ | 20.87          | 96.36           | 27.22          | ··       | 40.0          |                                                  |
|               |                                                         | Z | 64.62          | 115.72          | 32.06          |          | 40.0          |                                                  |
| 10056-<br>CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps)                          | Х | 11.51          | 81.76           | 22.84          | 9.03     | 50.0          | ± 9.6 %                                          |
|               |                                                         | Y | 15.28          | 90.93           | 25.77          |          | 50.0          |                                                  |
|               |                                                         | Z | 25.94          | 101.11          | 28.65          |          | 50.0          | <del>                                     </del> |
| 10058-<br>DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)                       | Х | 14.19          | 91.88           | 29.00          | 6.55     | 100.0         | ± 9.6 %                                          |
|               |                                                         | Υ | 8.68           | 86.53           | 28.09          |          | 100.0         |                                                  |
|               |                                                         | Z | 9.12           | 89.51           | 29.70          |          | 100.0         |                                                  |
| 10059-<br>CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2<br>Mbps)             | Х | 2.01           | 72.72           | 19.70          | 0.61     | 110.0         | ± 9.6 %                                          |
|               |                                                         | Y | 1.51           | 67.62           | 17.16          |          | 110.0         |                                                  |
|               |                                                         | Z | 1.56           | 68.78           | 17.10          |          | 110.0         | <del>                                     </del> |
| 10060-<br>CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)              | X | 100.00         | 126.29          | 32.07          | 1.30     | 110.0         | ± 9.6 %                                          |
|               |                                                         | Υ | 100.00         | 132.71          | 34.39          | <u>.</u> | 1100          |                                                  |
|               |                                                         | Z | 100.00         |                 |                |          | 110.0         |                                                  |
|               |                                                         |   | 100.00         | 137.07          | 36.21          |          | 110.0         |                                                  |

| 10061-<br>CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)         | X        | 36.66        | 112.50 | 30.92 | 2.04 | 110.0 | ± 9.6 %      |
|---------------|---------------------------------------------------|----------|--------------|--------|-------|------|-------|--------------|
|               |                                                   | Y        | 11.07        | 98.15  | 27.76 | 1    | 110.0 | <del> </del> |
|               |                                                   | Z        | 22.12        | 112.16 | 32.18 |      | 110.0 | † ···        |
| 10062-<br>CAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6<br>Mbps)       | Х        | 5.03         | 67.33  | 17.05 | 0.49 | 100.0 | ± 9.6 %      |
| ··            |                                                   | Y        | 4.77         | 67.19  | 16.82 |      | 100.0 |              |
| 10000         | 1777                                              | Z        | 4.70         | 67.51  | 16.97 |      | 100.0 |              |
| 10063-<br>CAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9<br>Mbps)       | Х        | 5.09         | 67.56  | 17.23 | 0.72 | 100.0 | ± 9.6 %      |
|               |                                                   | Y        | 4.81         | 67.36  | 16.96 |      | 100.0 |              |
| 10064-        | IEEE 000 44-% MEE COLL (OFD) 4 40                 | Z        | 4.74         | 67.68  | 17.11 |      | 100.0 |              |
| CAB           | IEEE 802.11a/n WiFi 5 GHz (OFDM, 12 Mbps)         | Х        | 5.47         | 67.93  | 17.49 | 0.86 | 100.0 | ± 9.6 %      |
|               |                                                   | Y        | 5.10         | 67.63  | 17.20 |      | 100.0 |              |
| 10065-        | IEEE 900 440/h WIELE OUT (OFD) 4 40               | Z        | 5.00         | 67.90  | 17.32 |      | 100.0 |              |
| CAB           | IEEE 802.11a/n WiFi 5 GHz (OFDM, 18 Mbps)         | X        | 5.40         | 68.08  | 17.70 | 1.21 | 100.0 | ± 9.6 %      |
|               |                                                   | Y        | 5.02         | 67.68  | 17.39 |      | 100.0 |              |
| 10066-        | JEEE 000 440% WEELS OUT (OFFICE)                  | Z        | 4.92         | 67.92  | 17.50 |      | 100.0 |              |
| CAB           | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24<br>Mbps)      | X        | 5.49         | 68.31  | 17.98 | 1.46 | 100.0 | ± 9.6 %      |
| <u> </u>      |                                                   | Y        | 5.08         | 67.82  | 17.62 |      | 100.0 |              |
| 10067-        | IEEE 000 44 # MEE'E OU (OFFILE 04                 | Z        | 4.97         | 68.04  | 17.73 |      | 100.0 |              |
| CAB           | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)         | Х        | 5.84         | 68.47  | 18.45 | 2.04 | 100.0 | ± 9.6 %      |
|               |                                                   | Y        | 5.42         | 68.13  | 18.14 |      | 100.0 |              |
| 40000         | IEEE OOG 44 S MINE IN OUR 10 TO THE               | Z        | 5.31         | 68.42  | 18.28 |      | 100.0 |              |
| 10068-<br>CAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48<br>Mbps)      | X        | 6.07         | 69.08  | 18.91 | 2.55 | 100.0 | ± 9.6 %      |
|               |                                                   | Y        | 5.53         | 68.32  | 18.44 |      | 100.0 |              |
|               |                                                   | Z        | 5.39         | 68.51  | 18.54 |      | 100.0 |              |
| 10069-<br>CAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54<br>Mbps)      | X        | 6.13         | 68.90  | 19.06 | 2.67 | 100.0 | ± 9.6 %      |
|               |                                                   | Υ        | 5.61         | 68.37  | 18.66 |      | 100.0 |              |
|               |                                                   | Z        | 5.48         | 68.58  | 18.76 |      | 100.0 |              |
| 10071-<br>CAB | IEEE 802.11g WiFi 2.4 GHz<br>(DSSS/OFDM, 9 Mbps)  | Х        | 5.56         | 68.08  | 18.26 | 1.99 | 100.0 | ± 9.6 %      |
|               |                                                   | Υ        | 5.22         | 67.75  | 17.96 |      | 100.0 |              |
|               |                                                   | Z        | <u>5</u> .14 | 68.03  | 18.10 |      | 100.0 |              |
| 10072-<br>CAB | IEEE 802.11g WiFi 2.4 GHz<br>(DSSS/OFDM, 12 Mbps) | X        | 5.71         | 68.87  | 18.66 | 2.30 | 100.0 | ± 9.6 %      |
|               |                                                   | Υ        | 5.28         | 68.28  | 18.29 |      | 100.0 |              |
| 40070         |                                                   | <u> </u> | 5.18         | 68.53  | 18.42 |      | 100.0 |              |
| 10073-<br>CAB | IEEE 802.11g WiFi 2.4 GHz<br>(DSSS/OFDM, 18 Mbps) | Х        | 5.93         | 69.43  | 19.17 | 2.83 | 100.0 | ± 9.6 %      |
|               |                                                   | Y        | 5.43         | 68.68  | 18.74 |      | 100.0 |              |
| 40074         | LEEF 000 44 MEET 0 1 000                          | Z        | 5.32         | 68.95  | 18.89 |      | 100.0 |              |
| 10074-<br>CAB | IEEE 802.11g WiFi 2.4 GHz<br>(DSSS/OFDM, 24 Mbps) | X        | 6.04         | 69.75  | 19.56 | 3.30 | 100.0 | ± 9.6 %      |
|               |                                                   | Y        | 5.49         | 68.80  | 18.99 |      | 100.0 |              |
| 40075         | LEGE 000 44 MINE O 1 O 1                          | Z        | 5.38         | 69.07  | 19.15 |      | 100.0 |              |
| 10075-<br>CAB | IEEE 802.11g WiFi 2.4 GHz<br>(DSSS/OFDM, 36 Mbps) | X        | 6.35         | 70.65  | 20.23 | 3.82 | 90.0  | ± 9.6 %      |
|               |                                                   | Y        | 5.63         | 69.18  | 19.44 |      | 90.0  |              |
| 40020         | LEEE COO 44 INCE C. C.                            | Z        | 5.49         | 69.37  | 19.56 |      | 90.0  |              |
| 10076-<br>CAB | IEEE 802.11g WiFi 2.4 GHz<br>(DSSS/OFDM, 48 Mbps) | Х        | 6.37         | 70.50  | 20.38 | 4.15 | 90.0  | ± 9.6 %      |
|               |                                                   | Y        | 5.68         | 69.10  | 19.63 |      | 90.0  |              |
|               |                                                   | Z        | 5.56         | 69.34  | 19.78 |      | 90.0  |              |
| 10077-<br>CAB | IEEE 802.11g WiFi 2.4 GHz<br>(DSSS/OFDM, 54 Mbps) | Х        | 6.43         | 70.65  | 20.50 | 4.30 | 90.0  | ± 9.6 %      |
|               |                                                   | Y        | 5.73         | 69.22  | 19.75 |      | 90.0  |              |
|               |                                                   | Z        | 5.61         | 69.48  | 19.91 |      | 90.0  |              |

| 10081-        | CDMA2000 (1xRTT, RC3)                                   | X              | 1.62         | 75.66          | 18.40          | 0.00     | 150.0          | ± 9.6 %     |
|---------------|---------------------------------------------------------|----------------|--------------|----------------|----------------|----------|----------------|-------------|
| CAB           |                                                         | <del>  _</del> | 0.07         | 66.74          | 40.00          |          | 450.0          |             |
|               |                                                         | Y<br>Z         | 0.87<br>1.13 | 66.71<br>71.02 | 12.69<br>14.45 |          | 150.0          |             |
| 10082-<br>CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-<br>DQPSK, Fullrate) | X              | 3.53         | 66.20          | 10.93          | 4.77     | 150.0<br>80.0  | ± 9.6 %     |
|               |                                                         | Y              | 2.19         | 64.40          | 9.18           |          | 80.0           |             |
|               |                                                         | Z              | 1.96         | 64.15          | 8.74           |          | 80.0           | -           |
| 10090-<br>DAC | GPRS-FDD (TDMA, GMSK, TN 0-4)                           | X              | 12.79        | 85.25          | 22.06          | 6.56     | 60.0           | ± 9.6 %     |
|               |                                                         | <u> </u>       | 100.00       | 120.23         | 31.42          |          | 60.0           |             |
| 10007         |                                                         | Z              | 100.00       | 120.31         | 31.04          |          | 60.0           |             |
| 10097-<br>CAB | UMTS-FDD (HSDPA)                                        | X              | 2.06         | 70.06          | 17.46          | 0.00     | 150.0          | ± 9.6 %     |
|               |                                                         | Y              | 1.88         | 68.31          | 15.96          |          | 150.0          |             |
| 10098-        | LIMITO EDD (LICHDA CLaLO)                               | Z              | 2.04         | 70.38          | 16.98          |          | 150.0          |             |
| CAB           | UMTS-FDD (HSUPA, Subtest 2)                             | X              | 2.02         | 70.12          | 17.47          | 0.00     | 150.0          | ± 9.6 %     |
|               |                                                         | Y              | 1.84         | 68.27          | 15.94          |          | 150.0          |             |
| 10099-        | EDGE-FDD (TDMA, 8PSK, TN 0-4)                           | Z              | 2.00         | 70.37          | 16.98          |          | 150.0          |             |
| DAC           | EDGE-FDD (TDMA, 8PSK, TN 0-4)                           | X              | 18.80        | 96.14          | 32.13          | 9.56     | 60.0           | ± 9.6 %     |
|               |                                                         | Y              | 17.28        | 100.91         | 35.04          |          | 60.0           |             |
| 10100-        | LTE-FDD (SC-FDMA, 100% RB, 20                           | Z              | 24.81        | 113.10         | 39.77          |          | 60.0           |             |
| CAD           | MHz, QPSK)                                              | X              | 3.84         | 73.61          | 18.19          | 0.00     | 150.0          | ± 9.6 %     |
|               |                                                         | Y              | 3.15         | 70.58          | 16.91          |          | 150.0          |             |
| 10101-        | LTE CDD (CC CDMA 4000) DD 00                            | Z              | 3.25         | 71.69          | 17.61          |          | 150.0          |             |
| CAD           | LTE-FDD (SC-FDMA, 100% RB, 20<br>MHz, 16-QAM)           | Х              | 3.58         | 69.11          | 16.83          | 0.00     | 150.0          | ± 9.6 %     |
|               |                                                         | Y              | 3.26         | 67.74          | 16.10          |          | 150.0          |             |
| 10102-        | LTE-FDD (SC-FDMA, 100% RB, 20                           | Z<br>X         | 3.26<br>3.66 | 68.29<br>68.88 | 16.47<br>16.84 | 0.00     | 150.0<br>150.0 | ±9.6 %      |
| CAD           | MHz, 64-QAM)                                            | 1              | 0.00         |                |                |          |                |             |
|               |                                                         | Y              | 3.36         | 67.71          | 16.19          |          | 150.0          |             |
| 10103-        | LTE-TDD (SC-FDMA, 100% RB, 20                           | Z              | 3.36         | 68.23          | 16.52          |          | 150.0          |             |
| CAD           | MHz, QPSK)                                              | X              | 9.75         | 77.78          | 20.81          | 3.98     | 65.0           | ± 9.6 %     |
| <del></del>   |                                                         | Y              | 8.78         | 79.16          | 21.83          |          | 65.0           |             |
| 10104-        | LTE TOD (CC EDMA 400% DD 00                             | Z              | 9.34         | 81.38          | 22.82          |          | 65.0           |             |
| CAD           | LTE-TDD (SC-FDMA, 100% RB, 20<br>MHz, 16-QAM)           | X              | 9.87         | 77.22          | 21.49          | 3.98     | 65.0           | ± 9.6 %     |
|               |                                                         | Y              | 8.42         | 77.09          | 21.77          |          | 65.0           |             |
| 10105-        | LTE-TDD (SC-FDMA, 100% RB, 20                           | <u> </u>       | 8.44         | 78.16          | 22.31          |          | 65.0           |             |
| CAD           | MHz, 64-QAM)                                            | X              | 9.19         | 75.82          | 21.15          | 3.98     | 65.0           | ± 9.6 %     |
|               |                                                         | Y              | 8.07         | 76.20          | 21.66          |          | 65.0           |             |
| 10108-<br>CAE | LTE-FDD (SC-FDMA, 100% RB, 10<br>MHz, QPSK)             | X              | 8.27<br>3.37 | 77.70<br>72.69 | 22.41<br>18.02 | 0.00     | 65.0<br>150.0  | ± 9.6 %     |
|               |                                                         | Y              | 2.75         | 69.90          | 16.77          |          | 150.0          |             |
|               |                                                         | z              | 2.82         | 71.09          | 17.51          |          | 150.0          |             |
| 10109-<br>CAE | LTE-FDD (SC-FDMA, 100% RB, 10<br>MHz, 16-QAM)           | X              | 3.26         | 68.97          | 16.85          | 0.00     | 150.0          | ± 9.6 %     |
|               | <u> </u>                                                | Y              | 2.91         | 67.66          | 16.01          |          | 150.0          |             |
|               |                                                         | Z              | 2.92         | 68.36          | 16.42          | <u> </u> | 150.0          |             |
| 10110-<br>CAE | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)                 | X              | 2.79         | 71.81          | 17.85          | 0.00     | 150.0          | ± 9.6 %     |
|               |                                                         | Υ              | 2.23         | 69.12          | 16.39          |          | 150.0          |             |
|               |                                                         | Z              | 2.31         | 70.62          | 17.23          |          | 150.0          | <del></del> |
| 10111-<br>CAE | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)               | Х              | 2.96         | 69.58          | 17.27          | 0.00     | 150.0          | ± 9.6 %     |
|               |                                                         | Υ              | 2.63         | 68.64          | 16.31          |          | 150.0          |             |
|               |                                                         | Z              | 2.69         | 69.84          | 16.85          |          | 150.0          |             |

| 10112-<br>CAE | LTE-FDD (SC-FDMA, 100% RB, 10<br>MHz, 64-QAM)    | Х     | 3.36 | 68.71 | 16.80   | 0.00  | 150.0 | ± 9.6 %     |
|---------------|--------------------------------------------------|-------|------|-------|---------|-------|-------|-------------|
|               |                                                  | Y     | 3.03 | 67.66 | 16.06   |       | 150.0 |             |
|               |                                                  | Z     | 3.04 | 68.35 | 16.45   |       | 150.0 |             |
| 10113-<br>CAE | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)        | Х     | 3.10 | 69.46 | 17.27   | 0.00  | 150.0 | ± 9.6 %     |
|               |                                                  | Y     | 2.78 | 68.78 | 16.44   |       | 150.0 |             |
|               |                                                  | Z     | 2.83 | 69.92 | 16.93   |       | 150.0 |             |
| 10114-<br>CAB | IEEE 802.11n (HT Greenfield, 13.5<br>Mbps, BPSK) | Х     | 5.34 | 67.65 | 16.76   | 0.00  | 150.0 | ± 9.6 %     |
|               |                                                  | Y     | 5.17 | 67.50 | 16.64   |       | 150.0 |             |
|               |                                                  | Z     | 5.08 | 67.64 | 16.74   |       | 150.0 |             |
| 10115-<br>CAB | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)    | X     | 5.80 | 68.17 | 17.01   | 0.00  | 150.0 | ± 9.6 %     |
|               |                                                  | Υ     | 5.44 | 67.60 | 16.69   |       | 150.0 |             |
|               |                                                  | Z     | 5.33 | 67.71 | 16.77   |       | 150.0 |             |
| 10116-<br>CAB | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)   | Х     | 5.47 | 67.90 | 16.79   | 0.00  | 150.0 | ± 9.6 %     |
|               |                                                  | Y     | 5.25 | 67.68 | 16.65   |       | 150.0 |             |
|               |                                                  | Z     | 5.17 | 67.85 | 16.77   |       | 150.0 |             |
| 10117-<br>CAB | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)         | X     | 5.34 | 67.65 | 16.78   | 0.00  | 150.0 | ± 9.6 %     |
|               |                                                  | Y     | 5.12 | 67.32 | 16.56   |       | 150.0 |             |
|               |                                                  | Z     | 5.07 | 67.59 | 16.73   |       | 150.0 |             |
| 10118-<br>CAB | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)         | Х     | 5.79 | 68.04 | 16.95   | 0.00  | 150.0 | ± 9.6 %     |
|               |                                                  | Y     | 5.52 | 67.82 | 16.81   |       | 150.0 |             |
|               |                                                  | Z     | 5.42 | 67.93 | 16.89   |       | 150.0 |             |
| 10119-<br>CAB | IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)        | Х     | 5.44 | 67.84 | 16.78   | 0.00  | 150.0 | ± 9.6 %     |
|               |                                                  | Υ     | 5.24 | 67.66 | 16.65   |       | 150.0 |             |
|               |                                                  | Z     | 5.17 | 67.84 | 16.77   |       | 150.0 |             |
| 10140-<br>CAD | LTE-FDD (SC-FDMA, 100% RB, 15<br>MHz, 16-QAM)    | Х     | 3.72 | 68.86 | 16.76   | 0.00  | 150.0 | ± 9.6 %     |
|               |                                                  | Y     | 3.39 | 67.72 | 16.10   |       | 150.0 |             |
|               |                                                  | Z     | 3.39 | 68.26 | 16.45   | ***** | 150.0 |             |
| 10141-<br>CAD | LTE-FDD (SC-FDMA, 100% RB, 15<br>MHz, 64-QAM)    | Х     | 3.82 | 68.79 | 16.84   | 0.00  | 150.0 | ± 9.6 %     |
|               |                                                  | Υ     | 3.51 | 67.83 | 16.27   |       | 150.0 |             |
|               |                                                  | Z     | 3.51 | 68.36 | 16.60   |       | 150.0 |             |
| 10142-<br>CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)          | Х     | 2.57 | 71.96 | 17.88   | 0.00  | 150.0 | ± 9.6 %     |
|               |                                                  | Y     | 2.01 | 69.21 | 16.02   |       | 150.0 |             |
|               |                                                  | Z     | 2.13 | 71.18 | 16.95   |       | 150.0 |             |
| 10143-<br>CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)        | Х     | 2.89 | 70.53 | 17.42   | 0.00  | 150.0 | ± 9.6 %     |
|               |                                                  | Υ     | 2.49 | 69.45 | 15.95   |       | 150.0 |             |
|               |                                                  | Z     | 2.62 | 71.11 | 16.52   |       | 150.0 |             |
| 10144-<br>CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)        | Х     | 2.69 | 68.52 | 16.05   | 0.00  | 150.0 | ± 9.6 %     |
|               |                                                  | Υ     | 2.23 | 66.92 | 14.20   |       | 150.0 |             |
|               |                                                  | Z     | 2.23 | 67.85 | 14.42   |       | 150.0 |             |
| 10145-<br>CAE | LTE-FDD (SC-FDMA, 100% RB, 1.4<br>MHz, QPSK)     | Х     | 2.07 | 72.06 | 16.97   | 0.00  | 150.0 | ± 9.6 %     |
|               |                                                  | Υ     | 1.17 | 64.90 | 11.31   |       | 150.0 |             |
|               |                                                  | Z     | 1.08 | 64.84 | 10.72   |       | 150.0 |             |
| 10146-<br>CAE | LTE-FDD (SC-FDMA, 100% RB, 1.4<br>MHz, 16-QAM)   | X     | 4.64 | 77.66 | 18.95   | 0.00  | 150.0 | ± 9.6 %     |
|               |                                                  | Υ     | 1.89 | 66.33 | 11.57   |       | 150.0 |             |
|               |                                                  | Z     | 1.28 | 62.78 | 8.70    |       | 150.0 |             |
| 10147-<br>CAE | LTE-FDD (SC-FDMA, 100% RB, 1.4<br>MHz, 64-QAM)   | Х     | 5.86 | 81.36 | 20.54   | 0.00  | 150.0 | ± 9.6 %     |
|               |                                                  | Υ     | 2.26 | 68.50 | 12.73   | t     | 450.0 | <del></del> |
|               | l .                                              | 1 1 1 | 4.20 | 00.00 | 1 12.73 |       | 150.0 |             |

| 10149-<br>CAD | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)  | Х           | 3.27         | 69.03          | 16.89          | 0.00         | 150.0          | ± 9.6 %      |
|---------------|--------------------------------------------|-------------|--------------|----------------|----------------|--------------|----------------|--------------|
|               |                                            | Y           | 2.92         | 67.72          | 16.06          |              | 150.0          | <del> </del> |
|               |                                            | Z           | 2.93         | 68.43          | 16.47          | <del> </del> | 150.0          | <u> </u>     |
| 10150-<br>CAD | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)  | Х           | 3.37         | 68.76          | 16.84          | 0.00         | 150.0          | ± 9.6 %      |
|               |                                            | Υ           | 3.04         | 67.71          | 16.11          |              | 150.0          |              |
|               |                                            | Z           | 3.05         | 68.41          | 16.50          |              | 150.0          | <u> </u>     |
| 10151-<br>CAD | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)    | X           | 9.88         | 78.98          | 21.39          | 3.98         | 65.0           | ± 9.6 %      |
|               |                                            | Y           | 9.54         | 82.00          | 22.98          |              | 65.0           |              |
|               |                                            | Z           | 10.52        | 85.01          | 24.21          |              | 65.0           | <del></del>  |
| 10152-<br>CAD | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)  | X           | 9.59         | 77.49          | 21.44          | 3.98         | 65.0           | ± 9.6 %      |
|               |                                            | Υ           | 8.05         | 77.33          | 21.53          |              | 65.0           | -            |
|               |                                            | Z           | <u>8.15</u>  | 78.63          | 22.11          |              | 65.0           |              |
| 10153-<br>CAD | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)  | Х           | 9.88         | 78.01          | 21.96          | 3.98         | 65.0           | ± 9.6 %      |
|               |                                            | Y           | 8.51         | 78.32          | 22.28          |              | 65.0           |              |
|               |                                            | Z           | 8.64         | 79.68          | 22.87          |              | 65.0           | <u> </u>     |
| 10154-<br>CAE | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)    | Х           | 2.88         | 72.43          | 18.21          | 0.00         | 150.0          | ± 9.6 %      |
|               |                                            | Υ           | 2.28         | 69.53          | 16.65          |              | 150.0          |              |
|               |                                            | Ζ           | 2.36         | 71.01          | 17.47          |              | 150.0          |              |
| 10155-<br>CAE | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)  | X           | 2.96         | 69.57          | 17.27          | 0.00         | 150.0          | ± 9.6 %      |
|               |                                            | Y           | 2.63         | 68.66          | 16.33          |              | 150.0          |              |
|               |                                            | Z           | 2.70         | 69.87          | 16.88          |              | 150.0          | ···········  |
| 10156-<br>CAE | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)     | X           | 2.50         | 72.75          | 18.17          | 0.00         | 150.0          | ± 9.6 %      |
|               |                                            | Y           | 1.86         | 69.32          | 15.77          |              | 150.0          |              |
|               |                                            | Z           | 2.00         | 71.53          | 16.72          | -            | 150.0          |              |
| 10157-<br>CAE | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)   | X           | 2.58         | 69.56          | 16.46          | 0.00         | 150.0          | ± 9.6 %      |
|               |                                            | Y           | 2.07         | 67.52          | 14.21          |              | 150.0          |              |
|               |                                            | Z           | 2.11         | 68.66          | 14.46          |              | 150.0          |              |
| 10158-<br>CAE | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)  | Х           | 3.11         | 69.51          | 17.31          | 0.00         | 150.0          | ± 9.6 %      |
| <del>.</del>  |                                            | Y           | 2.79         | 68.85          | 16.49          |              | 150.0          |              |
|               |                                            | Z           | 2.84         | 70.00          | 16.99          | ·            | 150.0          |              |
| 10159-<br>CAE | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)   | X           | 2.70         | 69.94          | 16.71          | 0.00         | 150.0          | ± 9.6 %      |
|               |                                            | Y           | 2.17         | 67.94          | 14.47          |              | 150.0          |              |
|               |                                            | Z           | 2.21         | 69.05          | 14.68          | ·            | 150.0          |              |
| 10160-<br>CAD | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)    | X           | 3.17         | 70.70          | 17.47          | 0.00         | 150.0          | ± 9.6 %      |
|               |                                            | Υ           | 2.80         | 69.22          | 16.63          |              | 150.0          |              |
| 10/01         |                                            | Z           | 2.84         | 70.27          | 17.24          |              | 150.0          |              |
| 10161-<br>CAD | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)  | Х           | 3.25         | 68.62          | 16.80          | 0.00         | 150.0          | ± 9.6 %      |
|               |                                            | Υ           | 2.93         | 67.68          | 16.03          |              | 150.0          | ·            |
|               |                                            | Z           | 2.94         | 68.43          | 16.42          |              | 150.0          |              |
| 10162-<br>CAD | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)  | Х           | 3.34         | 68.54          | 16.80          | 0.00         | 150.0          | ± 9.6 %      |
|               |                                            | Υ           | 3.04         | 67.85          | 16.15          |              | 150.0          |              |
| 10100         |                                            | Z           | 3.05         | 68.62          | 16.54          |              | 150.0          |              |
| 10166-<br>CAE | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)   | Х           | 4.29         | 71.19          | 20.11          | 3.01         | 150.0          | ± 9.6 %      |
|               |                                            | Υ           | 3.58         | 69.86          | 19.45          |              | 150.0          | -            |
|               |                                            | Z           | 3.34         | 69.55          | 19.26          |              | 150.0          |              |
| 1010=         |                                            |             |              |                |                |              |                |              |
| 10167-<br>CAE | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | Х           | 5.65         | 74.34          | 20.64          | 3.01         | 150.0          | ± 9.6 %      |
|               |                                            | X<br>Y<br>Z | 5.65<br>4.34 | 74.34<br>72.64 | 20.64<br>19.86 | 3.01         | 150.0<br>150.0 | ± 9.6 %      |

| 10168-<br>CAE | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | Х        | 6.08         | 75.90          | 21.58          | 3.01         | 150.0          | ± 9.6 %  |
|---------------|--------------------------------------------|----------|--------------|----------------|----------------|--------------|----------------|----------|
|               |                                            | Y        | 4.83         | 75.01          | 21.26          |              | 150.0          |          |
|               |                                            | Z        | 4.38         | 74.50          | 20.98          |              | 150.0          |          |
| 10169-<br>CAD | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)      | Х        | 4.41         | 74.54          | 21.42          | 3.01         | 150.0          | ± 9.6 %  |
|               |                                            | Υ        | 2.96         | 68.83          | 19.02          |              | 150.0          |          |
|               |                                            | Z        | 2.72         | 67.99          | 18.57          |              | 150.0          |          |
| 10170-<br>CAD | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)    | X        | 6.70         | 80.82          | 23.44          | 3.01         | 150.0          | ± 9.6 %  |
|               |                                            | Y        | 3.91         | 74.17          | 21.18          |              | 150.0          |          |
| 40474         |                                            | Z        | 3.42         | 72.70          | 20.49          |              | 150.0          |          |
| 10171-<br>AAD | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)    | X        | 5.50         | 76.54          | 20.93          | 3.01         | 150.0          | ± 9.6 %  |
|               |                                            | Y        | 3.29         | 70.45          | 18.57          |              | 150.0          |          |
| 10172-        | LTC TDD (CC CDMA 4 DD CO MIL-              | Z        | 2.94         | 69.58          | 18.14          |              | 150.0          |          |
| CAD           | LTE-TDD (SC-FDMA, 1 RB, 20 MHz,<br>QPSK)   | X        | 25.76        | 101.07         | 30.32          | 6.02         | 65.0           | ± 9.6 %  |
|               |                                            | Y        | 18.45        | 102.75         | 32.10          |              | 65.0           |          |
| 10172         | LTC TDD /CC CDMA 4 DD CO MIL               | Z        | 20.86        | 107.70         | 33.85          | 0.22         | 65.0           |          |
| 10173-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 20 MHz,<br>16-QAM) | X        | 19.21        | 92.24          | 26.33          | 6.02         | 65.0           | ± 9.6 %  |
|               |                                            | Y        | 26.29        | 105.14         | 31.12          |              | 65.0           |          |
| 10174-        | LTE TOD (SO FDMA 4 DD CO MIL               | Z        | 28.49        | 108.55         | 32.12          | 0.00         | 65.0           |          |
| CAD           | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)    | X        | 17.46        | 89.68          | 25.13          | 6.02         | 65.0           | ± 9.6 %  |
|               |                                            | Y        | 21.35        | 100.13         | 29.12          |              | 65.0           |          |
| 10175         | LTE EDD (CC EDMA 4 DD 40 MU)               | Z        | 22.92        | 103.28         | 30.05          |              | 65.0           | 2.20     |
| 10175-<br>CAE | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)      | Х        | 4.34         | 74.12          | 21.15          | 3.01         | 150.0          | ±9.6 %   |
| <del> </del>  |                                            | Y        | 2.93         | 68.55          | 18.79          |              | 150.0          |          |
| 101-0         |                                            | Z        | 2.70         | 67.77          | 18.36          |              | 150.0          |          |
| 10176-<br>CAE | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)    | X        | 6.71         | 80.84          | 23.45          | 3.01         | 150.0          | ± 9.6 %  |
|               |                                            | Y        | 3.92         | 74.20          | 21.19          |              | 150.0          |          |
|               |                                            | Z        | 3.42         | 72.72          | 20.50          |              | 150.0          |          |
| 10177-<br>CAG | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)       | Х        | 4.38         | 74.32          | 21.26          | 3.01         | 150.0          | ± 9.6 %  |
|               |                                            | Y        | 2.95         | 68.69          | 18.87          |              | 150.0          |          |
|               |                                            | Z        | 2.71         | 67.87          | 18.43          |              | 150.0          |          |
| 10178-<br>CAE | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)     | Х        | 6.59         | 80.50          | 23.29          | 3.01         | 150.0          | ± 9.6 %  |
|               |                                            | Y        | 3.89         | 74.02          | 21.09          |              | 150.0          |          |
|               |                                            | Z        | 3.41         | 72.61          | 20.43          |              | 150.0          |          |
| 10179-<br>CAE | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)    | Х        | 6.03         | 78.45          | 22.01          | 3.01         | 150.0          | ± 9.6 %  |
|               |                                            | Y        | 3.58         | 72,24          | 19.76          | -            | 150.0          |          |
| 10180-        | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-         | Z<br>X   | 3.16<br>5.47 | 71.11<br>76.42 | 19.23<br>20.86 | 3.01         | 150.0<br>150.0 | ± 9.6 %  |
| CAE           | QAM)                                       | Y        | 3.28         | 70.40          | 18.53          |              | 150.0          | <u>.</u> |
|               |                                            | Z        | 2.94         | 69.55          | 18.53          | <del> </del> | 150.0          | l<br>l   |
| 10181-        | LTE-FDD (SC-FDMA, 1 RB, 15 MHz,            | X        | 4.38         | 74.30          | 21.25          | 3.01         | 150.0          | ± 9.6 %  |
| CAD           | QPSK)                                      | ^<br>  Y |              |                | 18.87          | 3.01         |                | £ 9.0 %  |
|               |                                            | Z        | 2.95         | 68.67          |                |              | 150.0          |          |
| 10182-<br>CAD | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)    | X        | 2.71<br>6.58 | 67.86<br>80.48 | 18.43<br>23.29 | 3.01         | 150.0<br>150.0 | ± 9.6 %  |
| J, 15         | 10 Strain                                  | ΤΥ       | 3.88         | 74.00          | 21.08          |              | 150.0          | <u> </u> |
|               | 1                                          | Z        | 3.40         | 72.59          | 20.42          | <del> </del> | 150.0          |          |
| 10183-<br>AAC | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)    | X        | 5.46         | 76.40          | 20.85          | 3.01         | 150.0          | ± 9.6 %  |
| 7010          | O'T WAITI)                                 | T        | 3.28         | 70.38          | 18.52          |              | 150.0          |          |
|               |                                            | Z        | 2.93         | 69.53          | 18.11          | <del> </del> | 150.0          |          |
|               | I                                          | ; 4      | 4.30         | 1 09.00        | 1 10.11        | <u> </u>     | 1 130.0        | l        |

| 10184-<br>CAD | LTE-FDD (SC-FDMA, 1 RB, 3 MHz,<br>QPSK)       | Х | 4.39 | 74.34 | 21.27 | 3.01        | 150.0        | ± 9.6 %                               |
|---------------|-----------------------------------------------|---|------|-------|-------|-------------|--------------|---------------------------------------|
| UNU           | Qi JNJ                                        | Y | 0.00 | 00 74 | 40.00 | 1           | <del> </del> |                                       |
|               |                                               | _ | 2.96 | 68.71 | 18.89 |             | 150.0        |                                       |
| 10185-        | LTE EDD (SC EDMA 4 DD 0 MILE 40               | Z | 2.72 | 67.89 | 18.44 |             | 150.0        |                                       |
| CAD           | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)        | Х | 6.61 | 80.55 | 23.32 | 3.01        | 150.0        | ± 9.6 %                               |
|               |                                               | Y | 3.90 | 74.06 | 21.11 |             | 150.0        |                                       |
|               |                                               | Z | 3,42 | 72.64 | 20.45 |             | 150.0        |                                       |
| 10186-<br>AAD | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)        | X | 5.49 | 76.46 | 20.88 | 3.01        | 150.0        | ± 9.6 %                               |
|               |                                               | Y | 3.29 | 70.44 | 18.55 |             | 150.0        |                                       |
|               |                                               | Ζ | 2.95 | 69.59 | 18.14 |             | 150.0        |                                       |
| 10187-<br>CAE | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)        | X | 4.40 | 74.38 | 21.31 | 3.01        | 150.0        | ±9.6 %                                |
|               |                                               | Υ | 2.97 | 68.77 | 18.95 |             | 150.0        | -                                     |
|               |                                               | Ζ | 2.73 | 67.95 | 18.51 |             | 150.0        |                                       |
| 10188-<br>CAE | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)      | Х | 6.86 | 81.30 | 23.70 | 3.01        | 150.0        | ± 9.6 %                               |
|               |                                               | Y | 4.01 | 74.64 | 21.46 |             | 150.0        |                                       |
|               |                                               | Z | 3.49 | 73.09 | 20.74 |             | 150.0        |                                       |
| 10189-<br>AAE | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)      | Х | 5.63 | 76.95 | 21.16 | 3.01        | 150.0        | ± 9.6 %                               |
|               |                                               | Υ | 3.36 | 70.82 | 18.81 |             | 150.0        | · · ·                                 |
|               |                                               | Z | 3.00 | 69.90 | 18.37 |             | 150.0        |                                       |
| 10193-<br>CAB | IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)  | X | 4.76 | 66.98 | 16.56 | 0.00        | 150.0        | ± 9.6 %                               |
|               |                                               | Y | 4.53 | 66.89 | 16.29 |             | 150.0        | · · · · · ·                           |
|               |                                               | Z | 4.48 | 67.27 | 16.46 |             | 150.0        |                                       |
| 10194-<br>CAB | IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) | Х | 4.98 | 67.40 | 16.66 | 0.00        | 150.0        | ± 9.6 %                               |
|               |                                               | Y | 4.70 | 67.19 | 16.42 |             | 150.0        |                                       |
|               |                                               | Z | 4.63 | 67.53 | 16.59 |             | 150.0        | · · · · · · · · · · · · · · · · · · · |
| 10195-<br>CAB | IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) | X | 5.02 | 67.38 | 16.65 | 0.00        | 150.0        | ± 9.6 %                               |
|               |                                               | Y | 4.74 | 67.22 | 16.44 |             | 150.0        |                                       |
|               |                                               | Z | 4.67 | 67.55 | 16.61 | <del></del> | 150.0        |                                       |
| 10196-<br>CAB | IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)       | Х | 4.79 | 67.12 | 16.61 | 0.00        | 150.0        | ± 9.6 %                               |
|               |                                               | Y | 4.53 | 66.94 | 16.30 |             | 150.0        |                                       |
| <u>.</u>      |                                               | Z | 4.47 | 67.29 | 16.46 |             | 150.0        |                                       |
| 10197-<br>CAB | IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)      | X | 5.00 | 67.41 | 16.67 | 0.00        | 150.0        | ± 9.6 %                               |
|               |                                               | Y | 4.71 | 67.21 | 16.43 |             | 150.0        |                                       |
|               |                                               | Z | 4.64 | 67.54 | 16.60 |             | 150.0        |                                       |
| 10198-<br>CAB | IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)      | Х | 5.02 | 67.39 | 16.66 | 0.00        | 150.0        | ± 9.6 %                               |
|               |                                               | Υ | 4.74 | 67.23 | 16.45 |             | 150.0        | - "                                   |
|               |                                               | Z | 4.67 | 67.55 | 16.61 |             | 150.0        | <del></del>                           |
| 10219-<br>CAB | IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)       | Х | 4.75 | 67.15 | 16.58 | 0.00        | 150.0        | ± 9.6 %                               |
|               |                                               | Υ | 4.48 | 66.96 | 16.27 |             | 150.0        |                                       |
|               |                                               | Z | 4.43 | 67.33 | 16.43 |             | 150.0        |                                       |
| 10220-<br>CAB | IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)    | Х | 5.00 | 67.42 | 16.67 | 0.00        | 150.0        | ± 9.6 %                               |
|               |                                               | Υ | 4.70 | 67.17 | 16.42 |             | 150.0        | ··· <u> </u>                          |
|               |                                               | Z | 4.63 | 67.50 | 16.58 |             | 150.0        |                                       |
| 10221-<br>CAB | IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)    | Х | 5.03 | 67.33 | 16.65 | 0.00        | 150.0        | ± 9.6 %                               |
|               |                                               | Y | 4.75 | 67.16 | 16.44 |             | 150.0        |                                       |
|               |                                               | Z | 4.68 | 67.49 | 16.60 |             | 150.0        |                                       |
| 1000          | IEEE 802.11n (HT Mixed, 15 Mbps,              | Х | 5.32 | 67.70 | 16.79 | 0.00        | 150.0        | ± 9.6 %                               |
| 10222-<br>CAB | BPSK)                                         | ^ | 0.02 | 07.70 | 10.70 | 0.00        | 100.0        | = 0.0 70                              |
|               |                                               | Y | 5.10 | 67.32 | 16.56 |             | 150.0        |                                       |

| 10223-<br>CAB | IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)   | Х             | 5.69           | 67.90            | 16.90          | 0.00                                             | 150.0          | ± 9.6 % |
|---------------|--------------------------------------------|---------------|----------------|------------------|----------------|--------------------------------------------------|----------------|---------|
|               |                                            | Y             | 5.41           | 67.62            | 16.73          |                                                  | 450.0          | ļ       |
|               |                                            | $\frac{1}{Z}$ | 5.32           | 67.79            |                |                                                  | 150.0          |         |
| 10224-<br>CAB | IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)  | X             | 5.40           | 67.86            | 16.83<br>16.79 | 0.00                                             | 150.0<br>150.0 | ± 9.6 % |
|               |                                            | Y             | 5.14           | 67.44            | 16.54          | <del>                                     </del> | 150.0          |         |
|               |                                            | Ż             | 5.08           | 67.68            | 16.69          |                                                  | 150.0          |         |
| 10225-<br>CAB | UMTS-FDD (HSPA+)                           | X             | 3.04           | 66.91            | 16.27          | 0.00                                             | 150.0          | ± 9.6 % |
|               |                                            | Y             | 2.80           | 66.45            | 15.40          | <u> </u>                                         | 150.0          |         |
|               |                                            | Z             | 2.79           | 67.13            | 15.62          |                                                  | 150.0          |         |
| 10226-<br>CAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)   | Х             | 19.62          | 92.68            | 26.54          | 6.02                                             | 65.0           | ± 9.6 % |
|               |                                            | Υ             | 28.14          | 106.53           | 31.60          |                                                  | 65.0           |         |
|               |                                            | Z             | 30.74          | 110.09           | 32.63          |                                                  | 65.0           |         |
| 10227-<br>CAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)   | X             | 17.31          | 89.65            | 25.20          | 6.02                                             | 65.0           | ± 9.6 % |
|               |                                            | Υ             | 25.62          | 103.45           | 30.17          |                                                  | 65.0           |         |
| 40000         | LITE TOP (OA)                              | Z             | 27.71          | 106.63           | 31.05          |                                                  | 65.0           |         |
| 10228-<br>CAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)     | X             | 25.12          | 101.14           | 30.46          | 6.02                                             | 65.0           | ± 9.6 % |
| ····          |                                            | Y             | 22.85          | 107.40           | 33.58          |                                                  | 65.0           |         |
| 40000         | 1.75.700 (00.50) (4.77.0)                  | Z             | 23.56          | 110.42           | 34.69          |                                                  | 65.0           |         |
| 10229-<br>CAB | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)     | X             | 19.21          | 92.22            | 26.33          | 6.02                                             | 65.0           | ± 9.6 % |
|               |                                            | Υ             | 26.37          | 105.18           | 31.14          |                                                  | 65.0           |         |
| 40000         | 177 700 400 700 400                        | Z             | 28.56          | 108.58           | 32.13          |                                                  | 65.0           |         |
| 10230-<br>CAB | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)     | Х             | 16.99          | 89.27            | 25.02          | 6.02                                             | 65.0           | ± 9.6 % |
|               |                                            | Υ             | 24.08          | 102.25           | 29.76          |                                                  | 65.0           |         |
| 40004         |                                            | Z             | 25.76          | 105.25           | 30.60          |                                                  | 65.0           |         |
| 10231-<br>CAB | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)       | X             | 24.47          | 100.57           | 30.23          | 6.02                                             | 65.0           | ± 9.6 % |
|               |                                            | Y             | 21.54          | 106.10           | 33.13          |                                                  | 65.0           |         |
|               |                                            | Z             | 22.10          | 109.02           | 34.22          |                                                  | 65.0           |         |
| 10232-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)     | Х             | 19.21          | 92.23            | 26.33          | 6.02                                             | 65.0           | ± 9.6 % |
|               |                                            | Υ             | 26.35          | 105.17           | 31.13          |                                                  | 65.0           |         |
|               |                                            | Z             | 28.56          | 108.59           | 32.14          |                                                  | 65.0           |         |
| 10233-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-<br>QAM) | X             | 16.99          | 89.29            | 25.03          | 6.02                                             | 65.0           | ±9.6 %  |
|               |                                            | Υ             | 24.05          | 102.24           | 29.76          |                                                  | 65.0           |         |
|               |                                            | Z             | 25.73          | 105.25           | 30.60          |                                                  | 65.0           |         |
| 10234-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz,<br>QPSK)    | X             | 23.75          | 99.87            | 29.94          | 6.02                                             | 65.0           | ± 9.6 % |
|               |                                            | Y             | 20.44          | 104.88           | 32.66          |                                                  | 65.0           |         |
| 4000          | 1.TE TOD (00 501/1 4 50 10 10)             | Z             | 20.94          | 107.73           | 33.73          |                                                  | 65.0           |         |
| 10235-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)    | X             | 19.23          | 92.26            | 26.34          | 6.02                                             | 65.0           | ±9.6%   |
|               |                                            | Y             | 26.43          | 105.24           | 31.16          |                                                  | 65.0           |         |
| 40000         | 1 TC TDD (00 EDM) 4 DD 40 101              | Z             | 28.68          | 108.68           | 32.16          |                                                  | 65.0           | . 0:    |
| 10236-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)    | X             | 17.05          | 89.34            | 25.04          | 6.02                                             | 65.0           | ± 9.6 % |
|               |                                            | Y             | 24.28          | 102.38           | 29.79          |                                                  | 65.0           |         |
| 10237-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)      | X             | 26.05<br>24.65 | 105.43<br>100.72 | 30.64<br>30.28 | 6.02                                             | 65.0<br>65.0   | ± 9.6 % |
| UND           | Set Oily                                   | Y             | 21.67          | 106.26           | 33.17          | 1                                                | 65.0           |         |
|               |                                            | Z             | 22.28          | 100.20           | 34.28          |                                                  | 65.0           |         |
| 10238-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)    | X             | 19.21          | 92.24            | 26.33          | 6.02                                             | 65.0           | ± 9.6 % |
| J, (D         | 10 00 1111)                                | Y             | 26.34          | 105.18           | 31.13          |                                                  | 65.0           |         |
|               |                                            | <u> </u>      | 28.55          | 108.60           | 32.14          |                                                  | 65.0           |         |
|               | 1                                          | 1             | 20.00          | 100.00           | UZ.14          | 1                                                | 1 00.0         | 1       |

| 10239-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)    | Х | 17.00 | 89.31  | 25.04 | 6.02 | 65.0 | ± 9.6 %  |
|---------------|--------------------------------------------|---|-------|--------|-------|------|------|----------|
|               |                                            | Y | 24.00 | 102.22 | 29.75 |      | 65.0 |          |
|               |                                            | ż | 25.68 | 105.23 | 30.60 |      | 65.0 | <u> </u> |
| 10240-<br>CAD | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)      | Х | 24.60 | 100.69 | 30.26 | 6.02 | 65.0 | ± 9.6 %  |
|               |                                            | Υ | 21.61 | 106.21 | 33.16 |      | 65.0 |          |
|               |                                            | Ζ | 22.24 | 109.18 | 34.27 |      | 65.0 |          |
| 10241-<br>CAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | Х | 14.83 | 87.15  | 27.43 | 6.98 | 65.0 | ± 9.6 %  |
|               |                                            | Υ | 11.87 | 87.25  | 27.69 |      | 65.0 |          |
|               |                                            | Z | 12.27 | 89.81  | 28.71 |      | 65.0 |          |
| 10242-<br>CAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | Х | 14.03 | 85.86  | 26.85 | 6.98 | 65.0 | ± 9.6 %  |
|               |                                            | Υ | 11.07 | 85.73  | 27.03 |      | 65.0 | ]        |
|               |                                            | Z | 11.88 | 89.15  | 28.39 |      | 65.0 |          |
| 10243-<br>CAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)   | X | 12.50 | 85.61  | 27.61 | 6.98 | 65.0 | ± 9.6 %  |
|               |                                            | Υ | 8.91  | 82.53  | 26.67 |      | 65.0 |          |
|               |                                            | Z | 9.40  | 85.62  | 28.06 |      | 65.0 |          |
| 10244-<br>CAB | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)   | Х | 10.84 | 80.28  | 21.46 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                            | Υ | 8.60  | 79.06  | 19.82 |      | 65.0 |          |
|               |                                            | Z | 7.30  | 76.79  | 18.14 |      | 65.0 |          |
| 10245-<br>CAB | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)   | X | 10.80 | 80.00  | 21.33 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                            | Υ | 8.32  | 78.30  | 19.47 |      | 65.0 |          |
|               |                                            | Ζ | 7.01  | 75.95  | 17.75 |      | 65.0 |          |
| 10246-<br>CAB | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)     | Х | 10.19 | 81.67  | 21.72 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                            | Υ | 9.19  | 82.92  | 21.40 |      | 65.0 |          |
|               |                                            | Ζ | 10.28 | 85.26  | 21.82 |      | 65.0 |          |
| 10247-<br>CAD | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)   | Х | 9.24  | 78.33  | 20.99 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                            | Υ | 7.42  | 77.41  | 19.87 |      | 65.0 | 1        |
|               |                                            | Z | 7.44  | 78.18  | 19.81 |      | 65.0 | -        |
| 10248-<br>CAD | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)   | X | 9.29  | 78.02  | 20.88 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                            | Υ | 7.28  | 76.69  | 19.57 |      | 65.0 |          |
|               |                                            | Z | 7.17  | 77.21  | 19.40 |      | 65.0 |          |
| 10249-<br>CAD | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)     | X | 10.52 | 82.18  | 22.29 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                            | Y | 10.94 | 86.37  | 23.51 |      | 65.0 |          |
|               |                                            | Z | 13.59 | 90.89  | 24.82 |      | 65.0 |          |
| 10250-<br>CAD | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)  | Х | 9.84  | 79.38  | 22.27 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                            | Υ | 8.59  | 80.24  | 22.59 |      | 65.0 |          |
|               |                                            | Z | 8.91  | 81.95  | 23.17 |      | 65.0 |          |
| 10251-<br>CAD | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)  | Х | 9.48  | 77.77  | 21.45 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                            | Y | 7.96  | 77.76  | 21.28 |      | 65.0 |          |
|               |                                            | Z | 8.06  | 79.03  | 21.69 |      | 65.0 |          |
| 10252-<br>CAD | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)    | Х | 10.35 | 81.23  | 22.32 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                            | Υ | 10.67 | 85.75  | 24.25 |      | 65.0 |          |
|               |                                            | Z | 12.80 | 90.26  | 25.85 |      | 65.0 |          |
| 10253-<br>CAD | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)  | Х | 9.41  | 77.10  | 21.37 | 3.98 | 65.0 | ± 9.6 %  |
|               |                                            | Υ | 7.89  | 76.83  | 21.30 |      | 65.0 |          |
|               |                                            | Z | 7.98  | 78.11  | 21.82 |      | 65.0 |          |
| 10254-<br>CAD | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)  | Х | 9.73  | 77.64  | 21.86 | 3.98 | 65.0 | ± 9.6 %  |
| CAD           |                                            |   |       |        |       |      |      | 1        |
| <u> </u>      |                                            | Υ | 8.31  | 77.74  | 21.96 |      | 65.0 |          |

| 10255-<br>CAD | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)        | X | 9.76         | 78.98          | 21.63          | 3.98     | 65.0         | ± 9.6 %      |
|---------------|------------------------------------------------|---|--------------|----------------|----------------|----------|--------------|--------------|
|               |                                                | Y | 9.21         | 81.58          | 22.99          |          | 65.0         | <b>+</b>     |
|               |                                                | Z | 10.10        | 84.50          | 24.17          | <u> </u> | 65.0         | <del> </del> |
| 10256-<br>CAA | LTE-TDD (SC-FDMA, 100% RB, 1.4<br>MHz, 16-QAM) | Х | 10.36        | 79.33          | 20.55          | 3.98     | 65.0         | ± 9.6 %      |
|               |                                                | Y | 6.89         | 75.10          | 17.29          |          | 65.0         |              |
|               |                                                | Z | 5.38         | 71.84          | 15.02          |          | 65.0         |              |
| 10257-<br>CAA | LTE-TDD (SC-FDMA, 100% RB, 1.4<br>MHz, 64-QAM) | Х | 10.33        | 78.98          | 20.36          | 3.98     | 65.0         | ± 9.6 %      |
|               |                                                | Υ | 6.60         | 74.15          | 16.79          |          | 65.0         |              |
| 10050         |                                                | Z | 5.14         | 70.90          | 14.50          |          | 65.0         | 1            |
| 10258-<br>CAA | LTE-TDD (SC-FDMA, 100% RB, 1.4<br>MHz, QPSK)   | X | 9.84         | 80.89          | 21.06          | 3.98     | 65.0         | ± 9.6 %      |
|               |                                                | Y | 6.93         | 77.80          | 18.67          |          | 65.0         |              |
| 10050         |                                                | Z | 6.67         | 77.68          | 18.06          |          | 65.0         |              |
| 10259-<br>CAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)      | X | 9.48         | 78.65          | 21.42          | 3.98     | 65.0         | ± 9.6 %      |
|               |                                                | Υ | 7.89         | 78.48          | 20.85          |          | 65.0         |              |
| 10000         |                                                | Z | 8.05         | 79.67          | 21.05          |          | 65.0         |              |
| 10260-<br>CAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)      | X | 9.52         | 78.48          | 21.39          | 3.98     | 65.0         | ± 9.6 %      |
|               |                                                | Υ | 7.84         | 78.08          | 20.70          |          | 65.0         |              |
| 40004         |                                                | Z | 7.93         | 79.11          | 20.83          |          | 65.0         |              |
| 10261-<br>CAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)        | X | 10.28        | 81.56          | 22.27          | 3.98     | 65.0         | ± 9.6 %      |
|               |                                                | Υ | 10.28        | 85.25          | 23.51          |          | 65.0         |              |
| 40000         |                                                | Z | 12.40        | 89.51          | 24.85          |          | 65.0         |              |
| 10262-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)      | X | 9.83         | 79.35          | 22.25          | 3.98     | 65.0         | ± 9.6 %      |
|               |                                                | Υ | 8.56         | 80.18          | 22.55          |          | 65.0         |              |
| 1             |                                                | Z | 8.88         | 81.87          | 23.12          |          | 65.0         |              |
| 10263-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)      | X | 9.48         | 77.78          | 21.46          | 3.98     | 65.0         | ± 9.6 %      |
|               |                                                | Υ | 7.94         | 77.74          | 21.28          |          | 65.0         |              |
|               |                                                | Z | 8.05         | 79.01          | 21.68          |          | 65.0         |              |
| 10264-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)        | X | 10.32        | 81.15          | 22.28          | 3.98     | 65.0         | ± 9.6 %      |
|               |                                                | Υ | 10.57        | 85.55          | 24.15          |          | 65.0         |              |
|               |                                                | Z | 12.63        | 90.00          | 25.74          |          | 65.0         |              |
| 10265-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 10<br>MHz, 16-QAM)  | X | 9.59         | 77.50          | 21.45          | 3.98     | 65.0         | ± 9.6 %      |
|               |                                                | Y | 8.04         | 77.33          | 21.54          |          | 65.0         |              |
|               |                                                | Z | 8.14         | 78.63          | 22.11          |          | 65.0         |              |
| 10266-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 10<br>MHz, 64-QAM)  | X | 9.89         | 78.01          | 21.96          | 3.98     | 65.0         | ± 9.6 %      |
|               |                                                | Υ | 8.50         | 78.31          | 22.27          |          | 65.0         |              |
| 10000         |                                                | Z | 8.64         | 79.67          | 22.86          |          | 65.0         |              |
| 10267-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 10<br>MHz, QPSK)    | X | 9.88         | 78.96          | 21.38          | 3.98     | 65.0         | ± 9.6 %      |
|               |                                                | Υ | 9.52         | 81.96          | 22.96          |          | 65.0         | 1            |
|               |                                                | Z | 10.50        | 84.95          | 24.19          |          | 65.0         |              |
| 10268-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 15<br>MHz, 16-QAM)  | X | 9.95         | 76.96          | 21.54          | 3.98     | 65.0         | ± 9.6 %      |
|               |                                                | Y | 8.52         | 76.88          | 21.79          |          | 65.0         |              |
| 10269-        | LTE-TDD (SC-FDMA, 100% RB, 15                  | Z | 8.53<br>9.89 | 77.92<br>76.68 | 22.30<br>21.52 | 3.98     | 65.0<br>65.0 | ± 9.6 %      |
| CAD           | MHz, 64-QAM)                                   | - | 0.45         | 70.10          | 01.5=          |          |              |              |
|               |                                                | Y | 8.46         | 76.46          | 21.67          |          | 65.0         |              |
| 10070         | LIE TOD (OC EDMA 4000) DD 45                   | Z | 8.45         | 77.44          | 22.15          | 0.00     | 65.0         |              |
| 10270-<br>CAD | LTE-TDD (SC-FDMA, 100% RB, 15<br>MHz, QPSK)    | X | 9.66         | 77.24          | 20.86          | 3.98     | 65.0         | ± 9.6 %      |
|               |                                                | Y | 8.81         | 78.78          | 21.90          |          | 65.0         |              |
|               |                                                | Z | 9.16         | 80.58          | 22.73          |          | 65.0         |              |

| 10274-<br>CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)                          | Х | 2.74  | 67.26  | 16.17 | 0.00 | 150.0 | ± 9.6 % |
|---------------|--------------------------------------------------------------------|---|-------|--------|-------|------|-------|---------|
|               |                                                                    | Y | 2.61  | 66.92  | 15.38 |      | 150.0 | 1       |
|               |                                                                    | Z | 2.66  | 67.94  | 15.80 |      | 150.0 |         |
| 10275-<br>CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)                           | Х | 2.05  | 72.21  | 18.03 | 0.00 | 150.0 | ± 9.6 % |
|               |                                                                    | Υ | 1.65  | 68.50  | 15.87 |      | 150.0 |         |
|               |                                                                    | Z | 1.80  | 70.74  | 17.08 |      | 150.0 |         |
| 10277-<br>CAA | PHS (QPSK)                                                         | X | 8.03  | 72.61  | 16.76 | 9.03 | 50.0  | ± 9.6 % |
|               |                                                                    | Υ | 5.31  | 69.07  | 13.45 |      | 50.0  |         |
|               |                                                                    | Z | 4.52  | 67.70  | 12.08 |      | 50.0  |         |
| 10278-<br>CAA | PHS (QPSK, BW 884MHz, Rolloff 0.5)                                 | X | 10.53 | 79.27  | 21.29 | 9.03 | 50.0  | ± 9.6 % |
|               |                                                                    | Υ | 8.21  | 77.64  | 19.35 |      | 50.0  |         |
|               |                                                                    | Z | 7.62  | 76.93  | 18.36 |      | 50.0  |         |
| 10279-<br>CAA | PHS (QPSK, BW 884MHz, Rolloff 0.38)                                | X | 10.71 | 79.48  | 21.37 | 9.03 | 50.0  | ± 9.6 % |
|               |                                                                    | Υ | 8.29  | 77.74  | 19.41 |      | 50.0  |         |
|               |                                                                    | Z | 7.68  | 77.01  | 18.42 |      | 50.0  |         |
| 10290-<br>AAB | CDMA2000, RC1, SO55, Full Rate                                     | Х | 2.46  | 75.92  | 18.53 | 0.00 | 150.0 | ± 9.6 % |
|               |                                                                    | Υ | 1.45  | 69.17  | 13.90 |      | 150.0 |         |
|               |                                                                    | Z | 1.74  | 72.52  | 15.01 |      | 150.0 |         |
| 10291-<br>AAB | CDMA2000, RC3, SO55, Full Rate                                     | Х | 1.54  | 75.02  | 18.13 | 0.00 | 150.0 | ± 9.6 % |
|               |                                                                    | Υ | 0.85  | 66.46  | 12.55 |      | 150.0 |         |
|               |                                                                    | Z | 1.09  | 70.54  | 14.22 |      | 150.0 |         |
| 10292-<br>AAB | CDMA2000, RC3, SO32, Full Rate                                     | X | 2.85  | 86.00  | 22.76 | 0.00 | 150.0 | ± 9.6 % |
|               |                                                                    | Υ | 1.20  | 72.00  | 15.52 |      | 150.0 |         |
|               |                                                                    | Z | 3.37  | 86.48  | 20.58 |      | 150.0 | ·       |
| 10293-<br>AAB | CDMA2000, RC3, SO3, Full Rate                                      | X | 6.08  | 98.98  | 27.50 | 0.00 | 150.0 | ± 9.6 % |
|               |                                                                    | Y | 2.38  | 81.80  | 19.81 |      | 150.0 |         |
|               |                                                                    | Z | 91.77 | 132.75 | 32.89 |      | 150.0 |         |
| 10295-<br>AAB | CDMA2000, RC1, SO3, 1/8th Rate 25 fr.                              | Х | 11.42 | 82.00  | 23.75 | 9.03 | 50.0  | ± 9.6 % |
|               |                                                                    | Υ | 13.54 | 88.04  | 25.23 |      | 50.0  |         |
|               |                                                                    | Z | 20.14 | 95.71  | 27.34 |      | 50.0  |         |
| 10297-<br>AAC | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)                            | X | 3.39  | 72.81  | 18.09 | 0.00 | 150.0 | ± 9.6 % |
|               |                                                                    | Υ | 2.76  | 70.00  | 16.84 |      | 150.0 |         |
|               |                                                                    | Z | 2.84  | 71.20  | 17.58 |      | 150.0 | ***     |
| 10298-<br>AAC | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)                             | Х | 2.33  | 72.89  | 17.78 | 0.00 | 150.0 | ± 9.6 % |
|               |                                                                    | Υ | 1.54  | 67.89  | 13.96 |      | 150.0 |         |
|               |                                                                    | Z | 1.61  | 69.51  | 14.40 |      | 150.0 |         |
| 10299-<br>AAC | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)                           | X | 4.61  | 76.96  | 19.19 | 0.00 | 150.0 | ± 9.6 % |
|               |                                                                    | Υ | 2.70  | 70.48  | 14.61 |      | 150.0 | -       |
|               |                                                                    | Ζ | 1.96  | 66.96  | 12.10 |      | 150.0 |         |
| 10300-<br>AAC | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)                           | Х | 3.49  | 71.59  | 16.26 | 0.00 | 150.0 | ± 9.6 % |
|               |                                                                    | Υ | 1.91  | 65.24  | 11.36 |      | 150.0 |         |
|               |                                                                    | Z | 1.47  | 63.13  | 9.40  |      | 150.0 | "       |
| 10301-<br>AAA | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)                 | × | 6.59  | 70.34  | 20.04 | 4.17 | 80.0  | ± 9.6 % |
|               |                                                                    | Υ | 5.68  | 68.74  | 18.85 |      | 80.0  |         |
|               |                                                                    | Ζ | 5.70  | 69.67  | 19.26 |      | 80.0  |         |
| 10302-        | IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols) | Х | 7.28  | 71.73  | 21.22 | 4.96 | 80.0  | ± 9.6 % |
| AAA           | 1 Total 12, QL OIX, 1 000, 5 OTTE SYMBOLS                          | 1 |       |        |       |      |       |         |
| AAA           | Town 2, & Cit, 1 000, 0 011th Symbols)                             | Υ | 6.10  | 69.04  | 19.43 |      | 80.0  |         |

| 10303-<br>AAA | IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)                 | X | 7.35  | 72.51 | 21.62 | 4.96                                  | 80.0  | ± 9.6 %      |
|---------------|---------------------------------------------------------------------|---|-------|-------|-------|---------------------------------------|-------|--------------|
|               |                                                                     | Y | 5.94  | 69.06 | 19.41 | F                                     | 80.0  |              |
|               |                                                                     | Z | 5.89  | 69.82 | 19.76 |                                       | 80.0  | <del> </del> |
| 10304-<br>AAA | IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)                 | Х | 6.69  | 70.97 | 20.39 | 4.17                                  | 80.0  | ± 9.6 %      |
|               |                                                                     | Y | 5.59  | 68.42 | 18.66 | · · · · · · · · · · · · · · · · · · · | 80.0  |              |
|               |                                                                     | Z | 5.56  | 69.20 | 19.00 |                                       | 80.0  | <u> </u>     |
| 10305-<br>AAA | IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)    | X | 14.75 | 90.64 | 29.58 | 6.02                                  | 50.0  | ± 9.6 %      |
|               |                                                                     | Y | 10.18 | 84.38 | 26.41 |                                       | 50.0  |              |
| 10000         |                                                                     | Z | 10.30 | 85.54 | 26.72 |                                       | 50.0  |              |
| 10306-<br>AAA | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)    | Х | 9.44  | 79.58 | 25.56 | 6.02                                  | 50.0  | ± 9.6 %      |
|               |                                                                     | Y | 7.33  | 75.98 | 23.40 |                                       | 50.0  | ]            |
|               |                                                                     | Z | 6.44  | 73.04 | 21.64 |                                       | 50.0  |              |
| 10307-<br>AAA | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)     | Х | 10.22 | 81.50 | 26.08 | 6.02                                  | 50.0  | ± 9.6 %      |
|               |                                                                     | Y | 7.67  | 77.32 | 23.80 |                                       | 50.0  |              |
| 1000          |                                                                     | Z | 7.49  | 77.77 | 23.93 |                                       | 50.0  |              |
| 10308-<br>AAA | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)                | Х | 10.67 | 82.66 | 26.55 | 6.02                                  | 50.0  | ± 9.6 %      |
|               |                                                                     | Υ | 7.93  | 78.29 | 24.23 |                                       | 50.0  |              |
|               |                                                                     | Z | 7.77  | 78.85 | 24.42 |                                       | 50.0  | "            |
| 10309-<br>AAA | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols) | Х | 9.59  | 79.83 | 25.67 | 6.02                                  | 50.0  | ± 9.6 %      |
|               |                                                                     | Y | 7.43  | 76.26 | 23.57 |                                       | 50.0  |              |
|               |                                                                     | Z | 6.50  | 73.23 | 21.79 |                                       | 50.0  |              |
| 10310-<br>AAA | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)  | Х | 9.69  | 80.24 | 25.70 | 6.02                                  | 50.0  | ± 9.6 %      |
|               |                                                                     | Y | 7.48  | 76.59 | 23.59 |                                       | 50.0  |              |
|               |                                                                     | Z | 7.35  | 77.19 | 23.79 |                                       | 50.0  | -            |
| 10311-<br>AAC | LTE-FDD (SC-FDMA, 100% RB, 15<br>MHz, QPSK)                         | X | 3.76  | 71.88 | 17.62 | 0.00                                  | 150.0 | ± 9.6 %      |
|               |                                                                     | Y | 3.12  | 69.22 | 16.46 |                                       | 150.0 | · · · · · ·  |
|               |                                                                     | Z | 3.20  | 70.27 | 17.11 |                                       | 150.0 |              |
| 10313-<br>AAA | iDEN 1:3                                                            | Х | 8.04  | 75.55 | 17.71 | 6.99                                  | 70.0  | ± 9.6 %      |
|               |                                                                     | Y | 8.89  | 81.65 | 20.17 |                                       | 70.0  |              |
|               |                                                                     | Z | 12.54 | 87.83 | 22.26 |                                       | 70.0  |              |
| 10314-<br>AAA | IDEN 1:6                                                            | Х | 10.06 | 79.94 | 21.38 | 10.00                                 | 30.0  | ± 9.6 %      |
|               |                                                                     | Υ | 12.66 | 89.89 | 25.48 |                                       | 30.0  |              |
|               |                                                                     | Z | 20.06 | 99.62 | 28.65 |                                       | 30.0  |              |
| 10315-<br>AAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)           | Х | 1.30  | 67.68 | 17.69 | 0.17                                  | 150.0 | ± 9.6 %      |
|               |                                                                     | Υ | 1.18  | 64.90 | 15.80 |                                       | 150.0 |              |
|               |                                                                     | Ζ | 1.23  | 65.94 | 16.59 |                                       | 150.0 |              |
| 10316-<br>AAB | IEEE 802.11g WiFi 2.4 GHz (ERP-<br>OFDM, 6 Mbps, 96pc duty cycle)   | X | 4.90  | 67.26 | 16.78 | 0.17                                  | 150.0 | ± 9.6 %      |
|               |                                                                     | Υ | 4.64  | 67.10 | 16.54 |                                       | 150.0 |              |
|               |                                                                     | Ζ | 4.58  | 67.43 | 16.69 |                                       | 150.0 |              |
| 10317-<br>AAB | IEEE 802.11a WiFi 5 GHz (OFDM, 6<br>Mbps, 96pc duty cycle)          | Х | 4.90  | 67.26 | 16.78 | 0.17                                  | 150.0 | ± 9.6 %      |
|               |                                                                     | Υ | 4.64  | 67.10 | 16.54 |                                       | 150.0 |              |
|               |                                                                     | Z | 4.58  | 67.43 | 16.69 |                                       | 150.0 |              |
| 10400-<br>AAC | IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)                 | Х | 5.01  | 67.47 | 16.66 | 0.00                                  | 150.0 | ± 9.6 %      |
|               |                                                                     | Υ | 4.68  | 67.24 | 16.42 |                                       | 150.0 |              |
|               |                                                                     | Z | 4.61  | 67.58 | 16.60 |                                       | 150.0 |              |
| 10401-<br>AAC | IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)                 | X | 5.58  | 67.43 | 16.66 | 0.00                                  | 150.0 | ± 9.6 %      |
| AAC           |                                                                     | • |       | •     |       |                                       | 1     |              |
|               |                                                                     | Y | 5.46  | 67.62 | 16.70 |                                       | 150.0 |              |

| 10402-<br>AAC | IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)                                    | X | 5.90   | 68.07  | 16.80          | 0.00 | 150.0          | ± 9.6 % |
|---------------|----------------------------------------------------------------------------------------|---|--------|--------|----------------|------|----------------|---------|
| 7010          | 33pc daty cycle)                                                                       | Y | 5.66   | 67.67  | 16.50          |      | 450.0          |         |
|               |                                                                                        | Z | 5.60   | 67.87  | 16.59<br>16.71 |      | 150.0          |         |
| 10403-<br>AAB | CDMA2000 (1xEV-DO, Rev. 0)                                                             | X | 2.46   | 75.92  | 18.53          | 0.00 | 150.0<br>115.0 | ± 9.6 % |
| -             |                                                                                        | Y | 1.45   | 69.17  | 13.90          |      | 115.0          |         |
|               |                                                                                        | Z | 1.74   | 72.52  | 15.01          |      | 115.0          |         |
| 10404-<br>AAB | CDMA2000 (1xEV-DO, Rev. A)                                                             | Х | 2.46   | 75.92  | 18.53          | 0.00 | 115.0          | ± 9.6 % |
|               |                                                                                        | Y | 1.45   | 69.17  | 13.90          |      | 115.0          |         |
|               |                                                                                        | Z | 1.74   | 72.52  | 15.01          |      | 115.0          |         |
| 10406-<br>AAB | CDMA2000, RC3, SO32, SCH0, Full<br>Rate                                                | X | 38.96  | 111.40 | 30.01          | 0.00 | 100.0          | ± 9.6 % |
|               |                                                                                        | Υ | 96.63  | 125.46 | 32.24          |      | 100.0          |         |
| 40440         |                                                                                        | Z | 100.00 | 123.89 | 30.87          |      | 100.0          |         |
| 10410-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)                         | X | 79.33  | 113.95 | 29.40          | 3.23 | 80.0           | ± 9.6 % |
|               |                                                                                        | Y | 100.00 | 123.80 | 32.02          |      | 80.0           |         |
| 40445         | TEEE 000 441 MEET 0 4 011 45 000 1                                                     | Z | 100.00 | 124.20 | 31.74          |      | 80.0           |         |
| 10415-<br>AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1<br>Mbps, 99pc duty cycle)                           | Х | 1.01   | 64.64  | 16.23          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                                                        | Y | 1.03   | 63.36  | 14.90          |      | 150.0          |         |
| 40440         | 1555 000 44 14/5: 0 4 011 4500                                                         | Z | 1.08   | 64.37  | 15.69          |      | 150.0          |         |
| 10416-<br>AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-<br>OFDM, 6 Mbps, 99pc duty cycle)                      | Х | 4.76   | 67.00  | 16.58          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                                                        | Y | 4.53   | 66.92  | 16.37          |      | 150.0          |         |
| 10417-        | LEEE COO 44 E HEET E OU LOEDLI O                                                       | Z | 4.48   | 67.28  | 16.53          |      | 150.0          |         |
| 10417-<br>AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6<br>Mbps, 99pc duty cycle)                           | Х | 4.76   | 67.00  | 16.58          | 0.00 | 150.0          | ± 9.6 % |
| <del></del>   |                                                                                        | Y | 4.53   | 66.92  | 16.37          |      | 150.0          |         |
| 10418-        | IEEE 000 44 - MEE 0 4 OU (DOOG                                                         | Z | 4.48   | 67.28  | 16.53          |      | 150.0          |         |
| AAA           | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 6 Mbps, 99pc duty cycle, Long<br>preambule)  | X | 4.74   | 67.14  | 16.57          | 0.00 | 150.0          | ±9.6 %  |
|               |                                                                                        | Y | 4.53   | 67.10  | 16.40          |      | 150.0          |         |
|               |                                                                                        | Z | 4.48   | 67.49  | 16.59          |      | 150.0          |         |
| 10419-<br>AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 6 Mbps, 99pc duty cycle, Short<br>preambule) | Х | 4.77   | 67.10  | 16.59          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                                                        | Υ | 4.55   | 67.04  | 16.39          |      | 150.0          |         |
|               |                                                                                        | Z | 4.49   | 67.42  | 16.58          |      | 150.0          |         |
| 10422-<br>AAA | IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)                                           | X | 4.90   | 67.10  | 16.59          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                                                        | Υ | 4.66   | 67.03  | 16.41          |      | 150.0          |         |
| 45.455        |                                                                                        | Z | 4.60   | 67.38  | 16.58          |      | 150.0          |         |
| 10423-<br>AAA | IEEE 802.11n (HT Greenfield, 43.3<br>Mbps, 16-QAM)                                     | X | 5.14   | 67.54  | 16.75          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                                                        | Υ | 4.81   | 67.33  | 16.51          |      | 150.0          |         |
| 40404         |                                                                                        | Z | 4.74   | 67.65  | 16.67          |      | 150.0          |         |
| 10424-<br>AAA | IEEE 802.11n (HT Greenfield, 72.2<br>Mbps, 64-QAM)                                     | X | 5.04   | 67.47  | 16.71          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                                                        | Y | 4.74   | 67.28  | 16.49          |      | 150.0          |         |
| 10405         | IEEE 000 44% (UT O O C                                                                 | Z | 4.66   | 67.61  | 16.65          |      | 150.0          |         |
| 10425-<br>AAA | IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)                                            | X | 5.61   | 67.86  | 16.86          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                                                        | Y | 5.36   | 67.59  | 16.69          |      | 150.0          |         |
| 10400         | FFF 000 44 // TO                                                                       | Z | 5.29   | 67.80  | 16.81          |      | 150.0          |         |
| 10426-<br>AAA | IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)                                          | X | 5.62   | 67.87  | 16.86          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                                                        | Υ | 5.40   | 67.74  | 16.76          |      | 150.0          |         |
|               | I                                                                                      | Z | 5.31   | 67.91  | 16.86          |      | 150.0          |         |

| 10427-<br>AAA | IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)                 | X        | 5.65         | 67.92          | 16.88          | 0.00 | 150.0          | ± 9.6 % |
|---------------|----------------------------------------------------------------|----------|--------------|----------------|----------------|------|----------------|---------|
|               | V. 50 um/                                                      | Y        | 5.39         | 67.63          | 10.70          |      | 450.0          |         |
|               |                                                                | Z        | 5.28         | 67.70          | 16.70<br>16.75 |      | 150.0          |         |
| 10430-        | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)                               | X        | 4.50         | 70.33          | 18.46          | 0.00 | 150.0<br>150.0 | 1069/   |
| AAB           |                                                                | ^<br>  Y | 4.28         | <u></u>        |                | 0.00 |                | ± 9.6 % |
|               |                                                                | Z        | 4.28         | 71.46<br>72.32 | 18.38          |      | 150.0          |         |
| 10431-        | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)                              | X        | 4.28         | 67.66          | 18.56          | 0.00 | 150.0          |         |
| AAB           | 2.2.1 DD (01 DIWA, 10 WH IZ, E-1W 0.1)                         |          |              |                | 16.75          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                                | Z        | 4.19<br>4.12 | 67.51          | 16.33          |      | 150.0          |         |
| 10432-<br>AAB | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)                              | X        | 4.83         | 67.97<br>67.55 | 16.50<br>16.72 | 0.00 | 150.0<br>150.0 | ± 9.6 % |
|               |                                                                | Y        | 4.50         | 67.35          | 16.43          |      | 150.0          |         |
|               |                                                                | Z        | 4.43         | 67.74          | 16.61          |      | 150.0          |         |
| 10433-<br>AAB | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)                              | X        | 5.06         | 67.54          | 16.75          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                                | Υ        | 4.75         | 67.32          | 16.51          |      | 150.0          |         |
|               |                                                                | Z        | 4.68         | 67.64          | 16.67          |      | 150.0          |         |
| 10434-<br>AAA | W-CDMA (BS Test Model 1, 64 DPCH)                              | Х        | 4.58         | 70.97          | 18.48          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                                | Υ        | 4.39         | 72.38          | 18.32          |      | 150.0          |         |
|               |                                                                | Z        | 4.42         | 73.36          | 18.48          |      | 150.0          |         |
| 10435-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | Х        | 73.07        | 112.66         | 29.06          | 3.23 | 80.0           | ± 9.6 % |
|               |                                                                | Υ        | 100.00       | 123.60         | 31.93          |      | 80.0           |         |
|               |                                                                | Z        | 100.00       | 123.98         | 31.64          |      | 80.0           |         |
| 10447-<br>AAB | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)                 | X        | 3.91         | 67.87          | 16.49          | 0.00 | 150.0          | ±9.6 %  |
|               |                                                                | Υ        | 3.47         | 67.50          | 15.53          |      | 150.0          |         |
|               |                                                                | Z        | 3.41         | 68.08          | 15.62          |      | 150.0          |         |
| 10448-<br>AAB | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1,<br>Clippin 44%)              | Х        | 4.36         | 67.43          | 16.61          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                                | Υ        | 4.04         | 67.29          | 16.20          |      | 150.0          |         |
|               |                                                                | Z        | 3.99         | 67.77          | 16.38          |      | 150.0          |         |
| 10449-<br>AAB | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1,<br>Cliping 44%)              | X        | 4.59         | 67.37          | 16.63          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                                | Υ_       | 4.32         | 67.18          | 16.33          |      | 150.0          |         |
|               |                                                                | Z        | 4.27         | 67.58          | 16.51          |      | 150.0          |         |
| 10450-<br>AAB | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)                | X        | 4.75         | 67.29          | 16.62          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                                | Υ        | 4.52         | 67.08          | 16.36          |      | 150.0          |         |
| 48.000        |                                                                | <u>Z</u> | 4.47         | 67.43          | 16.54          |      | 150.0          |         |
| 10451-<br>AAA | W-CDMA (BS Test Model 1, 64 DPCH,<br>Clipping 44%)             | X        | 3.88         | 68.25          | 16.35          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                                | Y        | 3.34         | 67.60          | 15.06          |      | 150.0          |         |
| 40 t===       |                                                                | Z        | 3.25         | 68.08          | 15.03          |      | 150.0          |         |
| 10456-<br>AAA | IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)           | X        | 6.45         | 68.48          | 17.01          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                                | Y        | 6.28         | 68.20          | 16.88          |      | 150.0          |         |
| 404==         | LINETO FOR A CONTRACTOR                                        | Z        | 6.24         | 68.43          | 17.01          |      | 150.0          |         |
| 10457-<br>AAA | UMTS-FDD (DC-HSDPA)                                            | X        | 3.87         | 65.68          | 16.38          | 0.00 | 150.0          | ±9.6 %  |
|               |                                                                | Y        | 3.81         | 65.57          | 16.07          |      | 150.0          |         |
| 40450         | 0004400004 514 50 5 5 5                                        | Z        | 3.81         | 65.98          | 16.26          |      | 150.0          |         |
| 10458-<br>AAA | CDMA2000 (1xEV-DO, Rev. B, 2 carriers)                         | X        | 3.63         | 67.17          | 15.82          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                                | Y        | 3.13         | 66.82          | 14.32          |      | 150.0          |         |
| 40455         | 001110000 (4 51:50 5                                           | Z        | 2.97         | 66.93          | 13.99          |      | 150.0          |         |
| 10459-<br>AAA | CDMA2000 (1xEV-DO, Rev. B, 3 carriers)                         | Х        | 4.79         | 65.36          | 16.37          | 0.00 | 150.0          | ± 9.6 % |
|               |                                                                | Y        | 4.24         | 65.27          | 15.46          |      | 150.0          |         |
|               |                                                                | Z        | 4.13         | 65.72          | 15.38          |      | 150.0          |         |

| 10460-<br>AAA | UMTS-FDD (WCDMA, AMR)                                                | Х      | 1.54           | 79.74           | 21.99          | 0.00          | 150.0        | ± 9.6 %  |
|---------------|----------------------------------------------------------------------|--------|----------------|-----------------|----------------|---------------|--------------|----------|
|               |                                                                      | Y      | 0.95           | 69.06           | 16.64          |               | 150.0        |          |
|               |                                                                      | Ż      | 1.16           | 73.20           | 19.00          |               | 150.0        | <u> </u> |
| 10461-<br>AAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)      | X      | 100.00         | 118.00          | 30.59          | 3.29          | 80.0         | ± 9.6 %  |
|               |                                                                      | Y      | 100.00         | 127.27          | 33.69          |               | 80.0         |          |
|               |                                                                      | Z      | 100.00         | 128.13          | 33.61          |               | 80.0         |          |
| 10462-<br>AAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)    | Х      | 100.00         | 108.76          | 26.18          | 3.23          | 80.0         | ± 9.6 %  |
|               |                                                                      | Y      | 100.00         | 111.69          | 26.26          |               | 0.08         |          |
| 40400         |                                                                      | Z      | 100.00         | 109.78          | 24.92          |               | 80.0         |          |
| 10463-<br>AAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)    | X      | 61.06          | 101.21          | 23.94          | 3.23          | 80.0         | ± 9.6 %  |
|               |                                                                      | Y      | 100.00         | 108.45          | 24.70          |               | 80.0         |          |
| 10464-        | LTE TOD (CO FDMA 4 OD O MU                                           | Z      | 9.38           | 82.48           | 17.38          |               | 80.0         |          |
| AAA           | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)        | X      | 100.00         | 116.66          | 29.84          | 3.23          | 80.0         | ± 9.6 %  |
|               |                                                                      | Y      | 100.00         | 125.35          | 32.64          |               | 80.0         |          |
| 10465-        | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-                                   | Z      | 100.00         | 125.94          | 32.43          |               | 80.0         |          |
| AAA           | QAM, UL Subframe=2,3,4,7,8,9)                                        | X      | 100.00         | 108.47          | 26.02          | 3.23          | 80.0         | ± 9.6 %  |
|               |                                                                      | _      |                | 111.17          | 26.01          |               | 80.0         |          |
| 10466-        | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-                                   | Z<br>X | 44.16          | 100.58          | 22.73          | 0.00          | 80.0         |          |
| AAA           | QAM, UL Subframe=2,3,4,7,8,9)                                        | Y      | 42.58<br>42.99 | 96.75<br>98.93  | 22.75          | 3.23          | 80.0         | ± 9.6 %  |
|               |                                                                      | Z      | 5.89           |                 | 22.41          |               | 80.0         |          |
| 10467-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)        | X      | 100.00         | 77.61<br>116.79 | 15.84<br>29.90 | 3.23          | 80.0<br>80.0 | ± 9.6 %  |
| <del></del>   |                                                                      | Υ      | 100.00         | 125.60          | 32.75          |               | 80.0         |          |
|               |                                                                      | Z      | 100.00         | 126.22          | 32.56          |               | 80.0         |          |
| 10468-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-<br>QAM, UL Subframe=2,3,4,7,8,9)  | X      | 100.00         | 108.56          | 26.07          | 3.23          | 80.0         | ± 9.6 %  |
|               |                                                                      | Y      | 100.00         | 111.35          | 26.09          |               | 80.0         |          |
|               |                                                                      | Z      | 61.74          | 104.33          | 23.64          |               | 80.0         |          |
| 10469-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-<br>QAM, UL Subframe=2,3,4,7,8,9)  | X      | 43.83          | 97.08           | 22.83          | 3.23          | 80.0         | ± 9.6 %  |
|               |                                                                      | Υ      | 46.06          | 99.70           | 22.59          |               | 80.0         |          |
| 10.100        |                                                                      | Z      | 6.04           | 77.89           | 15.93          | . "           | 80.0         |          |
| 10470-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)       | X      | 100.00         | 116.81          | 29.90          | 3.23          | 0.08         | ± 9.6 %  |
|               |                                                                      | Υ      | 100.00         | 125.63          | 32.76          |               | 80.0         |          |
| 40474         | LITE TOD (OO FD) IA A DD (O HILL A)                                  | Z      | 100.00         | 126.25          | 32.56          |               | 80.0         |          |
| 10471-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)     | X      | 100.00         | 108.53          | 26.05          | 3.23          | 80.0         | ± 9.6 %  |
|               |                                                                      | Y      | 100.00         | 111.31          | 26.07          |               | 80.0         |          |
| 10472-        | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-                                  | Z<br>X | 61.64<br>44.10 | 104.26<br>97.14 | 23.61<br>22.84 | 2.22          | 80.0         | 10000    |
| AAC           | QAM, UL Subframe=2,3,4,7,8,9)                                        | Y      | 46.39          | 99.73           | 22.59          | 3.23          | 80.0         | ± 9.6 %  |
|               |                                                                      | Z      | 6.02           | 77.83           | 15.90          | <del>  </del> | 80.0         |          |
| 10473-        | LTE-TDD (SC-FDMA, 1 RB, 15 MHz.                                      | X      | 100.00         | 116.79          | 29.89          | 3.23          | 80.0         | +060/    |
| AAC           | QPSK, UL Subframe=2,3,4,7,8,9)                                       | Y      | 100.00         | 125.60          | 32.74          | J.23          | 80.0         | ± 9.6 %  |
|               |                                                                      | Z      | 100.00         | 126.23          | 32.74          | -             |              |          |
| 10474-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)     | X      | 100.00         | 108.54          | 26.05          | 3.23          | 80.0<br>80.0 | ± 9.6 %  |
|               |                                                                      | Υ      | 100.00         | 111.32          | 26.07          | ·             | 80.0         |          |
|               |                                                                      | Z      | 60.20          | 104.02          | 23.55          |               | 80.0         |          |
| 10475-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-<br>QAM, UL Subframe=2,3,4,7,8,9) | Х      | 43.66          | 97.03           | 22.81          | 3.23          | 80.0         | ± 9.6 %  |
|               |                                                                      | Υ      | 44.87          | 99.39           | 22.51          |               | 80.0         |          |
|               |                                                                      | Ζ      | 5.94           | 77.72           | 15.87          |               | 80.0         |          |

| 10477-<br>AAÇ | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-<br>QAM, UL Subframe=2,3,4,7,8,9) | Х  | 100.00 | 108.43 | 26.00          | 3.23     | 80.0         | ± 9.6 %  |
|---------------|----------------------------------------------------------------------|----|--------|--------|----------------|----------|--------------|----------|
| ,010          | ₩ W, OL GUDHAIHE-2,3,4,7,0,9)                                        | Y  | 100.00 | 111.14 | 25.00          |          | 00.0         |          |
|               |                                                                      | Z  | 48.11  | 101.47 | 25.99<br>22.92 |          | 80.0         |          |
| 10478-        | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-                                  | X  | 43.04  | 96.84  | 22.76          | 3.23     | 80.0<br>80.0 | +069/    |
| AAC           | QAM, UL Subframe=2,3,4,7,8,9)                                        |    |        |        |                | 3.23     |              | ± 9.6 %  |
|               |                                                                      | Y  | 43.24  | 98.94  | 22.39          |          | 80.0         |          |
| 10479-        | LTC TOD (CC EDIMA FOR DD 4 AND                                       | Z  | 5.86   | 77.55  | 15.80          |          | 80.0         |          |
| AAA           | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)    | X  | 18.43  | 95.26  | 26.62          | 3.23     | 80.0         | ± 9.6 %  |
|               |                                                                      | Υ  | 47.63  | 113.17 | 30.89          |          | 80.0         |          |
| 10480-        | LTE TOD (OO EDIM 50% DD 4 4 ML)                                      | Z. | 79.42  | 120.84 | 32.18          |          | 80.0         |          |
| AAA           | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)  | X  | 15.38  | 87.90  | 23.16          | 3.23     | 80.0         | ± 9.6 %  |
| a             |                                                                      | Y  | 35.80  | 101.51 | 25.84          |          | 80.0         |          |
| 10101         | 1 TT TOD (00 FB) (4 FB)                                              | Z  | 33.10  | 99.76  | 24.57          |          | 80.0         |          |
| 10481-<br>AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)  | Х  | 14.20  | 86.14  | 22.35          | 3.23     | 80.0         | ± 9.6 %  |
|               |                                                                      | Υ  | 23.64  | 94.76  | 23.60          |          | 80.0         |          |
| 10            |                                                                      | Z  | 17.83  | 90.68  | 21.64          |          | 80.0         |          |
| 10482-<br>AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)      | X  | 11.00  | 86.13  | 22.59          | 2.23     | 80.0         | ± 9.6 %  |
|               |                                                                      | Υ  | 6.54   | 80.66  | 19.81          |          | 80.0         |          |
|               |                                                                      | Z  | 10.00  | 86.91  | 21.46          |          | 80.0         |          |
| 10483-<br>AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)    | X  | 11.81  | 84.53  | 22.26          | 2.23     | 80.0         | ± 9.6 %  |
|               |                                                                      | Υ  | 9.59   | 82.56  | 20.08          |          | 80.0         |          |
|               |                                                                      | Z  | 5.79   | 75.74  | 16.81          |          | 80.0         |          |
| 10484-<br>AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)    | X  | 11.16  | 83.50  | 21.93          | 2.23     | 80.0         | ± 9.6 %  |
|               |                                                                      | Υ  | 8.15   | 80.18  | 19.27          |          | 80.0         |          |
|               |                                                                      | Z. | 5.05   | 73.86  | 16.10          |          | 80.0         |          |
| 10485-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)      | Х  | 11.03  | 86.44  | 23.15          | 2.23     | 80.0         | ± 9.6 %  |
| •             |                                                                      | Υ  | 6.87   | 82.16  | 21.41          | <b></b>  | 80.0         |          |
|               |                                                                      | Z  | 9.87   | 88.59  | 23.41          |          | 80.0         |          |
| 10486-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)    | Х  | 6.95   | 77.02  | 19.85          | 2.23     | 80.0         | ± 9.6 %  |
|               |                                                                      | Y  | 4.98   | 74.27  | 17.96          |          | 80.0         |          |
|               |                                                                      | Z  | 5.53   | 76.50  | 18.48          |          | 80.0         |          |
| 10487-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)    | X  | 6.82   | 76.43  | 19.65          | 2.23     | 80.0         | ± 9.6 %  |
| , , , , ,     |                                                                      | Υ  | 4.85   | 73.54  | 17.65          |          | 80.0         | <u> </u> |
|               |                                                                      | Z  | 5.25   | 75.41  | 18.04          |          | 80.0         |          |
| 10488-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)     | Х  | 9.46   | 82.96  | 22.30          | 2.23     | 80.0         | ± 9.6 %  |
|               |                                                                      | Y  | 5.99   | 78.96  | 21.12          |          | 80.0         | İ        |
|               |                                                                      | Z  | 6.82   | 82.33  | 22.47          | İ        | 80.0         |          |
| 10489-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)   | Х  | 6.62   | 75.52  | 19.96          | 2.23     | 80.0         | ± 9.6 %  |
|               |                                                                      | Y  | 4.91   | 73.20  | 18.90          |          | 80.0         |          |
|               |                                                                      | Z  | 5.11   | 74.84  | 19.54          | <u> </u> | 80.0         | ]        |
| 10490-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)   | Х  | 6.56   | 74.88  | 19.76          | 2.23     | 80.0         | ± 9.6 %  |
|               |                                                                      | Y  | 4.94   | 72.82  | 18.76          |          | 80.0         |          |
|               |                                                                      | Z  | 5.10   | 74.33  | 19.33          |          | 80.0         |          |
| 10491-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)     | X  | 7.98   | 78.75  | 20.93          | 2.23     | 80.0         | ± 9.6 %  |
|               |                                                                      | Y  | 5.56   | 75.73  | 20.09          |          | 80.0         |          |
|               |                                                                      | Z  | 5.84   | 77.68  | 21.00          | 1        | 80.0         |          |
| 10492-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)   | X  | 6.52   | 73.74  | 19.47          | 2.23     | 80.0         | ± 9.6 %  |
|               |                                                                      | Y  | 5.01   | 71.66  | 18.63          |          | 80.0         |          |
|               |                                                                      | Ż  | 5.04   | 72.68  | 19.10          | 1        | 80.0         |          |

| 10493-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)         | X | 6.52 | 73.38 | 19.36 | 2.23 | 80.0 | ± 9.6 %     |
|---------------|----------------------------------------------------------------------------|---|------|-------|-------|------|------|-------------|
|               |                                                                            | Υ | 5.05 | 71.42 | 18.55 |      | 80.0 |             |
|               |                                                                            | Z | 5.05 | 72.38 | 18.97 |      | 80.0 | <u> </u>    |
| 10494-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)           | Х | 9.30 | 81.16 | 21.56 | 2.23 | 80.0 | ± 9.6 %     |
|               |                                                                            | Y | 6.19 | 77.55 | 20.65 |      | 80.0 |             |
|               |                                                                            | Z | 6.63 | 79.81 | 21.68 |      | 80.0 |             |
| 10495-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)         | X | 6.75 | 74.54 | 19.74 | 2.23 | 80.0 | ± 9.6 %     |
|               |                                                                            | Y | 5.09 | 72.10 | 18.86 |      | 80.0 |             |
|               |                                                                            | Ζ | 5.10 | 73.07 | 19.34 |      | 80.0 |             |
| 10496-<br>AAC | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)         | X | 6.67 | 73.87 | 19.53 | 2.23 | 0.08 | ±9.6 %      |
|               |                                                                            | Y | 5.11 | 71.66 | 18.72 |      | 80.0 |             |
|               |                                                                            | Z | 5.11 | 72.57 | 19.16 |      | 80.0 | <u> </u>    |
| 10497-<br>AAA | LTE-TDD (SC-FDMA, 100% RB, 1.4<br>MHz, QPSK, UL Subframe=2,3,4,7,8,9)      | X | 9.58 | 84.00 | 21.43 | 2.23 | 80.0 | ± 9.6 %     |
|               |                                                                            | Y | 4.27 | 74.12 | 16.39 |      | 80.0 |             |
|               |                                                                            | Z | 5.12 | 76.54 | 16.66 |      | 80.0 |             |
| 10498-<br>AAA | LTE-TDD (SC-FDMA, 100% RB, 1.4<br>MHz, 16-QAM, UL<br>Subframe=2,3,4,7,8,9) | X | 6.19 | 75.19 | 17.72 | 2.23 | 80.0 | ± 9.6 %     |
|               |                                                                            | Y | 2.33 | 64.39 | 11.23 |      | 80.0 |             |
|               |                                                                            | Z | 1.83 | 62.54 | 9.68  |      | 80.0 |             |
| 10499-<br>AAA | LTE-TDD (SC-FDMA, 100% RB, 1.4<br>MHz, 64-QAM, UL<br>Subframe=2,3,4,7,8,9) | X | 6.08 | 74.60 | 17.40 | 2.23 | 80.0 | ± 9.6 %     |
|               |                                                                            | Y | 2.20 | 63.55 | 10.68 |      | 80.0 |             |
|               |                                                                            | Z | 1.70 | 61.64 | 9.07  |      | 80.0 | <del></del> |
| 10500-<br>AAA | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)           | Х | 9.69 | 83.97 | 22.50 | 2.23 | 80.0 | ± 9.6 %     |
|               |                                                                            | Y | 6.26 | 80.30 | 21.12 | "    | 80.0 |             |
|               |                                                                            | Z | 7.99 | 85,23 | 22.80 |      | 80.0 | <del></del> |
| 10501-<br>AAA | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)         | Х | 6.73 | 76.14 | 19.79 | 2.23 | 80.0 | ± 9.6 %     |
|               |                                                                            | Y | 4.97 | 73.89 | 18.33 | -    | 80.0 |             |
|               |                                                                            | Z | 5.41 | 76.03 | 18.94 |      | 80.0 | · · · · · · |
| 10502-<br>AAA | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)         | Х | 6.66 | 75.65 | 19.59 | 2.23 | 80.0 | ± 9.6 %     |
|               |                                                                            | Y | 4.97 | 73.54 | 18.13 |      | 80.0 |             |
|               |                                                                            | Z | 5.36 | 75.51 | 18.67 |      | 80.0 |             |
| 10503-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)           | X | 9.33 | 82.74 | 22.21 | 2.23 | 80.0 | ± 9.6 %     |
|               |                                                                            | Υ | 5.90 | 78.70 | 21.01 |      | 80.0 |             |
| 4050:         | 1                                                                          | Z | 6.71 | 82.03 | 22.35 |      | 80.0 |             |
| 10504-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)         | X | 6.59 | 75.44 | 19.92 | 2.23 | 80.0 | ± 9.6 %     |
|               |                                                                            | Y | 4.88 | 73.08 | 18.84 |      | 80.0 |             |
| 40502         | LITE TOP (OO FOLIS                                                         | Z | 5.07 | 74.71 | 19.47 |      | 80.0 |             |
| 10505-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)         | Х | 6.52 | 74.79 | 19.72 | 2.23 | 80.0 | ± 9.6 %     |
|               |                                                                            | Y | 4.91 | 72.71 | 18.70 |      | 80.0 |             |
| 40500         | LTC TDD (OO FDAM ASSOCIATION                                               | Z | 5.07 | 74.21 | 19.27 |      | 80.0 |             |
| 10506-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 10<br>MHz, QPSK, UL Subframe=2,3,4,7,8,9)       | Х | 9.21 | 81.00 | 21.50 | 2.23 | 80.0 | ± 9.6 %     |
|               |                                                                            | Y | 6.13 | 77.37 | 20.57 |      | 80.0 |             |
| 40007         | LTE TOD (OO FOLK)                                                          | Z | 6.56 | 79.62 | 21.60 |      | 80.0 |             |
| 10507-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 10<br>MHz, 16-QAM, UL<br>Subframe=2,3,4,7,8,9)  | X | 6.72 | 74.48 | 19.71 | 2.23 | 80.0 | ± 9.6 %     |
|               | 2001101110 2,0,1,1,0,0)                                                    |   |      |       |       |      |      |             |
|               |                                                                            | Υ | 5.07 | 72.03 | 18.82 |      | 80.0 |             |

| 10508-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 10<br>MHz, 64-QAM, UL<br>Subframe=2,3,4,7,8,9) | Х | 6.65         | 73.80          | 19.50          | 2.23 | 80.0           | ± 9.6 %  |
|---------------|---------------------------------------------------------------------------|---|--------------|----------------|----------------|------|----------------|----------|
|               |                                                                           | Y | 5.09         | 71.58          | 18.67          |      | 80.0           |          |
|               |                                                                           | Ż | 5.09         | 72.48          | 19.12          |      | 80.0           |          |
| 10509-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 15<br>MHz, QPSK, UL Subframe=2,3,4,7,8,9)      | Х | 8.15         | 77.43          | 20.26          | 2.23 | 80.0           | ± 9.6 %  |
|               |                                                                           | Y | 5.99         | 74.82          | 19.62          |      | 80.0           |          |
|               |                                                                           | Z | 6.17         | 76.24          | 20.35          |      | 80.0           |          |
| 10510-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 15<br>MHz, 16-QAM, UL<br>Subframe=2,3,4,7,8,9) | X | 6.94         | 73.36          | 19.32          | 2.23 | 80.0           | ± 9.6 %  |
|               |                                                                           | Y | 5.42         | 71.16          | 18.60          |      | 80.0           |          |
|               |                                                                           | Z | 5.37         | 71.81          | 18.97          |      | 80.0           |          |
| 10511-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 15<br>MHz, 64-QAM, UL<br>Subframe=2,3,4,7,8,9) | X | 6.87         | 72.87          | 19.19          | 2.23 | 80.0           | ± 9.6 %  |
|               |                                                                           | Υ | 5.44         | 70.83          | 18.50          |      | 80.0           |          |
|               |                                                                           | Ζ | 5.39         | 71.45          | 18.85          |      | 80.0           | 1        |
| 10512-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 20<br>MHz, QPSK, UL Subframe=2,3,4,7,8,9)      | X | 9.41         | 80.22          | 21.09          | 2.23 | 80.0           | ± 9.6 %  |
|               |                                                                           | Y | 6.52         | 76.83          | 20.24          |      | 80.0           |          |
| 10810         |                                                                           | Z | 6.84         | 78.58          | 21.10          |      | 80.0           |          |
| 10513-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 20<br>MHz, 16-QAM, UL<br>Subframe=2,3,4,7,8,9) | X | 7.03         | 74.19          | 19.61          | 2.23 | 80.0           | ± 9.6 %  |
|               |                                                                           | Υ | 5.36         | 71.56          | 18.76          |      | 80.0           |          |
| 40-44         |                                                                           | Z | 5.31         | 72.21          | 19.14          |      | 80.0           |          |
| 10514-<br>AAC | LTE-TDD (SC-FDMA, 100% RB, 20<br>MHz, 64-QAM, UL<br>Subframe=2,3,4,7,8,9) | X | 6.85         | 73.42          | 19.39          | 2.23 | 80.0           | ± 9.6 %  |
|               |                                                                           | Υ | 5.32         | 71.03          | 18.59          |      | 80.0           |          |
|               |                                                                           | Z | 5.27         | 71.61          | 18.94          |      | 80.0           |          |
| 10515-<br>AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2<br>Mbps, 99pc duty cycle)              | X | 0.98         | 65.05          | 16.44          | 0.00 | 150.0          | ± 9.6 %  |
|               |                                                                           | Y | 1.00         | 63.56          | 14.97          |      | 150.0          |          |
| 40540         | 1555 000 441 14751 0 4 014 /0000 5 5                                      | Z | 1.05         | 64.66          | 15.82          |      | 150.0          |          |
| 10516-<br>AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)               | X | 100.00       | 168.11         | 45.87          | 0.00 | 150.0          | ± 9.6 %  |
|               |                                                                           | Y | 0.67         | 71.83          | 18.15          |      | 150.0          |          |
| 10517-        | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11                                       | Z | 1.04         | 80.65          | 22.82          | 0.00 | 150.0          | 1000     |
| AAA           | Mbps, 99pc duty cycle)                                                    |   | 0.96         | 70.11          | 18.69          | 0.00 | 150.0          | ± 9.6 %  |
|               |                                                                           | Z | 0.83         | 65.61<br>67.57 | 15.70<br>17.12 |      | 150.0<br>150.0 |          |
| 10518-<br>AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9<br>Mbps, 99pc duty cycle)              | X | 4.76         | 67.10          | 16.57          | 0.00 | 150.0          | ± 9.6 %  |
|               |                                                                           | Y | 4.53         | 67.01          | 16.35          |      | 150.0          |          |
|               |                                                                           | Z | 4.47         | 67.38          | 16.53          |      | 150.0          |          |
| 10519-<br>AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12<br>Mbps, 99pc duty cycle)             | Х | 5.02         | 67.44          | 16.72          | 0.00 | 150.0          | ± 9.6 %  |
|               |                                                                           | Y | 4.70         | 67.22          | 16.46          |      | 150.0          |          |
|               |                                                                           | Z | 4.63         | 67.55          | 16.62          |      | 150.0          |          |
| 10520-<br>AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18<br>Mbps, 99pc duty cycle)             | X | 4.86         | 67.45          | 16.66          | 0.00 | 150.0          | ± 9.6 %  |
|               |                                                                           | Y | 4.55         | 67.17          | 16.38          |      | 150.0          |          |
| 10521-<br>AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)                | X | 4.48<br>4.79 | 67.50<br>67.47 | 16.54<br>16.66 | 0.00 | 150.0<br>150.0 | ± 9.6 %  |
| , , , ,       | imple; cope duty cycle)                                                   | Y | 4.48         | 67.16          | 16.36          |      | 150.0          |          |
|               |                                                                           | Z | 4.42         | 67.48          | 16.53          |      | 150.0          | <b></b>  |
| 10522-<br>AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)                | X | 4.82         | 67.32          | 16.63          | 0.00 | 150.0          | ± 9.6 %  |
|               |                                                                           | Υ | 4.55         | 67.29          | 16.46          |      | 150.0          | <b> </b> |
|               |                                                                           |   | 7.00         | 07.20          | 10.70          |      | 100.0          | 1        |

| 10523-<br>AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48<br>Mbps, 99pc duty cycle) | Х   | 4.69 | 67.31 | 16.53 | 0.00                                             | 150.0 | ± 9.6 %                                          |
|---------------|---------------------------------------------------------------|-----|------|-------|-------|--------------------------------------------------|-------|--------------------------------------------------|
|               |                                                               | Y   | 4.44 | 67.17 | 16.32 |                                                  | 150.0 |                                                  |
|               |                                                               | Ž   | 4.39 | 67.59 | 16.54 | <del>                                     </del> | 150.0 | <del>                                     </del> |
| 10524-<br>AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)    | X   | 4.78 | 67.32 | 16.64 | 0.00                                             | 150.0 | ± 9.6 %                                          |
|               |                                                               | Y   | 4.49 | 67.20 | 16.43 |                                                  | 150.0 |                                                  |
|               |                                                               | Z   | 4.42 | 67.57 | 16.62 | l – –                                            | 150.0 |                                                  |
| 10525-<br>AAA | IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)             | Х   | 4.72 | 66.35 | 16.23 | 0.00                                             | 150.0 | ±9.6%                                            |
|               |                                                               | Υ   | 4.49 | 66.26 | 16.02 | 1                                                | 150.0 |                                                  |
|               |                                                               | Z   | 4.45 | 66.66 | 16.22 |                                                  | 150.0 |                                                  |
| 10526-<br>AAA | IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)             | Х   | 4.95 | 66.78 | 16.37 | 0.00                                             | 150.0 | ± 9.6 %                                          |
|               |                                                               | Y   | 4.64 | 66.60 | 16.16 |                                                  | 150.0 |                                                  |
|               |                                                               | Z   | 4.58 | 66.96 | 16.34 |                                                  | 150.0 |                                                  |
| 10527-<br>AAA | IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)             | X   | 4.86 | 66.80 | 16.35 | 0.00                                             | 150.0 | ± 9.6 %                                          |
|               |                                                               | Y   | 4.57 | 66.56 | 16.10 |                                                  | 150.0 |                                                  |
| 40505         | 1,                                                            | Z   | 4.51 | 66.93 | 16.29 |                                                  | 150.0 |                                                  |
| 10528-<br>AAA | IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)             | X   | 4.89 | 66.82 | 16.38 | 0.00                                             | 150.0 | ±9.6 %                                           |
|               |                                                               | Υ " | 4.58 | 66.57 | 16.13 |                                                  | 150.0 |                                                  |
| 10500         |                                                               | Z   | 4.52 | 66.94 | 16.32 |                                                  | 150.0 |                                                  |
| 10529-<br>AAA | IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)             | X   | 4.89 | 66.82 | 16.38 | 0.00                                             | 150.0 | ± 9.6 %                                          |
|               |                                                               | Y   | 4.58 | 66.57 | 16.13 |                                                  | 150.0 |                                                  |
|               |                                                               | Z   | 4.52 | 66.94 | 16.32 |                                                  | 150.0 |                                                  |
| 10531-<br>AAA | IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)             | Х   | 4.92 | 67.00 | 16.42 | 0.00                                             | 150.0 | ± 9.6 %                                          |
|               |                                                               | Y   | 4.57 | 66.66 | 16.14 |                                                  | 150.0 |                                                  |
|               |                                                               | Z   | 4.49 | 66.99 | 16.31 |                                                  | 150.0 |                                                  |
| 10532-<br>AAA | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)             | X   | 4.76 | 66.93 | 16.40 | 0.00                                             | 150.0 | ± 9.6 %                                          |
|               |                                                               | Y   | 4.43 | 66.51 | 16.07 |                                                  | 150.0 |                                                  |
|               |                                                               | Z   | 4.37 | 66.85 | 16.25 |                                                  | 150.0 |                                                  |
| 10533-<br>AAA | IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)             | Х   | 4.90 | 66.82 | 16.35 | 0.00                                             | 150.0 | ± 9.6 %                                          |
|               |                                                               | Υ   | 4.59 | 66.64 | 16.13 |                                                  | 150.0 |                                                  |
|               |                                                               | Z   | 4.53 | 67.03 | 16.33 |                                                  | 150.0 |                                                  |
| 10534-<br>AAA | IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)             | Х   | 5.38 | 66.99 | 16.41 | 0.00                                             | 150.0 | ± 9.6 %                                          |
|               |                                                               | Y   | 5.14 | 66.65 | 16.20 |                                                  | 150.0 |                                                  |
|               |                                                               | Z   | 5.08 | 66.89 | 16.34 | *                                                | 150.0 | <del></del> .                                    |
| 10535-<br>AAA | IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)             | Х   | 5.47 | 67.13 | 16.46 | 0.00                                             | 150.0 | ± 9.6 %                                          |
|               |                                                               | Υ   | 5.21 | 66.87 | 16.30 |                                                  | 150.0 |                                                  |
|               |                                                               | Z   | 5.13 | 67.05 | 16.42 |                                                  | 150.0 |                                                  |
| 10536-<br>AAA | IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)             | Х   | 5.32 | 67.12 | 16.45 | 0.00                                             | 150.0 | ± 9.6 %                                          |
|               |                                                               | Y   | 5.08 | 66.81 | 16.25 |                                                  | 150.0 |                                                  |
|               |                                                               | Z   | 5.02 | 67.06 | 16.40 | · -                                              | 150.0 |                                                  |
| 10537-<br>AAA | IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)             | Х   | 5.39 | 67.07 | 16.42 | 0.00                                             | 150.0 | ± 9.6 %                                          |
|               |                                                               | Y   | 5.13 | 66.76 | 16.23 |                                                  | 150.0 |                                                  |
| 10500         | LIGHT COOL                                                    | Z   | 5.08 | 67.03 | 16.39 |                                                  | 150.0 |                                                  |
| 10538-<br>AAA | IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)             | X   | 5.52 | 67.19 | 16.52 | 0.00                                             | 150.0 | ± 9.6 %                                          |
|               |                                                               | Υ   | 5.21 | 66.77 | 16.27 |                                                  | 150.0 |                                                  |
| 40540         | LEEF 200 dd                                                   | Ζ   | 5.14 | 66.99 | 16.41 |                                                  | 150.0 | -                                                |
| 10540-<br>AAA | IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)             | Х   | 5.40 | 67.10 | 16.49 | 0.00                                             | 150.0 | ± 9.6 %                                          |
|               |                                                               | Y   | 5.15 | 66.70 | 40.00 |                                                  | 450.0 |                                                  |
|               |                                                               | z   | 0.10 | 66.79 | 16.30 |                                                  | 150.0 |                                                  |

| 10541-<br>AAA | IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)  | X   | 5.41 | 67.10 | 16.49 | 0.00 | 150.0 | ± 9.6 % |
|---------------|----------------------------------------------------|-----|------|-------|-------|------|-------|---------|
|               |                                                    | Y   | 5.12 | 66.64 | 16.21 |      | 150.0 |         |
|               |                                                    | Z   | 5.05 | 66.85 | 16.34 |      | 150.0 |         |
| 10542-<br>AAA | IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)  | Х   | 5.53 | 67.02 | 16.46 | 0.00 | 150.0 | ± 9.6 % |
|               |                                                    | Υ   | 5.28 | 66.73 | 16.27 |      | 150.0 |         |
|               |                                                    | Z   | 5.21 | 66.95 | 16.40 |      | 150.0 |         |
| 10543-<br>AAA | IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)  | X   | 5.65 | 67.09 | 16.50 | 0.00 | 150.0 | ± 9.6 % |
|               |                                                    | Y   | 5.35 | 66.75 | 16.31 |      | 150.0 |         |
| 10544-        | IFFE 000 44 - Wiff (00M) - MOOO                    | Z   | 5.28 | 67.01 | 16.46 |      | 150.0 |         |
| AAA           | IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)  | X   | 5.63 | 67.05 | 16.36 | 0.00 | 150.0 | ± 9.6 % |
|               |                                                    | Y   | 5.46 | 66.75 | 16.19 |      | 150.0 |         |
| 10545-        | IEEE 902 11co WIEI (90MUz. MCC1                    | Z   | 5.42 | 66.95 | 16.31 |      | 150.0 |         |
| AAA           | IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)  | X   | 5.85 | 67.43 | 16.48 | 0.00 | 150.0 | ± 9.6 % |
|               |                                                    | Y   | 5.67 | 67.24 | 16.39 |      | 150.0 |         |
| 10546-        | IEEE 909 44 on MARTE (DOMESTING ALCOCO             | Z   | 5.61 | 67.44 | 16.52 |      | 150.0 |         |
| 10546-<br>AAA | IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)  | X   | 5.76 | 67.40 | 16.49 | 0.00 | 150.0 | ± 9.6 % |
|               |                                                    | Y   | 5.52 | 66.93 | 16.25 |      | 150.0 |         |
| 10547-        | JEEE 900 4400 MEE (00M to MOCC                     | Z   | 5.45 | 67.09 | 16.35 |      | 150.0 |         |
| AAA           | IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)  | X   | 5.86 | 67.50 | 16.53 | 0.00 | 150.0 | ± 9.6 % |
|               |                                                    | Y   | 5.59 | 67.00 | 16.28 |      | 150.0 |         |
| 10510         | IEEE 000 44 WEE (00MI) - MOO4                      | Z   | 5.54 | 67.20 | 16.40 |      | 150.0 |         |
| 10548-<br>AAA | IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)  | Х   | 6.21 | 68.68 | 17.08 | 0.00 | 150.0 | ± 9.6 % |
|               |                                                    | _ Y | 5.87 | 68.02 | 16.76 |      | 150.0 |         |
|               |                                                    | Z   | 5.72 | 67.95 | 16.76 |      | 150.0 |         |
| 10550-<br>AAA | IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)  | Х   | 5.77 | 67.31 | 16.45 | 0.00 | 150.0 | ± 9.6 % |
|               |                                                    | Υ   | 5.57 | 67.05 | 16.32 |      | 150.0 |         |
|               |                                                    | Z   | 5.52 | 67.30 | 16.47 |      | 150.0 |         |
| 10551-<br>AAA | IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)  | X   | 5.80 | 67.45 | 16.48 | 0.00 | 150.0 | ± 9.6 % |
|               |                                                    | Υ   | 5.55 | 67.00 | 16.26 |      | 150.0 |         |
|               |                                                    | Z   | 5.45 | 67.07 | 16.32 |      | 150.0 |         |
| 10552-<br>AAA | IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)  | X   | 5.69 | 67.19 | 16.37 | 0.00 | 150.0 | ± 9.6 % |
|               |                                                    | Υ   | 5.47 | 66.81 | 16.17 |      | 150.0 |         |
|               |                                                    | Z   | 5.43 | 67.06 | 16.31 |      | 150.0 |         |
| 10553-<br>AAA | IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)  | X   | 5.78 | 67.21 | 16.40 | 0.00 | 150.0 | ± 9.6 % |
|               |                                                    | Υ   | 5.54 | 66.82 | 16.20 |      | 150.0 |         |
|               |                                                    | Z   | 5.48 | 67.01 | 16.32 |      | 150.0 |         |
| 10554-<br>AAB | IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle) | Х   | 6.03 | 67.43 | 16.45 | 0.00 | 150.0 | ± 9.6 % |
|               |                                                    | Y   | 5.89 | 67.12 | 16.28 |      | 150.0 |         |
|               |                                                    | Z   | 5.84 | 67.28 | 16.38 |      | 150.0 |         |
| 10555-<br>AAB | IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle) | Х   | 6.22 | 67.88 | 16.64 | 0.00 | 150.0 | ± 9.6 % |
|               |                                                    | Υ   | 6.02 | 67.44 | 16.43 |      | 150.0 |         |
|               |                                                    | Z   | 5.95 | 67.54 | 16.50 |      | 150.0 |         |
| 10556-<br>AAB | IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle) | Х   | 6.20 | 67.79 | 16.59 | 0.00 | 150.0 | ± 9.6 % |
|               |                                                    | Υ   | 6.04 | 67.49 | 16.44 |      | 150.0 |         |
|               |                                                    | Z   | 5.99 | 67.66 | 16.55 |      | 150.0 |         |
| 10557-<br>AAB | IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle) | X   | 6.21 | 67.81 | 16.62 | 0.00 | 150.0 | ± 9.6 % |
|               |                                                    | Y   | 5.99 | 67.35 | 16.39 |      | 150.0 |         |
|               |                                                    | Z   | 5.93 | 67.50 | 16.49 |      | 150.0 | 1       |

| 10558-<br>AAB | IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cycle)                  | Х        | 6.28           | 68.03           | 16.75          | 0.00     | 150.0          | ± 9.6 %      |
|---------------|---------------------------------------------------------------------|----------|----------------|-----------------|----------------|----------|----------------|--------------|
|               | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                             | Y        | 6.04           | 67.52           | 16.49          |          | 150.0          | <del> </del> |
|               |                                                                     | ż        | 5.95           | 67.59           | 16.55          |          | 150.0          | <del> </del> |
| 10560-<br>AAB | IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)                  | X        | 6.28           | 67.87           | 16.71          | 0.00     | 150.0          | ± 9.6 %      |
|               |                                                                     | Υ        | 6.03           | 67.35           | 16.44          |          | 150.0          | <b>1</b>     |
|               |                                                                     | Z        | 5.96           | 67.49           | 16.53          |          | 150.0          |              |
| 10561-<br>AAB | IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)                  | Х        | 6.18           | 67.80           | 16.71          | 0.00     | 150.0          | ± 9.6 %      |
|               |                                                                     | Y        | 5.96           | 67.36           | 16.48          |          | 150.0          |              |
| 40500         |                                                                     | Z        | 5.90           | 67.49           | 16.57          |          | 150.0          |              |
| 10562-<br>AAB | IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)                  | X        | 6.37           | 68.38           | 17.01          | 0.00     | 150.0          | ± 9.6 %      |
|               |                                                                     | Y        | 6.06           | 67.66           | 16.63          |          | 150.0          |              |
| 10563-        | IEEE 802.11ac WiFi (160MHz, MCS9,                                   | Z        | 5.96           | 67.67           | 16.66          | 0.00     | 150.0          |              |
| 10563-<br>AAB | 99pc duty cycle)                                                    | X        | 6.58           | 68.54           | 17.02          | 0.00     | 150.0          | ±9.6%        |
|               |                                                                     | Y        | 6.18           | 67.65           | 16.59          |          | 150.0          |              |
| 10564         | IEEE 802.11g WiFi 2.4 GHz (DSSS-                                    | Z        | 6.05           | 67.62           | 16.60          | 0.10     | 150.0          |              |
| 10564-<br>AAA | OFDM, 9 Mbps, 99pc duty cycle)                                      | X        | 5.11           | 67.26           | 16.76          | 0.46     | 150.0          | ± 9.6 %      |
|               |                                                                     | Y<br>Z   | 4.86           | 67.10           | 16.52          |          | 150.0          |              |
| 10565-        | IEEE 802.11g WiFi 2.4 GHz (DSSS-                                    | <u>Z</u> | 4.80           | 67.44           | 16.68          | 0.40     | 150.0          |              |
| AAA           | OFDM, 12 Mbps, 99pc duty cycle)                                     |          | 5.41           | 67.77           | 17.08          | 0.46     | 150.0          | ± 9.6 %      |
|               |                                                                     | Y        | 5.08           | 67.53           | 16.83          |          | 150.0          |              |
| 10566-        | IEEE 802.11g WiFi 2.4 GHz (DSSS-                                    | Z        | 5.00           | 67.82           | 16.97          | 2.40     | 150.0          |              |
| AAA           | OFDM, 18 Mbps, 99pc duty cycle)                                     | X        | 5.23           | 67.67           | 16.93          | 0.46     | 150.0          | ± 9.6 %      |
|               |                                                                     | Y        | 4.92           | 67.38           | 16.66          |          | 150.0          |              |
| 10567         | IFFE 000 44 - WITH 0 4 OUT (DOOG                                    | Z        | 4.84           | 67.67           | 16.80          |          | 150.0          |              |
| 10567-<br>AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 24 Mbps, 99pc duty cycle) | X        | 5.26           | 68.03           | 17.24          | 0.46     | 150.0          | ± 9.6 %      |
|               |                                                                     | Y        | 4.95           | 67.77           | 17.01          |          | 150.0          |              |
| 10568-        | IEEE 000 44 ~ WEEL 0 4 OUT (D000                                    | Z        | 4.87           | 68.04           | 17.15          |          | 150.0          |              |
| AAA           | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 36 Mbps, 99pc duty cycle) | X        | 5.14           | 67.36           | 16.67          | 0.46     | 150.0          | ± 9.6 %      |
|               |                                                                     | Y        | 4.84           | 67.19           | 16.45          |          | 150.0          |              |
| 10560         | IEEE 000 44. WEE 0 4 OU (DOOD                                       | <u>Z</u> | 4.75           | 67.49           | 16.60          |          | 150.0          |              |
| 10569-<br>AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 48 Mbps, 99pc duty cycle) | Х        | 5.19           | 68.02           | 17.24          | 0.46     | 150.0          | ± 9.6 %      |
|               |                                                                     | Y        | 4.92           | 67.92           | 17.11          |          | 150.0          |              |
| 10570-        | IEEE 000 44- WEE 0 4 OUT /POOC                                      | Z        | 4.86           | 68.27           | 17.29          |          | 150.0          |              |
| AAA           | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 54 Mbps, 99pc duty cycle) | X        | 5.23           | 67.81           | 17.17          | 0.46     | 150.0          | ± 9.6 %      |
|               |                                                                     | Y        | 4.94           | 67.74           | 17.02          |          | 150.0          |              |
| 10571-        | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1                                  | Z        | 4.86           | 68.06           | 17.18          |          | 150.0          |              |
| AAA           | Mbps, 90pc duty cycle)                                              | X        | 1.68           | 70.36           | 18.73          | 0.46     | 130.0          | ± 9.6 %      |
|               |                                                                     | Y        | 1.37           | 66.32           | 16.49          |          | 130.0          |              |
| 10572-        | IEEE 902 445 WEELS 4 OLD (DOOS S                                    | Z        | 1.41           | 67.39           | 17.29          |          | 130.0          |              |
| AAA           | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2<br>Mbps, 90pc duty cycle)        | X        | 1.75           | 71.47           | 19.28          | 0.46     | 130.0          | ± 9.6 %      |
|               |                                                                     | Y        | 1.40           | 67.01           | 16.89          |          | 130.0          |              |
| 10573-<br>AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)         | Z<br>X   | 1.45<br>100.00 | 68.17<br>142.31 | 17.74<br>37.38 | 0.46     | 130.0<br>130.0 | ± 9.6 %      |
|               | maps, cope duty cycle)                                              | Y        | 5.69           | 99.12           | 27.00          |          | 400 0          |              |
| ***           |                                                                     | Z        | 66.26          | 143.73          | 27.30          | <u> </u> | 130.0          |              |
| 10574-        | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11                                 | X        | 3.57           | 87.71           | 39.41          | 0.40     | 130.0          | 1000         |
| AAA           | Mbps, 90pc duty cycle)                                              |          |                |                 | 25.60          | 0.46     | 130.0          | ± 9.6 %      |
|               |                                                                     | Y        | 1.70           | 74.22           | 20.29          |          | 130.0          |              |
|               | <u> </u>                                                            | Z        | 1.88           | 76.94           | 21.86          |          | 130.0          |              |

| 10575-        | IEEE 802.11g WiFi 2.4 GHz (DSSS-                                    | X       | 4.95         | 67.19          | 16.89          | 0.46 | 130.0          | ± 9.6 %  |
|---------------|---------------------------------------------------------------------|---------|--------------|----------------|----------------|------|----------------|----------|
| AAA           | OFDM, 6 Mbps, 90pc duty cycle)                                      |         |              | ]              | 10.00          | 0.40 | 100.0          | 1 3.0 /6 |
|               |                                                                     | Υ       | 4.69         | 67.03          | 16.64          |      | 130.0          |          |
| 10576-        | TEET 000 44 INSTITUTE OF OUR CORNE                                  | Z       | 4.63         | 67.35          | 16.80          |      | 130.0          |          |
| AAA<br>       | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 9 Mbps, 90pc duty cycle)  | X       | 4.98         | 67.35          | 16.96          | 0.46 | 130.0          | ± 9.6 %  |
|               |                                                                     | Υ       | 4.72         | 67.20          | 16.72          |      | 130.0          |          |
| 40577         | UTTER OOD 11 AMERICAN                                               | Z       | 4.66         | 67.55          | 16.88          |      | 130.0          |          |
| 10577-<br>AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 12 Mbps, 90pc duty cycle) | X       | 5.24         | 67.69          | 17.13          | 0.46 | 130.0          | ± 9.6 %  |
|               |                                                                     | Y       | 4.90         | 67.46          | 16.87          |      | 130.0          |          |
| 10578-        | )EEE 000 44 - 146E 0 4 OU - (D000                                   | Z       | 4.82         | 67.76          | 17.01          |      | 130.0          |          |
| AAA           | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 18 Mbps, 90pc duty cycle) | X       | 5.14         | 67.89          | 17.23          | 0.46 | 130.0          | ± 9.6 %  |
|               |                                                                     | Y       | 4.81         | 67.63          | 16.98          |      | 130.0          |          |
| 10579-        | JEEE 902 44 ~ MIEE 2 4 CU = /D200                                   | Z       | 4.73         | 67.92          | 17.12          |      | 130.0          |          |
| AAA           | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 24 Mbps, 90pc duty cycle) | X       | 4.94         | 67.39          | 16.68          | 0.46 | 130.0          | ± 9.6 %  |
|               |                                                                     | Y       | 4.58         | 66.91          | 16.29          |      | 130.0          |          |
| 10580-        | TEEE 900 44a WEE 0 4 OU - 70000                                     | Z       | 4.50         | 67.21          | 16.45          |      | 130.0          |          |
| AAA           | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 36 Mbps, 90pc duty cycle) | X       | 4.98         | 67.29          | 16.65          | 0.46 | 130.0          | ± 9.6 %  |
|               |                                                                     | Y       | 4.62         | 66.97          | 16.32          |      | 130.0          |          |
| 10581-        | IFFE DOD 44% MEETS O 4 OUT (DOOG                                    | Z       | 4.54         | 67.27          | 16.48          |      | 130.0          |          |
| AAA           | IEEE 802.11g WiFi 2.4 GHz (DSSS-<br>OFDM, 48 Mbps, 90pc duty cycle) | X       | 5.07         | 68.07          | 17.23          | 0.46 | 130.0          | ± 9.6 %  |
|               |                                                                     | Y       | 4.72         | 67.70          | 16.95          |      | 130.0          |          |
| 10582-        | IEEE 802.11g WiFi 2.4 GHz (DSSS-                                    | Z<br>X  | 4.65<br>4.90 | 68.04<br>67.13 | 17.12<br>16.49 | 0.46 | 130.0<br>130.0 | ± 9.6 %  |
| AAA           | OFDM, 54 Mbps, 90pc duty cycle)                                     | $\perp$ |              |                |                |      |                |          |
|               |                                                                     | Y       | 4.51         | 66.68          | 16.07          |      | 130.0          |          |
| 10583-<br>AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6<br>Mbps, 90pc duty cycle)        | Z<br>X  | 4.43<br>4.95 | 67.00<br>67.19 | 16.24<br>16.89 | 0.46 | 130.0<br>130.0 | ± 9.6 %  |
| 7777          | Mops, sope duty cycle)                                              | Y       | 4.69         | 67.03          | 16.64          |      | 130.0          |          |
| ··            |                                                                     | Z       | 4.63         | 67.35          | 16.80          |      | 130.0          |          |
| 10584-<br>AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9<br>Mbps, 90pc duty cycle)        | X       | 4.98         | 67.35          | 16.96          | 0.46 | 130.0          | ± 9.6 %  |
|               | 3,000                                                               | TY      | 4.72         | 67.20          | 16.72          |      | 130.0          |          |
|               |                                                                     | Z       | 4.66         | 67.55          | 16.88          |      | 130.0          |          |
| 10585-<br>AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)          | X       | 5.24         | 67.69          | 17.13          | 0.46 | 130.0          | ± 9.6 %  |
|               |                                                                     | Y       | 4.90         | 67.46          | 16.87          |      | 130.0          |          |
|               |                                                                     | Z       | 4.82         | 67.76          | 17.01          |      | 130.0          |          |
| 10586-<br>AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)          | Х       | 5.14         | 67.89          | 17.23          | 0.46 | 130.0          | ± 9.6 %  |
|               |                                                                     | Υ       | 4.81         | 67.63          | 16.98          |      | 130.0          |          |
|               |                                                                     | Z       | 4.73         | 67.92          | 17.12          |      | 130.0          |          |
| 10587-<br>AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)          | X       | 4.94         | 67.39          | 16.68          | 0.46 | 130.0          | ± 9.6 %  |
|               |                                                                     | Y       | 4.58         | 66.91          | 16.29          |      | 130.0          |          |
|               |                                                                     | Z       | 4.50         | 67.21          | 16.45          |      | 130.0          |          |
| 10588-<br>AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)          | X       | 4.98         | 67.29          | 16.65          | 0.46 | 130.0          | ± 9.6 %  |
|               |                                                                     | Y       | 4.62         | 66.97          | 16.32          |      | 130.0          |          |
| 10589-        | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48                                 | Z       | 4.54<br>5.07 | 67.27<br>68.07 | 16.48<br>17.23 | 0.46 | 130.0<br>130.0 | ± 9.6 %  |
| AAA           | Mbps, 90pc duty cycle)                                              |         |              | 1.             |                |      |                |          |
|               |                                                                     | Υ       | 4.72         | 67.70          | 16.95          |      | 130.0          |          |
|               |                                                                     | Z       | 4.65         | 68.04          | 17.12          |      | 130.0          |          |
| 10590-<br>AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54<br>Mbps, 90pc duty cycle)       | Х       | 4.90         | 67.13          | 16.49          | 0.46 | 130.0          | ± 9.6 %  |
|               |                                                                     | Y       | 4.51         | 66.68          | 16.07          |      | 130.0          |          |
|               |                                                                     | Z       | 4.43         | 67.00          | 16.24          |      | 130.0          | 1        |

| 10591-<br>AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle) | X   | 5.10         | 67.21    | 16.96 | 0.46 | 130.0 | ± 9.6 % |
|---------------|-------------------------------------------------------|-----|--------------|----------|-------|------|-------|---------|
|               |                                                       | Y   | 4.84         | 67.07    | 16.74 |      | 130.0 |         |
|               |                                                       | Z   | 4.77         | 67.39    | 16.89 |      | 130.0 |         |
| 10592-<br>AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle) | Х   | 5.29         | 67.56    | 17.07 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                       | Y   | 4.98         | 67.40    | 16.87 |      | 130.0 |         |
|               |                                                       | Z   | 4.90         | 67.69    | 17.01 |      | 130.0 |         |
| 10593-<br>AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle) | X   | 5.23         | 67.57    | 17.01 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                       | Y   | 4.90         | 67.30    | 16.75 |      | 130.0 |         |
|               |                                                       | Z   | 4.82         | 67.59    | 16.88 |      | 130.0 |         |
| 10594-<br>AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle) | X   | 5.28         | 67.68    | 17.13 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                       | Υ   | 4.96         | 67.47    | 16.91 |      | 130.0 |         |
|               |                                                       | Z   | 4.88         | 67.75    | 17.04 |      | 130.0 |         |
| 10595-<br>AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle) | X   | 5.27         | 67.71    | 17.06 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                       | Y   | 4.93         | 67.44    | 16.81 |      | 130.0 |         |
| 10=c-         |                                                       | Z   | 4.85         | 67.75    | 16.96 |      | 130.0 |         |
| 10596-<br>AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle) | X   | 5.21         | 67.70    | 17.06 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                       | Y   | 4.86         | 67.44    | 16.81 |      | 130.0 |         |
| 1050-         |                                                       | Z   | 4.78         | 67.74    | 16.97 |      | 130.0 |         |
| 10597-<br>AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle) | X   | 5.16         | 67.68    | 17.00 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                       | Y   | 4.81         | 67.32    | 16.68 |      | 130.0 |         |
|               |                                                       | Z   | 4.73         | 67.61    | 16.83 |      | 130.0 |         |
| 10598-<br>AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle) | Х   | 5.15         | 67.96    | 17.27 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                       | Y   | 4.80         | 67.55    | 16.95 |      | 130.0 |         |
|               |                                                       | Z   | 4.72         | 67.82    | 17.08 |      | 130.0 |         |
| 10599-<br>AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle) | Х   | 5.77         | 67.84    | 17.13 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                       | Y   | 5.52         | 67.58    | 16.96 |      | 130.0 |         |
|               |                                                       | Z   | 5.45         | 67.81    | 17.10 |      | 130.0 |         |
| 10600-<br>AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle) | X   | 6.05         | 68.67    | 17.52 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                       | Y   | 5.68         | 68.13    | 17.21 |      | 130.0 |         |
|               |                                                       | Z   | 5.58         | 68.26    | 17.30 |      | 130.0 |         |
| 10601-<br>AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle) | X   | 5.85         | 68.16    | 17.28 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                       | Y   | 5.55         | 67.80    | 17.06 | •    | 130.0 |         |
|               |                                                       | Z   | 5.46         | 67.98    | 17.17 |      | 130.0 |         |
| 10602-<br>AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle) | X   | 5.99         | 68.30    | 17.27 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                       | Y   | 5.68         | 67.95    | 17.06 |      | 130.0 |         |
| 10000         |                                                       | Z   | 5.60         | 68.17    | 17.19 |      | 130.0 |         |
| 10603-<br>AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle) | X   | 6.09         | 68.64    | 17.55 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                       | _ Y | 5.74         | 68.19    | 17.31 |      | 130.0 |         |
| 1000:         | 1                                                     | Z   | 5.66         | 68.42    | 17.44 |      | 130.0 |         |
| 10604-<br>AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle) | Х   | 5.79         | 67.86    | 17.16 | 0.46 | 130.0 | ± 9.6 % |
|               | <u> </u>                                              | Y   | 5.59         | 67.76    | 17.08 |      | 130.0 |         |
| 1005          |                                                       | Z   | 5.54         | 68.06    | 17.25 |      | 130.0 |         |
| 10605-<br>AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle) | X   | 5.90         | 68.15    | 17.31 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                       | Y   | 5.67         | 68.01    | 17.21 |      | 130.0 |         |
| 40000         |                                                       | Z   | 5.56         | 68.12    | 17.28 |      | 130.0 |         |
| 10606-<br>AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle) | X   | 5.65         | 67.59    | 16.91 | 0.46 | 130.0 | ±9.6%   |
|               | 1                                                     | 1   | E 0=         | 0 70 4 0 | 40.0= |      | T     |         |
| <del></del>   |                                                       | Y   | 5.37<br>5.33 | 67.19    | 16.65 |      | 130.0 |         |

| 10607-        | IEEE 802.11ac WiFi (20MHz, MCS0,                  | X | 4.92 | 66.49 | 16.57 | 0.46 | 130.0 | ± 9.6 %  |
|---------------|---------------------------------------------------|---|------|-------|-------|------|-------|----------|
| AAA           | 90pc duty cycle)                                  |   |      |       |       | 0.10 | 100.0 | 2 3.0 %  |
|               |                                                   | Y | 4.68 | 66.39 | 16.37 |      | 130.0 |          |
| 10608-        | IEEE 900 44 pp 14004                              | Z | 4.62 | 66.76 | 16.54 |      | 130.0 |          |
| AAA           | IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle) | X | 5.16 | 66.93 | 16.72 | 0.46 | 130.0 | ± 9.6 %  |
| <del></del>   |                                                   | Υ | 4.85 | 66.77 | 16.53 |      | 130.0 |          |
| 10000         | IEEE 000 44 MEL (00) W. C. C.                     | Z | 4.77 | 67.10 | 16.69 |      | 130.0 |          |
| 10609-<br>AAA | IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle) | × | 5.06 | 66.87 | 16.62 | 0.46 | 130.0 | ± 9.6 %  |
|               |                                                   | Y | 4.74 | 66.62 | 16.36 |      | 130.0 |          |
| 10010         | 1555 000 44 - 1455 (001 H + 1450                  | Z | 4.67 | 66.96 | 16.53 |      | 130.0 |          |
| 10610-<br>AAA | IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle) | Х | 5.11 | 67.01 | 16.76 | 0.46 | 130.0 | ± 9.6 %  |
|               |                                                   | Y | 4.79 | 66.78 | 16.53 |      | 130.0 |          |
| 40044         | IEEE COO 44 NUEL COO 11                           | Z | 4.72 | 67.11 | 16.69 | L    | 130.0 |          |
| 10611-<br>AAA | IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle) | X | 5.05 | 66.92 | 16.66 | 0.46 | 130.0 | ± 9.6 %  |
|               |                                                   | Υ | 4.71 | 66.59 | 16.38 |      | 130.0 |          |
| 10015         | UEEE and the                                      | Z | 4.64 | 66.93 | 16.55 |      | 130.0 |          |
| 10612-<br>AAA | IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle) | X | 5.07 | 67.04 | 16.68 | 0.46 | 130.0 | ± 9.6 %  |
|               |                                                   | Y | 4.72 | 66.76 | 16.43 |      | 130.0 |          |
|               |                                                   | Z | 4.64 | 67.09 | 16.61 |      | 130.0 | -        |
| 10613-<br>AAA | IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle) | X | 5.09 | 66.98 | 16.60 | 0.46 | 130.0 | ± 9.6 %  |
|               |                                                   | Y | 4.71 | 66.61 | 16.29 |      | 130.0 |          |
|               |                                                   | Z | 4.63 | 66.91 | 16.45 |      | 130.0 |          |
| 10614-<br>AAA | IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle) | X | 5.02 | 67.21 | 16.84 | 0.46 | 130.0 | ± 9.6 %  |
|               |                                                   | Y | 4.67 | 66.81 | 16.53 |      | 130.0 |          |
|               |                                                   | Z | 4.59 | 67.11 | 16.69 |      | 130.0 |          |
| 10615-<br>AAA | IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle) | X | 5.05 | 66.70 | 16.43 | 0.46 | 130.0 | ± 9.6 %  |
|               |                                                   | Y | 4.71 | 66.43 | 16.16 |      | 130.0 |          |
|               |                                                   | Z | 4.64 | 66.79 | 16.34 |      | 130.0 |          |
| 10616-<br>AAA | IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle) | Х | 5.58 | 67.10 | 16.74 | 0.46 | 130.0 | ± 9.6 %  |
|               |                                                   | Y | 5.33 | 66.79 | 16.55 |      | 130.0 |          |
|               |                                                   | Z | 5.25 | 67.00 | 16.67 |      | 130.0 |          |
| 10617-<br>AAA | IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle) | X | 5.66 | 67.25 | 16.77 | 0.46 | 130.0 | ± 9.6 %  |
|               |                                                   | Y | 5.41 | 67.04 | 16.65 | ·    | 130.0 | <u>.</u> |
|               |                                                   | Z | 5.31 | 67.19 | 16.74 |      | 130.0 |          |
| 10618-<br>AAA | IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle) | X | 5.54 | 67.29 | 16.82 | 0.46 | 130.0 | ± 9.6 %  |
|               |                                                   | Y | 5.29 | 67.03 | 16.66 | ,    | 130.0 |          |
|               |                                                   | Z | 5.22 | 67.24 | 16.78 |      | 130.0 |          |
| 10619-<br>AAA | IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle) | X | 5.56 | 67.09 | 16.66 | 0.46 | 130.0 | ± 9.6 %  |
|               |                                                   | Y | 5.30 | 66.81 | 16.48 |      | 130.0 |          |
|               |                                                   | Z | 5.23 | 67.05 | 16.63 |      | 130.0 |          |
| 10620-<br>AAA | IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle) | X | 5.71 | 67.30 | 16.81 | 0.46 | 130.0 | ± 9.6 %  |
|               |                                                   | Y | 5.38 | 66.84 | 16.54 |      | 130.0 | -        |
|               |                                                   | Z | 5.30 | 67.04 | 16.67 |      | 130.0 |          |
| 10621-<br>AAA | IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle) | Х | 5.66 | 67.28 | 16.90 | 0.46 | 130.0 | ± 9.6 %  |
|               |                                                   | Y | 5.39 | 66.98 | 16.73 |      | 130.0 |          |
|               |                                                   | Z | 5.30 | 67.12 | 16.82 |      | 130.0 |          |
| 10622-<br>AAA | IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle) | X | 5.65 | 67.37 | 16.94 | 0.46 | 130.0 | ± 9.6 %  |
| PVAVA         |                                                   | 1 |      |       |       |      | 1     |          |
|               |                                                   | Y | 5.40 | 67.13 | 16.80 |      | 130.0 |          |

| 10623-<br>AAA | IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)  | X   | 5.58         | 67.14          | 16.73          | 0.46 | 130.0          | ± 9.6 %                                   |
|---------------|----------------------------------------------------|-----|--------------|----------------|----------------|------|----------------|-------------------------------------------|
|               |                                                    | Y   | 5.28         | 66.65          | 16.43          |      | 130.0          |                                           |
|               |                                                    | Z   | 5.18         | 66.78          | 16.52          |      | 130.0          |                                           |
| 10624-<br>AAA | IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)  | X   | 5.72         | 67.10          | 16.77          | 0.46 | 130.0          | ± 9.6 %                                   |
|               |                                                    | Y   | 5.47         | 66.85          | 16.60          |      | 130.0          |                                           |
|               |                                                    | Z   | 5.38         | 67.03          | 16.70          |      | 130.0          |                                           |
| 10625-<br>AAA | IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)  | X   | 6.05         | 67.87          | 17.19          | 0.46 | 130.0          | ± 9.6 %                                   |
|               |                                                    | Y   | 5.77         | 67.66          | 17.06          |      | 130.0          |                                           |
|               |                                                    | Z   | 5.49         | 67.24          | 16.87          |      | 130.0          |                                           |
| 10626-<br>AAA | IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)  | X   | 5.80         | 67.08          | 16.64          | 0.46 | 130.0          | ± 9.6 %                                   |
|               |                                                    | Y   | 5.63         | 66.82          | 16.50          |      | 130.0          |                                           |
|               |                                                    | Z   | 5.57         | 66.99          | 16.60          |      | 130.0          |                                           |
| 10627-<br>AAA | IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)  | X   | 6.05         | 67.56          | 16.82          | 0.46 | 130.0          | ± 9.6 %                                   |
|               |                                                    | Y   | 5.90         | 67.51          | 16.81          |      | 130.0          |                                           |
|               |                                                    | Z   | 5.83         | 67.67          | 16.91          |      | 130.0          |                                           |
| 10628-<br>AAA | IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)  | Х   | 5.89         | 67.33          | 16.66          | 0.46 | 130.0          | ± 9.6 %                                   |
|               |                                                    | Υ   | 5.66         | 66.90          | 16.43          |      | 130.0          |                                           |
|               |                                                    | Z   | 5.58         | 67.01          | 16.51          |      | 130.0          |                                           |
| 10629-<br>AAA | IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)  | X   | 6.01         | 67.46          | 16.71          | 0.46 | 130.0          | ± 9.6 %                                   |
|               |                                                    | Y   | 5.74         | 67.00          | 16.48          |      | 130.0          |                                           |
|               |                                                    | Z   | 5.68         | 67.19          | 16.60          |      | 130.0          |                                           |
| 10630-<br>AAA | IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)  | X   | 6.66         | 69.52          | 17.74          | 0.46 | 130.0          | ± 9.6 %                                   |
|               |                                                    | Y   | 6.23         | 68.64          | 17.29          |      | 130.0          |                                           |
|               |                                                    | Z   | 5.99         | 68.32          | 17.17          |      | 130.0          |                                           |
| 10631-<br>AAA | IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)  | X   | 6.51         | 69.16          | 17.72          | 0.46 | 130.0          | ± 9.6 %                                   |
|               |                                                    | Y   | 6.05         | 68.21          | 17.27          |      | 130.0          |                                           |
|               |                                                    | Z   | 5.91         | 68.16          | 17.27          |      | 130.0          |                                           |
| 10632-<br>AAA | IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)  | X   | 6.07         | 67.76          | 17.04          | 0.46 | 130.0          | ± 9.6 %                                   |
|               |                                                    | Y   | 5.87         | 67.57          | 16.97          |      | 130.0          |                                           |
|               |                                                    | Z   | 5.81         | 67.79          | 17.10          |      | 130.0          |                                           |
| 10633-<br>AAA | IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)  | X   | 6.04         | 67.71          | 16.86          | 0.46 | 130.0          | ± 9.6 %                                   |
|               |                                                    | _ Y | 5.71         | 67.04          | 16.54          |      | 130.0          |                                           |
|               |                                                    | Z   | 5.62         | 67.14          | 16.61          |      | 130.0          |                                           |
| 10634-<br>AAA | IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)  | X   | 6.01         | 67.64          | 16.89          | 0.46 | 130.0          | ± 9.6 %                                   |
|               |                                                    | Y   | 5.69         | 67.06          | 16.60          |      | 130.0          |                                           |
|               |                                                    | Z   | 5.63         | 67.23          | 16.71          |      | 130.0          | -                                         |
| 10635-<br>AAA | IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)  | Х   | 5.88         | 66.99          | 16.33          | 0.46 | 130.0          | ± 9.6 %                                   |
|               |                                                    | Y   | 5.57         | 66.39          | 16.00          |      | 130.0          |                                           |
|               |                                                    | Z   | 5.49         | 66.55          | 16.11          |      | 130.0          |                                           |
| 10636-<br>AAB | IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle) | Х   | 6.20         | 67.47          | 16.73          | 0.46 | 130.0          | ± 9.6 %                                   |
|               |                                                    | Y   | 6.06         | 67.19          | 16.58          |      | 130.0          |                                           |
| 10637-        | IEEE 802.11ac WiFi (160MHz, MCS1,                  | Z   | 6.01<br>6.43 | 67.33<br>68.00 | 16.67<br>16.96 | 0.46 | 130.0<br>130.0 | ± 9.6 %                                   |
| AAB           | 90pc duty cycle)                                   | +   | 0.00         | 07.00          | 10 ==          |      | 1              |                                           |
|               |                                                    | Y   | 6.23         | 67.63          | 16.79          |      | 130.0          |                                           |
| 10638-        | 1555 802 1100 W/St /460 W/St 44000                 | Z   | 6.14         | 67.69          | 16.84          |      | 130.0          | ·<br>···································· |
| AAB           | IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle) | X   | 6.38         | 67.82          | 16.85          | 0.46 | 130.0          | ± 9.6 %                                   |
|               |                                                    | Y   | 6.23         | 67.59          | 16.75          |      | 130.0          |                                           |
|               |                                                    | Z   | 6.16         | 67.71          | 16.83          |      | 130.0          |                                           |

| 10639-<br>AAB | IEEE 802.11ac WIFi (160MHz, MCS3, 90pc duty cycle)     | X | 6.40  | 67.91  | 16.95 | 0.46 | 130.0 | ± 9.6 % |
|---------------|--------------------------------------------------------|---|-------|--------|-------|------|-------|---------|
|               |                                                        | Y | 6.18  | 67.47  | 16.73 | -    | 130.0 |         |
|               |                                                        | Z | 6.11  | 67.58  | 16.80 |      | 130.0 |         |
| 10640-<br>AAB | IEEE 802.11ac WiFi (160MHz, MCS4, 90pc duty cycle)     | Х | 6.45  | 68.06  | 16.97 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                        | Υ | 6.19  | 67.49  | 16.68 |      | 130.0 |         |
|               |                                                        | Z | 6.09  | 67.54  | 16.73 |      | 130.0 |         |
| 10641-<br>AAB | IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)     | Х | 6.42  | 67.72  | 16.82 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                        | Υ | 6.26  | 67.48  | 16.70 |      | 130.0 |         |
|               |                                                        | Z | 6.18  | 67.60  | 16.78 |      | 130.0 | ·       |
| 10642-<br>AAB | IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)     | Х | 6.51  | 68.09  | 17.16 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                        | Y | 6.27  | 67.64  | 16.94 |      | 130.0 |         |
|               |                                                        | Z | 6.19  | 67.74  | 17.01 |      | 130.0 |         |
| 10643-<br>AAB | IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)     | Х | 6.33  | 67.78  | 16.92 | 0.46 | 130.0 | ± 9.6 % |
| ·             |                                                        | Υ | 6.13  | 67.39  | 16.71 |      | 130.0 |         |
|               |                                                        | Z | 6.05  | 67.49  | 16.79 | - "  | 130.0 |         |
| 10644-<br>AAB | IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)     | X | 6.62  | 68.66  | 17.38 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                        | Y | 6.24  | 67.74  | 16.91 |      | 130.0 |         |
|               |                                                        | Z | 6.11  | 67.69  | 16.91 |      | 130.0 |         |
| 10645-<br>AAB | IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)     | X | 6.82  | 68.76  | 17.37 | 0.46 | 130.0 | ± 9.6 % |
|               |                                                        | Y | 6.42  | 67.94  | 16.97 |      | 130.0 |         |
|               |                                                        | Z | 6.29  | 67.89  | 16.97 |      | 130.0 |         |
| 10646-<br>AAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)  | X | 22.37 | 99.45  | 32.18 | 9.30 | 60.0  | ± 9.6 % |
|               |                                                        | Υ | 34.93 | 118.52 | 39.50 |      | 60.0  |         |
| <u></u>       |                                                        | Z | 65.31 | 137.01 | 45.15 |      | 60.0  |         |
| 10647-<br>AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7) | X | 23.87 | 101.54 | 32.95 | 9.30 | 60.0  | ± 9.6 % |
|               |                                                        | Υ | 35.03 | 119.53 | 39.96 |      | 60.0  |         |
|               |                                                        | Z | 61.92 | 136.93 | 45.35 |      | 60.0  |         |
| 10648-<br>AAA | CDMA2000 (1x Advanced)                                 | Х | 1.11  | 70.04  | 15.37 | 0.00 | 150.0 | ± 9.6 % |
|               |                                                        | Υ | 0.68  | 63.85  | 10.64 |      | 150.0 |         |
|               |                                                        | Z | 0.72  | 65.39  | 11.21 |      | 150.0 |         |
| 10652-<br>AAB | LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)         | X | 5.43  | 70.91  | 18.53 | 2.23 | 80.0  | ± 9.6 % |
| ·             |                                                        | Υ | 4.44  | 69.41  | 17.59 |      | 80.0  |         |
| 10055         |                                                        | Z | 4.46  | 70.35  | 17.94 |      | 80.0  |         |
| 10653-<br>AAB | LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)        | X | 5.75  | 69.79  | 18.37 | 2.23 | 80.0  | ± 9.6 % |
|               |                                                        | Υ | 4.85  | 68.29  | 17.59 |      | 80.0  |         |
|               |                                                        | Z | 4.80  | 68.81  | 17.83 |      | 80.0  |         |
| 10654-<br>AAB | LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)        | Х | 5.63  | 69.47  | 18.36 | 2.23 | 80.0  | ± 9.6 % |
|               |                                                        | Y | 4.81  | 67.88  | 17.59 |      | 80.0  |         |
|               |                                                        | Z | 4.76  | 68.31  | 17.81 |      | 80.0  |         |
| 10655-<br>AAB | LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)        | Х | 5.69  | 69.55  | 18.41 | 2.23 | 80.0  | ± 9.6 % |
|               |                                                        | Υ | 4.87  | 67.81  | 17.62 |      | 80.0  |         |
|               |                                                        | Z | 4.82  | 68.18  | 17.82 |      | 80.0  |         |

<sup>&</sup>lt;sup>E</sup> Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.